1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/SemaInternal.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 32 //===----------------------------------------------------------------------===// 33 // Sema Initialization Checking 34 //===----------------------------------------------------------------------===// 35 36 /// Check whether T is compatible with a wide character type (wchar_t, 37 /// char16_t or char32_t). 38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 39 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 40 return true; 41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 42 return Context.typesAreCompatible(Context.Char16Ty, T) || 43 Context.typesAreCompatible(Context.Char32Ty, T); 44 } 45 return false; 46 } 47 48 enum StringInitFailureKind { 49 SIF_None, 50 SIF_NarrowStringIntoWideChar, 51 SIF_WideStringIntoChar, 52 SIF_IncompatWideStringIntoWideChar, 53 SIF_UTF8StringIntoPlainChar, 54 SIF_PlainStringIntoUTF8Char, 55 SIF_Other 56 }; 57 58 /// Check whether the array of type AT can be initialized by the Init 59 /// expression by means of string initialization. Returns SIF_None if so, 60 /// otherwise returns a StringInitFailureKind that describes why the 61 /// initialization would not work. 62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 63 ASTContext &Context) { 64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 65 return SIF_Other; 66 67 // See if this is a string literal or @encode. 68 Init = Init->IgnoreParens(); 69 70 // Handle @encode, which is a narrow string. 71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 72 return SIF_None; 73 74 // Otherwise we can only handle string literals. 75 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 76 if (!SL) 77 return SIF_Other; 78 79 const QualType ElemTy = 80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 81 82 switch (SL->getKind()) { 83 case StringLiteral::UTF8: 84 // char8_t array can be initialized with a UTF-8 string. 85 if (ElemTy->isChar8Type()) 86 return SIF_None; 87 LLVM_FALLTHROUGH; 88 case StringLiteral::Ascii: 89 // char array can be initialized with a narrow string. 90 // Only allow char x[] = "foo"; not char x[] = L"foo"; 91 if (ElemTy->isCharType()) 92 return (SL->getKind() == StringLiteral::UTF8 && 93 Context.getLangOpts().Char8) 94 ? SIF_UTF8StringIntoPlainChar 95 : SIF_None; 96 if (ElemTy->isChar8Type()) 97 return SIF_PlainStringIntoUTF8Char; 98 if (IsWideCharCompatible(ElemTy, Context)) 99 return SIF_NarrowStringIntoWideChar; 100 return SIF_Other; 101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 102 // "An array with element type compatible with a qualified or unqualified 103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 104 // string literal with the corresponding encoding prefix (L, u, or U, 105 // respectively), optionally enclosed in braces. 106 case StringLiteral::UTF16: 107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 108 return SIF_None; 109 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 110 return SIF_WideStringIntoChar; 111 if (IsWideCharCompatible(ElemTy, Context)) 112 return SIF_IncompatWideStringIntoWideChar; 113 return SIF_Other; 114 case StringLiteral::UTF32: 115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 116 return SIF_None; 117 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 118 return SIF_WideStringIntoChar; 119 if (IsWideCharCompatible(ElemTy, Context)) 120 return SIF_IncompatWideStringIntoWideChar; 121 return SIF_Other; 122 case StringLiteral::Wide: 123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 124 return SIF_None; 125 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 126 return SIF_WideStringIntoChar; 127 if (IsWideCharCompatible(ElemTy, Context)) 128 return SIF_IncompatWideStringIntoWideChar; 129 return SIF_Other; 130 } 131 132 llvm_unreachable("missed a StringLiteral kind?"); 133 } 134 135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 136 ASTContext &Context) { 137 const ArrayType *arrayType = Context.getAsArrayType(declType); 138 if (!arrayType) 139 return SIF_Other; 140 return IsStringInit(init, arrayType, Context); 141 } 142 143 /// Update the type of a string literal, including any surrounding parentheses, 144 /// to match the type of the object which it is initializing. 145 static void updateStringLiteralType(Expr *E, QualType Ty) { 146 while (true) { 147 E->setType(Ty); 148 E->setValueKind(VK_RValue); 149 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 150 break; 151 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 152 E = PE->getSubExpr(); 153 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 154 assert(UO->getOpcode() == UO_Extension); 155 E = UO->getSubExpr(); 156 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 157 E = GSE->getResultExpr(); 158 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 159 E = CE->getChosenSubExpr(); 160 } else { 161 llvm_unreachable("unexpected expr in string literal init"); 162 } 163 } 164 } 165 166 /// Fix a compound literal initializing an array so it's correctly marked 167 /// as an rvalue. 168 static void updateGNUCompoundLiteralRValue(Expr *E) { 169 while (true) { 170 E->setValueKind(VK_RValue); 171 if (isa<CompoundLiteralExpr>(E)) { 172 break; 173 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 174 E = PE->getSubExpr(); 175 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 176 assert(UO->getOpcode() == UO_Extension); 177 E = UO->getSubExpr(); 178 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 179 E = GSE->getResultExpr(); 180 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 181 E = CE->getChosenSubExpr(); 182 } else { 183 llvm_unreachable("unexpected expr in array compound literal init"); 184 } 185 } 186 } 187 188 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 189 Sema &S) { 190 // Get the length of the string as parsed. 191 auto *ConstantArrayTy = 192 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 193 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 194 195 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 196 // C99 6.7.8p14. We have an array of character type with unknown size 197 // being initialized to a string literal. 198 llvm::APInt ConstVal(32, StrLength); 199 // Return a new array type (C99 6.7.8p22). 200 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 201 ConstVal, nullptr, 202 ArrayType::Normal, 0); 203 updateStringLiteralType(Str, DeclT); 204 return; 205 } 206 207 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 208 209 // We have an array of character type with known size. However, 210 // the size may be smaller or larger than the string we are initializing. 211 // FIXME: Avoid truncation for 64-bit length strings. 212 if (S.getLangOpts().CPlusPlus) { 213 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 214 // For Pascal strings it's OK to strip off the terminating null character, 215 // so the example below is valid: 216 // 217 // unsigned char a[2] = "\pa"; 218 if (SL->isPascal()) 219 StrLength--; 220 } 221 222 // [dcl.init.string]p2 223 if (StrLength > CAT->getSize().getZExtValue()) 224 S.Diag(Str->getBeginLoc(), 225 diag::err_initializer_string_for_char_array_too_long) 226 << Str->getSourceRange(); 227 } else { 228 // C99 6.7.8p14. 229 if (StrLength-1 > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::ext_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } 234 235 // Set the type to the actual size that we are initializing. If we have 236 // something like: 237 // char x[1] = "foo"; 238 // then this will set the string literal's type to char[1]. 239 updateStringLiteralType(Str, DeclT); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Semantic checking for initializer lists. 244 //===----------------------------------------------------------------------===// 245 246 namespace { 247 248 /// Semantic checking for initializer lists. 