1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/ExprOpenMP.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/SemaInternal.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 32 //===----------------------------------------------------------------------===// 33 // Sema Initialization Checking 34 //===----------------------------------------------------------------------===// 35 36 /// Check whether T is compatible with a wide character type (wchar_t, 37 /// char16_t or char32_t). 38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 39 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 40 return true; 41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 42 return Context.typesAreCompatible(Context.Char16Ty, T) || 43 Context.typesAreCompatible(Context.Char32Ty, T); 44 } 45 return false; 46 } 47 48 enum StringInitFailureKind { 49 SIF_None, 50 SIF_NarrowStringIntoWideChar, 51 SIF_WideStringIntoChar, 52 SIF_IncompatWideStringIntoWideChar, 53 SIF_UTF8StringIntoPlainChar, 54 SIF_PlainStringIntoUTF8Char, 55 SIF_Other 56 }; 57 58 /// Check whether the array of type AT can be initialized by the Init 59 /// expression by means of string initialization. Returns SIF_None if so, 60 /// otherwise returns a StringInitFailureKind that describes why the 61 /// initialization would not work. 62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 63 ASTContext &Context) { 64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 65 return SIF_Other; 66 67 // See if this is a string literal or @encode. 68 Init = Init->IgnoreParens(); 69 70 // Handle @encode, which is a narrow string. 71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 72 return SIF_None; 73 74 // Otherwise we can only handle string literals. 75 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 76 if (!SL) 77 return SIF_Other; 78 79 const QualType ElemTy = 80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 81 82 switch (SL->getKind()) { 83 case StringLiteral::UTF8: 84 // char8_t array can be initialized with a UTF-8 string. 85 if (ElemTy->isChar8Type()) 86 return SIF_None; 87 LLVM_FALLTHROUGH; 88 case StringLiteral::Ascii: 89 // char array can be initialized with a narrow string. 90 // Only allow char x[] = "foo"; not char x[] = L"foo"; 91 if (ElemTy->isCharType()) 92 return (SL->getKind() == StringLiteral::UTF8 && 93 Context.getLangOpts().Char8) 94 ? SIF_UTF8StringIntoPlainChar 95 : SIF_None; 96 if (ElemTy->isChar8Type()) 97 return SIF_PlainStringIntoUTF8Char; 98 if (IsWideCharCompatible(ElemTy, Context)) 99 return SIF_NarrowStringIntoWideChar; 100 return SIF_Other; 101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 102 // "An array with element type compatible with a qualified or unqualified 103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 104 // string literal with the corresponding encoding prefix (L, u, or U, 105 // respectively), optionally enclosed in braces. 106 case StringLiteral::UTF16: 107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 108 return SIF_None; 109 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 110 return SIF_WideStringIntoChar; 111 if (IsWideCharCompatible(ElemTy, Context)) 112 return SIF_IncompatWideStringIntoWideChar; 113 return SIF_Other; 114 case StringLiteral::UTF32: 115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 116 return SIF_None; 117 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 118 return SIF_WideStringIntoChar; 119 if (IsWideCharCompatible(ElemTy, Context)) 120 return SIF_IncompatWideStringIntoWideChar; 121 return SIF_Other; 122 case StringLiteral::Wide: 123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 124 return SIF_None; 125 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 126 return SIF_WideStringIntoChar; 127 if (IsWideCharCompatible(ElemTy, Context)) 128 return SIF_IncompatWideStringIntoWideChar; 129 return SIF_Other; 130 } 131 132 llvm_unreachable("missed a StringLiteral kind?"); 133 } 134 135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 136 ASTContext &Context) { 137 const ArrayType *arrayType = Context.getAsArrayType(declType); 138 if (!arrayType) 139 return SIF_Other; 140 return IsStringInit(init, arrayType, Context); 141 } 142 143 /// Update the type of a string literal, including any surrounding parentheses, 144 /// to match the type of the object which it is initializing. 145 static void updateStringLiteralType(Expr *E, QualType Ty) { 146 while (true) { 147 E->setType(Ty); 148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) 149 break; 150 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) 151 E = PE->getSubExpr(); 152 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 153 E = UO->getSubExpr(); 154 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) 155 E = GSE->getResultExpr(); 156 else 157 llvm_unreachable("unexpected expr in string literal init"); 158 } 159 } 160 161 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 162 Sema &S) { 163 // Get the length of the string as parsed. 164 auto *ConstantArrayTy = 165 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 166 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 167 168 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 169 // C99 6.7.8p14. We have an array of character type with unknown size 170 // being initialized to a string literal. 171 llvm::APInt ConstVal(32, StrLength); 172 // Return a new array type (C99 6.7.8p22). 173 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 174 ConstVal, 175 ArrayType::Normal, 0); 176 updateStringLiteralType(Str, DeclT); 177 return; 178 } 179 180 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 181 182 // We have an array of character type with known size. However, 183 // the size may be smaller or larger than the string we are initializing. 184 // FIXME: Avoid truncation for 64-bit length strings. 185 if (S.getLangOpts().CPlusPlus) { 186 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 187 // For Pascal strings it's OK to strip off the terminating null character, 188 // so the example below is valid: 189 // 190 // unsigned char a[2] = "\pa"; 191 if (SL->isPascal()) 192 StrLength--; 193 } 194 195 // [dcl.init.string]p2 196 if (StrLength > CAT->getSize().getZExtValue()) 197 S.Diag(Str->getBeginLoc(), 198 diag::err_initializer_string_for_char_array_too_long) 199 << Str->getSourceRange(); 200 } else { 201 // C99 6.7.8p14. 202 if (StrLength-1 > CAT->getSize().getZExtValue()) 203 S.Diag(Str->getBeginLoc(), 204 diag::ext_initializer_string_for_char_array_too_long) 205 << Str->getSourceRange(); 206 } 207 208 // Set the type to the actual size that we are initializing. If we have 209 // something like: 210 // char x[1] = "foo"; 211 // then this will set the string literal's type to char[1]. 212 updateStringLiteralType(Str, DeclT); 213 } 214 215 //===----------------------------------------------------------------------===// 216 // Semantic checking for initializer lists. 217 //===----------------------------------------------------------------------===// 218 219 namespace { 220 221 /// Semantic checking for initializer lists. 222 /// 223 /// The InitListChecker class contains a set of routines that each 224 /// handle the initialization of a certain kind of entity, e.g., 225 /// arrays, vectors, struct/union types, scalars, etc. The 226 /// InitListChecker itself performs a recursive walk of the subobject 227 /// structure of the type to be initialized, while stepping through 228 /// the initializer list one element at a time. The IList and Index 229 /// parameters to each of the Check* routines contain the active 230 /// (syntactic) initializer list and the index into that initializer 231 /// list that represents the current initializer. Each routine is 232 /// responsible for moving that Index forward as it consumes elements. 233 /// 234 /// Each Check* routine also has a StructuredList/StructuredIndex 235 /// arguments, which contains the current "structured" (semantic) 236 /// initializer list and the index into that initializer list where we 237 /// are copying initializers as we map them over to the semantic 238 /// list. Once we have completed our recursive walk of the subobject 239 /// structure, we will have constructed a full semantic initializer 240 /// list. 241 /// 242 /// C99 designators cause changes in the initializer list traversal, 243 /// because they make the initialization "jump" into a specific 244 /// subobject and then continue the initialization from that 245 /// point. CheckDesignatedInitializer() recursively steps into the 246 /// designated subobject and manages backing out the recursion to 247 /// initialize the subobjects after the one designated. 248 class InitListChecker { 249 Sema &SemaRef; 250 bool hadError; 251 bool VerifyOnly; // no diagnostics, no structure building 252 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 253 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 254 InitListExpr *FullyStructuredList; 255 256 void CheckImplicitInitList(const InitializedEntity &Entity, 257 InitListExpr *ParentIList, QualType T, 258 unsigned &Index, InitListExpr *StructuredList, 259 unsigned &StructuredIndex); 260 void CheckExplicitInitList(const InitializedEntity &Entity, 261 InitListExpr *IList, QualType &T, 262 InitListExpr *StructuredList, 263 bool TopLevelObject = false); 264 void CheckListElementTypes(const InitializedEntity &Entity, 265 InitListExpr *IList, QualType &DeclType, 266 bool SubobjectIsDesignatorContext, 267 unsigned &Index, 268 InitListExpr *StructuredList, 269 unsigned &StructuredIndex, 270 bool TopLevelObject = false); 271 void CheckSubElementType(const InitializedEntity &Entity, 272 InitListExpr *IList, QualType ElemType, 273 unsigned &Index, 274 InitListExpr *StructuredList, 275 unsigned &StructuredIndex); 276 void CheckComplexType(const InitializedEntity &Entity, 277 InitListExpr *IList, QualType DeclType, 278 unsigned &Index, 279 InitListExpr *StructuredList, 280 unsigned &StructuredIndex); 281 void CheckScalarType(const InitializedEntity &Entity, 282 InitListExpr *IList, QualType DeclType, 283 unsigned &Index, 284 InitListExpr *StructuredList, 285 unsigned &StructuredIndex); 286 void CheckReferenceType(const InitializedEntity &Entity, 287 InitListExpr *IList, QualType DeclType, 288 unsigned &Index, 289 InitListExpr *StructuredList, 290 unsigned &StructuredIndex); 291 void CheckVectorType(const InitializedEntity &Entity, 292 InitListExpr *IList, QualType DeclType, unsigned &Index, 293 InitListExpr *StructuredList, 294 unsigned &StructuredIndex); 295 void CheckStructUnionTypes(const InitializedEntity &Entity, 296 InitListExpr *IList, QualType DeclType, 297 CXXRecordDecl::base_class_range Bases, 298 RecordDecl::field_iterator Field, 299 bool SubobjectIsDesignatorContext, unsigned &Index, 300 InitListExpr *StructuredList, 301 unsigned &StructuredIndex, 302 bool TopLevelObject = false); 303 void CheckArrayType(const InitializedEntity &Entity, 304 InitListExpr *IList, QualType &DeclType, 305 llvm::APSInt elementIndex, 306 bool SubobjectIsDesignatorContext, unsigned &Index, 307 InitListExpr *StructuredList, 308 unsigned &StructuredIndex); 309 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 310 InitListExpr *IList, DesignatedInitExpr *DIE, 311 unsigned DesigIdx, 312 QualType &CurrentObjectType, 313 RecordDecl::field_iterator *NextField, 314 llvm::APSInt *NextElementIndex, 315 unsigned &Index, 316 InitListExpr *StructuredList, 317 unsigned &StructuredIndex, 318 bool FinishSubobjectInit, 319 bool TopLevelObject); 320 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 321 QualType CurrentObjectType, 322 InitListExpr *StructuredList, 323 unsigned StructuredIndex, 324 SourceRange InitRange, 325 bool IsFullyOverwritten = false); 326 void UpdateStructuredListElement(InitListExpr *StructuredList, 327 unsigned &StructuredIndex, 328 Expr *expr); 329 int numArrayElements(QualType DeclType); 330 int numStructUnionElements(QualType DeclType); 331 332 static ExprResult PerformEmptyInit(Sema &SemaRef, 333 SourceLocation Loc, 334 const InitializedEntity &Entity, 335 bool VerifyOnly, 336 bool TreatUnavailableAsInvalid); 337 338 // Explanation on the "FillWithNoInit" mode: 339 // 340 // Assume we have the following definitions (Case#1): 341 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 342 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 343 // 344 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 345 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 346 // 347 // But if we have (Case#2): 348 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 349 // 350 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 351 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 352 // 353 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 354 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 355 // initializers but with special "NoInitExpr" place holders, which tells the 356 // CodeGen not to generate any initializers for these parts. 357 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 358 const InitializedEntity &ParentEntity, 359 InitListExpr *ILE, bool &RequiresSecondPass, 360 bool FillWithNoInit); 361 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 362 const InitializedEntity &ParentEntity, 363 InitListExpr *ILE, bool &RequiresSecondPass, 364 bool FillWithNoInit = false); 365 void FillInEmptyInitializations(const InitializedEntity &Entity, 366 InitListExpr *ILE, bool &RequiresSecondPass, 367 InitListExpr *OuterILE, unsigned OuterIndex, 368 bool FillWithNoInit = false); 369 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 370 Expr *InitExpr, FieldDecl *Field, 371 bool TopLevelObject); 372 void CheckEmptyInitializable(const InitializedEntity &Entity, 373 SourceLocation Loc); 374 375 public: 376 InitListChecker(Sema &S, const InitializedEntity &Entity, 377 InitListExpr *IL, QualType &T, bool VerifyOnly, 378 bool TreatUnavailableAsInvalid); 379 bool HadError() { return hadError; } 380 381 // Retrieves the fully-structured initializer list used for 382 // semantic analysis and code generation. 383 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 384 }; 385 386 } // end anonymous namespace 387 388 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 389 SourceLocation Loc, 390 const InitializedEntity &Entity, 391 bool VerifyOnly, 392 bool TreatUnavailableAsInvalid) { 393 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 394 true); 395 MultiExprArg SubInit; 396 Expr *InitExpr; 397 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 398 399 // C++ [dcl.init.aggr]p7: 400 // If there are fewer initializer-clauses in the list than there are 401 // members in the aggregate, then each member not explicitly initialized 402 // ... 403 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 404 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 405 if (EmptyInitList) { 406 // C++1y / DR1070: 407 // shall be initialized [...] from an empty initializer list. 408 // 409 // We apply the resolution of this DR to C++11 but not C++98, since C++98 410 // does not have useful semantics for initialization from an init list. 411 // We treat this as copy-initialization, because aggregate initialization 412 // always performs copy-initialization on its elements. 413 // 414 // Only do this if we're initializing a class type, to avoid filling in 415 // the initializer list where possible. 416 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 417 InitListExpr(SemaRef.Context, Loc, None, Loc); 418 InitExpr->setType(SemaRef.Context.VoidTy); 419 SubInit = InitExpr; 420 Kind = InitializationKind::CreateCopy(Loc, Loc); 421 } else { 422 // C++03: 423 // shall be value-initialized. 424 } 425 426 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 427 // libstdc++4.6 marks the vector default constructor as explicit in 428 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 429 // stlport does so too. Look for std::__debug for libstdc++, and for 430 // std:: for stlport. This is effectively a compiler-side implementation of 431 // LWG2193. 432 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 433 InitializationSequence::FK_ExplicitConstructor) { 434 OverloadCandidateSet::iterator Best; 435 OverloadingResult O = 436 InitSeq.getFailedCandidateSet() 437 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 438 (void)O; 439 assert(O == OR_Success && "Inconsistent overload resolution"); 440 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 441 CXXRecordDecl *R = CtorDecl->getParent(); 442 443 if (CtorDecl->getMinRequiredArguments() == 0 && 444 CtorDecl->isExplicit() && R->getDeclName() && 445 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 446 bool IsInStd = false; 447 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 448 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 449 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 450 IsInStd = true; 451 } 452 453 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 454 .Cases("basic_string", "deque", "forward_list", true) 455 .Cases("list", "map", "multimap", "multiset", true) 456 .Cases("priority_queue", "queue", "set", "stack", true) 457 .Cases("unordered_map", "unordered_set", "vector", true) 458 .Default(false)) { 459 InitSeq.InitializeFrom( 460 SemaRef, Entity, 461 InitializationKind::CreateValue(Loc, Loc, Loc, true), 462 MultiExprArg(), /*TopLevelOfInitList=*/false, 463 TreatUnavailableAsInvalid); 464 // Emit a warning for this. System header warnings aren't shown 465 // by default, but people working on system headers should see it. 466 if (!VerifyOnly) { 467 SemaRef.Diag(CtorDecl->getLocation(), 468 diag::warn_invalid_initializer_from_system_header); 469 if (Entity.getKind() == InitializedEntity::EK_Member) 470 SemaRef.Diag(Entity.getDecl()->getLocation(), 471 diag::note_used_in_initialization_here); 472 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 473 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 474 } 475 } 476 } 477 } 478 if (!InitSeq) { 479 if (!VerifyOnly) { 480 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 481 if (Entity.getKind() == InitializedEntity::EK_Member) 482 SemaRef.Diag(Entity.getDecl()->getLocation(), 483 diag::note_in_omitted_aggregate_initializer) 484 << /*field*/1 << Entity.getDecl(); 485 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 486 bool IsTrailingArrayNewMember = 487 Entity.getParent() && 488 Entity.getParent()->isVariableLengthArrayNew(); 489 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 490 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 491 << Entity.getElementIndex(); 492 } 493 } 494 return ExprError(); 495 } 496 497 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 498 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 499 } 500 501 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 502 SourceLocation Loc) { 503 assert(VerifyOnly && 504 "CheckEmptyInitializable is only inteded for verification mode."); 505 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true, 506 TreatUnavailableAsInvalid).isInvalid()) 507 hadError = true; 508 } 509 510 void InitListChecker::FillInEmptyInitForBase( 511 unsigned Init, const CXXBaseSpecifier &Base, 512 const InitializedEntity &ParentEntity, InitListExpr *ILE, 513 bool &RequiresSecondPass, bool FillWithNoInit) { 514 assert(Init < ILE->getNumInits() && "should have been expanded"); 515 516 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 517 SemaRef.Context, &Base, false, &ParentEntity); 518 519 if (!ILE->getInit(Init)) { 520 ExprResult BaseInit = 521 FillWithNoInit 522 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 523 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity, 524 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 525 if (BaseInit.isInvalid()) { 526 hadError = true; 527 return; 528 } 529 530 ILE->setInit(Init, BaseInit.getAs<Expr>()); 531 } else if (InitListExpr *InnerILE = 532 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 533 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 534 ILE, Init, FillWithNoInit); 535 } else if (DesignatedInitUpdateExpr *InnerDIUE = 536 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 537 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 538 RequiresSecondPass, ILE, Init, 539 /*FillWithNoInit =*/true); 540 } 541 } 542 543 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 544 const InitializedEntity &ParentEntity, 545 InitListExpr *ILE, 546 bool &RequiresSecondPass, 547 bool FillWithNoInit) { 548 SourceLocation Loc = ILE->getEndLoc(); 549 unsigned NumInits = ILE->getNumInits(); 550 InitializedEntity MemberEntity 551 = InitializedEntity::InitializeMember(Field, &ParentEntity); 552 553 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 554 if (!RType->getDecl()->isUnion()) 555 assert(Init < NumInits && "This ILE should have been expanded"); 556 557 if (Init >= NumInits || !ILE->getInit(Init)) { 558 if (FillWithNoInit) { 559 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 560 if (Init < NumInits) 561 ILE->setInit(Init, Filler); 562 else 563 ILE->updateInit(SemaRef.Context, Init, Filler); 564 return; 565 } 566 // C++1y [dcl.init.aggr]p7: 567 // If there are fewer initializer-clauses in the list than there are 568 // members in the aggregate, then each member not explicitly initialized 569 // shall be initialized from its brace-or-equal-initializer [...] 570 if (Field->hasInClassInitializer()) { 571 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 572 if (DIE.isInvalid()) { 573 hadError = true; 574 return; 575 } 576 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 577 if (Init < NumInits) 578 ILE->setInit(Init, DIE.get()); 579 else { 580 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 581 RequiresSecondPass = true; 582 } 583 return; 584 } 585 586 if (Field->getType()->isReferenceType()) { 587 // C++ [dcl.init.aggr]p9: 588 // If an incomplete or empty initializer-list leaves a 589 // member of reference type uninitialized, the program is 590 // ill-formed. 591 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 592 << Field->getType() 593 << ILE->getSyntacticForm()->getSourceRange(); 594 SemaRef.Diag(Field->getLocation(), 595 diag::note_uninit_reference_member); 596 hadError = true; 597 return; 598 } 599 600 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 601 /*VerifyOnly*/false, 602 TreatUnavailableAsInvalid); 603 if (MemberInit.isInvalid()) { 604 hadError = true; 605 return; 606 } 607 608 if (hadError) { 609 // Do nothing 610 } else if (Init < NumInits) { 611 ILE->setInit(Init, MemberInit.getAs<Expr>()); 612 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 613 // Empty initialization requires a constructor call, so 614 // extend the initializer list to include the constructor 615 // call and make a note that we'll need to take another pass 616 // through the initializer list. 617 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 618 RequiresSecondPass = true; 619 } 620 } else if (InitListExpr *InnerILE 621 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 622 FillInEmptyInitializations(MemberEntity, InnerILE, 623 RequiresSecondPass, ILE, Init, FillWithNoInit); 624 else if (DesignatedInitUpdateExpr *InnerDIUE 625 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) 626 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 627 RequiresSecondPass, ILE, Init, 628 /*FillWithNoInit =*/true); 629 } 630 631 /// Recursively replaces NULL values within the given initializer list 632 /// with expressions that perform value-initialization of the 633 /// appropriate type, and finish off the InitListExpr formation. 634 void 635 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 636 InitListExpr *ILE, 637 bool &RequiresSecondPass, 638 InitListExpr *OuterILE, 639 unsigned OuterIndex, 640 bool FillWithNoInit) { 641 assert((ILE->getType() != SemaRef.Context.VoidTy) && 642 "Should not have void type"); 643 644 // If this is a nested initializer list, we might have changed its contents 645 // (and therefore some of its properties, such as instantiation-dependence) 646 // while filling it in. Inform the outer initializer list so that its state 647 // can be updated to match. 648 // FIXME: We should fully build the inner initializers before constructing 649 // the outer InitListExpr instead of mutating AST nodes after they have 650 // been used as subexpressions of other nodes. 651 struct UpdateOuterILEWithUpdatedInit { 652 InitListExpr *Outer; 653 unsigned OuterIndex; 654 ~UpdateOuterILEWithUpdatedInit() { 655 if (Outer) 656 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 657 } 658 } UpdateOuterRAII = {OuterILE, OuterIndex}; 659 660 // A transparent ILE is not performing aggregate initialization and should 661 // not be filled in. 662 if (ILE->isTransparent()) 663 return; 664 665 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 666 const RecordDecl *RDecl = RType->getDecl(); 667 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 668 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 669 Entity, ILE, RequiresSecondPass, FillWithNoInit); 670 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 671 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 672 for (auto *Field : RDecl->fields()) { 673 if (Field->hasInClassInitializer()) { 674 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 675 FillWithNoInit); 676 break; 677 } 678 } 679 } else { 680 // The fields beyond ILE->getNumInits() are default initialized, so in 681 // order to leave them uninitialized, the ILE is expanded and the extra 682 // fields are then filled with NoInitExpr. 683 unsigned NumElems = numStructUnionElements(ILE->getType()); 684 if (RDecl->hasFlexibleArrayMember()) 685 ++NumElems; 686 if (ILE->getNumInits() < NumElems) 687 ILE->resizeInits(SemaRef.Context, NumElems); 688 689 unsigned Init = 0; 690 691 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 692 for (auto &Base : CXXRD->bases()) { 693 if (hadError) 694 return; 695 696 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 697 FillWithNoInit); 698 ++Init; 699 } 700 } 701 702 for (auto *Field : RDecl->fields()) { 703 if (Field->isUnnamedBitfield()) 704 continue; 705 706 if (hadError) 707 return; 708 709 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 710 FillWithNoInit); 711 if (hadError) 712 return; 713 714 ++Init; 715 716 // Only look at the first initialization of a union. 717 if (RDecl->isUnion()) 718 break; 719 } 720 } 721 722 return; 723 } 724 725 QualType ElementType; 726 727 InitializedEntity ElementEntity = Entity; 728 unsigned NumInits = ILE->getNumInits(); 729 unsigned NumElements = NumInits; 730 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 731 ElementType = AType->getElementType(); 732 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 733 NumElements = CAType->getSize().getZExtValue(); 734 // For an array new with an unknown bound, ask for one additional element 735 // in order to populate the array filler. 736 if (Entity.isVariableLengthArrayNew()) 737 ++NumElements; 738 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 739 0, Entity); 740 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 741 ElementType = VType->getElementType(); 742 NumElements = VType->getNumElements(); 743 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 744 0, Entity); 745 } else 746 ElementType = ILE->getType(); 747 748 for (unsigned Init = 0; Init != NumElements; ++Init) { 749 if (hadError) 750 return; 751 752 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 753 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 754 ElementEntity.setElementIndex(Init); 755 756 if (Init >= NumInits && ILE->hasArrayFiller()) 757 return; 758 759 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 760 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 761 ILE->setInit(Init, ILE->getArrayFiller()); 762 else if (!InitExpr && !ILE->hasArrayFiller()) { 763 Expr *Filler = nullptr; 764 765 if (FillWithNoInit) 766 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 767 else { 768 ExprResult ElementInit = 769 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity, 770 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 771 if (ElementInit.isInvalid()) { 772 hadError = true; 773 return; 774 } 775 776 Filler = ElementInit.getAs<Expr>(); 777 } 778 779 if (hadError) { 780 // Do nothing 781 } else if (Init < NumInits) { 782 // For arrays, just set the expression used for value-initialization 783 // of the "holes" in the array. 784 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 785 ILE->setArrayFiller(Filler); 786 else 787 ILE->setInit(Init, Filler); 788 } else { 789 // For arrays, just set the expression used for value-initialization 790 // of the rest of elements and exit. 791 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 792 ILE->setArrayFiller(Filler); 793 return; 794 } 795 796 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 797 // Empty initialization requires a constructor call, so 798 // extend the initializer list to include the constructor 799 // call and make a note that we'll need to take another pass 800 // through the initializer list. 801 ILE->updateInit(SemaRef.Context, Init, Filler); 802 RequiresSecondPass = true; 803 } 804 } 805 } else if (InitListExpr *InnerILE 806 = dyn_cast_or_null<InitListExpr>(InitExpr)) 807 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 808 ILE, Init, FillWithNoInit); 809 else if (DesignatedInitUpdateExpr *InnerDIUE 810 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) 811 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 812 RequiresSecondPass, ILE, Init, 813 /*FillWithNoInit =*/true); 814 } 815 } 816 817 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 818 InitListExpr *IL, QualType &T, 819 bool VerifyOnly, 820 bool TreatUnavailableAsInvalid) 821 : SemaRef(S), VerifyOnly(VerifyOnly), 822 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) { 823 // FIXME: Check that IL isn't already the semantic form of some other 824 // InitListExpr. If it is, we'd create a broken AST. 825 826 hadError = false; 827 828 FullyStructuredList = 829 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 830 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 831 /*TopLevelObject=*/true); 832 833 if (!hadError && !VerifyOnly) { 834 bool RequiresSecondPass = false; 835 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 836 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 837 if (RequiresSecondPass && !hadError) 838 FillInEmptyInitializations(Entity, FullyStructuredList, 839 RequiresSecondPass, nullptr, 0); 840 } 841 } 842 843 int InitListChecker::numArrayElements(QualType DeclType) { 844 // FIXME: use a proper constant 845 int maxElements = 0x7FFFFFFF; 846 if (const ConstantArrayType *CAT = 847 SemaRef.Context.getAsConstantArrayType(DeclType)) { 848 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 849 } 850 return maxElements; 851 } 852 853 int InitListChecker::numStructUnionElements(QualType DeclType) { 854 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 855 int InitializableMembers = 0; 856 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 857 InitializableMembers += CXXRD->getNumBases(); 858 for (const auto *Field : structDecl->fields()) 859 if (!Field->isUnnamedBitfield()) 860 ++InitializableMembers; 861 862 if (structDecl->isUnion()) 863 return std::min(InitializableMembers, 1); 864 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 865 } 866 867 /// Determine whether Entity is an entity for which it is idiomatic to elide 868 /// the braces in aggregate initialization. 869 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 870 // Recursive initialization of the one and only field within an aggregate 871 // class is considered idiomatic. This case arises in particular for 872 // initialization of std::array, where the C++ standard suggests the idiom of 873 // 874 // std::array<T, N> arr = {1, 2, 3}; 875 // 876 // (where std::array is an aggregate struct containing a single array field. 877 878 // FIXME: Should aggregate initialization of a struct with a single 879 // base class and no members also suppress the warning? 880 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 881 return false; 882 883 auto *ParentRD = 884 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 885 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 886 if (CXXRD->getNumBases()) 887 return false; 888 889 auto FieldIt = ParentRD->field_begin(); 890 assert(FieldIt != ParentRD->field_end() && 891 "no fields but have initializer for member?"); 892 return ++FieldIt == ParentRD->field_end(); 893 } 894 895 /// Check whether the range of the initializer \p ParentIList from element 896 /// \p Index onwards can be used to initialize an object of type \p T. Update 897 /// \p Index to indicate how many elements of the list were consumed. 898 /// 899 /// This also fills in \p StructuredList, from element \p StructuredIndex 900 /// onwards, with the fully-braced, desugared form of the initialization. 901 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 902 InitListExpr *ParentIList, 903 QualType T, unsigned &Index, 904 InitListExpr *StructuredList, 905 unsigned &StructuredIndex) { 906 int maxElements = 0; 907 908 if (T->isArrayType()) 909 maxElements = numArrayElements(T); 910 else if (T->isRecordType()) 911 maxElements = numStructUnionElements(T); 912 else if (T->isVectorType()) 913 maxElements = T->getAs<VectorType>()->getNumElements(); 914 else 915 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 916 917 if (maxElements == 0) { 918 if (!VerifyOnly) 919 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 920 diag::err_implicit_empty_initializer); 921 ++Index; 922 hadError = true; 923 return; 924 } 925 926 // Build a structured initializer list corresponding to this subobject. 927 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 928 ParentIList, Index, T, StructuredList, StructuredIndex, 929 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 930 ParentIList->getSourceRange().getEnd())); 931 unsigned StructuredSubobjectInitIndex = 0; 932 933 // Check the element types and build the structural subobject. 934 unsigned StartIndex = Index; 935 CheckListElementTypes(Entity, ParentIList, T, 936 /*SubobjectIsDesignatorContext=*/false, Index, 937 StructuredSubobjectInitList, 938 StructuredSubobjectInitIndex); 939 940 if (!VerifyOnly) { 941 StructuredSubobjectInitList->setType(T); 942 943 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 944 // Update the structured sub-object initializer so that it's ending 945 // range corresponds with the end of the last initializer it used. 946 if (EndIndex < ParentIList->getNumInits() && 947 ParentIList->getInit(EndIndex)) { 948 SourceLocation EndLoc 949 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 950 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 951 } 952 953 // Complain about missing braces. 954 if ((T->isArrayType() || T->isRecordType()) && 955 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 956 !isIdiomaticBraceElisionEntity(Entity)) { 957 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 958 diag::warn_missing_braces) 959 << StructuredSubobjectInitList->getSourceRange() 960 << FixItHint::CreateInsertion( 961 StructuredSubobjectInitList->getBeginLoc(), "{") 962 << FixItHint::CreateInsertion( 963 SemaRef.getLocForEndOfToken( 964 StructuredSubobjectInitList->getEndLoc()), 965 "}"); 966 } 967 968 // Warn if this type won't be an aggregate in future versions of C++. 969 auto *CXXRD = T->getAsCXXRecordDecl(); 970 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 971 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 972 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 973 << StructuredSubobjectInitList->getSourceRange() << T; 974 } 975 } 976 } 977 978 /// Warn that \p Entity was of scalar type and was initialized by a 979 /// single-element braced initializer list. 980 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 981 SourceRange Braces) { 982 // Don't warn during template instantiation. If the initialization was 983 // non-dependent, we warned during the initial parse; otherwise, the 984 // type might not be scalar in some uses of the template. 985 if (S.inTemplateInstantiation()) 986 return; 987 988 unsigned DiagID = 0; 989 990 switch (Entity.getKind()) { 991 case InitializedEntity::EK_VectorElement: 992 case InitializedEntity::EK_ComplexElement: 993 case InitializedEntity::EK_ArrayElement: 994 case InitializedEntity::EK_Parameter: 995 case InitializedEntity::EK_Parameter_CF_Audited: 996 case InitializedEntity::EK_Result: 997 // Extra braces here are suspicious. 998 DiagID = diag::warn_braces_around_scalar_init; 999 break; 1000 1001 case InitializedEntity::EK_Member: 1002 // Warn on aggregate initialization but not on ctor init list or 1003 // default member initializer. 1004 if (Entity.getParent()) 1005 DiagID = diag::warn_braces_around_scalar_init; 1006 break; 1007 1008 case InitializedEntity::EK_Variable: 1009 case InitializedEntity::EK_LambdaCapture: 1010 // No warning, might be direct-list-initialization. 1011 // FIXME: Should we warn for copy-list-initialization in these cases? 1012 break; 1013 1014 case InitializedEntity::EK_New: 1015 case InitializedEntity::EK_Temporary: 1016 case InitializedEntity::EK_CompoundLiteralInit: 1017 // No warning, braces are part of the syntax of the underlying construct. 1018 break; 1019 1020 case InitializedEntity::EK_RelatedResult: 1021 // No warning, we already warned when initializing the result. 1022 break; 1023 1024 case InitializedEntity::EK_Exception: 1025 case InitializedEntity::EK_Base: 1026 case InitializedEntity::EK_Delegating: 1027 case InitializedEntity::EK_BlockElement: 1028 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1029 case InitializedEntity::EK_Binding: 1030 case InitializedEntity::EK_StmtExprResult: 1031 llvm_unreachable("unexpected braced scalar init"); 1032 } 1033 1034 if (DiagID) { 1035 S.Diag(Braces.getBegin(), DiagID) 1036 << Braces 1037 << FixItHint::CreateRemoval(Braces.getBegin()) 1038 << FixItHint::CreateRemoval(Braces.getEnd()); 1039 } 1040 } 1041 1042 /// Check whether the initializer \p IList (that was written with explicit 1043 /// braces) can be used to initialize an object of type \p T. 1044 /// 1045 /// This also fills in \p StructuredList with the fully-braced, desugared 1046 /// form of the initialization. 1047 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1048 InitListExpr *IList, QualType &T, 1049 InitListExpr *StructuredList, 1050 bool TopLevelObject) { 1051 if (!VerifyOnly) { 1052 SyntacticToSemantic[IList] = StructuredList; 1053 StructuredList->setSyntacticForm(IList); 1054 } 1055 1056 unsigned Index = 0, StructuredIndex = 0; 1057 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1058 Index, StructuredList, StructuredIndex, TopLevelObject); 1059 if (!VerifyOnly) { 1060 QualType ExprTy = T; 1061 if (!ExprTy->isArrayType()) 1062 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1063 IList->setType(ExprTy); 1064 StructuredList->setType(ExprTy); 1065 } 1066 if (hadError) 1067 return; 1068 1069 if (Index < IList->getNumInits()) { 1070 // We have leftover initializers 1071 if (VerifyOnly) { 1072 if (SemaRef.getLangOpts().CPlusPlus || 1073 (SemaRef.getLangOpts().OpenCL && 1074 IList->getType()->isVectorType())) { 1075 hadError = true; 1076 } 1077 return; 1078 } 1079 1080 if (StructuredIndex == 1 && 1081 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1082 SIF_None) { 1083 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; 1084 if (SemaRef.getLangOpts().CPlusPlus) { 1085 DK = diag::err_excess_initializers_in_char_array_initializer; 1086 hadError = true; 1087 } 1088 // Special-case 1089 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1090 << IList->getInit(Index)->getSourceRange(); 1091 } else if (!T->isIncompleteType()) { 1092 // Don't complain for incomplete types, since we'll get an error 1093 // elsewhere 1094 QualType CurrentObjectType = StructuredList->getType(); 1095 int initKind = 1096 CurrentObjectType->isArrayType()? 0 : 1097 CurrentObjectType->isVectorType()? 1 : 1098 CurrentObjectType->isScalarType()? 2 : 1099 CurrentObjectType->isUnionType()? 3 : 1100 4; 1101 1102 unsigned DK = diag::ext_excess_initializers; 1103 if (SemaRef.getLangOpts().CPlusPlus) { 1104 DK = diag::err_excess_initializers; 1105 hadError = true; 1106 } 1107 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 1108 DK = diag::err_excess_initializers; 1109 hadError = true; 1110 } 1111 1112 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1113 << initKind << IList->getInit(Index)->getSourceRange(); 1114 } 1115 } 1116 1117 if (!VerifyOnly) { 1118 if (T->isScalarType() && IList->getNumInits() == 1 && 1119 !isa<InitListExpr>(IList->getInit(0))) 1120 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1121 1122 // Warn if this is a class type that won't be an aggregate in future 1123 // versions of C++. 1124 auto *CXXRD = T->getAsCXXRecordDecl(); 1125 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1126 // Don't warn if there's an equivalent default constructor that would be 1127 // used instead. 1128 bool HasEquivCtor = false; 1129 if (IList->getNumInits() == 0) { 1130 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1131 HasEquivCtor = CD && !CD->isDeleted(); 1132 } 1133 1134 if (!HasEquivCtor) { 1135 SemaRef.Diag(IList->getBeginLoc(), 1136 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1137 << IList->getSourceRange() << T; 1138 } 1139 } 1140 } 1141 } 1142 1143 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1144 InitListExpr *IList, 1145 QualType &DeclType, 1146 bool SubobjectIsDesignatorContext, 1147 unsigned &Index, 1148 InitListExpr *StructuredList, 1149 unsigned &StructuredIndex, 1150 bool TopLevelObject) { 1151 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1152 // Explicitly braced initializer for complex type can be real+imaginary 1153 // parts. 