1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ExprOpenMP.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Initialization.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/SemaInternal.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace clang;
31 
32 //===----------------------------------------------------------------------===//
33 // Sema Initialization Checking
34 //===----------------------------------------------------------------------===//
35 
36 /// Check whether T is compatible with a wide character type (wchar_t,
37 /// char16_t or char32_t).
38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
39   if (Context.typesAreCompatible(Context.getWideCharType(), T))
40     return true;
41   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
42     return Context.typesAreCompatible(Context.Char16Ty, T) ||
43            Context.typesAreCompatible(Context.Char32Ty, T);
44   }
45   return false;
46 }
47 
48 enum StringInitFailureKind {
49   SIF_None,
50   SIF_NarrowStringIntoWideChar,
51   SIF_WideStringIntoChar,
52   SIF_IncompatWideStringIntoWideChar,
53   SIF_UTF8StringIntoPlainChar,
54   SIF_PlainStringIntoUTF8Char,
55   SIF_Other
56 };
57 
58 /// Check whether the array of type AT can be initialized by the Init
59 /// expression by means of string initialization. Returns SIF_None if so,
60 /// otherwise returns a StringInitFailureKind that describes why the
61 /// initialization would not work.
62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
63                                           ASTContext &Context) {
64   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
65     return SIF_Other;
66 
67   // See if this is a string literal or @encode.
68   Init = Init->IgnoreParens();
69 
70   // Handle @encode, which is a narrow string.
71   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
72     return SIF_None;
73 
74   // Otherwise we can only handle string literals.
75   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
76   if (!SL)
77     return SIF_Other;
78 
79   const QualType ElemTy =
80       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
81 
82   switch (SL->getKind()) {
83   case StringLiteral::UTF8:
84     // char8_t array can be initialized with a UTF-8 string.
85     if (ElemTy->isChar8Type())
86       return SIF_None;
87     LLVM_FALLTHROUGH;
88   case StringLiteral::Ascii:
89     // char array can be initialized with a narrow string.
90     // Only allow char x[] = "foo";  not char x[] = L"foo";
91     if (ElemTy->isCharType())
92       return (SL->getKind() == StringLiteral::UTF8 &&
93               Context.getLangOpts().Char8)
94                  ? SIF_UTF8StringIntoPlainChar
95                  : SIF_None;
96     if (ElemTy->isChar8Type())
97       return SIF_PlainStringIntoUTF8Char;
98     if (IsWideCharCompatible(ElemTy, Context))
99       return SIF_NarrowStringIntoWideChar;
100     return SIF_Other;
101   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
102   // "An array with element type compatible with a qualified or unqualified
103   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
104   // string literal with the corresponding encoding prefix (L, u, or U,
105   // respectively), optionally enclosed in braces.
106   case StringLiteral::UTF16:
107     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
108       return SIF_None;
109     if (ElemTy->isCharType() || ElemTy->isChar8Type())
110       return SIF_WideStringIntoChar;
111     if (IsWideCharCompatible(ElemTy, Context))
112       return SIF_IncompatWideStringIntoWideChar;
113     return SIF_Other;
114   case StringLiteral::UTF32:
115     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
116       return SIF_None;
117     if (ElemTy->isCharType() || ElemTy->isChar8Type())
118       return SIF_WideStringIntoChar;
119     if (IsWideCharCompatible(ElemTy, Context))
120       return SIF_IncompatWideStringIntoWideChar;
121     return SIF_Other;
122   case StringLiteral::Wide:
123     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
124       return SIF_None;
125     if (ElemTy->isCharType() || ElemTy->isChar8Type())
126       return SIF_WideStringIntoChar;
127     if (IsWideCharCompatible(ElemTy, Context))
128       return SIF_IncompatWideStringIntoWideChar;
129     return SIF_Other;
130   }
131 
132   llvm_unreachable("missed a StringLiteral kind?");
133 }
134 
135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
136                                           ASTContext &Context) {
137   const ArrayType *arrayType = Context.getAsArrayType(declType);
138   if (!arrayType)
139     return SIF_Other;
140   return IsStringInit(init, arrayType, Context);
141 }
142 
143 /// Update the type of a string literal, including any surrounding parentheses,
144 /// to match the type of the object which it is initializing.
145 static void updateStringLiteralType(Expr *E, QualType Ty) {
146   while (true) {
147     E->setType(Ty);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
149       break;
150     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
151       E = PE->getSubExpr();
152     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
153       E = UO->getSubExpr();
154     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
155       E = GSE->getResultExpr();
156     else
157       llvm_unreachable("unexpected expr in string literal init");
158   }
159 }
160 
161 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
162                             Sema &S) {
163   // Get the length of the string as parsed.
164   auto *ConstantArrayTy =
165       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
166   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
167 
168   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
169     // C99 6.7.8p14. We have an array of character type with unknown size
170     // being initialized to a string literal.
171     llvm::APInt ConstVal(32, StrLength);
172     // Return a new array type (C99 6.7.8p22).
173     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
174                                            ConstVal,
175                                            ArrayType::Normal, 0);
176     updateStringLiteralType(Str, DeclT);
177     return;
178   }
179 
180   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
181 
182   // We have an array of character type with known size.  However,
183   // the size may be smaller or larger than the string we are initializing.
184   // FIXME: Avoid truncation for 64-bit length strings.
185   if (S.getLangOpts().CPlusPlus) {
186     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
187       // For Pascal strings it's OK to strip off the terminating null character,
188       // so the example below is valid:
189       //
190       // unsigned char a[2] = "\pa";
191       if (SL->isPascal())
192         StrLength--;
193     }
194 
195     // [dcl.init.string]p2
196     if (StrLength > CAT->getSize().getZExtValue())
197       S.Diag(Str->getBeginLoc(),
198              diag::err_initializer_string_for_char_array_too_long)
199           << Str->getSourceRange();
200   } else {
201     // C99 6.7.8p14.
202     if (StrLength-1 > CAT->getSize().getZExtValue())
203       S.Diag(Str->getBeginLoc(),
204              diag::ext_initializer_string_for_char_array_too_long)
205           << Str->getSourceRange();
206   }
207 
208   // Set the type to the actual size that we are initializing.  If we have
209   // something like:
210   //   char x[1] = "foo";
211   // then this will set the string literal's type to char[1].
212   updateStringLiteralType(Str, DeclT);
213 }
214 
215 //===----------------------------------------------------------------------===//
216 // Semantic checking for initializer lists.
217 //===----------------------------------------------------------------------===//
218 
219 namespace {
220 
221 /// Semantic checking for initializer lists.
222 ///
223 /// The InitListChecker class contains a set of routines that each
224 /// handle the initialization of a certain kind of entity, e.g.,
225 /// arrays, vectors, struct/union types, scalars, etc. The
226 /// InitListChecker itself performs a recursive walk of the subobject
227 /// structure of the type to be initialized, while stepping through
228 /// the initializer list one element at a time. The IList and Index
229 /// parameters to each of the Check* routines contain the active
230 /// (syntactic) initializer list and the index into that initializer
231 /// list that represents the current initializer. Each routine is
232 /// responsible for moving that Index forward as it consumes elements.
233 ///
234 /// Each Check* routine also has a StructuredList/StructuredIndex
235 /// arguments, which contains the current "structured" (semantic)
236 /// initializer list and the index into that initializer list where we
237 /// are copying initializers as we map them over to the semantic
238 /// list. Once we have completed our recursive walk of the subobject
239 /// structure, we will have constructed a full semantic initializer
240 /// list.
241 ///
242 /// C99 designators cause changes in the initializer list traversal,
243 /// because they make the initialization "jump" into a specific
244 /// subobject and then continue the initialization from that
245 /// point. CheckDesignatedInitializer() recursively steps into the
246 /// designated subobject and manages backing out the recursion to
247 /// initialize the subobjects after the one designated.
248 class InitListChecker {
249   Sema &SemaRef;
250   bool hadError;
251   bool VerifyOnly; // no diagnostics, no structure building
252   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
253   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
254   InitListExpr *FullyStructuredList;
255 
256   void CheckImplicitInitList(const InitializedEntity &Entity,
257                              InitListExpr *ParentIList, QualType T,
258                              unsigned &Index, InitListExpr *StructuredList,
259                              unsigned &StructuredIndex);
260   void CheckExplicitInitList(const InitializedEntity &Entity,
261                              InitListExpr *IList, QualType &T,
262                              InitListExpr *StructuredList,
263                              bool TopLevelObject = false);
264   void CheckListElementTypes(const InitializedEntity &Entity,
265                              InitListExpr *IList, QualType &DeclType,
266                              bool SubobjectIsDesignatorContext,
267                              unsigned &Index,
268                              InitListExpr *StructuredList,
269                              unsigned &StructuredIndex,
270                              bool TopLevelObject = false);
271   void CheckSubElementType(const InitializedEntity &Entity,
272                            InitListExpr *IList, QualType ElemType,
273                            unsigned &Index,
274                            InitListExpr *StructuredList,
275                            unsigned &StructuredIndex);
276   void CheckComplexType(const InitializedEntity &Entity,
277                         InitListExpr *IList, QualType DeclType,
278                         unsigned &Index,
279                         InitListExpr *StructuredList,
280                         unsigned &StructuredIndex);
281   void CheckScalarType(const InitializedEntity &Entity,
282                        InitListExpr *IList, QualType DeclType,
283                        unsigned &Index,
284                        InitListExpr *StructuredList,
285                        unsigned &StructuredIndex);
286   void CheckReferenceType(const InitializedEntity &Entity,
287                           InitListExpr *IList, QualType DeclType,
288                           unsigned &Index,
289                           InitListExpr *StructuredList,
290                           unsigned &StructuredIndex);
291   void CheckVectorType(const InitializedEntity &Entity,
292                        InitListExpr *IList, QualType DeclType, unsigned &Index,
293                        InitListExpr *StructuredList,
294                        unsigned &StructuredIndex);
295   void CheckStructUnionTypes(const InitializedEntity &Entity,
296                              InitListExpr *IList, QualType DeclType,
297                              CXXRecordDecl::base_class_range Bases,
298                              RecordDecl::field_iterator Field,
299                              bool SubobjectIsDesignatorContext, unsigned &Index,
300                              InitListExpr *StructuredList,
301                              unsigned &StructuredIndex,
302                              bool TopLevelObject = false);
303   void CheckArrayType(const InitializedEntity &Entity,
304                       InitListExpr *IList, QualType &DeclType,
305                       llvm::APSInt elementIndex,
306                       bool SubobjectIsDesignatorContext, unsigned &Index,
307                       InitListExpr *StructuredList,
308                       unsigned &StructuredIndex);
309   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
310                                   InitListExpr *IList, DesignatedInitExpr *DIE,
311                                   unsigned DesigIdx,
312                                   QualType &CurrentObjectType,
313                                   RecordDecl::field_iterator *NextField,
314                                   llvm::APSInt *NextElementIndex,
315                                   unsigned &Index,
316                                   InitListExpr *StructuredList,
317                                   unsigned &StructuredIndex,
318                                   bool FinishSubobjectInit,
319                                   bool TopLevelObject);
320   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
321                                            QualType CurrentObjectType,
322                                            InitListExpr *StructuredList,
323                                            unsigned StructuredIndex,
324                                            SourceRange InitRange,
325                                            bool IsFullyOverwritten = false);
326   void UpdateStructuredListElement(InitListExpr *StructuredList,
327                                    unsigned &StructuredIndex,
328                                    Expr *expr);
329   int numArrayElements(QualType DeclType);
330   int numStructUnionElements(QualType DeclType);
331 
332   static ExprResult PerformEmptyInit(Sema &SemaRef,
333                                      SourceLocation Loc,
334                                      const InitializedEntity &Entity,
335                                      bool VerifyOnly,
336                                      bool TreatUnavailableAsInvalid);
337 
338   // Explanation on the "FillWithNoInit" mode:
339   //
340   // Assume we have the following definitions (Case#1):
341   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
342   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
343   //
344   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
345   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
346   //
347   // But if we have (Case#2):
348   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
349   //
350   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
351   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
352   //
353   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
354   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
355   // initializers but with special "NoInitExpr" place holders, which tells the
356   // CodeGen not to generate any initializers for these parts.
357   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
358                               const InitializedEntity &ParentEntity,
359                               InitListExpr *ILE, bool &RequiresSecondPass,
360                               bool FillWithNoInit);
361   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
362                                const InitializedEntity &ParentEntity,
363                                InitListExpr *ILE, bool &RequiresSecondPass,
364                                bool FillWithNoInit = false);
365   void FillInEmptyInitializations(const InitializedEntity &Entity,
366                                   InitListExpr *ILE, bool &RequiresSecondPass,
367                                   InitListExpr *OuterILE, unsigned OuterIndex,
368                                   bool FillWithNoInit = false);
369   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
370                               Expr *InitExpr, FieldDecl *Field,
371                               bool TopLevelObject);
372   void CheckEmptyInitializable(const InitializedEntity &Entity,
373                                SourceLocation Loc);
374 
375 public:
376   InitListChecker(Sema &S, const InitializedEntity &Entity,
377                   InitListExpr *IL, QualType &T, bool VerifyOnly,
378                   bool TreatUnavailableAsInvalid);
379   bool HadError() { return hadError; }
380 
381   // Retrieves the fully-structured initializer list used for
382   // semantic analysis and code generation.
383   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
384 };
385 
386 } // end anonymous namespace
387 
388 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
389                                              SourceLocation Loc,
390                                              const InitializedEntity &Entity,
391                                              bool VerifyOnly,
392                                              bool TreatUnavailableAsInvalid) {
393   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
394                                                             true);
395   MultiExprArg SubInit;
396   Expr *InitExpr;
397   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
398 
399   // C++ [dcl.init.aggr]p7:
400   //   If there are fewer initializer-clauses in the list than there are
401   //   members in the aggregate, then each member not explicitly initialized
402   //   ...
403   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
404       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
405   if (EmptyInitList) {
406     // C++1y / DR1070:
407     //   shall be initialized [...] from an empty initializer list.
408     //
409     // We apply the resolution of this DR to C++11 but not C++98, since C++98
410     // does not have useful semantics for initialization from an init list.
411     // We treat this as copy-initialization, because aggregate initialization
412     // always performs copy-initialization on its elements.
413     //
414     // Only do this if we're initializing a class type, to avoid filling in
415     // the initializer list where possible.
416     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
417                    InitListExpr(SemaRef.Context, Loc, None, Loc);
418     InitExpr->setType(SemaRef.Context.VoidTy);
419     SubInit = InitExpr;
420     Kind = InitializationKind::CreateCopy(Loc, Loc);
421   } else {
422     // C++03:
423     //   shall be value-initialized.
424   }
425 
426   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
427   // libstdc++4.6 marks the vector default constructor as explicit in
428   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
429   // stlport does so too. Look for std::__debug for libstdc++, and for
430   // std:: for stlport.  This is effectively a compiler-side implementation of
431   // LWG2193.
432   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
433           InitializationSequence::FK_ExplicitConstructor) {
434     OverloadCandidateSet::iterator Best;
435     OverloadingResult O =
436         InitSeq.getFailedCandidateSet()
437             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
438     (void)O;
439     assert(O == OR_Success && "Inconsistent overload resolution");
440     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
441     CXXRecordDecl *R = CtorDecl->getParent();
442 
443     if (CtorDecl->getMinRequiredArguments() == 0 &&
444         CtorDecl->isExplicit() && R->getDeclName() &&
445         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
446       bool IsInStd = false;
447       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
448            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
449         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
450           IsInStd = true;
451       }
452 
453       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
454               .Cases("basic_string", "deque", "forward_list", true)
455               .Cases("list", "map", "multimap", "multiset", true)
456               .Cases("priority_queue", "queue", "set", "stack", true)
457               .Cases("unordered_map", "unordered_set", "vector", true)
458               .Default(false)) {
459         InitSeq.InitializeFrom(
460             SemaRef, Entity,
461             InitializationKind::CreateValue(Loc, Loc, Loc, true),
462             MultiExprArg(), /*TopLevelOfInitList=*/false,
463             TreatUnavailableAsInvalid);
464         // Emit a warning for this.  System header warnings aren't shown
465         // by default, but people working on system headers should see it.
466         if (!VerifyOnly) {
467           SemaRef.Diag(CtorDecl->getLocation(),
468                        diag::warn_invalid_initializer_from_system_header);
469           if (Entity.getKind() == InitializedEntity::EK_Member)
470             SemaRef.Diag(Entity.getDecl()->getLocation(),
471                          diag::note_used_in_initialization_here);
472           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
473             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
474         }
475       }
476     }
477   }
478   if (!InitSeq) {
479     if (!VerifyOnly) {
480       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
481       if (Entity.getKind() == InitializedEntity::EK_Member)
482         SemaRef.Diag(Entity.getDecl()->getLocation(),
483                      diag::note_in_omitted_aggregate_initializer)
484           << /*field*/1 << Entity.getDecl();
485       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
486         bool IsTrailingArrayNewMember =
487             Entity.getParent() &&
488             Entity.getParent()->isVariableLengthArrayNew();
489         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
490           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
491           << Entity.getElementIndex();
492       }
493     }
494     return ExprError();
495   }
496 
497   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
498                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
499 }
500 
501 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
502                                               SourceLocation Loc) {
503   assert(VerifyOnly &&
504          "CheckEmptyInitializable is only inteded for verification mode.");
505   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
506                        TreatUnavailableAsInvalid).isInvalid())
507     hadError = true;
508 }
509 
510 void InitListChecker::FillInEmptyInitForBase(
511     unsigned Init, const CXXBaseSpecifier &Base,
512     const InitializedEntity &ParentEntity, InitListExpr *ILE,
513     bool &RequiresSecondPass, bool FillWithNoInit) {
514   assert(Init < ILE->getNumInits() && "should have been expanded");
515 
516   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
517       SemaRef.Context, &Base, false, &ParentEntity);
518 
519   if (!ILE->getInit(Init)) {
520     ExprResult BaseInit =
521         FillWithNoInit
522             ? new (SemaRef.Context) NoInitExpr(Base.getType())
523             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
524                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
525     if (BaseInit.isInvalid()) {
526       hadError = true;
527       return;
528     }
529 
530     ILE->setInit(Init, BaseInit.getAs<Expr>());
531   } else if (InitListExpr *InnerILE =
532                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
533     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
534                                ILE, Init, FillWithNoInit);
535   } else if (DesignatedInitUpdateExpr *InnerDIUE =
536                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
537     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
538                                RequiresSecondPass, ILE, Init,
539                                /*FillWithNoInit =*/true);
540   }
541 }
542 
543 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
544                                         const InitializedEntity &ParentEntity,
545                                               InitListExpr *ILE,
546                                               bool &RequiresSecondPass,
547                                               bool FillWithNoInit) {
548   SourceLocation Loc = ILE->getEndLoc();
549   unsigned NumInits = ILE->getNumInits();
550   InitializedEntity MemberEntity
551     = InitializedEntity::InitializeMember(Field, &ParentEntity);
552 
553   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
554     if (!RType->getDecl()->isUnion())
555       assert(Init < NumInits && "This ILE should have been expanded");
556 
557   if (Init >= NumInits || !ILE->getInit(Init)) {
558     if (FillWithNoInit) {
559       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
560       if (Init < NumInits)
561         ILE->setInit(Init, Filler);
562       else
563         ILE->updateInit(SemaRef.Context, Init, Filler);
564       return;
565     }
566     // C++1y [dcl.init.aggr]p7:
567     //   If there are fewer initializer-clauses in the list than there are
568     //   members in the aggregate, then each member not explicitly initialized
569     //   shall be initialized from its brace-or-equal-initializer [...]
570     if (Field->hasInClassInitializer()) {
571       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
572       if (DIE.isInvalid()) {
573         hadError = true;
574         return;
575       }
576       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
577       if (Init < NumInits)
578         ILE->setInit(Init, DIE.get());
579       else {
580         ILE->updateInit(SemaRef.Context, Init, DIE.get());
581         RequiresSecondPass = true;
582       }
583       return;
584     }
585 
586     if (Field->getType()->isReferenceType()) {
587       // C++ [dcl.init.aggr]p9:
588       //   If an incomplete or empty initializer-list leaves a
589       //   member of reference type uninitialized, the program is
590       //   ill-formed.
591       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
592         << Field->getType()
593         << ILE->getSyntacticForm()->getSourceRange();
594       SemaRef.Diag(Field->getLocation(),
595                    diag::note_uninit_reference_member);
596       hadError = true;
597       return;
598     }
599 
600     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
601                                              /*VerifyOnly*/false,
602                                              TreatUnavailableAsInvalid);
603     if (MemberInit.isInvalid()) {
604       hadError = true;
605       return;
606     }
607 
608     if (hadError) {
609       // Do nothing
610     } else if (Init < NumInits) {
611       ILE->setInit(Init, MemberInit.getAs<Expr>());
612     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
613       // Empty initialization requires a constructor call, so
614       // extend the initializer list to include the constructor
615       // call and make a note that we'll need to take another pass
616       // through the initializer list.
617       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
618       RequiresSecondPass = true;
619     }
620   } else if (InitListExpr *InnerILE
621                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
622     FillInEmptyInitializations(MemberEntity, InnerILE,
623                                RequiresSecondPass, ILE, Init, FillWithNoInit);
624   else if (DesignatedInitUpdateExpr *InnerDIUE
625                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
626     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
627                                RequiresSecondPass, ILE, Init,
628                                /*FillWithNoInit =*/true);
629 }
630 
631 /// Recursively replaces NULL values within the given initializer list
632 /// with expressions that perform value-initialization of the
633 /// appropriate type, and finish off the InitListExpr formation.
634 void
635 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
636                                             InitListExpr *ILE,
637                                             bool &RequiresSecondPass,
638                                             InitListExpr *OuterILE,
639                                             unsigned OuterIndex,
640                                             bool FillWithNoInit) {
641   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
642          "Should not have void type");
643 
644   // If this is a nested initializer list, we might have changed its contents
645   // (and therefore some of its properties, such as instantiation-dependence)
646   // while filling it in. Inform the outer initializer list so that its state
647   // can be updated to match.
648   // FIXME: We should fully build the inner initializers before constructing
649   // the outer InitListExpr instead of mutating AST nodes after they have
650   // been used as subexpressions of other nodes.
651   struct UpdateOuterILEWithUpdatedInit {
652     InitListExpr *Outer;
653     unsigned OuterIndex;
654     ~UpdateOuterILEWithUpdatedInit() {
655       if (Outer)
656         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
657     }
658   } UpdateOuterRAII = {OuterILE, OuterIndex};
659 
660   // A transparent ILE is not performing aggregate initialization and should
661   // not be filled in.
662   if (ILE->isTransparent())
663     return;
664 
665   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
666     const RecordDecl *RDecl = RType->getDecl();
667     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
668       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
669                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
670     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
671              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
672       for (auto *Field : RDecl->fields()) {
673         if (Field->hasInClassInitializer()) {
674           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
675                                   FillWithNoInit);
676           break;
677         }
678       }
679     } else {
680       // The fields beyond ILE->getNumInits() are default initialized, so in
681       // order to leave them uninitialized, the ILE is expanded and the extra
682       // fields are then filled with NoInitExpr.
683       unsigned NumElems = numStructUnionElements(ILE->getType());
684       if (RDecl->hasFlexibleArrayMember())
685         ++NumElems;
686       if (ILE->getNumInits() < NumElems)
687         ILE->resizeInits(SemaRef.Context, NumElems);
688 
689       unsigned Init = 0;
690 
691       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
692         for (auto &Base : CXXRD->bases()) {
693           if (hadError)
694             return;
695 
696           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
697                                  FillWithNoInit);
698           ++Init;
699         }
700       }
701 
702       for (auto *Field : RDecl->fields()) {
703         if (Field->isUnnamedBitfield())
704           continue;
705 
706         if (hadError)
707           return;
708 
709         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
710                                 FillWithNoInit);
711         if (hadError)
712           return;
713 
714         ++Init;
715 
716         // Only look at the first initialization of a union.
717         if (RDecl->isUnion())
718           break;
719       }
720     }
721 
722     return;
723   }
724 
725   QualType ElementType;
726 
727   InitializedEntity ElementEntity = Entity;
728   unsigned NumInits = ILE->getNumInits();
729   unsigned NumElements = NumInits;
730   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
731     ElementType = AType->getElementType();
732     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
733       NumElements = CAType->getSize().getZExtValue();
734     // For an array new with an unknown bound, ask for one additional element
735     // in order to populate the array filler.
736     if (Entity.isVariableLengthArrayNew())
737       ++NumElements;
738     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
739                                                          0, Entity);
740   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
741     ElementType = VType->getElementType();
742     NumElements = VType->getNumElements();
743     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
744                                                          0, Entity);
745   } else
746     ElementType = ILE->getType();
747 
748   for (unsigned Init = 0; Init != NumElements; ++Init) {
749     if (hadError)
750       return;
751 
752     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
753         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
754       ElementEntity.setElementIndex(Init);
755 
756     if (Init >= NumInits && ILE->hasArrayFiller())
757       return;
758 
759     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
760     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
761       ILE->setInit(Init, ILE->getArrayFiller());
762     else if (!InitExpr && !ILE->hasArrayFiller()) {
763       Expr *Filler = nullptr;
764 
765       if (FillWithNoInit)
766         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
767       else {
768         ExprResult ElementInit =
769             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
770                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
771         if (ElementInit.isInvalid()) {
772           hadError = true;
773           return;
774         }
775 
776         Filler = ElementInit.getAs<Expr>();
777       }
778 
779       if (hadError) {
780         // Do nothing
781       } else if (Init < NumInits) {
782         // For arrays, just set the expression used for value-initialization
783         // of the "holes" in the array.
784         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
785           ILE->setArrayFiller(Filler);
786         else
787           ILE->setInit(Init, Filler);
788       } else {
789         // For arrays, just set the expression used for value-initialization
790         // of the rest of elements and exit.
791         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
792           ILE->setArrayFiller(Filler);
793           return;
794         }
795 
796         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
797           // Empty initialization requires a constructor call, so
798           // extend the initializer list to include the constructor
799           // call and make a note that we'll need to take another pass
800           // through the initializer list.
801           ILE->updateInit(SemaRef.Context, Init, Filler);
802           RequiresSecondPass = true;
803         }
804       }
805     } else if (InitListExpr *InnerILE
806                  = dyn_cast_or_null<InitListExpr>(InitExpr))
807       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
808                                  ILE, Init, FillWithNoInit);
809     else if (DesignatedInitUpdateExpr *InnerDIUE
810                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
811       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
812                                  RequiresSecondPass, ILE, Init,
813                                  /*FillWithNoInit =*/true);
814   }
815 }
816 
817 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
818                                  InitListExpr *IL, QualType &T,
819                                  bool VerifyOnly,
820                                  bool TreatUnavailableAsInvalid)
821   : SemaRef(S), VerifyOnly(VerifyOnly),
822     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
823   // FIXME: Check that IL isn't already the semantic form of some other
824   // InitListExpr. If it is, we'd create a broken AST.
825 
826   hadError = false;
827 
828   FullyStructuredList =
829       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
830   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
831                         /*TopLevelObject=*/true);
832 
833   if (!hadError && !VerifyOnly) {
834     bool RequiresSecondPass = false;
835     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
836                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
837     if (RequiresSecondPass && !hadError)
838       FillInEmptyInitializations(Entity, FullyStructuredList,
839                                  RequiresSecondPass, nullptr, 0);
840   }
841 }
842 
843 int InitListChecker::numArrayElements(QualType DeclType) {
844   // FIXME: use a proper constant
845   int maxElements = 0x7FFFFFFF;
846   if (const ConstantArrayType *CAT =
847         SemaRef.Context.getAsConstantArrayType(DeclType)) {
848     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
849   }
850   return maxElements;
851 }
852 
853 int InitListChecker::numStructUnionElements(QualType DeclType) {
854   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
855   int InitializableMembers = 0;
856   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
857     InitializableMembers += CXXRD->getNumBases();
858   for (const auto *Field : structDecl->fields())
859     if (!Field->isUnnamedBitfield())
860       ++InitializableMembers;
861 
862   if (structDecl->isUnion())
863     return std::min(InitializableMembers, 1);
864   return InitializableMembers - structDecl->hasFlexibleArrayMember();
865 }
866 
867 /// Determine whether Entity is an entity for which it is idiomatic to elide
868 /// the braces in aggregate initialization.
869 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
870   // Recursive initialization of the one and only field within an aggregate
871   // class is considered idiomatic. This case arises in particular for
872   // initialization of std::array, where the C++ standard suggests the idiom of
873   //
874   //   std::array<T, N> arr = {1, 2, 3};
875   //
876   // (where std::array is an aggregate struct containing a single array field.
877 
878   // FIXME: Should aggregate initialization of a struct with a single
879   // base class and no members also suppress the warning?
880   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
881     return false;
882 
883   auto *ParentRD =
884       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
885   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
886     if (CXXRD->getNumBases())
887       return false;
888 
889   auto FieldIt = ParentRD->field_begin();
890   assert(FieldIt != ParentRD->field_end() &&
891          "no fields but have initializer for member?");
892   return ++FieldIt == ParentRD->field_end();
893 }
894 
895 /// Check whether the range of the initializer \p ParentIList from element
896 /// \p Index onwards can be used to initialize an object of type \p T. Update
897 /// \p Index to indicate how many elements of the list were consumed.
898 ///
899 /// This also fills in \p StructuredList, from element \p StructuredIndex
900 /// onwards, with the fully-braced, desugared form of the initialization.
901 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
902                                             InitListExpr *ParentIList,
903                                             QualType T, unsigned &Index,
904                                             InitListExpr *StructuredList,
905                                             unsigned &StructuredIndex) {
906   int maxElements = 0;
907 
908   if (T->isArrayType())
909     maxElements = numArrayElements(T);
910   else if (T->isRecordType())
911     maxElements = numStructUnionElements(T);
912   else if (T->isVectorType())
913     maxElements = T->getAs<VectorType>()->getNumElements();
914   else
915     llvm_unreachable("CheckImplicitInitList(): Illegal type");
916 
917   if (maxElements == 0) {
918     if (!VerifyOnly)
919       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
920                    diag::err_implicit_empty_initializer);
921     ++Index;
922     hadError = true;
923     return;
924   }
925 
926   // Build a structured initializer list corresponding to this subobject.
927   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
928       ParentIList, Index, T, StructuredList, StructuredIndex,
929       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
930                   ParentIList->getSourceRange().getEnd()));
931   unsigned StructuredSubobjectInitIndex = 0;
932 
933   // Check the element types and build the structural subobject.
934   unsigned StartIndex = Index;
935   CheckListElementTypes(Entity, ParentIList, T,
936                         /*SubobjectIsDesignatorContext=*/false, Index,
937                         StructuredSubobjectInitList,
938                         StructuredSubobjectInitIndex);
939 
940   if (!VerifyOnly) {
941     StructuredSubobjectInitList->setType(T);
942 
943     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
944     // Update the structured sub-object initializer so that it's ending
945     // range corresponds with the end of the last initializer it used.
946     if (EndIndex < ParentIList->getNumInits() &&
947         ParentIList->getInit(EndIndex)) {
948       SourceLocation EndLoc
949         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
950       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
951     }
952 
953     // Complain about missing braces.
954     if ((T->isArrayType() || T->isRecordType()) &&
955         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
956         !isIdiomaticBraceElisionEntity(Entity)) {
957       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
958                    diag::warn_missing_braces)
959           << StructuredSubobjectInitList->getSourceRange()
960           << FixItHint::CreateInsertion(
961                  StructuredSubobjectInitList->getBeginLoc(), "{")
962           << FixItHint::CreateInsertion(
963                  SemaRef.getLocForEndOfToken(
964                      StructuredSubobjectInitList->getEndLoc()),
965                  "}");
966     }
967 
968     // Warn if this type won't be an aggregate in future versions of C++.
969     auto *CXXRD = T->getAsCXXRecordDecl();
970     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
971       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
972                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
973           << StructuredSubobjectInitList->getSourceRange() << T;
974     }
975   }
976 }
977 
978 /// Warn that \p Entity was of scalar type and was initialized by a
979 /// single-element braced initializer list.
980 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
981                                  SourceRange Braces) {
982   // Don't warn during template instantiation. If the initialization was
983   // non-dependent, we warned during the initial parse; otherwise, the
984   // type might not be scalar in some uses of the template.
985   if (S.inTemplateInstantiation())
986     return;
987 
988   unsigned DiagID = 0;
989 
990   switch (Entity.getKind()) {
991   case InitializedEntity::EK_VectorElement:
992   case InitializedEntity::EK_ComplexElement:
993   case InitializedEntity::EK_ArrayElement:
994   case InitializedEntity::EK_Parameter:
995   case InitializedEntity::EK_Parameter_CF_Audited:
996   case InitializedEntity::EK_Result:
997     // Extra braces here are suspicious.
998     DiagID = diag::warn_braces_around_scalar_init;
999     break;
1000 
1001   case InitializedEntity::EK_Member:
1002     // Warn on aggregate initialization but not on ctor init list or
1003     // default member initializer.
1004     if (Entity.getParent())
1005       DiagID = diag::warn_braces_around_scalar_init;
1006     break;
1007 
1008   case InitializedEntity::EK_Variable:
1009   case InitializedEntity::EK_LambdaCapture:
1010     // No warning, might be direct-list-initialization.
1011     // FIXME: Should we warn for copy-list-initialization in these cases?
1012     break;
1013 
1014   case InitializedEntity::EK_New:
1015   case InitializedEntity::EK_Temporary:
1016   case InitializedEntity::EK_CompoundLiteralInit:
1017     // No warning, braces are part of the syntax of the underlying construct.
1018     break;
1019 
1020   case InitializedEntity::EK_RelatedResult:
1021     // No warning, we already warned when initializing the result.
1022     break;
1023 
1024   case InitializedEntity::EK_Exception:
1025   case InitializedEntity::EK_Base:
1026   case InitializedEntity::EK_Delegating:
1027   case InitializedEntity::EK_BlockElement:
1028   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1029   case InitializedEntity::EK_Binding:
1030   case InitializedEntity::EK_StmtExprResult:
1031     llvm_unreachable("unexpected braced scalar init");
1032   }
1033 
1034   if (DiagID) {
1035     S.Diag(Braces.getBegin(), DiagID)
1036       << Braces
1037       << FixItHint::CreateRemoval(Braces.getBegin())
1038       << FixItHint::CreateRemoval(Braces.getEnd());
1039   }
1040 }
1041 
1042 /// Check whether the initializer \p IList (that was written with explicit
1043 /// braces) can be used to initialize an object of type \p T.
1044 ///
1045 /// This also fills in \p StructuredList with the fully-braced, desugared
1046 /// form of the initialization.
1047 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1048                                             InitListExpr *IList, QualType &T,
1049                                             InitListExpr *StructuredList,
1050                                             bool TopLevelObject) {
1051   if (!VerifyOnly) {
1052     SyntacticToSemantic[IList] = StructuredList;
1053     StructuredList->setSyntacticForm(IList);
1054   }
1055 
1056   unsigned Index = 0, StructuredIndex = 0;
1057   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1058                         Index, StructuredList, StructuredIndex, TopLevelObject);
1059   if (!VerifyOnly) {
1060     QualType ExprTy = T;
1061     if (!ExprTy->isArrayType())
1062       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1063     IList->setType(ExprTy);
1064     StructuredList->setType(ExprTy);
1065   }
1066   if (hadError)
1067     return;
1068 
1069   if (Index < IList->getNumInits()) {
1070     // We have leftover initializers
1071     if (VerifyOnly) {
1072       if (SemaRef.getLangOpts().CPlusPlus ||
1073           (SemaRef.getLangOpts().OpenCL &&
1074            IList->getType()->isVectorType())) {
1075         hadError = true;
1076       }
1077       return;
1078     }
1079 
1080     if (StructuredIndex == 1 &&
1081         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1082             SIF_None) {
1083       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1084       if (SemaRef.getLangOpts().CPlusPlus) {
1085         DK = diag::err_excess_initializers_in_char_array_initializer;
1086         hadError = true;
1087       }
1088       // Special-case
1089       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1090           << IList->getInit(Index)->getSourceRange();
1091     } else if (!T->isIncompleteType()) {
1092       // Don't complain for incomplete types, since we'll get an error
1093       // elsewhere
1094       QualType CurrentObjectType = StructuredList->getType();
1095       int initKind =
1096         CurrentObjectType->isArrayType()? 0 :
1097         CurrentObjectType->isVectorType()? 1 :
1098         CurrentObjectType->isScalarType()? 2 :
1099         CurrentObjectType->isUnionType()? 3 :
1100         4;
1101 
1102       unsigned DK = diag::ext_excess_initializers;
1103       if (SemaRef.getLangOpts().CPlusPlus) {
1104         DK = diag::err_excess_initializers;
1105         hadError = true;
1106       }
1107       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1108         DK = diag::err_excess_initializers;
1109         hadError = true;
1110       }
1111 
1112       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1113           << initKind << IList->getInit(Index)->getSourceRange();
1114     }
1115   }
1116 
1117   if (!VerifyOnly) {
1118     if (T->isScalarType() && IList->getNumInits() == 1 &&
1119         !isa<InitListExpr>(IList->getInit(0)))
1120       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1121 
1122     // Warn if this is a class type that won't be an aggregate in future
1123     // versions of C++.
1124     auto *CXXRD = T->getAsCXXRecordDecl();
1125     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1126       // Don't warn if there's an equivalent default constructor that would be
1127       // used instead.
1128       bool HasEquivCtor = false;
1129       if (IList->getNumInits() == 0) {
1130         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1131         HasEquivCtor = CD && !CD->isDeleted();
1132       }
1133 
1134       if (!HasEquivCtor) {
1135         SemaRef.Diag(IList->getBeginLoc(),
1136                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1137             << IList->getSourceRange() << T;
1138       }
1139     }
1140   }
1141 }
1142 
1143 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1144                                             InitListExpr *IList,
1145                                             QualType &DeclType,
1146                                             bool SubobjectIsDesignatorContext,
1147                                             unsigned &Index,
1148                                             InitListExpr *StructuredList,
1149                                             unsigned &StructuredIndex,
1150                                             bool TopLevelObject) {
1151   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1152     // Explicitly braced initializer for complex type can be real+imaginary
1153     // parts.