249 /// 250 /// The InitListChecker class contains a set of routines that each 251 /// handle the initialization of a certain kind of entity, e.g., 252 /// arrays, vectors, struct/union types, scalars, etc. The 253 /// InitListChecker itself performs a recursive walk of the subobject 254 /// structure of the type to be initialized, while stepping through 255 /// the initializer list one element at a time. The IList and Index 256 /// parameters to each of the Check* routines contain the active 257 /// (syntactic) initializer list and the index into that initializer 258 /// list that represents the current initializer. Each routine is 259 /// responsible for moving that Index forward as it consumes elements. 260 /// 261 /// Each Check* routine also has a StructuredList/StructuredIndex 262 /// arguments, which contains the current "structured" (semantic) 263 /// initializer list and the index into that initializer list where we 264 /// are copying initializers as we map them over to the semantic 265 /// list. Once we have completed our recursive walk of the subobject 266 /// structure, we will have constructed a full semantic initializer 267 /// list. 268 /// 269 /// C99 designators cause changes in the initializer list traversal, 270 /// because they make the initialization "jump" into a specific 271 /// subobject and then continue the initialization from that 272 /// point. CheckDesignatedInitializer() recursively steps into the 273 /// designated subobject and manages backing out the recursion to 274 /// initialize the subobjects after the one designated. 275 /// 276 /// If an initializer list contains any designators, we build a placeholder 277 /// structured list even in 'verify only' mode, so that we can track which 278 /// elements need 'empty' initializtion. 279 class InitListChecker { 280 Sema &SemaRef; 281 bool hadError = false; 282 bool VerifyOnly; // No diagnostics. 283 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 284 bool InOverloadResolution; 285 InitListExpr *FullyStructuredList = nullptr; 286 NoInitExpr *DummyExpr = nullptr; 287 288 NoInitExpr *getDummyInit() { 289 if (!DummyExpr) 290 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 291 return DummyExpr; 292 } 293 294 void CheckImplicitInitList(const InitializedEntity &Entity, 295 InitListExpr *ParentIList, QualType T, 296 unsigned &Index, InitListExpr *StructuredList, 297 unsigned &StructuredIndex); 298 void CheckExplicitInitList(const InitializedEntity &Entity, 299 InitListExpr *IList, QualType &T, 300 InitListExpr *StructuredList, 301 bool TopLevelObject = false); 302 void CheckListElementTypes(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType &DeclType, 304 bool SubobjectIsDesignatorContext, 305 unsigned &Index, 306 InitListExpr *StructuredList, 307 unsigned &StructuredIndex, 308 bool TopLevelObject = false); 309 void CheckSubElementType(const InitializedEntity &Entity, 310 InitListExpr *IList, QualType ElemType, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex); 314 void CheckComplexType(const InitializedEntity &Entity, 315 InitListExpr *IList, QualType DeclType, 316 unsigned &Index, 317 InitListExpr *StructuredList, 318 unsigned &StructuredIndex); 319 void CheckScalarType(const InitializedEntity &Entity, 320 InitListExpr *IList, QualType DeclType, 321 unsigned &Index, 322 InitListExpr *StructuredList, 323 unsigned &StructuredIndex); 324 void CheckReferenceType(const InitializedEntity &Entity, 325 InitListExpr *IList, QualType DeclType, 326 unsigned &Index, 327 InitListExpr *StructuredList, 328 unsigned &StructuredIndex); 329 void CheckVectorType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType DeclType, unsigned &Index, 331 InitListExpr *StructuredList, 332 unsigned &StructuredIndex); 333 void CheckStructUnionTypes(const InitializedEntity &Entity, 334 InitListExpr *IList, QualType DeclType, 335 CXXRecordDecl::base_class_range Bases, 336 RecordDecl::field_iterator Field, 337 bool SubobjectIsDesignatorContext, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex, 340 bool TopLevelObject = false); 341 void CheckArrayType(const InitializedEntity &Entity, 342 InitListExpr *IList, QualType &DeclType, 343 llvm::APSInt elementIndex, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex); 347 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 348 InitListExpr *IList, DesignatedInitExpr *DIE, 349 unsigned DesigIdx, 350 QualType &CurrentObjectType, 351 RecordDecl::field_iterator *NextField, 352 llvm::APSInt *NextElementIndex, 353 unsigned &Index, 354 InitListExpr *StructuredList, 355 unsigned &StructuredIndex, 356 bool FinishSubobjectInit, 357 bool TopLevelObject); 358 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 359 QualType CurrentObjectType, 360 InitListExpr *StructuredList, 361 unsigned StructuredIndex, 362 SourceRange InitRange, 363 bool IsFullyOverwritten = false); 364 void UpdateStructuredListElement(InitListExpr *StructuredList, 365 unsigned &StructuredIndex, 366 Expr *expr); 367 InitListExpr *createInitListExpr(QualType CurrentObjectType, 368 SourceRange InitRange, 369 unsigned ExpectedNumInits); 370 int numArrayElements(QualType DeclType); 371 int numStructUnionElements(QualType DeclType); 372 373 ExprResult PerformEmptyInit(SourceLocation Loc, 374 const InitializedEntity &Entity); 375 376 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 377 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 378 bool FullyOverwritten = true) { 379 // Overriding an initializer via a designator is valid with C99 designated 380 // initializers, but ill-formed with C++20 designated initializers. 381 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 382 ? diag::ext_initializer_overrides 383 : diag::warn_initializer_overrides; 384 385 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 386 // In overload resolution, we have to strictly enforce the rules, and so 387 // don't allow any overriding of prior initializers. This matters for a 388 // case such as: 389 // 390 // union U { int a, b; }; 391 // struct S { int a, b; }; 392 // void f(U), f(S); 393 // 394 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 395 // consistency, we disallow all overriding of prior initializers in 396 // overload resolution, not only overriding of union members. 397 hadError = true; 398 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 399 // If we'll be keeping around the old initializer but overwriting part of 400 // the object it initialized, and that object is not trivially 401 // destructible, this can leak. Don't allow that, not even as an 402 // extension. 403 // 404 // FIXME: It might be reasonable to allow this in cases where the part of 405 // the initializer that we're overriding has trivial destruction. 406 DiagID = diag::err_initializer_overrides_destructed; 407 } else if (!OldInit->getSourceRange().isValid()) { 408 // We need to check on source range validity because the previous 409 // initializer does not have to be an explicit initializer. e.g., 410 // 411 // struct P { int a, b; }; 412 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 413 // 414 // There is an overwrite taking place because the first braced initializer 415 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 416 // 417 // Such overwrites are harmless, so we don't diagnose them. (Note that in 418 // C++, this cannot be reached unless we've already seen and diagnosed a 419 // different conformance issue, such as a mixture of designated and 420 // non-designated initializers or a multi-level designator.) 