1154 CheckComplexType(Entity, IList, DeclType, Index, 1155 StructuredList, StructuredIndex); 1156 } else if (DeclType->isScalarType()) { 1157 CheckScalarType(Entity, IList, DeclType, Index, 1158 StructuredList, StructuredIndex); 1159 } else if (DeclType->isVectorType()) { 1160 CheckVectorType(Entity, IList, DeclType, Index, 1161 StructuredList, StructuredIndex); 1162 } else if (DeclType->isRecordType()) { 1163 assert(DeclType->isAggregateType() && 1164 "non-aggregate records should be handed in CheckSubElementType"); 1165 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1166 auto Bases = 1167 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1168 CXXRecordDecl::base_class_iterator()); 1169 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1170 Bases = CXXRD->bases(); 1171 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1172 SubobjectIsDesignatorContext, Index, StructuredList, 1173 StructuredIndex, TopLevelObject); 1174 } else if (DeclType->isArrayType()) { 1175 llvm::APSInt Zero( 1176 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1177 false); 1178 CheckArrayType(Entity, IList, DeclType, Zero, 1179 SubobjectIsDesignatorContext, Index, 1180 StructuredList, StructuredIndex); 1181 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1182 // This type is invalid, issue a diagnostic. 1183 ++Index; 1184 if (!VerifyOnly) 1185 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1186 << DeclType; 1187 hadError = true; 1188 } else if (DeclType->isReferenceType()) { 1189 CheckReferenceType(Entity, IList, DeclType, Index, 1190 StructuredList, StructuredIndex); 1191 } else if (DeclType->isObjCObjectType()) { 1192 if (!VerifyOnly) 1193 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1194 hadError = true; 1195 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1196 // Checks for scalar type are sufficient for these types too. 1197 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1198 StructuredIndex); 1199 } else { 1200 if (!VerifyOnly) 1201 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1202 << DeclType; 1203 hadError = true; 1204 } 1205 } 1206 1207 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1208 InitListExpr *IList, 1209 QualType ElemType, 1210 unsigned &Index, 1211 InitListExpr *StructuredList, 1212 unsigned &StructuredIndex) { 1213 Expr *expr = IList->getInit(Index); 1214 1215 if (ElemType->isReferenceType()) 1216 return CheckReferenceType(Entity, IList, ElemType, Index, 1217 StructuredList, StructuredIndex); 1218 1219 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1220 if (SubInitList->getNumInits() == 1 && 1221 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1222 SIF_None) { 1223 expr = SubInitList->getInit(0); 1224 } else if (!SemaRef.getLangOpts().CPlusPlus) { 1225 InitListExpr *InnerStructuredList 1226 = getStructuredSubobjectInit(IList, Index, ElemType, 1227 StructuredList, StructuredIndex, 1228 SubInitList->getSourceRange(), true); 1229 CheckExplicitInitList(Entity, SubInitList, ElemType, 1230 InnerStructuredList); 1231 1232 if (!hadError && !VerifyOnly) { 1233 bool RequiresSecondPass = false; 1234 FillInEmptyInitializations(Entity, InnerStructuredList, 1235 RequiresSecondPass, StructuredList, 1236 StructuredIndex); 1237 if (RequiresSecondPass && !hadError) 1238 FillInEmptyInitializations(Entity, InnerStructuredList, 1239 RequiresSecondPass, StructuredList, 1240 StructuredIndex); 1241 } 1242 ++StructuredIndex; 1243 ++Index; 1244 return; 1245 } 1246 // C++ initialization is handled later. 1247 } else if (isa<ImplicitValueInitExpr>(expr)) { 1248 // This happens during template instantiation when we see an InitListExpr 1249 // that we've already checked once. 1250 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1251 "found implicit initialization for the wrong type"); 1252 if (!VerifyOnly) 1253 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1254 ++Index; 1255 return; 1256 } 1257 1258 if (SemaRef.getLangOpts().CPlusPlus) { 1259 // C++ [dcl.init.aggr]p2: 1260 // Each member is copy-initialized from the corresponding 1261 // initializer-clause. 1262 1263 // FIXME: Better EqualLoc? 1264 InitializationKind Kind = 1265 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1266 InitializationSequence Seq(SemaRef, Entity, Kind, expr, 1267 /*TopLevelOfInitList*/ true); 1268 1269 // C++14 [dcl.init.aggr]p13: 1270 // If the assignment-expression can initialize a member, the member is 1271 // initialized. Otherwise [...] brace elision is assumed 1272 // 1273 // Brace elision is never performed if the element is not an 1274 // assignment-expression. 1275 if (Seq || isa<InitListExpr>(expr)) { 1276 if (!VerifyOnly) { 1277 ExprResult Result = 1278 Seq.Perform(SemaRef, Entity, Kind, expr); 1279 if (Result.isInvalid()) 1280 hadError = true; 1281 1282 UpdateStructuredListElement(StructuredList, StructuredIndex, 1283 Result.getAs<Expr>()); 1284 } else if (!Seq) 1285 hadError = true; 1286 ++Index; 1287 return; 1288 } 1289 1290 // Fall through for subaggregate initialization 1291 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1292 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1293 return CheckScalarType(Entity, IList, ElemType, Index, 1294 StructuredList, StructuredIndex); 1295 } else if (const ArrayType *arrayType = 1296 SemaRef.Context.getAsArrayType(ElemType)) { 1297 // arrayType can be incomplete if we're initializing a flexible 1298 // array member. There's nothing we can do with the completed 1299 // type here, though. 1300 1301 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1302 if (!VerifyOnly) { 1303 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1304 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1305 } 1306 ++Index; 1307 return; 1308 } 1309 1310 // Fall through for subaggregate initialization. 1311 1312 } else { 1313 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1314 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1315 1316 // C99 6.7.8p13: 1317 // 1318 // The initializer for a structure or union object that has 1319 // automatic storage duration shall be either an initializer 1320 // list as described below, or a single expression that has 1321 // compatible structure or union type. In the latter case, the 1322 // initial value of the object, including unnamed members, is 1323 // that of the expression. 1324 ExprResult ExprRes = expr; 1325 if (SemaRef.CheckSingleAssignmentConstraints( 1326 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1327 if (ExprRes.isInvalid()) 1328 hadError = true; 1329 else { 1330 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1331 if (ExprRes.isInvalid()) 1332 hadError = true; 1333 } 1334 UpdateStructuredListElement(StructuredList, StructuredIndex, 1335 ExprRes.getAs<Expr>()); 1336 ++Index; 1337 return; 1338 } 1339 ExprRes.get(); 1340 // Fall through for subaggregate initialization 1341 } 1342 1343 // C++ [dcl.init.aggr]p12: 1344 // 1345 // [...] Otherwise, if the member is itself a non-empty 1346 // subaggregate, brace elision is assumed and the initializer is 1347 // considered for the initialization of the first member of 1348 // the subaggregate. 1349 // OpenCL vector initializer is handled elsewhere. 1350 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1351 ElemType->isAggregateType()) { 1352 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1353 StructuredIndex); 1354 ++StructuredIndex; 1355 } else { 1356 if (!VerifyOnly) { 1357 // We cannot initialize this element, so let 1358 // PerformCopyInitialization produce the appropriate diagnostic. 1359 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1360 /*TopLevelOfInitList=*/true); 1361 } 1362 hadError = true; 1363 ++Index; 1364 ++StructuredIndex; 1365 } 1366 } 1367 1368 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1369 InitListExpr *IList, QualType DeclType, 1370 unsigned &Index, 1371 InitListExpr *StructuredList, 1372 unsigned &StructuredIndex) { 1373 assert(Index == 0 && "Index in explicit init list must be zero"); 1374 1375 // As an extension, clang supports complex initializers, which initialize 1376 // a complex number component-wise. When an explicit initializer list for 1377 // a complex number contains two two initializers, this extension kicks in: 1378 // it exepcts the initializer list to contain two elements convertible to 1379 // the element type of the complex type. The first element initializes 1380 // the real part, and the second element intitializes the imaginary part. 1381 1382 if (IList->getNumInits() != 2) 1383 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1384 StructuredIndex); 1385 1386 // This is an extension in C. (The builtin _Complex type does not exist 1387 // in the C++ standard.) 1388 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1389 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1390 << IList->getSourceRange(); 1391 1392 // Initialize the complex number. 1393 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1394 InitializedEntity ElementEntity = 1395 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1396 1397 for (unsigned i = 0; i < 2; ++i) { 1398 ElementEntity.setElementIndex(Index); 1399 CheckSubElementType(ElementEntity, IList, elementType, Index, 1400 StructuredList, StructuredIndex); 1401 } 1402 } 1403 1404 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1405 InitListExpr *IList, QualType DeclType, 1406 unsigned &Index, 1407 InitListExpr *StructuredList, 1408 unsigned &StructuredIndex) { 1409 if (Index >= IList->getNumInits()) { 1410 if (!VerifyOnly) 1411 SemaRef.Diag(IList->getBeginLoc(), 1412 SemaRef.getLangOpts().CPlusPlus11 1413 ? diag::warn_cxx98_compat_empty_scalar_initializer 1414 : diag::err_empty_scalar_initializer) 1415 << IList->getSourceRange(); 1416 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1417 ++Index; 1418 ++StructuredIndex; 1419 return; 1420 } 1421 1422 Expr *expr = IList->getInit(Index); 1423 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1424 // FIXME: This is invalid, and accepting it causes overload resolution 1425 // to pick the wrong overload in some corner cases. 1426 if (!VerifyOnly) 1427 SemaRef.Diag(SubIList->getBeginLoc(), 1428 diag::ext_many_braces_around_scalar_init) 1429 << SubIList->getSourceRange(); 1430 1431 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1432 StructuredIndex); 1433 return; 1434 } else if (isa<DesignatedInitExpr>(expr)) { 1435 if (!VerifyOnly) 1436 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1437 << DeclType << expr->getSourceRange(); 1438 hadError = true; 1439 ++Index; 1440 ++StructuredIndex; 1441 return; 1442 } 1443 1444 if (VerifyOnly) { 1445 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1446 hadError = true; 1447 ++Index; 1448 return; 1449 } 1450 1451 ExprResult Result = 1452 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1453 /*TopLevelOfInitList=*/true); 1454 1455 Expr *ResultExpr = nullptr; 1456 1457 if (Result.isInvalid()) 1458 hadError = true; // types weren't compatible. 1459 else { 1460 ResultExpr = Result.getAs<Expr>(); 1461 1462 if (ResultExpr != expr) { 1463 // The type was promoted, update initializer list. 1464 IList->setInit(Index, ResultExpr); 1465 } 1466 } 1467 if (hadError) 1468 ++StructuredIndex; 1469 else 1470 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1471 ++Index; 1472 } 1473 1474 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1475 InitListExpr *IList, QualType DeclType, 1476 unsigned &Index, 1477 InitListExpr *StructuredList, 1478 unsigned &StructuredIndex) { 1479 if (Index >= IList->getNumInits()) { 1480 // FIXME: It would be wonderful if we could point at the actual member. In 1481 // general, it would be useful to pass location information down the stack, 1482 // so that we know the location (or decl) of the "current object" being 1483 // initialized. 1484 if (!VerifyOnly) 1485 SemaRef.Diag(IList->getBeginLoc(), 1486 diag::err_init_reference_member_uninitialized) 1487 << DeclType << IList->getSourceRange(); 1488 hadError = true; 1489 ++Index; 1490 ++StructuredIndex; 1491 return; 1492 } 1493 1494 Expr *expr = IList->getInit(Index); 1495 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1496 if (!VerifyOnly) 1497 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1498 << DeclType << IList->getSourceRange(); 1499 hadError = true; 1500 ++Index; 1501 ++StructuredIndex; 1502 return; 1503 } 1504 1505 if (VerifyOnly) { 1506 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1507 hadError = true; 1508 ++Index; 1509 return; 1510 } 1511 1512 ExprResult Result = 1513 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1514 /*TopLevelOfInitList=*/true); 1515 1516 if (Result.isInvalid()) 1517 hadError = true; 1518 1519 expr = Result.getAs<Expr>(); 1520 IList->setInit(Index, expr); 1521 1522 if (hadError) 1523 ++StructuredIndex; 1524 else 1525 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1526 ++Index; 1527 } 1528 1529 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1530 InitListExpr *IList, QualType DeclType, 1531 unsigned &Index, 1532 InitListExpr *StructuredList, 1533 unsigned &StructuredIndex) { 1534 const VectorType *VT = DeclType->getAs<VectorType>(); 1535 unsigned maxElements = VT->getNumElements(); 1536 unsigned numEltsInit = 0; 1537 QualType elementType = VT->getElementType(); 1538 1539 if (Index >= IList->getNumInits()) { 1540 // Make sure the element type can be value-initialized. 1541 if (VerifyOnly) 1542 CheckEmptyInitializable( 1543 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1544 IList->getEndLoc()); 1545 return; 1546 } 1547 1548 if (!SemaRef.getLangOpts().OpenCL) { 1549 // If the initializing element is a vector, try to copy-initialize 1550 // instead of breaking it apart (which is doomed to failure anyway). 1551 Expr *Init = IList->getInit(Index); 1552 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1553 if (VerifyOnly) { 1554 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1555 hadError = true; 1556 ++Index; 1557 return; 1558 } 1559 1560 ExprResult Result = 1561 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1562 /*TopLevelOfInitList=*/true); 1563 1564 Expr *ResultExpr = nullptr; 1565 if (Result.isInvalid()) 1566 hadError = true; // types weren't compatible. 1567 else { 1568 ResultExpr = Result.getAs<Expr>(); 1569 1570 if (ResultExpr != Init) { 1571 // The type was promoted, update initializer list. 1572 IList->setInit(Index, ResultExpr); 1573 } 1574 } 1575 if (hadError) 1576 ++StructuredIndex; 1577 else 1578 UpdateStructuredListElement(StructuredList, StructuredIndex, 1579 ResultExpr); 1580 ++Index; 1581 return; 1582 } 1583 1584 InitializedEntity ElementEntity = 1585 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1586 1587 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1588 // Don't attempt to go past the end of the init list 1589 if (Index >= IList->getNumInits()) { 1590 if (VerifyOnly) 1591 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1592 break; 1593 } 1594 1595 ElementEntity.setElementIndex(Index); 1596 CheckSubElementType(ElementEntity, IList, elementType, Index, 1597 StructuredList, StructuredIndex); 1598 } 1599 1600 if (VerifyOnly) 1601 return; 1602 1603 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1604 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1605 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1606 T->getVectorKind() == VectorType::NeonPolyVector)) { 1607 // The ability to use vector initializer lists is a GNU vector extension 1608 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1609 // endian machines it works fine, however on big endian machines it 1610 // exhibits surprising behaviour: 1611 // 1612 // uint32x2_t x = {42, 64}; 1613 // return vget_lane_u32(x, 0); // Will return 64. 1614 // 1615 // Because of this, explicitly call out that it is non-portable. 1616 // 1617 SemaRef.Diag(IList->getBeginLoc(), 1618 diag::warn_neon_vector_initializer_non_portable); 1619 1620 const char *typeCode; 1621 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1622 1623 if (elementType->isFloatingType()) 1624 typeCode = "f"; 1625 else if (elementType->isSignedIntegerType()) 1626 typeCode = "s"; 1627 else if (elementType->isUnsignedIntegerType()) 1628 typeCode = "u"; 1629 else 1630 llvm_unreachable("Invalid element type!"); 1631 1632 SemaRef.Diag(IList->getBeginLoc(), 1633 SemaRef.Context.getTypeSize(VT) > 64 1634 ? diag::note_neon_vector_initializer_non_portable_q 1635 : diag::note_neon_vector_initializer_non_portable) 1636 << typeCode << typeSize; 1637 } 1638 1639 return; 1640 } 1641 1642 InitializedEntity ElementEntity = 1643 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1644 1645 // OpenCL initializers allows vectors to be constructed from vectors. 1646 for (unsigned i = 0; i < maxElements; ++i) { 1647 // Don't attempt to go past the end of the init list 1648 if (Index >= IList->getNumInits()) 1649 break; 1650 1651 ElementEntity.setElementIndex(Index); 1652 1653 QualType IType = IList->getInit(Index)->getType(); 1654 if (!IType->isVectorType()) { 1655 CheckSubElementType(ElementEntity, IList, elementType, Index, 1656 StructuredList, StructuredIndex); 1657 ++numEltsInit; 1658 } else { 1659 QualType VecType; 1660 const VectorType *IVT = IType->getAs<VectorType>(); 1661 unsigned numIElts = IVT->getNumElements(); 1662 1663 if (IType->isExtVectorType()) 1664 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1665 else 1666 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1667 IVT->getVectorKind()); 1668 CheckSubElementType(ElementEntity, IList, VecType, Index, 1669 StructuredList, StructuredIndex); 1670 numEltsInit += numIElts; 1671 } 1672 } 1673 1674 // OpenCL requires all elements to be initialized. 1675 if (numEltsInit != maxElements) { 1676 if (!VerifyOnly) 1677 SemaRef.Diag(IList->getBeginLoc(), 1678 diag::err_vector_incorrect_num_initializers) 1679 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1680 hadError = true; 1681 } 1682 } 1683 1684 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1685 InitListExpr *IList, QualType &DeclType, 1686 llvm::APSInt elementIndex, 1687 bool SubobjectIsDesignatorContext, 1688 unsigned &Index, 1689 InitListExpr *StructuredList, 1690 unsigned &StructuredIndex) { 1691 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1692 1693 // Check for the special-case of initializing an array with a string. 1694 if (Index < IList->getNumInits()) { 1695 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1696 SIF_None) { 1697 // We place the string literal directly into the resulting 1698 // initializer list. This is the only place where the structure 1699 // of the structured initializer list doesn't match exactly, 1700 // because doing so would involve allocating one character 1701 // constant for each string. 1702 if (!VerifyOnly) { 1703 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1704 UpdateStructuredListElement(StructuredList, StructuredIndex, 1705 IList->getInit(Index)); 1706 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1707 } 1708 ++Index; 1709 return; 1710 } 1711 } 1712 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1713 // Check for VLAs; in standard C it would be possible to check this 1714 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1715 // them in all sorts of strange places). 1716 if (!VerifyOnly) 1717 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1718 diag::err_variable_object_no_init) 1719 << VAT->getSizeExpr()->getSourceRange(); 1720 hadError = true; 1721 ++Index; 1722 ++StructuredIndex; 1723 return; 1724 } 1725 1726 // We might know the maximum number of elements in advance. 1727 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1728 elementIndex.isUnsigned()); 1729 bool maxElementsKnown = false; 1730 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1731 maxElements = CAT->getSize(); 1732 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1733 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1734 maxElementsKnown = true; 1735 } 1736 1737 QualType elementType = arrayType->getElementType(); 1738 while (Index < IList->getNumInits()) { 1739 Expr *Init = IList->getInit(Index); 1740 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1741 // If we're not the subobject that matches up with the '{' for 1742 // the designator, we shouldn't be handling the 1743 // designator. Return immediately. 1744 if (!SubobjectIsDesignatorContext) 1745 return; 1746 1747 // Handle this designated initializer. elementIndex will be 1748 // updated to be the next array element we'll initialize. 1749 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1750 DeclType, nullptr, &elementIndex, Index, 1751 StructuredList, StructuredIndex, true, 1752 false)) { 1753 hadError = true; 1754 continue; 1755 } 1756 1757 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1758 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1759 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1760 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1761 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1762 1763 // If the array is of incomplete type, keep track of the number of 1764 // elements in the initializer. 1765 if (!maxElementsKnown && elementIndex > maxElements) 1766 maxElements = elementIndex; 1767 1768 continue; 1769 } 1770 1771 // If we know the maximum number of elements, and we've already 1772 // hit it, stop consuming elements in the initializer list. 1773 if (maxElementsKnown && elementIndex == maxElements) 1774 break; 1775 1776 InitializedEntity ElementEntity = 1777 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1778 Entity); 1779 // Check this element. 1780 CheckSubElementType(ElementEntity, IList, elementType, Index, 1781 StructuredList, StructuredIndex); 1782 ++elementIndex; 1783 1784 // If the array is of incomplete type, keep track of the number of 1785 // elements in the initializer. 1786 if (!maxElementsKnown && elementIndex > maxElements) 1787 maxElements = elementIndex; 1788 } 1789 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1790 // If this is an incomplete array type, the actual type needs to 1791 // be calculated here. 1792 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1793 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1794 // Sizing an array implicitly to zero is not allowed by ISO C, 1795 // but is supported by GNU. 1796 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1797 } 1798 1799 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1800 ArrayType::Normal, 0); 1801 } 1802 if (!hadError && VerifyOnly) { 1803 // If there are any members of the array that get value-initialized, check 1804 // that is possible. That happens if we know the bound and don't have 1805 // enough elements, or if we're performing an array new with an unknown 1806 // bound. 1807 // FIXME: This needs to detect holes left by designated initializers too. 1808 if ((maxElementsKnown && elementIndex < maxElements) || 1809 Entity.isVariableLengthArrayNew()) 1810 CheckEmptyInitializable( 1811 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1812 IList->getEndLoc()); 1813 } 1814 } 1815 1816 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1817 Expr *InitExpr, 1818 FieldDecl *Field, 1819 bool TopLevelObject) { 1820 // Handle GNU flexible array initializers. 1821 unsigned FlexArrayDiag; 1822 if (isa<InitListExpr>(InitExpr) && 1823 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1824 // Empty flexible array init always allowed as an extension 1825 FlexArrayDiag = diag::ext_flexible_array_init; 1826 } else if (SemaRef.getLangOpts().CPlusPlus) { 1827 // Disallow flexible array init in C++; it is not required for gcc 1828 // compatibility, and it needs work to IRGen correctly in general. 1829 FlexArrayDiag = diag::err_flexible_array_init; 1830 } else if (!TopLevelObject) { 1831 // Disallow flexible array init on non-top-level object 1832 FlexArrayDiag = diag::err_flexible_array_init; 1833 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1834 // Disallow flexible array init on anything which is not a variable. 1835 FlexArrayDiag = diag::err_flexible_array_init; 1836 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1837 // Disallow flexible array init on local variables. 1838 FlexArrayDiag = diag::err_flexible_array_init; 1839 } else { 1840 // Allow other cases. 1841 FlexArrayDiag = diag::ext_flexible_array_init; 1842 } 1843 1844 if (!VerifyOnly) { 1845 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1846 << InitExpr->getBeginLoc(); 1847 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1848 << Field; 1849 } 1850 1851 return FlexArrayDiag != diag::ext_flexible_array_init; 1852 } 1853 1854 /// Check if the type of a class element has an accessible destructor. 1855 /// 1856 /// Aggregate initialization requires a class element's destructor be 1857 /// accessible per 11.6.1 [dcl.init.aggr]: 1858 /// 1859 /// The destructor for each element of class type is potentially invoked 1860 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1861 /// occurs. 1862 static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc, 1863 Sema &SemaRef) { 1864 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1865 if (!CXXRD) 1866 return false; 1867 1868 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1869 SemaRef.CheckDestructorAccess(Loc, Destructor, 1870 SemaRef.PDiag(diag::err_access_dtor_temp) 1871 << ElementType); 1872 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1873 if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc)) 1874 return true; 1875 return false; 1876 } 1877 1878 void InitListChecker::CheckStructUnionTypes( 1879 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1880 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1881 bool SubobjectIsDesignatorContext, unsigned &Index, 1882 InitListExpr *StructuredList, unsigned &StructuredIndex, 1883 bool TopLevelObject) { 1884 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 1885 1886 // If the record is invalid, some of it's members are invalid. To avoid 1887 // confusion, we forgo checking the intializer for the entire record. 1888 if (structDecl->isInvalidDecl()) { 1889 // Assume it was supposed to consume a single initializer. 1890 ++Index; 1891 hadError = true; 1892 return; 1893 } 1894 1895 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1896 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1897 1898 if (!VerifyOnly) 1899 for (FieldDecl *FD : RD->fields()) { 1900 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 1901 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) { 1902 hadError = true; 1903 return; 1904 } 1905 } 1906 1907 // If there's a default initializer, use it. 1908 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1909 if (VerifyOnly) 1910 return; 1911 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1912 Field != FieldEnd; ++Field) { 1913 if (Field->hasInClassInitializer()) { 1914 StructuredList->setInitializedFieldInUnion(*Field); 1915 // FIXME: Actually build a CXXDefaultInitExpr? 1916 return; 1917 } 1918 } 1919 } 1920 1921 // Value-initialize the first member of the union that isn't an unnamed 1922 // bitfield. 1923 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1924 Field != FieldEnd; ++Field) { 1925 if (!Field->isUnnamedBitfield()) { 1926 if (VerifyOnly) 1927 CheckEmptyInitializable( 1928 InitializedEntity::InitializeMember(*Field, &Entity), 1929 IList->getEndLoc()); 1930 else 1931 StructuredList->setInitializedFieldInUnion(*Field); 1932 break; 1933 } 1934 } 1935 return; 1936 } 1937 1938 bool InitializedSomething = false; 1939 1940 // If we have any base classes, they are initialized prior to the fields. 1941 for (auto &Base : Bases) { 1942 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 1943 1944 // Designated inits always initialize fields, so if we see one, all 1945 // remaining base classes have no explicit initializer. 1946 if (Init && isa<DesignatedInitExpr>(Init)) 1947 Init = nullptr; 1948 1949 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 1950 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 1951 SemaRef.Context, &Base, false, &Entity); 1952 if (Init) { 1953 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 1954 StructuredList, StructuredIndex); 1955 InitializedSomething = true; 1956 } else if (VerifyOnly) { 1957 CheckEmptyInitializable(BaseEntity, InitLoc); 1958 } 1959 1960 if (!VerifyOnly) 1961 if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) { 1962 hadError = true; 1963 return; 1964 } 1965 } 1966 1967 // If structDecl is a forward declaration, this loop won't do 1968 // anything except look at designated initializers; That's okay, 1969 // because an error should get printed out elsewhere. It might be 1970 // worthwhile to skip over the rest of the initializer, though. 1971 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1972 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1973 bool CheckForMissingFields = 1974 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 1975 bool HasDesignatedInit = false; 1976 1977 while (Index < IList->getNumInits()) { 1978 Expr *Init = IList->getInit(Index); 1979 SourceLocation InitLoc = Init->getBeginLoc(); 1980 1981 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1982 // If we're not the subobject that matches up with the '{' for 1983 // the designator, we shouldn't be handling the 1984 // designator. Return immediately. 1985 if (!SubobjectIsDesignatorContext) 1986 return; 1987 1988 HasDesignatedInit = true; 1989 1990 // Handle this designated initializer. Field will be updated to 1991 // the next field that we'll be initializing. 1992 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1993 DeclType, &Field, nullptr, Index, 1994 StructuredList, StructuredIndex, 1995 true, TopLevelObject)) 1996 hadError = true; 1997 else if (!VerifyOnly) { 1998 // Find the field named by the designated initializer. 1999 RecordDecl::field_iterator F = RD->field_begin(); 2000 while (std::next(F) != Field) 2001 ++F; 2002 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2003 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) { 2004 hadError = true; 2005 return; 2006 } 2007 } 2008 2009 InitializedSomething = true; 2010 2011 // Disable check for missing fields when designators are used. 2012 // This matches gcc behaviour. 2013 CheckForMissingFields = false; 2014 continue; 2015 } 2016 2017 if (Field == FieldEnd) { 2018 // We've run out of fields. We're done. 2019 break; 2020 } 2021 2022 // We've already initialized a member of a union. We're done. 2023 if (InitializedSomething && DeclType->isUnionType()) 2024 break; 2025 2026 // If we've hit the flexible array member at the end, we're done. 2027 if (Field->getType()->isIncompleteArrayType()) 2028 break; 2029 2030 if (Field->isUnnamedBitfield()) { 2031 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2032 ++Field; 2033 continue; 2034 } 2035 2036 // Make sure we can use this declaration. 2037 bool InvalidUse; 2038 if (VerifyOnly) 2039 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2040 else 2041 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2042 *Field, IList->getInit(Index)->getBeginLoc()); 2043 if (InvalidUse) { 2044 ++Index; 2045 ++Field; 2046 hadError = true; 2047 continue; 2048 } 2049 2050 if (!VerifyOnly) { 2051 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2052 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) { 2053 hadError = true; 2054 return; 2055 } 2056 } 2057 2058 InitializedEntity MemberEntity = 2059 InitializedEntity::InitializeMember(*Field, &Entity); 2060 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2061 StructuredList, StructuredIndex); 2062 InitializedSomething = true; 2063 2064 if (DeclType->isUnionType() && !VerifyOnly) { 2065 // Initialize the first field within the union. 2066 StructuredList->setInitializedFieldInUnion(*Field); 2067 } 2068 2069 ++Field; 2070 } 2071 2072 // Emit warnings for missing struct field initializers. 2073 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2074 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2075 !DeclType->isUnionType()) { 2076 // It is possible we have one or more unnamed bitfields remaining. 2077 // Find first (if any) named field and emit warning. 2078 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2079 it != end; ++it) { 2080 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2081 SemaRef.Diag(IList->getSourceRange().getEnd(), 2082 diag::warn_missing_field_initializers) << *it; 2083 break; 2084 } 2085 } 2086 } 2087 2088 // Check that any remaining fields can be value-initialized. 2089 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 2090 !Field->getType()->isIncompleteArrayType()) { 2091 // FIXME: Should check for holes left by designated initializers too. 2092 for (; Field != FieldEnd && !hadError; ++Field) { 2093 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2094 CheckEmptyInitializable( 2095 InitializedEntity::InitializeMember(*Field, &Entity), 2096 IList->getEndLoc()); 2097 } 2098 } 2099 2100 // Check that the types of the remaining fields have accessible destructors. 2101 if (!VerifyOnly) { 2102 // If the initializer expression has a designated initializer, check the 2103 // elements for which a designated initializer is not provided too. 2104 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2105 : Field; 2106 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2107 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2108 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) { 2109 hadError = true; 2110 return; 2111 } 2112 } 2113 } 2114 2115 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2116 Index >= IList->getNumInits()) 2117 return; 2118 2119 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2120 TopLevelObject)) { 2121 hadError = true; 2122 ++Index; 2123 return; 2124 } 2125 2126 InitializedEntity MemberEntity = 2127 InitializedEntity::InitializeMember(*Field, &Entity); 2128 2129 if (isa<InitListExpr>(IList->getInit(Index))) 2130 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2131 StructuredList, StructuredIndex); 2132 else 2133 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2134 StructuredList, StructuredIndex); 2135 } 2136 2137 /// Expand a field designator that refers to a member of an 2138 /// anonymous struct or union into a series of field designators that 2139 /// refers to the field within the appropriate subobject. 2140 /// 2141 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2142 DesignatedInitExpr *DIE, 2143 unsigned DesigIdx, 2144 IndirectFieldDecl *IndirectField) { 2145 typedef DesignatedInitExpr::Designator Designator; 2146 2147 // Build the replacement designators. 2148 SmallVector<Designator, 4> Replacements; 2149 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2150 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2151 if (PI + 1 == PE) 2152 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2153 DIE->getDesignator(DesigIdx)->getDotLoc(), 2154 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2155 else 2156 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2157 SourceLocation(), SourceLocation())); 2158 assert(isa<FieldDecl>(*PI)); 2159 Replacements.back().setField(cast<FieldDecl>(*PI)); 2160 } 2161 2162 // Expand the current designator into the set of replacement 2163 // designators, so we have a full subobject path down to where the 2164 // member of the anonymous struct/union is actually stored. 2165 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2166 &Replacements[0] + Replacements.size()); 2167 } 2168 2169 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2170 DesignatedInitExpr *DIE) { 2171 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2172 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2173 for (unsigned I = 0; I < NumIndexExprs; ++I) 2174 IndexExprs[I] = DIE->getSubExpr(I + 1); 2175 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2176 IndexExprs, 2177 DIE->getEqualOrColonLoc(), 2178 DIE->usesGNUSyntax(), DIE->getInit()); 2179 } 2180 2181 namespace { 2182 2183 // Callback to only accept typo corrections that are for field members of 2184 // the given struct or union. 2185 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { 2186 public: 2187 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2188 : Record(RD) {} 2189 2190 bool ValidateCandidate(const TypoCorrection &candidate) override { 2191 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2192 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2193 } 2194 2195 private: 2196 RecordDecl *Record; 2197 }; 2198 2199 } // end anonymous namespace 2200 2201 /// Check the well-formedness of a C99 designated initializer. 2202 /// 2203 /// Determines whether the designated initializer @p DIE, which 2204 /// resides at the given @p Index within the initializer list @p 2205 /// IList, is well-formed for a current object of type @p DeclType 2206 /// (C99 6.7.8). The actual subobject that this designator refers to 2207 /// within the current subobject is returned in either 2208 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2209 /// 2210 /// @param IList The initializer list in which this designated 2211 /// initializer occurs. 2212 /// 2213 /// @param DIE The designated initializer expression. 2214 /// 2215 /// @param DesigIdx The index of the current designator. 2216 /// 2217 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2218 /// into which the designation in @p DIE should refer. 2219 /// 2220 /// @param NextField If non-NULL and the first designator in @p DIE is 2221 /// a field, this will be set to the field declaration corresponding 2222 /// to the field named by the designator. 2223 /// 2224 /// @param NextElementIndex If non-NULL and the first designator in @p 2225 /// DIE is an array designator or GNU array-range designator, this 2226 /// will be set to the last index initialized by this designator. 2227 /// 2228 /// @param Index Index into @p IList where the designated initializer 2229 /// @p DIE occurs. 2230 /// 2231 /// @param StructuredList The initializer list expression that 2232 /// describes all of the subobject initializers in the order they'll 2233 /// actually be initialized. 2234 /// 2235 /// @returns true if there was an error, false otherwise. 2236 bool 2237 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2238 InitListExpr *IList, 2239 DesignatedInitExpr *DIE, 2240 unsigned DesigIdx, 2241 QualType &CurrentObjectType, 2242 RecordDecl::field_iterator *NextField, 2243 llvm::APSInt *NextElementIndex, 2244 unsigned &Index, 2245 InitListExpr *StructuredList, 2246 unsigned &StructuredIndex, 2247 bool FinishSubobjectInit, 2248 bool TopLevelObject) { 2249 if (DesigIdx == DIE->size()) { 2250 // Check the actual initialization for the designated object type. 2251 bool prevHadError = hadError; 2252 2253 // Temporarily remove the designator expression from the 2254 // initializer list that the child calls see, so that we don't try 2255 // to re-process the designator. 2256 unsigned OldIndex = Index; 2257 IList->setInit(OldIndex, DIE->getInit()); 2258 2259 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2260 StructuredList, StructuredIndex); 2261 2262 // Restore the designated initializer expression in the syntactic 2263 // form of the initializer list. 2264 if (IList->getInit(OldIndex) != DIE->getInit()) 2265 DIE->setInit(IList->getInit(OldIndex)); 2266 IList->setInit(OldIndex, DIE); 2267 2268 return hadError && !prevHadError; 2269 } 2270 2271 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2272 bool IsFirstDesignator = (DesigIdx == 0); 2273 if (!VerifyOnly) { 2274 assert((IsFirstDesignator || StructuredList) && 2275 "Need a non-designated initializer list to start from"); 2276 2277 // Determine the structural initializer list that corresponds to the 2278 // current subobject. 2279 if (IsFirstDesignator) 2280 StructuredList = SyntacticToSemantic.lookup(IList); 2281 else { 2282 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2283 StructuredList->getInit(StructuredIndex) : nullptr; 2284 if (!ExistingInit && StructuredList->hasArrayFiller()) 2285 ExistingInit = StructuredList->getArrayFiller(); 2286 2287 if (!ExistingInit) 2288 StructuredList = getStructuredSubobjectInit( 2289 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2290 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2291 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2292 StructuredList = Result; 2293 else { 2294 if (DesignatedInitUpdateExpr *E = 2295 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2296 StructuredList = E->getUpdater(); 2297 else { 2298 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2299 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2300 ExistingInit, DIE->getEndLoc()); 2301 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2302 StructuredList = DIUE->getUpdater(); 2303 } 2304 2305 // We need to check on source range validity because the previous 2306 // initializer does not have to be an explicit initializer. e.g., 2307 // 2308 // struct P { int a, b; }; 2309 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2310 // 2311 // There is an overwrite taking place because the first braced initializer 2312 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 2313 if (ExistingInit->getSourceRange().isValid()) { 2314 // We are creating an initializer list that initializes the 2315 // subobjects of the current object, but there was already an 2316 // initialization that completely initialized the current 2317 // subobject, e.g., by a compound literal: 2318 // 2319 // struct X { int a, b; }; 2320 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2321 // 2322 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2323 // designated initializer re-initializes the whole 2324 // subobject [0], overwriting previous initializers. 2325 SemaRef.Diag(D->getBeginLoc(), 2326 diag::warn_subobject_initializer_overrides) 2327 << SourceRange(D->getBeginLoc(), DIE->getEndLoc()); 2328 2329 SemaRef.Diag(ExistingInit->getBeginLoc(), 2330 diag::note_previous_initializer) 2331 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2332 } 2333 } 2334 } 2335 assert(StructuredList && "Expected a structured initializer list"); 2336 } 2337 2338 if (D->isFieldDesignator()) { 2339 // C99 6.7.8p7: 2340 // 2341 // If a designator has the form 2342 // 2343 // . identifier 2344 // 2345 // then the current object (defined below) shall have 2346 // structure or union type and the identifier shall be the 2347 // name of a member of that type. 2348 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2349 if (!RT) { 2350 SourceLocation Loc = D->getDotLoc(); 2351 if (Loc.isInvalid()) 2352 Loc = D->getFieldLoc(); 2353 if (!VerifyOnly) 2354 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2355 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2356 ++Index; 2357 return true; 2358 } 2359 2360 FieldDecl *KnownField = D->getField(); 2361 if (!KnownField) { 2362 IdentifierInfo *FieldName = D->getFieldName(); 2363 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2364 for (NamedDecl *ND : Lookup) { 2365 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2366 KnownField = FD; 2367 break; 2368 } 2369 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2370 // In verify mode, don't modify the original. 