1154     CheckComplexType(Entity, IList, DeclType, Index,
1155                      StructuredList, StructuredIndex);
1156   } else if (DeclType->isScalarType()) {
1157     CheckScalarType(Entity, IList, DeclType, Index,
1158                     StructuredList, StructuredIndex);
1159   } else if (DeclType->isVectorType()) {
1160     CheckVectorType(Entity, IList, DeclType, Index,
1161                     StructuredList, StructuredIndex);
1162   } else if (DeclType->isRecordType()) {
1163     assert(DeclType->isAggregateType() &&
1164            "non-aggregate records should be handed in CheckSubElementType");
1165     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1166     auto Bases =
1167         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1168                                         CXXRecordDecl::base_class_iterator());
1169     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1170       Bases = CXXRD->bases();
1171     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1172                           SubobjectIsDesignatorContext, Index, StructuredList,
1173                           StructuredIndex, TopLevelObject);
1174   } else if (DeclType->isArrayType()) {
1175     llvm::APSInt Zero(
1176                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1177                     false);
1178     CheckArrayType(Entity, IList, DeclType, Zero,
1179                    SubobjectIsDesignatorContext, Index,
1180                    StructuredList, StructuredIndex);
1181   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1182     // This type is invalid, issue a diagnostic.
1183     ++Index;
1184     if (!VerifyOnly)
1185       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1186           << DeclType;
1187     hadError = true;
1188   } else if (DeclType->isReferenceType()) {
1189     CheckReferenceType(Entity, IList, DeclType, Index,
1190                        StructuredList, StructuredIndex);
1191   } else if (DeclType->isObjCObjectType()) {
1192     if (!VerifyOnly)
1193       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1194     hadError = true;
1195   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1196     // Checks for scalar type are sufficient for these types too.
1197     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1198                     StructuredIndex);
1199   } else {
1200     if (!VerifyOnly)
1201       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1202           << DeclType;
1203     hadError = true;
1204   }
1205 }
1206 
1207 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1208                                           InitListExpr *IList,
1209                                           QualType ElemType,
1210                                           unsigned &Index,
1211                                           InitListExpr *StructuredList,
1212                                           unsigned &StructuredIndex) {
1213   Expr *expr = IList->getInit(Index);
1214 
1215   if (ElemType->isReferenceType())
1216     return CheckReferenceType(Entity, IList, ElemType, Index,
1217                               StructuredList, StructuredIndex);
1218 
1219   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1220     if (SubInitList->getNumInits() == 1 &&
1221         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1222         SIF_None) {
1223       expr = SubInitList->getInit(0);
1224     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1225       InitListExpr *InnerStructuredList
1226         = getStructuredSubobjectInit(IList, Index, ElemType,
1227                                      StructuredList, StructuredIndex,
1228                                      SubInitList->getSourceRange(), true);
1229       CheckExplicitInitList(Entity, SubInitList, ElemType,
1230                             InnerStructuredList);
1231 
1232       if (!hadError && !VerifyOnly) {
1233         bool RequiresSecondPass = false;
1234         FillInEmptyInitializations(Entity, InnerStructuredList,
1235                                    RequiresSecondPass, StructuredList,
1236                                    StructuredIndex);
1237         if (RequiresSecondPass && !hadError)
1238           FillInEmptyInitializations(Entity, InnerStructuredList,
1239                                      RequiresSecondPass, StructuredList,
1240                                      StructuredIndex);
1241       }
1242       ++StructuredIndex;
1243       ++Index;
1244       return;
1245     }
1246     // C++ initialization is handled later.
1247   } else if (isa<ImplicitValueInitExpr>(expr)) {
1248     // This happens during template instantiation when we see an InitListExpr
1249     // that we've already checked once.
1250     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1251            "found implicit initialization for the wrong type");
1252     if (!VerifyOnly)
1253       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1254     ++Index;
1255     return;
1256   }
1257 
1258   if (SemaRef.getLangOpts().CPlusPlus) {
1259     // C++ [dcl.init.aggr]p2:
1260     //   Each member is copy-initialized from the corresponding
1261     //   initializer-clause.
1262 
1263     // FIXME: Better EqualLoc?
1264     InitializationKind Kind =
1265         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1266     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1267                                /*TopLevelOfInitList*/ true);
1268 
1269     // C++14 [dcl.init.aggr]p13:
1270     //   If the assignment-expression can initialize a member, the member is
1271     //   initialized. Otherwise [...] brace elision is assumed
1272     //
1273     // Brace elision is never performed if the element is not an
1274     // assignment-expression.
1275     if (Seq || isa<InitListExpr>(expr)) {
1276       if (!VerifyOnly) {
1277         ExprResult Result =
1278           Seq.Perform(SemaRef, Entity, Kind, expr);
1279         if (Result.isInvalid())
1280           hadError = true;
1281 
1282         UpdateStructuredListElement(StructuredList, StructuredIndex,
1283                                     Result.getAs<Expr>());
1284       } else if (!Seq)
1285         hadError = true;
1286       ++Index;
1287       return;
1288     }
1289 
1290     // Fall through for subaggregate initialization
1291   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1292     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1293     return CheckScalarType(Entity, IList, ElemType, Index,
1294                            StructuredList, StructuredIndex);
1295   } else if (const ArrayType *arrayType =
1296                  SemaRef.Context.getAsArrayType(ElemType)) {
1297     // arrayType can be incomplete if we're initializing a flexible
1298     // array member.  There's nothing we can do with the completed
1299     // type here, though.
1300 
1301     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1302       if (!VerifyOnly) {
1303         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1304         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1305       }
1306       ++Index;
1307       return;
1308     }
1309 
1310     // Fall through for subaggregate initialization.
1311 
1312   } else {
1313     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1314             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1315 
1316     // C99 6.7.8p13:
1317     //
1318     //   The initializer for a structure or union object that has
1319     //   automatic storage duration shall be either an initializer
1320     //   list as described below, or a single expression that has
1321     //   compatible structure or union type. In the latter case, the
1322     //   initial value of the object, including unnamed members, is
1323     //   that of the expression.
1324     ExprResult ExprRes = expr;
1325     if (SemaRef.CheckSingleAssignmentConstraints(
1326             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1327       if (ExprRes.isInvalid())
1328         hadError = true;
1329       else {
1330         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1331           if (ExprRes.isInvalid())
1332             hadError = true;
1333       }
1334       UpdateStructuredListElement(StructuredList, StructuredIndex,
1335                                   ExprRes.getAs<Expr>());
1336       ++Index;
1337       return;
1338     }
1339     ExprRes.get();
1340     // Fall through for subaggregate initialization
1341   }
1342 
1343   // C++ [dcl.init.aggr]p12:
1344   //
1345   //   [...] Otherwise, if the member is itself a non-empty
1346   //   subaggregate, brace elision is assumed and the initializer is
1347   //   considered for the initialization of the first member of
1348   //   the subaggregate.
1349   // OpenCL vector initializer is handled elsewhere.
1350   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1351       ElemType->isAggregateType()) {
1352     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1353                           StructuredIndex);
1354     ++StructuredIndex;
1355   } else {
1356     if (!VerifyOnly) {
1357       // We cannot initialize this element, so let
1358       // PerformCopyInitialization produce the appropriate diagnostic.
1359       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1360                                         /*TopLevelOfInitList=*/true);
1361     }
1362     hadError = true;
1363     ++Index;
1364     ++StructuredIndex;
1365   }
1366 }
1367 
1368 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1369                                        InitListExpr *IList, QualType DeclType,
1370                                        unsigned &Index,
1371                                        InitListExpr *StructuredList,
1372                                        unsigned &StructuredIndex) {
1373   assert(Index == 0 && "Index in explicit init list must be zero");
1374 
1375   // As an extension, clang supports complex initializers, which initialize
1376   // a complex number component-wise.  When an explicit initializer list for
1377   // a complex number contains two two initializers, this extension kicks in:
1378   // it exepcts the initializer list to contain two elements convertible to
1379   // the element type of the complex type. The first element initializes
1380   // the real part, and the second element intitializes the imaginary part.
1381 
1382   if (IList->getNumInits() != 2)
1383     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1384                            StructuredIndex);
1385 
1386   // This is an extension in C.  (The builtin _Complex type does not exist
1387   // in the C++ standard.)
1388   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1389     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1390         << IList->getSourceRange();
1391 
1392   // Initialize the complex number.
1393   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1394   InitializedEntity ElementEntity =
1395     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1396 
1397   for (unsigned i = 0; i < 2; ++i) {
1398     ElementEntity.setElementIndex(Index);
1399     CheckSubElementType(ElementEntity, IList, elementType, Index,
1400                         StructuredList, StructuredIndex);
1401   }
1402 }
1403 
1404 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1405                                       InitListExpr *IList, QualType DeclType,
1406                                       unsigned &Index,
1407                                       InitListExpr *StructuredList,
1408                                       unsigned &StructuredIndex) {
1409   if (Index >= IList->getNumInits()) {
1410     if (!VerifyOnly)
1411       SemaRef.Diag(IList->getBeginLoc(),
1412                    SemaRef.getLangOpts().CPlusPlus11
1413                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1414                        : diag::err_empty_scalar_initializer)
1415           << IList->getSourceRange();
1416     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1417     ++Index;
1418     ++StructuredIndex;
1419     return;
1420   }
1421 
1422   Expr *expr = IList->getInit(Index);
1423   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1424     // FIXME: This is invalid, and accepting it causes overload resolution
1425     // to pick the wrong overload in some corner cases.
1426     if (!VerifyOnly)
1427       SemaRef.Diag(SubIList->getBeginLoc(),
1428                    diag::ext_many_braces_around_scalar_init)
1429           << SubIList->getSourceRange();
1430 
1431     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1432                     StructuredIndex);
1433     return;
1434   } else if (isa<DesignatedInitExpr>(expr)) {
1435     if (!VerifyOnly)
1436       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1437           << DeclType << expr->getSourceRange();
1438     hadError = true;
1439     ++Index;
1440     ++StructuredIndex;
1441     return;
1442   }
1443 
1444   if (VerifyOnly) {
1445     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1446       hadError = true;
1447     ++Index;
1448     return;
1449   }
1450 
1451   ExprResult Result =
1452       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1453                                         /*TopLevelOfInitList=*/true);
1454 
1455   Expr *ResultExpr = nullptr;
1456 
1457   if (Result.isInvalid())
1458     hadError = true; // types weren't compatible.
1459   else {
1460     ResultExpr = Result.getAs<Expr>();
1461 
1462     if (ResultExpr != expr) {
1463       // The type was promoted, update initializer list.
1464       IList->setInit(Index, ResultExpr);
1465     }
1466   }
1467   if (hadError)
1468     ++StructuredIndex;
1469   else
1470     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1471   ++Index;
1472 }
1473 
1474 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1475                                          InitListExpr *IList, QualType DeclType,
1476                                          unsigned &Index,
1477                                          InitListExpr *StructuredList,
1478                                          unsigned &StructuredIndex) {
1479   if (Index >= IList->getNumInits()) {
1480     // FIXME: It would be wonderful if we could point at the actual member. In
1481     // general, it would be useful to pass location information down the stack,
1482     // so that we know the location (or decl) of the "current object" being
1483     // initialized.
1484     if (!VerifyOnly)
1485       SemaRef.Diag(IList->getBeginLoc(),
1486                    diag::err_init_reference_member_uninitialized)
1487           << DeclType << IList->getSourceRange();
1488     hadError = true;
1489     ++Index;
1490     ++StructuredIndex;
1491     return;
1492   }
1493 
1494   Expr *expr = IList->getInit(Index);
1495   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1496     if (!VerifyOnly)
1497       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1498           << DeclType << IList->getSourceRange();
1499     hadError = true;
1500     ++Index;
1501     ++StructuredIndex;
1502     return;
1503   }
1504 
1505   if (VerifyOnly) {
1506     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1507       hadError = true;
1508     ++Index;
1509     return;
1510   }
1511 
1512   ExprResult Result =
1513       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1514                                         /*TopLevelOfInitList=*/true);
1515 
1516   if (Result.isInvalid())
1517     hadError = true;
1518 
1519   expr = Result.getAs<Expr>();
1520   IList->setInit(Index, expr);
1521 
1522   if (hadError)
1523     ++StructuredIndex;
1524   else
1525     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1526   ++Index;
1527 }
1528 
1529 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1530                                       InitListExpr *IList, QualType DeclType,
1531                                       unsigned &Index,
1532                                       InitListExpr *StructuredList,
1533                                       unsigned &StructuredIndex) {
1534   const VectorType *VT = DeclType->getAs<VectorType>();
1535   unsigned maxElements = VT->getNumElements();
1536   unsigned numEltsInit = 0;
1537   QualType elementType = VT->getElementType();
1538 
1539   if (Index >= IList->getNumInits()) {
1540     // Make sure the element type can be value-initialized.
1541     if (VerifyOnly)
1542       CheckEmptyInitializable(
1543           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1544           IList->getEndLoc());
1545     return;
1546   }
1547 
1548   if (!SemaRef.getLangOpts().OpenCL) {
1549     // If the initializing element is a vector, try to copy-initialize
1550     // instead of breaking it apart (which is doomed to failure anyway).
1551     Expr *Init = IList->getInit(Index);
1552     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1553       if (VerifyOnly) {
1554         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1555           hadError = true;
1556         ++Index;
1557         return;
1558       }
1559 
1560       ExprResult Result =
1561           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1562                                             /*TopLevelOfInitList=*/true);
1563 
1564       Expr *ResultExpr = nullptr;
1565       if (Result.isInvalid())
1566         hadError = true; // types weren't compatible.
1567       else {
1568         ResultExpr = Result.getAs<Expr>();
1569 
1570         if (ResultExpr != Init) {
1571           // The type was promoted, update initializer list.
1572           IList->setInit(Index, ResultExpr);
1573         }
1574       }
1575       if (hadError)
1576         ++StructuredIndex;
1577       else
1578         UpdateStructuredListElement(StructuredList, StructuredIndex,
1579                                     ResultExpr);
1580       ++Index;
1581       return;
1582     }
1583 
1584     InitializedEntity ElementEntity =
1585       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1586 
1587     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1588       // Don't attempt to go past the end of the init list
1589       if (Index >= IList->getNumInits()) {
1590         if (VerifyOnly)
1591           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1592         break;
1593       }
1594 
1595       ElementEntity.setElementIndex(Index);
1596       CheckSubElementType(ElementEntity, IList, elementType, Index,
1597                           StructuredList, StructuredIndex);
1598     }
1599 
1600     if (VerifyOnly)
1601       return;
1602 
1603     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1604     const VectorType *T = Entity.getType()->getAs<VectorType>();
1605     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1606                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1607       // The ability to use vector initializer lists is a GNU vector extension
1608       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1609       // endian machines it works fine, however on big endian machines it
1610       // exhibits surprising behaviour:
1611       //
1612       //   uint32x2_t x = {42, 64};
1613       //   return vget_lane_u32(x, 0); // Will return 64.
1614       //
1615       // Because of this, explicitly call out that it is non-portable.
1616       //
1617       SemaRef.Diag(IList->getBeginLoc(),
1618                    diag::warn_neon_vector_initializer_non_portable);
1619 
1620       const char *typeCode;
1621       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1622 
1623       if (elementType->isFloatingType())
1624         typeCode = "f";
1625       else if (elementType->isSignedIntegerType())
1626         typeCode = "s";
1627       else if (elementType->isUnsignedIntegerType())
1628         typeCode = "u";
1629       else
1630         llvm_unreachable("Invalid element type!");
1631 
1632       SemaRef.Diag(IList->getBeginLoc(),
1633                    SemaRef.Context.getTypeSize(VT) > 64
1634                        ? diag::note_neon_vector_initializer_non_portable_q
1635                        : diag::note_neon_vector_initializer_non_portable)
1636           << typeCode << typeSize;
1637     }
1638 
1639     return;
1640   }
1641 
1642   InitializedEntity ElementEntity =
1643     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1644 
1645   // OpenCL initializers allows vectors to be constructed from vectors.
1646   for (unsigned i = 0; i < maxElements; ++i) {
1647     // Don't attempt to go past the end of the init list
1648     if (Index >= IList->getNumInits())
1649       break;
1650 
1651     ElementEntity.setElementIndex(Index);
1652 
1653     QualType IType = IList->getInit(Index)->getType();
1654     if (!IType->isVectorType()) {
1655       CheckSubElementType(ElementEntity, IList, elementType, Index,
1656                           StructuredList, StructuredIndex);
1657       ++numEltsInit;
1658     } else {
1659       QualType VecType;
1660       const VectorType *IVT = IType->getAs<VectorType>();
1661       unsigned numIElts = IVT->getNumElements();
1662 
1663       if (IType->isExtVectorType())
1664         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1665       else
1666         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1667                                                 IVT->getVectorKind());
1668       CheckSubElementType(ElementEntity, IList, VecType, Index,
1669                           StructuredList, StructuredIndex);
1670       numEltsInit += numIElts;
1671     }
1672   }
1673 
1674   // OpenCL requires all elements to be initialized.
1675   if (numEltsInit != maxElements) {
1676     if (!VerifyOnly)
1677       SemaRef.Diag(IList->getBeginLoc(),
1678                    diag::err_vector_incorrect_num_initializers)
1679           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1680     hadError = true;
1681   }
1682 }
1683 
1684 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1685                                      InitListExpr *IList, QualType &DeclType,
1686                                      llvm::APSInt elementIndex,
1687                                      bool SubobjectIsDesignatorContext,
1688                                      unsigned &Index,
1689                                      InitListExpr *StructuredList,
1690                                      unsigned &StructuredIndex) {
1691   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1692 
1693   // Check for the special-case of initializing an array with a string.
1694   if (Index < IList->getNumInits()) {
1695     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1696         SIF_None) {
1697       // We place the string literal directly into the resulting
1698       // initializer list. This is the only place where the structure
1699       // of the structured initializer list doesn't match exactly,
1700       // because doing so would involve allocating one character
1701       // constant for each string.
1702       if (!VerifyOnly) {
1703         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1704         UpdateStructuredListElement(StructuredList, StructuredIndex,
1705                                     IList->getInit(Index));
1706         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1707       }
1708       ++Index;
1709       return;
1710     }
1711   }
1712   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1713     // Check for VLAs; in standard C it would be possible to check this
1714     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1715     // them in all sorts of strange places).
1716     if (!VerifyOnly)
1717       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1718                    diag::err_variable_object_no_init)
1719           << VAT->getSizeExpr()->getSourceRange();
1720     hadError = true;
1721     ++Index;
1722     ++StructuredIndex;
1723     return;
1724   }
1725 
1726   // We might know the maximum number of elements in advance.
1727   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1728                            elementIndex.isUnsigned());
1729   bool maxElementsKnown = false;
1730   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1731     maxElements = CAT->getSize();
1732     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1733     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1734     maxElementsKnown = true;
1735   }
1736 
1737   QualType elementType = arrayType->getElementType();
1738   while (Index < IList->getNumInits()) {
1739     Expr *Init = IList->getInit(Index);
1740     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1741       // If we're not the subobject that matches up with the '{' for
1742       // the designator, we shouldn't be handling the
1743       // designator. Return immediately.
1744       if (!SubobjectIsDesignatorContext)
1745         return;
1746 
1747       // Handle this designated initializer. elementIndex will be
1748       // updated to be the next array element we'll initialize.
1749       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1750                                      DeclType, nullptr, &elementIndex, Index,
1751                                      StructuredList, StructuredIndex, true,
1752                                      false)) {
1753         hadError = true;
1754         continue;
1755       }
1756 
1757       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1758         maxElements = maxElements.extend(elementIndex.getBitWidth());
1759       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1760         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1761       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1762 
1763       // If the array is of incomplete type, keep track of the number of
1764       // elements in the initializer.
1765       if (!maxElementsKnown && elementIndex > maxElements)
1766         maxElements = elementIndex;
1767 
1768       continue;
1769     }
1770 
1771     // If we know the maximum number of elements, and we've already
1772     // hit it, stop consuming elements in the initializer list.
1773     if (maxElementsKnown && elementIndex == maxElements)
1774       break;
1775 
1776     InitializedEntity ElementEntity =
1777       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1778                                            Entity);
1779     // Check this element.
1780     CheckSubElementType(ElementEntity, IList, elementType, Index,
1781                         StructuredList, StructuredIndex);
1782     ++elementIndex;
1783 
1784     // If the array is of incomplete type, keep track of the number of
1785     // elements in the initializer.
1786     if (!maxElementsKnown && elementIndex > maxElements)
1787       maxElements = elementIndex;
1788   }
1789   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1790     // If this is an incomplete array type, the actual type needs to
1791     // be calculated here.
1792     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1793     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1794       // Sizing an array implicitly to zero is not allowed by ISO C,
1795       // but is supported by GNU.
1796       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1797     }
1798 
1799     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1800                                                      ArrayType::Normal, 0);
1801   }
1802   if (!hadError && VerifyOnly) {
1803     // If there are any members of the array that get value-initialized, check
1804     // that is possible. That happens if we know the bound and don't have
1805     // enough elements, or if we're performing an array new with an unknown
1806     // bound.
1807     // FIXME: This needs to detect holes left by designated initializers too.
1808     if ((maxElementsKnown && elementIndex < maxElements) ||
1809         Entity.isVariableLengthArrayNew())
1810       CheckEmptyInitializable(
1811           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1812           IList->getEndLoc());
1813   }
1814 }
1815 
1816 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1817                                              Expr *InitExpr,
1818                                              FieldDecl *Field,
1819                                              bool TopLevelObject) {
1820   // Handle GNU flexible array initializers.
1821   unsigned FlexArrayDiag;
1822   if (isa<InitListExpr>(InitExpr) &&
1823       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1824     // Empty flexible array init always allowed as an extension
1825     FlexArrayDiag = diag::ext_flexible_array_init;
1826   } else if (SemaRef.getLangOpts().CPlusPlus) {
1827     // Disallow flexible array init in C++; it is not required for gcc
1828     // compatibility, and it needs work to IRGen correctly in general.
1829     FlexArrayDiag = diag::err_flexible_array_init;
1830   } else if (!TopLevelObject) {
1831     // Disallow flexible array init on non-top-level object
1832     FlexArrayDiag = diag::err_flexible_array_init;
1833   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1834     // Disallow flexible array init on anything which is not a variable.
1835     FlexArrayDiag = diag::err_flexible_array_init;
1836   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1837     // Disallow flexible array init on local variables.
1838     FlexArrayDiag = diag::err_flexible_array_init;
1839   } else {
1840     // Allow other cases.
1841     FlexArrayDiag = diag::ext_flexible_array_init;
1842   }
1843 
1844   if (!VerifyOnly) {
1845     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1846         << InitExpr->getBeginLoc();
1847     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1848       << Field;
1849   }
1850 
1851   return FlexArrayDiag != diag::ext_flexible_array_init;
1852 }
1853 
1854 /// Check if the type of a class element has an accessible destructor.
1855 ///
1856 /// Aggregate initialization requires a class element's destructor be
1857 /// accessible per 11.6.1 [dcl.init.aggr]:
1858 ///
1859 /// The destructor for each element of class type is potentially invoked
1860 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1861 /// occurs.
1862 static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1863                                     Sema &SemaRef) {
1864   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1865   if (!CXXRD)
1866     return false;
1867 
1868   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1869   SemaRef.CheckDestructorAccess(Loc, Destructor,
1870                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1871                                     << ElementType);
1872   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1873   if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1874     return true;
1875   return false;
1876 }
1877 
1878 void InitListChecker::CheckStructUnionTypes(
1879     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1880     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1881     bool SubobjectIsDesignatorContext, unsigned &Index,
1882     InitListExpr *StructuredList, unsigned &StructuredIndex,
1883     bool TopLevelObject) {
1884   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1885 
1886   // If the record is invalid, some of it's members are invalid. To avoid
1887   // confusion, we forgo checking the intializer for the entire record.
1888   if (structDecl->isInvalidDecl()) {
1889     // Assume it was supposed to consume a single initializer.
1890     ++Index;
1891     hadError = true;
1892     return;
1893   }
1894 
1895   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1896     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1897 
1898     if (!VerifyOnly)
1899       for (FieldDecl *FD : RD->fields()) {
1900         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1901         if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1902           hadError = true;
1903           return;
1904         }
1905       }
1906 
1907     // If there's a default initializer, use it.
1908     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1909       if (VerifyOnly)
1910         return;
1911       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1912            Field != FieldEnd; ++Field) {
1913         if (Field->hasInClassInitializer()) {
1914           StructuredList->setInitializedFieldInUnion(*Field);
1915           // FIXME: Actually build a CXXDefaultInitExpr?
1916           return;
1917         }
1918       }
1919     }
1920 
1921     // Value-initialize the first member of the union that isn't an unnamed
1922     // bitfield.
1923     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1924          Field != FieldEnd; ++Field) {
1925       if (!Field->isUnnamedBitfield()) {
1926         if (VerifyOnly)
1927           CheckEmptyInitializable(
1928               InitializedEntity::InitializeMember(*Field, &Entity),
1929               IList->getEndLoc());
1930         else
1931           StructuredList->setInitializedFieldInUnion(*Field);
1932         break;
1933       }
1934     }
1935     return;
1936   }
1937 
1938   bool InitializedSomething = false;
1939 
1940   // If we have any base classes, they are initialized prior to the fields.
1941   for (auto &Base : Bases) {
1942     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1943 
1944     // Designated inits always initialize fields, so if we see one, all
1945     // remaining base classes have no explicit initializer.
1946     if (Init && isa<DesignatedInitExpr>(Init))
1947       Init = nullptr;
1948 
1949     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1950     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1951         SemaRef.Context, &Base, false, &Entity);
1952     if (Init) {
1953       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1954                           StructuredList, StructuredIndex);
1955       InitializedSomething = true;
1956     } else if (VerifyOnly) {
1957       CheckEmptyInitializable(BaseEntity, InitLoc);
1958     }
1959 
1960     if (!VerifyOnly)
1961       if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1962         hadError = true;
1963         return;
1964       }
1965   }
1966 
1967   // If structDecl is a forward declaration, this loop won't do
1968   // anything except look at designated initializers; That's okay,
1969   // because an error should get printed out elsewhere. It might be
1970   // worthwhile to skip over the rest of the initializer, though.
1971   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1972   RecordDecl::field_iterator FieldEnd = RD->field_end();
1973   bool CheckForMissingFields =
1974     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
1975   bool HasDesignatedInit = false;
1976 
1977   while (Index < IList->getNumInits()) {
1978     Expr *Init = IList->getInit(Index);
1979     SourceLocation InitLoc = Init->getBeginLoc();
1980 
1981     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1982       // If we're not the subobject that matches up with the '{' for
1983       // the designator, we shouldn't be handling the
1984       // designator. Return immediately.
1985       if (!SubobjectIsDesignatorContext)
1986         return;
1987 
1988       HasDesignatedInit = true;
1989 
1990       // Handle this designated initializer. Field will be updated to
1991       // the next field that we'll be initializing.
1992       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1993                                      DeclType, &Field, nullptr, Index,
1994                                      StructuredList, StructuredIndex,
1995                                      true, TopLevelObject))
1996         hadError = true;
1997       else if (!VerifyOnly) {
1998         // Find the field named by the designated initializer.
1999         RecordDecl::field_iterator F = RD->field_begin();
2000         while (std::next(F) != Field)
2001           ++F;
2002         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2003         if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2004           hadError = true;
2005           return;
2006         }
2007       }
2008 
2009       InitializedSomething = true;
2010 
2011       // Disable check for missing fields when designators are used.
2012       // This matches gcc behaviour.
2013       CheckForMissingFields = false;
2014       continue;
2015     }
2016 
2017     if (Field == FieldEnd) {
2018       // We've run out of fields. We're done.
2019       break;
2020     }
2021 
2022     // We've already initialized a member of a union. We're done.
2023     if (InitializedSomething && DeclType->isUnionType())
2024       break;
2025 
2026     // If we've hit the flexible array member at the end, we're done.
2027     if (Field->getType()->isIncompleteArrayType())
2028       break;
2029 
2030     if (Field->isUnnamedBitfield()) {
2031       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2032       ++Field;
2033       continue;
2034     }
2035 
2036     // Make sure we can use this declaration.
2037     bool InvalidUse;
2038     if (VerifyOnly)
2039       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2040     else
2041       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2042           *Field, IList->getInit(Index)->getBeginLoc());
2043     if (InvalidUse) {
2044       ++Index;
2045       ++Field;
2046       hadError = true;
2047       continue;
2048     }
2049 
2050     if (!VerifyOnly) {
2051       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2052       if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2053         hadError = true;
2054         return;
2055       }
2056     }
2057 
2058     InitializedEntity MemberEntity =
2059       InitializedEntity::InitializeMember(*Field, &Entity);
2060     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2061                         StructuredList, StructuredIndex);
2062     InitializedSomething = true;
2063 
2064     if (DeclType->isUnionType() && !VerifyOnly) {
2065       // Initialize the first field within the union.
2066       StructuredList->setInitializedFieldInUnion(*Field);
2067     }
2068 
2069     ++Field;
2070   }
2071 
2072   // Emit warnings for missing struct field initializers.
2073   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2074       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2075       !DeclType->isUnionType()) {
2076     // It is possible we have one or more unnamed bitfields remaining.
2077     // Find first (if any) named field and emit warning.
2078     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2079          it != end; ++it) {
2080       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2081         SemaRef.Diag(IList->getSourceRange().getEnd(),
2082                      diag::warn_missing_field_initializers) << *it;
2083         break;
2084       }
2085     }
2086   }
2087 
2088   // Check that any remaining fields can be value-initialized.
2089   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2090       !Field->getType()->isIncompleteArrayType()) {
2091     // FIXME: Should check for holes left by designated initializers too.
2092     for (; Field != FieldEnd && !hadError; ++Field) {
2093       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2094         CheckEmptyInitializable(
2095             InitializedEntity::InitializeMember(*Field, &Entity),
2096             IList->getEndLoc());
2097     }
2098   }
2099 
2100   // Check that the types of the remaining fields have accessible destructors.
2101   if (!VerifyOnly) {
2102     // If the initializer expression has a designated initializer, check the
2103     // elements for which a designated initializer is not provided too.
2104     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2105                                                      : Field;
2106     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2107       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2108       if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2109         hadError = true;
2110         return;
2111       }
2112     }
2113   }
2114 
2115   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2116       Index >= IList->getNumInits())
2117     return;
2118 
2119   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2120                              TopLevelObject)) {
2121     hadError = true;
2122     ++Index;
2123     return;
2124   }
2125 
2126   InitializedEntity MemberEntity =
2127     InitializedEntity::InitializeMember(*Field, &Entity);
2128 
2129   if (isa<InitListExpr>(IList->getInit(Index)))
2130     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2131                         StructuredList, StructuredIndex);
2132   else
2133     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2134                           StructuredList, StructuredIndex);
2135 }
2136 
2137 /// Expand a field designator that refers to a member of an
2138 /// anonymous struct or union into a series of field designators that
2139 /// refers to the field within the appropriate subobject.
2140 ///
2141 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2142                                            DesignatedInitExpr *DIE,
2143                                            unsigned DesigIdx,
2144                                            IndirectFieldDecl *IndirectField) {
2145   typedef DesignatedInitExpr::Designator Designator;
2146 
2147   // Build the replacement designators.
2148   SmallVector<Designator, 4> Replacements;
2149   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2150        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2151     if (PI + 1 == PE)
2152       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2153                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2154                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2155     else
2156       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2157                                         SourceLocation(), SourceLocation()));
2158     assert(isa<FieldDecl>(*PI));
2159     Replacements.back().setField(cast<FieldDecl>(*PI));
2160   }
2161 
2162   // Expand the current designator into the set of replacement
2163   // designators, so we have a full subobject path down to where the
2164   // member of the anonymous struct/union is actually stored.
2165   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2166                         &Replacements[0] + Replacements.size());
2167 }
2168 
2169 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2170                                                    DesignatedInitExpr *DIE) {
2171   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2172   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2173   for (unsigned I = 0; I < NumIndexExprs; ++I)
2174     IndexExprs[I] = DIE->getSubExpr(I + 1);
2175   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2176                                     IndexExprs,
2177                                     DIE->getEqualOrColonLoc(),
2178                                     DIE->usesGNUSyntax(), DIE->getInit());
2179 }
2180 
2181 namespace {
2182 
2183 // Callback to only accept typo corrections that are for field members of
2184 // the given struct or union.
2185 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2186  public:
2187   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2188       : Record(RD) {}
2189 
2190   bool ValidateCandidate(const TypoCorrection &candidate) override {
2191     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2192     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2193   }
2194 
2195  private:
2196   RecordDecl *Record;
2197 };
2198 
2199 } // end anonymous namespace
2200 
2201 /// Check the well-formedness of a C99 designated initializer.
2202 ///
2203 /// Determines whether the designated initializer @p DIE, which
2204 /// resides at the given @p Index within the initializer list @p
2205 /// IList, is well-formed for a current object of type @p DeclType
2206 /// (C99 6.7.8). The actual subobject that this designator refers to
2207 /// within the current subobject is returned in either
2208 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2209 ///
2210 /// @param IList  The initializer list in which this designated
2211 /// initializer occurs.
2212 ///
2213 /// @param DIE The designated initializer expression.
2214 ///
2215 /// @param DesigIdx  The index of the current designator.
2216 ///
2217 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2218 /// into which the designation in @p DIE should refer.
2219 ///
2220 /// @param NextField  If non-NULL and the first designator in @p DIE is
2221 /// a field, this will be set to the field declaration corresponding
2222 /// to the field named by the designator.
2223 ///
2224 /// @param NextElementIndex  If non-NULL and the first designator in @p
2225 /// DIE is an array designator or GNU array-range designator, this
2226 /// will be set to the last index initialized by this designator.
2227 ///
2228 /// @param Index  Index into @p IList where the designated initializer
2229 /// @p DIE occurs.
2230 ///
2231 /// @param StructuredList  The initializer list expression that
2232 /// describes all of the subobject initializers in the order they'll
2233 /// actually be initialized.
2234 ///
2235 /// @returns true if there was an error, false otherwise.
2236 bool
2237 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2238                                             InitListExpr *IList,
2239                                             DesignatedInitExpr *DIE,
2240                                             unsigned DesigIdx,
2241                                             QualType &CurrentObjectType,
2242                                           RecordDecl::field_iterator *NextField,
2243                                             llvm::APSInt *NextElementIndex,
2244                                             unsigned &Index,
2245                                             InitListExpr *StructuredList,
2246                                             unsigned &StructuredIndex,
2247                                             bool FinishSubobjectInit,
2248                                             bool TopLevelObject) {
2249   if (DesigIdx == DIE->size()) {
2250     // Check the actual initialization for the designated object type.
2251     bool prevHadError = hadError;
2252 
2253     // Temporarily remove the designator expression from the
2254     // initializer list that the child calls see, so that we don't try
2255     // to re-process the designator.
2256     unsigned OldIndex = Index;
2257     IList->setInit(OldIndex, DIE->getInit());
2258 
2259     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2260                         StructuredList, StructuredIndex);
2261 
2262     // Restore the designated initializer expression in the syntactic
2263     // form of the initializer list.
2264     if (IList->getInit(OldIndex) != DIE->getInit())
2265       DIE->setInit(IList->getInit(OldIndex));
2266     IList->setInit(OldIndex, DIE);
2267 
2268     return hadError && !prevHadError;
2269   }
2270 
2271   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2272   bool IsFirstDesignator = (DesigIdx == 0);
2273   if (!VerifyOnly) {
2274     assert((IsFirstDesignator || StructuredList) &&
2275            "Need a non-designated initializer list to start from");
2276 
2277     // Determine the structural initializer list that corresponds to the
2278     // current subobject.
2279     if (IsFirstDesignator)
2280       StructuredList = SyntacticToSemantic.lookup(IList);
2281     else {
2282       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2283           StructuredList->getInit(StructuredIndex) : nullptr;
2284       if (!ExistingInit && StructuredList->hasArrayFiller())
2285         ExistingInit = StructuredList->getArrayFiller();
2286 
2287       if (!ExistingInit)
2288         StructuredList = getStructuredSubobjectInit(
2289             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2290             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2291       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2292         StructuredList = Result;
2293       else {
2294         if (DesignatedInitUpdateExpr *E =
2295                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2296           StructuredList = E->getUpdater();
2297         else {
2298           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2299               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2300                                        ExistingInit, DIE->getEndLoc());
2301           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2302           StructuredList = DIUE->getUpdater();
2303         }
2304 
2305         // We need to check on source range validity because the previous
2306         // initializer does not have to be an explicit initializer. e.g.,
2307         //
2308         // struct P { int a, b; };
2309         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2310         //
2311         // There is an overwrite taking place because the first braced initializer
2312         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2313         if (ExistingInit->getSourceRange().isValid()) {
2314           // We are creating an initializer list that initializes the
2315           // subobjects of the current object, but there was already an
2316           // initialization that completely initialized the current
2317           // subobject, e.g., by a compound literal:
2318           //
2319           // struct X { int a, b; };
2320           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2321           //
2322           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2323           // designated initializer re-initializes the whole
2324           // subobject [0], overwriting previous initializers.
2325           SemaRef.Diag(D->getBeginLoc(),
2326                        diag::warn_subobject_initializer_overrides)
2327               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2328 
2329           SemaRef.Diag(ExistingInit->getBeginLoc(),
2330                        diag::note_previous_initializer)
2331               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2332         }
2333       }
2334     }
2335     assert(StructuredList && "Expected a structured initializer list");
2336   }
2337 
2338   if (D->isFieldDesignator()) {
2339     // C99 6.7.8p7:
2340     //
2341     //   If a designator has the form
2342     //
2343     //      . identifier
2344     //
2345     //   then the current object (defined below) shall have
2346     //   structure or union type and the identifier shall be the
2347     //   name of a member of that type.
2348     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2349     if (!RT) {
2350       SourceLocation Loc = D->getDotLoc();
2351       if (Loc.isInvalid())
2352         Loc = D->getFieldLoc();
2353       if (!VerifyOnly)
2354         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2355           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2356       ++Index;
2357       return true;
2358     }
2359 
2360     FieldDecl *KnownField = D->getField();
2361     if (!KnownField) {
2362       IdentifierInfo *FieldName = D->getFieldName();
2363       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2364       for (NamedDecl *ND : Lookup) {
2365         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2366           KnownField = FD;
2367           break;
2368         }
2369         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2370           // In verify mode, don't modify the original.
2371           if (VerifyOnly)
2372             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2373           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2374           D = DIE->getDesignator(DesigIdx);
2375           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2376           break;
2377         }
2378       }
2379       if (!KnownField) {
2380         if (VerifyOnly) {
2381           ++Index;
2382           return true;  // No typo correction when just trying this out.
2383         }
2384 
2385         // Name lookup found something, but it wasn't a field.