421 return; 422 } 423 424 if (!VerifyOnly) { 425 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 426 << NewInitRange << FullyOverwritten << OldInit->getType(); 427 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 428 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 429 << OldInit->getSourceRange(); 430 } 431 } 432 433 // Explanation on the "FillWithNoInit" mode: 434 // 435 // Assume we have the following definitions (Case#1): 436 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 437 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 438 // 439 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 440 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 441 // 442 // But if we have (Case#2): 443 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 444 // 445 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 446 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 447 // 448 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 449 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 450 // initializers but with special "NoInitExpr" place holders, which tells the 451 // CodeGen not to generate any initializers for these parts. 452 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 453 const InitializedEntity &ParentEntity, 454 InitListExpr *ILE, bool &RequiresSecondPass, 455 bool FillWithNoInit); 456 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 457 const InitializedEntity &ParentEntity, 458 InitListExpr *ILE, bool &RequiresSecondPass, 459 bool FillWithNoInit = false); 460 void FillInEmptyInitializations(const InitializedEntity &Entity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 InitListExpr *OuterILE, unsigned OuterIndex, 463 bool FillWithNoInit = false); 464 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 465 Expr *InitExpr, FieldDecl *Field, 466 bool TopLevelObject); 467 void CheckEmptyInitializable(const InitializedEntity &Entity, 468 SourceLocation Loc); 469 470 public: 471 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 472 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 473 bool InOverloadResolution = false); 474 bool HadError() { return hadError; } 475 476 // Retrieves the fully-structured initializer list used for 477 // semantic analysis and code generation. 478 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 479 }; 480 481 } // end anonymous namespace 482 483 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 484 const InitializedEntity &Entity) { 485 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 486 true); 487 MultiExprArg SubInit; 488 Expr *InitExpr; 489 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 490 491 // C++ [dcl.init.aggr]p7: 492 // If there are fewer initializer-clauses in the list than there are 493 // members in the aggregate, then each member not explicitly initialized 494 // ... 495 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 496 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 497 if (EmptyInitList) { 498 // C++1y / DR1070: 499 // shall be initialized [...] from an empty initializer list. 500 // 501 // We apply the resolution of this DR to C++11 but not C++98, since C++98 502 // does not have useful semantics for initialization from an init list. 503 // We treat this as copy-initialization, because aggregate initialization 504 // always performs copy-initialization on its elements. 505 // 506 // Only do this if we're initializing a class type, to avoid filling in 507 // the initializer list where possible. 508 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 509 InitListExpr(SemaRef.Context, Loc, None, Loc); 510 InitExpr->setType(SemaRef.Context.VoidTy); 511 SubInit = InitExpr; 512 Kind = InitializationKind::CreateCopy(Loc, Loc); 513 } else { 514 // C++03: 515 // shall be value-initialized. 516 } 517 518 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 519 // libstdc++4.6 marks the vector default constructor as explicit in 520 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 521 // stlport does so too. Look for std::__debug for libstdc++, and for 522 // std:: for stlport. This is effectively a compiler-side implementation of 523 // LWG2193. 524 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 525 InitializationSequence::FK_ExplicitConstructor) { 526 OverloadCandidateSet::iterator Best; 527 OverloadingResult O = 528 InitSeq.getFailedCandidateSet() 529 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 530 (void)O; 531 assert(O == OR_Success && "Inconsistent overload resolution"); 532 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 533 CXXRecordDecl *R = CtorDecl->getParent(); 534 535 if (CtorDecl->getMinRequiredArguments() == 0 && 536 CtorDecl->isExplicit() && R->getDeclName() && 537 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 538 bool IsInStd = false; 539 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 540 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 541 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 542 IsInStd = true; 543 } 544 545 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 546 .Cases("basic_string", "deque", "forward_list", true) 547 .Cases("list", "map", "multimap", "multiset", true) 548 .Cases("priority_queue", "queue", "set", "stack", true) 549 .Cases("unordered_map", "unordered_set", "vector", true) 550 .Default(false)) { 551 InitSeq.InitializeFrom( 552 SemaRef, Entity, 553 InitializationKind::CreateValue(Loc, Loc, Loc, true), 554 MultiExprArg(), /*TopLevelOfInitList=*/false, 555 TreatUnavailableAsInvalid); 556 // Emit a warning for this. System header warnings aren't shown 557 // by default, but people working on system headers should see it. 558 if (!VerifyOnly) { 559 SemaRef.Diag(CtorDecl->getLocation(), 560 diag::warn_invalid_initializer_from_system_header); 561 if (Entity.getKind() == InitializedEntity::EK_Member) 562 SemaRef.Diag(Entity.getDecl()->getLocation(), 563 diag::note_used_in_initialization_here); 564 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 565 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 566 } 567 } 568 } 569 } 570 if (!InitSeq) { 571 if (!VerifyOnly) { 572 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 573 if (Entity.getKind() == InitializedEntity::EK_Member) 574 SemaRef.Diag(Entity.getDecl()->getLocation(), 575 diag::note_in_omitted_aggregate_initializer) 576 << /*field*/1 << Entity.getDecl(); 577 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 578 bool IsTrailingArrayNewMember = 579 Entity.getParent() && 580 Entity.getParent()->isVariableLengthArrayNew(); 581 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 582 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 583 << Entity.getElementIndex(); 584 } 585 } 586 hadError = true; 587 return ExprError(); 588 } 589 590 return VerifyOnly ? ExprResult() 591 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 592 } 593 594 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 595 SourceLocation Loc) { 596 // If we're building a fully-structured list, we'll check this at the end 597 // once we know which elements are actually initialized. Otherwise, we know 598 // that there are no designators so we can just check now. 599 if (FullyStructuredList) 600 return; 601 PerformEmptyInit(Loc, Entity); 602 } 603 604 void InitListChecker::FillInEmptyInitForBase( 605 unsigned Init, const CXXBaseSpecifier &Base, 606 const InitializedEntity &ParentEntity, InitListExpr *ILE, 607 bool &RequiresSecondPass, bool FillWithNoInit) { 608 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 609 SemaRef.Context, &Base, false, &ParentEntity); 610 611 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 612 ExprResult BaseInit = FillWithNoInit 613 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 614 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 615 if (BaseInit.isInvalid()) { 616 hadError = true; 617 return; 618 } 619 620 if (!VerifyOnly) { 621 assert(Init < ILE->getNumInits() && "should have been expanded"); 622 ILE->setInit(Init, BaseInit.getAs<Expr>()); 623 } 624 } else if (InitListExpr *InnerILE = 625 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 626 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 627 ILE, Init, FillWithNoInit); 628 } else if (DesignatedInitUpdateExpr *InnerDIUE = 629 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 630 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 631 RequiresSecondPass, ILE, Init, 632 /*FillWithNoInit =*/true); 633 } 634 } 635 636 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 637 const InitializedEntity &ParentEntity, 638 InitListExpr *ILE, 639 bool &RequiresSecondPass, 640 bool FillWithNoInit) { 641 SourceLocation Loc = ILE->getEndLoc(); 642 unsigned NumInits = ILE->getNumInits(); 643 InitializedEntity MemberEntity 644 = InitializedEntity::InitializeMember(Field, &ParentEntity); 645 646 if (Init >= NumInits || !ILE->getInit(Init)) { 647 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 648 if (!RType->getDecl()->isUnion()) 649 assert((Init < NumInits || VerifyOnly) && 650 "This ILE should have been expanded"); 651 652 if (FillWithNoInit) { 653 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 654 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 655 if (Init < NumInits) 656 ILE->setInit(Init, Filler); 657 else 658 ILE->updateInit(SemaRef.Context, Init, Filler); 659 return; 660 } 661 // C++1y [dcl.init.aggr]p7: 662 // If there are fewer initializer-clauses in the list than there are 663 // members in the aggregate, then each member not explicitly initialized 664 // shall be initialized from its brace-or-equal-initializer [...] 