2371 if (VerifyOnly) 2372 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2373 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2374 D = DIE->getDesignator(DesigIdx); 2375 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2376 break; 2377 } 2378 } 2379 if (!KnownField) { 2380 if (VerifyOnly) { 2381 ++Index; 2382 return true; // No typo correction when just trying this out. 2383 } 2384 2385 // Name lookup found something, but it wasn't a field. 2386 if (!Lookup.empty()) { 2387 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2388 << FieldName; 2389 SemaRef.Diag(Lookup.front()->getLocation(), 2390 diag::note_field_designator_found); 2391 ++Index; 2392 return true; 2393 } 2394 2395 // Name lookup didn't find anything. 2396 // Determine whether this was a typo for another field name. 2397 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2398 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2399 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, 2400 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()), 2401 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2402 SemaRef.diagnoseTypo( 2403 Corrected, 2404 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2405 << FieldName << CurrentObjectType); 2406 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2407 hadError = true; 2408 } else { 2409 // Typo correction didn't find anything. 2410 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2411 << FieldName << CurrentObjectType; 2412 ++Index; 2413 return true; 2414 } 2415 } 2416 } 2417 2418 unsigned FieldIndex = 0; 2419 2420 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2421 FieldIndex = CXXRD->getNumBases(); 2422 2423 for (auto *FI : RT->getDecl()->fields()) { 2424 if (FI->isUnnamedBitfield()) 2425 continue; 2426 if (declaresSameEntity(KnownField, FI)) { 2427 KnownField = FI; 2428 break; 2429 } 2430 ++FieldIndex; 2431 } 2432 2433 RecordDecl::field_iterator Field = 2434 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2435 2436 // All of the fields of a union are located at the same place in 2437 // the initializer list. 2438 if (RT->getDecl()->isUnion()) { 2439 FieldIndex = 0; 2440 if (!VerifyOnly) { 2441 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2442 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2443 assert(StructuredList->getNumInits() == 1 2444 && "A union should never have more than one initializer!"); 2445 2446 Expr *ExistingInit = StructuredList->getInit(0); 2447 if (ExistingInit) { 2448 // We're about to throw away an initializer, emit warning. 2449 SemaRef.Diag(D->getFieldLoc(), 2450 diag::warn_initializer_overrides) 2451 << D->getSourceRange(); 2452 SemaRef.Diag(ExistingInit->getBeginLoc(), 2453 diag::note_previous_initializer) 2454 << /*FIXME:has side effects=*/0 2455 << ExistingInit->getSourceRange(); 2456 } 2457 2458 // remove existing initializer 2459 StructuredList->resizeInits(SemaRef.Context, 0); 2460 StructuredList->setInitializedFieldInUnion(nullptr); 2461 } 2462 2463 StructuredList->setInitializedFieldInUnion(*Field); 2464 } 2465 } 2466 2467 // Make sure we can use this declaration. 2468 bool InvalidUse; 2469 if (VerifyOnly) 2470 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2471 else 2472 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2473 if (InvalidUse) { 2474 ++Index; 2475 return true; 2476 } 2477 2478 if (!VerifyOnly) { 2479 // Update the designator with the field declaration. 2480 D->setField(*Field); 2481 2482 // Make sure that our non-designated initializer list has space 2483 // for a subobject corresponding to this field. 2484 if (FieldIndex >= StructuredList->getNumInits()) 2485 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2486 } 2487 2488 // This designator names a flexible array member. 2489 if (Field->getType()->isIncompleteArrayType()) { 2490 bool Invalid = false; 2491 if ((DesigIdx + 1) != DIE->size()) { 2492 // We can't designate an object within the flexible array 2493 // member (because GCC doesn't allow it). 2494 if (!VerifyOnly) { 2495 DesignatedInitExpr::Designator *NextD 2496 = DIE->getDesignator(DesigIdx + 1); 2497 SemaRef.Diag(NextD->getBeginLoc(), 2498 diag::err_designator_into_flexible_array_member) 2499 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2500 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2501 << *Field; 2502 } 2503 Invalid = true; 2504 } 2505 2506 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2507 !isa<StringLiteral>(DIE->getInit())) { 2508 // The initializer is not an initializer list. 2509 if (!VerifyOnly) { 2510 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2511 diag::err_flexible_array_init_needs_braces) 2512 << DIE->getInit()->getSourceRange(); 2513 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2514 << *Field; 2515 } 2516 Invalid = true; 2517 } 2518 2519 // Check GNU flexible array initializer. 2520 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2521 TopLevelObject)) 2522 Invalid = true; 2523 2524 if (Invalid) { 2525 ++Index; 2526 return true; 2527 } 2528 2529 // Initialize the array. 2530 bool prevHadError = hadError; 2531 unsigned newStructuredIndex = FieldIndex; 2532 unsigned OldIndex = Index; 2533 IList->setInit(Index, DIE->getInit()); 2534 2535 InitializedEntity MemberEntity = 2536 InitializedEntity::InitializeMember(*Field, &Entity); 2537 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2538 StructuredList, newStructuredIndex); 2539 2540 IList->setInit(OldIndex, DIE); 2541 if (hadError && !prevHadError) { 2542 ++Field; 2543 ++FieldIndex; 2544 if (NextField) 2545 *NextField = Field; 2546 StructuredIndex = FieldIndex; 2547 return true; 2548 } 2549 } else { 2550 // Recurse to check later designated subobjects. 2551 QualType FieldType = Field->getType(); 2552 unsigned newStructuredIndex = FieldIndex; 2553 2554 InitializedEntity MemberEntity = 2555 InitializedEntity::InitializeMember(*Field, &Entity); 2556 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2557 FieldType, nullptr, nullptr, Index, 2558 StructuredList, newStructuredIndex, 2559 FinishSubobjectInit, false)) 2560 return true; 2561 } 2562 2563 // Find the position of the next field to be initialized in this 2564 // subobject. 2565 ++Field; 2566 ++FieldIndex; 2567 2568 // If this the first designator, our caller will continue checking 2569 // the rest of this struct/class/union subobject. 2570 if (IsFirstDesignator) { 2571 if (NextField) 2572 *NextField = Field; 2573 StructuredIndex = FieldIndex; 2574 return false; 2575 } 2576 2577 if (!FinishSubobjectInit) 2578 return false; 2579 2580 // We've already initialized something in the union; we're done. 2581 if (RT->getDecl()->isUnion()) 2582 return hadError; 2583 2584 // Check the remaining fields within this class/struct/union subobject. 2585 bool prevHadError = hadError; 2586 2587 auto NoBases = 2588 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2589 CXXRecordDecl::base_class_iterator()); 2590 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2591 false, Index, StructuredList, FieldIndex); 2592 return hadError && !prevHadError; 2593 } 2594 2595 // C99 6.7.8p6: 2596 // 2597 // If a designator has the form 2598 // 2599 // [ constant-expression ] 2600 // 2601 // then the current object (defined below) shall have array 2602 // type and the expression shall be an integer constant 2603 // expression. If the array is of unknown size, any 2604 // nonnegative value is valid. 2605 // 2606 // Additionally, cope with the GNU extension that permits 2607 // designators of the form 2608 // 2609 // [ constant-expression ... constant-expression ] 2610 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2611 if (!AT) { 2612 if (!VerifyOnly) 2613 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2614 << CurrentObjectType; 2615 ++Index; 2616 return true; 2617 } 2618 2619 Expr *IndexExpr = nullptr; 2620 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2621 if (D->isArrayDesignator()) { 2622 IndexExpr = DIE->getArrayIndex(*D); 2623 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2624 DesignatedEndIndex = DesignatedStartIndex; 2625 } else { 2626 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2627 2628 DesignatedStartIndex = 2629 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2630 DesignatedEndIndex = 2631 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2632 IndexExpr = DIE->getArrayRangeEnd(*D); 2633 2634 // Codegen can't handle evaluating array range designators that have side 2635 // effects, because we replicate the AST value for each initialized element. 2636 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2637 // elements with something that has a side effect, so codegen can emit an 2638 // "error unsupported" error instead of miscompiling the app. 2639 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2640 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2641 FullyStructuredList->sawArrayRangeDesignator(); 2642 } 2643 2644 if (isa<ConstantArrayType>(AT)) { 2645 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2646 DesignatedStartIndex 2647 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2648 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2649 DesignatedEndIndex 2650 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2651 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2652 if (DesignatedEndIndex >= MaxElements) { 2653 if (!VerifyOnly) 2654 SemaRef.Diag(IndexExpr->getBeginLoc(), 2655 diag::err_array_designator_too_large) 2656 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2657 << IndexExpr->getSourceRange(); 2658 ++Index; 2659 return true; 2660 } 2661 } else { 2662 unsigned DesignatedIndexBitWidth = 2663 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2664 DesignatedStartIndex = 2665 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2666 DesignatedEndIndex = 2667 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2668 DesignatedStartIndex.setIsUnsigned(true); 2669 DesignatedEndIndex.setIsUnsigned(true); 2670 } 2671 2672 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2673 // We're modifying a string literal init; we have to decompose the string 2674 // so we can modify the individual characters. 2675 ASTContext &Context = SemaRef.Context; 2676 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2677 2678 // Compute the character type 2679 QualType CharTy = AT->getElementType(); 2680 2681 // Compute the type of the integer literals. 2682 QualType PromotedCharTy = CharTy; 2683 if (CharTy->isPromotableIntegerType()) 2684 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2685 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2686 2687 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2688 // Get the length of the string. 2689 uint64_t StrLen = SL->getLength(); 2690 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2691 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2692 StructuredList->resizeInits(Context, StrLen); 2693 2694 // Build a literal for each character in the string, and put them into 2695 // the init list. 2696 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2697 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2698 Expr *Init = new (Context) IntegerLiteral( 2699 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2700 if (CharTy != PromotedCharTy) 2701 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2702 Init, nullptr, VK_RValue); 2703 StructuredList->updateInit(Context, i, Init); 2704 } 2705 } else { 2706 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2707 std::string Str; 2708 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2709 2710 // Get the length of the string. 2711 uint64_t StrLen = Str.size(); 2712 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2713 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2714 StructuredList->resizeInits(Context, StrLen); 2715 2716 // Build a literal for each character in the string, and put them into 2717 // the init list. 2718 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2719 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2720 Expr *Init = new (Context) IntegerLiteral( 2721 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2722 if (CharTy != PromotedCharTy) 2723 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2724 Init, nullptr, VK_RValue); 2725 StructuredList->updateInit(Context, i, Init); 2726 } 2727 } 2728 } 2729 2730 // Make sure that our non-designated initializer list has space 2731 // for a subobject corresponding to this array element. 2732 if (!VerifyOnly && 2733 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2734 StructuredList->resizeInits(SemaRef.Context, 2735 DesignatedEndIndex.getZExtValue() + 1); 2736 2737 // Repeatedly perform subobject initializations in the range 2738 // [DesignatedStartIndex, DesignatedEndIndex]. 2739 2740 // Move to the next designator 2741 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2742 unsigned OldIndex = Index; 2743 2744 InitializedEntity ElementEntity = 2745 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2746 2747 while (DesignatedStartIndex <= DesignatedEndIndex) { 2748 // Recurse to check later designated subobjects. 2749 QualType ElementType = AT->getElementType(); 2750 Index = OldIndex; 2751 2752 ElementEntity.setElementIndex(ElementIndex); 2753 if (CheckDesignatedInitializer( 2754 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2755 nullptr, Index, StructuredList, ElementIndex, 2756 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2757 false)) 2758 return true; 2759 2760 // Move to the next index in the array that we'll be initializing. 2761 ++DesignatedStartIndex; 2762 ElementIndex = DesignatedStartIndex.getZExtValue(); 2763 } 2764 2765 // If this the first designator, our caller will continue checking 2766 // the rest of this array subobject. 2767 if (IsFirstDesignator) { 2768 if (NextElementIndex) 2769 *NextElementIndex = DesignatedStartIndex; 2770 StructuredIndex = ElementIndex; 2771 return false; 2772 } 2773 2774 if (!FinishSubobjectInit) 2775 return false; 2776 2777 // Check the remaining elements within this array subobject. 2778 bool prevHadError = hadError; 2779 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2780 /*SubobjectIsDesignatorContext=*/false, Index, 2781 StructuredList, ElementIndex); 2782 return hadError && !prevHadError; 2783 } 2784 2785 // Get the structured initializer list for a subobject of type 2786 // @p CurrentObjectType. 2787 InitListExpr * 2788 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2789 QualType CurrentObjectType, 2790 InitListExpr *StructuredList, 2791 unsigned StructuredIndex, 2792 SourceRange InitRange, 2793 bool IsFullyOverwritten) { 2794 if (VerifyOnly) 2795 return nullptr; // No structured list in verification-only mode. 2796 Expr *ExistingInit = nullptr; 2797 if (!StructuredList) 2798 ExistingInit = SyntacticToSemantic.lookup(IList); 2799 else if (StructuredIndex < StructuredList->getNumInits()) 2800 ExistingInit = StructuredList->getInit(StructuredIndex); 2801 2802 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2803 // There might have already been initializers for subobjects of the current 2804 // object, but a subsequent initializer list will overwrite the entirety 2805 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2806 // 2807 // struct P { char x[6]; }; 2808 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2809 // 2810 // The first designated initializer is ignored, and l.x is just "f". 2811 if (!IsFullyOverwritten) 2812 return Result; 2813 2814 if (ExistingInit) { 2815 // We are creating an initializer list that initializes the 2816 // subobjects of the current object, but there was already an 2817 // initialization that completely initialized the current 2818 // subobject, e.g., by a compound literal: 2819 // 2820 // struct X { int a, b; }; 2821 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2822 // 2823 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2824 // designated initializer re-initializes the whole 2825 // subobject [0], overwriting previous initializers. 2826 SemaRef.Diag(InitRange.getBegin(), 2827 diag::warn_subobject_initializer_overrides) 2828 << InitRange; 2829 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer) 2830 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2831 } 2832 2833 InitListExpr *Result 2834 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2835 InitRange.getBegin(), None, 2836 InitRange.getEnd()); 2837 2838 QualType ResultType = CurrentObjectType; 2839 if (!ResultType->isArrayType()) 2840 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2841 Result->setType(ResultType); 2842 2843 // Pre-allocate storage for the structured initializer list. 2844 unsigned NumElements = 0; 2845 unsigned NumInits = 0; 2846 bool GotNumInits = false; 2847 if (!StructuredList) { 2848 NumInits = IList->getNumInits(); 2849 GotNumInits = true; 2850 } else if (Index < IList->getNumInits()) { 2851 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2852 NumInits = SubList->getNumInits(); 2853 GotNumInits = true; 2854 } 2855 } 2856 2857 if (const ArrayType *AType 2858 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2859 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2860 NumElements = CAType->getSize().getZExtValue(); 2861 // Simple heuristic so that we don't allocate a very large 2862 // initializer with many empty entries at the end. 2863 if (GotNumInits && NumElements > NumInits) 2864 NumElements = 0; 2865 } 2866 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2867 NumElements = VType->getNumElements(); 2868 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2869 RecordDecl *RDecl = RType->getDecl(); 2870 if (RDecl->isUnion()) 2871 NumElements = 1; 2872 else 2873 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2874 } 2875 2876 Result->reserveInits(SemaRef.Context, NumElements); 2877 2878 // Link this new initializer list into the structured initializer 2879 // lists. 2880 if (StructuredList) 2881 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2882 else { 2883 Result->setSyntacticForm(IList); 2884 SyntacticToSemantic[IList] = Result; 2885 } 2886 2887 return Result; 2888 } 2889 2890 /// Update the initializer at index @p StructuredIndex within the 2891 /// structured initializer list to the value @p expr. 2892 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2893 unsigned &StructuredIndex, 2894 Expr *expr) { 2895 // No structured initializer list to update 2896 if (!StructuredList) 2897 return; 2898 2899 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2900 StructuredIndex, expr)) { 2901 // This initializer overwrites a previous initializer. Warn. 2902 // We need to check on source range validity because the previous 2903 // initializer does not have to be an explicit initializer. 2904 // struct P { int a, b; }; 2905 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2906 // There is an overwrite taking place because the first braced initializer 2907 // list "{ .a = 2 }' already provides value for .p.b (which is zero). 2908 if (PrevInit->getSourceRange().isValid()) { 2909 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides) 2910 << expr->getSourceRange(); 2911 2912 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer) 2913 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange(); 2914 } 2915 } 2916 2917 ++StructuredIndex; 2918 } 2919 2920 /// Check that the given Index expression is a valid array designator 2921 /// value. This is essentially just a wrapper around 2922 /// VerifyIntegerConstantExpression that also checks for negative values 2923 /// and produces a reasonable diagnostic if there is a 2924 /// failure. Returns the index expression, possibly with an implicit cast 2925 /// added, on success. If everything went okay, Value will receive the 2926 /// value of the constant expression. 2927 static ExprResult 2928 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2929 SourceLocation Loc = Index->getBeginLoc(); 2930 2931 // Make sure this is an integer constant expression. 2932 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2933 if (Result.isInvalid()) 2934 return Result; 2935 2936 if (Value.isSigned() && Value.isNegative()) 2937 return S.Diag(Loc, diag::err_array_designator_negative) 2938 << Value.toString(10) << Index->getSourceRange(); 2939 2940 Value.setIsUnsigned(true); 2941 return Result; 2942 } 2943 2944 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2945 SourceLocation Loc, 2946 bool GNUSyntax, 2947 ExprResult Init) { 2948 typedef DesignatedInitExpr::Designator ASTDesignator; 2949 2950 bool Invalid = false; 2951 SmallVector<ASTDesignator, 32> Designators; 2952 SmallVector<Expr *, 32> InitExpressions; 2953 2954 // Build designators and check array designator expressions. 2955 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2956 const Designator &D = Desig.getDesignator(Idx); 2957 switch (D.getKind()) { 2958 case Designator::FieldDesignator: 2959 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2960 D.getFieldLoc())); 2961 break; 2962 2963 case Designator::ArrayDesignator: { 2964 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2965 llvm::APSInt IndexValue; 2966 if (!Index->isTypeDependent() && !Index->isValueDependent()) 2967 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 2968 if (!Index) 2969 Invalid = true; 2970 else { 2971 Designators.push_back(ASTDesignator(InitExpressions.size(), 2972 D.getLBracketLoc(), 2973 D.getRBracketLoc())); 2974 InitExpressions.push_back(Index); 2975 } 2976 break; 2977 } 2978 2979 case Designator::ArrayRangeDesignator: { 2980 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2981 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2982 llvm::APSInt StartValue; 2983 llvm::APSInt EndValue; 2984 bool StartDependent = StartIndex->isTypeDependent() || 2985 StartIndex->isValueDependent(); 2986 bool EndDependent = EndIndex->isTypeDependent() || 2987 EndIndex->isValueDependent(); 2988 if (!StartDependent) 2989 StartIndex = 2990 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 2991 if (!EndDependent) 2992 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 2993 2994 if (!StartIndex || !EndIndex) 2995 Invalid = true; 2996 else { 2997 // Make sure we're comparing values with the same bit width. 2998 if (StartDependent || EndDependent) { 2999 // Nothing to compute. 3000 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3001 EndValue = EndValue.extend(StartValue.getBitWidth()); 3002 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3003 StartValue = StartValue.extend(EndValue.getBitWidth()); 3004 3005 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3006 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3007 << StartValue.toString(10) << EndValue.toString(10) 3008 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3009 Invalid = true; 3010 } else { 3011 Designators.push_back(ASTDesignator(InitExpressions.size(), 3012 D.getLBracketLoc(), 3013 D.getEllipsisLoc(), 3014 D.getRBracketLoc())); 3015 InitExpressions.push_back(StartIndex); 3016 InitExpressions.push_back(EndIndex); 3017 } 3018 } 3019 break; 3020 } 3021 } 3022 } 3023 3024 if (Invalid || Init.isInvalid()) 3025 return ExprError(); 3026 3027 // Clear out the expressions within the designation. 3028 Desig.ClearExprs(*this); 3029 3030 DesignatedInitExpr *DIE 3031 = DesignatedInitExpr::Create(Context, 3032 Designators, 3033 InitExpressions, Loc, GNUSyntax, 3034 Init.getAs<Expr>()); 3035 3036 if (!getLangOpts().C99) 3037 Diag(DIE->getBeginLoc(), diag::ext_designated_init) 3038 << DIE->getSourceRange(); 3039 3040 return DIE; 3041 } 3042 3043 //===----------------------------------------------------------------------===// 3044 // Initialization entity 3045 //===----------------------------------------------------------------------===// 3046 3047 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3048 const InitializedEntity &Parent) 3049 : Parent(&Parent), Index(Index) 3050 { 3051 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3052 Kind = EK_ArrayElement; 3053 Type = AT->getElementType(); 3054 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3055 Kind = EK_VectorElement; 3056 Type = VT->getElementType(); 3057 } else { 3058 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3059 assert(CT && "Unexpected type"); 3060 Kind = EK_ComplexElement; 3061 Type = CT->getElementType(); 3062 } 3063 } 3064 3065 InitializedEntity 3066 InitializedEntity::InitializeBase(ASTContext &Context, 3067 const CXXBaseSpecifier *Base, 3068 bool IsInheritedVirtualBase, 3069 const InitializedEntity *Parent) { 3070 InitializedEntity Result; 3071 Result.Kind = EK_Base; 3072 Result.Parent = Parent; 3073 Result.Base = reinterpret_cast<uintptr_t>(Base); 3074 if (IsInheritedVirtualBase) 3075 Result.Base |= 0x01; 3076 3077 Result.Type = Base->getType(); 3078 return Result; 3079 } 3080 3081 DeclarationName InitializedEntity::getName() const { 3082 switch (getKind()) { 3083 case EK_Parameter: 3084 case EK_Parameter_CF_Audited: { 3085 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3086 return (D ? D->getDeclName() : DeclarationName()); 3087 } 3088 3089 case EK_Variable: 3090 case EK_Member: 3091 case EK_Binding: 3092 return Variable.VariableOrMember->getDeclName(); 3093 3094 case EK_LambdaCapture: 3095 return DeclarationName(Capture.VarID); 3096 3097 case EK_Result: 3098 case EK_StmtExprResult: 3099 case EK_Exception: 3100 case EK_New: 3101 case EK_Temporary: 3102 case EK_Base: 3103 case EK_Delegating: 3104 case EK_ArrayElement: 3105 case EK_VectorElement: 3106 case EK_ComplexElement: 3107 case EK_BlockElement: 3108 case EK_LambdaToBlockConversionBlockElement: 3109 case EK_CompoundLiteralInit: 3110 case EK_RelatedResult: 3111 return DeclarationName(); 3112 } 3113 3114 llvm_unreachable("Invalid EntityKind!"); 3115 } 3116 3117 ValueDecl *InitializedEntity::getDecl() const { 3118 switch (getKind()) { 3119 case EK_Variable: 3120 case EK_Member: 3121 case EK_Binding: 3122 return Variable.VariableOrMember; 3123 3124 case EK_Parameter: 3125 case EK_Parameter_CF_Audited: 3126 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3127 3128 case EK_Result: 3129 case EK_StmtExprResult: 3130 case EK_Exception: 3131 case EK_New: 3132 case EK_Temporary: 3133 case EK_Base: 3134 case EK_Delegating: 3135 case EK_ArrayElement: 3136 case EK_VectorElement: 3137 case EK_ComplexElement: 3138 case EK_BlockElement: 3139 case EK_LambdaToBlockConversionBlockElement: 3140 case EK_LambdaCapture: 3141 case EK_CompoundLiteralInit: 3142 case EK_RelatedResult: 3143 return nullptr; 3144 } 3145 3146 llvm_unreachable("Invalid EntityKind!"); 3147 } 3148 3149 bool InitializedEntity::allowsNRVO() const { 3150 switch (getKind()) { 3151 case EK_Result: 3152 case EK_Exception: 3153 return LocAndNRVO.NRVO; 3154 3155 case EK_StmtExprResult: 3156 case EK_Variable: 3157 case EK_Parameter: 3158 case EK_Parameter_CF_Audited: 3159 case EK_Member: 3160 case EK_Binding: 3161 case EK_New: 3162 case EK_Temporary: 3163 case EK_CompoundLiteralInit: 3164 case EK_Base: 3165 case EK_Delegating: 3166 case EK_ArrayElement: 3167 case EK_VectorElement: 3168 case EK_ComplexElement: 3169 case EK_BlockElement: 3170 case EK_LambdaToBlockConversionBlockElement: 3171 case EK_LambdaCapture: 3172 case EK_RelatedResult: 3173 break; 3174 } 3175 3176 return false; 3177 } 3178 3179 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3180 assert(getParent() != this); 3181 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3182 for (unsigned I = 0; I != Depth; ++I) 3183 OS << "`-"; 3184 3185 switch (getKind()) { 3186 case EK_Variable: OS << "Variable"; break; 3187 case EK_Parameter: OS << "Parameter"; break; 3188 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3189 break; 3190 case EK_Result: OS << "Result"; break; 3191 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3192 case EK_Exception: OS << "Exception"; break; 3193 case EK_Member: OS << "Member"; break; 3194 case EK_Binding: OS << "Binding"; break; 3195 case EK_New: OS << "New"; break; 3196 case EK_Temporary: OS << "Temporary"; break; 3197 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3198 case EK_RelatedResult: OS << "RelatedResult"; break; 3199 case EK_Base: OS << "Base"; break; 3200 case EK_Delegating: OS << "Delegating"; break; 3201 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3202 case EK_VectorElement: OS << "VectorElement " << Index; break; 3203 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3204 case EK_BlockElement: OS << "Block"; break; 3205 case EK_LambdaToBlockConversionBlockElement: 3206 OS << "Block (lambda)"; 3207 break; 3208 case EK_LambdaCapture: 3209 OS << "LambdaCapture "; 3210 OS << DeclarationName(Capture.VarID); 3211 break; 3212 } 3213 3214 if (auto *D = getDecl()) { 3215 OS << " "; 3216 D->printQualifiedName(OS); 3217 } 3218 3219 OS << " '" << getType().getAsString() << "'\n"; 3220 3221 return Depth + 1; 3222 } 3223 3224 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3225 dumpImpl(llvm::errs()); 3226 } 3227 3228 //===----------------------------------------------------------------------===// 3229 // Initialization sequence 3230 //===----------------------------------------------------------------------===// 3231 3232 void InitializationSequence::Step::Destroy() { 3233 switch (Kind) { 3234 case SK_ResolveAddressOfOverloadedFunction: 3235 case SK_CastDerivedToBaseRValue: 3236 case SK_CastDerivedToBaseXValue: 3237 case SK_CastDerivedToBaseLValue: 3238 case SK_BindReference: 3239 case SK_BindReferenceToTemporary: 3240 case SK_FinalCopy: 3241 case SK_ExtraneousCopyToTemporary: 3242 case SK_UserConversion: 3243 case SK_QualificationConversionRValue: 3244 case SK_QualificationConversionXValue: 3245 case SK_QualificationConversionLValue: 3246 case SK_AtomicConversion: 3247 case SK_LValueToRValue: 3248 case SK_ListInitialization: 3249 case SK_UnwrapInitList: 3250 case SK_RewrapInitList: 3251 case SK_ConstructorInitialization: 3252 case SK_ConstructorInitializationFromList: 3253 case SK_ZeroInitialization: 3254 case SK_CAssignment: 3255 case SK_StringInit: 3256 case SK_ObjCObjectConversion: 3257 case SK_ArrayLoopIndex: 3258 case SK_ArrayLoopInit: 3259 case SK_ArrayInit: 3260 case SK_GNUArrayInit: 3261 case SK_ParenthesizedArrayInit: 3262 case SK_PassByIndirectCopyRestore: 3263 case SK_PassByIndirectRestore: 3264 case SK_ProduceObjCObject: 3265 case SK_StdInitializerList: 3266 case SK_StdInitializerListConstructorCall: 3267 case SK_OCLSamplerInit: 3268 case SK_OCLZeroOpaqueType: 3269 break; 3270 3271 case SK_ConversionSequence: 3272 case SK_ConversionSequenceNoNarrowing: 3273 delete ICS; 3274 } 3275 } 3276 3277 bool InitializationSequence::isDirectReferenceBinding() const { 3278 // There can be some lvalue adjustments after the SK_BindReference step. 3279 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3280 if (I->Kind == SK_BindReference) 3281 return true; 3282 if (I->Kind == SK_BindReferenceToTemporary) 3283 return false; 3284 } 3285 return false; 3286 } 3287 3288 bool InitializationSequence::isAmbiguous() const { 3289 if (!Failed()) 3290 return false; 3291 3292 switch (getFailureKind()) { 3293 case FK_TooManyInitsForReference: 3294 case FK_ParenthesizedListInitForReference: 3295 case FK_ArrayNeedsInitList: 3296 case FK_ArrayNeedsInitListOrStringLiteral: 3297 case FK_ArrayNeedsInitListOrWideStringLiteral: 3298 case FK_NarrowStringIntoWideCharArray: 3299 case FK_WideStringIntoCharArray: 3300 case FK_IncompatWideStringIntoWideChar: 3301 case FK_PlainStringIntoUTF8Char: 3302 case FK_UTF8StringIntoPlainChar: 3303 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3304 case FK_NonConstLValueReferenceBindingToTemporary: 3305 case FK_NonConstLValueReferenceBindingToBitfield: 3306 case FK_NonConstLValueReferenceBindingToVectorElement: 3307 case FK_NonConstLValueReferenceBindingToUnrelated: 3308 case FK_RValueReferenceBindingToLValue: 3309 case FK_ReferenceInitDropsQualifiers: 3310 case FK_ReferenceInitFailed: 3311 case FK_ConversionFailed: 3312 case FK_ConversionFromPropertyFailed: 3313 case FK_TooManyInitsForScalar: 3314 case FK_ParenthesizedListInitForScalar: 3315 case FK_ReferenceBindingToInitList: 3316 case FK_InitListBadDestinationType: 3317 case FK_DefaultInitOfConst: 3318 case FK_Incomplete: 3319 case FK_ArrayTypeMismatch: 3320 case FK_NonConstantArrayInit: 3321 case FK_ListInitializationFailed: 3322 case FK_VariableLengthArrayHasInitializer: 3323 case FK_PlaceholderType: 3324 case FK_ExplicitConstructor: 3325 case FK_AddressOfUnaddressableFunction: 3326 return false; 3327 3328 case FK_ReferenceInitOverloadFailed: 3329 case FK_UserConversionOverloadFailed: 3330 case FK_ConstructorOverloadFailed: 3331 case FK_ListConstructorOverloadFailed: 3332 return FailedOverloadResult == OR_Ambiguous; 3333 } 3334 3335 llvm_unreachable("Invalid EntityKind!"); 3336 } 3337 3338 bool InitializationSequence::isConstructorInitialization() const { 3339 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3340 } 3341 3342 void 3343 InitializationSequence 3344 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3345 DeclAccessPair Found, 3346 bool HadMultipleCandidates) { 3347 Step S; 3348 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3349 S.Type = Function->getType(); 3350 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3351 S.Function.Function = Function; 3352 S.Function.FoundDecl = Found; 3353 Steps.push_back(S); 3354 } 3355 3356 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3357 ExprValueKind VK) { 3358 Step S; 3359 switch (VK) { 3360 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3361 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3362 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3363 } 3364 S.Type = BaseType; 3365 Steps.push_back(S); 3366 } 3367 3368 void InitializationSequence::AddReferenceBindingStep(QualType T, 3369 bool BindingTemporary) { 3370 Step S; 3371 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3372 S.Type = T; 3373 Steps.push_back(S); 3374 } 3375 3376 void InitializationSequence::AddFinalCopy(QualType T) { 3377 Step S; 3378 S.Kind = SK_FinalCopy; 3379 S.Type = T; 3380 Steps.push_back(S); 3381 } 3382 3383 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3384 Step S; 3385 S.Kind = SK_ExtraneousCopyToTemporary; 3386 S.Type = T; 3387 Steps.push_back(S); 3388 } 3389 3390 void 3391 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3392 DeclAccessPair FoundDecl, 3393 QualType T, 3394 bool HadMultipleCandidates) { 3395 Step S; 3396 S.Kind = SK_UserConversion; 3397 S.Type = T; 3398 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3399 S.Function.Function = Function; 3400 S.Function.FoundDecl = FoundDecl; 3401 Steps.push_back(S); 3402 } 3403 3404 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3405 ExprValueKind VK) { 3406 Step S; 3407 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3408 switch (VK) { 3409 case VK_RValue: 3410 S.Kind = SK_QualificationConversionRValue; 3411 break; 3412 case VK_XValue: 3413 S.Kind = SK_QualificationConversionXValue; 3414 break; 3415 case VK_LValue: 3416 S.Kind = SK_QualificationConversionLValue; 3417 break; 3418 } 3419 S.Type = Ty; 3420 Steps.push_back(S); 3421 } 3422 3423 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3424 Step S; 3425 S.Kind = SK_AtomicConversion; 3426 S.Type = Ty; 3427 Steps.push_back(S); 3428 } 3429 3430 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 3431 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 3432 3433 Step S; 3434 S.Kind = SK_LValueToRValue; 3435 S.Type = Ty; 3436 Steps.push_back(S); 3437 } 3438 3439 void InitializationSequence::AddConversionSequenceStep( 3440 const ImplicitConversionSequence &ICS, QualType T, 3441 bool TopLevelOfInitList) { 3442 Step S; 3443 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3444 : SK_ConversionSequence; 3445 S.Type = T; 3446 S.ICS = new ImplicitConversionSequence(ICS); 3447 Steps.push_back(S); 3448 } 3449 3450 void InitializationSequence::AddListInitializationStep(QualType T) { 3451 Step S; 3452 S.Kind = SK_ListInitialization; 3453 S.Type = T; 3454 Steps.push_back(S); 3455 } 3456 3457 void InitializationSequence::AddConstructorInitializationStep( 3458 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3459 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3460 Step S; 3461 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3462 : SK_ConstructorInitializationFromList 3463 : SK_ConstructorInitialization; 3464 S.Type = T; 3465 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3466 S.Function.Function = Constructor; 3467 S.Function.FoundDecl = FoundDecl; 3468 Steps.push_back(S); 3469 } 3470 3471 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3472 Step S; 3473 S.Kind = SK_ZeroInitialization; 3474 S.Type = T; 3475 Steps.push_back(S); 3476 } 3477 3478 void InitializationSequence::AddCAssignmentStep(QualType T) { 3479 Step S; 3480 S.Kind = SK_CAssignment; 3481 S.Type = T; 3482 Steps.push_back(S); 3483 } 3484 3485 void InitializationSequence::AddStringInitStep(QualType T) { 3486 Step S; 3487 S.Kind = SK_StringInit; 3488 S.Type = T; 3489 Steps.push_back(S); 3490 } 3491 3492 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3493 Step S; 3494 S.Kind = SK_ObjCObjectConversion; 3495 S.Type = T; 3496 Steps.push_back(S); 3497 } 3498 3499 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3500 Step S; 3501 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3502 S.Type = T; 3503 Steps.push_back(S); 3504 } 3505 3506 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3507 Step S; 3508 S.Kind = SK_ArrayLoopIndex; 3509 S.Type = EltT; 3510 Steps.insert(Steps.begin(), S); 3511 3512 S.Kind = SK_ArrayLoopInit; 3513 S.Type = T; 3514 Steps.push_back(S); 3515 } 3516 3517 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3518 Step S; 3519 S.Kind = SK_ParenthesizedArrayInit; 3520 S.Type = T; 3521 Steps.push_back(S); 3522 } 3523 3524 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3525 bool shouldCopy) { 3526 Step s; 3527 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3528 : SK_PassByIndirectRestore); 3529 s.Type = type; 3530 Steps.push_back(s); 3531 } 3532 3533 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3534 Step S; 3535 S.Kind = SK_ProduceObjCObject; 3536 S.Type = T; 3537 Steps.push_back(S); 3538 } 3539 3540 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3541 Step S; 3542 S.Kind = SK_StdInitializerList; 3543 S.Type = T; 3544 Steps.push_back(S); 3545 } 3546 3547 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3548 Step S; 3549 S.Kind = SK_OCLSamplerInit; 3550 S.Type = T; 3551 Steps.push_back(S); 3552 } 3553 3554 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3555 Step S; 3556 S.Kind = SK_OCLZeroOpaqueType; 3557 S.Type = T; 3558 Steps.push_back(S); 3559 } 3560 3561 void InitializationSequence::RewrapReferenceInitList(QualType T, 3562 InitListExpr *Syntactic) { 3563 assert(Syntactic->getNumInits() == 1 && 3564 "Can only rewrap trivial init lists."); 3565 Step S; 3566 S.Kind = SK_UnwrapInitList; 3567 S.Type = Syntactic->getInit(0)->getType(); 3568 Steps.insert(Steps.begin(), S); 3569 3570 S.Kind = SK_RewrapInitList; 3571 S.Type = T; 3572 S.WrappingSyntacticList = Syntactic; 3573 Steps.push_back(S); 3574 } 3575 3576 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3577 OverloadingResult Result) { 3578 setSequenceKind(FailedSequence); 3579 this->Failure = Failure; 3580 this->FailedOverloadResult = Result; 3581 } 3582 3583 //===----------------------------------------------------------------------===// 3584 // Attempt initialization 3585 //===----------------------------------------------------------------------===// 3586 3587 /// Tries to add a zero initializer. Returns true if that worked. 3588 static bool 3589 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3590 const InitializedEntity &Entity) { 3591 if (Entity.getKind() != InitializedEntity::EK_Variable) 3592 return false; 3593 3594 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3595 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3596 return false; 3597 3598 QualType VariableTy = VD->getType().getCanonicalType(); 3599 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3600 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3601 if (!Init.empty()) { 3602 Sequence.AddZeroInitializationStep(Entity.getType()); 3603 Sequence.SetZeroInitializationFixit(Init, Loc); 3604 return true; 3605 } 3606 return false; 3607 } 3608 3609 static void MaybeProduceObjCObject(Sema &S, 3610 InitializationSequence &Sequence, 3611 const InitializedEntity &Entity) { 3612 if (!S.getLangOpts().ObjCAutoRefCount) return; 3613 3614 /// When initializing a parameter, produce the value if it's marked 3615 /// __attribute__((ns_consumed)). 3616 if (Entity.isParameterKind()) { 3617 if (!Entity.isParameterConsumed()) 3618 return; 3619 3620 assert(Entity.getType()->isObjCRetainableType() && 3621 "consuming an object of unretainable type?"); 3622 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3623 3624 /// When initializing a return value, if the return type is a 3625 /// retainable type, then returns need to immediately retain the 3626 /// object. If an autorelease is required, it will be done at the 3627 /// last instant. 3628 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3629 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3630 if (!Entity.getType()->isObjCRetainableType()) 3631 return; 3632 3633 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3634 } 3635 } 3636 3637 static void TryListInitialization(Sema &S, 3638 const InitializedEntity &Entity, 3639 const InitializationKind &Kind, 3640 InitListExpr *InitList, 3641 InitializationSequence &Sequence, 3642 bool TreatUnavailableAsInvalid); 3643 3644 /// When initializing from init list via constructor, handle 3645 /// initialization of an object of type std::initializer_list<T>. 3646 /// 3647 /// \return true if we have handled initialization of an object of type 3648 /// std::initializer_list<T>, false otherwise. 