2386         if (!Lookup.empty()) {
2387           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2388             << FieldName;
2389           SemaRef.Diag(Lookup.front()->getLocation(),
2390                        diag::note_field_designator_found);
2391           ++Index;
2392           return true;
2393         }
2394 
2395         // Name lookup didn't find anything.
2396         // Determine whether this was a typo for another field name.
2397         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2398                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2399                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2400                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2401                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2402           SemaRef.diagnoseTypo(
2403               Corrected,
2404               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2405                 << FieldName << CurrentObjectType);
2406           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2407           hadError = true;
2408         } else {
2409           // Typo correction didn't find anything.
2410           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2411             << FieldName << CurrentObjectType;
2412           ++Index;
2413           return true;
2414         }
2415       }
2416     }
2417 
2418     unsigned FieldIndex = 0;
2419 
2420     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2421       FieldIndex = CXXRD->getNumBases();
2422 
2423     for (auto *FI : RT->getDecl()->fields()) {
2424       if (FI->isUnnamedBitfield())
2425         continue;
2426       if (declaresSameEntity(KnownField, FI)) {
2427         KnownField = FI;
2428         break;
2429       }
2430       ++FieldIndex;
2431     }
2432 
2433     RecordDecl::field_iterator Field =
2434         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2435 
2436     // All of the fields of a union are located at the same place in
2437     // the initializer list.
2438     if (RT->getDecl()->isUnion()) {
2439       FieldIndex = 0;
2440       if (!VerifyOnly) {
2441         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2442         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2443           assert(StructuredList->getNumInits() == 1
2444                  && "A union should never have more than one initializer!");
2445 
2446           Expr *ExistingInit = StructuredList->getInit(0);
2447           if (ExistingInit) {
2448             // We're about to throw away an initializer, emit warning.
2449             SemaRef.Diag(D->getFieldLoc(),
2450                          diag::warn_initializer_overrides)
2451               << D->getSourceRange();
2452             SemaRef.Diag(ExistingInit->getBeginLoc(),
2453                          diag::note_previous_initializer)
2454                 << /*FIXME:has side effects=*/0
2455                 << ExistingInit->getSourceRange();
2456           }
2457 
2458           // remove existing initializer
2459           StructuredList->resizeInits(SemaRef.Context, 0);
2460           StructuredList->setInitializedFieldInUnion(nullptr);
2461         }
2462 
2463         StructuredList->setInitializedFieldInUnion(*Field);
2464       }
2465     }
2466 
2467     // Make sure we can use this declaration.
2468     bool InvalidUse;
2469     if (VerifyOnly)
2470       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2471     else
2472       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2473     if (InvalidUse) {
2474       ++Index;
2475       return true;
2476     }
2477 
2478     if (!VerifyOnly) {
2479       // Update the designator with the field declaration.
2480       D->setField(*Field);
2481 
2482       // Make sure that our non-designated initializer list has space
2483       // for a subobject corresponding to this field.
2484       if (FieldIndex >= StructuredList->getNumInits())
2485         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2486     }
2487 
2488     // This designator names a flexible array member.
2489     if (Field->getType()->isIncompleteArrayType()) {
2490       bool Invalid = false;
2491       if ((DesigIdx + 1) != DIE->size()) {
2492         // We can't designate an object within the flexible array
2493         // member (because GCC doesn't allow it).
2494         if (!VerifyOnly) {
2495           DesignatedInitExpr::Designator *NextD
2496             = DIE->getDesignator(DesigIdx + 1);
2497           SemaRef.Diag(NextD->getBeginLoc(),
2498                        diag::err_designator_into_flexible_array_member)
2499               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2500           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2501             << *Field;
2502         }
2503         Invalid = true;
2504       }
2505 
2506       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2507           !isa<StringLiteral>(DIE->getInit())) {
2508         // The initializer is not an initializer list.
2509         if (!VerifyOnly) {
2510           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2511                        diag::err_flexible_array_init_needs_braces)
2512               << DIE->getInit()->getSourceRange();
2513           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2514             << *Field;
2515         }
2516         Invalid = true;
2517       }
2518 
2519       // Check GNU flexible array initializer.
2520       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2521                                              TopLevelObject))
2522         Invalid = true;
2523 
2524       if (Invalid) {
2525         ++Index;
2526         return true;
2527       }
2528 
2529       // Initialize the array.
2530       bool prevHadError = hadError;
2531       unsigned newStructuredIndex = FieldIndex;
2532       unsigned OldIndex = Index;
2533       IList->setInit(Index, DIE->getInit());
2534 
2535       InitializedEntity MemberEntity =
2536         InitializedEntity::InitializeMember(*Field, &Entity);
2537       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2538                           StructuredList, newStructuredIndex);
2539 
2540       IList->setInit(OldIndex, DIE);
2541       if (hadError && !prevHadError) {
2542         ++Field;
2543         ++FieldIndex;
2544         if (NextField)
2545           *NextField = Field;
2546         StructuredIndex = FieldIndex;
2547         return true;
2548       }
2549     } else {
2550       // Recurse to check later designated subobjects.
2551       QualType FieldType = Field->getType();
2552       unsigned newStructuredIndex = FieldIndex;
2553 
2554       InitializedEntity MemberEntity =
2555         InitializedEntity::InitializeMember(*Field, &Entity);
2556       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2557                                      FieldType, nullptr, nullptr, Index,
2558                                      StructuredList, newStructuredIndex,
2559                                      FinishSubobjectInit, false))
2560         return true;
2561     }
2562 
2563     // Find the position of the next field to be initialized in this
2564     // subobject.
2565     ++Field;
2566     ++FieldIndex;
2567 
2568     // If this the first designator, our caller will continue checking
2569     // the rest of this struct/class/union subobject.
2570     if (IsFirstDesignator) {
2571       if (NextField)
2572         *NextField = Field;
2573       StructuredIndex = FieldIndex;
2574       return false;
2575     }
2576 
2577     if (!FinishSubobjectInit)
2578       return false;
2579 
2580     // We've already initialized something in the union; we're done.
2581     if (RT->getDecl()->isUnion())
2582       return hadError;
2583 
2584     // Check the remaining fields within this class/struct/union subobject.
2585     bool prevHadError = hadError;
2586 
2587     auto NoBases =
2588         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2589                                         CXXRecordDecl::base_class_iterator());
2590     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2591                           false, Index, StructuredList, FieldIndex);
2592     return hadError && !prevHadError;
2593   }
2594 
2595   // C99 6.7.8p6:
2596   //
2597   //   If a designator has the form
2598   //
2599   //      [ constant-expression ]
2600   //
2601   //   then the current object (defined below) shall have array
2602   //   type and the expression shall be an integer constant
2603   //   expression. If the array is of unknown size, any
2604   //   nonnegative value is valid.
2605   //
2606   // Additionally, cope with the GNU extension that permits
2607   // designators of the form
2608   //
2609   //      [ constant-expression ... constant-expression ]
2610   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2611   if (!AT) {
2612     if (!VerifyOnly)
2613       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2614         << CurrentObjectType;
2615     ++Index;
2616     return true;
2617   }
2618 
2619   Expr *IndexExpr = nullptr;
2620   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2621   if (D->isArrayDesignator()) {
2622     IndexExpr = DIE->getArrayIndex(*D);
2623     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2624     DesignatedEndIndex = DesignatedStartIndex;
2625   } else {
2626     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2627 
2628     DesignatedStartIndex =
2629       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2630     DesignatedEndIndex =
2631       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2632     IndexExpr = DIE->getArrayRangeEnd(*D);
2633 
2634     // Codegen can't handle evaluating array range designators that have side
2635     // effects, because we replicate the AST value for each initialized element.
2636     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2637     // elements with something that has a side effect, so codegen can emit an
2638     // "error unsupported" error instead of miscompiling the app.
2639     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2640         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2641       FullyStructuredList->sawArrayRangeDesignator();
2642   }
2643 
2644   if (isa<ConstantArrayType>(AT)) {
2645     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2646     DesignatedStartIndex
2647       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2648     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2649     DesignatedEndIndex
2650       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2651     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2652     if (DesignatedEndIndex >= MaxElements) {
2653       if (!VerifyOnly)
2654         SemaRef.Diag(IndexExpr->getBeginLoc(),
2655                      diag::err_array_designator_too_large)
2656             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2657             << IndexExpr->getSourceRange();
2658       ++Index;
2659       return true;
2660     }
2661   } else {
2662     unsigned DesignatedIndexBitWidth =
2663       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2664     DesignatedStartIndex =
2665       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2666     DesignatedEndIndex =
2667       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2668     DesignatedStartIndex.setIsUnsigned(true);
2669     DesignatedEndIndex.setIsUnsigned(true);
2670   }
2671 
2672   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2673     // We're modifying a string literal init; we have to decompose the string
2674     // so we can modify the individual characters.
2675     ASTContext &Context = SemaRef.Context;
2676     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2677 
2678     // Compute the character type
2679     QualType CharTy = AT->getElementType();
2680 
2681     // Compute the type of the integer literals.
2682     QualType PromotedCharTy = CharTy;
2683     if (CharTy->isPromotableIntegerType())
2684       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2685     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2686 
2687     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2688       // Get the length of the string.
2689       uint64_t StrLen = SL->getLength();
2690       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2691         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2692       StructuredList->resizeInits(Context, StrLen);
2693 
2694       // Build a literal for each character in the string, and put them into
2695       // the init list.
2696       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2697         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2698         Expr *Init = new (Context) IntegerLiteral(
2699             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2700         if (CharTy != PromotedCharTy)
2701           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2702                                           Init, nullptr, VK_RValue);
2703         StructuredList->updateInit(Context, i, Init);
2704       }
2705     } else {
2706       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2707       std::string Str;
2708       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2709 
2710       // Get the length of the string.
2711       uint64_t StrLen = Str.size();
2712       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2713         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2714       StructuredList->resizeInits(Context, StrLen);
2715 
2716       // Build a literal for each character in the string, and put them into
2717       // the init list.
2718       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2719         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2720         Expr *Init = new (Context) IntegerLiteral(
2721             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2722         if (CharTy != PromotedCharTy)
2723           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2724                                           Init, nullptr, VK_RValue);
2725         StructuredList->updateInit(Context, i, Init);
2726       }
2727     }
2728   }
2729 
2730   // Make sure that our non-designated initializer list has space
2731   // for a subobject corresponding to this array element.
2732   if (!VerifyOnly &&
2733       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2734     StructuredList->resizeInits(SemaRef.Context,
2735                                 DesignatedEndIndex.getZExtValue() + 1);
2736 
2737   // Repeatedly perform subobject initializations in the range
2738   // [DesignatedStartIndex, DesignatedEndIndex].
2739 
2740   // Move to the next designator
2741   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2742   unsigned OldIndex = Index;
2743 
2744   InitializedEntity ElementEntity =
2745     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2746 
2747   while (DesignatedStartIndex <= DesignatedEndIndex) {
2748     // Recurse to check later designated subobjects.
2749     QualType ElementType = AT->getElementType();
2750     Index = OldIndex;
2751 
2752     ElementEntity.setElementIndex(ElementIndex);
2753     if (CheckDesignatedInitializer(
2754             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2755             nullptr, Index, StructuredList, ElementIndex,
2756             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2757             false))
2758       return true;
2759 
2760     // Move to the next index in the array that we'll be initializing.
2761     ++DesignatedStartIndex;
2762     ElementIndex = DesignatedStartIndex.getZExtValue();
2763   }
2764 
2765   // If this the first designator, our caller will continue checking
2766   // the rest of this array subobject.
2767   if (IsFirstDesignator) {
2768     if (NextElementIndex)
2769       *NextElementIndex = DesignatedStartIndex;
2770     StructuredIndex = ElementIndex;
2771     return false;
2772   }
2773 
2774   if (!FinishSubobjectInit)
2775     return false;
2776 
2777   // Check the remaining elements within this array subobject.
2778   bool prevHadError = hadError;
2779   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2780                  /*SubobjectIsDesignatorContext=*/false, Index,
2781                  StructuredList, ElementIndex);
2782   return hadError && !prevHadError;
2783 }
2784 
2785 // Get the structured initializer list for a subobject of type
2786 // @p CurrentObjectType.
2787 InitListExpr *
2788 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2789                                             QualType CurrentObjectType,
2790                                             InitListExpr *StructuredList,
2791                                             unsigned StructuredIndex,
2792                                             SourceRange InitRange,
2793                                             bool IsFullyOverwritten) {
2794   if (VerifyOnly)
2795     return nullptr; // No structured list in verification-only mode.
2796   Expr *ExistingInit = nullptr;
2797   if (!StructuredList)
2798     ExistingInit = SyntacticToSemantic.lookup(IList);
2799   else if (StructuredIndex < StructuredList->getNumInits())
2800     ExistingInit = StructuredList->getInit(StructuredIndex);
2801 
2802   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2803     // There might have already been initializers for subobjects of the current
2804     // object, but a subsequent initializer list will overwrite the entirety
2805     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2806     //
2807     // struct P { char x[6]; };
2808     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2809     //
2810     // The first designated initializer is ignored, and l.x is just "f".
2811     if (!IsFullyOverwritten)
2812       return Result;
2813 
2814   if (ExistingInit) {
2815     // We are creating an initializer list that initializes the
2816     // subobjects of the current object, but there was already an
2817     // initialization that completely initialized the current
2818     // subobject, e.g., by a compound literal:
2819     //
2820     // struct X { int a, b; };
2821     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2822     //
2823     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2824     // designated initializer re-initializes the whole
2825     // subobject [0], overwriting previous initializers.
2826     SemaRef.Diag(InitRange.getBegin(),
2827                  diag::warn_subobject_initializer_overrides)
2828       << InitRange;
2829     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2830         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2831   }
2832 
2833   InitListExpr *Result
2834     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2835                                          InitRange.getBegin(), None,
2836                                          InitRange.getEnd());
2837 
2838   QualType ResultType = CurrentObjectType;
2839   if (!ResultType->isArrayType())
2840     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2841   Result->setType(ResultType);
2842 
2843   // Pre-allocate storage for the structured initializer list.
2844   unsigned NumElements = 0;
2845   unsigned NumInits = 0;
2846   bool GotNumInits = false;
2847   if (!StructuredList) {
2848     NumInits = IList->getNumInits();
2849     GotNumInits = true;
2850   } else if (Index < IList->getNumInits()) {
2851     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2852       NumInits = SubList->getNumInits();
2853       GotNumInits = true;
2854     }
2855   }
2856 
2857   if (const ArrayType *AType
2858       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2859     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2860       NumElements = CAType->getSize().getZExtValue();
2861       // Simple heuristic so that we don't allocate a very large
2862       // initializer with many empty entries at the end.
2863       if (GotNumInits && NumElements > NumInits)
2864         NumElements = 0;
2865     }
2866   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2867     NumElements = VType->getNumElements();
2868   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2869     RecordDecl *RDecl = RType->getDecl();
2870     if (RDecl->isUnion())
2871       NumElements = 1;
2872     else
2873       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2874   }
2875 
2876   Result->reserveInits(SemaRef.Context, NumElements);
2877 
2878   // Link this new initializer list into the structured initializer
2879   // lists.
2880   if (StructuredList)
2881     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2882   else {
2883     Result->setSyntacticForm(IList);
2884     SyntacticToSemantic[IList] = Result;
2885   }
2886 
2887   return Result;
2888 }
2889 
2890 /// Update the initializer at index @p StructuredIndex within the
2891 /// structured initializer list to the value @p expr.
2892 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2893                                                   unsigned &StructuredIndex,
2894                                                   Expr *expr) {
2895   // No structured initializer list to update
2896   if (!StructuredList)
2897     return;
2898 
2899   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2900                                                   StructuredIndex, expr)) {
2901     // This initializer overwrites a previous initializer. Warn.
2902     // We need to check on source range validity because the previous
2903     // initializer does not have to be an explicit initializer.
2904     // struct P { int a, b; };
2905     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2906     // There is an overwrite taking place because the first braced initializer
2907     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2908     if (PrevInit->getSourceRange().isValid()) {
2909       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2910           << expr->getSourceRange();
2911 
2912       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2913           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2914     }
2915   }
2916 
2917   ++StructuredIndex;
2918 }
2919 
2920 /// Check that the given Index expression is a valid array designator
2921 /// value. This is essentially just a wrapper around
2922 /// VerifyIntegerConstantExpression that also checks for negative values
2923 /// and produces a reasonable diagnostic if there is a
2924 /// failure. Returns the index expression, possibly with an implicit cast
2925 /// added, on success.  If everything went okay, Value will receive the
2926 /// value of the constant expression.
2927 static ExprResult
2928 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2929   SourceLocation Loc = Index->getBeginLoc();
2930 
2931   // Make sure this is an integer constant expression.
2932   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2933   if (Result.isInvalid())
2934     return Result;
2935 
2936   if (Value.isSigned() && Value.isNegative())
2937     return S.Diag(Loc, diag::err_array_designator_negative)
2938       << Value.toString(10) << Index->getSourceRange();
2939 
2940   Value.setIsUnsigned(true);
2941   return Result;
2942 }
2943 
2944 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2945                                             SourceLocation Loc,
2946                                             bool GNUSyntax,
2947                                             ExprResult Init) {
2948   typedef DesignatedInitExpr::Designator ASTDesignator;
2949 
2950   bool Invalid = false;
2951   SmallVector<ASTDesignator, 32> Designators;
2952   SmallVector<Expr *, 32> InitExpressions;
2953 
2954   // Build designators and check array designator expressions.
2955   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2956     const Designator &D = Desig.getDesignator(Idx);
2957     switch (D.getKind()) {
2958     case Designator::FieldDesignator:
2959       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2960                                           D.getFieldLoc()));
2961       break;
2962 
2963     case Designator::ArrayDesignator: {
2964       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2965       llvm::APSInt IndexValue;
2966       if (!Index->isTypeDependent() && !Index->isValueDependent())
2967         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2968       if (!Index)
2969         Invalid = true;
2970       else {
2971         Designators.push_back(ASTDesignator(InitExpressions.size(),
2972                                             D.getLBracketLoc(),
2973                                             D.getRBracketLoc()));
2974         InitExpressions.push_back(Index);
2975       }
2976       break;
2977     }
2978 
2979     case Designator::ArrayRangeDesignator: {
2980       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2981       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2982       llvm::APSInt StartValue;
2983       llvm::APSInt EndValue;
2984       bool StartDependent = StartIndex->isTypeDependent() ||
2985                             StartIndex->isValueDependent();
2986       bool EndDependent = EndIndex->isTypeDependent() ||
2987                           EndIndex->isValueDependent();
2988       if (!StartDependent)
2989         StartIndex =
2990             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2991       if (!EndDependent)
2992         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2993 
2994       if (!StartIndex || !EndIndex)
2995         Invalid = true;
2996       else {
2997         // Make sure we're comparing values with the same bit width.
2998         if (StartDependent || EndDependent) {
2999           // Nothing to compute.
3000         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3001           EndValue = EndValue.extend(StartValue.getBitWidth());
3002         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3003           StartValue = StartValue.extend(EndValue.getBitWidth());
3004 
3005         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3006           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3007             << StartValue.toString(10) << EndValue.toString(10)
3008             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3009           Invalid = true;
3010         } else {
3011           Designators.push_back(ASTDesignator(InitExpressions.size(),
3012                                               D.getLBracketLoc(),
3013                                               D.getEllipsisLoc(),
3014                                               D.getRBracketLoc()));
3015           InitExpressions.push_back(StartIndex);
3016           InitExpressions.push_back(EndIndex);
3017         }
3018       }
3019       break;
3020     }
3021     }
3022   }
3023 
3024   if (Invalid || Init.isInvalid())
3025     return ExprError();
3026 
3027   // Clear out the expressions within the designation.
3028   Desig.ClearExprs(*this);
3029 
3030   DesignatedInitExpr *DIE
3031     = DesignatedInitExpr::Create(Context,
3032                                  Designators,
3033                                  InitExpressions, Loc, GNUSyntax,
3034                                  Init.getAs<Expr>());
3035 
3036   if (!getLangOpts().C99)
3037     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3038         << DIE->getSourceRange();
3039 
3040   return DIE;
3041 }
3042 
3043 //===----------------------------------------------------------------------===//
3044 // Initialization entity
3045 //===----------------------------------------------------------------------===//
3046 
3047 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3048                                      const InitializedEntity &Parent)
3049   : Parent(&Parent), Index(Index)
3050 {
3051   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3052     Kind = EK_ArrayElement;
3053     Type = AT->getElementType();
3054   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3055     Kind = EK_VectorElement;
3056     Type = VT->getElementType();
3057   } else {
3058     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3059     assert(CT && "Unexpected type");
3060     Kind = EK_ComplexElement;
3061     Type = CT->getElementType();
3062   }
3063 }
3064 
3065 InitializedEntity
3066 InitializedEntity::InitializeBase(ASTContext &Context,
3067                                   const CXXBaseSpecifier *Base,
3068                                   bool IsInheritedVirtualBase,
3069                                   const InitializedEntity *Parent) {
3070   InitializedEntity Result;
3071   Result.Kind = EK_Base;
3072   Result.Parent = Parent;
3073   Result.Base = reinterpret_cast<uintptr_t>(Base);
3074   if (IsInheritedVirtualBase)
3075     Result.Base |= 0x01;
3076 
3077   Result.Type = Base->getType();
3078   return Result;
3079 }
3080 
3081 DeclarationName InitializedEntity::getName() const {
3082   switch (getKind()) {
3083   case EK_Parameter:
3084   case EK_Parameter_CF_Audited: {
3085     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3086     return (D ? D->getDeclName() : DeclarationName());
3087   }
3088 
3089   case EK_Variable:
3090   case EK_Member:
3091   case EK_Binding:
3092     return Variable.VariableOrMember->getDeclName();
3093 
3094   case EK_LambdaCapture:
3095     return DeclarationName(Capture.VarID);
3096 
3097   case EK_Result:
3098   case EK_StmtExprResult:
3099   case EK_Exception:
3100   case EK_New:
3101   case EK_Temporary:
3102   case EK_Base:
3103   case EK_Delegating:
3104   case EK_ArrayElement:
3105   case EK_VectorElement:
3106   case EK_ComplexElement:
3107   case EK_BlockElement:
3108   case EK_LambdaToBlockConversionBlockElement:
3109   case EK_CompoundLiteralInit:
3110   case EK_RelatedResult:
3111     return DeclarationName();
3112   }
3113 
3114   llvm_unreachable("Invalid EntityKind!");
3115 }
3116 
3117 ValueDecl *InitializedEntity::getDecl() const {
3118   switch (getKind()) {
3119   case EK_Variable:
3120   case EK_Member:
3121   case EK_Binding:
3122     return Variable.VariableOrMember;
3123 
3124   case EK_Parameter:
3125   case EK_Parameter_CF_Audited:
3126     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3127 
3128   case EK_Result:
3129   case EK_StmtExprResult:
3130   case EK_Exception:
3131   case EK_New:
3132   case EK_Temporary:
3133   case EK_Base:
3134   case EK_Delegating:
3135   case EK_ArrayElement:
3136   case EK_VectorElement:
3137   case EK_ComplexElement:
3138   case EK_BlockElement:
3139   case EK_LambdaToBlockConversionBlockElement:
3140   case EK_LambdaCapture:
3141   case EK_CompoundLiteralInit:
3142   case EK_RelatedResult:
3143     return nullptr;
3144   }
3145 
3146   llvm_unreachable("Invalid EntityKind!");
3147 }
3148 
3149 bool InitializedEntity::allowsNRVO() const {
3150   switch (getKind()) {
3151   case EK_Result:
3152   case EK_Exception:
3153     return LocAndNRVO.NRVO;
3154 
3155   case EK_StmtExprResult:
3156   case EK_Variable:
3157   case EK_Parameter:
3158   case EK_Parameter_CF_Audited:
3159   case EK_Member:
3160   case EK_Binding:
3161   case EK_New:
3162   case EK_Temporary:
3163   case EK_CompoundLiteralInit:
3164   case EK_Base:
3165   case EK_Delegating:
3166   case EK_ArrayElement:
3167   case EK_VectorElement:
3168   case EK_ComplexElement:
3169   case EK_BlockElement:
3170   case EK_LambdaToBlockConversionBlockElement:
3171   case EK_LambdaCapture:
3172   case EK_RelatedResult:
3173     break;
3174   }
3175 
3176   return false;
3177 }
3178 
3179 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3180   assert(getParent() != this);
3181   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3182   for (unsigned I = 0; I != Depth; ++I)
3183     OS << "`-";
3184 
3185   switch (getKind()) {
3186   case EK_Variable: OS << "Variable"; break;
3187   case EK_Parameter: OS << "Parameter"; break;
3188   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3189     break;
3190   case EK_Result: OS << "Result"; break;
3191   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3192   case EK_Exception: OS << "Exception"; break;
3193   case EK_Member: OS << "Member"; break;
3194   case EK_Binding: OS << "Binding"; break;
3195   case EK_New: OS << "New"; break;
3196   case EK_Temporary: OS << "Temporary"; break;
3197   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3198   case EK_RelatedResult: OS << "RelatedResult"; break;
3199   case EK_Base: OS << "Base"; break;
3200   case EK_Delegating: OS << "Delegating"; break;
3201   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3202   case EK_VectorElement: OS << "VectorElement " << Index; break;
3203   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3204   case EK_BlockElement: OS << "Block"; break;
3205   case EK_LambdaToBlockConversionBlockElement:
3206     OS << "Block (lambda)";
3207     break;
3208   case EK_LambdaCapture:
3209     OS << "LambdaCapture ";
3210     OS << DeclarationName(Capture.VarID);
3211     break;
3212   }
3213 
3214   if (auto *D = getDecl()) {
3215     OS << " ";
3216     D->printQualifiedName(OS);
3217   }
3218 
3219   OS << " '" << getType().getAsString() << "'\n";
3220 
3221   return Depth + 1;
3222 }
3223 
3224 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3225   dumpImpl(llvm::errs());
3226 }
3227 
3228 //===----------------------------------------------------------------------===//
3229 // Initialization sequence
3230 //===----------------------------------------------------------------------===//
3231 
3232 void InitializationSequence::Step::Destroy() {
3233   switch (Kind) {
3234   case SK_ResolveAddressOfOverloadedFunction:
3235   case SK_CastDerivedToBaseRValue:
3236   case SK_CastDerivedToBaseXValue:
3237   case SK_CastDerivedToBaseLValue:
3238   case SK_BindReference:
3239   case SK_BindReferenceToTemporary:
3240   case SK_FinalCopy:
3241   case SK_ExtraneousCopyToTemporary:
3242   case SK_UserConversion:
3243   case SK_QualificationConversionRValue:
3244   case SK_QualificationConversionXValue:
3245   case SK_QualificationConversionLValue:
3246   case SK_AtomicConversion:
3247   case SK_LValueToRValue:
3248   case SK_ListInitialization:
3249   case SK_UnwrapInitList:
3250   case SK_RewrapInitList:
3251   case SK_ConstructorInitialization:
3252   case SK_ConstructorInitializationFromList:
3253   case SK_ZeroInitialization:
3254   case SK_CAssignment:
3255   case SK_StringInit:
3256   case SK_ObjCObjectConversion:
3257   case SK_ArrayLoopIndex:
3258   case SK_ArrayLoopInit:
3259   case SK_ArrayInit:
3260   case SK_GNUArrayInit:
3261   case SK_ParenthesizedArrayInit:
3262   case SK_PassByIndirectCopyRestore:
3263   case SK_PassByIndirectRestore:
3264   case SK_ProduceObjCObject:
3265   case SK_StdInitializerList:
3266   case SK_StdInitializerListConstructorCall:
3267   case SK_OCLSamplerInit:
3268   case SK_OCLZeroOpaqueType:
3269     break;
3270 
3271   case SK_ConversionSequence:
3272   case SK_ConversionSequenceNoNarrowing:
3273     delete ICS;
3274   }
3275 }
3276 
3277 bool InitializationSequence::isDirectReferenceBinding() const {
3278   // There can be some lvalue adjustments after the SK_BindReference step.
3279   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3280     if (I->Kind == SK_BindReference)
3281       return true;
3282     if (I->Kind == SK_BindReferenceToTemporary)
3283       return false;
3284   }
3285   return false;
3286 }
3287 
3288 bool InitializationSequence::isAmbiguous() const {
3289   if (!Failed())
3290     return false;
3291 
3292   switch (getFailureKind()) {
3293   case FK_TooManyInitsForReference:
3294   case FK_ParenthesizedListInitForReference:
3295   case FK_ArrayNeedsInitList:
3296   case FK_ArrayNeedsInitListOrStringLiteral:
3297   case FK_ArrayNeedsInitListOrWideStringLiteral:
3298   case FK_NarrowStringIntoWideCharArray:
3299   case FK_WideStringIntoCharArray:
3300   case FK_IncompatWideStringIntoWideChar:
3301   case FK_PlainStringIntoUTF8Char:
3302   case FK_UTF8StringIntoPlainChar:
3303   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3304   case FK_NonConstLValueReferenceBindingToTemporary:
3305   case FK_NonConstLValueReferenceBindingToBitfield:
3306   case FK_NonConstLValueReferenceBindingToVectorElement:
3307   case FK_NonConstLValueReferenceBindingToUnrelated:
3308   case FK_RValueReferenceBindingToLValue:
3309   case FK_ReferenceInitDropsQualifiers:
3310   case FK_ReferenceInitFailed:
3311   case FK_ConversionFailed:
3312   case FK_ConversionFromPropertyFailed:
3313   case FK_TooManyInitsForScalar:
3314   case FK_ParenthesizedListInitForScalar:
3315   case FK_ReferenceBindingToInitList:
3316   case FK_InitListBadDestinationType:
3317   case FK_DefaultInitOfConst:
3318   case FK_Incomplete:
3319   case FK_ArrayTypeMismatch:
3320   case FK_NonConstantArrayInit:
3321   case FK_ListInitializationFailed:
3322   case FK_VariableLengthArrayHasInitializer:
3323   case FK_PlaceholderType:
3324   case FK_ExplicitConstructor:
3325   case FK_AddressOfUnaddressableFunction:
3326     return false;
3327 
3328   case FK_ReferenceInitOverloadFailed:
3329   case FK_UserConversionOverloadFailed:
3330   case FK_ConstructorOverloadFailed:
3331   case FK_ListConstructorOverloadFailed:
3332     return FailedOverloadResult == OR_Ambiguous;
3333   }
3334 
3335   llvm_unreachable("Invalid EntityKind!");
3336 }
3337 
3338 bool InitializationSequence::isConstructorInitialization() const {
3339   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3340 }
3341 
3342 void
3343 InitializationSequence
3344 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3345                                    DeclAccessPair Found,
3346                                    bool HadMultipleCandidates) {
3347   Step S;
3348   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3349   S.Type = Function->getType();
3350   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3351   S.Function.Function = Function;
3352   S.Function.FoundDecl = Found;
3353   Steps.push_back(S);
3354 }
3355 
3356 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3357                                                       ExprValueKind VK) {
3358   Step S;
3359   switch (VK) {
3360   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3361   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3362   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3363   }
3364   S.Type = BaseType;
3365   Steps.push_back(S);
3366 }
3367 
3368 void InitializationSequence::AddReferenceBindingStep(QualType T,
3369                                                      bool BindingTemporary) {
3370   Step S;
3371   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3372   S.Type = T;
3373   Steps.push_back(S);
3374 }
3375 
3376 void InitializationSequence::AddFinalCopy(QualType T) {
3377   Step S;
3378   S.Kind = SK_FinalCopy;
3379   S.Type = T;
3380   Steps.push_back(S);
3381 }
3382 
3383 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3384   Step S;
3385   S.Kind = SK_ExtraneousCopyToTemporary;
3386   S.Type = T;
3387   Steps.push_back(S);
3388 }
3389 
3390 void
3391 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3392                                               DeclAccessPair FoundDecl,
3393                                               QualType T,
3394                                               bool HadMultipleCandidates) {
3395   Step S;
3396   S.Kind = SK_UserConversion;
3397   S.Type = T;
3398   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3399   S.Function.Function = Function;
3400   S.Function.FoundDecl = FoundDecl;
3401   Steps.push_back(S);
3402 }
3403 
3404 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3405                                                             ExprValueKind VK) {
3406   Step S;
3407   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3408   switch (VK) {
3409   case VK_RValue:
3410     S.Kind = SK_QualificationConversionRValue;
3411     break;
3412   case VK_XValue:
3413     S.Kind = SK_QualificationConversionXValue;
3414     break;
3415   case VK_LValue:
3416     S.Kind = SK_QualificationConversionLValue;
3417     break;
3418   }
3419   S.Type = Ty;
3420   Steps.push_back(S);
3421 }
3422 
3423 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3424   Step S;
3425   S.Kind = SK_AtomicConversion;
3426   S.Type = Ty;
3427   Steps.push_back(S);
3428 }
3429 
3430 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3431   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3432 
3433   Step S;
3434   S.Kind = SK_LValueToRValue;
3435   S.Type = Ty;
3436   Steps.push_back(S);
3437 }
3438 
3439 void InitializationSequence::AddConversionSequenceStep(
3440     const ImplicitConversionSequence &ICS, QualType T,
3441     bool TopLevelOfInitList) {
3442   Step S;
3443   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3444                               : SK_ConversionSequence;
3445   S.Type = T;
3446   S.ICS = new ImplicitConversionSequence(ICS);
3447   Steps.push_back(S);
3448 }
3449 
3450 void InitializationSequence::AddListInitializationStep(QualType T) {
3451   Step S;
3452   S.Kind = SK_ListInitialization;
3453   S.Type = T;
3454   Steps.push_back(S);
3455 }
3456 
3457 void InitializationSequence::AddConstructorInitializationStep(
3458     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3459     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3460   Step S;
3461   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3462                                      : SK_ConstructorInitializationFromList
3463                         : SK_ConstructorInitialization;
3464   S.Type = T;
3465   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3466   S.Function.Function = Constructor;
3467   S.Function.FoundDecl = FoundDecl;
3468   Steps.push_back(S);
3469 }
3470 
3471 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3472   Step S;
3473   S.Kind = SK_ZeroInitialization;
3474   S.Type = T;
3475   Steps.push_back(S);
3476 }
3477 
3478 void InitializationSequence::AddCAssignmentStep(QualType T) {
3479   Step S;
3480   S.Kind = SK_CAssignment;
3481   S.Type = T;
3482   Steps.push_back(S);
3483 }
3484 
3485 void InitializationSequence::AddStringInitStep(QualType T) {
3486   Step S;
3487   S.Kind = SK_StringInit;
3488   S.Type = T;
3489   Steps.push_back(S);
3490 }
3491 
3492 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3493   Step S;
3494   S.Kind = SK_ObjCObjectConversion;
3495   S.Type = T;
3496   Steps.push_back(S);
3497 }
3498 
3499 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3500   Step S;
3501   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3502   S.Type = T;
3503   Steps.push_back(S);
3504 }
3505 
3506 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3507   Step S;
3508   S.Kind = SK_ArrayLoopIndex;
3509   S.Type = EltT;
3510   Steps.insert(Steps.begin(), S);
3511 
3512   S.Kind = SK_ArrayLoopInit;
3513   S.Type = T;
3514   Steps.push_back(S);
3515 }
3516 
3517 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3518   Step S;
3519   S.Kind = SK_ParenthesizedArrayInit;
3520   S.Type = T;
3521   Steps.push_back(S);
3522 }
3523 
3524 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3525                                                               bool shouldCopy) {
3526   Step s;
3527   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3528                        : SK_PassByIndirectRestore);
3529   s.Type = type;
3530   Steps.push_back(s);
3531 }
3532 
3533 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3534   Step S;
3535   S.Kind = SK_ProduceObjCObject;
3536   S.Type = T;
3537   Steps.push_back(S);
3538 }
3539 
3540 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3541   Step S;
3542   S.Kind = SK_StdInitializerList;
3543   S.Type = T;
3544   Steps.push_back(S);
3545 }
3546 
3547 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3548   Step S;
3549   S.Kind = SK_OCLSamplerInit;
3550   S.Type = T;
3551   Steps.push_back(S);
3552 }
3553 
3554 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3555   Step S;
3556   S.Kind = SK_OCLZeroOpaqueType;
3557   S.Type = T;
3558   Steps.push_back(S);
3559 }
3560 
3561 void InitializationSequence::RewrapReferenceInitList(QualType T,
3562                                                      InitListExpr *Syntactic) {
3563   assert(Syntactic->getNumInits() == 1 &&
3564          "Can only rewrap trivial init lists.");
3565   Step S;
3566   S.Kind = SK_UnwrapInitList;
3567   S.Type = Syntactic->getInit(0)->getType();
3568   Steps.insert(Steps.begin(), S);
3569 
3570   S.Kind = SK_RewrapInitList;
3571   S.Type = T;
3572   S.WrappingSyntacticList = Syntactic;
3573   Steps.push_back(S);
3574 }
3575 
3576 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3577                                                 OverloadingResult Result) {
3578   setSequenceKind(FailedSequence);
3579   this->Failure = Failure;
3580   this->FailedOverloadResult = Result;
3581 }
3582 
3583 //===----------------------------------------------------------------------===//
3584 // Attempt initialization
3585 //===----------------------------------------------------------------------===//
3586 
3587 /// Tries to add a zero initializer. Returns true if that worked.
3588 static bool
3589 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3590                                    const InitializedEntity &Entity) {
3591   if (Entity.getKind() != InitializedEntity::EK_Variable)
3592     return false;
3593 
3594   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3595   if (VD->getInit() || VD->getEndLoc().isMacroID())
3596     return false;
3597 
3598   QualType VariableTy = VD->getType().getCanonicalType();
3599   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3600   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3601   if (!Init.empty()) {
3602     Sequence.AddZeroInitializationStep(Entity.getType());
3603     Sequence.SetZeroInitializationFixit(Init, Loc);
3604     return true;
3605   }
3606   return false;
3607 }
3608 
3609 static void MaybeProduceObjCObject(Sema &S,
3610                                    InitializationSequence &Sequence,
3611                                    const InitializedEntity &Entity) {
3612   if (!S.getLangOpts().ObjCAutoRefCount) return;
3613 
3614   /// When initializing a parameter, produce the value if it's marked
3615   /// __attribute__((ns_consumed)).
3616   if (Entity.isParameterKind()) {
3617     if (!Entity.isParameterConsumed())
3618       return;
3619 
3620     assert(Entity.getType()->isObjCRetainableType() &&
3621            "consuming an object of unretainable type?");
3622     Sequence.AddProduceObjCObjectStep(Entity.getType());
3623 
3624   /// When initializing a return value, if the return type is a
3625   /// retainable type, then returns need to immediately retain the
3626   /// object.  If an autorelease is required, it will be done at the
3627   /// last instant.