665 if (Field->hasInClassInitializer()) { 666 if (VerifyOnly) 667 return; 668 669 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 670 if (DIE.isInvalid()) { 671 hadError = true; 672 return; 673 } 674 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 675 if (Init < NumInits) 676 ILE->setInit(Init, DIE.get()); 677 else { 678 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 679 RequiresSecondPass = true; 680 } 681 return; 682 } 683 684 if (Field->getType()->isReferenceType()) { 685 if (!VerifyOnly) { 686 // C++ [dcl.init.aggr]p9: 687 // If an incomplete or empty initializer-list leaves a 688 // member of reference type uninitialized, the program is 689 // ill-formed. 690 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 691 << Field->getType() 692 << ILE->getSyntacticForm()->getSourceRange(); 693 SemaRef.Diag(Field->getLocation(), 694 diag::note_uninit_reference_member); 695 } 696 hadError = true; 697 return; 698 } 699 700 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 701 if (MemberInit.isInvalid()) { 702 hadError = true; 703 return; 704 } 705 706 if (hadError || VerifyOnly) { 707 // Do nothing 708 } else if (Init < NumInits) { 709 ILE->setInit(Init, MemberInit.getAs<Expr>()); 710 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 711 // Empty initialization requires a constructor call, so 712 // extend the initializer list to include the constructor 713 // call and make a note that we'll need to take another pass 714 // through the initializer list. 715 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 716 RequiresSecondPass = true; 717 } 718 } else if (InitListExpr *InnerILE 719 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 720 FillInEmptyInitializations(MemberEntity, InnerILE, 721 RequiresSecondPass, ILE, Init, FillWithNoInit); 722 } else if (DesignatedInitUpdateExpr *InnerDIUE = 723 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 724 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 725 RequiresSecondPass, ILE, Init, 726 /*FillWithNoInit =*/true); 727 } 728 } 729 730 /// Recursively replaces NULL values within the given initializer list 731 /// with expressions that perform value-initialization of the 732 /// appropriate type, and finish off the InitListExpr formation. 733 void 734 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 735 InitListExpr *ILE, 736 bool &RequiresSecondPass, 737 InitListExpr *OuterILE, 738 unsigned OuterIndex, 739 bool FillWithNoInit) { 740 assert((ILE->getType() != SemaRef.Context.VoidTy) && 741 "Should not have void type"); 742 743 // We don't need to do any checks when just filling NoInitExprs; that can't 744 // fail. 745 if (FillWithNoInit && VerifyOnly) 746 return; 747 748 // If this is a nested initializer list, we might have changed its contents 749 // (and therefore some of its properties, such as instantiation-dependence) 750 // while filling it in. Inform the outer initializer list so that its state 751 // can be updated to match. 752 // FIXME: We should fully build the inner initializers before constructing 753 // the outer InitListExpr instead of mutating AST nodes after they have 754 // been used as subexpressions of other nodes. 755 struct UpdateOuterILEWithUpdatedInit { 756 InitListExpr *Outer; 757 unsigned OuterIndex; 758 ~UpdateOuterILEWithUpdatedInit() { 759 if (Outer) 760 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 761 } 762 } UpdateOuterRAII = {OuterILE, OuterIndex}; 763 764 // A transparent ILE is not performing aggregate initialization and should 765 // not be filled in. 766 if (ILE->isTransparent()) 767 return; 768 769 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 770 const RecordDecl *RDecl = RType->getDecl(); 771 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 772 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 773 Entity, ILE, RequiresSecondPass, FillWithNoInit); 774 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 775 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 776 for (auto *Field : RDecl->fields()) { 777 if (Field->hasInClassInitializer()) { 778 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 779 FillWithNoInit); 780 break; 781 } 782 } 783 } else { 784 // The fields beyond ILE->getNumInits() are default initialized, so in 785 // order to leave them uninitialized, the ILE is expanded and the extra 786 // fields are then filled with NoInitExpr. 787 unsigned NumElems = numStructUnionElements(ILE->getType()); 788 if (RDecl->hasFlexibleArrayMember()) 789 ++NumElems; 790 if (!VerifyOnly && ILE->getNumInits() < NumElems) 791 ILE->resizeInits(SemaRef.Context, NumElems); 792 793 unsigned Init = 0; 794 795 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 796 for (auto &Base : CXXRD->bases()) { 797 if (hadError) 798 return; 799 800 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 801 FillWithNoInit); 802 ++Init; 803 } 804 } 805 806 for (auto *Field : RDecl->fields()) { 807 if (Field->isUnnamedBitfield()) 808 continue; 809 810 if (hadError) 811 return; 812 813 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 814 FillWithNoInit); 815 if (hadError) 816 return; 817 818 ++Init; 819 820 // Only look at the first initialization of a union. 821 if (RDecl->isUnion()) 822 break; 823 } 824 } 825 826 return; 827 } 828 829 QualType ElementType; 830 831 InitializedEntity ElementEntity = Entity; 832 unsigned NumInits = ILE->getNumInits(); 833 unsigned NumElements = NumInits; 834 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 835 ElementType = AType->getElementType(); 836 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 837 NumElements = CAType->getSize().getZExtValue(); 838 // For an array new with an unknown bound, ask for one additional element 839 // in order to populate the array filler. 840 if (Entity.isVariableLengthArrayNew()) 841 ++NumElements; 842 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 843 0, Entity); 844 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 845 ElementType = VType->getElementType(); 846 NumElements = VType->getNumElements(); 847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 848 0, Entity); 849 } else 850 ElementType = ILE->getType(); 851 852 bool SkipEmptyInitChecks = false; 853 for (unsigned Init = 0; Init != NumElements; ++Init) { 854 if (hadError) 855 return; 856 857 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 858 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 859 ElementEntity.setElementIndex(Init); 860 861 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 862 return; 863 864 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 865 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 866 ILE->setInit(Init, ILE->getArrayFiller()); 867 else if (!InitExpr && !ILE->hasArrayFiller()) { 868 // In VerifyOnly mode, there's no point performing empty initialization 869 // more than once. 870 if (SkipEmptyInitChecks) 871 continue; 872 873 Expr *Filler = nullptr; 874 875 if (FillWithNoInit) 876 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 877 else { 878 ExprResult ElementInit = 879 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 880 if (ElementInit.isInvalid()) { 881 hadError = true; 882 return; 883 } 884 885 Filler = ElementInit.getAs<Expr>(); 886 } 887 888 if (hadError) { 889 // Do nothing 890 } else if (VerifyOnly) { 891 SkipEmptyInitChecks = true; 892 } else if (Init < NumInits) { 893 // For arrays, just set the expression used for value-initialization 894 // of the "holes" in the array. 