3649 static bool TryInitializerListConstruction(Sema &S, 3650 InitListExpr *List, 3651 QualType DestType, 3652 InitializationSequence &Sequence, 3653 bool TreatUnavailableAsInvalid) { 3654 QualType E; 3655 if (!S.isStdInitializerList(DestType, &E)) 3656 return false; 3657 3658 if (!S.isCompleteType(List->getExprLoc(), E)) { 3659 Sequence.setIncompleteTypeFailure(E); 3660 return true; 3661 } 3662 3663 // Try initializing a temporary array from the init list. 3664 QualType ArrayType = S.Context.getConstantArrayType( 3665 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3666 List->getNumInits()), 3667 clang::ArrayType::Normal, 0); 3668 InitializedEntity HiddenArray = 3669 InitializedEntity::InitializeTemporary(ArrayType); 3670 InitializationKind Kind = InitializationKind::CreateDirectList( 3671 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3672 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3673 TreatUnavailableAsInvalid); 3674 if (Sequence) 3675 Sequence.AddStdInitializerListConstructionStep(DestType); 3676 return true; 3677 } 3678 3679 /// Determine if the constructor has the signature of a copy or move 3680 /// constructor for the type T of the class in which it was found. That is, 3681 /// determine if its first parameter is of type T or reference to (possibly 3682 /// cv-qualified) T. 3683 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3684 const ConstructorInfo &Info) { 3685 if (Info.Constructor->getNumParams() == 0) 3686 return false; 3687 3688 QualType ParmT = 3689 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3690 QualType ClassT = 3691 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3692 3693 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3694 } 3695 3696 static OverloadingResult 3697 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3698 MultiExprArg Args, 3699 OverloadCandidateSet &CandidateSet, 3700 QualType DestType, 3701 DeclContext::lookup_result Ctors, 3702 OverloadCandidateSet::iterator &Best, 3703 bool CopyInitializing, bool AllowExplicit, 3704 bool OnlyListConstructors, bool IsListInit, 3705 bool SecondStepOfCopyInit = false) { 3706 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3707 3708 for (NamedDecl *D : Ctors) { 3709 auto Info = getConstructorInfo(D); 3710 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3711 continue; 3712 3713 if (!AllowExplicit && Info.Constructor->isExplicit()) 3714 continue; 3715 3716 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3717 continue; 3718 3719 // C++11 [over.best.ics]p4: 3720 // ... and the constructor or user-defined conversion function is a 3721 // candidate by 3722 // - 13.3.1.3, when the argument is the temporary in the second step 3723 // of a class copy-initialization, or 3724 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3725 // - the second phase of 13.3.1.7 when the initializer list has exactly 3726 // one element that is itself an initializer list, and the target is 3727 // the first parameter of a constructor of class X, and the conversion 3728 // is to X or reference to (possibly cv-qualified X), 3729 // user-defined conversion sequences are not considered. 3730 bool SuppressUserConversions = 3731 SecondStepOfCopyInit || 3732 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3733 hasCopyOrMoveCtorParam(S.Context, Info)); 3734 3735 if (Info.ConstructorTmpl) 3736 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3737 /*ExplicitArgs*/ nullptr, Args, 3738 CandidateSet, SuppressUserConversions); 3739 else { 3740 // C++ [over.match.copy]p1: 3741 // - When initializing a temporary to be bound to the first parameter 3742 // of a constructor [for type T] that takes a reference to possibly 3743 // cv-qualified T as its first argument, called with a single 3744 // argument in the context of direct-initialization, explicit 3745 // conversion functions are also considered. 3746 // FIXME: What if a constructor template instantiates to such a signature? 3747 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3748 Args.size() == 1 && 3749 hasCopyOrMoveCtorParam(S.Context, Info); 3750 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3751 CandidateSet, SuppressUserConversions, 3752 /*PartialOverloading=*/false, 3753 /*AllowExplicit=*/AllowExplicitConv); 3754 } 3755 } 3756 3757 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3758 // 3759 // When initializing an object of class type T by constructor 3760 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3761 // from a single expression of class type U, conversion functions of 3762 // U that convert to the non-reference type cv T are candidates. 3763 // Explicit conversion functions are only candidates during 3764 // direct-initialization. 3765 // 3766 // Note: SecondStepOfCopyInit is only ever true in this case when 3767 // evaluating whether to produce a C++98 compatibility warning. 3768 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3769 !SecondStepOfCopyInit) { 3770 Expr *Initializer = Args[0]; 3771 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3772 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3773 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3774 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3775 NamedDecl *D = *I; 3776 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3777 D = D->getUnderlyingDecl(); 3778 3779 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3780 CXXConversionDecl *Conv; 3781 if (ConvTemplate) 3782 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3783 else 3784 Conv = cast<CXXConversionDecl>(D); 3785 3786 if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) { 3787 if (ConvTemplate) 3788 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3789 ActingDC, Initializer, DestType, 3790 CandidateSet, AllowExplicit, 3791 /*AllowResultConversion*/false); 3792 else 3793 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3794 DestType, CandidateSet, AllowExplicit, 3795 /*AllowResultConversion*/false); 3796 } 3797 } 3798 } 3799 } 3800 3801 // Perform overload resolution and return the result. 3802 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3803 } 3804 3805 /// Attempt initialization by constructor (C++ [dcl.init]), which 3806 /// enumerates the constructors of the initialized entity and performs overload 3807 /// resolution to select the best. 3808 /// \param DestType The destination class type. 3809 /// \param DestArrayType The destination type, which is either DestType or 3810 /// a (possibly multidimensional) array of DestType. 3811 /// \param IsListInit Is this list-initialization? 3812 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3813 /// list-initialization from {x} where x is the same 3814 /// type as the entity? 3815 static void TryConstructorInitialization(Sema &S, 3816 const InitializedEntity &Entity, 3817 const InitializationKind &Kind, 3818 MultiExprArg Args, QualType DestType, 3819 QualType DestArrayType, 3820 InitializationSequence &Sequence, 3821 bool IsListInit = false, 3822 bool IsInitListCopy = false) { 3823 assert(((!IsListInit && !IsInitListCopy) || 3824 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3825 "IsListInit/IsInitListCopy must come with a single initializer list " 3826 "argument."); 3827 InitListExpr *ILE = 3828 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3829 MultiExprArg UnwrappedArgs = 3830 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 3831 3832 // The type we're constructing needs to be complete. 3833 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3834 Sequence.setIncompleteTypeFailure(DestType); 3835 return; 3836 } 3837 3838 // C++17 [dcl.init]p17: 3839 // - If the initializer expression is a prvalue and the cv-unqualified 3840 // version of the source type is the same class as the class of the 3841 // destination, the initializer expression is used to initialize the 3842 // destination object. 3843 // Per DR (no number yet), this does not apply when initializing a base 3844 // class or delegating to another constructor from a mem-initializer. 3845 // ObjC++: Lambda captured by the block in the lambda to block conversion 3846 // should avoid copy elision. 3847 if (S.getLangOpts().CPlusPlus17 && 3848 Entity.getKind() != InitializedEntity::EK_Base && 3849 Entity.getKind() != InitializedEntity::EK_Delegating && 3850 Entity.getKind() != 3851 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 3852 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 3853 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 3854 // Convert qualifications if necessary. 3855 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3856 if (ILE) 3857 Sequence.RewrapReferenceInitList(DestType, ILE); 3858 return; 3859 } 3860 3861 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3862 assert(DestRecordType && "Constructor initialization requires record type"); 3863 CXXRecordDecl *DestRecordDecl 3864 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3865 3866 // Build the candidate set directly in the initialization sequence 3867 // structure, so that it will persist if we fail. 3868 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3869 3870 // Determine whether we are allowed to call explicit constructors or 3871 // explicit conversion operators. 3872 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 3873 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3874 3875 // - Otherwise, if T is a class type, constructors are considered. The 3876 // applicable constructors are enumerated, and the best one is chosen 3877 // through overload resolution. 3878 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 3879 3880 OverloadingResult Result = OR_No_Viable_Function; 3881 OverloadCandidateSet::iterator Best; 3882 bool AsInitializerList = false; 3883 3884 // C++11 [over.match.list]p1, per DR1467: 3885 // When objects of non-aggregate type T are list-initialized, such that 3886 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 3887 // according to the rules in this section, overload resolution selects 3888 // the constructor in two phases: 3889 // 3890 // - Initially, the candidate functions are the initializer-list 3891 // constructors of the class T and the argument list consists of the 3892 // initializer list as a single argument. 3893 if (IsListInit) { 3894 AsInitializerList = true; 3895 3896 // If the initializer list has no elements and T has a default constructor, 3897 // the first phase is omitted. 3898 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 3899 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3900 CandidateSet, DestType, Ctors, Best, 3901 CopyInitialization, AllowExplicit, 3902 /*OnlyListConstructor=*/true, 3903 IsListInit); 3904 } 3905 3906 // C++11 [over.match.list]p1: 3907 // - If no viable initializer-list constructor is found, overload resolution 3908 // is performed again, where the candidate functions are all the 3909 // constructors of the class T and the argument list consists of the 3910 // elements of the initializer list. 3911 if (Result == OR_No_Viable_Function) { 3912 AsInitializerList = false; 3913 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 3914 CandidateSet, DestType, Ctors, Best, 3915 CopyInitialization, AllowExplicit, 3916 /*OnlyListConstructors=*/false, 3917 IsListInit); 3918 } 3919 if (Result) { 3920 Sequence.SetOverloadFailure(IsListInit ? 3921 InitializationSequence::FK_ListConstructorOverloadFailed : 3922 InitializationSequence::FK_ConstructorOverloadFailed, 3923 Result); 3924 return; 3925 } 3926 3927 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3928 3929 // In C++17, ResolveConstructorOverload can select a conversion function 3930 // instead of a constructor. 3931 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 3932 // Add the user-defined conversion step that calls the conversion function. 3933 QualType ConvType = CD->getConversionType(); 3934 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 3935 "should not have selected this conversion function"); 3936 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 3937 HadMultipleCandidates); 3938 if (!S.Context.hasSameType(ConvType, DestType)) 3939 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3940 if (IsListInit) 3941 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 3942 return; 3943 } 3944 3945 // C++11 [dcl.init]p6: 3946 // If a program calls for the default initialization of an object 3947 // of a const-qualified type T, T shall be a class type with a 3948 // user-provided default constructor. 3949 // C++ core issue 253 proposal: 3950 // If the implicit default constructor initializes all subobjects, no 3951 // initializer should be required. 3952 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 3953 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3954 if (Kind.getKind() == InitializationKind::IK_Default && 3955 Entity.getType().isConstQualified()) { 3956 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 3957 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 3958 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3959 return; 3960 } 3961 } 3962 3963 // C++11 [over.match.list]p1: 3964 // In copy-list-initialization, if an explicit constructor is chosen, the 3965 // initializer is ill-formed. 3966 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3967 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 3968 return; 3969 } 3970 3971 // Add the constructor initialization step. Any cv-qualification conversion is 3972 // subsumed by the initialization. 3973 Sequence.AddConstructorInitializationStep( 3974 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 3975 IsListInit | IsInitListCopy, AsInitializerList); 3976 } 3977 3978 static bool 3979 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 3980 Expr *Initializer, 3981 QualType &SourceType, 3982 QualType &UnqualifiedSourceType, 3983 QualType UnqualifiedTargetType, 3984 InitializationSequence &Sequence) { 3985 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 3986 S.Context.OverloadTy) { 3987 DeclAccessPair Found; 3988 bool HadMultipleCandidates = false; 3989 if (FunctionDecl *Fn 3990 = S.ResolveAddressOfOverloadedFunction(Initializer, 3991 UnqualifiedTargetType, 3992 false, Found, 3993 &HadMultipleCandidates)) { 3994 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3995 HadMultipleCandidates); 3996 SourceType = Fn->getType(); 3997 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3998 } else if (!UnqualifiedTargetType->isRecordType()) { 3999 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4000 return true; 4001 } 4002 } 4003 return false; 4004 } 4005 4006 static void TryReferenceInitializationCore(Sema &S, 4007 const InitializedEntity &Entity, 4008 const InitializationKind &Kind, 4009 Expr *Initializer, 4010 QualType cv1T1, QualType T1, 4011 Qualifiers T1Quals, 4012 QualType cv2T2, QualType T2, 4013 Qualifiers T2Quals, 4014 InitializationSequence &Sequence); 4015 4016 static void TryValueInitialization(Sema &S, 4017 const InitializedEntity &Entity, 4018 const InitializationKind &Kind, 4019 InitializationSequence &Sequence, 4020 InitListExpr *InitList = nullptr); 4021 4022 /// Attempt list initialization of a reference. 4023 static void TryReferenceListInitialization(Sema &S, 4024 const InitializedEntity &Entity, 4025 const InitializationKind &Kind, 4026 InitListExpr *InitList, 4027 InitializationSequence &Sequence, 4028 bool TreatUnavailableAsInvalid) { 4029 // First, catch C++03 where this isn't possible. 4030 if (!S.getLangOpts().CPlusPlus11) { 4031 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4032 return; 4033 } 4034 // Can't reference initialize a compound literal. 4035 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4036 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4037 return; 4038 } 4039 4040 QualType DestType = Entity.getType(); 4041 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4042 Qualifiers T1Quals; 4043 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4044 4045 // Reference initialization via an initializer list works thus: 4046 // If the initializer list consists of a single element that is 4047 // reference-related to the referenced type, bind directly to that element 4048 // (possibly creating temporaries). 4049 // Otherwise, initialize a temporary with the initializer list and 4050 // bind to that. 4051 if (InitList->getNumInits() == 1) { 4052 Expr *Initializer = InitList->getInit(0); 4053 QualType cv2T2 = Initializer->getType(); 4054 Qualifiers T2Quals; 4055 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4056 4057 // If this fails, creating a temporary wouldn't work either. 4058 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4059 T1, Sequence)) 4060 return; 4061 4062 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4063 bool dummy1, dummy2, dummy3; 4064 Sema::ReferenceCompareResult RefRelationship 4065 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 4066 dummy2, dummy3); 4067 if (RefRelationship >= Sema::Ref_Related) { 4068 // Try to bind the reference here. 4069 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4070 T1Quals, cv2T2, T2, T2Quals, Sequence); 4071 if (Sequence) 4072 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4073 return; 4074 } 4075 4076 // Update the initializer if we've resolved an overloaded function. 4077 if (Sequence.step_begin() != Sequence.step_end()) 4078 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4079 } 4080 4081 // Not reference-related. Create a temporary and bind to that. 4082 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4083 4084 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4085 TreatUnavailableAsInvalid); 4086 if (Sequence) { 4087 if (DestType->isRValueReferenceType() || 4088 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4089 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4090 else 4091 Sequence.SetFailed( 4092 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4093 } 4094 } 4095 4096 /// Attempt list initialization (C++0x [dcl.init.list]) 4097 static void TryListInitialization(Sema &S, 4098 const InitializedEntity &Entity, 4099 const InitializationKind &Kind, 4100 InitListExpr *InitList, 4101 InitializationSequence &Sequence, 4102 bool TreatUnavailableAsInvalid) { 4103 QualType DestType = Entity.getType(); 4104 4105 // C++ doesn't allow scalar initialization with more than one argument. 4106 // But C99 complex numbers are scalars and it makes sense there. 4107 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4108 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4109 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4110 return; 4111 } 4112 if (DestType->isReferenceType()) { 4113 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4114 TreatUnavailableAsInvalid); 4115 return; 4116 } 4117 4118 if (DestType->isRecordType() && 4119 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4120 Sequence.setIncompleteTypeFailure(DestType); 4121 return; 4122 } 4123 4124 // C++11 [dcl.init.list]p3, per DR1467: 4125 // - If T is a class type and the initializer list has a single element of 4126 // type cv U, where U is T or a class derived from T, the object is 4127 // initialized from that element (by copy-initialization for 4128 // copy-list-initialization, or by direct-initialization for 4129 // direct-list-initialization). 4130 // - Otherwise, if T is a character array and the initializer list has a 4131 // single element that is an appropriately-typed string literal 4132 // (8.5.2 [dcl.init.string]), initialization is performed as described 4133 // in that section. 4134 // - Otherwise, if T is an aggregate, [...] (continue below). 4135 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4136 if (DestType->isRecordType()) { 4137 QualType InitType = InitList->getInit(0)->getType(); 4138 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4139 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4140 Expr *InitListAsExpr = InitList; 4141 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4142 DestType, Sequence, 4143 /*InitListSyntax*/false, 4144 /*IsInitListCopy*/true); 4145 return; 4146 } 4147 } 4148 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4149 Expr *SubInit[1] = {InitList->getInit(0)}; 4150 if (!isa<VariableArrayType>(DestAT) && 4151 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4152 InitializationKind SubKind = 4153 Kind.getKind() == InitializationKind::IK_DirectList 4154 ? InitializationKind::CreateDirect(Kind.getLocation(), 4155 InitList->getLBraceLoc(), 4156 InitList->getRBraceLoc()) 4157 : Kind; 4158 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4159 /*TopLevelOfInitList*/ true, 4160 TreatUnavailableAsInvalid); 4161 4162 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4163 // the element is not an appropriately-typed string literal, in which 4164 // case we should proceed as in C++11 (below). 4165 if (Sequence) { 4166 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4167 return; 4168 } 4169 } 4170 } 4171 } 4172 4173 // C++11 [dcl.init.list]p3: 4174 // - If T is an aggregate, aggregate initialization is performed. 4175 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4176 (S.getLangOpts().CPlusPlus11 && 4177 S.isStdInitializerList(DestType, nullptr))) { 4178 if (S.getLangOpts().CPlusPlus11) { 4179 // - Otherwise, if the initializer list has no elements and T is a 4180 // class type with a default constructor, the object is 4181 // value-initialized. 4182 if (InitList->getNumInits() == 0) { 4183 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4184 if (RD->hasDefaultConstructor()) { 4185 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4186 return; 4187 } 4188 } 4189 4190 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4191 // an initializer_list object constructed [...] 4192 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4193 TreatUnavailableAsInvalid)) 4194 return; 4195 4196 // - Otherwise, if T is a class type, constructors are considered. 4197 Expr *InitListAsExpr = InitList; 4198 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4199 DestType, Sequence, /*InitListSyntax*/true); 4200 } else 4201 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4202 return; 4203 } 4204 4205 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4206 InitList->getNumInits() == 1) { 4207 Expr *E = InitList->getInit(0); 4208 4209 // - Otherwise, if T is an enumeration with a fixed underlying type, 4210 // the initializer-list has a single element v, and the initialization 4211 // is direct-list-initialization, the object is initialized with the 4212 // value T(v); if a narrowing conversion is required to convert v to 4213 // the underlying type of T, the program is ill-formed. 4214 auto *ET = DestType->getAs<EnumType>(); 4215 if (S.getLangOpts().CPlusPlus17 && 4216 Kind.getKind() == InitializationKind::IK_DirectList && 4217 ET && ET->getDecl()->isFixed() && 4218 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4219 (E->getType()->isIntegralOrEnumerationType() || 4220 E->getType()->isFloatingType())) { 4221 // There are two ways that T(v) can work when T is an enumeration type. 4222 // If there is either an implicit conversion sequence from v to T or 4223 // a conversion function that can convert from v to T, then we use that. 4224 // Otherwise, if v is of integral, enumeration, or floating-point type, 4225 // it is converted to the enumeration type via its underlying type. 4226 // There is no overlap possible between these two cases (except when the 4227 // source value is already of the destination type), and the first 4228 // case is handled by the general case for single-element lists below. 4229 ImplicitConversionSequence ICS; 4230 ICS.setStandard(); 4231 ICS.Standard.setAsIdentityConversion(); 4232 if (!E->isRValue()) 4233 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4234 // If E is of a floating-point type, then the conversion is ill-formed 4235 // due to narrowing, but go through the motions in order to produce the 4236 // right diagnostic. 4237 ICS.Standard.Second = E->getType()->isFloatingType() 4238 ? ICK_Floating_Integral 4239 : ICK_Integral_Conversion; 4240 ICS.Standard.setFromType(E->getType()); 4241 ICS.Standard.setToType(0, E->getType()); 4242 ICS.Standard.setToType(1, DestType); 4243 ICS.Standard.setToType(2, DestType); 4244 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4245 /*TopLevelOfInitList*/true); 4246 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4247 return; 4248 } 4249 4250 // - Otherwise, if the initializer list has a single element of type E 4251 // [...references are handled above...], the object or reference is 4252 // initialized from that element (by copy-initialization for 4253 // copy-list-initialization, or by direct-initialization for 4254 // direct-list-initialization); if a narrowing conversion is required 4255 // to convert the element to T, the program is ill-formed. 4256 // 4257 // Per core-24034, this is direct-initialization if we were performing 4258 // direct-list-initialization and copy-initialization otherwise. 4259 // We can't use InitListChecker for this, because it always performs 4260 // copy-initialization. This only matters if we might use an 'explicit' 4261 // conversion operator, so we only need to handle the cases where the source 4262 // is of record type. 4263 if (InitList->getInit(0)->getType()->isRecordType()) { 4264 InitializationKind SubKind = 4265 Kind.getKind() == InitializationKind::IK_DirectList 4266 ? InitializationKind::CreateDirect(Kind.getLocation(), 4267 InitList->getLBraceLoc(), 4268 InitList->getRBraceLoc()) 4269 : Kind; 4270 Expr *SubInit[1] = { InitList->getInit(0) }; 4271 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4272 /*TopLevelOfInitList*/true, 4273 TreatUnavailableAsInvalid); 4274 if (Sequence) 4275 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4276 return; 4277 } 4278 } 4279 4280 InitListChecker CheckInitList(S, Entity, InitList, 4281 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4282 if (CheckInitList.HadError()) { 4283 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4284 return; 4285 } 4286 4287 // Add the list initialization step with the built init list. 4288 Sequence.AddListInitializationStep(DestType); 4289 } 4290 4291 /// Try a reference initialization that involves calling a conversion 4292 /// function. 4293 static OverloadingResult TryRefInitWithConversionFunction( 4294 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4295 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4296 InitializationSequence &Sequence) { 4297 QualType DestType = Entity.getType(); 4298 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4299 QualType T1 = cv1T1.getUnqualifiedType(); 4300 QualType cv2T2 = Initializer->getType(); 4301 QualType T2 = cv2T2.getUnqualifiedType(); 4302 4303 bool DerivedToBase; 4304 bool ObjCConversion; 4305 bool ObjCLifetimeConversion; 4306 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, 4307 DerivedToBase, ObjCConversion, 4308 ObjCLifetimeConversion) && 4309 "Must have incompatible references when binding via conversion"); 4310 (void)DerivedToBase; 4311 (void)ObjCConversion; 4312 (void)ObjCLifetimeConversion; 4313 4314 // Build the candidate set directly in the initialization sequence 4315 // structure, so that it will persist if we fail. 4316 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4317 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4318 4319 // Determine whether we are allowed to call explicit conversion operators. 4320 // Note that none of [over.match.copy], [over.match.conv], nor 4321 // [over.match.ref] permit an explicit constructor to be chosen when 4322 // initializing a reference, not even for direct-initialization. 4323 bool AllowExplicitCtors = false; 4324 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4325 4326 const RecordType *T1RecordType = nullptr; 4327 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4328 S.isCompleteType(Kind.getLocation(), T1)) { 4329 // The type we're converting to is a class type. Enumerate its constructors 4330 // to see if there is a suitable conversion. 4331 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4332 4333 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4334 auto Info = getConstructorInfo(D); 4335 if (!Info.Constructor) 4336 continue; 4337 4338 if (!Info.Constructor->isInvalidDecl() && 4339 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4340 if (Info.ConstructorTmpl) 4341 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 4342 /*ExplicitArgs*/ nullptr, 4343 Initializer, CandidateSet, 4344 /*SuppressUserConversions=*/true); 4345 else 4346 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 4347 Initializer, CandidateSet, 4348 /*SuppressUserConversions=*/true); 4349 } 4350 } 4351 } 4352 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4353 return OR_No_Viable_Function; 4354 4355 const RecordType *T2RecordType = nullptr; 4356 if ((T2RecordType = T2->getAs<RecordType>()) && 4357 S.isCompleteType(Kind.getLocation(), T2)) { 4358 // The type we're converting from is a class type, enumerate its conversion 4359 // functions. 4360 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4361 4362 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4363 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4364 NamedDecl *D = *I; 4365 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4366 if (isa<UsingShadowDecl>(D)) 4367 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4368 4369 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4370 CXXConversionDecl *Conv; 4371 if (ConvTemplate) 4372 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4373 else 4374 Conv = cast<CXXConversionDecl>(D); 4375 4376 // If the conversion function doesn't return a reference type, 4377 // it can't be considered for this conversion unless we're allowed to 4378 // consider rvalues. 4379 // FIXME: Do we need to make sure that we only consider conversion 4380 // candidates with reference-compatible results? That might be needed to 4381 // break recursion. 4382 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4383 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 4384 if (ConvTemplate) 4385 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4386 ActingDC, Initializer, 4387 DestType, CandidateSet, 4388 /*AllowObjCConversionOnExplicit=*/ 4389 false); 4390 else 4391 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4392 Initializer, DestType, CandidateSet, 4393 /*AllowObjCConversionOnExplicit=*/false); 4394 } 4395 } 4396 } 4397 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4398 return OR_No_Viable_Function; 4399 4400 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4401 4402 // Perform overload resolution. If it fails, return the failed result. 4403 OverloadCandidateSet::iterator Best; 4404 if (OverloadingResult Result 4405 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4406 return Result; 4407 4408 FunctionDecl *Function = Best->Function; 4409 // This is the overload that will be used for this initialization step if we 4410 // use this initialization. Mark it as referenced. 4411 Function->setReferenced(); 4412 4413 // Compute the returned type and value kind of the conversion. 4414 QualType cv3T3; 4415 if (isa<CXXConversionDecl>(Function)) 4416 cv3T3 = Function->getReturnType(); 4417 else 4418 cv3T3 = T1; 4419 4420 ExprValueKind VK = VK_RValue; 4421 if (cv3T3->isLValueReferenceType()) 4422 VK = VK_LValue; 4423 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4424 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4425 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4426 4427 // Add the user-defined conversion step. 4428 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4429 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4430 HadMultipleCandidates); 4431 4432 // Determine whether we'll need to perform derived-to-base adjustments or 4433 // other conversions. 4434 bool NewDerivedToBase = false; 4435 bool NewObjCConversion = false; 4436 bool NewObjCLifetimeConversion = false; 4437 Sema::ReferenceCompareResult NewRefRelationship 4438 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, 4439 NewDerivedToBase, NewObjCConversion, 4440 NewObjCLifetimeConversion); 4441 4442 // Add the final conversion sequence, if necessary. 4443 if (NewRefRelationship == Sema::Ref_Incompatible) { 4444 assert(!isa<CXXConstructorDecl>(Function) && 4445 "should not have conversion after constructor"); 4446 4447 ImplicitConversionSequence ICS; 4448 ICS.setStandard(); 4449 ICS.Standard = Best->FinalConversion; 4450 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4451 4452 // Every implicit conversion results in a prvalue, except for a glvalue 4453 // derived-to-base conversion, which we handle below. 4454 cv3T3 = ICS.Standard.getToType(2); 4455 VK = VK_RValue; 4456 } 4457 4458 // If the converted initializer is a prvalue, its type T4 is adjusted to 4459 // type "cv1 T4" and the temporary materialization conversion is applied. 4460 // 4461 // We adjust the cv-qualifications to match the reference regardless of 4462 // whether we have a prvalue so that the AST records the change. In this 4463 // case, T4 is "cv3 T3". 4464 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4465 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4466 Sequence.AddQualificationConversionStep(cv1T4, VK); 4467 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4468 VK = IsLValueRef ? VK_LValue : VK_XValue; 4469 4470 if (NewDerivedToBase) 4471 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4472 else if (NewObjCConversion) 4473 Sequence.AddObjCObjectConversionStep(cv1T1); 4474 4475 return OR_Success; 4476 } 4477 4478 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4479 const InitializedEntity &Entity, 4480 Expr *CurInitExpr); 4481 4482 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4483 static void TryReferenceInitialization(Sema &S, 4484 const InitializedEntity &Entity, 4485 const InitializationKind &Kind, 4486 Expr *Initializer, 4487 InitializationSequence &Sequence) { 4488 QualType DestType = Entity.getType(); 4489 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4490 Qualifiers T1Quals; 4491 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4492 QualType cv2T2 = Initializer->getType(); 4493 Qualifiers T2Quals; 4494 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4495 4496 // If the initializer is the address of an overloaded function, try 4497 // to resolve the overloaded function. If all goes well, T2 is the 4498 // type of the resulting function. 4499 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4500 T1, Sequence)) 4501 return; 4502 4503 // Delegate everything else to a subfunction. 4504 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4505 T1Quals, cv2T2, T2, T2Quals, Sequence); 4506 } 4507 4508 /// Determine whether an expression is a non-referenceable glvalue (one to 4509 /// which a reference can never bind). Attempting to bind a reference to 4510 /// such a glvalue will always create a temporary. 4511 static bool isNonReferenceableGLValue(Expr *E) { 4512 return E->refersToBitField() || E->refersToVectorElement(); 4513 } 4514 4515 /// Reference initialization without resolving overloaded functions. 4516 static void TryReferenceInitializationCore(Sema &S, 4517 const InitializedEntity &Entity, 4518 const InitializationKind &Kind, 4519 Expr *Initializer, 4520 QualType cv1T1, QualType T1, 4521 Qualifiers T1Quals, 4522 QualType cv2T2, QualType T2, 4523 Qualifiers T2Quals, 4524 InitializationSequence &Sequence) { 4525 QualType DestType = Entity.getType(); 4526 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4527 // Compute some basic properties of the types and the initializer. 4528 bool isLValueRef = DestType->isLValueReferenceType(); 4529 bool isRValueRef = !isLValueRef; 4530 bool DerivedToBase = false; 4531 bool ObjCConversion = false; 4532 bool ObjCLifetimeConversion = false; 4533 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4534 Sema::ReferenceCompareResult RefRelationship 4535 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 4536 ObjCConversion, ObjCLifetimeConversion); 4537 4538 // C++0x [dcl.init.ref]p5: 4539 // A reference to type "cv1 T1" is initialized by an expression of type 4540 // "cv2 T2" as follows: 4541 // 4542 // - If the reference is an lvalue reference and the initializer 4543 // expression 4544 // Note the analogous bullet points for rvalue refs to functions. Because 4545 // there are no function rvalues in C++, rvalue refs to functions are treated 4546 // like lvalue refs. 4547 OverloadingResult ConvOvlResult = OR_Success; 4548 bool T1Function = T1->isFunctionType(); 4549 if (isLValueRef || T1Function) { 4550 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4551 (RefRelationship == Sema::Ref_Compatible || 4552 (Kind.isCStyleOrFunctionalCast() && 4553 RefRelationship == Sema::Ref_Related))) { 4554 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4555 // reference-compatible with "cv2 T2," or 4556 if (T1Quals != T2Quals) 4557 // Convert to cv1 T2. This should only add qualifiers unless this is a 4558 // c-style cast. The removal of qualifiers in that case notionally 4559 // happens after the reference binding, but that doesn't matter. 4560 Sequence.AddQualificationConversionStep( 4561 S.Context.getQualifiedType(T2, T1Quals), 4562 Initializer->getValueKind()); 4563 if (DerivedToBase) 4564 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4565 else if (ObjCConversion) 4566 Sequence.AddObjCObjectConversionStep(cv1T1); 4567 4568 // We only create a temporary here when binding a reference to a 4569 // bit-field or vector element. Those cases are't supposed to be 4570 // handled by this bullet, but the outcome is the same either way. 4571 Sequence.AddReferenceBindingStep(cv1T1, false); 4572 return; 4573 } 4574 4575 // - has a class type (i.e., T2 is a class type), where T1 is not 4576 // reference-related to T2, and can be implicitly converted to an 4577 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4578 // with "cv3 T3" (this conversion is selected by enumerating the 4579 // applicable conversion functions (13.3.1.6) and choosing the best 4580 // one through overload resolution (13.3)), 4581 // If we have an rvalue ref to function type here, the rhs must be 4582 // an rvalue. DR1287 removed the "implicitly" here. 4583 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4584 (isLValueRef || InitCategory.isRValue())) { 4585 ConvOvlResult = TryRefInitWithConversionFunction( 4586 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4587 /*IsLValueRef*/ isLValueRef, Sequence); 4588 if (ConvOvlResult == OR_Success) 4589 return; 4590 if (ConvOvlResult != OR_No_Viable_Function) 4591 Sequence.SetOverloadFailure( 4592 InitializationSequence::FK_ReferenceInitOverloadFailed, 4593 ConvOvlResult); 4594 } 4595 } 4596 4597 // - Otherwise, the reference shall be an lvalue reference to a 4598 // non-volatile const type (i.e., cv1 shall be const), or the reference 4599 // shall be an rvalue reference. 4600 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4601 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4602 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4603 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4604 Sequence.SetOverloadFailure( 4605 InitializationSequence::FK_ReferenceInitOverloadFailed, 4606 ConvOvlResult); 4607 else if (!InitCategory.isLValue()) 4608 Sequence.SetFailed( 4609 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4610 else { 4611 InitializationSequence::FailureKind FK; 4612 switch (RefRelationship) { 4613 case Sema::Ref_Compatible: 4614 if (Initializer->refersToBitField()) 4615 FK = InitializationSequence:: 4616 FK_NonConstLValueReferenceBindingToBitfield; 4617 else if (Initializer->refersToVectorElement()) 4618 FK = InitializationSequence:: 4619 FK_NonConstLValueReferenceBindingToVectorElement; 4620 else 4621 llvm_unreachable("unexpected kind of compatible initializer"); 4622 break; 4623 case Sema::Ref_Related: 4624 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4625 break; 4626 case Sema::Ref_Incompatible: 4627 FK = InitializationSequence:: 4628 FK_NonConstLValueReferenceBindingToUnrelated; 4629 break; 4630 } 4631 Sequence.SetFailed(FK); 4632 } 4633 return; 4634 } 4635 4636 // - If the initializer expression 4637 // - is an 4638 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4639 // [1z] rvalue (but not a bit-field) or 4640 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4641 // 4642 // Note: functions are handled above and below rather than here... 4643 if (!T1Function && 4644 (RefRelationship == Sema::Ref_Compatible || 4645 (Kind.isCStyleOrFunctionalCast() && 4646 RefRelationship == Sema::Ref_Related)) && 4647 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4648 (InitCategory.isPRValue() && 4649 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4650 T2->isArrayType())))) { 4651 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4652 if (InitCategory.isPRValue() && T2->isRecordType()) { 4653 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4654 // compiler the freedom to perform a copy here or bind to the 4655 // object, while C++0x requires that we bind directly to the 4656 // object. Hence, we always bind to the object without making an 4657 // extra copy. However, in C++03 requires that we check for the 4658 // presence of a suitable copy constructor: 4659 // 4660 // The constructor that would be used to make the copy shall 4661 // be callable whether or not the copy is actually done. 4662 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4663 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4664 else if (S.getLangOpts().CPlusPlus11) 4665 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4666 } 4667 4668 // C++1z [dcl.init.ref]/5.2.1.2: 4669 // If the converted initializer is a prvalue, its type T4 is adjusted 4670 // to type "cv1 T4" and the temporary materialization conversion is 4671 // applied. 4672 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals); 4673 if (T1Quals != T2Quals) 4674 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4675 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4676 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4677 4678 // In any case, the reference is bound to the resulting glvalue (or to 4679 // an appropriate base class subobject). 4680 if (DerivedToBase) 4681 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4682 else if (ObjCConversion) 4683 Sequence.AddObjCObjectConversionStep(cv1T1); 4684 return; 4685 } 4686 4687 // - has a class type (i.e., T2 is a class type), where T1 is not 4688 // reference-related to T2, and can be implicitly converted to an 4689 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4690 // where "cv1 T1" is reference-compatible with "cv3 T3", 4691 // 4692 // DR1287 removes the "implicitly" here. 4693 if (T2->isRecordType()) { 4694 if (RefRelationship == Sema::Ref_Incompatible) { 4695 ConvOvlResult = TryRefInitWithConversionFunction( 4696 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4697 /*IsLValueRef*/ isLValueRef, Sequence); 4698 if (ConvOvlResult) 4699 Sequence.SetOverloadFailure( 4700 InitializationSequence::FK_ReferenceInitOverloadFailed, 4701 ConvOvlResult); 4702 4703 return; 4704 } 4705 4706 if (RefRelationship == Sema::Ref_Compatible && 4707 isRValueRef && InitCategory.isLValue()) { 4708 Sequence.SetFailed( 4709 InitializationSequence::FK_RValueReferenceBindingToLValue); 4710 return; 4711 } 4712 4713 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4714 return; 4715 } 4716 4717 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4718 // from the initializer expression using the rules for a non-reference 4719 // copy-initialization (8.5). The reference is then bound to the 4720 // temporary. [...] 