3628   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3629              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3630     if (!Entity.getType()->isObjCRetainableType())
3631       return;
3632 
3633     Sequence.AddProduceObjCObjectStep(Entity.getType());
3634   }
3635 }
3636 
3637 static void TryListInitialization(Sema &S,
3638                                   const InitializedEntity &Entity,
3639                                   const InitializationKind &Kind,
3640                                   InitListExpr *InitList,
3641                                   InitializationSequence &Sequence,
3642                                   bool TreatUnavailableAsInvalid);
3643 
3644 /// When initializing from init list via constructor, handle
3645 /// initialization of an object of type std::initializer_list<T>.
3646 ///
3647 /// \return true if we have handled initialization of an object of type
3648 /// std::initializer_list<T>, false otherwise.
3649 static bool TryInitializerListConstruction(Sema &S,
3650                                            InitListExpr *List,
3651                                            QualType DestType,
3652                                            InitializationSequence &Sequence,
3653                                            bool TreatUnavailableAsInvalid) {
3654   QualType E;
3655   if (!S.isStdInitializerList(DestType, &E))
3656     return false;
3657 
3658   if (!S.isCompleteType(List->getExprLoc(), E)) {
3659     Sequence.setIncompleteTypeFailure(E);
3660     return true;
3661   }
3662 
3663   // Try initializing a temporary array from the init list.
3664   QualType ArrayType = S.Context.getConstantArrayType(
3665       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3666                                  List->getNumInits()),
3667       clang::ArrayType::Normal, 0);
3668   InitializedEntity HiddenArray =
3669       InitializedEntity::InitializeTemporary(ArrayType);
3670   InitializationKind Kind = InitializationKind::CreateDirectList(
3671       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3672   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3673                         TreatUnavailableAsInvalid);
3674   if (Sequence)
3675     Sequence.AddStdInitializerListConstructionStep(DestType);
3676   return true;
3677 }
3678 
3679 /// Determine if the constructor has the signature of a copy or move
3680 /// constructor for the type T of the class in which it was found. That is,
3681 /// determine if its first parameter is of type T or reference to (possibly
3682 /// cv-qualified) T.
3683 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3684                                    const ConstructorInfo &Info) {
3685   if (Info.Constructor->getNumParams() == 0)
3686     return false;
3687 
3688   QualType ParmT =
3689       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3690   QualType ClassT =
3691       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3692 
3693   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3694 }
3695 
3696 static OverloadingResult
3697 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3698                            MultiExprArg Args,
3699                            OverloadCandidateSet &CandidateSet,
3700                            QualType DestType,
3701                            DeclContext::lookup_result Ctors,
3702                            OverloadCandidateSet::iterator &Best,
3703                            bool CopyInitializing, bool AllowExplicit,
3704                            bool OnlyListConstructors, bool IsListInit,
3705                            bool SecondStepOfCopyInit = false) {
3706   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3707 
3708   for (NamedDecl *D : Ctors) {
3709     auto Info = getConstructorInfo(D);
3710     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3711       continue;
3712 
3713     if (!AllowExplicit && Info.Constructor->isExplicit())
3714       continue;
3715 
3716     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3717       continue;
3718 
3719     // C++11 [over.best.ics]p4:
3720     //   ... and the constructor or user-defined conversion function is a
3721     //   candidate by
3722     //   - 13.3.1.3, when the argument is the temporary in the second step
3723     //     of a class copy-initialization, or
3724     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3725     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3726     //     one element that is itself an initializer list, and the target is
3727     //     the first parameter of a constructor of class X, and the conversion
3728     //     is to X or reference to (possibly cv-qualified X),
3729     //   user-defined conversion sequences are not considered.
3730     bool SuppressUserConversions =
3731         SecondStepOfCopyInit ||
3732         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3733          hasCopyOrMoveCtorParam(S.Context, Info));
3734 
3735     if (Info.ConstructorTmpl)
3736       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3737                                      /*ExplicitArgs*/ nullptr, Args,
3738                                      CandidateSet, SuppressUserConversions);
3739     else {
3740       // C++ [over.match.copy]p1:
3741       //   - When initializing a temporary to be bound to the first parameter
3742       //     of a constructor [for type T] that takes a reference to possibly
3743       //     cv-qualified T as its first argument, called with a single
3744       //     argument in the context of direct-initialization, explicit
3745       //     conversion functions are also considered.
3746       // FIXME: What if a constructor template instantiates to such a signature?
3747       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3748                                Args.size() == 1 &&
3749                                hasCopyOrMoveCtorParam(S.Context, Info);
3750       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3751                              CandidateSet, SuppressUserConversions,
3752                              /*PartialOverloading=*/false,
3753                              /*AllowExplicit=*/AllowExplicitConv);
3754     }
3755   }
3756 
3757   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3758   //
3759   // When initializing an object of class type T by constructor
3760   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3761   // from a single expression of class type U, conversion functions of
3762   // U that convert to the non-reference type cv T are candidates.
3763   // Explicit conversion functions are only candidates during
3764   // direct-initialization.
3765   //
3766   // Note: SecondStepOfCopyInit is only ever true in this case when
3767   // evaluating whether to produce a C++98 compatibility warning.
3768   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3769       !SecondStepOfCopyInit) {
3770     Expr *Initializer = Args[0];
3771     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3772     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3773       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3774       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3775         NamedDecl *D = *I;
3776         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3777         D = D->getUnderlyingDecl();
3778 
3779         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3780         CXXConversionDecl *Conv;
3781         if (ConvTemplate)
3782           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3783         else
3784           Conv = cast<CXXConversionDecl>(D);
3785 
3786         if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3787           if (ConvTemplate)
3788             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3789                                              ActingDC, Initializer, DestType,
3790                                              CandidateSet, AllowExplicit,
3791                                              /*AllowResultConversion*/false);
3792           else
3793             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3794                                      DestType, CandidateSet, AllowExplicit,
3795                                      /*AllowResultConversion*/false);
3796         }
3797       }
3798     }
3799   }
3800 
3801   // Perform overload resolution and return the result.
3802   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3803 }
3804 
3805 /// Attempt initialization by constructor (C++ [dcl.init]), which
3806 /// enumerates the constructors of the initialized entity and performs overload
3807 /// resolution to select the best.
3808 /// \param DestType       The destination class type.
3809 /// \param DestArrayType  The destination type, which is either DestType or
3810 ///                       a (possibly multidimensional) array of DestType.
3811 /// \param IsListInit     Is this list-initialization?
3812 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3813 ///                       list-initialization from {x} where x is the same
3814 ///                       type as the entity?
3815 static void TryConstructorInitialization(Sema &S,
3816                                          const InitializedEntity &Entity,
3817                                          const InitializationKind &Kind,
3818                                          MultiExprArg Args, QualType DestType,
3819                                          QualType DestArrayType,
3820                                          InitializationSequence &Sequence,
3821                                          bool IsListInit = false,
3822                                          bool IsInitListCopy = false) {
3823   assert(((!IsListInit && !IsInitListCopy) ||
3824           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3825          "IsListInit/IsInitListCopy must come with a single initializer list "
3826          "argument.");
3827   InitListExpr *ILE =
3828       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3829   MultiExprArg UnwrappedArgs =
3830       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3831 
3832   // The type we're constructing needs to be complete.
3833   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3834     Sequence.setIncompleteTypeFailure(DestType);
3835     return;
3836   }
3837 
3838   // C++17 [dcl.init]p17:
3839   //     - If the initializer expression is a prvalue and the cv-unqualified
3840   //       version of the source type is the same class as the class of the
3841   //       destination, the initializer expression is used to initialize the
3842   //       destination object.
3843   // Per DR (no number yet), this does not apply when initializing a base
3844   // class or delegating to another constructor from a mem-initializer.
3845   // ObjC++: Lambda captured by the block in the lambda to block conversion
3846   // should avoid copy elision.
3847   if (S.getLangOpts().CPlusPlus17 &&
3848       Entity.getKind() != InitializedEntity::EK_Base &&
3849       Entity.getKind() != InitializedEntity::EK_Delegating &&
3850       Entity.getKind() !=
3851           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3852       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3853       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3854     // Convert qualifications if necessary.
3855     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3856     if (ILE)
3857       Sequence.RewrapReferenceInitList(DestType, ILE);
3858     return;
3859   }
3860 
3861   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3862   assert(DestRecordType && "Constructor initialization requires record type");
3863   CXXRecordDecl *DestRecordDecl
3864     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3865 
3866   // Build the candidate set directly in the initialization sequence
3867   // structure, so that it will persist if we fail.
3868   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3869 
3870   // Determine whether we are allowed to call explicit constructors or
3871   // explicit conversion operators.
3872   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3873   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3874 
3875   //   - Otherwise, if T is a class type, constructors are considered. The
3876   //     applicable constructors are enumerated, and the best one is chosen
3877   //     through overload resolution.
3878   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3879 
3880   OverloadingResult Result = OR_No_Viable_Function;
3881   OverloadCandidateSet::iterator Best;
3882   bool AsInitializerList = false;
3883 
3884   // C++11 [over.match.list]p1, per DR1467:
3885   //   When objects of non-aggregate type T are list-initialized, such that
3886   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3887   //   according to the rules in this section, overload resolution selects
3888   //   the constructor in two phases:
3889   //
3890   //   - Initially, the candidate functions are the initializer-list
3891   //     constructors of the class T and the argument list consists of the
3892   //     initializer list as a single argument.
3893   if (IsListInit) {
3894     AsInitializerList = true;
3895 
3896     // If the initializer list has no elements and T has a default constructor,
3897     // the first phase is omitted.
3898     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3899       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3900                                           CandidateSet, DestType, Ctors, Best,
3901                                           CopyInitialization, AllowExplicit,
3902                                           /*OnlyListConstructor=*/true,
3903                                           IsListInit);
3904   }
3905 
3906   // C++11 [over.match.list]p1:
3907   //   - If no viable initializer-list constructor is found, overload resolution
3908   //     is performed again, where the candidate functions are all the
3909   //     constructors of the class T and the argument list consists of the
3910   //     elements of the initializer list.
3911   if (Result == OR_No_Viable_Function) {
3912     AsInitializerList = false;
3913     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3914                                         CandidateSet, DestType, Ctors, Best,
3915                                         CopyInitialization, AllowExplicit,
3916                                         /*OnlyListConstructors=*/false,
3917                                         IsListInit);
3918   }
3919   if (Result) {
3920     Sequence.SetOverloadFailure(IsListInit ?
3921                       InitializationSequence::FK_ListConstructorOverloadFailed :
3922                       InitializationSequence::FK_ConstructorOverloadFailed,
3923                                 Result);
3924     return;
3925   }
3926 
3927   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3928 
3929   // In C++17, ResolveConstructorOverload can select a conversion function
3930   // instead of a constructor.
3931   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3932     // Add the user-defined conversion step that calls the conversion function.
3933     QualType ConvType = CD->getConversionType();
3934     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3935            "should not have selected this conversion function");
3936     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3937                                    HadMultipleCandidates);
3938     if (!S.Context.hasSameType(ConvType, DestType))
3939       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3940     if (IsListInit)
3941       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3942     return;
3943   }
3944 
3945   // C++11 [dcl.init]p6:
3946   //   If a program calls for the default initialization of an object
3947   //   of a const-qualified type T, T shall be a class type with a
3948   //   user-provided default constructor.
3949   // C++ core issue 253 proposal:
3950   //   If the implicit default constructor initializes all subobjects, no
3951   //   initializer should be required.
3952   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3953   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3954   if (Kind.getKind() == InitializationKind::IK_Default &&
3955       Entity.getType().isConstQualified()) {
3956     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3957       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3958         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3959       return;
3960     }
3961   }
3962 
3963   // C++11 [over.match.list]p1:
3964   //   In copy-list-initialization, if an explicit constructor is chosen, the
3965   //   initializer is ill-formed.
3966   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3967     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3968     return;
3969   }
3970 
3971   // Add the constructor initialization step. Any cv-qualification conversion is
3972   // subsumed by the initialization.
3973   Sequence.AddConstructorInitializationStep(
3974       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3975       IsListInit | IsInitListCopy, AsInitializerList);
3976 }
3977 
3978 static bool
3979 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3980                                              Expr *Initializer,
3981                                              QualType &SourceType,
3982                                              QualType &UnqualifiedSourceType,
3983                                              QualType UnqualifiedTargetType,
3984                                              InitializationSequence &Sequence) {
3985   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3986         S.Context.OverloadTy) {
3987     DeclAccessPair Found;
3988     bool HadMultipleCandidates = false;
3989     if (FunctionDecl *Fn
3990         = S.ResolveAddressOfOverloadedFunction(Initializer,
3991                                                UnqualifiedTargetType,
3992                                                false, Found,
3993                                                &HadMultipleCandidates)) {
3994       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3995                                                 HadMultipleCandidates);
3996       SourceType = Fn->getType();
3997       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3998     } else if (!UnqualifiedTargetType->isRecordType()) {
3999       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4000       return true;
4001     }
4002   }
4003   return false;
4004 }
4005 
4006 static void TryReferenceInitializationCore(Sema &S,
4007                                            const InitializedEntity &Entity,
4008                                            const InitializationKind &Kind,
4009                                            Expr *Initializer,
4010                                            QualType cv1T1, QualType T1,
4011                                            Qualifiers T1Quals,
4012                                            QualType cv2T2, QualType T2,
4013                                            Qualifiers T2Quals,
4014                                            InitializationSequence &Sequence);
4015 
4016 static void TryValueInitialization(Sema &S,
4017                                    const InitializedEntity &Entity,
4018                                    const InitializationKind &Kind,
4019                                    InitializationSequence &Sequence,
4020                                    InitListExpr *InitList = nullptr);
4021 
4022 /// Attempt list initialization of a reference.
4023 static void TryReferenceListInitialization(Sema &S,
4024                                            const InitializedEntity &Entity,
4025                                            const InitializationKind &Kind,
4026                                            InitListExpr *InitList,
4027                                            InitializationSequence &Sequence,
4028                                            bool TreatUnavailableAsInvalid) {
4029   // First, catch C++03 where this isn't possible.
4030   if (!S.getLangOpts().CPlusPlus11) {
4031     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4032     return;
4033   }
4034   // Can't reference initialize a compound literal.
4035   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4036     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4037     return;
4038   }
4039 
4040   QualType DestType = Entity.getType();
4041   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4042   Qualifiers T1Quals;
4043   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4044 
4045   // Reference initialization via an initializer list works thus:
4046   // If the initializer list consists of a single element that is
4047   // reference-related to the referenced type, bind directly to that element
4048   // (possibly creating temporaries).
4049   // Otherwise, initialize a temporary with the initializer list and
4050   // bind to that.
4051   if (InitList->getNumInits() == 1) {
4052     Expr *Initializer = InitList->getInit(0);
4053     QualType cv2T2 = Initializer->getType();
4054     Qualifiers T2Quals;
4055     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4056 
4057     // If this fails, creating a temporary wouldn't work either.
4058     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4059                                                      T1, Sequence))
4060       return;
4061 
4062     SourceLocation DeclLoc = Initializer->getBeginLoc();
4063     bool dummy1, dummy2, dummy3;
4064     Sema::ReferenceCompareResult RefRelationship
4065       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4066                                        dummy2, dummy3);
4067     if (RefRelationship >= Sema::Ref_Related) {
4068       // Try to bind the reference here.
4069       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4070                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4071       if (Sequence)
4072         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4073       return;
4074     }
4075 
4076     // Update the initializer if we've resolved an overloaded function.
4077     if (Sequence.step_begin() != Sequence.step_end())
4078       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4079   }
4080 
4081   // Not reference-related. Create a temporary and bind to that.
4082   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4083 
4084   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4085                         TreatUnavailableAsInvalid);
4086   if (Sequence) {
4087     if (DestType->isRValueReferenceType() ||
4088         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4089       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4090     else
4091       Sequence.SetFailed(
4092           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4093   }
4094 }
4095 
4096 /// Attempt list initialization (C++0x [dcl.init.list])
4097 static void TryListInitialization(Sema &S,
4098                                   const InitializedEntity &Entity,
4099                                   const InitializationKind &Kind,
4100                                   InitListExpr *InitList,
4101                                   InitializationSequence &Sequence,
4102                                   bool TreatUnavailableAsInvalid) {
4103   QualType DestType = Entity.getType();
4104 
4105   // C++ doesn't allow scalar initialization with more than one argument.
4106   // But C99 complex numbers are scalars and it makes sense there.
4107   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4108       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4109     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4110     return;
4111   }
4112   if (DestType->isReferenceType()) {
4113     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4114                                    TreatUnavailableAsInvalid);
4115     return;
4116   }
4117 
4118   if (DestType->isRecordType() &&
4119       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4120     Sequence.setIncompleteTypeFailure(DestType);
4121     return;
4122   }
4123 
4124   // C++11 [dcl.init.list]p3, per DR1467:
4125   // - If T is a class type and the initializer list has a single element of
4126   //   type cv U, where U is T or a class derived from T, the object is
4127   //   initialized from that element (by copy-initialization for
4128   //   copy-list-initialization, or by direct-initialization for
4129   //   direct-list-initialization).
4130   // - Otherwise, if T is a character array and the initializer list has a
4131   //   single element that is an appropriately-typed string literal
4132   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4133   //   in that section.
4134   // - Otherwise, if T is an aggregate, [...] (continue below).
4135   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4136     if (DestType->isRecordType()) {
4137       QualType InitType = InitList->getInit(0)->getType();
4138       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4139           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4140         Expr *InitListAsExpr = InitList;
4141         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4142                                      DestType, Sequence,
4143                                      /*InitListSyntax*/false,
4144                                      /*IsInitListCopy*/true);
4145         return;
4146       }
4147     }
4148     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4149       Expr *SubInit[1] = {InitList->getInit(0)};
4150       if (!isa<VariableArrayType>(DestAT) &&
4151           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4152         InitializationKind SubKind =
4153             Kind.getKind() == InitializationKind::IK_DirectList
4154                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4155                                                    InitList->getLBraceLoc(),
4156                                                    InitList->getRBraceLoc())
4157                 : Kind;
4158         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4159                                 /*TopLevelOfInitList*/ true,
4160                                 TreatUnavailableAsInvalid);
4161 
4162         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4163         // the element is not an appropriately-typed string literal, in which
4164         // case we should proceed as in C++11 (below).
4165         if (Sequence) {
4166           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4167           return;
4168         }
4169       }
4170     }
4171   }
4172 
4173   // C++11 [dcl.init.list]p3:
4174   //   - If T is an aggregate, aggregate initialization is performed.
4175   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4176       (S.getLangOpts().CPlusPlus11 &&
4177        S.isStdInitializerList(DestType, nullptr))) {
4178     if (S.getLangOpts().CPlusPlus11) {
4179       //   - Otherwise, if the initializer list has no elements and T is a
4180       //     class type with a default constructor, the object is
4181       //     value-initialized.
4182       if (InitList->getNumInits() == 0) {
4183         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4184         if (RD->hasDefaultConstructor()) {
4185           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4186           return;
4187         }
4188       }
4189 
4190       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4191       //     an initializer_list object constructed [...]
4192       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4193                                          TreatUnavailableAsInvalid))
4194         return;
4195 
4196       //   - Otherwise, if T is a class type, constructors are considered.
4197       Expr *InitListAsExpr = InitList;
4198       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4199                                    DestType, Sequence, /*InitListSyntax*/true);
4200     } else
4201       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4202     return;
4203   }
4204 
4205   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4206       InitList->getNumInits() == 1) {
4207     Expr *E = InitList->getInit(0);
4208 
4209     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4210     //     the initializer-list has a single element v, and the initialization
4211     //     is direct-list-initialization, the object is initialized with the
4212     //     value T(v); if a narrowing conversion is required to convert v to
4213     //     the underlying type of T, the program is ill-formed.
4214     auto *ET = DestType->getAs<EnumType>();
4215     if (S.getLangOpts().CPlusPlus17 &&
4216         Kind.getKind() == InitializationKind::IK_DirectList &&
4217         ET && ET->getDecl()->isFixed() &&
4218         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4219         (E->getType()->isIntegralOrEnumerationType() ||
4220          E->getType()->isFloatingType())) {
4221       // There are two ways that T(v) can work when T is an enumeration type.
4222       // If there is either an implicit conversion sequence from v to T or
4223       // a conversion function that can convert from v to T, then we use that.
4224       // Otherwise, if v is of integral, enumeration, or floating-point type,
4225       // it is converted to the enumeration type via its underlying type.
4226       // There is no overlap possible between these two cases (except when the
4227       // source value is already of the destination type), and the first
4228       // case is handled by the general case for single-element lists below.
4229       ImplicitConversionSequence ICS;
4230       ICS.setStandard();
4231       ICS.Standard.setAsIdentityConversion();
4232       if (!E->isRValue())
4233         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4234       // If E is of a floating-point type, then the conversion is ill-formed
4235       // due to narrowing, but go through the motions in order to produce the
4236       // right diagnostic.
4237       ICS.Standard.Second = E->getType()->isFloatingType()
4238                                 ? ICK_Floating_Integral
4239                                 : ICK_Integral_Conversion;
4240       ICS.Standard.setFromType(E->getType());
4241       ICS.Standard.setToType(0, E->getType());
4242       ICS.Standard.setToType(1, DestType);
4243       ICS.Standard.setToType(2, DestType);
4244       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4245                                          /*TopLevelOfInitList*/true);
4246       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4247       return;
4248     }
4249 
4250     //   - Otherwise, if the initializer list has a single element of type E
4251     //     [...references are handled above...], the object or reference is
4252     //     initialized from that element (by copy-initialization for
4253     //     copy-list-initialization, or by direct-initialization for
4254     //     direct-list-initialization); if a narrowing conversion is required
4255     //     to convert the element to T, the program is ill-formed.
4256     //
4257     // Per core-24034, this is direct-initialization if we were performing
4258     // direct-list-initialization and copy-initialization otherwise.
4259     // We can't use InitListChecker for this, because it always performs
4260     // copy-initialization. This only matters if we might use an 'explicit'
4261     // conversion operator, so we only need to handle the cases where the source
4262     // is of record type.
4263     if (InitList->getInit(0)->getType()->isRecordType()) {
4264       InitializationKind SubKind =
4265           Kind.getKind() == InitializationKind::IK_DirectList
4266               ? InitializationKind::CreateDirect(Kind.getLocation(),
4267                                                  InitList->getLBraceLoc(),
4268                                                  InitList->getRBraceLoc())
4269               : Kind;
4270       Expr *SubInit[1] = { InitList->getInit(0) };
4271       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4272                               /*TopLevelOfInitList*/true,
4273                               TreatUnavailableAsInvalid);
4274       if (Sequence)
4275         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4276       return;
4277     }
4278   }
4279 
4280   InitListChecker CheckInitList(S, Entity, InitList,
4281           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4282   if (CheckInitList.HadError()) {
4283     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4284     return;
4285   }
4286 
4287   // Add the list initialization step with the built init list.
4288   Sequence.AddListInitializationStep(DestType);
4289 }
4290 
4291 /// Try a reference initialization that involves calling a conversion
4292 /// function.
4293 static OverloadingResult TryRefInitWithConversionFunction(
4294     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4295     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4296     InitializationSequence &Sequence) {
4297   QualType DestType = Entity.getType();
4298   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4299   QualType T1 = cv1T1.getUnqualifiedType();
4300   QualType cv2T2 = Initializer->getType();
4301   QualType T2 = cv2T2.getUnqualifiedType();
4302 
4303   bool DerivedToBase;
4304   bool ObjCConversion;
4305   bool ObjCLifetimeConversion;
4306   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4307                                          DerivedToBase, ObjCConversion,
4308                                          ObjCLifetimeConversion) &&
4309          "Must have incompatible references when binding via conversion");
4310   (void)DerivedToBase;
4311   (void)ObjCConversion;
4312   (void)ObjCLifetimeConversion;
4313 
4314   // Build the candidate set directly in the initialization sequence
4315   // structure, so that it will persist if we fail.
4316   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4317   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4318 
4319   // Determine whether we are allowed to call explicit conversion operators.
4320   // Note that none of [over.match.copy], [over.match.conv], nor
4321   // [over.match.ref] permit an explicit constructor to be chosen when
4322   // initializing a reference, not even for direct-initialization.
4323   bool AllowExplicitCtors = false;
4324   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4325 
4326   const RecordType *T1RecordType = nullptr;
4327   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4328       S.isCompleteType(Kind.getLocation(), T1)) {
4329     // The type we're converting to is a class type. Enumerate its constructors
4330     // to see if there is a suitable conversion.
4331     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4332 
4333     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4334       auto Info = getConstructorInfo(D);
4335       if (!Info.Constructor)
4336         continue;
4337 
4338       if (!Info.Constructor->isInvalidDecl() &&
4339           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4340         if (Info.ConstructorTmpl)
4341           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4342                                          /*ExplicitArgs*/ nullptr,
4343                                          Initializer, CandidateSet,
4344                                          /*SuppressUserConversions=*/true);
4345         else
4346           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4347                                  Initializer, CandidateSet,
4348                                  /*SuppressUserConversions=*/true);
4349       }
4350     }
4351   }
4352   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4353     return OR_No_Viable_Function;
4354 
4355   const RecordType *T2RecordType = nullptr;
4356   if ((T2RecordType = T2->getAs<RecordType>()) &&
4357       S.isCompleteType(Kind.getLocation(), T2)) {
4358     // The type we're converting from is a class type, enumerate its conversion
4359     // functions.
4360     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4361 
4362     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4363     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4364       NamedDecl *D = *I;
4365       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4366       if (isa<UsingShadowDecl>(D))
4367         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4368 
4369       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4370       CXXConversionDecl *Conv;
4371       if (ConvTemplate)
4372         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4373       else
4374         Conv = cast<CXXConversionDecl>(D);
4375 
4376       // If the conversion function doesn't return a reference type,
4377       // it can't be considered for this conversion unless we're allowed to
4378       // consider rvalues.
4379       // FIXME: Do we need to make sure that we only consider conversion
4380       // candidates with reference-compatible results? That might be needed to
4381       // break recursion.
4382       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4383           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4384         if (ConvTemplate)
4385           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4386                                            ActingDC, Initializer,
4387                                            DestType, CandidateSet,
4388                                            /*AllowObjCConversionOnExplicit=*/
4389                                              false);
4390         else
4391           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4392                                    Initializer, DestType, CandidateSet,
4393                                    /*AllowObjCConversionOnExplicit=*/false);
4394       }
4395     }
4396   }
4397   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4398     return OR_No_Viable_Function;
4399 
4400   SourceLocation DeclLoc = Initializer->getBeginLoc();
4401 
4402   // Perform overload resolution. If it fails, return the failed result.
4403   OverloadCandidateSet::iterator Best;
4404   if (OverloadingResult Result
4405         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4406     return Result;
4407 
4408   FunctionDecl *Function = Best->Function;
4409   // This is the overload that will be used for this initialization step if we
4410   // use this initialization. Mark it as referenced.
4411   Function->setReferenced();
4412 
4413   // Compute the returned type and value kind of the conversion.
4414   QualType cv3T3;
4415   if (isa<CXXConversionDecl>(Function))
4416     cv3T3 = Function->getReturnType();
4417   else
4418     cv3T3 = T1;
4419 
4420   ExprValueKind VK = VK_RValue;
4421   if (cv3T3->isLValueReferenceType())
4422     VK = VK_LValue;
4423   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4424     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4425   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4426 
4427   // Add the user-defined conversion step.
4428   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4429   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4430                                  HadMultipleCandidates);
4431 
4432   // Determine whether we'll need to perform derived-to-base adjustments or
4433   // other conversions.
4434   bool NewDerivedToBase = false;
4435   bool NewObjCConversion = false;
4436   bool NewObjCLifetimeConversion = false;
4437   Sema::ReferenceCompareResult NewRefRelationship
4438     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4439                                      NewDerivedToBase, NewObjCConversion,
4440                                      NewObjCLifetimeConversion);
4441 
4442   // Add the final conversion sequence, if necessary.
4443   if (NewRefRelationship == Sema::Ref_Incompatible) {
4444     assert(!isa<CXXConstructorDecl>(Function) &&
4445            "should not have conversion after constructor");
4446 
4447     ImplicitConversionSequence ICS;
4448     ICS.setStandard();
4449     ICS.Standard = Best->FinalConversion;
4450     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4451 
4452     // Every implicit conversion results in a prvalue, except for a glvalue
4453     // derived-to-base conversion, which we handle below.
4454     cv3T3 = ICS.Standard.getToType(2);
4455     VK = VK_RValue;
4456   }
4457 
4458   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4459   //   type "cv1 T4" and the temporary materialization conversion is applied.
4460   //
4461   // We adjust the cv-qualifications to match the reference regardless of
4462   // whether we have a prvalue so that the AST records the change. In this
4463   // case, T4 is "cv3 T3".
4464   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4465   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4466     Sequence.AddQualificationConversionStep(cv1T4, VK);
4467   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4468   VK = IsLValueRef ? VK_LValue : VK_XValue;
4469 
4470   if (NewDerivedToBase)
4471     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4472   else if (NewObjCConversion)
4473     Sequence.AddObjCObjectConversionStep(cv1T1);
4474 
4475   return OR_Success;
4476 }
4477 
4478 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4479                                            const InitializedEntity &Entity,
4480                                            Expr *CurInitExpr);
4481 
4482 /// Attempt reference initialization (C++0x [dcl.init.ref])
4483 static void TryReferenceInitialization(Sema &S,
4484                                        const InitializedEntity &Entity,
4485                                        const InitializationKind &Kind,
4486                                        Expr *Initializer,
4487                                        InitializationSequence &Sequence) {
4488   QualType DestType = Entity.getType();
4489   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4490   Qualifiers T1Quals;
4491   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4492   QualType cv2T2 = Initializer->getType();
4493   Qualifiers T2Quals;
4494   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4495 
4496   // If the initializer is the address of an overloaded function, try
4497   // to resolve the overloaded function. If all goes well, T2 is the
4498   // type of the resulting function.
4499   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4500                                                    T1, Sequence))
4501     return;
4502 
4503   // Delegate everything else to a subfunction.
4504   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4505                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4506 }
4507 
4508 /// Determine whether an expression is a non-referenceable glvalue (one to
4509 /// which a reference can never bind). Attempting to bind a reference to
4510 /// such a glvalue will always create a temporary.
4511 static bool isNonReferenceableGLValue(Expr *E) {
4512   return E->refersToBitField() || E->refersToVectorElement();
4513 }
4514 
4515 /// Reference initialization without resolving overloaded functions.
4516 static void TryReferenceInitializationCore(Sema &S,
4517                                            const InitializedEntity &Entity,
4518                                            const InitializationKind &Kind,
4519                                            Expr *Initializer,
4520                                            QualType cv1T1, QualType T1,
4521                                            Qualifiers T1Quals,
4522                                            QualType cv2T2, QualType T2,
4523                                            Qualifiers T2Quals,
4524                                            InitializationSequence &Sequence) {
4525   QualType DestType = Entity.getType();
4526   SourceLocation DeclLoc = Initializer->getBeginLoc();
4527   // Compute some basic properties of the types and the initializer.
4528   bool isLValueRef = DestType->isLValueReferenceType();
4529   bool isRValueRef = !isLValueRef;
4530   bool DerivedToBase = false;
4531   bool ObjCConversion = false;
4532   bool ObjCLifetimeConversion = false;
4533   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4534   Sema::ReferenceCompareResult RefRelationship
4535     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4536                                      ObjCConversion, ObjCLifetimeConversion);
4537 
4538   // C++0x [dcl.init.ref]p5:
4539   //   A reference to type "cv1 T1" is initialized by an expression of type
4540   //   "cv2 T2" as follows:
4541   //
4542   //     - If the reference is an lvalue reference and the initializer
4543   //       expression
4544   // Note the analogous bullet points for rvalue refs to functions. Because
4545   // there are no function rvalues in C++, rvalue refs to functions are treated
4546   // like lvalue refs.
4547   OverloadingResult ConvOvlResult = OR_Success;
4548   bool T1Function = T1->isFunctionType();
4549   if (isLValueRef || T1Function) {
4550     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4551         (RefRelationship == Sema::Ref_Compatible ||
4552          (Kind.isCStyleOrFunctionalCast() &&
4553           RefRelationship == Sema::Ref_Related))) {
4554       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4555       //     reference-compatible with "cv2 T2," or
4556       if (T1Quals != T2Quals)
4557         // Convert to cv1 T2. This should only add qualifiers unless this is a
4558         // c-style cast. The removal of qualifiers in that case notionally
4559         // happens after the reference binding, but that doesn't matter.
4560         Sequence.AddQualificationConversionStep(
4561             S.Context.getQualifiedType(T2, T1Quals),
4562             Initializer->getValueKind());
4563       if (DerivedToBase)
4564         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4565       else if (ObjCConversion)
4566         Sequence.AddObjCObjectConversionStep(cv1T1);
4567 
4568       // We only create a temporary here when binding a reference to a
4569       // bit-field or vector element. Those cases are't supposed to be
4570       // handled by this bullet, but the outcome is the same either way.
4571       Sequence.AddReferenceBindingStep(cv1T1, false);
4572       return;
4573     }
4574 
4575     //     - has a class type (i.e., T2 is a class type), where T1 is not
4576     //       reference-related to T2, and can be implicitly converted to an
4577     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4578     //       with "cv3 T3" (this conversion is selected by enumerating the
4579     //       applicable conversion functions (13.3.1.6) and choosing the best
4580     //       one through overload resolution (13.3)),
4581     // If we have an rvalue ref to function type here, the rhs must be
4582     // an rvalue. DR1287 removed the "implicitly" here.
4583     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4584         (isLValueRef || InitCategory.isRValue())) {
4585       ConvOvlResult = TryRefInitWithConversionFunction(
4586           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4587           /*IsLValueRef*/ isLValueRef, Sequence);
4588       if (ConvOvlResult == OR_Success)
4589         return;
4590       if (ConvOvlResult != OR_No_Viable_Function)
4591         Sequence.SetOverloadFailure(
4592             InitializationSequence::FK_ReferenceInitOverloadFailed,
4593             ConvOvlResult);
4594     }
4595   }
4596 
4597   //     - Otherwise, the reference shall be an lvalue reference to a
4598   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4599   //       shall be an rvalue reference.
4600   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4601     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4602       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4603     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4604       Sequence.SetOverloadFailure(
4605                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4606                                   ConvOvlResult);
4607     else if (!InitCategory.isLValue())
4608       Sequence.SetFailed(
4609           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4610     else {
4611       InitializationSequence::FailureKind FK;
4612       switch (RefRelationship) {
4613       case Sema::Ref_Compatible:
4614         if (Initializer->refersToBitField())
4615           FK = InitializationSequence::
4616               FK_NonConstLValueReferenceBindingToBitfield;
4617         else if (Initializer->refersToVectorElement())
4618           FK = InitializationSequence::
4619               FK_NonConstLValueReferenceBindingToVectorElement;
4620         else
4621           llvm_unreachable("unexpected kind of compatible initializer");
4622         break;
4623       case Sema::Ref_Related:
4624         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4625         break;
4626       case Sema::Ref_Incompatible:
4627         FK = InitializationSequence::
4628             FK_NonConstLValueReferenceBindingToUnrelated;
4629         break;
4630       }
4631       Sequence.SetFailed(FK);
4632     }
4633     return;
4634   }
4635 
4636   //    - If the initializer expression
4637   //      - is an
4638   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4639   // [1z]   rvalue (but not a bit-field) or
4640   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4641   //
4642   // Note: functions are handled above and below rather than here...
4643   if (!T1Function &&
4644       (RefRelationship == Sema::Ref_Compatible ||
4645        (Kind.isCStyleOrFunctionalCast() &&
4646         RefRelationship == Sema::Ref_Related)) &&
4647       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4648        (InitCategory.isPRValue() &&
4649         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4650          T2->isArrayType())))) {
4651     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4652     if (InitCategory.isPRValue() && T2->isRecordType()) {
4653       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4654       // compiler the freedom to perform a copy here or bind to the
4655       // object, while C++0x requires that we bind directly to the
4656       // object. Hence, we always bind to the object without making an
4657       // extra copy. However, in C++03 requires that we check for the
4658       // presence of a suitable copy constructor:
4659       //
4660       //   The constructor that would be used to make the copy shall
4661       //   be callable whether or not the copy is actually done.
4662       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4663         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4664       else if (S.getLangOpts().CPlusPlus11)
4665         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4666     }
4667 
4668     // C++1z [dcl.init.ref]/5.2.1.2:
4669     //   If the converted initializer is a prvalue, its type T4 is adjusted
4670     //   to type "cv1 T4" and the temporary materialization conversion is
4671     //   applied.
4672     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4673     if (T1Quals != T2Quals)
4674       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4675     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4676     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4677 
4678     //   In any case, the reference is bound to the resulting glvalue (or to
4679     //   an appropriate base class subobject).
4680     if (DerivedToBase)
4681       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4682     else if (ObjCConversion)
4683       Sequence.AddObjCObjectConversionStep(cv1T1);
4684     return;
4685   }
4686 
4687   //       - has a class type (i.e., T2 is a class type), where T1 is not
4688   //         reference-related to T2, and can be implicitly converted to an
4689   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4690   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4691   //
4692   // DR1287 removes the "implicitly" here.
4693   if (T2->isRecordType()) {
4694     if (RefRelationship == Sema::Ref_Incompatible) {
4695       ConvOvlResult = TryRefInitWithConversionFunction(
4696           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4697           /*IsLValueRef*/ isLValueRef, Sequence);
4698       if (ConvOvlResult)
4699         Sequence.SetOverloadFailure(
4700             InitializationSequence::FK_ReferenceInitOverloadFailed,
4701             ConvOvlResult);
4702 
4703       return;
4704     }
4705 
4706     if (RefRelationship == Sema::Ref_Compatible &&
4707         isRValueRef && InitCategory.isLValue()) {
4708       Sequence.SetFailed(
4709         InitializationSequence::FK_RValueReferenceBindingToLValue);
4710       return;
4711     }
4712 
4713     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4714     return;
4715   }
4716 
4717   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4718   //        from the initializer expression using the rules for a non-reference
4719   //        copy-initialization (8.5). The reference is then bound to the
4720   //        temporary. [...]
4721 
4722   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4723 
4724   // FIXME: Why do we use an implicit conversion here rather than trying
4725   // copy-initialization?