895 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 896 ILE->setArrayFiller(Filler); 897 else 898 ILE->setInit(Init, Filler); 899 } else { 900 // For arrays, just set the expression used for value-initialization 901 // of the rest of elements and exit. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 903 ILE->setArrayFiller(Filler); 904 return; 905 } 906 907 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 908 // Empty initialization requires a constructor call, so 909 // extend the initializer list to include the constructor 910 // call and make a note that we'll need to take another pass 911 // through the initializer list. 912 ILE->updateInit(SemaRef.Context, Init, Filler); 913 RequiresSecondPass = true; 914 } 915 } 916 } else if (InitListExpr *InnerILE 917 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 918 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 919 ILE, Init, FillWithNoInit); 920 } else if (DesignatedInitUpdateExpr *InnerDIUE = 921 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 922 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 923 RequiresSecondPass, ILE, Init, 924 /*FillWithNoInit =*/true); 925 } 926 } 927 } 928 929 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 930 for (const Stmt *Init : *IL) 931 if (Init && isa<DesignatedInitExpr>(Init)) 932 return true; 933 return false; 934 } 935 936 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 937 InitListExpr *IL, QualType &T, bool VerifyOnly, 938 bool TreatUnavailableAsInvalid, 939 bool InOverloadResolution) 940 : SemaRef(S), VerifyOnly(VerifyOnly), 941 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 942 InOverloadResolution(InOverloadResolution) { 943 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 944 FullyStructuredList = 945 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 946 947 // FIXME: Check that IL isn't already the semantic form of some other 948 // InitListExpr. If it is, we'd create a broken AST. 949 if (!VerifyOnly) 950 FullyStructuredList->setSyntacticForm(IL); 951 } 952 953 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 954 /*TopLevelObject=*/true); 955 956 if (!hadError && FullyStructuredList) { 957 bool RequiresSecondPass = false; 958 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 959 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 960 if (RequiresSecondPass && !hadError) 961 FillInEmptyInitializations(Entity, FullyStructuredList, 962 RequiresSecondPass, nullptr, 0); 963 } 964 } 965 966 int InitListChecker::numArrayElements(QualType DeclType) { 967 // FIXME: use a proper constant 968 int maxElements = 0x7FFFFFFF; 969 if (const ConstantArrayType *CAT = 970 SemaRef.Context.getAsConstantArrayType(DeclType)) { 971 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 972 } 973 return maxElements; 974 } 975 976 int InitListChecker::numStructUnionElements(QualType DeclType) { 977 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 978 int InitializableMembers = 0; 979 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 980 InitializableMembers += CXXRD->getNumBases(); 981 for (const auto *Field : structDecl->fields()) 982 if (!Field->isUnnamedBitfield()) 983 ++InitializableMembers; 984 985 if (structDecl->isUnion()) 986 return std::min(InitializableMembers, 1); 987 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 988 } 989 990 /// Determine whether Entity is an entity for which it is idiomatic to elide 991 /// the braces in aggregate initialization. 992 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 993 // Recursive initialization of the one and only field within an aggregate 994 // class is considered idiomatic. This case arises in particular for 995 // initialization of std::array, where the C++ standard suggests the idiom of 996 // 997 // std::array<T, N> arr = {1, 2, 3}; 998 // 999 // (where std::array is an aggregate struct containing a single array field. 1000 1001 // FIXME: Should aggregate initialization of a struct with a single 1002 // base class and no members also suppress the warning? 1003 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1004 return false; 1005 1006 auto *ParentRD = 1007 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1008 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1009 if (CXXRD->getNumBases()) 1010 return false; 1011 1012 auto FieldIt = ParentRD->field_begin(); 1013 assert(FieldIt != ParentRD->field_end() && 1014 "no fields but have initializer for member?"); 1015 return ++FieldIt == ParentRD->field_end(); 1016 } 1017 1018 /// Check whether the range of the initializer \p ParentIList from element 1019 /// \p Index onwards can be used to initialize an object of type \p T. Update 1020 /// \p Index to indicate how many elements of the list were consumed. 1021 /// 1022 /// This also fills in \p StructuredList, from element \p StructuredIndex 1023 /// onwards, with the fully-braced, desugared form of the initialization. 1024 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1025 InitListExpr *ParentIList, 1026 QualType T, unsigned &Index, 1027 InitListExpr *StructuredList, 1028 unsigned &StructuredIndex) { 1029 int maxElements = 0; 1030 1031 if (T->isArrayType()) 1032 maxElements = numArrayElements(T); 1033 else if (T->isRecordType()) 1034 maxElements = numStructUnionElements(T); 1035 else if (T->isVectorType()) 1036 maxElements = T->castAs<VectorType>()->getNumElements(); 1037 else 1038 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1039 1040 if (maxElements == 0) { 1041 if (!VerifyOnly) 1042 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1043 diag::err_implicit_empty_initializer); 1044 ++Index; 1045 hadError = true; 1046 return; 1047 } 1048 1049 // Build a structured initializer list corresponding to this subobject. 1050 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1051 ParentIList, Index, T, StructuredList, StructuredIndex, 1052 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1053 ParentIList->getSourceRange().getEnd())); 1054 unsigned StructuredSubobjectInitIndex = 0; 1055 1056 // Check the element types and build the structural subobject. 1057 unsigned StartIndex = Index; 1058 CheckListElementTypes(Entity, ParentIList, T, 1059 /*SubobjectIsDesignatorContext=*/false, Index, 1060 StructuredSubobjectInitList, 1061 StructuredSubobjectInitIndex); 1062 1063 if (StructuredSubobjectInitList) { 1064 StructuredSubobjectInitList->setType(T); 1065 1066 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1067 // Update the structured sub-object initializer so that it's ending 1068 // range corresponds with the end of the last initializer it used. 1069 if (EndIndex < ParentIList->getNumInits() && 1070 ParentIList->getInit(EndIndex)) { 1071 SourceLocation EndLoc 1072 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1073 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1074 } 1075 1076 // Complain about missing braces. 1077 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1078 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1079 !isIdiomaticBraceElisionEntity(Entity)) { 1080 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1081 diag::warn_missing_braces) 1082 << StructuredSubobjectInitList->getSourceRange() 1083 << FixItHint::CreateInsertion( 1084 StructuredSubobjectInitList->getBeginLoc(), "{") 1085 << FixItHint::CreateInsertion( 1086 SemaRef.getLocForEndOfToken( 1087 StructuredSubobjectInitList->getEndLoc()), 1088 "}"); 1089 } 1090 1091 // Warn if this type won't be an aggregate in future versions of C++. 