4721 4722 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4723 4724 // FIXME: Why do we use an implicit conversion here rather than trying 4725 // copy-initialization? 4726 ImplicitConversionSequence ICS 4727 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4728 /*SuppressUserConversions=*/false, 4729 /*AllowExplicit=*/false, 4730 /*FIXME:InOverloadResolution=*/false, 4731 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4732 /*AllowObjCWritebackConversion=*/false); 4733 4734 if (ICS.isBad()) { 4735 // FIXME: Use the conversion function set stored in ICS to turn 4736 // this into an overloading ambiguity diagnostic. However, we need 4737 // to keep that set as an OverloadCandidateSet rather than as some 4738 // other kind of set. 4739 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4740 Sequence.SetOverloadFailure( 4741 InitializationSequence::FK_ReferenceInitOverloadFailed, 4742 ConvOvlResult); 4743 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4744 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4745 else 4746 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4747 return; 4748 } else { 4749 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4750 } 4751 4752 // [...] If T1 is reference-related to T2, cv1 must be the 4753 // same cv-qualification as, or greater cv-qualification 4754 // than, cv2; otherwise, the program is ill-formed. 4755 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4756 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4757 if (RefRelationship == Sema::Ref_Related && 4758 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 4759 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4760 return; 4761 } 4762 4763 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4764 // reference, the initializer expression shall not be an lvalue. 4765 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4766 InitCategory.isLValue()) { 4767 Sequence.SetFailed( 4768 InitializationSequence::FK_RValueReferenceBindingToLValue); 4769 return; 4770 } 4771 4772 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4773 } 4774 4775 /// Attempt character array initialization from a string literal 4776 /// (C++ [dcl.init.string], C99 6.7.8). 4777 static void TryStringLiteralInitialization(Sema &S, 4778 const InitializedEntity &Entity, 4779 const InitializationKind &Kind, 4780 Expr *Initializer, 4781 InitializationSequence &Sequence) { 4782 Sequence.AddStringInitStep(Entity.getType()); 4783 } 4784 4785 /// Attempt value initialization (C++ [dcl.init]p7). 4786 static void TryValueInitialization(Sema &S, 4787 const InitializedEntity &Entity, 4788 const InitializationKind &Kind, 4789 InitializationSequence &Sequence, 4790 InitListExpr *InitList) { 4791 assert((!InitList || InitList->getNumInits() == 0) && 4792 "Shouldn't use value-init for non-empty init lists"); 4793 4794 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4795 // 4796 // To value-initialize an object of type T means: 4797 QualType T = Entity.getType(); 4798 4799 // -- if T is an array type, then each element is value-initialized; 4800 T = S.Context.getBaseElementType(T); 4801 4802 if (const RecordType *RT = T->getAs<RecordType>()) { 4803 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4804 bool NeedZeroInitialization = true; 4805 // C++98: 4806 // -- if T is a class type (clause 9) with a user-declared constructor 4807 // (12.1), then the default constructor for T is called (and the 4808 // initialization is ill-formed if T has no accessible default 4809 // constructor); 4810 // C++11: 4811 // -- if T is a class type (clause 9) with either no default constructor 4812 // (12.1 [class.ctor]) or a default constructor that is user-provided 4813 // or deleted, then the object is default-initialized; 4814 // 4815 // Note that the C++11 rule is the same as the C++98 rule if there are no 4816 // defaulted or deleted constructors, so we just use it unconditionally. 4817 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4818 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4819 NeedZeroInitialization = false; 4820 4821 // -- if T is a (possibly cv-qualified) non-union class type without a 4822 // user-provided or deleted default constructor, then the object is 4823 // zero-initialized and, if T has a non-trivial default constructor, 4824 // default-initialized; 4825 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4826 // constructor' part was removed by DR1507. 4827 if (NeedZeroInitialization) 4828 Sequence.AddZeroInitializationStep(Entity.getType()); 4829 4830 // C++03: 4831 // -- if T is a non-union class type without a user-declared constructor, 4832 // then every non-static data member and base class component of T is 4833 // value-initialized; 4834 // [...] A program that calls for [...] value-initialization of an 4835 // entity of reference type is ill-formed. 4836 // 4837 // C++11 doesn't need this handling, because value-initialization does not 4838 // occur recursively there, and the implicit default constructor is 4839 // defined as deleted in the problematic cases. 4840 if (!S.getLangOpts().CPlusPlus11 && 4841 ClassDecl->hasUninitializedReferenceMember()) { 4842 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4843 return; 4844 } 4845 4846 // If this is list-value-initialization, pass the empty init list on when 4847 // building the constructor call. This affects the semantics of a few 4848 // things (such as whether an explicit default constructor can be called). 4849 Expr *InitListAsExpr = InitList; 4850 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4851 bool InitListSyntax = InitList; 4852 4853 // FIXME: Instead of creating a CXXConstructExpr of array type here, 4854 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 4855 return TryConstructorInitialization( 4856 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 4857 } 4858 } 4859 4860 Sequence.AddZeroInitializationStep(Entity.getType()); 4861 } 4862 4863 /// Attempt default initialization (C++ [dcl.init]p6). 4864 static void TryDefaultInitialization(Sema &S, 4865 const InitializedEntity &Entity, 4866 const InitializationKind &Kind, 4867 InitializationSequence &Sequence) { 4868 assert(Kind.getKind() == InitializationKind::IK_Default); 4869 4870 // C++ [dcl.init]p6: 4871 // To default-initialize an object of type T means: 4872 // - if T is an array type, each element is default-initialized; 4873 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4874 4875 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4876 // constructor for T is called (and the initialization is ill-formed if 4877 // T has no accessible default constructor); 4878 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4879 TryConstructorInitialization(S, Entity, Kind, None, DestType, 4880 Entity.getType(), Sequence); 4881 return; 4882 } 4883 4884 // - otherwise, no initialization is performed. 4885 4886 // If a program calls for the default initialization of an object of 4887 // a const-qualified type T, T shall be a class type with a user-provided 4888 // default constructor. 4889 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4890 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4891 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4892 return; 4893 } 4894 4895 // If the destination type has a lifetime property, zero-initialize it. 4896 if (DestType.getQualifiers().hasObjCLifetime()) { 4897 Sequence.AddZeroInitializationStep(Entity.getType()); 4898 return; 4899 } 4900 } 4901 4902 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 4903 /// which enumerates all conversion functions and performs overload resolution 4904 /// to select the best. 4905 static void TryUserDefinedConversion(Sema &S, 4906 QualType DestType, 4907 const InitializationKind &Kind, 4908 Expr *Initializer, 4909 InitializationSequence &Sequence, 4910 bool TopLevelOfInitList) { 4911 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4912 QualType SourceType = Initializer->getType(); 4913 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4914 "Must have a class type to perform a user-defined conversion"); 4915 4916 // Build the candidate set directly in the initialization sequence 4917 // structure, so that it will persist if we fail. 4918 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4919 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4920 4921 // Determine whether we are allowed to call explicit constructors or 4922 // explicit conversion operators. 4923 bool AllowExplicit = Kind.AllowExplicit(); 4924 4925 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4926 // The type we're converting to is a class type. Enumerate its constructors 4927 // to see if there is a suitable conversion. 4928 CXXRecordDecl *DestRecordDecl 4929 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4930 4931 // Try to complete the type we're converting to. 4932 if (S.isCompleteType(Kind.getLocation(), DestType)) { 4933 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 4934 auto Info = getConstructorInfo(D); 4935 if (!Info.Constructor) 4936 continue; 4937 4938 if (!Info.Constructor->isInvalidDecl() && 4939 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 4940 if (Info.ConstructorTmpl) 4941 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 4942 /*ExplicitArgs*/ nullptr, 4943 Initializer, CandidateSet, 4944 /*SuppressUserConversions=*/true); 4945 else 4946 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 4947 Initializer, CandidateSet, 4948 /*SuppressUserConversions=*/true); 4949 } 4950 } 4951 } 4952 } 4953 4954 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4955 4956 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 4957 // The type we're converting from is a class type, enumerate its conversion 4958 // functions. 4959 4960 // We can only enumerate the conversion functions for a complete type; if 4961 // the type isn't complete, simply skip this step. 4962 if (S.isCompleteType(DeclLoc, SourceType)) { 4963 CXXRecordDecl *SourceRecordDecl 4964 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 4965 4966 const auto &Conversions = 4967 SourceRecordDecl->getVisibleConversionFunctions(); 4968 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4969 NamedDecl *D = *I; 4970 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4971 if (isa<UsingShadowDecl>(D)) 4972 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4973 4974 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4975 CXXConversionDecl *Conv; 4976 if (ConvTemplate) 4977 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4978 else 4979 Conv = cast<CXXConversionDecl>(D); 4980 4981 if (AllowExplicit || !Conv->isExplicit()) { 4982 if (ConvTemplate) 4983 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4984 ActingDC, Initializer, DestType, 4985 CandidateSet, AllowExplicit); 4986 else 4987 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4988 Initializer, DestType, CandidateSet, 4989 AllowExplicit); 4990 } 4991 } 4992 } 4993 } 4994 4995 // Perform overload resolution. If it fails, return the failed result. 4996 OverloadCandidateSet::iterator Best; 4997 if (OverloadingResult Result 4998 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4999 Sequence.SetOverloadFailure( 5000 InitializationSequence::FK_UserConversionOverloadFailed, 5001 Result); 5002 return; 5003 } 5004 5005 FunctionDecl *Function = Best->Function; 5006 Function->setReferenced(); 5007 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5008 5009 if (isa<CXXConstructorDecl>(Function)) { 5010 // Add the user-defined conversion step. Any cv-qualification conversion is 5011 // subsumed by the initialization. Per DR5, the created temporary is of the 5012 // cv-unqualified type of the destination. 5013 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5014 DestType.getUnqualifiedType(), 5015 HadMultipleCandidates); 5016 5017 // C++14 and before: 5018 // - if the function is a constructor, the call initializes a temporary 5019 // of the cv-unqualified version of the destination type. The [...] 5020 // temporary [...] is then used to direct-initialize, according to the 5021 // rules above, the object that is the destination of the 5022 // copy-initialization. 5023 // Note that this just performs a simple object copy from the temporary. 5024 // 5025 // C++17: 5026 // - if the function is a constructor, the call is a prvalue of the 5027 // cv-unqualified version of the destination type whose return object 5028 // is initialized by the constructor. The call is used to 5029 // direct-initialize, according to the rules above, the object that 5030 // is the destination of the copy-initialization. 5031 // Therefore we need to do nothing further. 5032 // 5033 // FIXME: Mark this copy as extraneous. 5034 if (!S.getLangOpts().CPlusPlus17) 5035 Sequence.AddFinalCopy(DestType); 5036 else if (DestType.hasQualifiers()) 5037 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5038 return; 5039 } 5040 5041 // Add the user-defined conversion step that calls the conversion function. 5042 QualType ConvType = Function->getCallResultType(); 5043 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5044 HadMultipleCandidates); 5045 5046 if (ConvType->getAs<RecordType>()) { 5047 // The call is used to direct-initialize [...] the object that is the 5048 // destination of the copy-initialization. 5049 // 5050 // In C++17, this does not call a constructor if we enter /17.6.1: 5051 // - If the initializer expression is a prvalue and the cv-unqualified 5052 // version of the source type is the same as the class of the 5053 // destination [... do not make an extra copy] 5054 // 5055 // FIXME: Mark this copy as extraneous. 5056 if (!S.getLangOpts().CPlusPlus17 || 5057 Function->getReturnType()->isReferenceType() || 5058 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5059 Sequence.AddFinalCopy(DestType); 5060 else if (!S.Context.hasSameType(ConvType, DestType)) 5061 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5062 return; 5063 } 5064 5065 // If the conversion following the call to the conversion function 5066 // is interesting, add it as a separate step. 5067 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5068 Best->FinalConversion.Third) { 5069 ImplicitConversionSequence ICS; 5070 ICS.setStandard(); 5071 ICS.Standard = Best->FinalConversion; 5072 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5073 } 5074 } 5075 5076 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5077 /// a function with a pointer return type contains a 'return false;' statement. 5078 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5079 /// code using that header. 5080 /// 5081 /// Work around this by treating 'return false;' as zero-initializing the result 5082 /// if it's used in a pointer-returning function in a system header. 5083 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5084 const InitializedEntity &Entity, 5085 const Expr *Init) { 5086 return S.getLangOpts().CPlusPlus11 && 5087 Entity.getKind() == InitializedEntity::EK_Result && 5088 Entity.getType()->isPointerType() && 5089 isa<CXXBoolLiteralExpr>(Init) && 5090 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5091 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5092 } 5093 5094 /// The non-zero enum values here are indexes into diagnostic alternatives. 5095 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5096 5097 /// Determines whether this expression is an acceptable ICR source. 5098 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5099 bool isAddressOf, bool &isWeakAccess) { 5100 // Skip parens. 5101 e = e->IgnoreParens(); 5102 5103 // Skip address-of nodes. 5104 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5105 if (op->getOpcode() == UO_AddrOf) 5106 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5107 isWeakAccess); 5108 5109 // Skip certain casts. 5110 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5111 switch (ce->getCastKind()) { 5112 case CK_Dependent: 5113 case CK_BitCast: 5114 case CK_LValueBitCast: 5115 case CK_NoOp: 5116 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5117 5118 case CK_ArrayToPointerDecay: 5119 return IIK_nonscalar; 5120 5121 case CK_NullToPointer: 5122 return IIK_okay; 5123 5124 default: 5125 break; 5126 } 5127 5128 // If we have a declaration reference, it had better be a local variable. 5129 } else if (isa<DeclRefExpr>(e)) { 5130 // set isWeakAccess to true, to mean that there will be an implicit 5131 // load which requires a cleanup. 5132 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5133 isWeakAccess = true; 5134 5135 if (!isAddressOf) return IIK_nonlocal; 5136 5137 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5138 if (!var) return IIK_nonlocal; 5139 5140 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5141 5142 // If we have a conditional operator, check both sides. 5143 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5144 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5145 isWeakAccess)) 5146 return iik; 5147 5148 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5149 5150 // These are never scalar. 5151 } else if (isa<ArraySubscriptExpr>(e)) { 5152 return IIK_nonscalar; 5153 5154 // Otherwise, it needs to be a null pointer constant. 5155 } else { 5156 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5157 ? IIK_okay : IIK_nonlocal); 5158 } 5159 5160 return IIK_nonlocal; 5161 } 5162 5163 /// Check whether the given expression is a valid operand for an 5164 /// indirect copy/restore. 5165 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5166 assert(src->isRValue()); 5167 bool isWeakAccess = false; 5168 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5169 // If isWeakAccess to true, there will be an implicit 5170 // load which requires a cleanup. 5171 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5172 S.Cleanup.setExprNeedsCleanups(true); 5173 5174 if (iik == IIK_okay) return; 5175 5176 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5177 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5178 << src->getSourceRange(); 5179 } 5180 5181 /// Determine whether we have compatible array types for the 5182 /// purposes of GNU by-copy array initialization. 5183 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5184 const ArrayType *Source) { 5185 // If the source and destination array types are equivalent, we're 5186 // done. 5187 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5188 return true; 5189 5190 // Make sure that the element types are the same. 5191 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5192 return false; 5193 5194 // The only mismatch we allow is when the destination is an 5195 // incomplete array type and the source is a constant array type. 5196 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5197 } 5198 5199 static bool tryObjCWritebackConversion(Sema &S, 5200 InitializationSequence &Sequence, 5201 const InitializedEntity &Entity, 5202 Expr *Initializer) { 5203 bool ArrayDecay = false; 5204 QualType ArgType = Initializer->getType(); 5205 QualType ArgPointee; 5206 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5207 ArrayDecay = true; 5208 ArgPointee = ArgArrayType->getElementType(); 5209 ArgType = S.Context.getPointerType(ArgPointee); 5210 } 5211 5212 // Handle write-back conversion. 5213 QualType ConvertedArgType; 5214 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5215 ConvertedArgType)) 5216 return false; 5217 5218 // We should copy unless we're passing to an argument explicitly 5219 // marked 'out'. 5220 bool ShouldCopy = true; 5221 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5222 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5223 5224 // Do we need an lvalue conversion? 5225 if (ArrayDecay || Initializer->isGLValue()) { 5226 ImplicitConversionSequence ICS; 5227 ICS.setStandard(); 5228 ICS.Standard.setAsIdentityConversion(); 5229 5230 QualType ResultType; 5231 if (ArrayDecay) { 5232 ICS.Standard.First = ICK_Array_To_Pointer; 5233 ResultType = S.Context.getPointerType(ArgPointee); 5234 } else { 5235 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5236 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5237 } 5238 5239 Sequence.AddConversionSequenceStep(ICS, ResultType); 5240 } 5241 5242 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5243 return true; 5244 } 5245 5246 static bool TryOCLSamplerInitialization(Sema &S, 5247 InitializationSequence &Sequence, 5248 QualType DestType, 5249 Expr *Initializer) { 5250 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5251 (!Initializer->isIntegerConstantExpr(S.Context) && 5252 !Initializer->getType()->isSamplerT())) 5253 return false; 5254 5255 Sequence.AddOCLSamplerInitStep(DestType); 5256 return true; 5257 } 5258 5259 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5260 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5261 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5262 } 5263 5264 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5265 InitializationSequence &Sequence, 5266 QualType DestType, 5267 Expr *Initializer) { 5268 if (!S.getLangOpts().OpenCL) 5269 return false; 5270 5271 // 5272 // OpenCL 1.2 spec, s6.12.10 5273 // 5274 // The event argument can also be used to associate the 5275 // async_work_group_copy with a previous async copy allowing 5276 // an event to be shared by multiple async copies; otherwise 5277 // event should be zero. 5278 // 5279 if (DestType->isEventT() || DestType->isQueueT()) { 5280 if (!IsZeroInitializer(Initializer, S)) 5281 return false; 5282 5283 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5284 return true; 5285 } 5286 5287 // We should allow zero initialization for all types defined in the 5288 // cl_intel_device_side_avc_motion_estimation extension, except 5289 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5290 if (S.getOpenCLOptions().isEnabled( 5291 "cl_intel_device_side_avc_motion_estimation") && 5292 DestType->isOCLIntelSubgroupAVCType()) { 5293 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5294 DestType->isOCLIntelSubgroupAVCMceResultType()) 5295 return false; 5296 if (!IsZeroInitializer(Initializer, S)) 5297 return false; 5298 5299 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5300 return true; 5301 } 5302 5303 return false; 5304 } 5305 5306 InitializationSequence::InitializationSequence(Sema &S, 5307 const InitializedEntity &Entity, 5308 const InitializationKind &Kind, 5309 MultiExprArg Args, 5310 bool TopLevelOfInitList, 5311 bool TreatUnavailableAsInvalid) 5312 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5313 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5314 TreatUnavailableAsInvalid); 5315 } 5316 5317 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5318 /// address of that function, this returns true. Otherwise, it returns false. 5319 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5320 auto *DRE = dyn_cast<DeclRefExpr>(E); 5321 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5322 return false; 5323 5324 return !S.checkAddressOfFunctionIsAvailable( 5325 cast<FunctionDecl>(DRE->getDecl())); 5326 } 5327 5328 /// Determine whether we can perform an elementwise array copy for this kind 5329 /// of entity. 5330 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5331 switch (Entity.getKind()) { 5332 case InitializedEntity::EK_LambdaCapture: 5333 // C++ [expr.prim.lambda]p24: 5334 // For array members, the array elements are direct-initialized in 5335 // increasing subscript order. 5336 return true; 5337 5338 case InitializedEntity::EK_Variable: 5339 // C++ [dcl.decomp]p1: 5340 // [...] each element is copy-initialized or direct-initialized from the 5341 // corresponding element of the assignment-expression [...] 5342 return isa<DecompositionDecl>(Entity.getDecl()); 5343 5344 case InitializedEntity::EK_Member: 5345 // C++ [class.copy.ctor]p14: 5346 // - if the member is an array, each element is direct-initialized with 5347 // the corresponding subobject of x 5348 return Entity.isImplicitMemberInitializer(); 5349 5350 case InitializedEntity::EK_ArrayElement: 5351 // All the above cases are intended to apply recursively, even though none 5352 // of them actually say that. 5353 if (auto *E = Entity.getParent()) 5354 return canPerformArrayCopy(*E); 5355 break; 5356 5357 default: 5358 break; 5359 } 5360 5361 return false; 5362 } 5363 5364 void InitializationSequence::InitializeFrom(Sema &S, 5365 const InitializedEntity &Entity, 5366 const InitializationKind &Kind, 5367 MultiExprArg Args, 5368 bool TopLevelOfInitList, 5369 bool TreatUnavailableAsInvalid) { 5370 ASTContext &Context = S.Context; 5371 5372 // Eliminate non-overload placeholder types in the arguments. We 5373 // need to do this before checking whether types are dependent 5374 // because lowering a pseudo-object expression might well give us 5375 // something of dependent type. 5376 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5377 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5378 // FIXME: should we be doing this here? 5379 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5380 if (result.isInvalid()) { 5381 SetFailed(FK_PlaceholderType); 5382 return; 5383 } 5384 Args[I] = result.get(); 5385 } 5386 5387 // C++0x [dcl.init]p16: 5388 // The semantics of initializers are as follows. The destination type is 5389 // the type of the object or reference being initialized and the source 5390 // type is the type of the initializer expression. The source type is not 5391 // defined when the initializer is a braced-init-list or when it is a 5392 // parenthesized list of expressions. 5393 QualType DestType = Entity.getType(); 5394 5395 if (DestType->isDependentType() || 5396 Expr::hasAnyTypeDependentArguments(Args)) { 5397 SequenceKind = DependentSequence; 5398 return; 5399 } 5400 5401 // Almost everything is a normal sequence. 5402 setSequenceKind(NormalSequence); 5403 5404 QualType SourceType; 5405 Expr *Initializer = nullptr; 5406 if (Args.size() == 1) { 5407 Initializer = Args[0]; 5408 if (S.getLangOpts().ObjC) { 5409 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5410 DestType, Initializer->getType(), 5411 Initializer) || 5412 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5413 Args[0] = Initializer; 5414 } 5415 if (!isa<InitListExpr>(Initializer)) 5416 SourceType = Initializer->getType(); 5417 } 5418 5419 // - If the initializer is a (non-parenthesized) braced-init-list, the 5420 // object is list-initialized (8.5.4). 5421 if (Kind.getKind() != InitializationKind::IK_Direct) { 5422 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5423 TryListInitialization(S, Entity, Kind, InitList, *this, 5424 TreatUnavailableAsInvalid); 5425 return; 5426 } 5427 } 5428 5429 // - If the destination type is a reference type, see 8.5.3. 5430 if (DestType->isReferenceType()) { 5431 // C++0x [dcl.init.ref]p1: 5432 // A variable declared to be a T& or T&&, that is, "reference to type T" 5433 // (8.3.2), shall be initialized by an object, or function, of type T or 5434 // by an object that can be converted into a T. 5435 // (Therefore, multiple arguments are not permitted.) 5436 if (Args.size() != 1) 5437 SetFailed(FK_TooManyInitsForReference); 5438 // C++17 [dcl.init.ref]p5: 5439 // A reference [...] is initialized by an expression [...] as follows: 5440 // If the initializer is not an expression, presumably we should reject, 5441 // but the standard fails to actually say so. 5442 else if (isa<InitListExpr>(Args[0])) 5443 SetFailed(FK_ParenthesizedListInitForReference); 5444 else 5445 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5446 return; 5447 } 5448 5449 // - If the initializer is (), the object is value-initialized. 5450 if (Kind.getKind() == InitializationKind::IK_Value || 5451 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5452 TryValueInitialization(S, Entity, Kind, *this); 5453 return; 5454 } 5455 5456 // Handle default initialization. 5457 if (Kind.getKind() == InitializationKind::IK_Default) { 5458 TryDefaultInitialization(S, Entity, Kind, *this); 5459 return; 5460 } 5461 5462 // - If the destination type is an array of characters, an array of 5463 // char16_t, an array of char32_t, or an array of wchar_t, and the 5464 // initializer is a string literal, see 8.5.2. 5465 // - Otherwise, if the destination type is an array, the program is 5466 // ill-formed. 5467 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5468 if (Initializer && isa<VariableArrayType>(DestAT)) { 5469 SetFailed(FK_VariableLengthArrayHasInitializer); 5470 return; 5471 } 5472 5473 if (Initializer) { 5474 switch (IsStringInit(Initializer, DestAT, Context)) { 5475 case SIF_None: 5476 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5477 return; 5478 case SIF_NarrowStringIntoWideChar: 5479 SetFailed(FK_NarrowStringIntoWideCharArray); 5480 return; 5481 case SIF_WideStringIntoChar: 5482 SetFailed(FK_WideStringIntoCharArray); 5483 return; 5484 case SIF_IncompatWideStringIntoWideChar: 5485 SetFailed(FK_IncompatWideStringIntoWideChar); 5486 return; 5487 case SIF_PlainStringIntoUTF8Char: 5488 SetFailed(FK_PlainStringIntoUTF8Char); 5489 return; 5490 case SIF_UTF8StringIntoPlainChar: 5491 SetFailed(FK_UTF8StringIntoPlainChar); 5492 return; 5493 case SIF_Other: 5494 break; 5495 } 5496 } 5497 5498 // Some kinds of initialization permit an array to be initialized from 5499 // another array of the same type, and perform elementwise initialization. 5500 if (Initializer && isa<ConstantArrayType>(DestAT) && 5501 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5502 Entity.getType()) && 5503 canPerformArrayCopy(Entity)) { 5504 // If source is a prvalue, use it directly. 5505 if (Initializer->getValueKind() == VK_RValue) { 5506 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5507 return; 5508 } 5509 5510 // Emit element-at-a-time copy loop. 5511 InitializedEntity Element = 5512 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5513 QualType InitEltT = 5514 Context.getAsArrayType(Initializer->getType())->getElementType(); 5515 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5516 Initializer->getValueKind(), 5517 Initializer->getObjectKind()); 5518 Expr *OVEAsExpr = &OVE; 5519 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5520 TreatUnavailableAsInvalid); 5521 if (!Failed()) 5522 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5523 return; 5524 } 5525 5526 // Note: as an GNU C extension, we allow initialization of an 5527 // array from a compound literal that creates an array of the same 5528 // type, so long as the initializer has no side effects. 5529 if (!S.getLangOpts().CPlusPlus && Initializer && 5530 (isa<ConstantExpr>(Initializer->IgnoreParens()) || 5531 isa<CompoundLiteralExpr>(Initializer->IgnoreParens())) && 5532 Initializer->getType()->isArrayType()) { 5533 const ArrayType *SourceAT 5534 = Context.getAsArrayType(Initializer->getType()); 5535 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5536 SetFailed(FK_ArrayTypeMismatch); 5537 else if (Initializer->HasSideEffects(S.Context)) 5538 SetFailed(FK_NonConstantArrayInit); 5539 else { 5540 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5541 } 5542 } 5543 // Note: as a GNU C++ extension, we allow list-initialization of a 5544 // class member of array type from a parenthesized initializer list. 5545 else if (S.getLangOpts().CPlusPlus && 5546 Entity.getKind() == InitializedEntity::EK_Member && 5547 Initializer && isa<InitListExpr>(Initializer)) { 5548 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5549 *this, TreatUnavailableAsInvalid); 5550 AddParenthesizedArrayInitStep(DestType); 5551 } else if (DestAT->getElementType()->isCharType()) 5552 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5553 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5554 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5555 else 5556 SetFailed(FK_ArrayNeedsInitList); 5557 5558 return; 5559 } 5560 5561 // Determine whether we should consider writeback conversions for 5562 // Objective-C ARC. 5563 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5564 Entity.isParameterKind(); 5565 5566 // We're at the end of the line for C: it's either a write-back conversion 5567 // or it's a C assignment. There's no need to check anything else. 5568 if (!S.getLangOpts().CPlusPlus) { 5569 // If allowed, check whether this is an Objective-C writeback conversion. 5570 if (allowObjCWritebackConversion && 5571 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5572 return; 5573 } 5574 5575 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5576 return; 5577 5578 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5579 return; 5580 5581 // Handle initialization in C 5582 AddCAssignmentStep(DestType); 5583 MaybeProduceObjCObject(S, *this, Entity); 5584 return; 5585 } 5586 5587 assert(S.getLangOpts().CPlusPlus); 5588 5589 // - If the destination type is a (possibly cv-qualified) class type: 5590 if (DestType->isRecordType()) { 5591 // - If the initialization is direct-initialization, or if it is 5592 // copy-initialization where the cv-unqualified version of the 5593 // source type is the same class as, or a derived class of, the 5594 // class of the destination, constructors are considered. [...] 5595 if (Kind.getKind() == InitializationKind::IK_Direct || 5596 (Kind.getKind() == InitializationKind::IK_Copy && 5597 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5598 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5599 TryConstructorInitialization(S, Entity, Kind, Args, 5600 DestType, DestType, *this); 5601 // - Otherwise (i.e., for the remaining copy-initialization cases), 5602 // user-defined conversion sequences that can convert from the source 5603 // type to the destination type or (when a conversion function is 5604 // used) to a derived class thereof are enumerated as described in 5605 // 13.3.1.4, and the best one is chosen through overload resolution 5606 // (13.3). 5607 else 5608 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5609 TopLevelOfInitList); 5610 return; 5611 } 5612 5613 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5614 5615 // The remaining cases all need a source type. 5616 if (Args.size() > 1) { 5617 SetFailed(FK_TooManyInitsForScalar); 5618 return; 5619 } else if (isa<InitListExpr>(Args[0])) { 5620 SetFailed(FK_ParenthesizedListInitForScalar); 5621 return; 5622 } 5623 5624 // - Otherwise, if the source type is a (possibly cv-qualified) class 5625 // type, conversion functions are considered. 5626 if (!SourceType.isNull() && SourceType->isRecordType()) { 5627 // For a conversion to _Atomic(T) from either T or a class type derived 5628 // from T, initialize the T object then convert to _Atomic type. 5629 bool NeedAtomicConversion = false; 5630 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5631 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5632 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5633 Atomic->getValueType())) { 5634 DestType = Atomic->getValueType(); 5635 NeedAtomicConversion = true; 5636 } 5637 } 5638 5639 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5640 TopLevelOfInitList); 5641 MaybeProduceObjCObject(S, *this, Entity); 5642 if (!Failed() && NeedAtomicConversion) 5643 AddAtomicConversionStep(Entity.getType()); 5644 return; 5645 } 5646 5647 // - Otherwise, the initial value of the object being initialized is the 5648 // (possibly converted) value of the initializer expression. Standard 5649 // conversions (Clause 4) will be used, if necessary, to convert the 5650 // initializer expression to the cv-unqualified version of the 5651 // destination type; no user-defined conversions are considered. 5652 5653 ImplicitConversionSequence ICS 5654 = S.TryImplicitConversion(Initializer, DestType, 5655 /*SuppressUserConversions*/true, 5656 /*AllowExplicitConversions*/ false, 5657 /*InOverloadResolution*/ false, 5658 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5659 allowObjCWritebackConversion); 5660 5661 if (ICS.isStandard() && 5662 ICS.Standard.Second == ICK_Writeback_Conversion) { 5663 // Objective-C ARC writeback conversion. 5664 5665 // We should copy unless we're passing to an argument explicitly 5666 // marked 'out'. 5667 bool ShouldCopy = true; 5668 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5669 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5670 5671 // If there was an lvalue adjustment, add it as a separate conversion. 5672 if (ICS.Standard.First == ICK_Array_To_Pointer || 5673 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5674 ImplicitConversionSequence LvalueICS; 5675 LvalueICS.setStandard(); 5676 LvalueICS.Standard.setAsIdentityConversion(); 5677 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5678 LvalueICS.Standard.First = ICS.Standard.First; 5679 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5680 } 5681 5682 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5683 } else if (ICS.isBad()) { 5684 DeclAccessPair dap; 5685 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5686 AddZeroInitializationStep(Entity.getType()); 5687 } else if (Initializer->getType() == Context.OverloadTy && 5688 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5689 false, dap)) 5690 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5691 else if (Initializer->getType()->isFunctionType() && 5692 isExprAnUnaddressableFunction(S, Initializer)) 5693 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5694 else 5695 SetFailed(InitializationSequence::FK_ConversionFailed); 5696 } else { 5697 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5698 5699 MaybeProduceObjCObject(S, *this, Entity); 5700 } 5701 } 5702 5703 InitializationSequence::~InitializationSequence() { 5704 for (auto &S : Steps) 5705 S.Destroy(); 5706 } 5707 5708 //===----------------------------------------------------------------------===// 5709 // Perform initialization 5710 //===----------------------------------------------------------------------===// 5711 static Sema::AssignmentAction 5712 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5713 switch(Entity.getKind()) { 5714 case InitializedEntity::EK_Variable: 5715 case InitializedEntity::EK_New: 5716 case InitializedEntity::EK_Exception: 5717 case InitializedEntity::EK_Base: 5718 case InitializedEntity::EK_Delegating: 5719 return Sema::AA_Initializing; 5720 5721 case InitializedEntity::EK_Parameter: 5722 if (Entity.getDecl() && 5723 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5724 return Sema::AA_Sending; 5725 5726 return Sema::AA_Passing; 5727 5728 case InitializedEntity::EK_Parameter_CF_Audited: 5729 if (Entity.getDecl() && 5730 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5731 return Sema::AA_Sending; 5732 5733 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5734 5735 case InitializedEntity::EK_Result: 5736 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5737 return Sema::AA_Returning; 5738 5739 case InitializedEntity::EK_Temporary: 5740 case InitializedEntity::EK_RelatedResult: 5741 // FIXME: Can we tell apart casting vs. converting? 5742 return Sema::AA_Casting; 5743 5744 case InitializedEntity::EK_Member: 5745 case InitializedEntity::EK_Binding: 5746 case InitializedEntity::EK_ArrayElement: 5747 case InitializedEntity::EK_VectorElement: 5748 case InitializedEntity::EK_ComplexElement: 5749 case InitializedEntity::EK_BlockElement: 5750 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5751 case InitializedEntity::EK_LambdaCapture: 5752 case InitializedEntity::EK_CompoundLiteralInit: 5753 return Sema::AA_Initializing; 5754 } 5755 5756 llvm_unreachable("Invalid EntityKind!"); 5757 } 5758 5759 /// Whether we should bind a created object as a temporary when 5760 /// initializing the given entity. 5761 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5762 switch (Entity.getKind()) { 5763 case InitializedEntity::EK_ArrayElement: 5764 case InitializedEntity::EK_Member: 5765 case InitializedEntity::EK_Result: 5766 case InitializedEntity::EK_StmtExprResult: 5767 case InitializedEntity::EK_New: 5768 case InitializedEntity::EK_Variable: 5769 case InitializedEntity::EK_Base: 5770 case InitializedEntity::EK_Delegating: 5771 case InitializedEntity::EK_VectorElement: 5772 case InitializedEntity::EK_ComplexElement: 5773 case InitializedEntity::EK_Exception: 5774 case InitializedEntity::EK_BlockElement: 5775 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5776 case InitializedEntity::EK_LambdaCapture: 5777 case InitializedEntity::EK_CompoundLiteralInit: 5778 return false; 5779 5780 case InitializedEntity::EK_Parameter: 5781 case InitializedEntity::EK_Parameter_CF_Audited: 5782 case InitializedEntity::EK_Temporary: 5783 case InitializedEntity::EK_RelatedResult: 5784 case InitializedEntity::EK_Binding: 5785 return true; 5786 } 5787 5788 llvm_unreachable("missed an InitializedEntity kind?"); 5789 } 5790 5791 /// Whether the given entity, when initialized with an object 5792 /// created for that initialization, requires destruction. 5793 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 5794 switch (Entity.getKind()) { 5795 case InitializedEntity::EK_Result: 5796 case InitializedEntity::EK_StmtExprResult: 5797 case InitializedEntity::EK_New: 5798 case InitializedEntity::EK_Base: 5799 case InitializedEntity::EK_Delegating: 5800 case InitializedEntity::EK_VectorElement: 5801 case InitializedEntity::EK_ComplexElement: 5802 case InitializedEntity::EK_BlockElement: 5803 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5804 case InitializedEntity::EK_LambdaCapture: 5805 return false; 5806 5807 case InitializedEntity::EK_Member: 5808 case InitializedEntity::EK_Binding: 5809 case InitializedEntity::EK_Variable: 5810 case InitializedEntity::EK_Parameter: 5811 case InitializedEntity::EK_Parameter_CF_Audited: 5812 case InitializedEntity::EK_Temporary: 5813 case InitializedEntity::EK_ArrayElement: 5814 case InitializedEntity::EK_Exception: 5815 case InitializedEntity::EK_CompoundLiteralInit: 5816 case InitializedEntity::EK_RelatedResult: 5817 return true; 5818 } 5819 5820 llvm_unreachable("missed an InitializedEntity kind?"); 5821 } 5822 5823 /// Get the location at which initialization diagnostics should appear. 