4726   ImplicitConversionSequence ICS
4727     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4728                               /*SuppressUserConversions=*/false,
4729                               /*AllowExplicit=*/false,
4730                               /*FIXME:InOverloadResolution=*/false,
4731                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4732                               /*AllowObjCWritebackConversion=*/false);
4733 
4734   if (ICS.isBad()) {
4735     // FIXME: Use the conversion function set stored in ICS to turn
4736     // this into an overloading ambiguity diagnostic. However, we need
4737     // to keep that set as an OverloadCandidateSet rather than as some
4738     // other kind of set.
4739     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4740       Sequence.SetOverloadFailure(
4741                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4742                                   ConvOvlResult);
4743     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4744       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4745     else
4746       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4747     return;
4748   } else {
4749     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4750   }
4751 
4752   //        [...] If T1 is reference-related to T2, cv1 must be the
4753   //        same cv-qualification as, or greater cv-qualification
4754   //        than, cv2; otherwise, the program is ill-formed.
4755   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4756   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4757   if (RefRelationship == Sema::Ref_Related &&
4758       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4759     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4760     return;
4761   }
4762 
4763   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4764   //   reference, the initializer expression shall not be an lvalue.
4765   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4766       InitCategory.isLValue()) {
4767     Sequence.SetFailed(
4768                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4769     return;
4770   }
4771 
4772   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4773 }
4774 
4775 /// Attempt character array initialization from a string literal
4776 /// (C++ [dcl.init.string], C99 6.7.8).
4777 static void TryStringLiteralInitialization(Sema &S,
4778                                            const InitializedEntity &Entity,
4779                                            const InitializationKind &Kind,
4780                                            Expr *Initializer,
4781                                        InitializationSequence &Sequence) {
4782   Sequence.AddStringInitStep(Entity.getType());
4783 }
4784 
4785 /// Attempt value initialization (C++ [dcl.init]p7).
4786 static void TryValueInitialization(Sema &S,
4787                                    const InitializedEntity &Entity,
4788                                    const InitializationKind &Kind,
4789                                    InitializationSequence &Sequence,
4790                                    InitListExpr *InitList) {
4791   assert((!InitList || InitList->getNumInits() == 0) &&
4792          "Shouldn't use value-init for non-empty init lists");
4793 
4794   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4795   //
4796   //   To value-initialize an object of type T means:
4797   QualType T = Entity.getType();
4798 
4799   //     -- if T is an array type, then each element is value-initialized;
4800   T = S.Context.getBaseElementType(T);
4801 
4802   if (const RecordType *RT = T->getAs<RecordType>()) {
4803     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4804       bool NeedZeroInitialization = true;
4805       // C++98:
4806       // -- if T is a class type (clause 9) with a user-declared constructor
4807       //    (12.1), then the default constructor for T is called (and the
4808       //    initialization is ill-formed if T has no accessible default
4809       //    constructor);
4810       // C++11:
4811       // -- if T is a class type (clause 9) with either no default constructor
4812       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4813       //    or deleted, then the object is default-initialized;
4814       //
4815       // Note that the C++11 rule is the same as the C++98 rule if there are no
4816       // defaulted or deleted constructors, so we just use it unconditionally.
4817       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4818       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4819         NeedZeroInitialization = false;
4820 
4821       // -- if T is a (possibly cv-qualified) non-union class type without a
4822       //    user-provided or deleted default constructor, then the object is
4823       //    zero-initialized and, if T has a non-trivial default constructor,
4824       //    default-initialized;
4825       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4826       // constructor' part was removed by DR1507.
4827       if (NeedZeroInitialization)
4828         Sequence.AddZeroInitializationStep(Entity.getType());
4829 
4830       // C++03:
4831       // -- if T is a non-union class type without a user-declared constructor,
4832       //    then every non-static data member and base class component of T is
4833       //    value-initialized;
4834       // [...] A program that calls for [...] value-initialization of an
4835       // entity of reference type is ill-formed.
4836       //
4837       // C++11 doesn't need this handling, because value-initialization does not
4838       // occur recursively there, and the implicit default constructor is
4839       // defined as deleted in the problematic cases.
4840       if (!S.getLangOpts().CPlusPlus11 &&
4841           ClassDecl->hasUninitializedReferenceMember()) {
4842         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4843         return;
4844       }
4845 
4846       // If this is list-value-initialization, pass the empty init list on when
4847       // building the constructor call. This affects the semantics of a few
4848       // things (such as whether an explicit default constructor can be called).
4849       Expr *InitListAsExpr = InitList;
4850       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4851       bool InitListSyntax = InitList;
4852 
4853       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4854       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4855       return TryConstructorInitialization(
4856           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4857     }
4858   }
4859 
4860   Sequence.AddZeroInitializationStep(Entity.getType());
4861 }
4862 
4863 /// Attempt default initialization (C++ [dcl.init]p6).
4864 static void TryDefaultInitialization(Sema &S,
4865                                      const InitializedEntity &Entity,
4866                                      const InitializationKind &Kind,
4867                                      InitializationSequence &Sequence) {
4868   assert(Kind.getKind() == InitializationKind::IK_Default);
4869 
4870   // C++ [dcl.init]p6:
4871   //   To default-initialize an object of type T means:
4872   //     - if T is an array type, each element is default-initialized;
4873   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4874 
4875   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4876   //       constructor for T is called (and the initialization is ill-formed if
4877   //       T has no accessible default constructor);
4878   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4879     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4880                                  Entity.getType(), Sequence);
4881     return;
4882   }
4883 
4884   //     - otherwise, no initialization is performed.
4885 
4886   //   If a program calls for the default initialization of an object of
4887   //   a const-qualified type T, T shall be a class type with a user-provided
4888   //   default constructor.
4889   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4890     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4891       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4892     return;
4893   }
4894 
4895   // If the destination type has a lifetime property, zero-initialize it.
4896   if (DestType.getQualifiers().hasObjCLifetime()) {
4897     Sequence.AddZeroInitializationStep(Entity.getType());
4898     return;
4899   }
4900 }
4901 
4902 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4903 /// which enumerates all conversion functions and performs overload resolution
4904 /// to select the best.
4905 static void TryUserDefinedConversion(Sema &S,
4906                                      QualType DestType,
4907                                      const InitializationKind &Kind,
4908                                      Expr *Initializer,
4909                                      InitializationSequence &Sequence,
4910                                      bool TopLevelOfInitList) {
4911   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4912   QualType SourceType = Initializer->getType();
4913   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4914          "Must have a class type to perform a user-defined conversion");
4915 
4916   // Build the candidate set directly in the initialization sequence
4917   // structure, so that it will persist if we fail.
4918   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4919   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4920 
4921   // Determine whether we are allowed to call explicit constructors or
4922   // explicit conversion operators.
4923   bool AllowExplicit = Kind.AllowExplicit();
4924 
4925   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4926     // The type we're converting to is a class type. Enumerate its constructors
4927     // to see if there is a suitable conversion.
4928     CXXRecordDecl *DestRecordDecl
4929       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4930 
4931     // Try to complete the type we're converting to.
4932     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4933       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4934         auto Info = getConstructorInfo(D);
4935         if (!Info.Constructor)
4936           continue;
4937 
4938         if (!Info.Constructor->isInvalidDecl() &&
4939             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4940           if (Info.ConstructorTmpl)
4941             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4942                                            /*ExplicitArgs*/ nullptr,
4943                                            Initializer, CandidateSet,
4944                                            /*SuppressUserConversions=*/true);
4945           else
4946             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4947                                    Initializer, CandidateSet,
4948                                    /*SuppressUserConversions=*/true);
4949         }
4950       }
4951     }
4952   }
4953 
4954   SourceLocation DeclLoc = Initializer->getBeginLoc();
4955 
4956   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4957     // The type we're converting from is a class type, enumerate its conversion
4958     // functions.
4959 
4960     // We can only enumerate the conversion functions for a complete type; if
4961     // the type isn't complete, simply skip this step.
4962     if (S.isCompleteType(DeclLoc, SourceType)) {
4963       CXXRecordDecl *SourceRecordDecl
4964         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4965 
4966       const auto &Conversions =
4967           SourceRecordDecl->getVisibleConversionFunctions();
4968       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4969         NamedDecl *D = *I;
4970         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4971         if (isa<UsingShadowDecl>(D))
4972           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4973 
4974         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4975         CXXConversionDecl *Conv;
4976         if (ConvTemplate)
4977           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4978         else
4979           Conv = cast<CXXConversionDecl>(D);
4980 
4981         if (AllowExplicit || !Conv->isExplicit()) {
4982           if (ConvTemplate)
4983             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4984                                              ActingDC, Initializer, DestType,
4985                                              CandidateSet, AllowExplicit);
4986           else
4987             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4988                                      Initializer, DestType, CandidateSet,
4989                                      AllowExplicit);
4990         }
4991       }
4992     }
4993   }
4994 
4995   // Perform overload resolution. If it fails, return the failed result.
4996   OverloadCandidateSet::iterator Best;
4997   if (OverloadingResult Result
4998         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4999     Sequence.SetOverloadFailure(
5000                         InitializationSequence::FK_UserConversionOverloadFailed,
5001                                 Result);
5002     return;
5003   }
5004 
5005   FunctionDecl *Function = Best->Function;
5006   Function->setReferenced();
5007   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5008 
5009   if (isa<CXXConstructorDecl>(Function)) {
5010     // Add the user-defined conversion step. Any cv-qualification conversion is
5011     // subsumed by the initialization. Per DR5, the created temporary is of the
5012     // cv-unqualified type of the destination.
5013     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5014                                    DestType.getUnqualifiedType(),
5015                                    HadMultipleCandidates);
5016 
5017     // C++14 and before:
5018     //   - if the function is a constructor, the call initializes a temporary
5019     //     of the cv-unqualified version of the destination type. The [...]
5020     //     temporary [...] is then used to direct-initialize, according to the
5021     //     rules above, the object that is the destination of the
5022     //     copy-initialization.
5023     // Note that this just performs a simple object copy from the temporary.
5024     //
5025     // C++17:
5026     //   - if the function is a constructor, the call is a prvalue of the
5027     //     cv-unqualified version of the destination type whose return object
5028     //     is initialized by the constructor. The call is used to
5029     //     direct-initialize, according to the rules above, the object that
5030     //     is the destination of the copy-initialization.
5031     // Therefore we need to do nothing further.
5032     //
5033     // FIXME: Mark this copy as extraneous.
5034     if (!S.getLangOpts().CPlusPlus17)
5035       Sequence.AddFinalCopy(DestType);
5036     else if (DestType.hasQualifiers())
5037       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5038     return;
5039   }
5040 
5041   // Add the user-defined conversion step that calls the conversion function.
5042   QualType ConvType = Function->getCallResultType();
5043   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5044                                  HadMultipleCandidates);
5045 
5046   if (ConvType->getAs<RecordType>()) {
5047     //   The call is used to direct-initialize [...] the object that is the
5048     //   destination of the copy-initialization.
5049     //
5050     // In C++17, this does not call a constructor if we enter /17.6.1:
5051     //   - If the initializer expression is a prvalue and the cv-unqualified
5052     //     version of the source type is the same as the class of the
5053     //     destination [... do not make an extra copy]
5054     //
5055     // FIXME: Mark this copy as extraneous.
5056     if (!S.getLangOpts().CPlusPlus17 ||
5057         Function->getReturnType()->isReferenceType() ||
5058         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5059       Sequence.AddFinalCopy(DestType);
5060     else if (!S.Context.hasSameType(ConvType, DestType))
5061       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5062     return;
5063   }
5064 
5065   // If the conversion following the call to the conversion function
5066   // is interesting, add it as a separate step.
5067   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5068       Best->FinalConversion.Third) {
5069     ImplicitConversionSequence ICS;
5070     ICS.setStandard();
5071     ICS.Standard = Best->FinalConversion;
5072     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5073   }
5074 }
5075 
5076 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5077 /// a function with a pointer return type contains a 'return false;' statement.
5078 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5079 /// code using that header.
5080 ///
5081 /// Work around this by treating 'return false;' as zero-initializing the result
5082 /// if it's used in a pointer-returning function in a system header.
5083 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5084                                               const InitializedEntity &Entity,
5085                                               const Expr *Init) {
5086   return S.getLangOpts().CPlusPlus11 &&
5087          Entity.getKind() == InitializedEntity::EK_Result &&
5088          Entity.getType()->isPointerType() &&
5089          isa<CXXBoolLiteralExpr>(Init) &&
5090          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5091          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5092 }
5093 
5094 /// The non-zero enum values here are indexes into diagnostic alternatives.
5095 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5096 
5097 /// Determines whether this expression is an acceptable ICR source.
5098 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5099                                          bool isAddressOf, bool &isWeakAccess) {
5100   // Skip parens.
5101   e = e->IgnoreParens();
5102 
5103   // Skip address-of nodes.
5104   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5105     if (op->getOpcode() == UO_AddrOf)
5106       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5107                                 isWeakAccess);
5108 
5109   // Skip certain casts.
5110   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5111     switch (ce->getCastKind()) {
5112     case CK_Dependent:
5113     case CK_BitCast:
5114     case CK_LValueBitCast:
5115     case CK_NoOp:
5116       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5117 
5118     case CK_ArrayToPointerDecay:
5119       return IIK_nonscalar;
5120 
5121     case CK_NullToPointer:
5122       return IIK_okay;
5123 
5124     default:
5125       break;
5126     }
5127 
5128   // If we have a declaration reference, it had better be a local variable.
5129   } else if (isa<DeclRefExpr>(e)) {
5130     // set isWeakAccess to true, to mean that there will be an implicit
5131     // load which requires a cleanup.
5132     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5133       isWeakAccess = true;
5134 
5135     if (!isAddressOf) return IIK_nonlocal;
5136 
5137     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5138     if (!var) return IIK_nonlocal;
5139 
5140     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5141 
5142   // If we have a conditional operator, check both sides.
5143   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5144     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5145                                                 isWeakAccess))
5146       return iik;
5147 
5148     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5149 
5150   // These are never scalar.
5151   } else if (isa<ArraySubscriptExpr>(e)) {
5152     return IIK_nonscalar;
5153 
5154   // Otherwise, it needs to be a null pointer constant.
5155   } else {
5156     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5157             ? IIK_okay : IIK_nonlocal);
5158   }
5159 
5160   return IIK_nonlocal;
5161 }
5162 
5163 /// Check whether the given expression is a valid operand for an
5164 /// indirect copy/restore.
5165 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5166   assert(src->isRValue());
5167   bool isWeakAccess = false;
5168   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5169   // If isWeakAccess to true, there will be an implicit
5170   // load which requires a cleanup.
5171   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5172     S.Cleanup.setExprNeedsCleanups(true);
5173 
5174   if (iik == IIK_okay) return;
5175 
5176   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5177     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5178     << src->getSourceRange();
5179 }
5180 
5181 /// Determine whether we have compatible array types for the
5182 /// purposes of GNU by-copy array initialization.
5183 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5184                                     const ArrayType *Source) {
5185   // If the source and destination array types are equivalent, we're
5186   // done.
5187   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5188     return true;
5189 
5190   // Make sure that the element types are the same.
5191   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5192     return false;
5193 
5194   // The only mismatch we allow is when the destination is an
5195   // incomplete array type and the source is a constant array type.
5196   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5197 }
5198 
5199 static bool tryObjCWritebackConversion(Sema &S,
5200                                        InitializationSequence &Sequence,
5201                                        const InitializedEntity &Entity,
5202                                        Expr *Initializer) {
5203   bool ArrayDecay = false;
5204   QualType ArgType = Initializer->getType();
5205   QualType ArgPointee;
5206   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5207     ArrayDecay = true;
5208     ArgPointee = ArgArrayType->getElementType();
5209     ArgType = S.Context.getPointerType(ArgPointee);
5210   }
5211 
5212   // Handle write-back conversion.
5213   QualType ConvertedArgType;
5214   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5215                                    ConvertedArgType))
5216     return false;
5217 
5218   // We should copy unless we're passing to an argument explicitly
5219   // marked 'out'.
5220   bool ShouldCopy = true;
5221   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5222     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5223 
5224   // Do we need an lvalue conversion?
5225   if (ArrayDecay || Initializer->isGLValue()) {
5226     ImplicitConversionSequence ICS;
5227     ICS.setStandard();
5228     ICS.Standard.setAsIdentityConversion();
5229 
5230     QualType ResultType;
5231     if (ArrayDecay) {
5232       ICS.Standard.First = ICK_Array_To_Pointer;
5233       ResultType = S.Context.getPointerType(ArgPointee);
5234     } else {
5235       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5236       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5237     }
5238 
5239     Sequence.AddConversionSequenceStep(ICS, ResultType);
5240   }
5241 
5242   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5243   return true;
5244 }
5245 
5246 static bool TryOCLSamplerInitialization(Sema &S,
5247                                         InitializationSequence &Sequence,
5248                                         QualType DestType,
5249                                         Expr *Initializer) {
5250   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5251       (!Initializer->isIntegerConstantExpr(S.Context) &&
5252       !Initializer->getType()->isSamplerT()))
5253     return false;
5254 
5255   Sequence.AddOCLSamplerInitStep(DestType);
5256   return true;
5257 }
5258 
5259 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5260   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5261     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5262 }
5263 
5264 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5265                                                InitializationSequence &Sequence,
5266                                                QualType DestType,
5267                                                Expr *Initializer) {
5268   if (!S.getLangOpts().OpenCL)
5269     return false;
5270 
5271   //
5272   // OpenCL 1.2 spec, s6.12.10
5273   //
5274   // The event argument can also be used to associate the
5275   // async_work_group_copy with a previous async copy allowing
5276   // an event to be shared by multiple async copies; otherwise
5277   // event should be zero.
5278   //
5279   if (DestType->isEventT() || DestType->isQueueT()) {
5280     if (!IsZeroInitializer(Initializer, S))
5281       return false;
5282 
5283     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5284     return true;
5285   }
5286 
5287   // We should allow zero initialization for all types defined in the
5288   // cl_intel_device_side_avc_motion_estimation extension, except
5289   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5290   if (S.getOpenCLOptions().isEnabled(
5291           "cl_intel_device_side_avc_motion_estimation") &&
5292       DestType->isOCLIntelSubgroupAVCType()) {
5293     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5294         DestType->isOCLIntelSubgroupAVCMceResultType())
5295       return false;
5296     if (!IsZeroInitializer(Initializer, S))
5297       return false;
5298 
5299     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5300     return true;
5301   }
5302 
5303   return false;
5304 }
5305 
5306 InitializationSequence::InitializationSequence(Sema &S,
5307                                                const InitializedEntity &Entity,
5308                                                const InitializationKind &Kind,
5309                                                MultiExprArg Args,
5310                                                bool TopLevelOfInitList,
5311                                                bool TreatUnavailableAsInvalid)
5312     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5313   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5314                  TreatUnavailableAsInvalid);
5315 }
5316 
5317 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5318 /// address of that function, this returns true. Otherwise, it returns false.
5319 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5320   auto *DRE = dyn_cast<DeclRefExpr>(E);
5321   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5322     return false;
5323 
5324   return !S.checkAddressOfFunctionIsAvailable(
5325       cast<FunctionDecl>(DRE->getDecl()));
5326 }
5327 
5328 /// Determine whether we can perform an elementwise array copy for this kind
5329 /// of entity.
5330 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5331   switch (Entity.getKind()) {
5332   case InitializedEntity::EK_LambdaCapture:
5333     // C++ [expr.prim.lambda]p24:
5334     //   For array members, the array elements are direct-initialized in
5335     //   increasing subscript order.
5336     return true;
5337 
5338   case InitializedEntity::EK_Variable:
5339     // C++ [dcl.decomp]p1:
5340     //   [...] each element is copy-initialized or direct-initialized from the
5341     //   corresponding element of the assignment-expression [...]
5342     return isa<DecompositionDecl>(Entity.getDecl());
5343 
5344   case InitializedEntity::EK_Member:
5345     // C++ [class.copy.ctor]p14:
5346     //   - if the member is an array, each element is direct-initialized with
5347     //     the corresponding subobject of x
5348     return Entity.isImplicitMemberInitializer();
5349 
5350   case InitializedEntity::EK_ArrayElement:
5351     // All the above cases are intended to apply recursively, even though none
5352     // of them actually say that.
5353     if (auto *E = Entity.getParent())
5354       return canPerformArrayCopy(*E);
5355     break;
5356 
5357   default:
5358     break;
5359   }
5360 
5361   return false;
5362 }
5363 
5364 void InitializationSequence::InitializeFrom(Sema &S,
5365                                             const InitializedEntity &Entity,
5366                                             const InitializationKind &Kind,
5367                                             MultiExprArg Args,
5368                                             bool TopLevelOfInitList,
5369                                             bool TreatUnavailableAsInvalid) {
5370   ASTContext &Context = S.Context;
5371 
5372   // Eliminate non-overload placeholder types in the arguments.  We
5373   // need to do this before checking whether types are dependent
5374   // because lowering a pseudo-object expression might well give us
5375   // something of dependent type.
5376   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5377     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5378       // FIXME: should we be doing this here?
5379       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5380       if (result.isInvalid()) {
5381         SetFailed(FK_PlaceholderType);
5382         return;
5383       }
5384       Args[I] = result.get();
5385     }
5386 
5387   // C++0x [dcl.init]p16:
5388   //   The semantics of initializers are as follows. The destination type is
5389   //   the type of the object or reference being initialized and the source
5390   //   type is the type of the initializer expression. The source type is not
5391   //   defined when the initializer is a braced-init-list or when it is a
5392   //   parenthesized list of expressions.
5393   QualType DestType = Entity.getType();
5394 
5395   if (DestType->isDependentType() ||
5396       Expr::hasAnyTypeDependentArguments(Args)) {
5397     SequenceKind = DependentSequence;
5398     return;
5399   }
5400 
5401   // Almost everything is a normal sequence.
5402   setSequenceKind(NormalSequence);
5403 
5404   QualType SourceType;
5405   Expr *Initializer = nullptr;
5406   if (Args.size() == 1) {
5407     Initializer = Args[0];
5408     if (S.getLangOpts().ObjC) {
5409       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5410                                               DestType, Initializer->getType(),
5411                                               Initializer) ||
5412           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5413         Args[0] = Initializer;
5414     }
5415     if (!isa<InitListExpr>(Initializer))
5416       SourceType = Initializer->getType();
5417   }
5418 
5419   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5420   //       object is list-initialized (8.5.4).
5421   if (Kind.getKind() != InitializationKind::IK_Direct) {
5422     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5423       TryListInitialization(S, Entity, Kind, InitList, *this,
5424                             TreatUnavailableAsInvalid);
5425       return;
5426     }
5427   }
5428 
5429   //     - If the destination type is a reference type, see 8.5.3.
5430   if (DestType->isReferenceType()) {
5431     // C++0x [dcl.init.ref]p1:
5432     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5433     //   (8.3.2), shall be initialized by an object, or function, of type T or
5434     //   by an object that can be converted into a T.
5435     // (Therefore, multiple arguments are not permitted.)
5436     if (Args.size() != 1)
5437       SetFailed(FK_TooManyInitsForReference);
5438     // C++17 [dcl.init.ref]p5:
5439     //   A reference [...] is initialized by an expression [...] as follows:
5440     // If the initializer is not an expression, presumably we should reject,
5441     // but the standard fails to actually say so.
5442     else if (isa<InitListExpr>(Args[0]))
5443       SetFailed(FK_ParenthesizedListInitForReference);
5444     else
5445       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5446     return;
5447   }
5448 
5449   //     - If the initializer is (), the object is value-initialized.
5450   if (Kind.getKind() == InitializationKind::IK_Value ||
5451       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5452     TryValueInitialization(S, Entity, Kind, *this);
5453     return;
5454   }
5455 
5456   // Handle default initialization.
5457   if (Kind.getKind() == InitializationKind::IK_Default) {
5458     TryDefaultInitialization(S, Entity, Kind, *this);
5459     return;
5460   }
5461 
5462   //     - If the destination type is an array of characters, an array of
5463   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5464   //       initializer is a string literal, see 8.5.2.
5465   //     - Otherwise, if the destination type is an array, the program is
5466   //       ill-formed.
5467   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5468     if (Initializer && isa<VariableArrayType>(DestAT)) {
5469       SetFailed(FK_VariableLengthArrayHasInitializer);
5470       return;
5471     }
5472 
5473     if (Initializer) {
5474       switch (IsStringInit(Initializer, DestAT, Context)) {
5475       case SIF_None:
5476         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5477         return;
5478       case SIF_NarrowStringIntoWideChar:
5479         SetFailed(FK_NarrowStringIntoWideCharArray);
5480         return;
5481       case SIF_WideStringIntoChar:
5482         SetFailed(FK_WideStringIntoCharArray);
5483         return;
5484       case SIF_IncompatWideStringIntoWideChar:
5485         SetFailed(FK_IncompatWideStringIntoWideChar);
5486         return;
5487       case SIF_PlainStringIntoUTF8Char:
5488         SetFailed(FK_PlainStringIntoUTF8Char);
5489         return;
5490       case SIF_UTF8StringIntoPlainChar:
5491         SetFailed(FK_UTF8StringIntoPlainChar);
5492         return;
5493       case SIF_Other:
5494         break;
5495       }
5496     }
5497 
5498     // Some kinds of initialization permit an array to be initialized from
5499     // another array of the same type, and perform elementwise initialization.
5500     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5501         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5502                                          Entity.getType()) &&
5503         canPerformArrayCopy(Entity)) {
5504       // If source is a prvalue, use it directly.
5505       if (Initializer->getValueKind() == VK_RValue) {
5506         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5507         return;
5508       }
5509 
5510       // Emit element-at-a-time copy loop.
5511       InitializedEntity Element =
5512           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5513       QualType InitEltT =
5514           Context.getAsArrayType(Initializer->getType())->getElementType();
5515       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5516                           Initializer->getValueKind(),
5517                           Initializer->getObjectKind());
5518       Expr *OVEAsExpr = &OVE;
5519       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5520                      TreatUnavailableAsInvalid);
5521       if (!Failed())
5522         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5523       return;
5524     }
5525 
5526     // Note: as an GNU C extension, we allow initialization of an
5527     // array from a compound literal that creates an array of the same
5528     // type, so long as the initializer has no side effects.
5529     if (!S.getLangOpts().CPlusPlus && Initializer &&
5530         (isa<ConstantExpr>(Initializer->IgnoreParens()) ||
5531          isa<CompoundLiteralExpr>(Initializer->IgnoreParens())) &&
5532         Initializer->getType()->isArrayType()) {
5533       const ArrayType *SourceAT
5534         = Context.getAsArrayType(Initializer->getType());
5535       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5536         SetFailed(FK_ArrayTypeMismatch);
5537       else if (Initializer->HasSideEffects(S.Context))
5538         SetFailed(FK_NonConstantArrayInit);
5539       else {
5540         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5541       }
5542     }
5543     // Note: as a GNU C++ extension, we allow list-initialization of a
5544     // class member of array type from a parenthesized initializer list.
5545     else if (S.getLangOpts().CPlusPlus &&
5546              Entity.getKind() == InitializedEntity::EK_Member &&
5547              Initializer && isa<InitListExpr>(Initializer)) {
5548       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5549                             *this, TreatUnavailableAsInvalid);
5550       AddParenthesizedArrayInitStep(DestType);
5551     } else if (DestAT->getElementType()->isCharType())
5552       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5553     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5554       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5555     else
5556       SetFailed(FK_ArrayNeedsInitList);
5557 
5558     return;
5559   }
5560 
5561   // Determine whether we should consider writeback conversions for
5562   // Objective-C ARC.
5563   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5564          Entity.isParameterKind();
5565 
5566   // We're at the end of the line for C: it's either a write-back conversion
5567   // or it's a C assignment. There's no need to check anything else.
5568   if (!S.getLangOpts().CPlusPlus) {
5569     // If allowed, check whether this is an Objective-C writeback conversion.
5570     if (allowObjCWritebackConversion &&
5571         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5572       return;
5573     }
5574 
5575     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5576       return;
5577 
5578     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5579       return;
5580 
5581     // Handle initialization in C
5582     AddCAssignmentStep(DestType);
5583     MaybeProduceObjCObject(S, *this, Entity);
5584     return;
5585   }
5586 
5587   assert(S.getLangOpts().CPlusPlus);
5588 
5589   //     - If the destination type is a (possibly cv-qualified) class type:
5590   if (DestType->isRecordType()) {
5591     //     - If the initialization is direct-initialization, or if it is
5592     //       copy-initialization where the cv-unqualified version of the
5593     //       source type is the same class as, or a derived class of, the
5594     //       class of the destination, constructors are considered. [...]
5595     if (Kind.getKind() == InitializationKind::IK_Direct ||
5596         (Kind.getKind() == InitializationKind::IK_Copy &&
5597          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5598           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5599       TryConstructorInitialization(S, Entity, Kind, Args,
5600                                    DestType, DestType, *this);
5601     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5602     //       user-defined conversion sequences that can convert from the source
5603     //       type to the destination type or (when a conversion function is
5604     //       used) to a derived class thereof are enumerated as described in
5605     //       13.3.1.4, and the best one is chosen through overload resolution
5606     //       (13.3).
5607     else
5608       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5609                                TopLevelOfInitList);
5610     return;
5611   }
5612 
5613   assert(Args.size() >= 1 && "Zero-argument case handled above");
5614 
5615   // The remaining cases all need a source type.
5616   if (Args.size() > 1) {
5617     SetFailed(FK_TooManyInitsForScalar);
5618     return;
5619   } else if (isa<InitListExpr>(Args[0])) {
5620     SetFailed(FK_ParenthesizedListInitForScalar);
5621     return;
5622   }
5623 
5624   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5625   //      type, conversion functions are considered.
5626   if (!SourceType.isNull() && SourceType->isRecordType()) {
5627     // For a conversion to _Atomic(T) from either T or a class type derived
5628     // from T, initialize the T object then convert to _Atomic type.
5629     bool NeedAtomicConversion = false;
5630     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5631       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5632           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5633                           Atomic->getValueType())) {
5634         DestType = Atomic->getValueType();
5635         NeedAtomicConversion = true;
5636       }
5637     }
5638 
5639     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5640                              TopLevelOfInitList);
5641     MaybeProduceObjCObject(S, *this, Entity);
5642     if (!Failed() && NeedAtomicConversion)
5643       AddAtomicConversionStep(Entity.getType());
5644     return;
5645   }
5646 
5647   //    - Otherwise, the initial value of the object being initialized is the
5648   //      (possibly converted) value of the initializer expression. Standard
5649   //      conversions (Clause 4) will be used, if necessary, to convert the
5650   //      initializer expression to the cv-unqualified version of the
5651   //      destination type; no user-defined conversions are considered.
5652 
5653   ImplicitConversionSequence ICS
5654     = S.TryImplicitConversion(Initializer, DestType,
5655                               /*SuppressUserConversions*/true,
5656                               /*AllowExplicitConversions*/ false,
5657                               /*InOverloadResolution*/ false,
5658                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5659                               allowObjCWritebackConversion);
5660 
5661   if (ICS.isStandard() &&
5662       ICS.Standard.Second == ICK_Writeback_Conversion) {
5663     // Objective-C ARC writeback conversion.
5664 
5665     // We should copy unless we're passing to an argument explicitly
5666     // marked 'out'.
5667     bool ShouldCopy = true;
5668     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5669       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5670 
5671     // If there was an lvalue adjustment, add it as a separate conversion.
5672     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5673         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5674       ImplicitConversionSequence LvalueICS;
5675       LvalueICS.setStandard();
5676       LvalueICS.Standard.setAsIdentityConversion();
5677       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5678       LvalueICS.Standard.First = ICS.Standard.First;
5679       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5680     }
5681 
5682     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5683   } else if (ICS.isBad()) {
5684     DeclAccessPair dap;
5685     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5686       AddZeroInitializationStep(Entity.getType());
5687     } else if (Initializer->getType() == Context.OverloadTy &&
5688                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5689                                                      false, dap))
5690       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5691     else if (Initializer->getType()->isFunctionType() &&
5692              isExprAnUnaddressableFunction(S, Initializer))
5693       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5694     else
5695       SetFailed(InitializationSequence::FK_ConversionFailed);
5696   } else {
5697     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5698 
5699     MaybeProduceObjCObject(S, *this, Entity);
5700   }
5701 }
5702 
5703 InitializationSequence::~InitializationSequence() {
5704   for (auto &S : Steps)
5705     S.Destroy();
5706 }
5707 
5708 //===----------------------------------------------------------------------===//
5709 // Perform initialization
5710 //===----------------------------------------------------------------------===//
5711 static Sema::AssignmentAction
5712 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5713   switch(Entity.getKind()) {
5714   case InitializedEntity::EK_Variable:
5715   case InitializedEntity::EK_New:
5716   case InitializedEntity::EK_Exception:
5717   case InitializedEntity::EK_Base:
5718   case InitializedEntity::EK_Delegating:
5719     return Sema::AA_Initializing;
5720 
5721   case InitializedEntity::EK_Parameter:
5722     if (Entity.getDecl() &&
5723         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5724       return Sema::AA_Sending;
5725 
5726     return Sema::AA_Passing;
5727 
5728   case InitializedEntity::EK_Parameter_CF_Audited:
5729     if (Entity.getDecl() &&
5730       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5731       return Sema::AA_Sending;
5732 
5733     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5734 
5735   case InitializedEntity::EK_Result:
5736   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5737     return Sema::AA_Returning;
5738 
5739   case InitializedEntity::EK_Temporary:
5740   case InitializedEntity::EK_RelatedResult:
5741     // FIXME: Can we tell apart casting vs. converting?
5742     return Sema::AA_Casting;
5743 
5744   case InitializedEntity::EK_Member:
5745   case InitializedEntity::EK_Binding:
5746   case InitializedEntity::EK_ArrayElement:
5747   case InitializedEntity::EK_VectorElement:
5748   case InitializedEntity::EK_ComplexElement:
5749   case InitializedEntity::EK_BlockElement:
5750   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5751   case InitializedEntity::EK_LambdaCapture:
5752   case InitializedEntity::EK_CompoundLiteralInit:
5753     return Sema::AA_Initializing;
5754   }
5755 
5756   llvm_unreachable("Invalid EntityKind!");
5757 }
5758 
5759 /// Whether we should bind a created object as a temporary when
5760 /// initializing the given entity.
5761 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5762   switch (Entity.getKind()) {
5763   case InitializedEntity::EK_ArrayElement:
5764   case InitializedEntity::EK_Member:
5765   case InitializedEntity::EK_Result:
5766   case InitializedEntity::EK_StmtExprResult:
5767   case InitializedEntity::EK_New:
5768   case InitializedEntity::EK_Variable:
5769   case InitializedEntity::EK_Base:
5770   case InitializedEntity::EK_Delegating:
5771   case InitializedEntity::EK_VectorElement:
5772   case InitializedEntity::EK_ComplexElement:
5773   case InitializedEntity::EK_Exception:
5774   case InitializedEntity::EK_BlockElement:
5775   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5776   case InitializedEntity::EK_LambdaCapture:
5777   case InitializedEntity::EK_CompoundLiteralInit:
5778     return false;
5779 
5780   case InitializedEntity::EK_Parameter:
5781   case InitializedEntity::EK_Parameter_CF_Audited:
5782   case InitializedEntity::EK_Temporary:
5783   case InitializedEntity::EK_RelatedResult:
5784   case InitializedEntity::EK_Binding:
5785     return true;
5786   }
5787 
5788   llvm_unreachable("missed an InitializedEntity kind?");
5789 }
5790 
5791 /// Whether the given entity, when initialized with an object
5792 /// created for that initialization, requires destruction.
5793 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5794   switch (Entity.getKind()) {
5795     case InitializedEntity::EK_Result:
5796     case InitializedEntity::EK_StmtExprResult:
5797     case InitializedEntity::EK_New:
5798     case InitializedEntity::EK_Base:
5799     case InitializedEntity::EK_Delegating:
5800     case InitializedEntity::EK_VectorElement:
5801     case InitializedEntity::EK_ComplexElement:
5802     case InitializedEntity::EK_BlockElement:
5803     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5804     case InitializedEntity::EK_LambdaCapture:
5805       return false;
5806 
5807     case InitializedEntity::EK_Member:
5808     case InitializedEntity::EK_Binding:
5809     case InitializedEntity::EK_Variable:
5810     case InitializedEntity::EK_Parameter:
5811     case InitializedEntity::EK_Parameter_CF_Audited:
5812     case InitializedEntity::EK_Temporary:
5813     case InitializedEntity::EK_ArrayElement:
5814     case InitializedEntity::EK_Exception:
5815     case InitializedEntity::EK_CompoundLiteralInit:
5816     case InitializedEntity::EK_RelatedResult:
5817       return true;
5818   }
5819 
5820   llvm_unreachable("missed an InitializedEntity kind?");
5821 }
5822 
5823 /// Get the location at which initialization diagnostics should appear.
5824 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5825                                            Expr *Initializer) {
5826   switch (Entity.getKind()) {
5827   case InitializedEntity::EK_Result:
5828   case InitializedEntity::EK_StmtExprResult:
5829     return Entity.getReturnLoc();
5830 
5831   case InitializedEntity::EK_Exception:
5832     return Entity.getThrowLoc();
5833 
5834   case InitializedEntity::EK_Variable:
5835   case InitializedEntity::EK_Binding:
5836     return Entity.getDecl()->getLocation();
5837 
5838   case InitializedEntity::EK_LambdaCapture:
5839     return Entity.getCaptureLoc();
5840 
5841   case InitializedEntity::EK_ArrayElement:
5842   case InitializedEntity::EK_Member:
5843   case InitializedEntity::EK_Parameter:
5844   case InitializedEntity::EK_Parameter_CF_Audited:
5845   case InitializedEntity::EK_Temporary:
5846   case InitializedEntity::EK_New:
5847   case InitializedEntity::EK_Base:
5848   case InitializedEntity::EK_Delegating:
5849   case InitializedEntity::EK_VectorElement:
5850   case InitializedEntity::EK_ComplexElement:
5851   case InitializedEntity::EK_BlockElement:
5852   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5853   case InitializedEntity::EK_CompoundLiteralInit:
5854   case InitializedEntity::EK_RelatedResult:
5855     return Initializer->getBeginLoc();
5856   }
5857   llvm_unreachable("missed an InitializedEntity kind?");
5858 }
5859 
5860 /// Make a (potentially elidable) temporary copy of the object
5861 /// provided by the given initializer by calling the appropriate copy
5862 /// constructor.
5863 ///
5864 /// \param S The Sema object used for type-checking.
5865 ///
5866 /// \param T The type of the temporary object, which must either be
5867 /// the type of the initializer expression or a superclass thereof.