1092 auto *CXXRD = T->getAsCXXRecordDecl(); 1093 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1094 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1095 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1096 << StructuredSubobjectInitList->getSourceRange() << T; 1097 } 1098 } 1099 } 1100 1101 /// Warn that \p Entity was of scalar type and was initialized by a 1102 /// single-element braced initializer list. 1103 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1104 SourceRange Braces) { 1105 // Don't warn during template instantiation. If the initialization was 1106 // non-dependent, we warned during the initial parse; otherwise, the 1107 // type might not be scalar in some uses of the template. 1108 if (S.inTemplateInstantiation()) 1109 return; 1110 1111 unsigned DiagID = 0; 1112 1113 switch (Entity.getKind()) { 1114 case InitializedEntity::EK_VectorElement: 1115 case InitializedEntity::EK_ComplexElement: 1116 case InitializedEntity::EK_ArrayElement: 1117 case InitializedEntity::EK_Parameter: 1118 case InitializedEntity::EK_Parameter_CF_Audited: 1119 case InitializedEntity::EK_Result: 1120 // Extra braces here are suspicious. 1121 DiagID = diag::warn_braces_around_scalar_init; 1122 break; 1123 1124 case InitializedEntity::EK_Member: 1125 // Warn on aggregate initialization but not on ctor init list or 1126 // default member initializer. 1127 if (Entity.getParent()) 1128 DiagID = diag::warn_braces_around_scalar_init; 1129 break; 1130 1131 case InitializedEntity::EK_Variable: 1132 case InitializedEntity::EK_LambdaCapture: 1133 // No warning, might be direct-list-initialization. 1134 // FIXME: Should we warn for copy-list-initialization in these cases? 1135 break; 1136 1137 case InitializedEntity::EK_New: 1138 case InitializedEntity::EK_Temporary: 1139 case InitializedEntity::EK_CompoundLiteralInit: 1140 // No warning, braces are part of the syntax of the underlying construct. 1141 break; 1142 1143 case InitializedEntity::EK_RelatedResult: 1144 // No warning, we already warned when initializing the result. 1145 break; 1146 1147 case InitializedEntity::EK_Exception: 1148 case InitializedEntity::EK_Base: 1149 case InitializedEntity::EK_Delegating: 1150 case InitializedEntity::EK_BlockElement: 1151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1152 case InitializedEntity::EK_Binding: 1153 case InitializedEntity::EK_StmtExprResult: 1154 llvm_unreachable("unexpected braced scalar init"); 1155 } 1156 1157 if (DiagID) { 1158 S.Diag(Braces.getBegin(), DiagID) 1159 << Braces 1160 << FixItHint::CreateRemoval(Braces.getBegin()) 1161 << FixItHint::CreateRemoval(Braces.getEnd()); 1162 } 1163 } 1164 1165 /// Check whether the initializer \p IList (that was written with explicit 1166 /// braces) can be used to initialize an object of type \p T. 1167 /// 1168 /// This also fills in \p StructuredList with the fully-braced, desugared 1169 /// form of the initialization. 1170 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1171 InitListExpr *IList, QualType &T, 1172 InitListExpr *StructuredList, 1173 bool TopLevelObject) { 1174 unsigned Index = 0, StructuredIndex = 0; 1175 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1176 Index, StructuredList, StructuredIndex, TopLevelObject); 1177 if (StructuredList) { 1178 QualType ExprTy = T; 1179 if (!ExprTy->isArrayType()) 1180 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1181 if (!VerifyOnly) 1182 IList->setType(ExprTy); 1183 StructuredList->setType(ExprTy); 1184 } 1185 if (hadError) 1186 return; 1187 1188 // Don't complain for incomplete types, since we'll get an error elsewhere. 1189 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1190 // We have leftover initializers 1191 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1192 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1193 hadError = ExtraInitsIsError; 1194 if (VerifyOnly) { 1195 return; 1196 } else if (StructuredIndex == 1 && 1197 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1198 SIF_None) { 1199 unsigned DK = 1200 ExtraInitsIsError 1201 ? diag::err_excess_initializers_in_char_array_initializer 1202 : diag::ext_excess_initializers_in_char_array_initializer; 1203 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1204 << IList->getInit(Index)->getSourceRange(); 1205 } else { 1206 int initKind = T->isArrayType() ? 0 : 1207 T->isVectorType() ? 1 : 1208 T->isScalarType() ? 2 : 1209 T->isUnionType() ? 3 : 1210 4; 1211 1212 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1213 : diag::ext_excess_initializers; 1214 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1215 << initKind << IList->getInit(Index)->getSourceRange(); 1216 } 1217 } 1218 1219 if (!VerifyOnly) { 1220 if (T->isScalarType() && IList->getNumInits() == 1 && 1221 !isa<InitListExpr>(IList->getInit(0))) 1222 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1223 1224 // Warn if this is a class type that won't be an aggregate in future 1225 // versions of C++. 1226 auto *CXXRD = T->getAsCXXRecordDecl(); 1227 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1228 // Don't warn if there's an equivalent default constructor that would be 1229 // used instead. 1230 bool HasEquivCtor = false; 1231 if (IList->getNumInits() == 0) { 1232 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1233 HasEquivCtor = CD && !CD->isDeleted(); 1234 } 1235 1236 if (!HasEquivCtor) { 1237 SemaRef.Diag(IList->getBeginLoc(), 1238 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1239 << IList->getSourceRange() << T; 1240 } 1241 } 1242 } 1243 } 1244 1245 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1246 InitListExpr *IList, 1247 QualType &DeclType, 1248 bool SubobjectIsDesignatorContext, 1249 unsigned &Index, 1250 InitListExpr *StructuredList, 1251 unsigned &StructuredIndex, 1252 bool TopLevelObject) { 1253 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1254 // Explicitly braced initializer for complex type can be real+imaginary 1255 // parts. 1256 CheckComplexType(Entity, IList, DeclType, Index, 1257 StructuredList, StructuredIndex); 1258 } else if (DeclType->isScalarType()) { 1259 CheckScalarType(Entity, IList, DeclType, Index, 1260 StructuredList, StructuredIndex); 1261 } else if (DeclType->isVectorType()) { 1262 CheckVectorType(Entity, IList, DeclType, Index, 1263 StructuredList, StructuredIndex); 1264 } else if (DeclType->isRecordType()) { 1265 assert(DeclType->isAggregateType() && 1266 "non-aggregate records should be handed in CheckSubElementType"); 1267 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1268 auto Bases = 1269 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1270 CXXRecordDecl::base_class_iterator()); 1271 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1272 Bases = CXXRD->bases(); 1273 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1274 SubobjectIsDesignatorContext, Index, StructuredList, 1275 StructuredIndex, TopLevelObject); 1276 } else if (DeclType->isArrayType()) { 1277 llvm::APSInt Zero( 1278 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1279 false); 1280 CheckArrayType(Entity, IList, DeclType, Zero, 1281 SubobjectIsDesignatorContext, Index, 1282 StructuredList, StructuredIndex); 1283 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1284 // This type is invalid, issue a diagnostic. 