5824 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 5825 Expr *Initializer) { 5826 switch (Entity.getKind()) { 5827 case InitializedEntity::EK_Result: 5828 case InitializedEntity::EK_StmtExprResult: 5829 return Entity.getReturnLoc(); 5830 5831 case InitializedEntity::EK_Exception: 5832 return Entity.getThrowLoc(); 5833 5834 case InitializedEntity::EK_Variable: 5835 case InitializedEntity::EK_Binding: 5836 return Entity.getDecl()->getLocation(); 5837 5838 case InitializedEntity::EK_LambdaCapture: 5839 return Entity.getCaptureLoc(); 5840 5841 case InitializedEntity::EK_ArrayElement: 5842 case InitializedEntity::EK_Member: 5843 case InitializedEntity::EK_Parameter: 5844 case InitializedEntity::EK_Parameter_CF_Audited: 5845 case InitializedEntity::EK_Temporary: 5846 case InitializedEntity::EK_New: 5847 case InitializedEntity::EK_Base: 5848 case InitializedEntity::EK_Delegating: 5849 case InitializedEntity::EK_VectorElement: 5850 case InitializedEntity::EK_ComplexElement: 5851 case InitializedEntity::EK_BlockElement: 5852 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5853 case InitializedEntity::EK_CompoundLiteralInit: 5854 case InitializedEntity::EK_RelatedResult: 5855 return Initializer->getBeginLoc(); 5856 } 5857 llvm_unreachable("missed an InitializedEntity kind?"); 5858 } 5859 5860 /// Make a (potentially elidable) temporary copy of the object 5861 /// provided by the given initializer by calling the appropriate copy 5862 /// constructor. 5863 /// 5864 /// \param S The Sema object used for type-checking. 5865 /// 5866 /// \param T The type of the temporary object, which must either be 5867 /// the type of the initializer expression or a superclass thereof. 5868 /// 5869 /// \param Entity The entity being initialized. 5870 /// 5871 /// \param CurInit The initializer expression. 5872 /// 5873 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5874 /// is permitted in C++03 (but not C++0x) when binding a reference to 5875 /// an rvalue. 5876 /// 5877 /// \returns An expression that copies the initializer expression into 5878 /// a temporary object, or an error expression if a copy could not be 5879 /// created. 5880 static ExprResult CopyObject(Sema &S, 5881 QualType T, 5882 const InitializedEntity &Entity, 5883 ExprResult CurInit, 5884 bool IsExtraneousCopy) { 5885 if (CurInit.isInvalid()) 5886 return CurInit; 5887 // Determine which class type we're copying to. 5888 Expr *CurInitExpr = (Expr *)CurInit.get(); 5889 CXXRecordDecl *Class = nullptr; 5890 if (const RecordType *Record = T->getAs<RecordType>()) 5891 Class = cast<CXXRecordDecl>(Record->getDecl()); 5892 if (!Class) 5893 return CurInit; 5894 5895 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5896 5897 // Make sure that the type we are copying is complete. 5898 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5899 return CurInit; 5900 5901 // Perform overload resolution using the class's constructors. Per 5902 // C++11 [dcl.init]p16, second bullet for class types, this initialization 5903 // is direct-initialization. 5904 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5905 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 5906 5907 OverloadCandidateSet::iterator Best; 5908 switch (ResolveConstructorOverload( 5909 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 5910 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 5911 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 5912 /*SecondStepOfCopyInit=*/true)) { 5913 case OR_Success: 5914 break; 5915 5916 case OR_No_Viable_Function: 5917 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 5918 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 5919 : diag::err_temp_copy_no_viable) 5920 << (int)Entity.getKind() << CurInitExpr->getType() 5921 << CurInitExpr->getSourceRange(); 5922 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5923 if (!IsExtraneousCopy || S.isSFINAEContext()) 5924 return ExprError(); 5925 return CurInit; 5926 5927 case OR_Ambiguous: 5928 S.Diag(Loc, diag::err_temp_copy_ambiguous) 5929 << (int)Entity.getKind() << CurInitExpr->getType() 5930 << CurInitExpr->getSourceRange(); 5931 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5932 return ExprError(); 5933 5934 case OR_Deleted: 5935 S.Diag(Loc, diag::err_temp_copy_deleted) 5936 << (int)Entity.getKind() << CurInitExpr->getType() 5937 << CurInitExpr->getSourceRange(); 5938 S.NoteDeletedFunction(Best->Function); 5939 return ExprError(); 5940 } 5941 5942 bool HadMultipleCandidates = CandidateSet.size() > 1; 5943 5944 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 5945 SmallVector<Expr*, 8> ConstructorArgs; 5946 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5947 5948 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 5949 IsExtraneousCopy); 5950 5951 if (IsExtraneousCopy) { 5952 // If this is a totally extraneous copy for C++03 reference 5953 // binding purposes, just return the original initialization 5954 // expression. We don't generate an (elided) copy operation here 5955 // because doing so would require us to pass down a flag to avoid 5956 // infinite recursion, where each step adds another extraneous, 5957 // elidable copy. 5958 5959 // Instantiate the default arguments of any extra parameters in 5960 // the selected copy constructor, as if we were going to create a 5961 // proper call to the copy constructor. 5962 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 5963 ParmVarDecl *Parm = Constructor->getParamDecl(I); 5964 if (S.RequireCompleteType(Loc, Parm->getType(), 5965 diag::err_call_incomplete_argument)) 5966 break; 5967 5968 // Build the default argument expression; we don't actually care 5969 // if this succeeds or not, because this routine will complain 5970 // if there was a problem. 5971 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 5972 } 5973 5974 return CurInitExpr; 5975 } 5976 5977 // Determine the arguments required to actually perform the 5978 // constructor call (we might have derived-to-base conversions, or 5979 // the copy constructor may have default arguments). 5980 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 5981 return ExprError(); 5982 5983 // C++0x [class.copy]p32: 5984 // When certain criteria are met, an implementation is allowed to 5985 // omit the copy/move construction of a class object, even if the 5986 // copy/move constructor and/or destructor for the object have 5987 // side effects. [...] 5988 // - when a temporary class object that has not been bound to a 5989 // reference (12.2) would be copied/moved to a class object 5990 // with the same cv-unqualified type, the copy/move operation 5991 // can be omitted by constructing the temporary object 5992 // directly into the target of the omitted copy/move 5993 // 5994 // Note that the other three bullets are handled elsewhere. Copy 5995 // elision for return statements and throw expressions are handled as part 5996 // of constructor initialization, while copy elision for exception handlers 5997 // is handled by the run-time. 5998 // 5999 // FIXME: If the function parameter is not the same type as the temporary, we 6000 // should still be able to elide the copy, but we don't have a way to 6001 // represent in the AST how much should be elided in this case. 6002 bool Elidable = 6003 CurInitExpr->isTemporaryObject(S.Context, Class) && 6004 S.Context.hasSameUnqualifiedType( 6005 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6006 CurInitExpr->getType()); 6007 6008 // Actually perform the constructor call. 6009 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6010 Elidable, 6011 ConstructorArgs, 6012 HadMultipleCandidates, 6013 /*ListInit*/ false, 6014 /*StdInitListInit*/ false, 6015 /*ZeroInit*/ false, 6016 CXXConstructExpr::CK_Complete, 6017 SourceRange()); 6018 6019 // If we're supposed to bind temporaries, do so. 6020 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6021 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6022 return CurInit; 6023 } 6024 6025 /// Check whether elidable copy construction for binding a reference to 6026 /// a temporary would have succeeded if we were building in C++98 mode, for 6027 /// -Wc++98-compat. 6028 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6029 const InitializedEntity &Entity, 6030 Expr *CurInitExpr) { 6031 assert(S.getLangOpts().CPlusPlus11); 6032 6033 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6034 if (!Record) 6035 return; 6036 6037 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6038 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6039 return; 6040 6041 // Find constructors which would have been considered. 6042 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6043 DeclContext::lookup_result Ctors = 6044 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6045 6046 // Perform overload resolution. 6047 OverloadCandidateSet::iterator Best; 6048 OverloadingResult OR = ResolveConstructorOverload( 6049 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6050 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6051 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6052 /*SecondStepOfCopyInit=*/true); 6053 6054 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6055 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6056 << CurInitExpr->getSourceRange(); 6057 6058 switch (OR) { 6059 case OR_Success: 6060 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6061 Best->FoundDecl, Entity, Diag); 6062 // FIXME: Check default arguments as far as that's possible. 6063 break; 6064 6065 case OR_No_Viable_Function: 6066 S.Diag(Loc, Diag); 6067 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 6068 break; 6069 6070 case OR_Ambiguous: 6071 S.Diag(Loc, Diag); 6072 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 6073 break; 6074 6075 case OR_Deleted: 6076 S.Diag(Loc, Diag); 6077 S.NoteDeletedFunction(Best->Function); 6078 break; 6079 } 6080 } 6081 6082 void InitializationSequence::PrintInitLocationNote(Sema &S, 6083 const InitializedEntity &Entity) { 6084 if (Entity.isParameterKind() && Entity.getDecl()) { 6085 if (Entity.getDecl()->getLocation().isInvalid()) 6086 return; 6087 6088 if (Entity.getDecl()->getDeclName()) 6089 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6090 << Entity.getDecl()->getDeclName(); 6091 else 6092 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6093 } 6094 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6095 Entity.getMethodDecl()) 6096 S.Diag(Entity.getMethodDecl()->getLocation(), 6097 diag::note_method_return_type_change) 6098 << Entity.getMethodDecl()->getDeclName(); 6099 } 6100 6101 /// Returns true if the parameters describe a constructor initialization of 6102 /// an explicit temporary object, e.g. "Point(x, y)". 6103 static bool isExplicitTemporary(const InitializedEntity &Entity, 6104 const InitializationKind &Kind, 6105 unsigned NumArgs) { 6106 switch (Entity.getKind()) { 6107 case InitializedEntity::EK_Temporary: 6108 case InitializedEntity::EK_CompoundLiteralInit: 6109 case InitializedEntity::EK_RelatedResult: 6110 break; 6111 default: 6112 return false; 6113 } 6114 6115 switch (Kind.getKind()) { 6116 case InitializationKind::IK_DirectList: 6117 return true; 6118 // FIXME: Hack to work around cast weirdness. 6119 case InitializationKind::IK_Direct: 6120 case InitializationKind::IK_Value: 6121 return NumArgs != 1; 6122 default: 6123 return false; 6124 } 6125 } 6126 6127 static ExprResult 6128 PerformConstructorInitialization(Sema &S, 6129 const InitializedEntity &Entity, 6130 const InitializationKind &Kind, 6131 MultiExprArg Args, 6132 const InitializationSequence::Step& Step, 6133 bool &ConstructorInitRequiresZeroInit, 6134 bool IsListInitialization, 6135 bool IsStdInitListInitialization, 6136 SourceLocation LBraceLoc, 6137 SourceLocation RBraceLoc) { 6138 unsigned NumArgs = Args.size(); 6139 CXXConstructorDecl *Constructor 6140 = cast<CXXConstructorDecl>(Step.Function.Function); 6141 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6142 6143 // Build a call to the selected constructor. 6144 SmallVector<Expr*, 8> ConstructorArgs; 6145 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6146 ? Kind.getEqualLoc() 6147 : Kind.getLocation(); 6148 6149 if (Kind.getKind() == InitializationKind::IK_Default) { 6150 // Force even a trivial, implicit default constructor to be 6151 // semantically checked. We do this explicitly because we don't build 6152 // the definition for completely trivial constructors. 6153 assert(Constructor->getParent() && "No parent class for constructor."); 6154 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6155 Constructor->isTrivial() && !Constructor->isUsed(false)) 6156 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6157 } 6158 6159 ExprResult CurInit((Expr *)nullptr); 6160 6161 // C++ [over.match.copy]p1: 6162 // - When initializing a temporary to be bound to the first parameter 6163 // of a constructor that takes a reference to possibly cv-qualified 6164 // T as its first argument, called with a single argument in the 6165 // context of direct-initialization, explicit conversion functions 6166 // are also considered. 6167 bool AllowExplicitConv = 6168 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6169 hasCopyOrMoveCtorParam(S.Context, 6170 getConstructorInfo(Step.Function.FoundDecl)); 6171 6172 // Determine the arguments required to actually perform the constructor 6173 // call. 6174 if (S.CompleteConstructorCall(Constructor, Args, 6175 Loc, ConstructorArgs, 6176 AllowExplicitConv, 6177 IsListInitialization)) 6178 return ExprError(); 6179 6180 6181 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6182 // An explicitly-constructed temporary, e.g., X(1, 2). 6183 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6184 return ExprError(); 6185 6186 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6187 if (!TSInfo) 6188 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6189 SourceRange ParenOrBraceRange = Kind.getParenOrBraceRange(); 6190 6191 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6192 Step.Function.FoundDecl.getDecl())) { 6193 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6194 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6195 return ExprError(); 6196 } 6197 S.MarkFunctionReferenced(Loc, Constructor); 6198 6199 CurInit = new (S.Context) CXXTemporaryObjectExpr( 6200 S.Context, Constructor, 6201 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6202 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6203 IsListInitialization, IsStdInitListInitialization, 6204 ConstructorInitRequiresZeroInit); 6205 } else { 6206 CXXConstructExpr::ConstructionKind ConstructKind = 6207 CXXConstructExpr::CK_Complete; 6208 6209 if (Entity.getKind() == InitializedEntity::EK_Base) { 6210 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6211 CXXConstructExpr::CK_VirtualBase : 6212 CXXConstructExpr::CK_NonVirtualBase; 6213 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6214 ConstructKind = CXXConstructExpr::CK_Delegating; 6215 } 6216 6217 // Only get the parenthesis or brace range if it is a list initialization or 6218 // direct construction. 6219 SourceRange ParenOrBraceRange; 6220 if (IsListInitialization) 6221 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6222 else if (Kind.getKind() == InitializationKind::IK_Direct) 6223 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6224 6225 // If the entity allows NRVO, mark the construction as elidable 6226 // unconditionally. 6227 if (Entity.allowsNRVO()) 6228 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6229 Step.Function.FoundDecl, 6230 Constructor, /*Elidable=*/true, 6231 ConstructorArgs, 6232 HadMultipleCandidates, 6233 IsListInitialization, 6234 IsStdInitListInitialization, 6235 ConstructorInitRequiresZeroInit, 6236 ConstructKind, 6237 ParenOrBraceRange); 6238 else 6239 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6240 Step.Function.FoundDecl, 6241 Constructor, 6242 ConstructorArgs, 6243 HadMultipleCandidates, 6244 IsListInitialization, 6245 IsStdInitListInitialization, 6246 ConstructorInitRequiresZeroInit, 6247 ConstructKind, 6248 ParenOrBraceRange); 6249 } 6250 if (CurInit.isInvalid()) 6251 return ExprError(); 6252 6253 // Only check access if all of that succeeded. 6254 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6255 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6256 return ExprError(); 6257 6258 if (shouldBindAsTemporary(Entity)) 6259 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6260 6261 return CurInit; 6262 } 6263 6264 namespace { 6265 enum LifetimeKind { 6266 /// The lifetime of a temporary bound to this entity ends at the end of the 6267 /// full-expression, and that's (probably) fine. 6268 LK_FullExpression, 6269 6270 /// The lifetime of a temporary bound to this entity is extended to the 6271 /// lifeitme of the entity itself. 6272 LK_Extended, 6273 6274 /// The lifetime of a temporary bound to this entity probably ends too soon, 6275 /// because the entity is allocated in a new-expression. 6276 LK_New, 6277 6278 /// The lifetime of a temporary bound to this entity ends too soon, because 6279 /// the entity is a return object. 6280 LK_Return, 6281 6282 /// The lifetime of a temporary bound to this entity ends too soon, because 6283 /// the entity is the result of a statement expression. 6284 LK_StmtExprResult, 6285 6286 /// This is a mem-initializer: if it would extend a temporary (other than via 6287 /// a default member initializer), the program is ill-formed. 6288 LK_MemInitializer, 6289 }; 6290 using LifetimeResult = 6291 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6292 } 6293 6294 /// Determine the declaration which an initialized entity ultimately refers to, 6295 /// for the purpose of lifetime-extending a temporary bound to a reference in 6296 /// the initialization of \p Entity. 6297 static LifetimeResult getEntityLifetime( 6298 const InitializedEntity *Entity, 6299 const InitializedEntity *InitField = nullptr) { 6300 // C++11 [class.temporary]p5: 6301 switch (Entity->getKind()) { 6302 case InitializedEntity::EK_Variable: 6303 // The temporary [...] persists for the lifetime of the reference 6304 return {Entity, LK_Extended}; 6305 6306 case InitializedEntity::EK_Member: 6307 // For subobjects, we look at the complete object. 6308 if (Entity->getParent()) 6309 return getEntityLifetime(Entity->getParent(), Entity); 6310 6311 // except: 6312 // C++17 [class.base.init]p8: 6313 // A temporary expression bound to a reference member in a 6314 // mem-initializer is ill-formed. 6315 // C++17 [class.base.init]p11: 6316 // A temporary expression bound to a reference member from a 6317 // default member initializer is ill-formed. 6318 // 6319 // The context of p11 and its example suggest that it's only the use of a 6320 // default member initializer from a constructor that makes the program 6321 // ill-formed, not its mere existence, and that it can even be used by 6322 // aggregate initialization. 6323 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6324 : LK_MemInitializer}; 6325 6326 case InitializedEntity::EK_Binding: 6327 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6328 // type. 6329 return {Entity, LK_Extended}; 6330 6331 case InitializedEntity::EK_Parameter: 6332 case InitializedEntity::EK_Parameter_CF_Audited: 6333 // -- A temporary bound to a reference parameter in a function call 6334 // persists until the completion of the full-expression containing 6335 // the call. 6336 return {nullptr, LK_FullExpression}; 6337 6338 case InitializedEntity::EK_Result: 6339 // -- The lifetime of a temporary bound to the returned value in a 6340 // function return statement is not extended; the temporary is 6341 // destroyed at the end of the full-expression in the return statement. 6342 return {nullptr, LK_Return}; 6343 6344 case InitializedEntity::EK_StmtExprResult: 6345 // FIXME: Should we lifetime-extend through the result of a statement 6346 // expression? 6347 return {nullptr, LK_StmtExprResult}; 6348 6349 case InitializedEntity::EK_New: 6350 // -- A temporary bound to a reference in a new-initializer persists 6351 // until the completion of the full-expression containing the 6352 // new-initializer. 6353 return {nullptr, LK_New}; 6354 6355 case InitializedEntity::EK_Temporary: 6356 case InitializedEntity::EK_CompoundLiteralInit: 6357 case InitializedEntity::EK_RelatedResult: 6358 // We don't yet know the storage duration of the surrounding temporary. 6359 // Assume it's got full-expression duration for now, it will patch up our 6360 // storage duration if that's not correct. 6361 return {nullptr, LK_FullExpression}; 6362 6363 case InitializedEntity::EK_ArrayElement: 6364 // For subobjects, we look at the complete object. 6365 return getEntityLifetime(Entity->getParent(), InitField); 6366 6367 case InitializedEntity::EK_Base: 6368 // For subobjects, we look at the complete object. 6369 if (Entity->getParent()) 6370 return getEntityLifetime(Entity->getParent(), InitField); 6371 return {InitField, LK_MemInitializer}; 6372 6373 case InitializedEntity::EK_Delegating: 6374 // We can reach this case for aggregate initialization in a constructor: 6375 // struct A { int &&r; }; 6376 // struct B : A { B() : A{0} {} }; 6377 // In this case, use the outermost field decl as the context. 6378 return {InitField, LK_MemInitializer}; 6379 6380 case InitializedEntity::EK_BlockElement: 6381 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6382 case InitializedEntity::EK_LambdaCapture: 6383 case InitializedEntity::EK_VectorElement: 6384 case InitializedEntity::EK_ComplexElement: 6385 return {nullptr, LK_FullExpression}; 6386 6387 case InitializedEntity::EK_Exception: 6388 // FIXME: Can we diagnose lifetime problems with exceptions? 6389 return {nullptr, LK_FullExpression}; 6390 } 6391 llvm_unreachable("unknown entity kind"); 6392 } 6393 6394 namespace { 6395 enum ReferenceKind { 6396 /// Lifetime would be extended by a reference binding to a temporary. 6397 RK_ReferenceBinding, 6398 /// Lifetime would be extended by a std::initializer_list object binding to 6399 /// its backing array. 6400 RK_StdInitializerList, 6401 }; 6402 6403 /// A temporary or local variable. This will be one of: 6404 /// * A MaterializeTemporaryExpr. 6405 /// * A DeclRefExpr whose declaration is a local. 6406 /// * An AddrLabelExpr. 6407 /// * A BlockExpr for a block with captures. 6408 using Local = Expr*; 6409 6410 /// Expressions we stepped over when looking for the local state. Any steps 6411 /// that would inhibit lifetime extension or take us out of subexpressions of 6412 /// the initializer are included. 6413 struct IndirectLocalPathEntry { 6414 enum EntryKind { 6415 DefaultInit, 6416 AddressOf, 6417 VarInit, 6418 LValToRVal, 6419 LifetimeBoundCall, 6420 } Kind; 6421 Expr *E; 6422 const Decl *D = nullptr; 6423 IndirectLocalPathEntry() {} 6424 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6425 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6426 : Kind(K), E(E), D(D) {} 6427 }; 6428 6429 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6430 6431 struct RevertToOldSizeRAII { 6432 IndirectLocalPath &Path; 6433 unsigned OldSize = Path.size(); 6434 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6435 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6436 }; 6437 6438 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6439 ReferenceKind RK)>; 6440 } 6441 6442 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6443 for (auto E : Path) 6444 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6445 return true; 6446 return false; 6447 } 6448 6449 static bool pathContainsInit(IndirectLocalPath &Path) { 6450 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6451 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6452 E.Kind == IndirectLocalPathEntry::VarInit; 6453 }); 6454 } 6455 6456 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6457 Expr *Init, LocalVisitor Visit, 6458 bool RevisitSubinits); 6459 6460 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6461 Expr *Init, ReferenceKind RK, 6462 LocalVisitor Visit); 6463 6464 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6465 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6466 if (!TSI) 6467 return false; 6468 // Don't declare this variable in the second operand of the for-statement; 6469 // GCC miscompiles that by ending its lifetime before evaluating the 6470 // third operand. See gcc.gnu.org/PR86769. 6471 AttributedTypeLoc ATL; 6472 for (TypeLoc TL = TSI->getTypeLoc(); 6473 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6474 TL = ATL.getModifiedLoc()) { 6475 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6476 return true; 6477 } 6478 return false; 6479 } 6480 6481 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6482 LocalVisitor Visit) { 6483 const FunctionDecl *Callee; 6484 ArrayRef<Expr*> Args; 6485 6486 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6487 Callee = CE->getDirectCallee(); 6488 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6489 } else { 6490 auto *CCE = cast<CXXConstructExpr>(Call); 6491 Callee = CCE->getConstructor(); 6492 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6493 } 6494 if (!Callee) 6495 return; 6496 6497 Expr *ObjectArg = nullptr; 6498 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6499 ObjectArg = Args[0]; 6500 Args = Args.slice(1); 6501 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6502 ObjectArg = MCE->getImplicitObjectArgument(); 6503 } 6504 6505 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6506 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6507 if (Arg->isGLValue()) 6508 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6509 Visit); 6510 else 6511 visitLocalsRetainedByInitializer(Path, Arg, Visit, true); 6512 Path.pop_back(); 6513 }; 6514 6515 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6516 VisitLifetimeBoundArg(Callee, ObjectArg); 6517 6518 for (unsigned I = 0, 6519 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6520 I != N; ++I) { 6521 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6522 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6523 } 6524 } 6525 6526 /// Visit the locals that would be reachable through a reference bound to the 6527 /// glvalue expression \c Init. 6528 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6529 Expr *Init, ReferenceKind RK, 6530 LocalVisitor Visit) { 6531 RevertToOldSizeRAII RAII(Path); 6532 6533 // Walk past any constructs which we can lifetime-extend across. 6534 Expr *Old; 6535 do { 6536 Old = Init; 6537 6538 if (auto *FE = dyn_cast<FullExpr>(Init)) 6539 Init = FE->getSubExpr(); 6540 6541 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6542 // If this is just redundant braces around an initializer, step over it. 6543 if (ILE->isTransparent()) 6544 Init = ILE->getInit(0); 6545 } 6546 6547 // Step over any subobject adjustments; we may have a materialized 6548 // temporary inside them. 6549 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6550 6551 // Per current approach for DR1376, look through casts to reference type 6552 // when performing lifetime extension. 6553 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6554 if (CE->getSubExpr()->isGLValue()) 6555 Init = CE->getSubExpr(); 6556 6557 // Per the current approach for DR1299, look through array element access 6558 // on array glvalues when performing lifetime extension. 6559 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6560 Init = ASE->getBase(); 6561 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6562 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6563 Init = ICE->getSubExpr(); 6564 else 6565 // We can't lifetime extend through this but we might still find some 6566 // retained temporaries. 6567 return visitLocalsRetainedByInitializer(Path, Init, Visit, true); 6568 } 6569 6570 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6571 // constructor inherits one as an implicit mem-initializer. 6572 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6573 Path.push_back( 6574 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6575 Init = DIE->getExpr(); 6576 } 6577 } while (Init != Old); 6578 6579 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6580 if (Visit(Path, Local(MTE), RK)) 6581 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit, 6582 true); 6583 } 6584 6585 if (isa<CallExpr>(Init)) 6586 return visitLifetimeBoundArguments(Path, Init, Visit); 6587 6588 switch (Init->getStmtClass()) { 6589 case Stmt::DeclRefExprClass: { 6590 // If we find the name of a local non-reference parameter, we could have a 6591 // lifetime problem. 6592 auto *DRE = cast<DeclRefExpr>(Init); 6593 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6594 if (VD && VD->hasLocalStorage() && 6595 !DRE->refersToEnclosingVariableOrCapture()) { 6596 if (!VD->getType()->isReferenceType()) { 6597 Visit(Path, Local(DRE), RK); 6598 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6599 // The lifetime of a reference parameter is unknown; assume it's OK 6600 // for now. 6601 break; 6602 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6603 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6604 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6605 RK_ReferenceBinding, Visit); 6606 } 6607 } 6608 break; 6609 } 6610 6611 case Stmt::UnaryOperatorClass: { 6612 // The only unary operator that make sense to handle here 6613 // is Deref. All others don't resolve to a "name." This includes 6614 // handling all sorts of rvalues passed to a unary operator. 6615 const UnaryOperator *U = cast<UnaryOperator>(Init); 6616 if (U->getOpcode() == UO_Deref) 6617 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); 6618 break; 6619 } 6620 6621 case Stmt::OMPArraySectionExprClass: { 6622 visitLocalsRetainedByInitializer( 6623 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true); 6624 break; 6625 } 6626 6627 case Stmt::ConditionalOperatorClass: 6628 case Stmt::BinaryConditionalOperatorClass: { 6629 auto *C = cast<AbstractConditionalOperator>(Init); 6630 if (!C->getTrueExpr()->getType()->isVoidType()) 6631 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); 6632 if (!C->getFalseExpr()->getType()->isVoidType()) 6633 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); 6634 break; 6635 } 6636 6637 // FIXME: Visit the left-hand side of an -> or ->*. 6638 6639 default: 6640 break; 6641 } 6642 } 6643 6644 /// Visit the locals that would be reachable through an object initialized by 6645 /// the prvalue expression \c Init. 6646 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6647 Expr *Init, LocalVisitor Visit, 6648 bool RevisitSubinits) { 6649 RevertToOldSizeRAII RAII(Path); 6650 6651 Expr *Old; 6652 do { 6653 Old = Init; 6654 6655 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6656 // constructor inherits one as an implicit mem-initializer. 6657 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6658 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6659 Init = DIE->getExpr(); 6660 } 6661 6662 if (auto *FE = dyn_cast<FullExpr>(Init)) 6663 Init = FE->getSubExpr(); 6664 6665 // Dig out the expression which constructs the extended temporary. 6666 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6667 6668 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 6669 Init = BTE->getSubExpr(); 6670 6671 Init = Init->IgnoreParens(); 6672 6673 // Step over value-preserving rvalue casts. 6674 if (auto *CE = dyn_cast<CastExpr>(Init)) { 6675 switch (CE->getCastKind()) { 6676 case CK_LValueToRValue: 6677 // If we can match the lvalue to a const object, we can look at its 6678 // initializer. 6679 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 6680 return visitLocalsRetainedByReferenceBinding( 6681 Path, Init, RK_ReferenceBinding, 6682 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 6683 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 6684 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6685 if (VD && VD->getType().isConstQualified() && VD->getInit() && 6686 !isVarOnPath(Path, VD)) { 6687 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6688 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true); 6689 } 6690 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 6691 if (MTE->getType().isConstQualified()) 6692 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), 6693 Visit, true); 6694 } 6695 return false; 6696 }); 6697 6698 // We assume that objects can be retained by pointers cast to integers, 6699 // but not if the integer is cast to floating-point type or to _Complex. 6700 // We assume that casts to 'bool' do not preserve enough information to 6701 // retain a local object. 6702 case CK_NoOp: 6703 case CK_BitCast: 6704 case CK_BaseToDerived: 6705 case CK_DerivedToBase: 6706 case CK_UncheckedDerivedToBase: 6707 case CK_Dynamic: 6708 case CK_ToUnion: 6709 case CK_UserDefinedConversion: 6710 case CK_ConstructorConversion: 6711 case CK_IntegralToPointer: 6712 case CK_PointerToIntegral: 6713 case CK_VectorSplat: 6714 case CK_IntegralCast: 6715 case CK_CPointerToObjCPointerCast: 6716 case CK_BlockPointerToObjCPointerCast: 6717 case CK_AnyPointerToBlockPointerCast: 6718 case CK_AddressSpaceConversion: 6719 break; 6720 6721 case CK_ArrayToPointerDecay: 6722 // Model array-to-pointer decay as taking the address of the array 6723 // lvalue. 6724 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 6725 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 6726 RK_ReferenceBinding, Visit); 6727 6728 default: 6729 return; 6730 } 6731 6732 Init = CE->getSubExpr(); 6733 } 6734 } while (Old != Init); 6735 6736 // C++17 [dcl.init.list]p6: 6737 // initializing an initializer_list object from the array extends the 6738 // lifetime of the array exactly like binding a reference to a temporary. 6739 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 6740 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 6741 RK_StdInitializerList, Visit); 6742 6743 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6744 // We already visited the elements of this initializer list while 6745 // performing the initialization. Don't visit them again unless we've 6746 // changed the lifetime of the initialized entity. 6747 if (!RevisitSubinits) 6748 return; 6749 6750 if (ILE->isTransparent()) 6751 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 6752 RevisitSubinits); 6753 6754 if (ILE->getType()->isArrayType()) { 6755 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 6756 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 6757 RevisitSubinits); 6758 return; 6759 } 6760 6761 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 6762 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 6763 6764 // If we lifetime-extend a braced initializer which is initializing an 6765 // aggregate, and that aggregate contains reference members which are 6766 // bound to temporaries, those temporaries are also lifetime-extended. 6767 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 6768 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 6769 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 6770 RK_ReferenceBinding, Visit); 6771 else { 6772 unsigned Index = 0; 6773 for (const auto *I : RD->fields()) { 6774 if (Index >= ILE->getNumInits()) 6775 break; 6776 if (I->isUnnamedBitfield()) 6777 continue; 6778 Expr *SubInit = ILE->getInit(Index); 6779 if (I->getType()->isReferenceType()) 6780 visitLocalsRetainedByReferenceBinding(Path, SubInit, 6781 RK_ReferenceBinding, Visit); 6782 else 6783 // This might be either aggregate-initialization of a member or 6784 // initialization of a std::initializer_list object. Regardless, 6785 // we should recursively lifetime-extend that initializer. 6786 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 6787 RevisitSubinits); 6788 ++Index; 6789 } 6790 } 6791 } 6792 return; 6793 } 6794 6795 // The lifetime of an init-capture is that of the closure object constructed 6796 // by a lambda-expression. 6797 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 6798 for (Expr *E : LE->capture_inits()) { 6799 if (!E) 6800 continue; 6801 if (E->isGLValue()) 6802 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 6803 Visit); 6804 else 6805 visitLocalsRetainedByInitializer(Path, E, Visit, true); 6806 } 6807 } 6808 6809 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) 6810 return visitLifetimeBoundArguments(Path, Init, Visit); 6811 6812 switch (Init->getStmtClass()) { 6813 case Stmt::UnaryOperatorClass: { 6814 auto *UO = cast<UnaryOperator>(Init); 6815 // If the initializer is the address of a local, we could have a lifetime 6816 // problem. 6817 if (UO->getOpcode() == UO_AddrOf) { 6818 // If this is &rvalue, then it's ill-formed and we have already diagnosed 6819 // it. Don't produce a redundant warning about the lifetime of the 6820 // temporary. 6821 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 6822 return; 6823 6824 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 6825 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 6826 RK_ReferenceBinding, Visit); 6827 } 6828 break; 6829 } 6830 6831 case Stmt::BinaryOperatorClass: { 6832 // Handle pointer arithmetic. 6833 auto *BO = cast<BinaryOperator>(Init); 6834 BinaryOperatorKind BOK = BO->getOpcode(); 6835 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 6836 break; 6837 6838 if (BO->getLHS()->getType()->isPointerType()) 6839 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); 6840 else if (BO->getRHS()->getType()->isPointerType()) 6841 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); 6842 break; 6843 } 6844 6845 case Stmt::ConditionalOperatorClass: 6846 case Stmt::BinaryConditionalOperatorClass: { 6847 auto *C = cast<AbstractConditionalOperator>(Init); 6848 // In C++, we can have a throw-expression operand, which has 'void' type 6849 // and isn't interesting from a lifetime perspective. 6850 if (!C->getTrueExpr()->getType()->isVoidType()) 6851 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); 6852 if (!C->getFalseExpr()->getType()->isVoidType()) 6853 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); 6854 break; 6855 } 6856 6857 case Stmt::BlockExprClass: 6858 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 6859 // This is a local block, whose lifetime is that of the function. 6860 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 6861 } 6862 break; 6863 6864 case Stmt::AddrLabelExprClass: 6865 // We want to warn if the address of a label would escape the function. 6866 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 6867 break; 6868 6869 default: 6870 break; 6871 } 6872 } 6873 6874 /// Determine whether this is an indirect path to a temporary that we are 6875 /// supposed to lifetime-extend along (but don't). 6876 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 6877 for (auto Elem : Path) { 6878 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 6879 return false; 6880 } 6881 return true; 6882 } 6883 6884 /// Find the range for the first interesting entry in the path at or after I. 6885 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 6886 Expr *E) { 6887 for (unsigned N = Path.size(); I != N; ++I) { 6888 switch (Path[I].Kind) { 6889 case IndirectLocalPathEntry::AddressOf: 6890 case IndirectLocalPathEntry::LValToRVal: 6891 case IndirectLocalPathEntry::LifetimeBoundCall: 6892 // These exist primarily to mark the path as not permitting or 6893 // supporting lifetime extension. 6894 break; 6895 6896 case IndirectLocalPathEntry::DefaultInit: 6897 case IndirectLocalPathEntry::VarInit: 6898 return Path[I].E->getSourceRange(); 6899 } 6900 } 6901 return E->getSourceRange(); 6902 } 6903 6904 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 6905 Expr *Init) { 6906 LifetimeResult LR = getEntityLifetime(&Entity); 6907 LifetimeKind LK = LR.getInt(); 6908 const InitializedEntity *ExtendingEntity = LR.getPointer(); 6909 6910 // If this entity doesn't have an interesting lifetime, don't bother looking 6911 // for temporaries within its initializer. 6912 if (LK == LK_FullExpression) 6913 return; 6914 6915 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 6916 ReferenceKind RK) -> bool { 6917 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 6918 SourceLocation DiagLoc = DiagRange.getBegin(); 6919 6920 switch (LK) { 6921 case LK_FullExpression: 6922 llvm_unreachable("already handled this"); 6923 6924 case LK_Extended: { 6925 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 6926 if (!MTE) { 6927 // The initialized entity has lifetime beyond the full-expression, 6928 // and the local entity does too, so don't warn. 6929 // 6930 // FIXME: We should consider warning if a static / thread storage 6931 // duration variable retains an automatic storage duration local. 6932 return false; 6933 } 6934 6935 // Lifetime-extend the temporary. 6936 if (Path.empty()) { 6937 // Update the storage duration of the materialized temporary. 6938 // FIXME: Rebuild the expression instead of mutating it. 6939 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 6940 ExtendingEntity->allocateManglingNumber()); 6941 // Also visit the temporaries lifetime-extended by this initializer. 6942 return true; 6943 } 6944 6945 if (shouldLifetimeExtendThroughPath(Path)) { 6946 // We're supposed to lifetime-extend the temporary along this path (per 6947 // the resolution of DR1815), but we don't support that yet. 6948 // 6949 // FIXME: Properly handle this situation. Perhaps the easiest approach 6950 // would be to clone the initializer expression on each use that would 6951 // lifetime extend its temporaries. 6952 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 6953 << RK << DiagRange; 6954 } else { 6955 // If the path goes through the initialization of a variable or field, 6956 // it can't possibly reach a temporary created in this full-expression. 6957 // We will have already diagnosed any problems with the initializer. 6958 if (pathContainsInit(Path)) 6959 return false; 6960 6961 Diag(DiagLoc, diag::warn_dangling_variable) 6962 << RK << !Entity.getParent() 6963 << ExtendingEntity->getDecl()->isImplicit() 6964 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 6965 } 6966 break; 6967 } 6968 6969 case LK_MemInitializer: { 6970 if (isa<MaterializeTemporaryExpr>(L)) { 6971 // Under C++ DR1696, if a mem-initializer (or a default member 6972 // initializer used by the absence of one) would lifetime-extend a 6973 // temporary, the program is ill-formed. 