5868 ///
5869 /// \param Entity The entity being initialized.
5870 ///
5871 /// \param CurInit The initializer expression.
5872 ///
5873 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5874 /// is permitted in C++03 (but not C++0x) when binding a reference to
5875 /// an rvalue.
5876 ///
5877 /// \returns An expression that copies the initializer expression into
5878 /// a temporary object, or an error expression if a copy could not be
5879 /// created.
5880 static ExprResult CopyObject(Sema &S,
5881                              QualType T,
5882                              const InitializedEntity &Entity,
5883                              ExprResult CurInit,
5884                              bool IsExtraneousCopy) {
5885   if (CurInit.isInvalid())
5886     return CurInit;
5887   // Determine which class type we're copying to.
5888   Expr *CurInitExpr = (Expr *)CurInit.get();
5889   CXXRecordDecl *Class = nullptr;
5890   if (const RecordType *Record = T->getAs<RecordType>())
5891     Class = cast<CXXRecordDecl>(Record->getDecl());
5892   if (!Class)
5893     return CurInit;
5894 
5895   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5896 
5897   // Make sure that the type we are copying is complete.
5898   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5899     return CurInit;
5900 
5901   // Perform overload resolution using the class's constructors. Per
5902   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5903   // is direct-initialization.
5904   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5905   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5906 
5907   OverloadCandidateSet::iterator Best;
5908   switch (ResolveConstructorOverload(
5909       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5910       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5911       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5912       /*SecondStepOfCopyInit=*/true)) {
5913   case OR_Success:
5914     break;
5915 
5916   case OR_No_Viable_Function:
5917     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5918            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5919            : diag::err_temp_copy_no_viable)
5920       << (int)Entity.getKind() << CurInitExpr->getType()
5921       << CurInitExpr->getSourceRange();
5922     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5923     if (!IsExtraneousCopy || S.isSFINAEContext())
5924       return ExprError();
5925     return CurInit;
5926 
5927   case OR_Ambiguous:
5928     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5929       << (int)Entity.getKind() << CurInitExpr->getType()
5930       << CurInitExpr->getSourceRange();
5931     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5932     return ExprError();
5933 
5934   case OR_Deleted:
5935     S.Diag(Loc, diag::err_temp_copy_deleted)
5936       << (int)Entity.getKind() << CurInitExpr->getType()
5937       << CurInitExpr->getSourceRange();
5938     S.NoteDeletedFunction(Best->Function);
5939     return ExprError();
5940   }
5941 
5942   bool HadMultipleCandidates = CandidateSet.size() > 1;
5943 
5944   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5945   SmallVector<Expr*, 8> ConstructorArgs;
5946   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5947 
5948   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5949                            IsExtraneousCopy);
5950 
5951   if (IsExtraneousCopy) {
5952     // If this is a totally extraneous copy for C++03 reference
5953     // binding purposes, just return the original initialization
5954     // expression. We don't generate an (elided) copy operation here
5955     // because doing so would require us to pass down a flag to avoid
5956     // infinite recursion, where each step adds another extraneous,
5957     // elidable copy.
5958 
5959     // Instantiate the default arguments of any extra parameters in
5960     // the selected copy constructor, as if we were going to create a
5961     // proper call to the copy constructor.
5962     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5963       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5964       if (S.RequireCompleteType(Loc, Parm->getType(),
5965                                 diag::err_call_incomplete_argument))
5966         break;
5967 
5968       // Build the default argument expression; we don't actually care
5969       // if this succeeds or not, because this routine will complain
5970       // if there was a problem.
5971       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5972     }
5973 
5974     return CurInitExpr;
5975   }
5976 
5977   // Determine the arguments required to actually perform the
5978   // constructor call (we might have derived-to-base conversions, or
5979   // the copy constructor may have default arguments).
5980   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5981     return ExprError();
5982 
5983   // C++0x [class.copy]p32:
5984   //   When certain criteria are met, an implementation is allowed to
5985   //   omit the copy/move construction of a class object, even if the
5986   //   copy/move constructor and/or destructor for the object have
5987   //   side effects. [...]
5988   //     - when a temporary class object that has not been bound to a
5989   //       reference (12.2) would be copied/moved to a class object
5990   //       with the same cv-unqualified type, the copy/move operation
5991   //       can be omitted by constructing the temporary object
5992   //       directly into the target of the omitted copy/move
5993   //
5994   // Note that the other three bullets are handled elsewhere. Copy
5995   // elision for return statements and throw expressions are handled as part
5996   // of constructor initialization, while copy elision for exception handlers
5997   // is handled by the run-time.
5998   //
5999   // FIXME: If the function parameter is not the same type as the temporary, we
6000   // should still be able to elide the copy, but we don't have a way to
6001   // represent in the AST how much should be elided in this case.
6002   bool Elidable =
6003       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6004       S.Context.hasSameUnqualifiedType(
6005           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6006           CurInitExpr->getType());
6007 
6008   // Actually perform the constructor call.
6009   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6010                                     Elidable,
6011                                     ConstructorArgs,
6012                                     HadMultipleCandidates,
6013                                     /*ListInit*/ false,
6014                                     /*StdInitListInit*/ false,
6015                                     /*ZeroInit*/ false,
6016                                     CXXConstructExpr::CK_Complete,
6017                                     SourceRange());
6018 
6019   // If we're supposed to bind temporaries, do so.
6020   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6021     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6022   return CurInit;
6023 }
6024 
6025 /// Check whether elidable copy construction for binding a reference to
6026 /// a temporary would have succeeded if we were building in C++98 mode, for
6027 /// -Wc++98-compat.
6028 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6029                                            const InitializedEntity &Entity,
6030                                            Expr *CurInitExpr) {
6031   assert(S.getLangOpts().CPlusPlus11);
6032 
6033   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6034   if (!Record)
6035     return;
6036 
6037   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6038   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6039     return;
6040 
6041   // Find constructors which would have been considered.
6042   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6043   DeclContext::lookup_result Ctors =
6044       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6045 
6046   // Perform overload resolution.
6047   OverloadCandidateSet::iterator Best;
6048   OverloadingResult OR = ResolveConstructorOverload(
6049       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6050       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6051       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6052       /*SecondStepOfCopyInit=*/true);
6053 
6054   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6055     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6056     << CurInitExpr->getSourceRange();
6057 
6058   switch (OR) {
6059   case OR_Success:
6060     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6061                              Best->FoundDecl, Entity, Diag);
6062     // FIXME: Check default arguments as far as that's possible.
6063     break;
6064 
6065   case OR_No_Viable_Function:
6066     S.Diag(Loc, Diag);
6067     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
6068     break;
6069 
6070   case OR_Ambiguous:
6071     S.Diag(Loc, Diag);
6072     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
6073     break;
6074 
6075   case OR_Deleted:
6076     S.Diag(Loc, Diag);
6077     S.NoteDeletedFunction(Best->Function);
6078     break;
6079   }
6080 }
6081 
6082 void InitializationSequence::PrintInitLocationNote(Sema &S,
6083                                               const InitializedEntity &Entity) {
6084   if (Entity.isParameterKind() && Entity.getDecl()) {
6085     if (Entity.getDecl()->getLocation().isInvalid())
6086       return;
6087 
6088     if (Entity.getDecl()->getDeclName())
6089       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6090         << Entity.getDecl()->getDeclName();
6091     else
6092       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6093   }
6094   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6095            Entity.getMethodDecl())
6096     S.Diag(Entity.getMethodDecl()->getLocation(),
6097            diag::note_method_return_type_change)
6098       << Entity.getMethodDecl()->getDeclName();
6099 }
6100 
6101 /// Returns true if the parameters describe a constructor initialization of
6102 /// an explicit temporary object, e.g. "Point(x, y)".
6103 static bool isExplicitTemporary(const InitializedEntity &Entity,
6104                                 const InitializationKind &Kind,
6105                                 unsigned NumArgs) {
6106   switch (Entity.getKind()) {
6107   case InitializedEntity::EK_Temporary:
6108   case InitializedEntity::EK_CompoundLiteralInit:
6109   case InitializedEntity::EK_RelatedResult:
6110     break;
6111   default:
6112     return false;
6113   }
6114 
6115   switch (Kind.getKind()) {
6116   case InitializationKind::IK_DirectList:
6117     return true;
6118   // FIXME: Hack to work around cast weirdness.
6119   case InitializationKind::IK_Direct:
6120   case InitializationKind::IK_Value:
6121     return NumArgs != 1;
6122   default:
6123     return false;
6124   }
6125 }
6126 
6127 static ExprResult
6128 PerformConstructorInitialization(Sema &S,
6129                                  const InitializedEntity &Entity,
6130                                  const InitializationKind &Kind,
6131                                  MultiExprArg Args,
6132                                  const InitializationSequence::Step& Step,
6133                                  bool &ConstructorInitRequiresZeroInit,
6134                                  bool IsListInitialization,
6135                                  bool IsStdInitListInitialization,
6136                                  SourceLocation LBraceLoc,
6137                                  SourceLocation RBraceLoc) {
6138   unsigned NumArgs = Args.size();
6139   CXXConstructorDecl *Constructor
6140     = cast<CXXConstructorDecl>(Step.Function.Function);
6141   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6142 
6143   // Build a call to the selected constructor.
6144   SmallVector<Expr*, 8> ConstructorArgs;
6145   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6146                          ? Kind.getEqualLoc()
6147                          : Kind.getLocation();
6148 
6149   if (Kind.getKind() == InitializationKind::IK_Default) {
6150     // Force even a trivial, implicit default constructor to be
6151     // semantically checked. We do this explicitly because we don't build
6152     // the definition for completely trivial constructors.
6153     assert(Constructor->getParent() && "No parent class for constructor.");
6154     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6155         Constructor->isTrivial() && !Constructor->isUsed(false))
6156       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6157   }
6158 
6159   ExprResult CurInit((Expr *)nullptr);
6160 
6161   // C++ [over.match.copy]p1:
6162   //   - When initializing a temporary to be bound to the first parameter
6163   //     of a constructor that takes a reference to possibly cv-qualified
6164   //     T as its first argument, called with a single argument in the
6165   //     context of direct-initialization, explicit conversion functions
6166   //     are also considered.
6167   bool AllowExplicitConv =
6168       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6169       hasCopyOrMoveCtorParam(S.Context,
6170                              getConstructorInfo(Step.Function.FoundDecl));
6171 
6172   // Determine the arguments required to actually perform the constructor
6173   // call.
6174   if (S.CompleteConstructorCall(Constructor, Args,
6175                                 Loc, ConstructorArgs,
6176                                 AllowExplicitConv,
6177                                 IsListInitialization))
6178     return ExprError();
6179 
6180 
6181   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6182     // An explicitly-constructed temporary, e.g., X(1, 2).
6183     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6184       return ExprError();
6185 
6186     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6187     if (!TSInfo)
6188       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6189     SourceRange ParenOrBraceRange = Kind.getParenOrBraceRange();
6190 
6191     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6192             Step.Function.FoundDecl.getDecl())) {
6193       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6194       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6195         return ExprError();
6196     }
6197     S.MarkFunctionReferenced(Loc, Constructor);
6198 
6199     CurInit = new (S.Context) CXXTemporaryObjectExpr(
6200         S.Context, Constructor,
6201         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6202         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6203         IsListInitialization, IsStdInitListInitialization,
6204         ConstructorInitRequiresZeroInit);
6205   } else {
6206     CXXConstructExpr::ConstructionKind ConstructKind =
6207       CXXConstructExpr::CK_Complete;
6208 
6209     if (Entity.getKind() == InitializedEntity::EK_Base) {
6210       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6211         CXXConstructExpr::CK_VirtualBase :
6212         CXXConstructExpr::CK_NonVirtualBase;
6213     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6214       ConstructKind = CXXConstructExpr::CK_Delegating;
6215     }
6216 
6217     // Only get the parenthesis or brace range if it is a list initialization or
6218     // direct construction.
6219     SourceRange ParenOrBraceRange;
6220     if (IsListInitialization)
6221       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6222     else if (Kind.getKind() == InitializationKind::IK_Direct)
6223       ParenOrBraceRange = Kind.getParenOrBraceRange();
6224 
6225     // If the entity allows NRVO, mark the construction as elidable
6226     // unconditionally.
6227     if (Entity.allowsNRVO())
6228       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6229                                         Step.Function.FoundDecl,
6230                                         Constructor, /*Elidable=*/true,
6231                                         ConstructorArgs,
6232                                         HadMultipleCandidates,
6233                                         IsListInitialization,
6234                                         IsStdInitListInitialization,
6235                                         ConstructorInitRequiresZeroInit,
6236                                         ConstructKind,
6237                                         ParenOrBraceRange);
6238     else
6239       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6240                                         Step.Function.FoundDecl,
6241                                         Constructor,
6242                                         ConstructorArgs,
6243                                         HadMultipleCandidates,
6244                                         IsListInitialization,
6245                                         IsStdInitListInitialization,
6246                                         ConstructorInitRequiresZeroInit,
6247                                         ConstructKind,
6248                                         ParenOrBraceRange);
6249   }
6250   if (CurInit.isInvalid())
6251     return ExprError();
6252 
6253   // Only check access if all of that succeeded.
6254   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6255   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6256     return ExprError();
6257 
6258   if (shouldBindAsTemporary(Entity))
6259     CurInit = S.MaybeBindToTemporary(CurInit.get());
6260 
6261   return CurInit;
6262 }
6263 
6264 namespace {
6265 enum LifetimeKind {
6266   /// The lifetime of a temporary bound to this entity ends at the end of the
6267   /// full-expression, and that's (probably) fine.
6268   LK_FullExpression,
6269 
6270   /// The lifetime of a temporary bound to this entity is extended to the
6271   /// lifeitme of the entity itself.
6272   LK_Extended,
6273 
6274   /// The lifetime of a temporary bound to this entity probably ends too soon,
6275   /// because the entity is allocated in a new-expression.
6276   LK_New,
6277 
6278   /// The lifetime of a temporary bound to this entity ends too soon, because
6279   /// the entity is a return object.
6280   LK_Return,
6281 
6282   /// The lifetime of a temporary bound to this entity ends too soon, because
6283   /// the entity is the result of a statement expression.
6284   LK_StmtExprResult,
6285 
6286   /// This is a mem-initializer: if it would extend a temporary (other than via
6287   /// a default member initializer), the program is ill-formed.
6288   LK_MemInitializer,
6289 };
6290 using LifetimeResult =
6291     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6292 }
6293 
6294 /// Determine the declaration which an initialized entity ultimately refers to,
6295 /// for the purpose of lifetime-extending a temporary bound to a reference in
6296 /// the initialization of \p Entity.
6297 static LifetimeResult getEntityLifetime(
6298     const InitializedEntity *Entity,
6299     const InitializedEntity *InitField = nullptr) {
6300   // C++11 [class.temporary]p5:
6301   switch (Entity->getKind()) {
6302   case InitializedEntity::EK_Variable:
6303     //   The temporary [...] persists for the lifetime of the reference
6304     return {Entity, LK_Extended};
6305 
6306   case InitializedEntity::EK_Member:
6307     // For subobjects, we look at the complete object.
6308     if (Entity->getParent())
6309       return getEntityLifetime(Entity->getParent(), Entity);
6310 
6311     //   except:
6312     // C++17 [class.base.init]p8:
6313     //   A temporary expression bound to a reference member in a
6314     //   mem-initializer is ill-formed.
6315     // C++17 [class.base.init]p11:
6316     //   A temporary expression bound to a reference member from a
6317     //   default member initializer is ill-formed.
6318     //
6319     // The context of p11 and its example suggest that it's only the use of a
6320     // default member initializer from a constructor that makes the program
6321     // ill-formed, not its mere existence, and that it can even be used by
6322     // aggregate initialization.
6323     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6324                                                          : LK_MemInitializer};
6325 
6326   case InitializedEntity::EK_Binding:
6327     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6328     // type.
6329     return {Entity, LK_Extended};
6330 
6331   case InitializedEntity::EK_Parameter:
6332   case InitializedEntity::EK_Parameter_CF_Audited:
6333     //   -- A temporary bound to a reference parameter in a function call
6334     //      persists until the completion of the full-expression containing
6335     //      the call.
6336     return {nullptr, LK_FullExpression};
6337 
6338   case InitializedEntity::EK_Result:
6339     //   -- The lifetime of a temporary bound to the returned value in a
6340     //      function return statement is not extended; the temporary is
6341     //      destroyed at the end of the full-expression in the return statement.
6342     return {nullptr, LK_Return};
6343 
6344   case InitializedEntity::EK_StmtExprResult:
6345     // FIXME: Should we lifetime-extend through the result of a statement
6346     // expression?
6347     return {nullptr, LK_StmtExprResult};
6348 
6349   case InitializedEntity::EK_New:
6350     //   -- A temporary bound to a reference in a new-initializer persists
6351     //      until the completion of the full-expression containing the
6352     //      new-initializer.
6353     return {nullptr, LK_New};
6354 
6355   case InitializedEntity::EK_Temporary:
6356   case InitializedEntity::EK_CompoundLiteralInit:
6357   case InitializedEntity::EK_RelatedResult:
6358     // We don't yet know the storage duration of the surrounding temporary.
6359     // Assume it's got full-expression duration for now, it will patch up our
6360     // storage duration if that's not correct.
6361     return {nullptr, LK_FullExpression};
6362 
6363   case InitializedEntity::EK_ArrayElement:
6364     // For subobjects, we look at the complete object.
6365     return getEntityLifetime(Entity->getParent(), InitField);
6366 
6367   case InitializedEntity::EK_Base:
6368     // For subobjects, we look at the complete object.
6369     if (Entity->getParent())
6370       return getEntityLifetime(Entity->getParent(), InitField);
6371     return {InitField, LK_MemInitializer};
6372 
6373   case InitializedEntity::EK_Delegating:
6374     // We can reach this case for aggregate initialization in a constructor:
6375     //   struct A { int &&r; };
6376     //   struct B : A { B() : A{0} {} };
6377     // In this case, use the outermost field decl as the context.
6378     return {InitField, LK_MemInitializer};
6379 
6380   case InitializedEntity::EK_BlockElement:
6381   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6382   case InitializedEntity::EK_LambdaCapture:
6383   case InitializedEntity::EK_VectorElement:
6384   case InitializedEntity::EK_ComplexElement:
6385     return {nullptr, LK_FullExpression};
6386 
6387   case InitializedEntity::EK_Exception:
6388     // FIXME: Can we diagnose lifetime problems with exceptions?
6389     return {nullptr, LK_FullExpression};
6390   }
6391   llvm_unreachable("unknown entity kind");
6392 }
6393 
6394 namespace {
6395 enum ReferenceKind {
6396   /// Lifetime would be extended by a reference binding to a temporary.
6397   RK_ReferenceBinding,
6398   /// Lifetime would be extended by a std::initializer_list object binding to
6399   /// its backing array.
6400   RK_StdInitializerList,
6401 };
6402 
6403 /// A temporary or local variable. This will be one of:
6404 ///  * A MaterializeTemporaryExpr.
6405 ///  * A DeclRefExpr whose declaration is a local.
6406 ///  * An AddrLabelExpr.
6407 ///  * A BlockExpr for a block with captures.
6408 using Local = Expr*;
6409 
6410 /// Expressions we stepped over when looking for the local state. Any steps
6411 /// that would inhibit lifetime extension or take us out of subexpressions of
6412 /// the initializer are included.
6413 struct IndirectLocalPathEntry {
6414   enum EntryKind {
6415     DefaultInit,
6416     AddressOf,
6417     VarInit,
6418     LValToRVal,
6419     LifetimeBoundCall,
6420   } Kind;
6421   Expr *E;
6422   const Decl *D = nullptr;
6423   IndirectLocalPathEntry() {}
6424   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6425   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6426       : Kind(K), E(E), D(D) {}
6427 };
6428 
6429 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6430 
6431 struct RevertToOldSizeRAII {
6432   IndirectLocalPath &Path;
6433   unsigned OldSize = Path.size();
6434   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6435   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6436 };
6437 
6438 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6439                                              ReferenceKind RK)>;
6440 }
6441 
6442 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6443   for (auto E : Path)
6444     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6445       return true;
6446   return false;
6447 }
6448 
6449 static bool pathContainsInit(IndirectLocalPath &Path) {
6450   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6451     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6452            E.Kind == IndirectLocalPathEntry::VarInit;
6453   });
6454 }
6455 
6456 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6457                                              Expr *Init, LocalVisitor Visit,
6458                                              bool RevisitSubinits);
6459 
6460 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6461                                                   Expr *Init, ReferenceKind RK,
6462                                                   LocalVisitor Visit);
6463 
6464 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6465   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6466   if (!TSI)
6467     return false;
6468   // Don't declare this variable in the second operand of the for-statement;
6469   // GCC miscompiles that by ending its lifetime before evaluating the
6470   // third operand. See gcc.gnu.org/PR86769.
6471   AttributedTypeLoc ATL;
6472   for (TypeLoc TL = TSI->getTypeLoc();
6473        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6474        TL = ATL.getModifiedLoc()) {
6475     if (ATL.getAttrAs<LifetimeBoundAttr>())
6476       return true;
6477   }
6478   return false;
6479 }
6480 
6481 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6482                                         LocalVisitor Visit) {
6483   const FunctionDecl *Callee;
6484   ArrayRef<Expr*> Args;
6485 
6486   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6487     Callee = CE->getDirectCallee();
6488     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6489   } else {
6490     auto *CCE = cast<CXXConstructExpr>(Call);
6491     Callee = CCE->getConstructor();
6492     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6493   }
6494   if (!Callee)
6495     return;
6496 
6497   Expr *ObjectArg = nullptr;
6498   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6499     ObjectArg = Args[0];
6500     Args = Args.slice(1);
6501   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6502     ObjectArg = MCE->getImplicitObjectArgument();
6503   }
6504 
6505   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6506     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6507     if (Arg->isGLValue())
6508       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6509                                             Visit);
6510     else
6511       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6512     Path.pop_back();
6513   };
6514 
6515   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6516     VisitLifetimeBoundArg(Callee, ObjectArg);
6517 
6518   for (unsigned I = 0,
6519                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6520        I != N; ++I) {
6521     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6522       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6523   }
6524 }
6525 
6526 /// Visit the locals that would be reachable through a reference bound to the
6527 /// glvalue expression \c Init.
6528 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6529                                                   Expr *Init, ReferenceKind RK,
6530                                                   LocalVisitor Visit) {
6531   RevertToOldSizeRAII RAII(Path);
6532 
6533   // Walk past any constructs which we can lifetime-extend across.
6534   Expr *Old;
6535   do {
6536     Old = Init;
6537 
6538     if (auto *FE = dyn_cast<FullExpr>(Init))
6539       Init = FE->getSubExpr();
6540 
6541     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6542       // If this is just redundant braces around an initializer, step over it.
6543       if (ILE->isTransparent())
6544         Init = ILE->getInit(0);
6545     }
6546 
6547     // Step over any subobject adjustments; we may have a materialized
6548     // temporary inside them.
6549     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6550 
6551     // Per current approach for DR1376, look through casts to reference type
6552     // when performing lifetime extension.
6553     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6554       if (CE->getSubExpr()->isGLValue())
6555         Init = CE->getSubExpr();
6556 
6557     // Per the current approach for DR1299, look through array element access
6558     // on array glvalues when performing lifetime extension.
6559     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6560       Init = ASE->getBase();
6561       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6562       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6563         Init = ICE->getSubExpr();
6564       else
6565         // We can't lifetime extend through this but we might still find some
6566         // retained temporaries.
6567         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6568     }
6569 
6570     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6571     // constructor inherits one as an implicit mem-initializer.
6572     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6573       Path.push_back(
6574           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6575       Init = DIE->getExpr();
6576     }
6577   } while (Init != Old);
6578 
6579   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6580     if (Visit(Path, Local(MTE), RK))
6581       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6582                                        true);
6583   }
6584 
6585   if (isa<CallExpr>(Init))
6586     return visitLifetimeBoundArguments(Path, Init, Visit);
6587 
6588   switch (Init->getStmtClass()) {
6589   case Stmt::DeclRefExprClass: {
6590     // If we find the name of a local non-reference parameter, we could have a
6591     // lifetime problem.
6592     auto *DRE = cast<DeclRefExpr>(Init);
6593     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6594     if (VD && VD->hasLocalStorage() &&
6595         !DRE->refersToEnclosingVariableOrCapture()) {
6596       if (!VD->getType()->isReferenceType()) {
6597         Visit(Path, Local(DRE), RK);
6598       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6599         // The lifetime of a reference parameter is unknown; assume it's OK
6600         // for now.
6601         break;
6602       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6603         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6604         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6605                                               RK_ReferenceBinding, Visit);
6606       }
6607     }
6608     break;
6609   }
6610 
6611   case Stmt::UnaryOperatorClass: {
6612     // The only unary operator that make sense to handle here
6613     // is Deref.  All others don't resolve to a "name."  This includes
6614     // handling all sorts of rvalues passed to a unary operator.
6615     const UnaryOperator *U = cast<UnaryOperator>(Init);
6616     if (U->getOpcode() == UO_Deref)
6617       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6618     break;
6619   }
6620 
6621   case Stmt::OMPArraySectionExprClass: {
6622     visitLocalsRetainedByInitializer(
6623         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6624     break;
6625   }
6626 
6627   case Stmt::ConditionalOperatorClass:
6628   case Stmt::BinaryConditionalOperatorClass: {
6629     auto *C = cast<AbstractConditionalOperator>(Init);
6630     if (!C->getTrueExpr()->getType()->isVoidType())
6631       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6632     if (!C->getFalseExpr()->getType()->isVoidType())
6633       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6634     break;
6635   }
6636 
6637   // FIXME: Visit the left-hand side of an -> or ->*.
6638 
6639   default:
6640     break;
6641   }
6642 }
6643 
6644 /// Visit the locals that would be reachable through an object initialized by
6645 /// the prvalue expression \c Init.
6646 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6647                                              Expr *Init, LocalVisitor Visit,
6648                                              bool RevisitSubinits) {
6649   RevertToOldSizeRAII RAII(Path);
6650 
6651   Expr *Old;
6652   do {
6653     Old = Init;
6654 
6655     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6656     // constructor inherits one as an implicit mem-initializer.
6657     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6658       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6659       Init = DIE->getExpr();
6660     }
6661 
6662     if (auto *FE = dyn_cast<FullExpr>(Init))
6663       Init = FE->getSubExpr();
6664 
6665     // Dig out the expression which constructs the extended temporary.
6666     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6667 
6668     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6669       Init = BTE->getSubExpr();
6670 
6671     Init = Init->IgnoreParens();
6672 
6673     // Step over value-preserving rvalue casts.
6674     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6675       switch (CE->getCastKind()) {
6676       case CK_LValueToRValue:
6677         // If we can match the lvalue to a const object, we can look at its
6678         // initializer.
6679         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6680         return visitLocalsRetainedByReferenceBinding(
6681             Path, Init, RK_ReferenceBinding,
6682             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6683           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6684             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6685             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6686                 !isVarOnPath(Path, VD)) {
6687               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6688               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6689             }
6690           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6691             if (MTE->getType().isConstQualified())
6692               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6693                                                Visit, true);
6694           }
6695           return false;
6696         });
6697 
6698         // We assume that objects can be retained by pointers cast to integers,
6699         // but not if the integer is cast to floating-point type or to _Complex.
6700         // We assume that casts to 'bool' do not preserve enough information to
6701         // retain a local object.
6702       case CK_NoOp:
6703       case CK_BitCast:
6704       case CK_BaseToDerived:
6705       case CK_DerivedToBase:
6706       case CK_UncheckedDerivedToBase:
6707       case CK_Dynamic:
6708       case CK_ToUnion:
6709       case CK_UserDefinedConversion:
6710       case CK_ConstructorConversion:
6711       case CK_IntegralToPointer:
6712       case CK_PointerToIntegral:
6713       case CK_VectorSplat:
6714       case CK_IntegralCast:
6715       case CK_CPointerToObjCPointerCast:
6716       case CK_BlockPointerToObjCPointerCast:
6717       case CK_AnyPointerToBlockPointerCast:
6718       case CK_AddressSpaceConversion:
6719         break;
6720 
6721       case CK_ArrayToPointerDecay:
6722         // Model array-to-pointer decay as taking the address of the array
6723         // lvalue.
6724         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6725         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6726                                                      RK_ReferenceBinding, Visit);
6727 
6728       default:
6729         return;
6730       }
6731 
6732       Init = CE->getSubExpr();
6733     }
6734   } while (Old != Init);
6735 
6736   // C++17 [dcl.init.list]p6:
6737   //   initializing an initializer_list object from the array extends the
6738   //   lifetime of the array exactly like binding a reference to a temporary.
6739   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6740     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6741                                                  RK_StdInitializerList, Visit);
6742 
6743   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6744     // We already visited the elements of this initializer list while
6745     // performing the initialization. Don't visit them again unless we've
6746     // changed the lifetime of the initialized entity.
6747     if (!RevisitSubinits)
6748       return;
6749 
6750     if (ILE->isTransparent())
6751       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6752                                               RevisitSubinits);
6753 
6754     if (ILE->getType()->isArrayType()) {
6755       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6756         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6757                                          RevisitSubinits);
6758       return;
6759     }
6760 
6761     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6762       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6763 
6764       // If we lifetime-extend a braced initializer which is initializing an
6765       // aggregate, and that aggregate contains reference members which are
6766       // bound to temporaries, those temporaries are also lifetime-extended.
6767       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6768           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6769         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6770                                               RK_ReferenceBinding, Visit);
6771       else {
6772         unsigned Index = 0;
6773         for (const auto *I : RD->fields()) {
6774           if (Index >= ILE->getNumInits())
6775             break;
6776           if (I->isUnnamedBitfield())
6777             continue;
6778           Expr *SubInit = ILE->getInit(Index);
6779           if (I->getType()->isReferenceType())
6780             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6781                                                   RK_ReferenceBinding, Visit);
6782           else
6783             // This might be either aggregate-initialization of a member or
6784             // initialization of a std::initializer_list object. Regardless,
6785             // we should recursively lifetime-extend that initializer.
6786             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6787                                              RevisitSubinits);
6788           ++Index;
6789         }
6790       }
6791     }
6792     return;
6793   }
6794 
6795   // The lifetime of an init-capture is that of the closure object constructed
6796   // by a lambda-expression.
6797   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6798     for (Expr *E : LE->capture_inits()) {
6799       if (!E)
6800         continue;
6801       if (E->isGLValue())
6802         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6803                                               Visit);
6804       else
6805         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6806     }
6807   }
6808 
6809   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6810     return visitLifetimeBoundArguments(Path, Init, Visit);
6811 
6812   switch (Init->getStmtClass()) {
6813   case Stmt::UnaryOperatorClass: {
6814     auto *UO = cast<UnaryOperator>(Init);
6815     // If the initializer is the address of a local, we could have a lifetime
6816     // problem.
6817     if (UO->getOpcode() == UO_AddrOf) {
6818       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6819       // it. Don't produce a redundant warning about the lifetime of the
6820       // temporary.
6821       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6822         return;
6823 
6824       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6825       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6826                                             RK_ReferenceBinding, Visit);
6827     }
6828     break;
6829   }
6830 
6831   case Stmt::BinaryOperatorClass: {
6832     // Handle pointer arithmetic.
6833     auto *BO = cast<BinaryOperator>(Init);
6834     BinaryOperatorKind BOK = BO->getOpcode();
6835     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6836       break;
6837 
6838     if (BO->getLHS()->getType()->isPointerType())
6839       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6840     else if (BO->getRHS()->getType()->isPointerType())
6841       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6842     break;
6843   }
6844 
6845   case Stmt::ConditionalOperatorClass:
6846   case Stmt::BinaryConditionalOperatorClass: {
6847     auto *C = cast<AbstractConditionalOperator>(Init);
6848     // In C++, we can have a throw-expression operand, which has 'void' type
6849     // and isn't interesting from a lifetime perspective.
6850     if (!C->getTrueExpr()->getType()->isVoidType())
6851       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6852     if (!C->getFalseExpr()->getType()->isVoidType())
6853       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6854     break;
6855   }
6856 
6857   case Stmt::BlockExprClass:
6858     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6859       // This is a local block, whose lifetime is that of the function.
6860       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6861     }
6862     break;
6863 
6864   case Stmt::AddrLabelExprClass:
6865     // We want to warn if the address of a label would escape the function.
6866     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6867     break;
6868 
6869   default:
6870     break;
6871   }
6872 }
6873 
6874 /// Determine whether this is an indirect path to a temporary that we are
6875 /// supposed to lifetime-extend along (but don't).
6876 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6877   for (auto Elem : Path) {
6878     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6879       return false;
6880   }
6881   return true;
6882 }
6883 
6884 /// Find the range for the first interesting entry in the path at or after I.
6885 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6886                                       Expr *E) {
6887   for (unsigned N = Path.size(); I != N; ++I) {
6888     switch (Path[I].Kind) {
6889     case IndirectLocalPathEntry::AddressOf:
6890     case IndirectLocalPathEntry::LValToRVal:
6891     case IndirectLocalPathEntry::LifetimeBoundCall:
6892       // These exist primarily to mark the path as not permitting or
6893       // supporting lifetime extension.
6894       break;
6895 
6896     case IndirectLocalPathEntry::DefaultInit:
6897     case IndirectLocalPathEntry::VarInit:
6898       return Path[I].E->getSourceRange();
6899     }
6900   }
6901   return E->getSourceRange();
6902 }
6903 
6904 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6905                                     Expr *Init) {
6906   LifetimeResult LR = getEntityLifetime(&Entity);
6907   LifetimeKind LK = LR.getInt();
6908   const InitializedEntity *ExtendingEntity = LR.getPointer();
6909 
6910   // If this entity doesn't have an interesting lifetime, don't bother looking
6911   // for temporaries within its initializer.
6912   if (LK == LK_FullExpression)
6913     return;
6914 
6915   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6916                               ReferenceKind RK) -> bool {
6917     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6918     SourceLocation DiagLoc = DiagRange.getBegin();
6919 
6920     switch (LK) {
6921     case LK_FullExpression:
6922       llvm_unreachable("already handled this");
6923 
6924     case LK_Extended: {
6925       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6926       if (!MTE) {
6927         // The initialized entity has lifetime beyond the full-expression,
6928         // and the local entity does too, so don't warn.
6929         //
6930         // FIXME: We should consider warning if a static / thread storage
6931         // duration variable retains an automatic storage duration local.
6932         return false;
6933       }
6934 
6935       // Lifetime-extend the temporary.
6936       if (Path.empty()) {
6937         // Update the storage duration of the materialized temporary.
6938         // FIXME: Rebuild the expression instead of mutating it.
6939         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
6940                               ExtendingEntity->allocateManglingNumber());
6941         // Also visit the temporaries lifetime-extended by this initializer.
6942         return true;
6943       }
6944 
6945       if (shouldLifetimeExtendThroughPath(Path)) {
6946         // We're supposed to lifetime-extend the temporary along this path (per
6947         // the resolution of DR1815), but we don't support that yet.
6948         //
6949         // FIXME: Properly handle this situation. Perhaps the easiest approach
6950         // would be to clone the initializer expression on each use that would
6951         // lifetime extend its temporaries.
6952         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
6953             << RK << DiagRange;
6954       } else {
6955         // If the path goes through the initialization of a variable or field,
6956         // it can't possibly reach a temporary created in this full-expression.
6957         // We will have already diagnosed any problems with the initializer.
6958         if (pathContainsInit(Path))
6959           return false;
6960 
6961         Diag(DiagLoc, diag::warn_dangling_variable)
6962             << RK << !Entity.getParent()
6963             << ExtendingEntity->getDecl()->isImplicit()
6964             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
6965       }
6966       break;
6967     }
6968 
6969     case LK_MemInitializer: {
6970       if (isa<MaterializeTemporaryExpr>(L)) {
6971         // Under C++ DR1696, if a mem-initializer (or a default member
6972         // initializer used by the absence of one) would lifetime-extend a
6973         // temporary, the program is ill-formed.
6974         if (auto *ExtendingDecl =
6975                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
6976           bool IsSubobjectMember = ExtendingEntity != &Entity;
6977           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
6978                             ? diag::err_dangling_member
6979                             : diag::warn_dangling_member)
6980               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
6981           // Don't bother adding a note pointing to the field if we're inside
6982           // its default member initializer; our primary diagnostic points to
6983           // the same place in that case.
6984           if (Path.empty() ||
6985               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
6986             Diag(ExtendingDecl->getLocation(),
6987                  diag::note_lifetime_extending_member_declared_here)
6988                 << RK << IsSubobjectMember;
6989           }
6990         } else {
6991           // We have a mem-initializer but no particular field within it; this
6992           // is either a base class or a delegating initializer directly
6993           // initializing the base-class from something that doesn't live long
6994           // enough.
6995           //
6996           // FIXME: Warn on this.
6997           return false;
6998         }
6999       } else {
7000         // Paths via a default initializer can only occur during error recovery
7001         // (there's no other way that a default initializer can refer to a
7002         // local). Don't produce a bogus warning on those cases.
7003         if (pathContainsInit(Path))
7004           return false;
7005 
7006         auto *DRE = dyn_cast<DeclRefExpr>(L);
7007         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7008         if (!VD) {
7009           // A member was initialized to a local block.
7010           // FIXME: Warn on this.
7011           return false;
7012         }
7013 
7014         if (auto *Member =
7015                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7016           bool IsPointer = Member->getType()->isAnyPointerType();
7017           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7018                                   : diag::warn_bind_ref_member_to_parameter)
7019               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7020           Diag(Member->getLocation(),
7021                diag::note_ref_or_ptr_member_declared_here)
7022               << (unsigned)IsPointer;
7023         }
7024       }
7025       break;
7026     }
7027 
7028     case LK_New:
7029       if (isa<MaterializeTemporaryExpr>(L)) {
7030         Diag(DiagLoc, RK == RK_ReferenceBinding
7031                           ? diag::warn_new_dangling_reference
7032                           : diag::warn_new_dangling_initializer_list)
7033             << !Entity.getParent() << DiagRange;
7034       } else {
7035         // We can't determine if the allocation outlives the local declaration.
7036         return false;
7037       }
7038       break;
7039 
7040     case LK_Return:
7041     case LK_StmtExprResult:
7042       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7043         // We can't determine if the local variable outlives the statement
7044         // expression.
7045         if (LK == LK_StmtExprResult)
7046           return false;
7047         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7048             << Entity.getType()->isReferenceType() << DRE->getDecl()
7049             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7050       } else if (isa<BlockExpr>(L)) {
7051         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7052       } else if (isa<AddrLabelExpr>(L)) {
7053         // Don't warn when returning a label from a statement expression.