1285 ++Index; 1286 if (!VerifyOnly) 1287 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1288 << DeclType; 1289 hadError = true; 1290 } else if (DeclType->isReferenceType()) { 1291 CheckReferenceType(Entity, IList, DeclType, Index, 1292 StructuredList, StructuredIndex); 1293 } else if (DeclType->isObjCObjectType()) { 1294 if (!VerifyOnly) 1295 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1296 hadError = true; 1297 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1298 // Checks for scalar type are sufficient for these types too. 1299 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1300 StructuredIndex); 1301 } else { 1302 if (!VerifyOnly) 1303 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1304 << DeclType; 1305 hadError = true; 1306 } 1307 } 1308 1309 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1310 InitListExpr *IList, 1311 QualType ElemType, 1312 unsigned &Index, 1313 InitListExpr *StructuredList, 1314 unsigned &StructuredIndex) { 1315 Expr *expr = IList->getInit(Index); 1316 1317 if (ElemType->isReferenceType()) 1318 return CheckReferenceType(Entity, IList, ElemType, Index, 1319 StructuredList, StructuredIndex); 1320 1321 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1322 if (SubInitList->getNumInits() == 1 && 1323 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1324 SIF_None) { 1325 // FIXME: It would be more faithful and no less correct to include an 1326 // InitListExpr in the semantic form of the initializer list in this case. 1327 expr = SubInitList->getInit(0); 1328 } 1329 // Nested aggregate initialization and C++ initialization are handled later. 1330 } else if (isa<ImplicitValueInitExpr>(expr)) { 1331 // This happens during template instantiation when we see an InitListExpr 1332 // that we've already checked once. 1333 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1334 "found implicit initialization for the wrong type"); 1335 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1336 ++Index; 1337 return; 1338 } 1339 1340 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1341 // C++ [dcl.init.aggr]p2: 1342 // Each member is copy-initialized from the corresponding 1343 // initializer-clause. 1344 1345 // FIXME: Better EqualLoc? 1346 InitializationKind Kind = 1347 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1348 1349 // Vector elements can be initialized from other vectors in which case 1350 // we need initialization entity with a type of a vector (and not a vector 1351 // element!) initializing multiple vector elements. 1352 auto TmpEntity = 1353 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1354 ? InitializedEntity::InitializeTemporary(ElemType) 1355 : Entity; 1356 1357 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1358 /*TopLevelOfInitList*/ true); 1359 1360 // C++14 [dcl.init.aggr]p13: 1361 // If the assignment-expression can initialize a member, the member is 1362 // initialized. Otherwise [...] brace elision is assumed 1363 // 1364 // Brace elision is never performed if the element is not an 1365 // assignment-expression. 1366 if (Seq || isa<InitListExpr>(expr)) { 1367 if (!VerifyOnly) { 1368 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1369 if (Result.isInvalid()) 1370 hadError = true; 1371 1372 UpdateStructuredListElement(StructuredList, StructuredIndex, 1373 Result.getAs<Expr>()); 1374 } else if (!Seq) { 1375 hadError = true; 1376 } else if (StructuredList) { 1377 UpdateStructuredListElement(StructuredList, StructuredIndex, 1378 getDummyInit()); 1379 } 1380 ++Index; 1381 return; 1382 } 1383 1384 // Fall through for subaggregate initialization 1385 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1386 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1387 return CheckScalarType(Entity, IList, ElemType, Index, 1388 StructuredList, StructuredIndex); 1389 } else if (const ArrayType *arrayType = 1390 SemaRef.Context.getAsArrayType(ElemType)) { 1391 // arrayType can be incomplete if we're initializing a flexible 1392 // array member. There's nothing we can do with the completed 1393 // type here, though. 1394 1395 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1396 // FIXME: Should we do this checking in verify-only mode? 1397 if (!VerifyOnly) 1398 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1399 if (StructuredList) 1400 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1401 ++Index; 1402 return; 1403 } 1404 1405 // Fall through for subaggregate initialization. 1406 1407 } else { 1408 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1409 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1410 1411 // C99 6.7.8p13: 1412 // 1413 // The initializer for a structure or union object that has 1414 // automatic storage duration shall be either an initializer 1415 // list as described below, or a single expression that has 1416 // compatible structure or union type. In the latter case, the 1417 // initial value of the object, including unnamed members, is 1418 // that of the expression. 1419 ExprResult ExprRes = expr; 1420 if (SemaRef.CheckSingleAssignmentConstraints( 1421 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1422 if (ExprRes.isInvalid()) 1423 hadError = true; 1424 else { 1425 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1426 if (ExprRes.isInvalid()) 1427 hadError = true; 1428 } 1429 UpdateStructuredListElement(StructuredList, StructuredIndex, 1430 ExprRes.getAs<Expr>()); 1431 ++Index; 1432 return; 1433 } 1434 ExprRes.get(); 1435 // Fall through for subaggregate initialization 1436 } 1437 1438 // C++ [dcl.init.aggr]p12: 1439 // 1440 // [...] Otherwise, if the member is itself a non-empty 1441 // subaggregate, brace elision is assumed and the initializer is 1442 // considered for the initialization of the first member of 1443 // the subaggregate. 1444 // OpenCL vector initializer is handled elsewhere. 1445 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1446 ElemType->isAggregateType()) { 1447 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1448 StructuredIndex); 1449 ++StructuredIndex; 1450 } else { 1451 if (!VerifyOnly) { 1452 // We cannot initialize this element, so let PerformCopyInitialization 1453 // produce the appropriate diagnostic. We already checked that this 1454 // initialization will fail. 1455 ExprResult Copy = 1456 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1457 /*TopLevelOfInitList=*/true); 1458 (void)Copy; 1459 assert(Copy.isInvalid() && 1460 "expected non-aggregate initialization to fail"); 1461 } 1462 hadError = true; 1463 ++Index; 1464 ++StructuredIndex; 1465 } 1466 } 1467 1468 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1469 InitListExpr *IList, QualType DeclType, 1470 unsigned &Index, 1471 InitListExpr *StructuredList, 1472 unsigned &StructuredIndex) { 1473 assert(Index == 0 && "Index in explicit init list must be zero"); 1474 1475 // As an extension, clang supports complex initializers, which initialize 1476 // a complex number component-wise. When an explicit initializer list for 1477 // a complex number contains two two initializers, this extension kicks in: 1478 // it exepcts the initializer list to contain two elements convertible to 1479 // the element type of the complex type. The first element initializes 1480 // the real part, and the second element intitializes the imaginary part. 1481 1482 if (IList->getNumInits() != 2) 1483 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1484 StructuredIndex); 1485 1486 // This is an extension in C. (The builtin _Complex type does not exist 1487 // in the C++ standard.) 1488 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1489 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1490 << IList->getSourceRange(); 1491 1492 // Initialize the complex number. 1493 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1494 InitializedEntity ElementEntity = 1495 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1496 1497 for (unsigned i = 0; i < 2; ++i) { 1498 ElementEntity.setElementIndex(Index); 1499 CheckSubElementType(ElementEntity, IList, elementType, Index, 1500 StructuredList, StructuredIndex); 1501 } 1502 } 1503 1504 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1505 InitListExpr *IList, QualType DeclType, 1506 unsigned &Index, 1507 InitListExpr *StructuredList, 1508 unsigned &StructuredIndex) { 1509 if (Index >= IList->getNumInits()) { 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 SemaRef.getLangOpts().CPlusPlus11 1513 ? diag::warn_cxx98_compat_empty_scalar_initializer 1514 : diag::err_empty_scalar_initializer) 1515 << IList->getSourceRange(); 1516 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1517 ++Index; 1518 ++StructuredIndex; 1519 return; 1520 } 1521 1522 Expr *expr = IList->getInit(Index); 1523 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1524 // FIXME: This is invalid, and accepting it causes overload resolution 1525 // to pick the wrong overload in some corner cases. 