6974 if (auto *ExtendingDecl = 6975 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 6976 bool IsSubobjectMember = ExtendingEntity != &Entity; 6977 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 6978 ? diag::err_dangling_member 6979 : diag::warn_dangling_member) 6980 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 6981 // Don't bother adding a note pointing to the field if we're inside 6982 // its default member initializer; our primary diagnostic points to 6983 // the same place in that case. 6984 if (Path.empty() || 6985 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 6986 Diag(ExtendingDecl->getLocation(), 6987 diag::note_lifetime_extending_member_declared_here) 6988 << RK << IsSubobjectMember; 6989 } 6990 } else { 6991 // We have a mem-initializer but no particular field within it; this 6992 // is either a base class or a delegating initializer directly 6993 // initializing the base-class from something that doesn't live long 6994 // enough. 6995 // 6996 // FIXME: Warn on this. 6997 return false; 6998 } 6999 } else { 7000 // Paths via a default initializer can only occur during error recovery 7001 // (there's no other way that a default initializer can refer to a 7002 // local). Don't produce a bogus warning on those cases. 7003 if (pathContainsInit(Path)) 7004 return false; 7005 7006 auto *DRE = dyn_cast<DeclRefExpr>(L); 7007 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7008 if (!VD) { 7009 // A member was initialized to a local block. 7010 // FIXME: Warn on this. 7011 return false; 7012 } 7013 7014 if (auto *Member = 7015 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7016 bool IsPointer = Member->getType()->isAnyPointerType(); 7017 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7018 : diag::warn_bind_ref_member_to_parameter) 7019 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7020 Diag(Member->getLocation(), 7021 diag::note_ref_or_ptr_member_declared_here) 7022 << (unsigned)IsPointer; 7023 } 7024 } 7025 break; 7026 } 7027 7028 case LK_New: 7029 if (isa<MaterializeTemporaryExpr>(L)) { 7030 Diag(DiagLoc, RK == RK_ReferenceBinding 7031 ? diag::warn_new_dangling_reference 7032 : diag::warn_new_dangling_initializer_list) 7033 << !Entity.getParent() << DiagRange; 7034 } else { 7035 // We can't determine if the allocation outlives the local declaration. 7036 return false; 7037 } 7038 break; 7039 7040 case LK_Return: 7041 case LK_StmtExprResult: 7042 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7043 // We can't determine if the local variable outlives the statement 7044 // expression. 7045 if (LK == LK_StmtExprResult) 7046 return false; 7047 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7048 << Entity.getType()->isReferenceType() << DRE->getDecl() 7049 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7050 } else if (isa<BlockExpr>(L)) { 7051 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7052 } else if (isa<AddrLabelExpr>(L)) { 7053 // Don't warn when returning a label from a statement expression. 7054 // Leaving the scope doesn't end its lifetime. 7055 if (LK == LK_StmtExprResult) 7056 return false; 7057 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7058 } else { 7059 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7060 << Entity.getType()->isReferenceType() << DiagRange; 7061 } 7062 break; 7063 } 7064 7065 for (unsigned I = 0; I != Path.size(); ++I) { 7066 auto Elem = Path[I]; 7067 7068 switch (Elem.Kind) { 7069 case IndirectLocalPathEntry::AddressOf: 7070 case IndirectLocalPathEntry::LValToRVal: 7071 // These exist primarily to mark the path as not permitting or 7072 // supporting lifetime extension. 7073 break; 7074 7075 case IndirectLocalPathEntry::LifetimeBoundCall: 7076 // FIXME: Consider adding a note for this. 7077 break; 7078 7079 case IndirectLocalPathEntry::DefaultInit: { 7080 auto *FD = cast<FieldDecl>(Elem.D); 7081 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7082 << FD << nextPathEntryRange(Path, I + 1, L); 7083 break; 7084 } 7085 7086 case IndirectLocalPathEntry::VarInit: 7087 const VarDecl *VD = cast<VarDecl>(Elem.D); 7088 Diag(VD->getLocation(), diag::note_local_var_initializer) 7089 << VD->getType()->isReferenceType() 7090 << VD->isImplicit() << VD->getDeclName() 7091 << nextPathEntryRange(Path, I + 1, L); 7092 break; 7093 } 7094 } 7095 7096 // We didn't lifetime-extend, so don't go any further; we don't need more 7097 // warnings or errors on inner temporaries within this one's initializer. 7098 return false; 7099 }; 7100 7101 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7102 if (Init->isGLValue()) 7103 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7104 TemporaryVisitor); 7105 else 7106 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false); 7107 } 7108 7109 static void DiagnoseNarrowingInInitList(Sema &S, 7110 const ImplicitConversionSequence &ICS, 7111 QualType PreNarrowingType, 7112 QualType EntityType, 7113 const Expr *PostInit); 7114 7115 /// Provide warnings when std::move is used on construction. 7116 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7117 bool IsReturnStmt) { 7118 if (!InitExpr) 7119 return; 7120 7121 if (S.inTemplateInstantiation()) 7122 return; 7123 7124 QualType DestType = InitExpr->getType(); 7125 if (!DestType->isRecordType()) 7126 return; 7127 7128 unsigned DiagID = 0; 7129 if (IsReturnStmt) { 7130 const CXXConstructExpr *CCE = 7131 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7132 if (!CCE || CCE->getNumArgs() != 1) 7133 return; 7134 7135 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7136 return; 7137 7138 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7139 } 7140 7141 // Find the std::move call and get the argument. 7142 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7143 if (!CE || !CE->isCallToStdMove()) 7144 return; 7145 7146 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7147 7148 if (IsReturnStmt) { 7149 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7150 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7151 return; 7152 7153 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7154 if (!VD || !VD->hasLocalStorage()) 7155 return; 7156 7157 // __block variables are not moved implicitly. 7158 if (VD->hasAttr<BlocksAttr>()) 7159 return; 7160 7161 QualType SourceType = VD->getType(); 7162 if (!SourceType->isRecordType()) 7163 return; 7164 7165 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7166 return; 7167 } 7168 7169 // If we're returning a function parameter, copy elision 7170 // is not possible. 7171 if (isa<ParmVarDecl>(VD)) 7172 DiagID = diag::warn_redundant_move_on_return; 7173 else 7174 DiagID = diag::warn_pessimizing_move_on_return; 7175 } else { 7176 DiagID = diag::warn_pessimizing_move_on_initialization; 7177 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7178 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7179 return; 7180 } 7181 7182 S.Diag(CE->getBeginLoc(), DiagID); 7183 7184 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7185 // is within a macro. 7186 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7187 if (CallBegin.isMacroID()) 7188 return; 7189 SourceLocation RParen = CE->getRParenLoc(); 7190 if (RParen.isMacroID()) 7191 return; 7192 SourceLocation LParen; 7193 SourceLocation ArgLoc = Arg->getBeginLoc(); 7194 7195 // Special testing for the argument location. Since the fix-it needs the 7196 // location right before the argument, the argument location can be in a 7197 // macro only if it is at the beginning of the macro. 7198 while (ArgLoc.isMacroID() && 7199 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7200 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7201 } 7202 7203 if (LParen.isMacroID()) 7204 return; 7205 7206 LParen = ArgLoc.getLocWithOffset(-1); 7207 7208 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7209 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7210 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7211 } 7212 7213 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7214 // Check to see if we are dereferencing a null pointer. If so, this is 7215 // undefined behavior, so warn about it. This only handles the pattern 7216 // "*null", which is a very syntactic check. 7217 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7218 if (UO->getOpcode() == UO_Deref && 7219 UO->getSubExpr()->IgnoreParenCasts()-> 7220 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7221 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7222 S.PDiag(diag::warn_binding_null_to_reference) 7223 << UO->getSubExpr()->getSourceRange()); 7224 } 7225 } 7226 7227 MaterializeTemporaryExpr * 7228 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7229 bool BoundToLvalueReference) { 7230 auto MTE = new (Context) 7231 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7232 7233 // Order an ExprWithCleanups for lifetime marks. 7234 // 7235 // TODO: It'll be good to have a single place to check the access of the 7236 // destructor and generate ExprWithCleanups for various uses. Currently these 7237 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7238 // but there may be a chance to merge them. 7239 Cleanup.setExprNeedsCleanups(false); 7240 return MTE; 7241 } 7242 7243 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7244 // In C++98, we don't want to implicitly create an xvalue. 7245 // FIXME: This means that AST consumers need to deal with "prvalues" that 7246 // denote materialized temporaries. Maybe we should add another ValueKind 7247 // for "xvalue pretending to be a prvalue" for C++98 support. 7248 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7249 return E; 7250 7251 // C++1z [conv.rval]/1: T shall be a complete type. 7252 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7253 // If so, we should check for a non-abstract class type here too. 7254 QualType T = E->getType(); 7255 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7256 return ExprError(); 7257 7258 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7259 } 7260 7261 ExprResult 7262 InitializationSequence::Perform(Sema &S, 7263 const InitializedEntity &Entity, 7264 const InitializationKind &Kind, 7265 MultiExprArg Args, 7266 QualType *ResultType) { 7267 if (Failed()) { 7268 Diagnose(S, Entity, Kind, Args); 7269 return ExprError(); 7270 } 7271 if (!ZeroInitializationFixit.empty()) { 7272 unsigned DiagID = diag::err_default_init_const; 7273 if (Decl *D = Entity.getDecl()) 7274 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7275 DiagID = diag::ext_default_init_const; 7276 7277 // The initialization would have succeeded with this fixit. Since the fixit 7278 // is on the error, we need to build a valid AST in this case, so this isn't 7279 // handled in the Failed() branch above. 7280 QualType DestType = Entity.getType(); 7281 S.Diag(Kind.getLocation(), DiagID) 7282 << DestType << (bool)DestType->getAs<RecordType>() 7283 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7284 ZeroInitializationFixit); 7285 } 7286 7287 if (getKind() == DependentSequence) { 7288 // If the declaration is a non-dependent, incomplete array type 7289 // that has an initializer, then its type will be completed once 7290 // the initializer is instantiated. 7291 if (ResultType && !Entity.getType()->isDependentType() && 7292 Args.size() == 1) { 7293 QualType DeclType = Entity.getType(); 7294 if (const IncompleteArrayType *ArrayT 7295 = S.Context.getAsIncompleteArrayType(DeclType)) { 7296 // FIXME: We don't currently have the ability to accurately 7297 // compute the length of an initializer list without 7298 // performing full type-checking of the initializer list 7299 // (since we have to determine where braces are implicitly 7300 // introduced and such). So, we fall back to making the array 7301 // type a dependently-sized array type with no specified 7302 // bound. 7303 if (isa<InitListExpr>((Expr *)Args[0])) { 7304 SourceRange Brackets; 7305 7306 // Scavange the location of the brackets from the entity, if we can. 7307 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7308 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7309 TypeLoc TL = TInfo->getTypeLoc(); 7310 if (IncompleteArrayTypeLoc ArrayLoc = 7311 TL.getAs<IncompleteArrayTypeLoc>()) 7312 Brackets = ArrayLoc.getBracketsRange(); 7313 } 7314 } 7315 7316 *ResultType 7317 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7318 /*NumElts=*/nullptr, 7319 ArrayT->getSizeModifier(), 7320 ArrayT->getIndexTypeCVRQualifiers(), 7321 Brackets); 7322 } 7323 7324 } 7325 } 7326 if (Kind.getKind() == InitializationKind::IK_Direct && 7327 !Kind.isExplicitCast()) { 7328 // Rebuild the ParenListExpr. 7329 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7330 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7331 Args); 7332 } 7333 assert(Kind.getKind() == InitializationKind::IK_Copy || 7334 Kind.isExplicitCast() || 7335 Kind.getKind() == InitializationKind::IK_DirectList); 7336 return ExprResult(Args[0]); 7337 } 7338 7339 // No steps means no initialization. 7340 if (Steps.empty()) 7341 return ExprResult((Expr *)nullptr); 7342 7343 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7344 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7345 !Entity.isParameterKind()) { 7346 // Produce a C++98 compatibility warning if we are initializing a reference 7347 // from an initializer list. For parameters, we produce a better warning 7348 // elsewhere. 7349 Expr *Init = Args[0]; 7350 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7351 << Init->getSourceRange(); 7352 } 7353 7354 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7355 QualType ETy = Entity.getType(); 7356 Qualifiers TyQualifiers = ETy.getQualifiers(); 7357 bool HasGlobalAS = TyQualifiers.hasAddressSpace() && 7358 TyQualifiers.getAddressSpace() == LangAS::opencl_global; 7359 7360 if (S.getLangOpts().OpenCLVersion >= 200 && 7361 ETy->isAtomicType() && !HasGlobalAS && 7362 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7363 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7364 << 1 7365 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7366 return ExprError(); 7367 } 7368 7369 QualType DestType = Entity.getType().getNonReferenceType(); 7370 // FIXME: Ugly hack around the fact that Entity.getType() is not 7371 // the same as Entity.getDecl()->getType() in cases involving type merging, 7372 // and we want latter when it makes sense. 7373 if (ResultType) 7374 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7375 Entity.getType(); 7376 7377 ExprResult CurInit((Expr *)nullptr); 7378 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7379 7380 // For initialization steps that start with a single initializer, 7381 // grab the only argument out the Args and place it into the "current" 7382 // initializer. 7383 switch (Steps.front().Kind) { 7384 case SK_ResolveAddressOfOverloadedFunction: 7385 case SK_CastDerivedToBaseRValue: 7386 case SK_CastDerivedToBaseXValue: 7387 case SK_CastDerivedToBaseLValue: 7388 case SK_BindReference: 7389 case SK_BindReferenceToTemporary: 7390 case SK_FinalCopy: 7391 case SK_ExtraneousCopyToTemporary: 7392 case SK_UserConversion: 7393 case SK_QualificationConversionLValue: 7394 case SK_QualificationConversionXValue: 7395 case SK_QualificationConversionRValue: 7396 case SK_AtomicConversion: 7397 case SK_LValueToRValue: 7398 case SK_ConversionSequence: 7399 case SK_ConversionSequenceNoNarrowing: 7400 case SK_ListInitialization: 7401 case SK_UnwrapInitList: 7402 case SK_RewrapInitList: 7403 case SK_CAssignment: 7404 case SK_StringInit: 7405 case SK_ObjCObjectConversion: 7406 case SK_ArrayLoopIndex: 7407 case SK_ArrayLoopInit: 7408 case SK_ArrayInit: 7409 case SK_GNUArrayInit: 7410 case SK_ParenthesizedArrayInit: 7411 case SK_PassByIndirectCopyRestore: 7412 case SK_PassByIndirectRestore: 7413 case SK_ProduceObjCObject: 7414 case SK_StdInitializerList: 7415 case SK_OCLSamplerInit: 7416 case SK_OCLZeroOpaqueType: { 7417 assert(Args.size() == 1); 7418 CurInit = Args[0]; 7419 if (!CurInit.get()) return ExprError(); 7420 break; 7421 } 7422 7423 case SK_ConstructorInitialization: 7424 case SK_ConstructorInitializationFromList: 7425 case SK_StdInitializerListConstructorCall: 7426 case SK_ZeroInitialization: 7427 break; 7428 } 7429 7430 // Promote from an unevaluated context to an unevaluated list context in 7431 // C++11 list-initialization; we need to instantiate entities usable in 7432 // constant expressions here in order to perform narrowing checks =( 7433 EnterExpressionEvaluationContext Evaluated( 7434 S, EnterExpressionEvaluationContext::InitList, 7435 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7436 7437 // C++ [class.abstract]p2: 7438 // no objects of an abstract class can be created except as subobjects 7439 // of a class derived from it 7440 auto checkAbstractType = [&](QualType T) -> bool { 7441 if (Entity.getKind() == InitializedEntity::EK_Base || 7442 Entity.getKind() == InitializedEntity::EK_Delegating) 7443 return false; 7444 return S.RequireNonAbstractType(Kind.getLocation(), T, 7445 diag::err_allocation_of_abstract_type); 7446 }; 7447 7448 // Walk through the computed steps for the initialization sequence, 7449 // performing the specified conversions along the way. 7450 bool ConstructorInitRequiresZeroInit = false; 7451 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7452 Step != StepEnd; ++Step) { 7453 if (CurInit.isInvalid()) 7454 return ExprError(); 7455 7456 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7457 7458 switch (Step->Kind) { 7459 case SK_ResolveAddressOfOverloadedFunction: 7460 // Overload resolution determined which function invoke; update the 7461 // initializer to reflect that choice. 7462 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7463 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7464 return ExprError(); 7465 CurInit = S.FixOverloadedFunctionReference(CurInit, 7466 Step->Function.FoundDecl, 7467 Step->Function.Function); 7468 break; 7469 7470 case SK_CastDerivedToBaseRValue: 7471 case SK_CastDerivedToBaseXValue: 7472 case SK_CastDerivedToBaseLValue: { 7473 // We have a derived-to-base cast that produces either an rvalue or an 7474 // lvalue. Perform that cast. 7475 7476 CXXCastPath BasePath; 7477 7478 // Casts to inaccessible base classes are allowed with C-style casts. 7479 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7480 if (S.CheckDerivedToBaseConversion( 7481 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7482 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7483 return ExprError(); 7484 7485 ExprValueKind VK = 7486 Step->Kind == SK_CastDerivedToBaseLValue ? 7487 VK_LValue : 7488 (Step->Kind == SK_CastDerivedToBaseXValue ? 7489 VK_XValue : 7490 VK_RValue); 7491 CurInit = 7492 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7493 CurInit.get(), &BasePath, VK); 7494 break; 7495 } 7496 7497 case SK_BindReference: 7498 // Reference binding does not have any corresponding ASTs. 7499 7500 // Check exception specifications 7501 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7502 return ExprError(); 7503 7504 // We don't check for e.g. function pointers here, since address 7505 // availability checks should only occur when the function first decays 7506 // into a pointer or reference. 7507 if (CurInit.get()->getType()->isFunctionProtoType()) { 7508 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7509 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7510 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7511 DRE->getBeginLoc())) 7512 return ExprError(); 7513 } 7514 } 7515 } 7516 7517 CheckForNullPointerDereference(S, CurInit.get()); 7518 break; 7519 7520 case SK_BindReferenceToTemporary: { 7521 // Make sure the "temporary" is actually an rvalue. 7522 assert(CurInit.get()->isRValue() && "not a temporary"); 7523 7524 // Check exception specifications 7525 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7526 return ExprError(); 7527 7528 // Materialize the temporary into memory. 7529 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 7530 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 7531 CurInit = MTE; 7532 7533 // If we're extending this temporary to automatic storage duration -- we 7534 // need to register its cleanup during the full-expression's cleanups. 7535 if (MTE->getStorageDuration() == SD_Automatic && 7536 MTE->getType().isDestructedType()) 7537 S.Cleanup.setExprNeedsCleanups(true); 7538 break; 7539 } 7540 7541 case SK_FinalCopy: 7542 if (checkAbstractType(Step->Type)) 7543 return ExprError(); 7544 7545 // If the overall initialization is initializing a temporary, we already 7546 // bound our argument if it was necessary to do so. If not (if we're 7547 // ultimately initializing a non-temporary), our argument needs to be 7548 // bound since it's initializing a function parameter. 7549 // FIXME: This is a mess. Rationalize temporary destruction. 7550 if (!shouldBindAsTemporary(Entity)) 7551 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7552 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7553 /*IsExtraneousCopy=*/false); 7554 break; 7555 7556 case SK_ExtraneousCopyToTemporary: 7557 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7558 /*IsExtraneousCopy=*/true); 7559 break; 7560 7561 case SK_UserConversion: { 7562 // We have a user-defined conversion that invokes either a constructor 7563 // or a conversion function. 7564 CastKind CastKind; 7565 FunctionDecl *Fn = Step->Function.Function; 7566 DeclAccessPair FoundFn = Step->Function.FoundDecl; 7567 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 7568 bool CreatedObject = false; 7569 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 7570 // Build a call to the selected constructor. 7571 SmallVector<Expr*, 8> ConstructorArgs; 7572 SourceLocation Loc = CurInit.get()->getBeginLoc(); 7573 7574 // Determine the arguments required to actually perform the constructor 7575 // call. 7576 Expr *Arg = CurInit.get(); 7577 if (S.CompleteConstructorCall(Constructor, 7578 MultiExprArg(&Arg, 1), 7579 Loc, ConstructorArgs)) 7580 return ExprError(); 7581 7582 // Build an expression that constructs a temporary. 7583 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 7584 FoundFn, Constructor, 7585 ConstructorArgs, 7586 HadMultipleCandidates, 7587 /*ListInit*/ false, 7588 /*StdInitListInit*/ false, 7589 /*ZeroInit*/ false, 7590 CXXConstructExpr::CK_Complete, 7591 SourceRange()); 7592 if (CurInit.isInvalid()) 7593 return ExprError(); 7594 7595 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 7596 Entity); 7597 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7598 return ExprError(); 7599 7600 CastKind = CK_ConstructorConversion; 7601 CreatedObject = true; 7602 } else { 7603 // Build a call to the conversion function. 7604 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 7605 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 7606 FoundFn); 7607 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7608 return ExprError(); 7609 7610 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 7611 HadMultipleCandidates); 7612 if (CurInit.isInvalid()) 7613 return ExprError(); 7614 7615 CastKind = CK_UserDefinedConversion; 7616 CreatedObject = Conversion->getReturnType()->isRecordType(); 7617 } 7618 7619 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 7620 return ExprError(); 7621 7622 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 7623 CastKind, CurInit.get(), nullptr, 7624 CurInit.get()->getValueKind()); 7625 7626 if (shouldBindAsTemporary(Entity)) 7627 // The overall entity is temporary, so this expression should be 7628 // destroyed at the end of its full-expression. 7629 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 7630 else if (CreatedObject && shouldDestroyEntity(Entity)) { 7631 // The object outlasts the full-expression, but we need to prepare for 7632 // a destructor being run on it. 7633 // FIXME: It makes no sense to do this here. This should happen 7634 // regardless of how we initialized the entity. 7635 QualType T = CurInit.get()->getType(); 7636 if (const RecordType *Record = T->getAs<RecordType>()) { 7637 CXXDestructorDecl *Destructor 7638 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 7639 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 7640 S.PDiag(diag::err_access_dtor_temp) << T); 7641 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 7642 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 7643 return ExprError(); 7644 } 7645 } 7646 break; 7647 } 7648 7649 case SK_QualificationConversionLValue: 7650 case SK_QualificationConversionXValue: 7651 case SK_QualificationConversionRValue: { 7652 // Perform a qualification conversion; these can never go wrong. 7653 ExprValueKind VK = 7654 Step->Kind == SK_QualificationConversionLValue ? 7655 VK_LValue : 7656 (Step->Kind == SK_QualificationConversionXValue ? 7657 VK_XValue : 7658 VK_RValue); 7659 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK); 7660 break; 7661 } 7662 7663 case SK_AtomicConversion: { 7664 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 7665 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7666 CK_NonAtomicToAtomic, VK_RValue); 7667 break; 7668 } 7669 7670 case SK_LValueToRValue: { 7671 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 7672 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 7673 CK_LValueToRValue, CurInit.get(), 7674 /*BasePath=*/nullptr, VK_RValue); 7675 break; 7676 } 7677 7678 case SK_ConversionSequence: 7679 case SK_ConversionSequenceNoNarrowing: { 7680 Sema::CheckedConversionKind CCK 7681 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 7682 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 7683 : Kind.isExplicitCast()? Sema::CCK_OtherCast 7684 : Sema::CCK_ImplicitConversion; 7685 ExprResult CurInitExprRes = 7686 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 7687 getAssignmentAction(Entity), CCK); 7688 if (CurInitExprRes.isInvalid()) 7689 return ExprError(); 7690 7691 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 7692 7693 CurInit = CurInitExprRes; 7694 7695 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 7696 S.getLangOpts().CPlusPlus) 7697 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 7698 CurInit.get()); 7699 7700 break; 7701 } 7702 7703 case SK_ListInitialization: { 7704 if (checkAbstractType(Step->Type)) 7705 return ExprError(); 7706 7707 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 7708 // If we're not initializing the top-level entity, we need to create an 7709 // InitializeTemporary entity for our target type. 7710 QualType Ty = Step->Type; 7711 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 7712 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 7713 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 7714 InitListChecker PerformInitList(S, InitEntity, 7715 InitList, Ty, /*VerifyOnly=*/false, 7716 /*TreatUnavailableAsInvalid=*/false); 7717 if (PerformInitList.HadError()) 7718 return ExprError(); 7719 7720 // Hack: We must update *ResultType if available in order to set the 7721 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 7722 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 7723 if (ResultType && 7724 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 7725 if ((*ResultType)->isRValueReferenceType()) 7726 Ty = S.Context.getRValueReferenceType(Ty); 7727 else if ((*ResultType)->isLValueReferenceType()) 7728 Ty = S.Context.getLValueReferenceType(Ty, 7729 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 7730 *ResultType = Ty; 7731 } 7732 7733 InitListExpr *StructuredInitList = 7734 PerformInitList.getFullyStructuredList(); 7735 CurInit.get(); 7736 CurInit = shouldBindAsTemporary(InitEntity) 7737 ? S.MaybeBindToTemporary(StructuredInitList) 7738 : StructuredInitList; 7739 break; 7740 } 7741 7742 case SK_ConstructorInitializationFromList: { 7743 if (checkAbstractType(Step->Type)) 7744 return ExprError(); 7745 7746 // When an initializer list is passed for a parameter of type "reference 7747 // to object", we don't get an EK_Temporary entity, but instead an 7748 // EK_Parameter entity with reference type. 7749 // FIXME: This is a hack. What we really should do is create a user 7750 // conversion step for this case, but this makes it considerably more 7751 // complicated. For now, this will do. 7752 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7753 Entity.getType().getNonReferenceType()); 7754 bool UseTemporary = Entity.getType()->isReferenceType(); 7755 assert(Args.size() == 1 && "expected a single argument for list init"); 7756 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7757 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 7758 << InitList->getSourceRange(); 7759 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 7760 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 7761 Entity, 7762 Kind, Arg, *Step, 7763 ConstructorInitRequiresZeroInit, 7764 /*IsListInitialization*/true, 7765 /*IsStdInitListInit*/false, 7766 InitList->getLBraceLoc(), 7767 InitList->getRBraceLoc()); 7768 break; 7769 } 7770 7771 case SK_UnwrapInitList: 7772 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 7773 break; 7774 7775 case SK_RewrapInitList: { 7776 Expr *E = CurInit.get(); 7777 InitListExpr *Syntactic = Step->WrappingSyntacticList; 7778 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 7779 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 7780 ILE->setSyntacticForm(Syntactic); 7781 ILE->setType(E->getType()); 7782 ILE->setValueKind(E->getValueKind()); 7783 CurInit = ILE; 7784 break; 7785 } 7786 7787 case SK_ConstructorInitialization: 7788 case SK_StdInitializerListConstructorCall: { 7789 if (checkAbstractType(Step->Type)) 7790 return ExprError(); 7791 7792 // When an initializer list is passed for a parameter of type "reference 7793 // to object", we don't get an EK_Temporary entity, but instead an 7794 // EK_Parameter entity with reference type. 7795 // FIXME: This is a hack. What we really should do is create a user 7796 // conversion step for this case, but this makes it considerably more 7797 // complicated. For now, this will do. 7798 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7799 Entity.getType().getNonReferenceType()); 7800 bool UseTemporary = Entity.getType()->isReferenceType(); 7801 bool IsStdInitListInit = 7802 Step->Kind == SK_StdInitializerListConstructorCall; 7803 Expr *Source = CurInit.get(); 7804 SourceRange Range = Kind.hasParenOrBraceRange() 7805 ? Kind.getParenOrBraceRange() 7806 : SourceRange(); 7807 CurInit = PerformConstructorInitialization( 7808 S, UseTemporary ? TempEntity : Entity, Kind, 7809 Source ? MultiExprArg(Source) : Args, *Step, 7810 ConstructorInitRequiresZeroInit, 7811 /*IsListInitialization*/ IsStdInitListInit, 7812 /*IsStdInitListInitialization*/ IsStdInitListInit, 7813 /*LBraceLoc*/ Range.getBegin(), 7814 /*RBraceLoc*/ Range.getEnd()); 7815 break; 7816 } 7817 7818 case SK_ZeroInitialization: { 7819 step_iterator NextStep = Step; 7820 ++NextStep; 7821 if (NextStep != StepEnd && 7822 (NextStep->Kind == SK_ConstructorInitialization || 7823 NextStep->Kind == SK_ConstructorInitializationFromList)) { 7824 // The need for zero-initialization is recorded directly into 7825 // the call to the object's constructor within the next step. 7826 ConstructorInitRequiresZeroInit = true; 7827 } else if (Kind.getKind() == InitializationKind::IK_Value && 7828 S.getLangOpts().CPlusPlus && 7829 !Kind.isImplicitValueInit()) { 7830 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 7831 if (!TSInfo) 7832 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 7833 Kind.getRange().getBegin()); 7834 7835 CurInit = new (S.Context) CXXScalarValueInitExpr( 7836 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 7837 Kind.getRange().getEnd()); 7838 } else { 7839 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 7840 } 7841 break; 7842 } 7843 7844 case SK_CAssignment: { 7845 QualType SourceType = CurInit.get()->getType(); 7846 // Save off the initial CurInit in case we need to emit a diagnostic 7847 ExprResult InitialCurInit = CurInit; 7848 ExprResult Result = CurInit; 7849 Sema::AssignConvertType ConvTy = 7850 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 7851 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 7852 if (Result.isInvalid()) 7853 return ExprError(); 7854 CurInit = Result; 7855 7856 // If this is a call, allow conversion to a transparent union. 7857 ExprResult CurInitExprRes = CurInit; 7858 if (ConvTy != Sema::Compatible && 7859 Entity.isParameterKind() && 7860 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 7861 == Sema::Compatible) 7862 ConvTy = Sema::Compatible; 7863 if (CurInitExprRes.isInvalid()) 7864 return ExprError(); 7865 CurInit = CurInitExprRes; 7866 7867 bool Complained; 7868 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 7869 Step->Type, SourceType, 7870 InitialCurInit.get(), 7871 getAssignmentAction(Entity, true), 7872 &Complained)) { 7873 PrintInitLocationNote(S, Entity); 7874 return ExprError(); 7875 } else if (Complained) 7876 PrintInitLocationNote(S, Entity); 7877 break; 7878 } 7879 7880 case SK_StringInit: { 7881 QualType Ty = Step->Type; 7882 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 7883 S.Context.getAsArrayType(Ty), S); 7884 break; 7885 } 7886 7887 case SK_ObjCObjectConversion: 7888 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7889 CK_ObjCObjectLValueCast, 7890 CurInit.get()->getValueKind()); 7891 break; 7892 7893 case SK_ArrayLoopIndex: { 7894 Expr *Cur = CurInit.get(); 7895 Expr *BaseExpr = new (S.Context) 7896 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 7897 Cur->getValueKind(), Cur->getObjectKind(), Cur); 7898 Expr *IndexExpr = 7899 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 7900 CurInit = S.CreateBuiltinArraySubscriptExpr( 7901 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 7902 ArrayLoopCommonExprs.push_back(BaseExpr); 7903 break; 7904 } 7905 7906 case SK_ArrayLoopInit: { 7907 assert(!ArrayLoopCommonExprs.empty() && 7908 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 7909 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 7910 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 7911 CurInit.get()); 7912 break; 7913 } 7914 7915 case SK_GNUArrayInit: 7916 // Okay: we checked everything before creating this step. Note that 7917 // this is a GNU extension. 7918 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 7919 << Step->Type << CurInit.get()->getType() 7920 << CurInit.get()->getSourceRange(); 7921 LLVM_FALLTHROUGH; 7922 case SK_ArrayInit: 7923 // If the destination type is an incomplete array type, update the 7924 // type accordingly. 7925 if (ResultType) { 7926 if (const IncompleteArrayType *IncompleteDest 7927 = S.Context.getAsIncompleteArrayType(Step->Type)) { 7928 if (const ConstantArrayType *ConstantSource 7929 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 7930 *ResultType = S.Context.getConstantArrayType( 7931 IncompleteDest->getElementType(), 7932 ConstantSource->getSize(), 7933 ArrayType::Normal, 0); 7934 } 7935 } 7936 } 7937 break; 7938 7939 case SK_ParenthesizedArrayInit: 7940 // Okay: we checked everything before creating this step. Note that 7941 // this is a GNU extension. 7942 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 7943 << CurInit.get()->getSourceRange(); 7944 break; 7945 7946 case SK_PassByIndirectCopyRestore: 7947 case SK_PassByIndirectRestore: 7948 checkIndirectCopyRestoreSource(S, CurInit.get()); 7949 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 7950 CurInit.get(), Step->Type, 7951 Step->Kind == SK_PassByIndirectCopyRestore); 7952 break; 7953 7954 case SK_ProduceObjCObject: 7955 CurInit = 7956 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 7957 CurInit.get(), nullptr, VK_RValue); 7958 break; 7959 7960 case SK_StdInitializerList: { 7961 S.Diag(CurInit.get()->getExprLoc(), 7962 diag::warn_cxx98_compat_initializer_list_init) 7963 << CurInit.get()->getSourceRange(); 7964 7965 // Materialize the temporary into memory. 7966 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 7967 CurInit.get()->getType(), CurInit.get(), 7968 /*BoundToLvalueReference=*/false); 7969 7970 // Wrap it in a construction of a std::initializer_list<T>. 7971 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 7972 7973 // Bind the result, in case the library has given initializer_list a 7974 // non-trivial destructor. 7975 if (shouldBindAsTemporary(Entity)) 7976 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7977 break; 7978 } 7979 7980 case SK_OCLSamplerInit: { 7981 // Sampler initialzation have 5 cases: 7982 // 1. function argument passing 7983 // 1a. argument is a file-scope variable 7984 // 1b. argument is a function-scope variable 7985 // 1c. argument is one of caller function's parameters 7986 // 2. variable initialization 7987 // 2a. initializing a file-scope variable 7988 // 2b. initializing a function-scope variable 7989 // 7990 // For file-scope variables, since they cannot be initialized by function 7991 // call of __translate_sampler_initializer in LLVM IR, their references 7992 // need to be replaced by a cast from their literal initializers to 7993 // sampler type. Since sampler variables can only be used in function 7994 // calls as arguments, we only need to replace them when handling the 7995 // argument passing. 7996 assert(Step->Type->isSamplerT() && 7997 "Sampler initialization on non-sampler type."); 7998 Expr *Init = CurInit.get(); 7999 QualType SourceType = Init->getType(); 8000 // Case 1 8001 if (Entity.isParameterKind()) { 8002 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8003 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8004 << SourceType; 8005 break; 8006 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8007 auto Var = cast<VarDecl>(DRE->getDecl()); 8008 // Case 1b and 1c 8009 // No cast from integer to sampler is needed. 8010 if (!Var->hasGlobalStorage()) { 8011 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8012 CK_LValueToRValue, Init, 8013 /*BasePath=*/nullptr, VK_RValue); 8014 break; 8015 } 8016 // Case 1a 8017 // For function call with a file-scope sampler variable as argument, 8018 // get the integer literal. 8019 // Do not diagnose if the file-scope variable does not have initializer 8020 // since this has already been diagnosed when parsing the variable 8021 // declaration. 8022 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8023 break; 8024 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8025 Var->getInit()))->getSubExpr(); 8026 SourceType = Init->getType(); 8027 } 8028 } else { 8029 // Case 2 8030 // Check initializer is 32 bit integer constant. 8031 // If the initializer is taken from global variable, do not diagnose since 8032 // this has already been done when parsing the variable declaration. 8033 if (!Init->isConstantInitializer(S.Context, false)) 8034 break; 8035 8036 if (!SourceType->isIntegerType() || 8037 32 != S.Context.getIntWidth(SourceType)) { 8038 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8039 << SourceType; 8040 break; 8041 } 8042 8043 llvm::APSInt Result; 8044 Init->EvaluateAsInt(Result, S.Context); 8045 const uint64_t SamplerValue = Result.getLimitedValue(); 8046 // 32-bit value of sampler's initializer is interpreted as 8047 // bit-field with the following structure: 8048 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8049 // |31 6|5 4|3 1| 0| 8050 // This structure corresponds to enum values of sampler properties 8051 // defined in SPIR spec v1.2 and also opencl-c.h 8052 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8053 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8054 if (FilterMode != 1 && FilterMode != 2 && 8055 !S.getOpenCLOptions().isEnabled( 8056 "cl_intel_device_side_avc_motion_estimation")) 8057 S.Diag(Kind.getLocation(), 8058 diag::warn_sampler_initializer_invalid_bits) 8059 << "Filter Mode"; 8060 if (AddressingMode > 4) 8061 S.Diag(Kind.getLocation(), 8062 diag::warn_sampler_initializer_invalid_bits) 8063 << "Addressing Mode"; 8064 } 8065 8066 // Cases 1a, 2a and 2b 8067 // Insert cast from integer to sampler. 8068 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8069 CK_IntToOCLSampler); 8070 break; 8071 } 8072 case SK_OCLZeroOpaqueType: { 8073 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8074 Step->Type->isOCLIntelSubgroupAVCType()) && 8075 "Wrong type for initialization of OpenCL opaque type."); 8076 8077 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8078 CK_ZeroToOCLOpaqueType, 8079 CurInit.get()->getValueKind()); 8080 break; 8081 } 8082 } 8083 } 8084 8085 // Check whether the initializer has a shorter lifetime than the initialized 8086 // entity, and if not, either lifetime-extend or warn as appropriate. 8087 if (auto *Init = CurInit.get()) 8088 S.checkInitializerLifetime(Entity, Init); 8089 8090 // Diagnose non-fatal problems with the completed initialization. 8091 if (Entity.getKind() == InitializedEntity::EK_Member && 8092 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8093 S.CheckBitFieldInitialization(Kind.getLocation(), 8094 cast<FieldDecl>(Entity.getDecl()), 8095 CurInit.get()); 8096 8097 // Check for std::move on construction. 8098 if (const Expr *E = CurInit.get()) { 8099 CheckMoveOnConstruction(S, E, 8100 Entity.getKind() == InitializedEntity::EK_Result); 8101 } 8102 8103 return CurInit; 8104 } 8105 8106 /// Somewhere within T there is an uninitialized reference subobject. 8107 /// Dig it out and diagnose it. 8108 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8109 QualType T) { 8110 if (T->isReferenceType()) { 8111 S.Diag(Loc, diag::err_reference_without_init) 8112 << T.getNonReferenceType(); 8113 return true; 8114 } 8115 8116 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8117 if (!RD || !RD->hasUninitializedReferenceMember()) 8118 return false; 8119 8120 for (const auto *FI : RD->fields()) { 8121 if (FI->isUnnamedBitfield()) 8122 continue; 8123 8124 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8125 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8126 return true; 8127 } 8128 } 8129 8130 for (const auto &BI : RD->bases()) { 8131 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8132 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8133 return true; 8134 } 8135 } 8136 8137 return false; 8138 } 8139 8140 8141 //===----------------------------------------------------------------------===// 8142 // Diagnose initialization failures 8143 //===----------------------------------------------------------------------===// 8144 8145 /// Emit notes associated with an initialization that failed due to a 8146 /// "simple" conversion failure. 