7054         // Leaving the scope doesn't end its lifetime.
7055         if (LK == LK_StmtExprResult)
7056           return false;
7057         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7058       } else {
7059         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7060          << Entity.getType()->isReferenceType() << DiagRange;
7061       }
7062       break;
7063     }
7064 
7065     for (unsigned I = 0; I != Path.size(); ++I) {
7066       auto Elem = Path[I];
7067 
7068       switch (Elem.Kind) {
7069       case IndirectLocalPathEntry::AddressOf:
7070       case IndirectLocalPathEntry::LValToRVal:
7071         // These exist primarily to mark the path as not permitting or
7072         // supporting lifetime extension.
7073         break;
7074 
7075       case IndirectLocalPathEntry::LifetimeBoundCall:
7076         // FIXME: Consider adding a note for this.
7077         break;
7078 
7079       case IndirectLocalPathEntry::DefaultInit: {
7080         auto *FD = cast<FieldDecl>(Elem.D);
7081         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7082             << FD << nextPathEntryRange(Path, I + 1, L);
7083         break;
7084       }
7085 
7086       case IndirectLocalPathEntry::VarInit:
7087         const VarDecl *VD = cast<VarDecl>(Elem.D);
7088         Diag(VD->getLocation(), diag::note_local_var_initializer)
7089             << VD->getType()->isReferenceType()
7090             << VD->isImplicit() << VD->getDeclName()
7091             << nextPathEntryRange(Path, I + 1, L);
7092         break;
7093       }
7094     }
7095 
7096     // We didn't lifetime-extend, so don't go any further; we don't need more
7097     // warnings or errors on inner temporaries within this one's initializer.
7098     return false;
7099   };
7100 
7101   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7102   if (Init->isGLValue())
7103     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7104                                           TemporaryVisitor);
7105   else
7106     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7107 }
7108 
7109 static void DiagnoseNarrowingInInitList(Sema &S,
7110                                         const ImplicitConversionSequence &ICS,
7111                                         QualType PreNarrowingType,
7112                                         QualType EntityType,
7113                                         const Expr *PostInit);
7114 
7115 /// Provide warnings when std::move is used on construction.
7116 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7117                                     bool IsReturnStmt) {
7118   if (!InitExpr)
7119     return;
7120 
7121   if (S.inTemplateInstantiation())
7122     return;
7123 
7124   QualType DestType = InitExpr->getType();
7125   if (!DestType->isRecordType())
7126     return;
7127 
7128   unsigned DiagID = 0;
7129   if (IsReturnStmt) {
7130     const CXXConstructExpr *CCE =
7131         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7132     if (!CCE || CCE->getNumArgs() != 1)
7133       return;
7134 
7135     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7136       return;
7137 
7138     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7139   }
7140 
7141   // Find the std::move call and get the argument.
7142   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7143   if (!CE || !CE->isCallToStdMove())
7144     return;
7145 
7146   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7147 
7148   if (IsReturnStmt) {
7149     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7150     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7151       return;
7152 
7153     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7154     if (!VD || !VD->hasLocalStorage())
7155       return;
7156 
7157     // __block variables are not moved implicitly.
7158     if (VD->hasAttr<BlocksAttr>())
7159       return;
7160 
7161     QualType SourceType = VD->getType();
7162     if (!SourceType->isRecordType())
7163       return;
7164 
7165     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7166       return;
7167     }
7168 
7169     // If we're returning a function parameter, copy elision
7170     // is not possible.
7171     if (isa<ParmVarDecl>(VD))
7172       DiagID = diag::warn_redundant_move_on_return;
7173     else
7174       DiagID = diag::warn_pessimizing_move_on_return;
7175   } else {
7176     DiagID = diag::warn_pessimizing_move_on_initialization;
7177     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7178     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7179       return;
7180   }
7181 
7182   S.Diag(CE->getBeginLoc(), DiagID);
7183 
7184   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7185   // is within a macro.
7186   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7187   if (CallBegin.isMacroID())
7188     return;
7189   SourceLocation RParen = CE->getRParenLoc();
7190   if (RParen.isMacroID())
7191     return;
7192   SourceLocation LParen;
7193   SourceLocation ArgLoc = Arg->getBeginLoc();
7194 
7195   // Special testing for the argument location.  Since the fix-it needs the
7196   // location right before the argument, the argument location can be in a
7197   // macro only if it is at the beginning of the macro.
7198   while (ArgLoc.isMacroID() &&
7199          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7200     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7201   }
7202 
7203   if (LParen.isMacroID())
7204     return;
7205 
7206   LParen = ArgLoc.getLocWithOffset(-1);
7207 
7208   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7209       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7210       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7211 }
7212 
7213 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7214   // Check to see if we are dereferencing a null pointer.  If so, this is
7215   // undefined behavior, so warn about it.  This only handles the pattern
7216   // "*null", which is a very syntactic check.
7217   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7218     if (UO->getOpcode() == UO_Deref &&
7219         UO->getSubExpr()->IgnoreParenCasts()->
7220         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7221     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7222                           S.PDiag(diag::warn_binding_null_to_reference)
7223                             << UO->getSubExpr()->getSourceRange());
7224   }
7225 }
7226 
7227 MaterializeTemporaryExpr *
7228 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7229                                      bool BoundToLvalueReference) {
7230   auto MTE = new (Context)
7231       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7232 
7233   // Order an ExprWithCleanups for lifetime marks.
7234   //
7235   // TODO: It'll be good to have a single place to check the access of the
7236   // destructor and generate ExprWithCleanups for various uses. Currently these
7237   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7238   // but there may be a chance to merge them.
7239   Cleanup.setExprNeedsCleanups(false);
7240   return MTE;
7241 }
7242 
7243 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7244   // In C++98, we don't want to implicitly create an xvalue.
7245   // FIXME: This means that AST consumers need to deal with "prvalues" that
7246   // denote materialized temporaries. Maybe we should add another ValueKind
7247   // for "xvalue pretending to be a prvalue" for C++98 support.
7248   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7249     return E;
7250 
7251   // C++1z [conv.rval]/1: T shall be a complete type.
7252   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7253   // If so, we should check for a non-abstract class type here too.
7254   QualType T = E->getType();
7255   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7256     return ExprError();
7257 
7258   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7259 }
7260 
7261 ExprResult
7262 InitializationSequence::Perform(Sema &S,
7263                                 const InitializedEntity &Entity,
7264                                 const InitializationKind &Kind,
7265                                 MultiExprArg Args,
7266                                 QualType *ResultType) {
7267   if (Failed()) {
7268     Diagnose(S, Entity, Kind, Args);
7269     return ExprError();
7270   }
7271   if (!ZeroInitializationFixit.empty()) {
7272     unsigned DiagID = diag::err_default_init_const;
7273     if (Decl *D = Entity.getDecl())
7274       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7275         DiagID = diag::ext_default_init_const;
7276 
7277     // The initialization would have succeeded with this fixit. Since the fixit
7278     // is on the error, we need to build a valid AST in this case, so this isn't
7279     // handled in the Failed() branch above.
7280     QualType DestType = Entity.getType();
7281     S.Diag(Kind.getLocation(), DiagID)
7282         << DestType << (bool)DestType->getAs<RecordType>()
7283         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7284                                       ZeroInitializationFixit);
7285   }
7286 
7287   if (getKind() == DependentSequence) {
7288     // If the declaration is a non-dependent, incomplete array type
7289     // that has an initializer, then its type will be completed once
7290     // the initializer is instantiated.
7291     if (ResultType && !Entity.getType()->isDependentType() &&
7292         Args.size() == 1) {
7293       QualType DeclType = Entity.getType();
7294       if (const IncompleteArrayType *ArrayT
7295                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7296         // FIXME: We don't currently have the ability to accurately
7297         // compute the length of an initializer list without
7298         // performing full type-checking of the initializer list
7299         // (since we have to determine where braces are implicitly
7300         // introduced and such).  So, we fall back to making the array
7301         // type a dependently-sized array type with no specified
7302         // bound.
7303         if (isa<InitListExpr>((Expr *)Args[0])) {
7304           SourceRange Brackets;
7305 
7306           // Scavange the location of the brackets from the entity, if we can.
7307           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7308             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7309               TypeLoc TL = TInfo->getTypeLoc();
7310               if (IncompleteArrayTypeLoc ArrayLoc =
7311                       TL.getAs<IncompleteArrayTypeLoc>())
7312                 Brackets = ArrayLoc.getBracketsRange();
7313             }
7314           }
7315 
7316           *ResultType
7317             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7318                                                    /*NumElts=*/nullptr,
7319                                                    ArrayT->getSizeModifier(),
7320                                        ArrayT->getIndexTypeCVRQualifiers(),
7321                                                    Brackets);
7322         }
7323 
7324       }
7325     }
7326     if (Kind.getKind() == InitializationKind::IK_Direct &&
7327         !Kind.isExplicitCast()) {
7328       // Rebuild the ParenListExpr.
7329       SourceRange ParenRange = Kind.getParenOrBraceRange();
7330       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7331                                   Args);
7332     }
7333     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7334            Kind.isExplicitCast() ||
7335            Kind.getKind() == InitializationKind::IK_DirectList);
7336     return ExprResult(Args[0]);
7337   }
7338 
7339   // No steps means no initialization.
7340   if (Steps.empty())
7341     return ExprResult((Expr *)nullptr);
7342 
7343   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7344       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7345       !Entity.isParameterKind()) {
7346     // Produce a C++98 compatibility warning if we are initializing a reference
7347     // from an initializer list. For parameters, we produce a better warning
7348     // elsewhere.
7349     Expr *Init = Args[0];
7350     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7351         << Init->getSourceRange();
7352   }
7353 
7354   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7355   QualType ETy = Entity.getType();
7356   Qualifiers TyQualifiers = ETy.getQualifiers();
7357   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7358                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7359 
7360   if (S.getLangOpts().OpenCLVersion >= 200 &&
7361       ETy->isAtomicType() && !HasGlobalAS &&
7362       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7363     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7364         << 1
7365         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7366     return ExprError();
7367   }
7368 
7369   QualType DestType = Entity.getType().getNonReferenceType();
7370   // FIXME: Ugly hack around the fact that Entity.getType() is not
7371   // the same as Entity.getDecl()->getType() in cases involving type merging,
7372   //  and we want latter when it makes sense.
7373   if (ResultType)
7374     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7375                                      Entity.getType();
7376 
7377   ExprResult CurInit((Expr *)nullptr);
7378   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7379 
7380   // For initialization steps that start with a single initializer,
7381   // grab the only argument out the Args and place it into the "current"
7382   // initializer.
7383   switch (Steps.front().Kind) {
7384   case SK_ResolveAddressOfOverloadedFunction:
7385   case SK_CastDerivedToBaseRValue:
7386   case SK_CastDerivedToBaseXValue:
7387   case SK_CastDerivedToBaseLValue:
7388   case SK_BindReference:
7389   case SK_BindReferenceToTemporary:
7390   case SK_FinalCopy:
7391   case SK_ExtraneousCopyToTemporary:
7392   case SK_UserConversion:
7393   case SK_QualificationConversionLValue:
7394   case SK_QualificationConversionXValue:
7395   case SK_QualificationConversionRValue:
7396   case SK_AtomicConversion:
7397   case SK_LValueToRValue:
7398   case SK_ConversionSequence:
7399   case SK_ConversionSequenceNoNarrowing:
7400   case SK_ListInitialization:
7401   case SK_UnwrapInitList:
7402   case SK_RewrapInitList:
7403   case SK_CAssignment:
7404   case SK_StringInit:
7405   case SK_ObjCObjectConversion:
7406   case SK_ArrayLoopIndex:
7407   case SK_ArrayLoopInit:
7408   case SK_ArrayInit:
7409   case SK_GNUArrayInit:
7410   case SK_ParenthesizedArrayInit:
7411   case SK_PassByIndirectCopyRestore:
7412   case SK_PassByIndirectRestore:
7413   case SK_ProduceObjCObject:
7414   case SK_StdInitializerList:
7415   case SK_OCLSamplerInit:
7416   case SK_OCLZeroOpaqueType: {
7417     assert(Args.size() == 1);
7418     CurInit = Args[0];
7419     if (!CurInit.get()) return ExprError();
7420     break;
7421   }
7422 
7423   case SK_ConstructorInitialization:
7424   case SK_ConstructorInitializationFromList:
7425   case SK_StdInitializerListConstructorCall:
7426   case SK_ZeroInitialization:
7427     break;
7428   }
7429 
7430   // Promote from an unevaluated context to an unevaluated list context in
7431   // C++11 list-initialization; we need to instantiate entities usable in
7432   // constant expressions here in order to perform narrowing checks =(
7433   EnterExpressionEvaluationContext Evaluated(
7434       S, EnterExpressionEvaluationContext::InitList,
7435       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7436 
7437   // C++ [class.abstract]p2:
7438   //   no objects of an abstract class can be created except as subobjects
7439   //   of a class derived from it
7440   auto checkAbstractType = [&](QualType T) -> bool {
7441     if (Entity.getKind() == InitializedEntity::EK_Base ||
7442         Entity.getKind() == InitializedEntity::EK_Delegating)
7443       return false;
7444     return S.RequireNonAbstractType(Kind.getLocation(), T,
7445                                     diag::err_allocation_of_abstract_type);
7446   };
7447 
7448   // Walk through the computed steps for the initialization sequence,
7449   // performing the specified conversions along the way.
7450   bool ConstructorInitRequiresZeroInit = false;
7451   for (step_iterator Step = step_begin(), StepEnd = step_end();
7452        Step != StepEnd; ++Step) {
7453     if (CurInit.isInvalid())
7454       return ExprError();
7455 
7456     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7457 
7458     switch (Step->Kind) {
7459     case SK_ResolveAddressOfOverloadedFunction:
7460       // Overload resolution determined which function invoke; update the
7461       // initializer to reflect that choice.
7462       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7463       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7464         return ExprError();
7465       CurInit = S.FixOverloadedFunctionReference(CurInit,
7466                                                  Step->Function.FoundDecl,
7467                                                  Step->Function.Function);
7468       break;
7469 
7470     case SK_CastDerivedToBaseRValue:
7471     case SK_CastDerivedToBaseXValue:
7472     case SK_CastDerivedToBaseLValue: {
7473       // We have a derived-to-base cast that produces either an rvalue or an
7474       // lvalue. Perform that cast.
7475 
7476       CXXCastPath BasePath;
7477 
7478       // Casts to inaccessible base classes are allowed with C-style casts.
7479       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7480       if (S.CheckDerivedToBaseConversion(
7481               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7482               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7483         return ExprError();
7484 
7485       ExprValueKind VK =
7486           Step->Kind == SK_CastDerivedToBaseLValue ?
7487               VK_LValue :
7488               (Step->Kind == SK_CastDerivedToBaseXValue ?
7489                    VK_XValue :
7490                    VK_RValue);
7491       CurInit =
7492           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7493                                    CurInit.get(), &BasePath, VK);
7494       break;
7495     }
7496 
7497     case SK_BindReference:
7498       // Reference binding does not have any corresponding ASTs.
7499 
7500       // Check exception specifications
7501       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7502         return ExprError();
7503 
7504       // We don't check for e.g. function pointers here, since address
7505       // availability checks should only occur when the function first decays
7506       // into a pointer or reference.
7507       if (CurInit.get()->getType()->isFunctionProtoType()) {
7508         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7509           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7510             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7511                                                      DRE->getBeginLoc()))
7512               return ExprError();
7513           }
7514         }
7515       }
7516 
7517       CheckForNullPointerDereference(S, CurInit.get());
7518       break;
7519 
7520     case SK_BindReferenceToTemporary: {
7521       // Make sure the "temporary" is actually an rvalue.
7522       assert(CurInit.get()->isRValue() && "not a temporary");
7523 
7524       // Check exception specifications
7525       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7526         return ExprError();
7527 
7528       // Materialize the temporary into memory.
7529       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7530           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7531       CurInit = MTE;
7532 
7533       // If we're extending this temporary to automatic storage duration -- we
7534       // need to register its cleanup during the full-expression's cleanups.
7535       if (MTE->getStorageDuration() == SD_Automatic &&
7536           MTE->getType().isDestructedType())
7537         S.Cleanup.setExprNeedsCleanups(true);
7538       break;
7539     }
7540 
7541     case SK_FinalCopy:
7542       if (checkAbstractType(Step->Type))
7543         return ExprError();
7544 
7545       // If the overall initialization is initializing a temporary, we already
7546       // bound our argument if it was necessary to do so. If not (if we're
7547       // ultimately initializing a non-temporary), our argument needs to be
7548       // bound since it's initializing a function parameter.
7549       // FIXME: This is a mess. Rationalize temporary destruction.
7550       if (!shouldBindAsTemporary(Entity))
7551         CurInit = S.MaybeBindToTemporary(CurInit.get());
7552       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7553                            /*IsExtraneousCopy=*/false);
7554       break;
7555 
7556     case SK_ExtraneousCopyToTemporary:
7557       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7558                            /*IsExtraneousCopy=*/true);
7559       break;
7560 
7561     case SK_UserConversion: {
7562       // We have a user-defined conversion that invokes either a constructor
7563       // or a conversion function.
7564       CastKind CastKind;
7565       FunctionDecl *Fn = Step->Function.Function;
7566       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7567       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7568       bool CreatedObject = false;
7569       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7570         // Build a call to the selected constructor.
7571         SmallVector<Expr*, 8> ConstructorArgs;
7572         SourceLocation Loc = CurInit.get()->getBeginLoc();
7573 
7574         // Determine the arguments required to actually perform the constructor
7575         // call.
7576         Expr *Arg = CurInit.get();
7577         if (S.CompleteConstructorCall(Constructor,
7578                                       MultiExprArg(&Arg, 1),
7579                                       Loc, ConstructorArgs))
7580           return ExprError();
7581 
7582         // Build an expression that constructs a temporary.
7583         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7584                                           FoundFn, Constructor,
7585                                           ConstructorArgs,
7586                                           HadMultipleCandidates,
7587                                           /*ListInit*/ false,
7588                                           /*StdInitListInit*/ false,
7589                                           /*ZeroInit*/ false,
7590                                           CXXConstructExpr::CK_Complete,
7591                                           SourceRange());
7592         if (CurInit.isInvalid())
7593           return ExprError();
7594 
7595         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7596                                  Entity);
7597         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7598           return ExprError();
7599 
7600         CastKind = CK_ConstructorConversion;
7601         CreatedObject = true;
7602       } else {
7603         // Build a call to the conversion function.
7604         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7605         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7606                                     FoundFn);
7607         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7608           return ExprError();
7609 
7610         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7611                                            HadMultipleCandidates);
7612         if (CurInit.isInvalid())
7613           return ExprError();
7614 
7615         CastKind = CK_UserDefinedConversion;
7616         CreatedObject = Conversion->getReturnType()->isRecordType();
7617       }
7618 
7619       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7620         return ExprError();
7621 
7622       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7623                                          CastKind, CurInit.get(), nullptr,
7624                                          CurInit.get()->getValueKind());
7625 
7626       if (shouldBindAsTemporary(Entity))
7627         // The overall entity is temporary, so this expression should be
7628         // destroyed at the end of its full-expression.
7629         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7630       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7631         // The object outlasts the full-expression, but we need to prepare for
7632         // a destructor being run on it.
7633         // FIXME: It makes no sense to do this here. This should happen
7634         // regardless of how we initialized the entity.
7635         QualType T = CurInit.get()->getType();
7636         if (const RecordType *Record = T->getAs<RecordType>()) {
7637           CXXDestructorDecl *Destructor
7638             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7639           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7640                                   S.PDiag(diag::err_access_dtor_temp) << T);
7641           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7642           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7643             return ExprError();
7644         }
7645       }
7646       break;
7647     }
7648 
7649     case SK_QualificationConversionLValue:
7650     case SK_QualificationConversionXValue:
7651     case SK_QualificationConversionRValue: {
7652       // Perform a qualification conversion; these can never go wrong.
7653       ExprValueKind VK =
7654           Step->Kind == SK_QualificationConversionLValue ?
7655               VK_LValue :
7656               (Step->Kind == SK_QualificationConversionXValue ?
7657                    VK_XValue :
7658                    VK_RValue);
7659       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
7660       break;
7661     }
7662 
7663     case SK_AtomicConversion: {
7664       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7665       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7666                                     CK_NonAtomicToAtomic, VK_RValue);
7667       break;
7668     }
7669 
7670     case SK_LValueToRValue: {
7671       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7672       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7673                                          CK_LValueToRValue, CurInit.get(),
7674                                          /*BasePath=*/nullptr, VK_RValue);
7675       break;
7676     }
7677 
7678     case SK_ConversionSequence:
7679     case SK_ConversionSequenceNoNarrowing: {
7680       Sema::CheckedConversionKind CCK
7681         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7682         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7683         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7684         : Sema::CCK_ImplicitConversion;
7685       ExprResult CurInitExprRes =
7686         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7687                                     getAssignmentAction(Entity), CCK);
7688       if (CurInitExprRes.isInvalid())
7689         return ExprError();
7690 
7691       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7692 
7693       CurInit = CurInitExprRes;
7694 
7695       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7696           S.getLangOpts().CPlusPlus)
7697         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7698                                     CurInit.get());
7699 
7700       break;
7701     }
7702 
7703     case SK_ListInitialization: {
7704       if (checkAbstractType(Step->Type))
7705         return ExprError();
7706 
7707       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7708       // If we're not initializing the top-level entity, we need to create an
7709       // InitializeTemporary entity for our target type.
7710       QualType Ty = Step->Type;
7711       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7712       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7713       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7714       InitListChecker PerformInitList(S, InitEntity,
7715           InitList, Ty, /*VerifyOnly=*/false,
7716           /*TreatUnavailableAsInvalid=*/false);
7717       if (PerformInitList.HadError())
7718         return ExprError();
7719 
7720       // Hack: We must update *ResultType if available in order to set the
7721       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7722       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7723       if (ResultType &&
7724           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7725         if ((*ResultType)->isRValueReferenceType())
7726           Ty = S.Context.getRValueReferenceType(Ty);
7727         else if ((*ResultType)->isLValueReferenceType())
7728           Ty = S.Context.getLValueReferenceType(Ty,
7729             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7730         *ResultType = Ty;
7731       }
7732 
7733       InitListExpr *StructuredInitList =
7734           PerformInitList.getFullyStructuredList();
7735       CurInit.get();
7736       CurInit = shouldBindAsTemporary(InitEntity)
7737           ? S.MaybeBindToTemporary(StructuredInitList)
7738           : StructuredInitList;
7739       break;
7740     }
7741 
7742     case SK_ConstructorInitializationFromList: {
7743       if (checkAbstractType(Step->Type))
7744         return ExprError();
7745 
7746       // When an initializer list is passed for a parameter of type "reference
7747       // to object", we don't get an EK_Temporary entity, but instead an
7748       // EK_Parameter entity with reference type.
7749       // FIXME: This is a hack. What we really should do is create a user
7750       // conversion step for this case, but this makes it considerably more
7751       // complicated. For now, this will do.
7752       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7753                                         Entity.getType().getNonReferenceType());
7754       bool UseTemporary = Entity.getType()->isReferenceType();
7755       assert(Args.size() == 1 && "expected a single argument for list init");
7756       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7757       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7758         << InitList->getSourceRange();
7759       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7760       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7761                                                                    Entity,
7762                                                  Kind, Arg, *Step,
7763                                                ConstructorInitRequiresZeroInit,
7764                                                /*IsListInitialization*/true,
7765                                                /*IsStdInitListInit*/false,
7766                                                InitList->getLBraceLoc(),
7767                                                InitList->getRBraceLoc());
7768       break;
7769     }
7770 
7771     case SK_UnwrapInitList:
7772       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7773       break;
7774 
7775     case SK_RewrapInitList: {
7776       Expr *E = CurInit.get();
7777       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7778       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7779           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7780       ILE->setSyntacticForm(Syntactic);
7781       ILE->setType(E->getType());
7782       ILE->setValueKind(E->getValueKind());
7783       CurInit = ILE;
7784       break;
7785     }
7786 
7787     case SK_ConstructorInitialization:
7788     case SK_StdInitializerListConstructorCall: {
7789       if (checkAbstractType(Step->Type))
7790         return ExprError();
7791 
7792       // When an initializer list is passed for a parameter of type "reference
7793       // to object", we don't get an EK_Temporary entity, but instead an
7794       // EK_Parameter entity with reference type.
7795       // FIXME: This is a hack. What we really should do is create a user
7796       // conversion step for this case, but this makes it considerably more
7797       // complicated. For now, this will do.
7798       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7799                                         Entity.getType().getNonReferenceType());
7800       bool UseTemporary = Entity.getType()->isReferenceType();
7801       bool IsStdInitListInit =
7802           Step->Kind == SK_StdInitializerListConstructorCall;
7803       Expr *Source = CurInit.get();
7804       SourceRange Range = Kind.hasParenOrBraceRange()
7805                               ? Kind.getParenOrBraceRange()
7806                               : SourceRange();
7807       CurInit = PerformConstructorInitialization(
7808           S, UseTemporary ? TempEntity : Entity, Kind,
7809           Source ? MultiExprArg(Source) : Args, *Step,
7810           ConstructorInitRequiresZeroInit,
7811           /*IsListInitialization*/ IsStdInitListInit,
7812           /*IsStdInitListInitialization*/ IsStdInitListInit,
7813           /*LBraceLoc*/ Range.getBegin(),
7814           /*RBraceLoc*/ Range.getEnd());
7815       break;
7816     }
7817 
7818     case SK_ZeroInitialization: {
7819       step_iterator NextStep = Step;
7820       ++NextStep;
7821       if (NextStep != StepEnd &&
7822           (NextStep->Kind == SK_ConstructorInitialization ||
7823            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7824         // The need for zero-initialization is recorded directly into
7825         // the call to the object's constructor within the next step.
7826         ConstructorInitRequiresZeroInit = true;
7827       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7828                  S.getLangOpts().CPlusPlus &&
7829                  !Kind.isImplicitValueInit()) {
7830         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7831         if (!TSInfo)
7832           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7833                                                     Kind.getRange().getBegin());
7834 
7835         CurInit = new (S.Context) CXXScalarValueInitExpr(
7836             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7837             Kind.getRange().getEnd());
7838       } else {
7839         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7840       }
7841       break;
7842     }
7843 
7844     case SK_CAssignment: {
7845       QualType SourceType = CurInit.get()->getType();
7846       // Save off the initial CurInit in case we need to emit a diagnostic
7847       ExprResult InitialCurInit = CurInit;
7848       ExprResult Result = CurInit;
7849       Sema::AssignConvertType ConvTy =
7850         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7851             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7852       if (Result.isInvalid())
7853         return ExprError();
7854       CurInit = Result;
7855 
7856       // If this is a call, allow conversion to a transparent union.
7857       ExprResult CurInitExprRes = CurInit;
7858       if (ConvTy != Sema::Compatible &&
7859           Entity.isParameterKind() &&
7860           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7861             == Sema::Compatible)
7862         ConvTy = Sema::Compatible;
7863       if (CurInitExprRes.isInvalid())
7864         return ExprError();
7865       CurInit = CurInitExprRes;
7866 
7867       bool Complained;
7868       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7869                                      Step->Type, SourceType,
7870                                      InitialCurInit.get(),
7871                                      getAssignmentAction(Entity, true),
7872                                      &Complained)) {
7873         PrintInitLocationNote(S, Entity);
7874         return ExprError();
7875       } else if (Complained)
7876         PrintInitLocationNote(S, Entity);
7877       break;
7878     }
7879 
7880     case SK_StringInit: {
7881       QualType Ty = Step->Type;
7882       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7883                       S.Context.getAsArrayType(Ty), S);
7884       break;
7885     }
7886 
7887     case SK_ObjCObjectConversion:
7888       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7889                           CK_ObjCObjectLValueCast,
7890                           CurInit.get()->getValueKind());
7891       break;
7892 
7893     case SK_ArrayLoopIndex: {
7894       Expr *Cur = CurInit.get();
7895       Expr *BaseExpr = new (S.Context)
7896           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7897                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7898       Expr *IndexExpr =
7899           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7900       CurInit = S.CreateBuiltinArraySubscriptExpr(
7901           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7902       ArrayLoopCommonExprs.push_back(BaseExpr);
7903       break;
7904     }
7905 
7906     case SK_ArrayLoopInit: {
7907       assert(!ArrayLoopCommonExprs.empty() &&
7908              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7909       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7910       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7911                                                   CurInit.get());
7912       break;
7913     }
7914 
7915     case SK_GNUArrayInit:
7916       // Okay: we checked everything before creating this step. Note that
7917       // this is a GNU extension.
7918       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7919         << Step->Type << CurInit.get()->getType()
7920         << CurInit.get()->getSourceRange();
7921       LLVM_FALLTHROUGH;
7922     case SK_ArrayInit:
7923       // If the destination type is an incomplete array type, update the
7924       // type accordingly.
7925       if (ResultType) {
7926         if (const IncompleteArrayType *IncompleteDest
7927                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
7928           if (const ConstantArrayType *ConstantSource
7929                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7930             *ResultType = S.Context.getConstantArrayType(
7931                                              IncompleteDest->getElementType(),
7932                                              ConstantSource->getSize(),
7933                                              ArrayType::Normal, 0);
7934           }
7935         }
7936       }
7937       break;
7938 
7939     case SK_ParenthesizedArrayInit:
7940       // Okay: we checked everything before creating this step. Note that
7941       // this is a GNU extension.
7942       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7943         << CurInit.get()->getSourceRange();
7944       break;
7945 
7946     case SK_PassByIndirectCopyRestore:
7947     case SK_PassByIndirectRestore:
7948       checkIndirectCopyRestoreSource(S, CurInit.get());
7949       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7950           CurInit.get(), Step->Type,
7951           Step->Kind == SK_PassByIndirectCopyRestore);
7952       break;
7953 
7954     case SK_ProduceObjCObject:
7955       CurInit =
7956           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7957                                    CurInit.get(), nullptr, VK_RValue);
7958       break;
7959 
7960     case SK_StdInitializerList: {
7961       S.Diag(CurInit.get()->getExprLoc(),
7962              diag::warn_cxx98_compat_initializer_list_init)
7963         << CurInit.get()->getSourceRange();
7964 
7965       // Materialize the temporary into memory.
7966       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7967           CurInit.get()->getType(), CurInit.get(),
7968           /*BoundToLvalueReference=*/false);
7969 
7970       // Wrap it in a construction of a std::initializer_list<T>.
7971       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7972 
7973       // Bind the result, in case the library has given initializer_list a
7974       // non-trivial destructor.
7975       if (shouldBindAsTemporary(Entity))
7976         CurInit = S.MaybeBindToTemporary(CurInit.get());
7977       break;
7978     }
7979 
7980     case SK_OCLSamplerInit: {
7981       // Sampler initialzation have 5 cases:
7982       //   1. function argument passing
7983       //      1a. argument is a file-scope variable
7984       //      1b. argument is a function-scope variable
7985       //      1c. argument is one of caller function's parameters
7986       //   2. variable initialization
7987       //      2a. initializing a file-scope variable
7988       //      2b. initializing a function-scope variable
7989       //
7990       // For file-scope variables, since they cannot be initialized by function
7991       // call of __translate_sampler_initializer in LLVM IR, their references
7992       // need to be replaced by a cast from their literal initializers to
7993       // sampler type. Since sampler variables can only be used in function
7994       // calls as arguments, we only need to replace them when handling the
7995       // argument passing.
7996       assert(Step->Type->isSamplerT() &&
7997              "Sampler initialization on non-sampler type.");
7998       Expr *Init = CurInit.get();
7999       QualType SourceType = Init->getType();
8000       // Case 1
8001       if (Entity.isParameterKind()) {
8002         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8003           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8004             << SourceType;
8005           break;
8006         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8007           auto Var = cast<VarDecl>(DRE->getDecl());
8008           // Case 1b and 1c
8009           // No cast from integer to sampler is needed.
8010           if (!Var->hasGlobalStorage()) {
8011             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8012                                                CK_LValueToRValue, Init,
8013                                                /*BasePath=*/nullptr, VK_RValue);
8014             break;
8015           }
8016           // Case 1a
8017           // For function call with a file-scope sampler variable as argument,
8018           // get the integer literal.
8019           // Do not diagnose if the file-scope variable does not have initializer
8020           // since this has already been diagnosed when parsing the variable
8021           // declaration.
8022           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8023             break;
8024           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8025             Var->getInit()))->getSubExpr();
8026           SourceType = Init->getType();
8027         }
8028       } else {
8029         // Case 2
8030         // Check initializer is 32 bit integer constant.
8031         // If the initializer is taken from global variable, do not diagnose since
8032         // this has already been done when parsing the variable declaration.
8033         if (!Init->isConstantInitializer(S.Context, false))
8034           break;
8035 
8036         if (!SourceType->isIntegerType() ||
8037             32 != S.Context.getIntWidth(SourceType)) {
8038           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8039             << SourceType;
8040           break;
8041         }
8042 
8043         llvm::APSInt Result;
8044         Init->EvaluateAsInt(Result, S.Context);
8045         const uint64_t SamplerValue = Result.getLimitedValue();
8046         // 32-bit value of sampler's initializer is interpreted as
8047         // bit-field with the following structure:
8048         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8049         // |31        6|5    4|3             1|                 0|
8050         // This structure corresponds to enum values of sampler properties
8051         // defined in SPIR spec v1.2 and also opencl-c.h
8052         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8053         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8054         if (FilterMode != 1 && FilterMode != 2 &&
8055             !S.getOpenCLOptions().isEnabled(
8056                 "cl_intel_device_side_avc_motion_estimation"))
8057           S.Diag(Kind.getLocation(),
8058                  diag::warn_sampler_initializer_invalid_bits)
8059                  << "Filter Mode";
8060         if (AddressingMode > 4)
8061           S.Diag(Kind.getLocation(),
8062                  diag::warn_sampler_initializer_invalid_bits)
8063                  << "Addressing Mode";
8064       }
8065 
8066       // Cases 1a, 2a and 2b
8067       // Insert cast from integer to sampler.
8068       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8069                                       CK_IntToOCLSampler);
8070       break;
8071     }
8072     case SK_OCLZeroOpaqueType: {
8073       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8074               Step->Type->isOCLIntelSubgroupAVCType()) &&
8075              "Wrong type for initialization of OpenCL opaque type.");
8076 
8077       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8078                                     CK_ZeroToOCLOpaqueType,
8079                                     CurInit.get()->getValueKind());
8080       break;
8081     }
8082     }
8083   }
8084 
8085   // Check whether the initializer has a shorter lifetime than the initialized
8086   // entity, and if not, either lifetime-extend or warn as appropriate.
8087   if (auto *Init = CurInit.get())
8088     S.checkInitializerLifetime(Entity, Init);
8089 
8090   // Diagnose non-fatal problems with the completed initialization.
8091   if (Entity.getKind() == InitializedEntity::EK_Member &&
8092       cast<FieldDecl>(Entity.getDecl())->isBitField())
8093     S.CheckBitFieldInitialization(Kind.getLocation(),
8094                                   cast<FieldDecl>(Entity.getDecl()),
8095                                   CurInit.get());
8096 
8097   // Check for std::move on construction.
8098   if (const Expr *E = CurInit.get()) {
8099     CheckMoveOnConstruction(S, E,
8100                             Entity.getKind() == InitializedEntity::EK_Result);
8101   }
8102 
8103   return CurInit;
8104 }
8105 
8106 /// Somewhere within T there is an uninitialized reference subobject.
8107 /// Dig it out and diagnose it.
8108 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8109                                            QualType T) {
8110   if (T->isReferenceType()) {
8111     S.Diag(Loc, diag::err_reference_without_init)
8112       << T.getNonReferenceType();
8113     return true;
8114   }
8115 
8116   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8117   if (!RD || !RD->hasUninitializedReferenceMember())
8118     return false;
8119 
8120   for (const auto *FI : RD->fields()) {
8121     if (FI->isUnnamedBitfield())
8122       continue;
8123 
8124     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8125       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8126       return true;
8127     }
8128   }
8129 
8130   for (const auto &BI : RD->bases()) {
8131     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8132       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8133       return true;
8134     }
8135   }
8136 
8137   return false;
8138 }
8139 
8140 
8141 //===----------------------------------------------------------------------===//
8142 // Diagnose initialization failures
8143 //===----------------------------------------------------------------------===//
8144 
8145 /// Emit notes associated with an initialization that failed due to a
8146 /// "simple" conversion failure.
8147 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8148                                    Expr *op) {
8149   QualType destType = entity.getType();
8150   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8151       op->getType()->isObjCObjectPointerType()) {
8152 
8153     // Emit a possible note about the conversion failing because the
8154     // operand is a message send with a related result type.
8155     S.EmitRelatedResultTypeNote(op);
8156 
8157     // Emit a possible note about a return failing because we're
8158     // expecting a related result type.
8159     if (entity.getKind() == InitializedEntity::EK_Result)
8160       S.EmitRelatedResultTypeNoteForReturn(destType);
8161   }
8162 }
8163 
8164 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8165                              InitListExpr *InitList) {
8166   QualType DestType = Entity.getType();
8167 
8168   QualType E;
8169   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8170     QualType ArrayType = S.Context.getConstantArrayType(
8171         E.withConst(),
8172         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8173                     InitList->getNumInits()),
8174         clang::ArrayType::Normal, 0);
8175     InitializedEntity HiddenArray =
8176         InitializedEntity::InitializeTemporary(ArrayType);
8177     return diagnoseListInit(S, HiddenArray, InitList);
8178   }
8179 
8180   if (DestType->isReferenceType()) {
8181     // A list-initialization failure for a reference means that we tried to
8182     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8183     // inner initialization failed.
8184     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8185     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8186     SourceLocation Loc = InitList->getBeginLoc();
8187     if (auto *D = Entity.getDecl())
8188       Loc = D->getLocation();
8189     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8190     return;
8191   }
8192 
8193   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8194                                    /*VerifyOnly=*/false,
8195                                    /*TreatUnavailableAsInvalid=*/false);
8196   assert(DiagnoseInitList.HadError() &&
8197          "Inconsistent init list check result.");
8198 }
8199 
8200 bool InitializationSequence::Diagnose(Sema &S,
8201                                       const InitializedEntity &Entity,
8202                                       const InitializationKind &Kind,
8203                                       ArrayRef<Expr *> Args) {
8204   if (!Failed())
8205     return false;
8206 
8207   // When we want to diagnose only one element of a braced-init-list,
8208   // we need to factor it out.
8209   Expr *OnlyArg;
8210   if (Args.size() == 1) {
8211     auto *List = dyn_cast<InitListExpr>(Args[0]);
8212     if (List && List->getNumInits() == 1)
8213       OnlyArg = List->getInit(0);
8214     else
8215       OnlyArg = Args[0];
8216   }
8217   else
8218     OnlyArg = nullptr;
8219 
8220   QualType DestType = Entity.getType();
8221   switch (Failure) {
8222   case FK_TooManyInitsForReference:
8223     // FIXME: Customize for the initialized entity?
8224     if (Args.empty()) {
8225       // Dig out the reference subobject which is uninitialized and diagnose it.
8226       // If this is value-initialization, this could be nested some way within
8227       // the target type.
8228       assert(Kind.getKind() == InitializationKind::IK_Value ||
8229              DestType->isReferenceType());
8230       bool Diagnosed =
8231         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8232       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8233       (void)Diagnosed;
8234     } else  // FIXME: diagnostic below could be better!
8235       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8236           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8237     break;
8238   case FK_ParenthesizedListInitForReference:
8239     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8240       << 1 << Entity.getType() << Args[0]->getSourceRange();
8241     break;
8242 
8243   case FK_ArrayNeedsInitList:
8244     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8245     break;
8246   case FK_ArrayNeedsInitListOrStringLiteral:
8247     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8248     break;
8249   case FK_ArrayNeedsInitListOrWideStringLiteral:
8250     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8251     break;
8252   case FK_NarrowStringIntoWideCharArray:
8253     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8254     break;
8255   case FK_WideStringIntoCharArray:
8256     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8257     break;
8258   case FK_IncompatWideStringIntoWideChar:
8259     S.Diag(Kind.getLocation(),
8260            diag::err_array_init_incompat_wide_string_into_wchar);
8261     break;
8262   case FK_PlainStringIntoUTF8Char:
8263     S.Diag(Kind.getLocation(),
8264            diag::err_array_init_plain_string_into_char8_t);
8265     S.Diag(Args.front()->getBeginLoc(),
8266            diag::note_array_init_plain_string_into_char8_t)
8267         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8268     break;
8269   case FK_UTF8StringIntoPlainChar:
8270     S.Diag(Kind.getLocation(),
8271            diag::err_array_init_utf8_string_into_char);
8272     break;
8273   case FK_ArrayTypeMismatch:
8274   case FK_NonConstantArrayInit:
8275     S.Diag(Kind.getLocation(),
8276            (Failure == FK_ArrayTypeMismatch
8277               ? diag::err_array_init_different_type
8278               : diag::err_array_init_non_constant_array))
8279       << DestType.getNonReferenceType()
8280       << OnlyArg->getType()
8281       << Args[0]->getSourceRange();
8282     break;
8283 
8284   case FK_VariableLengthArrayHasInitializer:
8285     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8286       << Args[0]->getSourceRange();
8287     break;
8288 
8289   case FK_AddressOfOverloadFailed: {
8290     DeclAccessPair Found;
8291     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8292                                          DestType.getNonReferenceType(),
8293                                          true,
8294                                          Found);
8295     break;
8296   }
8297 
8298   case FK_AddressOfUnaddressableFunction: {
8299     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8300     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8301                                         OnlyArg->getBeginLoc());
8302     break;
8303   }
8304 
8305   case FK_ReferenceInitOverloadFailed:
8306   case FK_UserConversionOverloadFailed:
8307     switch (FailedOverloadResult) {
8308     case OR_Ambiguous:
8309       if (Failure == FK_UserConversionOverloadFailed)
8310         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8311           << OnlyArg->getType() << DestType
8312           << Args[0]->getSourceRange();
8313       else
8314         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8315           << DestType << OnlyArg->getType()
8316           << Args[0]->getSourceRange();
8317 
8318       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8319       break;
8320 
8321     case OR_No_Viable_Function:
8322       if (!S.RequireCompleteType(Kind.getLocation(),
8323                                  DestType.getNonReferenceType(),
8324                           diag::err_typecheck_nonviable_condition_incomplete,
8325                                OnlyArg->getType(), Args[0]->getSourceRange()))
8326         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8327           << (Entity.getKind() == InitializedEntity::EK_Result)
8328           << OnlyArg->getType() << Args[0]->getSourceRange()
8329           << DestType.getNonReferenceType();
8330 
8331       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8332       break;
8333 
8334     case OR_Deleted: {
8335       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8336         << OnlyArg->getType() << DestType.getNonReferenceType()
8337         << Args[0]->getSourceRange();
8338       OverloadCandidateSet::iterator Best;
8339       OverloadingResult Ovl
8340         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8341       if (Ovl == OR_Deleted) {
8342         S.NoteDeletedFunction(Best->Function);
8343       } else {
8344         llvm_unreachable("Inconsistent overload resolution?");
8345       }
8346       break;
8347     }
8348 
8349     case OR_Success:
8350       llvm_unreachable("Conversion did not fail!");
8351     }
8352     break;
8353 
8354   case FK_NonConstLValueReferenceBindingToTemporary:
8355     if (isa<InitListExpr>(Args[0])) {
8356       S.Diag(Kind.getLocation(),
8357              diag::err_lvalue_reference_bind_to_initlist)
8358       << DestType.getNonReferenceType().isVolatileQualified()
8359       << DestType.getNonReferenceType()
8360       << Args[0]->getSourceRange();
8361       break;
8362     }
8363     LLVM_FALLTHROUGH;
8364 
8365   case FK_NonConstLValueReferenceBindingToUnrelated:
8366     S.Diag(Kind.getLocation(),
8367            Failure == FK_NonConstLValueReferenceBindingToTemporary
8368              ? diag::err_lvalue_reference_bind_to_temporary
8369              : diag::err_lvalue_reference_bind_to_unrelated)
8370       << DestType.getNonReferenceType().isVolatileQualified()
8371       << DestType.getNonReferenceType()
8372       << OnlyArg->getType()
8373       << Args[0]->getSourceRange();
8374     break;
8375 
8376   case FK_NonConstLValueReferenceBindingToBitfield: {
8377     // We don't necessarily have an unambiguous source bit-field.
8378     FieldDecl *BitField = Args[0]->getSourceBitField();
8379     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8380       << DestType.isVolatileQualified()
8381       << (BitField ? BitField->getDeclName() : DeclarationName())
8382       << (BitField != nullptr)
8383       << Args[0]->getSourceRange();
8384     if (BitField)
8385       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8386     break;
8387   }
8388 
8389   case FK_NonConstLValueReferenceBindingToVectorElement:
8390     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8391       << DestType.isVolatileQualified()
8392       << Args[0]->getSourceRange();
8393     break;
8394 
8395   case FK_RValueReferenceBindingToLValue:
8396     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8397       << DestType.getNonReferenceType() << OnlyArg->getType()
8398       << Args[0]->getSourceRange();
8399     break;
8400 
8401   case FK_ReferenceInitDropsQualifiers: {
8402     QualType SourceType = OnlyArg->getType();
8403     QualType NonRefType = DestType.getNonReferenceType();
8404     Qualifiers DroppedQualifiers =
8405         SourceType.getQualifiers() - NonRefType.getQualifiers();
8406 
8407     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8408       << SourceType
8409       << NonRefType
8410       << DroppedQualifiers.getCVRQualifiers()
8411       << Args[0]->getSourceRange();
8412     break;
8413   }
8414 
8415   case FK_ReferenceInitFailed:
8416     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8417       << DestType.getNonReferenceType()
8418       << OnlyArg->isLValue()
8419       << OnlyArg->getType()
8420       << Args[0]->getSourceRange();
8421     emitBadConversionNotes(S, Entity, Args[0]);
8422     break;
8423 
8424   case FK_ConversionFailed: {
8425     QualType FromType = OnlyArg->getType();
8426     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8427       << (int)Entity.getKind()
8428       << DestType
8429       << OnlyArg->isLValue()
8430       << FromType
8431       << Args[0]->getSourceRange();
8432     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8433     S.Diag(Kind.getLocation(), PDiag);
8434     emitBadConversionNotes(S, Entity, Args[0]);
8435     break;
8436   }
8437 
8438   case FK_ConversionFromPropertyFailed:
8439     // No-op. This error has already been reported.
8440     break;
8441 
8442   case FK_TooManyInitsForScalar: {
8443     SourceRange R;
8444 
8445     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8446     if (InitList && InitList->getNumInits() >= 1) {
8447       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8448     } else {
8449       assert(Args.size() > 1 && "Expected multiple initializers!");
8450       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8451     }
8452 
8453     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8454     if (Kind.isCStyleOrFunctionalCast())
8455       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8456         << R;
8457     else
8458       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8459         << /*scalar=*/2 << R;
8460     break;
8461   }
8462 
8463   case FK_ParenthesizedListInitForScalar:
8464     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8465       << 0 << Entity.getType() << Args[0]->getSourceRange();
8466     break;
8467 
8468   case FK_ReferenceBindingToInitList:
8469     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8470       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8471     break;
8472 
8473   case FK_InitListBadDestinationType:
8474     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8475       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8476     break;
8477 
8478   case FK_ListConstructorOverloadFailed:
8479   case FK_ConstructorOverloadFailed: {
8480     SourceRange ArgsRange;
8481     if (Args.size())
8482       ArgsRange =
8483           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8484 
8485     if (Failure == FK_ListConstructorOverloadFailed) {
8486       assert(Args.size() == 1 &&
8487              "List construction from other than 1 argument.");
8488       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8489       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8490     }
8491 
8492     // FIXME: Using "DestType" for the entity we're printing is probably
8493     // bad.
8494     switch (FailedOverloadResult) {
8495       case OR_Ambiguous:
8496         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8497           << DestType << ArgsRange;
8498         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8499         break;
8500 
8501       case OR_No_Viable_Function:
8502         if (Kind.getKind() == InitializationKind::IK_Default &&
8503             (Entity.getKind() == InitializedEntity::EK_Base ||
8504              Entity.getKind() == InitializedEntity::EK_Member) &&
8505             isa<CXXConstructorDecl>(S.CurContext)) {
8506           // This is implicit default initialization of a member or
8507           // base within a constructor. If no viable function was
8508           // found, notify the user that they need to explicitly
8509           // initialize this base/member.
8510           CXXConstructorDecl *Constructor
8511             = cast<CXXConstructorDecl>(S.CurContext);
8512           const CXXRecordDecl *InheritedFrom = nullptr;
8513           if (auto Inherited = Constructor->getInheritedConstructor())
8514             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8515           if (Entity.getKind() == InitializedEntity::EK_Base) {
8516             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8517               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8518               << S.Context.getTypeDeclType(Constructor->getParent())
8519               << /*base=*/0
8520               << Entity.getType()
8521               << InheritedFrom;
8522 
8523             RecordDecl *BaseDecl
8524               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8525                                                                   ->getDecl();
8526             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8527               << S.Context.getTagDeclType(BaseDecl);
8528           } else {
8529             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8530               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8531               << S.Context.getTypeDeclType(Constructor->getParent())
8532               << /*member=*/1
8533               << Entity.getName()
8534               << InheritedFrom;
8535             S.Diag(Entity.getDecl()->getLocation(),
8536                    diag::note_member_declared_at);
8537 
8538             if (const RecordType *Record
8539                                  = Entity.getType()->getAs<RecordType>())
8540               S.Diag(Record->getDecl()->getLocation(),
8541                      diag::note_previous_decl)
8542                 << S.Context.getTagDeclType(Record->getDecl());
8543           }
8544           break;
8545         }
8546 
8547         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8548           << DestType << ArgsRange;
8549         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8550         break;
8551 
8552       case OR_Deleted: {
8553         OverloadCandidateSet::iterator Best;
8554         OverloadingResult Ovl
8555           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8556         if (Ovl != OR_Deleted) {
8557           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8558             << true << DestType << ArgsRange;
8559           llvm_unreachable("Inconsistent overload resolution?");
8560           break;
8561         }
8562 
8563         // If this is a defaulted or implicitly-declared function, then
8564         // it was implicitly deleted. Make it clear that the deletion was
8565         // implicit.
8566         if (S.isImplicitlyDeleted(Best->Function))
8567           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8568             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8569             << DestType << ArgsRange;
8570         else
8571           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8572             << true << DestType << ArgsRange;
8573 
8574         S.NoteDeletedFunction(Best->Function);
8575         break;
8576       }
8577 
8578       case OR_Success:
8579         llvm_unreachable("Conversion did not fail!");
8580     }
8581   }
8582   break;
8583 
8584   case FK_DefaultInitOfConst:
8585     if (Entity.getKind() == InitializedEntity::EK_Member &&
8586         isa<CXXConstructorDecl>(S.CurContext)) {
8587       // This is implicit default-initialization of a const member in
8588       // a constructor. Complain that it needs to be explicitly
8589       // initialized.
8590       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8591       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8592         << (Constructor->getInheritedConstructor() ? 2 :
8593             Constructor->isImplicit() ? 1 : 0)
8594         << S.Context.getTypeDeclType(Constructor->getParent())
8595         << /*const=*/1
8596         << Entity.getName();
8597       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8598         << Entity.getName();
8599     } else {
8600       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8601           << DestType << (bool)DestType->getAs<RecordType>();
8602     }
8603     break;
8604 
8605   case FK_Incomplete:
8606     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8607                           diag::err_init_incomplete_type);
8608     break;
8609 
8610   case FK_ListInitializationFailed: {
8611     // Run the init list checker again to emit diagnostics.
8612     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8613     diagnoseListInit(S, Entity, InitList);
8614     break;
8615   }
8616 
8617   case FK_PlaceholderType: {
8618     // FIXME: Already diagnosed!
8619     break;
8620   }
8621 
8622   case FK_ExplicitConstructor: {
8623     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8624       << Args[0]->getSourceRange();
8625     OverloadCandidateSet::iterator Best;
8626     OverloadingResult Ovl
8627       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8628     (void)Ovl;
8629     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8630     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8631     S.Diag(CtorDecl->getLocation(),
8632            diag::note_explicit_ctor_deduction_guide_here) << false;
8633     break;
8634   }
8635   }
8636 
8637   PrintInitLocationNote(S, Entity);
8638   return true;
8639 }
8640 
8641 void InitializationSequence::dump(raw_ostream &OS) const {
8642   switch (SequenceKind) {
8643   case FailedSequence: {
8644     OS << "Failed sequence: ";
8645     switch (Failure) {
8646     case FK_TooManyInitsForReference:
8647       OS << "too many initializers for reference";
8648       break;
8649 
8650     case FK_ParenthesizedListInitForReference:
8651       OS << "parenthesized list init for reference";
8652       break;
8653 
8654     case FK_ArrayNeedsInitList:
8655       OS << "array requires initializer list";
8656       break;
8657 
8658     case FK_AddressOfUnaddressableFunction:
8659       OS << "address of unaddressable function was taken";
8660       break;
8661 
8662     case FK_ArrayNeedsInitListOrStringLiteral:
8663       OS << "array requires initializer list or string literal";
8664       break;
8665 
8666     case FK_ArrayNeedsInitListOrWideStringLiteral:
8667       OS << "array requires initializer list or wide string literal";
8668       break;
8669 
8670     case FK_NarrowStringIntoWideCharArray:
8671       OS << "narrow string into wide char array";
8672       break;
8673 
8674     case FK_WideStringIntoCharArray:
8675       OS << "wide string into char array";
8676       break;
8677 
8678     case FK_IncompatWideStringIntoWideChar:
8679       OS << "incompatible wide string into wide char array";
8680       break;
8681 
8682     case FK_PlainStringIntoUTF8Char:
8683       OS << "plain string literal into char8_t array";
8684       break;
8685 
8686     case FK_UTF8StringIntoPlainChar:
8687       OS << "u8 string literal into char array";
8688       break;
8689 
8690     case FK_ArrayTypeMismatch:
8691       OS << "array type mismatch";
8692       break;
8693 
8694     case FK_NonConstantArrayInit:
8695       OS << "non-constant array initializer";
8696       break;
8697 
8698     case FK_AddressOfOverloadFailed:
8699       OS << "address of overloaded function failed";
8700       break;
8701 
8702     case FK_ReferenceInitOverloadFailed:
8703       OS << "overload resolution for reference initialization failed";
8704       break;
8705 
8706     case FK_NonConstLValueReferenceBindingToTemporary:
8707       OS << "non-const lvalue reference bound to temporary";
8708       break;
8709 
8710     case FK_NonConstLValueReferenceBindingToBitfield:
8711       OS << "non-const lvalue reference bound to bit-field";
8712       break;
8713 
8714     case FK_NonConstLValueReferenceBindingToVectorElement:
8715       OS << "non-const lvalue reference bound to vector element";
8716       break;
8717 
8718     case FK_NonConstLValueReferenceBindingToUnrelated:
8719       OS << "non-const lvalue reference bound to unrelated type";
8720       break;
8721 
8722     case FK_RValueReferenceBindingToLValue:
8723       OS << "rvalue reference bound to an lvalue";
8724       break;
8725 
8726     case FK_ReferenceInitDropsQualifiers:
8727       OS << "reference initialization drops qualifiers";
8728       break;
8729 
8730     case FK_ReferenceInitFailed:
8731       OS << "reference initialization failed";
8732       break;
8733 
8734     case FK_ConversionFailed:
8735       OS << "conversion failed";
8736       break;
8737 
8738     case FK_ConversionFromPropertyFailed:
8739       OS << "conversion from property failed";
8740       break;
8741 
8742     case FK_TooManyInitsForScalar:
8743       OS << "too many initializers for scalar";
8744       break;
8745 
8746     case FK_ParenthesizedListInitForScalar:
8747       OS << "parenthesized list init for reference";
8748       break;
8749 
8750     case FK_ReferenceBindingToInitList:
8751       OS << "referencing binding to initializer list";
8752       break;
8753 
8754     case FK_InitListBadDestinationType:
8755       OS << "initializer list for non-aggregate, non-scalar type";
8756       break;
8757 
8758     case FK_UserConversionOverloadFailed:
8759       OS << "overloading failed for user-defined conversion";
8760       break;
8761 
8762     case FK_ConstructorOverloadFailed:
8763       OS << "constructor overloading failed";
8764       break;
8765 
8766     case FK_DefaultInitOfConst:
8767       OS << "default initialization of a const variable";
8768       break;
8769 
8770     case FK_Incomplete:
8771       OS << "initialization of incomplete type";
8772       break;
8773 
8774     case FK_ListInitializationFailed:
8775       OS << "list initialization checker failure";
8776       break;
8777 
8778     case FK_VariableLengthArrayHasInitializer:
8779       OS << "variable length array has an initializer";
8780       break;
8781 
8782     case FK_PlaceholderType:
8783       OS << "initializer expression isn't contextually valid";
8784       break;
8785 
8786     case FK_ListConstructorOverloadFailed:
8787       OS << "list constructor overloading failed";
8788       break;
8789 
8790     case FK_ExplicitConstructor:
8791       OS << "list copy initialization chose explicit constructor";
8792       break;
8793     }
8794     OS << '\n';
8795     return;
8796   }
8797 
8798   case DependentSequence:
8799     OS << "Dependent sequence\n";
8800     return;
8801 
8802   case NormalSequence:
8803     OS << "Normal sequence: ";
8804     break;
8805   }
8806 
8807   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8808     if (S != step_begin()) {
8809       OS << " -> ";
8810     }
8811 
8812     switch (S->Kind) {
8813     case SK_ResolveAddressOfOverloadedFunction:
8814       OS << "resolve address of overloaded function";
8815       break;
8816 
8817     case SK_CastDerivedToBaseRValue:
8818       OS << "derived-to-base (rvalue)";
8819       break;
8820 
8821     case SK_CastDerivedToBaseXValue:
8822       OS << "derived-to-base (xvalue)";
8823       break;
8824 
8825     case SK_CastDerivedToBaseLValue:
8826       OS << "derived-to-base (lvalue)";
8827       break;
8828 
8829     case SK_BindReference:
8830       OS << "bind reference to lvalue";
8831       break;
8832 
8833     case SK_BindReferenceToTemporary:
8834       OS << "bind reference to a temporary";
8835       break;
8836 
8837     case SK_FinalCopy:
8838       OS << "final copy in class direct-initialization";
8839       break;
8840 
8841     case SK_ExtraneousCopyToTemporary:
8842       OS << "extraneous C++03 copy to temporary";
8843       break;
8844 
8845     case SK_UserConversion:
8846       OS << "user-defined conversion via " << *S->Function.Function;
8847       break;
8848 
8849     case SK_QualificationConversionRValue:
8850       OS << "qualification conversion (rvalue)";
8851       break;
8852 
8853     case SK_QualificationConversionXValue:
8854       OS << "qualification conversion (xvalue)";
8855       break;
8856 
8857     case SK_QualificationConversionLValue:
8858       OS << "qualification conversion (lvalue)";
8859       break;
8860 
8861     case SK_AtomicConversion:
8862       OS << "non-atomic-to-atomic conversion";
8863       break;
8864 
8865     case SK_LValueToRValue:
8866       OS << "load (lvalue to rvalue)";
8867       break;
8868 
8869     case SK_ConversionSequence:
8870       OS << "implicit conversion sequence (";
8871       S->ICS->dump(); // FIXME: use OS
8872       OS << ")";
8873       break;
8874 
8875     case SK_ConversionSequenceNoNarrowing:
8876       OS << "implicit conversion sequence with narrowing prohibited (";
8877       S->ICS->dump(); // FIXME: use OS
8878       OS << ")";
8879       break;
8880 
8881     case SK_ListInitialization:
8882       OS << "list aggregate initialization";
8883       break;
8884 
8885     case SK_UnwrapInitList:
8886       OS << "unwrap reference initializer list";
8887       break;
8888 
8889     case SK_RewrapInitList:
8890       OS << "rewrap reference initializer list";
8891       break;
8892 
8893     case SK_ConstructorInitialization:
8894       OS << "constructor initialization";
8895       break;
8896 
8897     case SK_ConstructorInitializationFromList:
8898       OS << "list initialization via constructor";
8899       break;
8900 
8901     case SK_ZeroInitialization:
8902       OS << "zero initialization";
8903       break;
8904 
8905     case SK_CAssignment:
8906       OS << "C assignment";
8907       break;
8908 
8909     case SK_StringInit:
8910       OS << "string initialization";
8911       break;
8912 
8913     case SK_ObjCObjectConversion:
8914       OS << "Objective-C object conversion";
8915       break;
8916 
8917     case SK_ArrayLoopIndex:
8918       OS << "indexing for array initialization loop";
8919       break;
8920 
8921     case SK_ArrayLoopInit:
8922       OS << "array initialization loop";
8923       break;
8924 
8925     case SK_ArrayInit:
8926       OS << "array initialization";
8927       break;
8928 
8929     case SK_GNUArrayInit:
8930       OS << "array initialization (GNU extension)";
8931       break;
8932 
8933     case SK_ParenthesizedArrayInit:
8934       OS << "parenthesized array initialization";
8935       break;
8936 
8937     case SK_PassByIndirectCopyRestore:
8938       OS << "pass by indirect copy and restore";
8939       break;
8940 
8941     case SK_PassByIndirectRestore:
8942       OS << "pass by indirect restore";
8943       break;
8944 
8945     case SK_ProduceObjCObject:
8946       OS << "Objective-C object retension";
8947       break;
8948 
8949     case SK_StdInitializerList:
8950       OS << "std::initializer_list from initializer list";
8951       break;
8952 
8953     case SK_StdInitializerListConstructorCall:
8954       OS << "list initialization from std::initializer_list";
8955       break;
8956 
8957     case SK_OCLSamplerInit:
8958       OS << "OpenCL sampler_t from integer constant";
8959       break;
8960 
8961     case SK_OCLZeroOpaqueType:
8962       OS << "OpenCL opaque type from zero";
8963       break;
8964     }
8965 
8966     OS << " [" << S->Type.getAsString() << ']';
8967   }
8968 
8969   OS << '\n';
8970 }
8971 
8972 void InitializationSequence::dump() const {
8973   dump(llvm::errs());
8974 }
8975 
8976 static bool NarrowingErrs(const LangOptions &L) {
8977   return L.CPlusPlus11 &&
8978          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
8979 }
8980 
8981 static void DiagnoseNarrowingInInitList(Sema &S,
8982                                         const ImplicitConversionSequence &ICS,
8983                                         QualType PreNarrowingType,
8984                                         QualType EntityType,
8985                                         const Expr *PostInit) {
8986   const StandardConversionSequence *SCS = nullptr;
8987   switch (ICS.getKind()) {
8988   case ImplicitConversionSequence::StandardConversion:
8989     SCS = &ICS.Standard;
8990     break;
8991   case ImplicitConversionSequence::UserDefinedConversion:
8992     SCS = &ICS.UserDefined.After;
8993     break;
8994   case ImplicitConversionSequence::AmbiguousConversion:
8995   case ImplicitConversionSequence::EllipsisConversion:
8996   case ImplicitConversionSequence::BadConversion:
8997     return;
8998   }
8999 
9000   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9001   APValue ConstantValue;
9002   QualType ConstantType;
9003   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9004                                 ConstantType)) {
9005   case NK_Not_Narrowing:
9006   case NK_Dependent_Narrowing:
9007     // No narrowing occurred.
9008     return;
9009 
9010   case NK_Type_Narrowing:
9011     // This was a floating-to-integer conversion, which is always considered a
9012     // narrowing conversion even if the value is a constant and can be
9013     // represented exactly as an integer.
9014     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9015                                         ? diag::ext_init_list_type_narrowing
9016                                         : diag::warn_init_list_type_narrowing)
9017         << PostInit->getSourceRange()
9018         << PreNarrowingType.getLocalUnqualifiedType()
9019         << EntityType.getLocalUnqualifiedType();
9020     break;
9021 
9022   case NK_Constant_Narrowing:
9023     // A constant value was narrowed.
9024     S.Diag(PostInit->getBeginLoc(),
9025            NarrowingErrs(S.getLangOpts())
9026                ? diag::ext_init_list_constant_narrowing
9027                : diag::warn_init_list_constant_narrowing)
9028         << PostInit->getSourceRange()
9029         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9030         << EntityType.getLocalUnqualifiedType();
9031     break;
9032 
9033   case NK_Variable_Narrowing:
9034     // A variable's value may have been narrowed.
9035     S.Diag(PostInit->getBeginLoc(),
9036            NarrowingErrs(S.getLangOpts())
9037                ? diag::ext_init_list_variable_narrowing
9038                : diag::warn_init_list_variable_narrowing)
9039         << PostInit->getSourceRange()
9040         << PreNarrowingType.getLocalUnqualifiedType()
9041         << EntityType.getLocalUnqualifiedType();
9042     break;
9043   }
9044 
9045   SmallString<128> StaticCast;
9046   llvm::raw_svector_ostream OS(StaticCast);
9047   OS << "static_cast<";
9048   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9049     // It's important to use the typedef's name if there is one so that the
9050     // fixit doesn't break code using types like int64_t.
9051     //
9052     // FIXME: This will break if the typedef requires qualification.  But
9053     // getQualifiedNameAsString() includes non-machine-parsable components.
9054     OS << *TT->getDecl();
9055   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9056     OS << BT->getName(S.getLangOpts());
9057   else {
9058     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9059     // with a broken cast.
9060     return;
9061   }
9062   OS << ">(";
9063   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9064       << PostInit->getSourceRange()
9065       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9066       << FixItHint::CreateInsertion(
9067              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9068 }
9069 
9070 //===----------------------------------------------------------------------===//
9071 // Initialization helper functions
9072 //===----------------------------------------------------------------------===//
9073 bool
9074 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9075                                    ExprResult Init) {
9076   if (Init.isInvalid())
9077     return false;
9078 
9079   Expr *InitE = Init.get();
9080   assert(InitE && "No initialization expression");
9081 
9082   InitializationKind Kind =
9083       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9084   InitializationSequence Seq(*this, Entity, Kind, InitE);
9085   return !Seq.Failed();
9086 }
9087 
9088 ExprResult
9089 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9090                                 SourceLocation EqualLoc,
9091                                 ExprResult Init,
9092                                 bool TopLevelOfInitList,
9093                                 bool AllowExplicit) {
9094   if (Init.isInvalid())
9095     return ExprError();
9096 
9097   Expr *InitE = Init.get();
9098   assert(InitE && "No initialization expression?");
9099 
9100   if (EqualLoc.isInvalid())
9101     EqualLoc = InitE->getBeginLoc();
9102 
9103   InitializationKind Kind = InitializationKind::CreateCopy(
9104       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9105   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9106 
9107   // Prevent infinite recursion when performing parameter copy-initialization.
9108   const bool ShouldTrackCopy =
9109       Entity.isParameterKind() && Seq.isConstructorInitialization();
9110   if (ShouldTrackCopy) {
9111     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9112         CurrentParameterCopyTypes.end()) {
9113       Seq.SetOverloadFailure(
9114           InitializationSequence::FK_ConstructorOverloadFailed,
9115           OR_No_Viable_Function);
9116 
9117       // Try to give a meaningful diagnostic note for the problematic
9118       // constructor.
9119       const auto LastStep = Seq.step_end() - 1;
9120       assert(LastStep->Kind ==
9121              InitializationSequence::SK_ConstructorInitialization);
9122       const FunctionDecl *Function = LastStep->Function.Function;
9123       auto Candidate =
9124           llvm::find_if(Seq.getFailedCandidateSet(),
9125                         [Function](const OverloadCandidate &Candidate) -> bool {
9126                           return Candidate.Viable &&
9127                                  Candidate.Function == Function &&
9128                                  Candidate.Conversions.size() > 0;
9129                         });
9130       if (Candidate != Seq.getFailedCandidateSet().end() &&
9131           Function->getNumParams() > 0) {
9132         Candidate->Viable = false;
9133         Candidate->FailureKind = ovl_fail_bad_conversion;
9134         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9135                                          InitE,
9136                                          Function->getParamDecl(0)->getType());
9137       }
9138     }
9139     CurrentParameterCopyTypes.push_back(Entity.getType());
9140   }
9141 
9142   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9143 
9144   if (ShouldTrackCopy)
9145     CurrentParameterCopyTypes.pop_back();
9146 
9147   return Result;
9148 }
9149 
9150 /// Determine whether RD is, or is derived from, a specialization of CTD.
9151 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9152                                               ClassTemplateDecl *CTD) {
9153   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9154     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9155     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9156   };
9157   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9158 }
9159 
9160 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9161     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9162     const InitializationKind &Kind, MultiExprArg Inits) {
9163   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9164       TSInfo->getType()->getContainedDeducedType());
9165   assert(DeducedTST && "not a deduced template specialization type");
9166 
9167   auto TemplateName = DeducedTST->getTemplateName();
9168   if (TemplateName.isDependent())
9169     return Context.DependentTy;
9170 
9171   // We can only perform deduction for class templates.
9172   auto *Template =
9173       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9174   if (!Template) {
9175     Diag(Kind.getLocation(),
9176          diag::err_deduced_non_class_template_specialization_type)
9177       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9178     if (auto *TD = TemplateName.getAsTemplateDecl())
9179       Diag(TD->getLocation(), diag::note_template_decl_here);
9180     return QualType();
9181   }
9182 
9183   // Can't deduce from dependent arguments.
9184   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9185     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9186          diag::warn_cxx14_compat_class_template_argument_deduction)
9187         << TSInfo->getTypeLoc().getSourceRange() << 0;
9188     return Context.DependentTy;
9189   }
9190 
9191   // FIXME: Perform "exact type" matching first, per CWG discussion?
9192   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9193 
9194   // FIXME: Do we need/want a std::initializer_list<T> special case?
9195 
9196   // Look up deduction guides, including those synthesized from constructors.
9197   //
9198   // C++1z [over.match.class.deduct]p1:
9199   //   A set of functions and function templates is formed comprising:
9200   //   - For each constructor of the class template designated by the
9201   //     template-name, a function template [...]
9202   //  - For each deduction-guide, a function or function template [...]
9203   DeclarationNameInfo NameInfo(
9204       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9205       TSInfo->getTypeLoc().getEndLoc());
9206   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9207   LookupQualifiedName(Guides, Template->getDeclContext());
9208 
9209   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9210   // clear on this, but they're not found by name so access does not apply.
9211   Guides.suppressDiagnostics();
9212 
9213   // Figure out if this is list-initialization.
9214   InitListExpr *ListInit =
9215       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9216           ? dyn_cast<InitListExpr>(Inits[0])
9217           : nullptr;
9218 
9219   // C++1z [over.match.class.deduct]p1:
9220   //   Initialization and overload resolution are performed as described in
9221   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9222   //   (as appropriate for the type of initialization performed) for an object
9223   //   of a hypothetical class type, where the selected functions and function
9224   //   templates are considered to be the constructors of that class type
9225   //
9226   // Since we know we're initializing a class type of a type unrelated to that
9227   // of the initializer, this reduces to something fairly reasonable.
9228   OverloadCandidateSet Candidates(Kind.getLocation(),
9229                                   OverloadCandidateSet::CSK_Normal);
9230   OverloadCandidateSet::iterator Best;
9231   auto tryToResolveOverload =
9232       [&](bool OnlyListConstructors) -> OverloadingResult {
9233     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9234     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9235       NamedDecl *D = (*I)->getUnderlyingDecl();
9236       if (D->isInvalidDecl())
9237         continue;
9238 
9239       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9240       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9241           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9242       if (!GD)
9243         continue;
9244 
9245       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9246       //   For copy-initialization, the candidate functions are all the
9247       //   converting constructors (12.3.1) of that class.
9248       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9249       //   The converting constructors of T are candidate functions.
9250       if (Kind.isCopyInit() && !ListInit) {
9251         // Only consider converting constructors.
9252         if (GD->isExplicit())
9253           continue;
9254 
9255         // When looking for a converting constructor, deduction guides that
9256         // could never be called with one argument are not interesting to
9257         // check or note.
9258         if (GD->getMinRequiredArguments() > 1 ||
9259             (GD->getNumParams() == 0 && !GD->isVariadic()))
9260           continue;
9261       }
9262 
9263       // C++ [over.match.list]p1.1: (first phase list initialization)
9264       //   Initially, the candidate functions are the initializer-list
9265       //   constructors of the class T
9266       if (OnlyListConstructors && !isInitListConstructor(GD))
9267         continue;
9268 
9269       // C++ [over.match.list]p1.2: (second phase list initialization)
9270       //   the candidate functions are all the constructors of the class T
9271       // C++ [over.match.ctor]p1: (all other cases)
9272       //   the candidate functions are all the constructors of the class of
9273       //   the object being initialized
9274 
9275       // C++ [over.best.ics]p4:
9276       //   When [...] the constructor [...] is a candidate by
9277       //    - [over.match.copy] (in all cases)
9278       // FIXME: The "second phase of [over.match.list] case can also
9279       // theoretically happen here, but it's not clear whether we can
9280       // ever have a parameter of the right type.
9281       bool SuppressUserConversions = Kind.isCopyInit();
9282 
9283       if (TD)
9284         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9285                                      Inits, Candidates,
9286                                      SuppressUserConversions);
9287       else
9288         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9289                              SuppressUserConversions);
9290     }
9291     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9292   };
9293 
9294   OverloadingResult Result = OR_No_Viable_Function;
9295 
9296   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9297   // try initializer-list constructors.
9298   if (ListInit) {
9299     bool TryListConstructors = true;
9300 
9301     // Try list constructors unless the list is empty and the class has one or
9302     // more default constructors, in which case those constructors win.
9303     if (!ListInit->getNumInits()) {
9304       for (NamedDecl *D : Guides) {
9305         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9306         if (FD && FD->getMinRequiredArguments() == 0) {
9307           TryListConstructors = false;
9308           break;
9309         }
9310       }
9311     } else if (ListInit->getNumInits() == 1) {
9312       // C++ [over.match.class.deduct]:
9313       //   As an exception, the first phase in [over.match.list] (considering
9314       //   initializer-list constructors) is omitted if the initializer list
9315       //   consists of a single expression of type cv U, where U is a
9316       //   specialization of C or a class derived from a specialization of C.
9317       Expr *E = ListInit->getInit(0);
9318       auto *RD = E->getType()->getAsCXXRecordDecl();
9319       if (!isa<InitListExpr>(E) && RD &&
9320           isCompleteType(Kind.getLocation(), E->getType()) &&
9321           isOrIsDerivedFromSpecializationOf(RD, Template))
9322         TryListConstructors = false;
9323     }
9324 
9325     if (TryListConstructors)
9326       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9327     // Then unwrap the initializer list and try again considering all
9328     // constructors.
9329     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9330   }
9331 
9332   // If list-initialization fails, or if we're doing any other kind of
9333   // initialization, we (eventually) consider constructors.
9334   if (Result == OR_No_Viable_Function)
9335     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9336 
9337   switch (Result) {
9338   case OR_Ambiguous:
9339     Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9340       << TemplateName;
9341     // FIXME: For list-initialization candidates, it'd usually be better to
9342     // list why they were not viable when given the initializer list itself as
9343     // an argument.
9344     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9345     return QualType();
9346 
9347   case OR_No_Viable_Function: {
9348     CXXRecordDecl *Primary =
9349         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9350     bool Complete =
9351         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9352     Diag(Kind.getLocation(),
9353          Complete ? diag::err_deduced_class_template_ctor_no_viable
9354                   : diag::err_deduced_class_template_incomplete)
9355       << TemplateName << !Guides.empty();
9356     Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9357     return QualType();
9358   }
9359 
9360   case OR_Deleted: {
9361     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9362       << TemplateName;
9363     NoteDeletedFunction(Best->Function);
9364     return QualType();
9365   }
9366 
9367   case OR_Success:
9368     // C++ [over.match.list]p1:
9369     //   In copy-list-initialization, if an explicit constructor is chosen, the
9370     //   initialization is ill-formed.
9371     if (Kind.isCopyInit() && ListInit &&
9372         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9373       bool IsDeductionGuide = !Best->Function->isImplicit();
9374       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9375           << TemplateName << IsDeductionGuide;
9376       Diag(Best->Function->getLocation(),
9377            diag::note_explicit_ctor_deduction_guide_here)
9378           << IsDeductionGuide;
9379       return QualType();
9380     }
9381 
9382     // Make sure we didn't select an unusable deduction guide, and mark it
9383     // as referenced.
9384     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9385     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9386     break;
9387   }
9388 
9389   // C++ [dcl.type.class.deduct]p1:
9390   //  The placeholder is replaced by the return type of the function selected
9391   //  by overload resolution for class template deduction.
9392   QualType DeducedType =
9393       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9394   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9395        diag::warn_cxx14_compat_class_template_argument_deduction)
9396       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9397   return DeducedType;
9398 }
9399