8147 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8148 Expr *op) { 8149 QualType destType = entity.getType(); 8150 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8151 op->getType()->isObjCObjectPointerType()) { 8152 8153 // Emit a possible note about the conversion failing because the 8154 // operand is a message send with a related result type. 8155 S.EmitRelatedResultTypeNote(op); 8156 8157 // Emit a possible note about a return failing because we're 8158 // expecting a related result type. 8159 if (entity.getKind() == InitializedEntity::EK_Result) 8160 S.EmitRelatedResultTypeNoteForReturn(destType); 8161 } 8162 } 8163 8164 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8165 InitListExpr *InitList) { 8166 QualType DestType = Entity.getType(); 8167 8168 QualType E; 8169 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8170 QualType ArrayType = S.Context.getConstantArrayType( 8171 E.withConst(), 8172 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8173 InitList->getNumInits()), 8174 clang::ArrayType::Normal, 0); 8175 InitializedEntity HiddenArray = 8176 InitializedEntity::InitializeTemporary(ArrayType); 8177 return diagnoseListInit(S, HiddenArray, InitList); 8178 } 8179 8180 if (DestType->isReferenceType()) { 8181 // A list-initialization failure for a reference means that we tried to 8182 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8183 // inner initialization failed. 8184 QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); 8185 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8186 SourceLocation Loc = InitList->getBeginLoc(); 8187 if (auto *D = Entity.getDecl()) 8188 Loc = D->getLocation(); 8189 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8190 return; 8191 } 8192 8193 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8194 /*VerifyOnly=*/false, 8195 /*TreatUnavailableAsInvalid=*/false); 8196 assert(DiagnoseInitList.HadError() && 8197 "Inconsistent init list check result."); 8198 } 8199 8200 bool InitializationSequence::Diagnose(Sema &S, 8201 const InitializedEntity &Entity, 8202 const InitializationKind &Kind, 8203 ArrayRef<Expr *> Args) { 8204 if (!Failed()) 8205 return false; 8206 8207 // When we want to diagnose only one element of a braced-init-list, 8208 // we need to factor it out. 8209 Expr *OnlyArg; 8210 if (Args.size() == 1) { 8211 auto *List = dyn_cast<InitListExpr>(Args[0]); 8212 if (List && List->getNumInits() == 1) 8213 OnlyArg = List->getInit(0); 8214 else 8215 OnlyArg = Args[0]; 8216 } 8217 else 8218 OnlyArg = nullptr; 8219 8220 QualType DestType = Entity.getType(); 8221 switch (Failure) { 8222 case FK_TooManyInitsForReference: 8223 // FIXME: Customize for the initialized entity? 8224 if (Args.empty()) { 8225 // Dig out the reference subobject which is uninitialized and diagnose it. 8226 // If this is value-initialization, this could be nested some way within 8227 // the target type. 8228 assert(Kind.getKind() == InitializationKind::IK_Value || 8229 DestType->isReferenceType()); 8230 bool Diagnosed = 8231 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8232 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8233 (void)Diagnosed; 8234 } else // FIXME: diagnostic below could be better! 8235 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8236 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8237 break; 8238 case FK_ParenthesizedListInitForReference: 8239 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8240 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8241 break; 8242 8243 case FK_ArrayNeedsInitList: 8244 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8245 break; 8246 case FK_ArrayNeedsInitListOrStringLiteral: 8247 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8248 break; 8249 case FK_ArrayNeedsInitListOrWideStringLiteral: 8250 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8251 break; 8252 case FK_NarrowStringIntoWideCharArray: 8253 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8254 break; 8255 case FK_WideStringIntoCharArray: 8256 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8257 break; 8258 case FK_IncompatWideStringIntoWideChar: 8259 S.Diag(Kind.getLocation(), 8260 diag::err_array_init_incompat_wide_string_into_wchar); 8261 break; 8262 case FK_PlainStringIntoUTF8Char: 8263 S.Diag(Kind.getLocation(), 8264 diag::err_array_init_plain_string_into_char8_t); 8265 S.Diag(Args.front()->getBeginLoc(), 8266 diag::note_array_init_plain_string_into_char8_t) 8267 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8268 break; 8269 case FK_UTF8StringIntoPlainChar: 8270 S.Diag(Kind.getLocation(), 8271 diag::err_array_init_utf8_string_into_char); 8272 break; 8273 case FK_ArrayTypeMismatch: 8274 case FK_NonConstantArrayInit: 8275 S.Diag(Kind.getLocation(), 8276 (Failure == FK_ArrayTypeMismatch 8277 ? diag::err_array_init_different_type 8278 : diag::err_array_init_non_constant_array)) 8279 << DestType.getNonReferenceType() 8280 << OnlyArg->getType() 8281 << Args[0]->getSourceRange(); 8282 break; 8283 8284 case FK_VariableLengthArrayHasInitializer: 8285 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8286 << Args[0]->getSourceRange(); 8287 break; 8288 8289 case FK_AddressOfOverloadFailed: { 8290 DeclAccessPair Found; 8291 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8292 DestType.getNonReferenceType(), 8293 true, 8294 Found); 8295 break; 8296 } 8297 8298 case FK_AddressOfUnaddressableFunction: { 8299 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8300 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8301 OnlyArg->getBeginLoc()); 8302 break; 8303 } 8304 8305 case FK_ReferenceInitOverloadFailed: 8306 case FK_UserConversionOverloadFailed: 8307 switch (FailedOverloadResult) { 8308 case OR_Ambiguous: 8309 if (Failure == FK_UserConversionOverloadFailed) 8310 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 8311 << OnlyArg->getType() << DestType 8312 << Args[0]->getSourceRange(); 8313 else 8314 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 8315 << DestType << OnlyArg->getType() 8316 << Args[0]->getSourceRange(); 8317 8318 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 8319 break; 8320 8321 case OR_No_Viable_Function: 8322 if (!S.RequireCompleteType(Kind.getLocation(), 8323 DestType.getNonReferenceType(), 8324 diag::err_typecheck_nonviable_condition_incomplete, 8325 OnlyArg->getType(), Args[0]->getSourceRange())) 8326 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8327 << (Entity.getKind() == InitializedEntity::EK_Result) 8328 << OnlyArg->getType() << Args[0]->getSourceRange() 8329 << DestType.getNonReferenceType(); 8330 8331 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 8332 break; 8333 8334 case OR_Deleted: { 8335 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8336 << OnlyArg->getType() << DestType.getNonReferenceType() 8337 << Args[0]->getSourceRange(); 8338 OverloadCandidateSet::iterator Best; 8339 OverloadingResult Ovl 8340 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8341 if (Ovl == OR_Deleted) { 8342 S.NoteDeletedFunction(Best->Function); 8343 } else { 8344 llvm_unreachable("Inconsistent overload resolution?"); 8345 } 8346 break; 8347 } 8348 8349 case OR_Success: 8350 llvm_unreachable("Conversion did not fail!"); 8351 } 8352 break; 8353 8354 case FK_NonConstLValueReferenceBindingToTemporary: 8355 if (isa<InitListExpr>(Args[0])) { 8356 S.Diag(Kind.getLocation(), 8357 diag::err_lvalue_reference_bind_to_initlist) 8358 << DestType.getNonReferenceType().isVolatileQualified() 8359 << DestType.getNonReferenceType() 8360 << Args[0]->getSourceRange(); 8361 break; 8362 } 8363 LLVM_FALLTHROUGH; 8364 8365 case FK_NonConstLValueReferenceBindingToUnrelated: 8366 S.Diag(Kind.getLocation(), 8367 Failure == FK_NonConstLValueReferenceBindingToTemporary 8368 ? diag::err_lvalue_reference_bind_to_temporary 8369 : diag::err_lvalue_reference_bind_to_unrelated) 8370 << DestType.getNonReferenceType().isVolatileQualified() 8371 << DestType.getNonReferenceType() 8372 << OnlyArg->getType() 8373 << Args[0]->getSourceRange(); 8374 break; 8375 8376 case FK_NonConstLValueReferenceBindingToBitfield: { 8377 // We don't necessarily have an unambiguous source bit-field. 8378 FieldDecl *BitField = Args[0]->getSourceBitField(); 8379 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8380 << DestType.isVolatileQualified() 8381 << (BitField ? BitField->getDeclName() : DeclarationName()) 8382 << (BitField != nullptr) 8383 << Args[0]->getSourceRange(); 8384 if (BitField) 8385 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8386 break; 8387 } 8388 8389 case FK_NonConstLValueReferenceBindingToVectorElement: 8390 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8391 << DestType.isVolatileQualified() 8392 << Args[0]->getSourceRange(); 8393 break; 8394 8395 case FK_RValueReferenceBindingToLValue: 8396 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8397 << DestType.getNonReferenceType() << OnlyArg->getType() 8398 << Args[0]->getSourceRange(); 8399 break; 8400 8401 case FK_ReferenceInitDropsQualifiers: { 8402 QualType SourceType = OnlyArg->getType(); 8403 QualType NonRefType = DestType.getNonReferenceType(); 8404 Qualifiers DroppedQualifiers = 8405 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8406 8407 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8408 << SourceType 8409 << NonRefType 8410 << DroppedQualifiers.getCVRQualifiers() 8411 << Args[0]->getSourceRange(); 8412 break; 8413 } 8414 8415 case FK_ReferenceInitFailed: 8416 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8417 << DestType.getNonReferenceType() 8418 << OnlyArg->isLValue() 8419 << OnlyArg->getType() 8420 << Args[0]->getSourceRange(); 8421 emitBadConversionNotes(S, Entity, Args[0]); 8422 break; 8423 8424 case FK_ConversionFailed: { 8425 QualType FromType = OnlyArg->getType(); 8426 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8427 << (int)Entity.getKind() 8428 << DestType 8429 << OnlyArg->isLValue() 8430 << FromType 8431 << Args[0]->getSourceRange(); 8432 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8433 S.Diag(Kind.getLocation(), PDiag); 8434 emitBadConversionNotes(S, Entity, Args[0]); 8435 break; 8436 } 8437 8438 case FK_ConversionFromPropertyFailed: 8439 // No-op. This error has already been reported. 8440 break; 8441 8442 case FK_TooManyInitsForScalar: { 8443 SourceRange R; 8444 8445 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8446 if (InitList && InitList->getNumInits() >= 1) { 8447 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8448 } else { 8449 assert(Args.size() > 1 && "Expected multiple initializers!"); 8450 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8451 } 8452 8453 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8454 if (Kind.isCStyleOrFunctionalCast()) 8455 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8456 << R; 8457 else 8458 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8459 << /*scalar=*/2 << R; 8460 break; 8461 } 8462 8463 case FK_ParenthesizedListInitForScalar: 8464 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8465 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8466 break; 8467 8468 case FK_ReferenceBindingToInitList: 8469 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8470 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8471 break; 8472 8473 case FK_InitListBadDestinationType: 8474 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8475 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8476 break; 8477 8478 case FK_ListConstructorOverloadFailed: 8479 case FK_ConstructorOverloadFailed: { 8480 SourceRange ArgsRange; 8481 if (Args.size()) 8482 ArgsRange = 8483 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8484 8485 if (Failure == FK_ListConstructorOverloadFailed) { 8486 assert(Args.size() == 1 && 8487 "List construction from other than 1 argument."); 8488 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8489 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 8490 } 8491 8492 // FIXME: Using "DestType" for the entity we're printing is probably 8493 // bad. 8494 switch (FailedOverloadResult) { 8495 case OR_Ambiguous: 8496 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 8497 << DestType << ArgsRange; 8498 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 8499 break; 8500 8501 case OR_No_Viable_Function: 8502 if (Kind.getKind() == InitializationKind::IK_Default && 8503 (Entity.getKind() == InitializedEntity::EK_Base || 8504 Entity.getKind() == InitializedEntity::EK_Member) && 8505 isa<CXXConstructorDecl>(S.CurContext)) { 8506 // This is implicit default initialization of a member or 8507 // base within a constructor. If no viable function was 8508 // found, notify the user that they need to explicitly 8509 // initialize this base/member. 8510 CXXConstructorDecl *Constructor 8511 = cast<CXXConstructorDecl>(S.CurContext); 8512 const CXXRecordDecl *InheritedFrom = nullptr; 8513 if (auto Inherited = Constructor->getInheritedConstructor()) 8514 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 8515 if (Entity.getKind() == InitializedEntity::EK_Base) { 8516 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8517 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8518 << S.Context.getTypeDeclType(Constructor->getParent()) 8519 << /*base=*/0 8520 << Entity.getType() 8521 << InheritedFrom; 8522 8523 RecordDecl *BaseDecl 8524 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 8525 ->getDecl(); 8526 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 8527 << S.Context.getTagDeclType(BaseDecl); 8528 } else { 8529 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8530 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8531 << S.Context.getTypeDeclType(Constructor->getParent()) 8532 << /*member=*/1 8533 << Entity.getName() 8534 << InheritedFrom; 8535 S.Diag(Entity.getDecl()->getLocation(), 8536 diag::note_member_declared_at); 8537 8538 if (const RecordType *Record 8539 = Entity.getType()->getAs<RecordType>()) 8540 S.Diag(Record->getDecl()->getLocation(), 8541 diag::note_previous_decl) 8542 << S.Context.getTagDeclType(Record->getDecl()); 8543 } 8544 break; 8545 } 8546 8547 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 8548 << DestType << ArgsRange; 8549 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 8550 break; 8551 8552 case OR_Deleted: { 8553 OverloadCandidateSet::iterator Best; 8554 OverloadingResult Ovl 8555 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8556 if (Ovl != OR_Deleted) { 8557 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8558 << true << DestType << ArgsRange; 8559 llvm_unreachable("Inconsistent overload resolution?"); 8560 break; 8561 } 8562 8563 // If this is a defaulted or implicitly-declared function, then 8564 // it was implicitly deleted. Make it clear that the deletion was 8565 // implicit. 8566 if (S.isImplicitlyDeleted(Best->Function)) 8567 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 8568 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 8569 << DestType << ArgsRange; 8570 else 8571 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8572 << true << DestType << ArgsRange; 8573 8574 S.NoteDeletedFunction(Best->Function); 8575 break; 8576 } 8577 8578 case OR_Success: 8579 llvm_unreachable("Conversion did not fail!"); 8580 } 8581 } 8582 break; 8583 8584 case FK_DefaultInitOfConst: 8585 if (Entity.getKind() == InitializedEntity::EK_Member && 8586 isa<CXXConstructorDecl>(S.CurContext)) { 8587 // This is implicit default-initialization of a const member in 8588 // a constructor. Complain that it needs to be explicitly 8589 // initialized. 8590 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 8591 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 8592 << (Constructor->getInheritedConstructor() ? 2 : 8593 Constructor->isImplicit() ? 1 : 0) 8594 << S.Context.getTypeDeclType(Constructor->getParent()) 8595 << /*const=*/1 8596 << Entity.getName(); 8597 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 8598 << Entity.getName(); 8599 } else { 8600 S.Diag(Kind.getLocation(), diag::err_default_init_const) 8601 << DestType << (bool)DestType->getAs<RecordType>(); 8602 } 8603 break; 8604 8605 case FK_Incomplete: 8606 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 8607 diag::err_init_incomplete_type); 8608 break; 8609 8610 case FK_ListInitializationFailed: { 8611 // Run the init list checker again to emit diagnostics. 8612 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8613 diagnoseListInit(S, Entity, InitList); 8614 break; 8615 } 8616 8617 case FK_PlaceholderType: { 8618 // FIXME: Already diagnosed! 8619 break; 8620 } 8621 8622 case FK_ExplicitConstructor: { 8623 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 8624 << Args[0]->getSourceRange(); 8625 OverloadCandidateSet::iterator Best; 8626 OverloadingResult Ovl 8627 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8628 (void)Ovl; 8629 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 8630 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 8631 S.Diag(CtorDecl->getLocation(), 8632 diag::note_explicit_ctor_deduction_guide_here) << false; 8633 break; 8634 } 8635 } 8636 8637 PrintInitLocationNote(S, Entity); 8638 return true; 8639 } 8640 8641 void InitializationSequence::dump(raw_ostream &OS) const { 8642 switch (SequenceKind) { 8643 case FailedSequence: { 8644 OS << "Failed sequence: "; 8645 switch (Failure) { 8646 case FK_TooManyInitsForReference: 8647 OS << "too many initializers for reference"; 8648 break; 8649 8650 case FK_ParenthesizedListInitForReference: 8651 OS << "parenthesized list init for reference"; 8652 break; 8653 8654 case FK_ArrayNeedsInitList: 8655 OS << "array requires initializer list"; 8656 break; 8657 8658 case FK_AddressOfUnaddressableFunction: 8659 OS << "address of unaddressable function was taken"; 8660 break; 8661 8662 case FK_ArrayNeedsInitListOrStringLiteral: 8663 OS << "array requires initializer list or string literal"; 8664 break; 8665 8666 case FK_ArrayNeedsInitListOrWideStringLiteral: 8667 OS << "array requires initializer list or wide string literal"; 8668 break; 8669 8670 case FK_NarrowStringIntoWideCharArray: 8671 OS << "narrow string into wide char array"; 8672 break; 8673 8674 case FK_WideStringIntoCharArray: 8675 OS << "wide string into char array"; 8676 break; 8677 8678 case FK_IncompatWideStringIntoWideChar: 8679 OS << "incompatible wide string into wide char array"; 8680 break; 8681 8682 case FK_PlainStringIntoUTF8Char: 8683 OS << "plain string literal into char8_t array"; 8684 break; 8685 8686 case FK_UTF8StringIntoPlainChar: 8687 OS << "u8 string literal into char array"; 8688 break; 8689 8690 case FK_ArrayTypeMismatch: 8691 OS << "array type mismatch"; 8692 break; 8693 8694 case FK_NonConstantArrayInit: 8695 OS << "non-constant array initializer"; 8696 break; 8697 8698 case FK_AddressOfOverloadFailed: 8699 OS << "address of overloaded function failed"; 8700 break; 8701 8702 case FK_ReferenceInitOverloadFailed: 8703 OS << "overload resolution for reference initialization failed"; 8704 break; 8705 8706 case FK_NonConstLValueReferenceBindingToTemporary: 8707 OS << "non-const lvalue reference bound to temporary"; 8708 break; 8709 8710 case FK_NonConstLValueReferenceBindingToBitfield: 8711 OS << "non-const lvalue reference bound to bit-field"; 8712 break; 8713 8714 case FK_NonConstLValueReferenceBindingToVectorElement: 8715 OS << "non-const lvalue reference bound to vector element"; 8716 break; 8717 8718 case FK_NonConstLValueReferenceBindingToUnrelated: 8719 OS << "non-const lvalue reference bound to unrelated type"; 8720 break; 8721 8722 case FK_RValueReferenceBindingToLValue: 8723 OS << "rvalue reference bound to an lvalue"; 8724 break; 8725 8726 case FK_ReferenceInitDropsQualifiers: 8727 OS << "reference initialization drops qualifiers"; 8728 break; 8729 8730 case FK_ReferenceInitFailed: 8731 OS << "reference initialization failed"; 8732 break; 8733 8734 case FK_ConversionFailed: 8735 OS << "conversion failed"; 8736 break; 8737 8738 case FK_ConversionFromPropertyFailed: 8739 OS << "conversion from property failed"; 8740 break; 8741 8742 case FK_TooManyInitsForScalar: 8743 OS << "too many initializers for scalar"; 8744 break; 8745 8746 case FK_ParenthesizedListInitForScalar: 8747 OS << "parenthesized list init for reference"; 8748 break; 8749 8750 case FK_ReferenceBindingToInitList: 8751 OS << "referencing binding to initializer list"; 8752 break; 8753 8754 case FK_InitListBadDestinationType: 8755 OS << "initializer list for non-aggregate, non-scalar type"; 8756 break; 8757 8758 case FK_UserConversionOverloadFailed: 8759 OS << "overloading failed for user-defined conversion"; 8760 break; 8761 8762 case FK_ConstructorOverloadFailed: 8763 OS << "constructor overloading failed"; 8764 break; 8765 8766 case FK_DefaultInitOfConst: 8767 OS << "default initialization of a const variable"; 8768 break; 8769 8770 case FK_Incomplete: 8771 OS << "initialization of incomplete type"; 8772 break; 8773 8774 case FK_ListInitializationFailed: 8775 OS << "list initialization checker failure"; 8776 break; 8777 8778 case FK_VariableLengthArrayHasInitializer: 8779 OS << "variable length array has an initializer"; 8780 break; 8781 8782 case FK_PlaceholderType: 8783 OS << "initializer expression isn't contextually valid"; 8784 break; 8785 8786 case FK_ListConstructorOverloadFailed: 8787 OS << "list constructor overloading failed"; 8788 break; 8789 8790 case FK_ExplicitConstructor: 8791 OS << "list copy initialization chose explicit constructor"; 8792 break; 8793 } 8794 OS << '\n'; 8795 return; 8796 } 8797 8798 case DependentSequence: 8799 OS << "Dependent sequence\n"; 8800 return; 8801 8802 case NormalSequence: 8803 OS << "Normal sequence: "; 8804 break; 8805 } 8806 8807 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 8808 if (S != step_begin()) { 8809 OS << " -> "; 8810 } 8811 8812 switch (S->Kind) { 8813 case SK_ResolveAddressOfOverloadedFunction: 8814 OS << "resolve address of overloaded function"; 8815 break; 8816 8817 case SK_CastDerivedToBaseRValue: 8818 OS << "derived-to-base (rvalue)"; 8819 break; 8820 8821 case SK_CastDerivedToBaseXValue: 8822 OS << "derived-to-base (xvalue)"; 8823 break; 8824 8825 case SK_CastDerivedToBaseLValue: 8826 OS << "derived-to-base (lvalue)"; 8827 break; 8828 8829 case SK_BindReference: 8830 OS << "bind reference to lvalue"; 8831 break; 8832 8833 case SK_BindReferenceToTemporary: 8834 OS << "bind reference to a temporary"; 8835 break; 8836 8837 case SK_FinalCopy: 8838 OS << "final copy in class direct-initialization"; 8839 break; 8840 8841 case SK_ExtraneousCopyToTemporary: 8842 OS << "extraneous C++03 copy to temporary"; 8843 break; 8844 8845 case SK_UserConversion: 8846 OS << "user-defined conversion via " << *S->Function.Function; 8847 break; 8848 8849 case SK_QualificationConversionRValue: 8850 OS << "qualification conversion (rvalue)"; 8851 break; 8852 8853 case SK_QualificationConversionXValue: 8854 OS << "qualification conversion (xvalue)"; 8855 break; 8856 8857 case SK_QualificationConversionLValue: 8858 OS << "qualification conversion (lvalue)"; 8859 break; 8860 8861 case SK_AtomicConversion: 8862 OS << "non-atomic-to-atomic conversion"; 8863 break; 8864 8865 case SK_LValueToRValue: 8866 OS << "load (lvalue to rvalue)"; 8867 break; 8868 8869 case SK_ConversionSequence: 8870 OS << "implicit conversion sequence ("; 8871 S->ICS->dump(); // FIXME: use OS 8872 OS << ")"; 8873 break; 8874 8875 case SK_ConversionSequenceNoNarrowing: 8876 OS << "implicit conversion sequence with narrowing prohibited ("; 8877 S->ICS->dump(); // FIXME: use OS 8878 OS << ")"; 8879 break; 8880 8881 case SK_ListInitialization: 8882 OS << "list aggregate initialization"; 8883 break; 8884 8885 case SK_UnwrapInitList: 8886 OS << "unwrap reference initializer list"; 8887 break; 8888 8889 case SK_RewrapInitList: 8890 OS << "rewrap reference initializer list"; 8891 break; 8892 8893 case SK_ConstructorInitialization: 8894 OS << "constructor initialization"; 8895 break; 8896 8897 case SK_ConstructorInitializationFromList: 8898 OS << "list initialization via constructor"; 8899 break; 8900 8901 case SK_ZeroInitialization: 8902 OS << "zero initialization"; 8903 break; 8904 8905 case SK_CAssignment: 8906 OS << "C assignment"; 8907 break; 8908 8909 case SK_StringInit: 8910 OS << "string initialization"; 8911 break; 8912 8913 case SK_ObjCObjectConversion: 8914 OS << "Objective-C object conversion"; 8915 break; 8916 8917 case SK_ArrayLoopIndex: 8918 OS << "indexing for array initialization loop"; 8919 break; 8920 8921 case SK_ArrayLoopInit: 8922 OS << "array initialization loop"; 8923 break; 8924 8925 case SK_ArrayInit: 8926 OS << "array initialization"; 8927 break; 8928 8929 case SK_GNUArrayInit: 8930 OS << "array initialization (GNU extension)"; 8931 break; 8932 8933 case SK_ParenthesizedArrayInit: 8934 OS << "parenthesized array initialization"; 8935 break; 8936 8937 case SK_PassByIndirectCopyRestore: 8938 OS << "pass by indirect copy and restore"; 8939 break; 8940 8941 case SK_PassByIndirectRestore: 8942 OS << "pass by indirect restore"; 8943 break; 8944 8945 case SK_ProduceObjCObject: 8946 OS << "Objective-C object retension"; 8947 break; 8948 8949 case SK_StdInitializerList: 8950 OS << "std::initializer_list from initializer list"; 8951 break; 8952 8953 case SK_StdInitializerListConstructorCall: 8954 OS << "list initialization from std::initializer_list"; 8955 break; 8956 8957 case SK_OCLSamplerInit: 8958 OS << "OpenCL sampler_t from integer constant"; 8959 break; 8960 8961 case SK_OCLZeroOpaqueType: 8962 OS << "OpenCL opaque type from zero"; 8963 break; 8964 } 8965 8966 OS << " [" << S->Type.getAsString() << ']'; 8967 } 8968 8969 OS << '\n'; 8970 } 8971 8972 void InitializationSequence::dump() const { 8973 dump(llvm::errs()); 8974 } 8975 8976 static bool NarrowingErrs(const LangOptions &L) { 8977 return L.CPlusPlus11 && 8978 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 8979 } 8980 8981 static void DiagnoseNarrowingInInitList(Sema &S, 8982 const ImplicitConversionSequence &ICS, 8983 QualType PreNarrowingType, 8984 QualType EntityType, 8985 const Expr *PostInit) { 8986 const StandardConversionSequence *SCS = nullptr; 8987 switch (ICS.getKind()) { 8988 case ImplicitConversionSequence::StandardConversion: 8989 SCS = &ICS.Standard; 8990 break; 8991 case ImplicitConversionSequence::UserDefinedConversion: 8992 SCS = &ICS.UserDefined.After; 8993 break; 8994 case ImplicitConversionSequence::AmbiguousConversion: 8995 case ImplicitConversionSequence::EllipsisConversion: 8996 case ImplicitConversionSequence::BadConversion: 8997 return; 8998 } 8999 9000 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9001 APValue ConstantValue; 9002 QualType ConstantType; 9003 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9004 ConstantType)) { 9005 case NK_Not_Narrowing: 9006 case NK_Dependent_Narrowing: 9007 // No narrowing occurred. 9008 return; 9009 9010 case NK_Type_Narrowing: 9011 // This was a floating-to-integer conversion, which is always considered a 9012 // narrowing conversion even if the value is a constant and can be 9013 // represented exactly as an integer. 9014 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9015 ? diag::ext_init_list_type_narrowing 9016 : diag::warn_init_list_type_narrowing) 9017 << PostInit->getSourceRange() 9018 << PreNarrowingType.getLocalUnqualifiedType() 9019 << EntityType.getLocalUnqualifiedType(); 9020 break; 9021 9022 case NK_Constant_Narrowing: 9023 // A constant value was narrowed. 9024 S.Diag(PostInit->getBeginLoc(), 9025 NarrowingErrs(S.getLangOpts()) 9026 ? diag::ext_init_list_constant_narrowing 9027 : diag::warn_init_list_constant_narrowing) 9028 << PostInit->getSourceRange() 9029 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9030 << EntityType.getLocalUnqualifiedType(); 9031 break; 9032 9033 case NK_Variable_Narrowing: 9034 // A variable's value may have been narrowed. 9035 S.Diag(PostInit->getBeginLoc(), 9036 NarrowingErrs(S.getLangOpts()) 9037 ? diag::ext_init_list_variable_narrowing 9038 : diag::warn_init_list_variable_narrowing) 9039 << PostInit->getSourceRange() 9040 << PreNarrowingType.getLocalUnqualifiedType() 9041 << EntityType.getLocalUnqualifiedType(); 9042 break; 9043 } 9044 9045 SmallString<128> StaticCast; 9046 llvm::raw_svector_ostream OS(StaticCast); 9047 OS << "static_cast<"; 9048 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9049 // It's important to use the typedef's name if there is one so that the 9050 // fixit doesn't break code using types like int64_t. 9051 // 9052 // FIXME: This will break if the typedef requires qualification. But 9053 // getQualifiedNameAsString() includes non-machine-parsable components. 9054 OS << *TT->getDecl(); 9055 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9056 OS << BT->getName(S.getLangOpts()); 9057 else { 9058 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9059 // with a broken cast. 9060 return; 9061 } 9062 OS << ">("; 9063 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9064 << PostInit->getSourceRange() 9065 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9066 << FixItHint::CreateInsertion( 9067 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9068 } 9069 9070 //===----------------------------------------------------------------------===// 9071 // Initialization helper functions 9072 //===----------------------------------------------------------------------===// 9073 bool 9074 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9075 ExprResult Init) { 9076 if (Init.isInvalid()) 9077 return false; 9078 9079 Expr *InitE = Init.get(); 9080 assert(InitE && "No initialization expression"); 9081 9082 InitializationKind Kind = 9083 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9084 InitializationSequence Seq(*this, Entity, Kind, InitE); 9085 return !Seq.Failed(); 9086 } 9087 9088 ExprResult 9089 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9090 SourceLocation EqualLoc, 9091 ExprResult Init, 9092 bool TopLevelOfInitList, 9093 bool AllowExplicit) { 9094 if (Init.isInvalid()) 9095 return ExprError(); 9096 9097 Expr *InitE = Init.get(); 9098 assert(InitE && "No initialization expression?"); 9099 9100 if (EqualLoc.isInvalid()) 9101 EqualLoc = InitE->getBeginLoc(); 9102 9103 InitializationKind Kind = InitializationKind::CreateCopy( 9104 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9105 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9106 9107 // Prevent infinite recursion when performing parameter copy-initialization. 9108 const bool ShouldTrackCopy = 9109 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9110 if (ShouldTrackCopy) { 9111 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9112 CurrentParameterCopyTypes.end()) { 9113 Seq.SetOverloadFailure( 9114 InitializationSequence::FK_ConstructorOverloadFailed, 9115 OR_No_Viable_Function); 9116 9117 // Try to give a meaningful diagnostic note for the problematic 9118 // constructor. 9119 const auto LastStep = Seq.step_end() - 1; 9120 assert(LastStep->Kind == 9121 InitializationSequence::SK_ConstructorInitialization); 9122 const FunctionDecl *Function = LastStep->Function.Function; 9123 auto Candidate = 9124 llvm::find_if(Seq.getFailedCandidateSet(), 9125 [Function](const OverloadCandidate &Candidate) -> bool { 9126 return Candidate.Viable && 9127 Candidate.Function == Function && 9128 Candidate.Conversions.size() > 0; 9129 }); 9130 if (Candidate != Seq.getFailedCandidateSet().end() && 9131 Function->getNumParams() > 0) { 9132 Candidate->Viable = false; 9133 Candidate->FailureKind = ovl_fail_bad_conversion; 9134 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9135 InitE, 9136 Function->getParamDecl(0)->getType()); 9137 } 9138 } 9139 CurrentParameterCopyTypes.push_back(Entity.getType()); 9140 } 9141 9142 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9143 9144 if (ShouldTrackCopy) 9145 CurrentParameterCopyTypes.pop_back(); 9146 9147 return Result; 9148 } 9149 9150 /// Determine whether RD is, or is derived from, a specialization of CTD. 9151 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9152 ClassTemplateDecl *CTD) { 9153 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9154 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9155 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9156 }; 9157 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9158 } 9159 9160 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9161 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9162 const InitializationKind &Kind, MultiExprArg Inits) { 9163 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9164 TSInfo->getType()->getContainedDeducedType()); 9165 assert(DeducedTST && "not a deduced template specialization type"); 9166 9167 auto TemplateName = DeducedTST->getTemplateName(); 9168 if (TemplateName.isDependent()) 9169 return Context.DependentTy; 9170 9171 // We can only perform deduction for class templates. 9172 auto *Template = 9173 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9174 if (!Template) { 9175 Diag(Kind.getLocation(), 9176 diag::err_deduced_non_class_template_specialization_type) 9177 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9178 if (auto *TD = TemplateName.getAsTemplateDecl()) 9179 Diag(TD->getLocation(), diag::note_template_decl_here); 9180 return QualType(); 9181 } 9182 9183 // Can't deduce from dependent arguments. 9184 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9185 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9186 diag::warn_cxx14_compat_class_template_argument_deduction) 9187 << TSInfo->getTypeLoc().getSourceRange() << 0; 9188 return Context.DependentTy; 9189 } 9190 9191 // FIXME: Perform "exact type" matching first, per CWG discussion? 9192 // Or implement this via an implied 'T(T) -> T' deduction guide? 9193 9194 // FIXME: Do we need/want a std::initializer_list<T> special case? 9195 9196 // Look up deduction guides, including those synthesized from constructors. 9197 // 9198 // C++1z [over.match.class.deduct]p1: 9199 // A set of functions and function templates is formed comprising: 9200 // - For each constructor of the class template designated by the 9201 // template-name, a function template [...] 9202 // - For each deduction-guide, a function or function template [...] 9203 DeclarationNameInfo NameInfo( 9204 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9205 TSInfo->getTypeLoc().getEndLoc()); 9206 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9207 LookupQualifiedName(Guides, Template->getDeclContext()); 9208 9209 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9210 // clear on this, but they're not found by name so access does not apply. 9211 Guides.suppressDiagnostics(); 9212 9213 // Figure out if this is list-initialization. 9214 InitListExpr *ListInit = 9215 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9216 ? dyn_cast<InitListExpr>(Inits[0]) 9217 : nullptr; 9218 9219 // C++1z [over.match.class.deduct]p1: 9220 // Initialization and overload resolution are performed as described in 9221 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9222 // (as appropriate for the type of initialization performed) for an object 9223 // of a hypothetical class type, where the selected functions and function 9224 // templates are considered to be the constructors of that class type 9225 // 9226 // Since we know we're initializing a class type of a type unrelated to that 9227 // of the initializer, this reduces to something fairly reasonable. 9228 OverloadCandidateSet Candidates(Kind.getLocation(), 9229 OverloadCandidateSet::CSK_Normal); 9230 OverloadCandidateSet::iterator Best; 9231 auto tryToResolveOverload = 9232 [&](bool OnlyListConstructors) -> OverloadingResult { 9233 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9234 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9235 NamedDecl *D = (*I)->getUnderlyingDecl(); 9236 if (D->isInvalidDecl()) 9237 continue; 9238 9239 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9240 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9241 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9242 if (!GD) 9243 continue; 9244 9245 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9246 // For copy-initialization, the candidate functions are all the 9247 // converting constructors (12.3.1) of that class. 9248 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9249 // The converting constructors of T are candidate functions. 9250 if (Kind.isCopyInit() && !ListInit) { 9251 // Only consider converting constructors. 9252 if (GD->isExplicit()) 9253 continue; 9254 9255 // When looking for a converting constructor, deduction guides that 9256 // could never be called with one argument are not interesting to 9257 // check or note. 9258 if (GD->getMinRequiredArguments() > 1 || 9259 (GD->getNumParams() == 0 && !GD->isVariadic())) 9260 continue; 9261 } 9262 9263 // C++ [over.match.list]p1.1: (first phase list initialization) 9264 // Initially, the candidate functions are the initializer-list 9265 // constructors of the class T 9266 if (OnlyListConstructors && !isInitListConstructor(GD)) 9267 continue; 9268 9269 // C++ [over.match.list]p1.2: (second phase list initialization) 9270 // the candidate functions are all the constructors of the class T 9271 // C++ [over.match.ctor]p1: (all other cases) 9272 // the candidate functions are all the constructors of the class of 9273 // the object being initialized 9274 9275 // C++ [over.best.ics]p4: 9276 // When [...] the constructor [...] is a candidate by 9277 // - [over.match.copy] (in all cases) 9278 // FIXME: The "second phase of [over.match.list] case can also 9279 // theoretically happen here, but it's not clear whether we can 9280 // ever have a parameter of the right type. 9281 bool SuppressUserConversions = Kind.isCopyInit(); 9282 9283 if (TD) 9284 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9285 Inits, Candidates, 9286 SuppressUserConversions); 9287 else 9288 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9289 SuppressUserConversions); 9290 } 9291 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9292 }; 9293 9294 OverloadingResult Result = OR_No_Viable_Function; 9295 9296 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9297 // try initializer-list constructors. 9298 if (ListInit) { 9299 bool TryListConstructors = true; 9300 9301 // Try list constructors unless the list is empty and the class has one or 9302 // more default constructors, in which case those constructors win. 9303 if (!ListInit->getNumInits()) { 9304 for (NamedDecl *D : Guides) { 9305 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9306 if (FD && FD->getMinRequiredArguments() == 0) { 9307 TryListConstructors = false; 9308 break; 9309 } 9310 } 9311 } else if (ListInit->getNumInits() == 1) { 9312 // C++ [over.match.class.deduct]: 9313 // As an exception, the first phase in [over.match.list] (considering 9314 // initializer-list constructors) is omitted if the initializer list 9315 // consists of a single expression of type cv U, where U is a 9316 // specialization of C or a class derived from a specialization of C. 9317 Expr *E = ListInit->getInit(0); 9318 auto *RD = E->getType()->getAsCXXRecordDecl(); 9319 if (!isa<InitListExpr>(E) && RD && 9320 isCompleteType(Kind.getLocation(), E->getType()) && 9321 isOrIsDerivedFromSpecializationOf(RD, Template)) 9322 TryListConstructors = false; 9323 } 9324 9325 if (TryListConstructors) 9326 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9327 // Then unwrap the initializer list and try again considering all 9328 // constructors. 9329 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9330 } 9331 9332 // If list-initialization fails, or if we're doing any other kind of 9333 // initialization, we (eventually) consider constructors. 9334 if (Result == OR_No_Viable_Function) 9335 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9336 9337 switch (Result) { 9338 case OR_Ambiguous: 9339 Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous) 9340 << TemplateName; 9341 // FIXME: For list-initialization candidates, it'd usually be better to 9342 // list why they were not viable when given the initializer list itself as 9343 // an argument. 9344 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits); 9345 return QualType(); 9346 9347 case OR_No_Viable_Function: { 9348 CXXRecordDecl *Primary = 9349 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9350 bool Complete = 9351 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9352 Diag(Kind.getLocation(), 9353 Complete ? diag::err_deduced_class_template_ctor_no_viable 9354 : diag::err_deduced_class_template_incomplete) 9355 << TemplateName << !Guides.empty(); 9356 Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits); 9357 return QualType(); 9358 } 9359 9360 case OR_Deleted: { 9361 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9362 << TemplateName; 9363 NoteDeletedFunction(Best->Function); 9364 return QualType(); 9365 } 9366 9367 case OR_Success: 9368 // C++ [over.match.list]p1: 9369 // In copy-list-initialization, if an explicit constructor is chosen, the 9370 // initialization is ill-formed. 9371 if (Kind.isCopyInit() && ListInit && 9372 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9373 bool IsDeductionGuide = !Best->Function->isImplicit(); 9374 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9375 << TemplateName << IsDeductionGuide; 9376 Diag(Best->Function->getLocation(), 9377 diag::note_explicit_ctor_deduction_guide_here) 9378 << IsDeductionGuide; 9379 return QualType(); 9380 } 9381 9382 // Make sure we didn't select an unusable deduction guide, and mark it 9383 // as referenced. 9384 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9385 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9386 break; 9387 } 9388 9389 // C++ [dcl.type.class.deduct]p1: 9390 // The placeholder is replaced by the return type of the function selected 9391 // by overload resolution for class template deduction. 9392 QualType DeducedType = 9393 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9394 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9395 diag::warn_cxx14_compat_class_template_argument_deduction) 9396 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9397 return DeducedType; 9398 } 9399