1526 if (!VerifyOnly) 1527 SemaRef.Diag(SubIList->getBeginLoc(), 1528 diag::ext_many_braces_around_scalar_init) 1529 << SubIList->getSourceRange(); 1530 1531 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1532 StructuredIndex); 1533 return; 1534 } else if (isa<DesignatedInitExpr>(expr)) { 1535 if (!VerifyOnly) 1536 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1537 << DeclType << expr->getSourceRange(); 1538 hadError = true; 1539 ++Index; 1540 ++StructuredIndex; 1541 return; 1542 } 1543 1544 ExprResult Result; 1545 if (VerifyOnly) { 1546 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1547 Result = getDummyInit(); 1548 else 1549 Result = ExprError(); 1550 } else { 1551 Result = 1552 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1553 /*TopLevelOfInitList=*/true); 1554 } 1555 1556 Expr *ResultExpr = nullptr; 1557 1558 if (Result.isInvalid()) 1559 hadError = true; // types weren't compatible. 1560 else { 1561 ResultExpr = Result.getAs<Expr>(); 1562 1563 if (ResultExpr != expr && !VerifyOnly) { 1564 // The type was promoted, update initializer list. 1565 // FIXME: Why are we updating the syntactic init list? 1566 IList->setInit(Index, ResultExpr); 1567 } 1568 } 1569 if (hadError) 1570 ++StructuredIndex; 1571 else 1572 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1573 ++Index; 1574 } 1575 1576 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1577 InitListExpr *IList, QualType DeclType, 1578 unsigned &Index, 1579 InitListExpr *StructuredList, 1580 unsigned &StructuredIndex) { 1581 if (Index >= IList->getNumInits()) { 1582 // FIXME: It would be wonderful if we could point at the actual member. In 1583 // general, it would be useful to pass location information down the stack, 1584 // so that we know the location (or decl) of the "current object" being 1585 // initialized. 1586 if (!VerifyOnly) 1587 SemaRef.Diag(IList->getBeginLoc(), 1588 diag::err_init_reference_member_uninitialized) 1589 << DeclType << IList->getSourceRange(); 1590 hadError = true; 1591 ++Index; 1592 ++StructuredIndex; 1593 return; 1594 } 1595 1596 Expr *expr = IList->getInit(Index); 1597 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1598 if (!VerifyOnly) 1599 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1600 << DeclType << IList->getSourceRange(); 1601 hadError = true; 1602 ++Index; 1603 ++StructuredIndex; 1604 return; 1605 } 1606 1607 ExprResult Result; 1608 if (VerifyOnly) { 1609 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1610 Result = getDummyInit(); 1611 else 1612 Result = ExprError(); 1613 } else { 1614 Result = 1615 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1616 /*TopLevelOfInitList=*/true); 1617 } 1618 1619 if (Result.isInvalid()) 1620 hadError = true; 1621 1622 expr = Result.getAs<Expr>(); 1623 // FIXME: Why are we updating the syntactic init list? 1624 if (!VerifyOnly) 1625 IList->setInit(Index, expr); 1626 1627 if (hadError) 1628 ++StructuredIndex; 1629 else 1630 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1631 ++Index; 1632 } 1633 1634 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1635 InitListExpr *IList, QualType DeclType, 1636 unsigned &Index, 1637 InitListExpr *StructuredList, 1638 unsigned &StructuredIndex) { 1639 const VectorType *VT = DeclType->castAs<VectorType>(); 1640 unsigned maxElements = VT->getNumElements(); 1641 unsigned numEltsInit = 0; 1642 QualType elementType = VT->getElementType(); 1643 1644 if (Index >= IList->getNumInits()) { 1645 // Make sure the element type can be value-initialized. 1646 CheckEmptyInitializable( 1647 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1648 IList->getEndLoc()); 1649 return; 1650 } 1651 1652 if (!SemaRef.getLangOpts().OpenCL) { 1653 // If the initializing element is a vector, try to copy-initialize 1654 // instead of breaking it apart (which is doomed to failure anyway). 1655 Expr *Init = IList->getInit(Index); 1656 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 Expr *ResultExpr = nullptr; 1670 if (Result.isInvalid()) 1671 hadError = true; // types weren't compatible. 1672 else { 1673 ResultExpr = Result.getAs<Expr>(); 1674 1675 if (ResultExpr != Init && !VerifyOnly) { 1676 // The type was promoted, update initializer list. 1677 // FIXME: Why are we updating the syntactic init list? 1678 IList->setInit(Index, ResultExpr); 1679 } 1680 } 1681 if (hadError) 1682 ++StructuredIndex; 1683 else 1684 UpdateStructuredListElement(StructuredList, StructuredIndex, 1685 ResultExpr); 1686 ++Index; 1687 return; 1688 } 1689 1690 InitializedEntity ElementEntity = 1691 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1692 1693 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1694 // Don't attempt to go past the end of the init list 1695 if (Index >= IList->getNumInits()) { 1696 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1697 break; 1698 } 1699 1700 ElementEntity.setElementIndex(Index); 1701 CheckSubElementType(ElementEntity, IList, elementType, Index, 1702 StructuredList, StructuredIndex); 1703 } 1704 1705 if (VerifyOnly) 1706 return; 1707 1708 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1709 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1710 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1711 T->getVectorKind() == VectorType::NeonPolyVector)) { 1712 // The ability to use vector initializer lists is a GNU vector extension 1713 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1714 // endian machines it works fine, however on big endian machines it 1715 // exhibits surprising behaviour: 1716 // 1717 // uint32x2_t x = {42, 64}; 1718 // return vget_lane_u32(x, 0); // Will return 64. 1719 // 1720 // Because of this, explicitly call out that it is non-portable. 1721 // 1722 SemaRef.Diag(IList->getBeginLoc(), 1723 diag::warn_neon_vector_initializer_non_portable); 1724 1725 const char *typeCode; 1726 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1727 1728 if (elementType->isFloatingType()) 1729 typeCode = "f"; 1730 else if (elementType->isSignedIntegerType()) 1731 typeCode = "s"; 1732 else if (elementType->isUnsignedIntegerType()) 1733 typeCode = "u"; 1734 else 1735 llvm_unreachable("Invalid element type!"); 1736 1737 SemaRef.Diag(IList->getBeginLoc(), 1738 SemaRef.Context.getTypeSize(VT) > 64 1739 ? diag::note_neon_vector_initializer_non_portable_q 1740 : diag::note_neon_vector_initializer_non_portable) 1741 << typeCode << typeSize; 1742 } 1743 1744 return; 1745 } 1746 1747 InitializedEntity ElementEntity = 1748 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1749 1750 // OpenCL initializers allows vectors to be constructed from vectors. 1751 for (unsigned i = 0; i < maxElements; ++i) { 1752 // Don't attempt to go past the end of the init list 1753 if (Index >= IList->getNumInits()) 1754 break; 1755 1756 ElementEntity.setElementIndex(Index); 1757 1758 QualType IType = IList->getInit(Index)->getType(); 1759 if (!IType->isVectorType()) { 1760 CheckSubElementType(ElementEntity, IList, elementType, Index, 1761 StructuredList, StructuredIndex); 1762 ++numEltsInit; 1763 } else { 1764 QualType VecType; 1765 const VectorType *IVT = IType->castAs<VectorType>(); 1766 unsigned numIElts = IVT->getNumElements(); 1767 1768 if (IType->isExtVectorType()) 1769 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1770 else 1771 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1772 IVT->getVectorKind()); 1773 CheckSubElementType(ElementEntity, IList, VecType, Index, 1774 StructuredList, StructuredIndex); 1775 numEltsInit += numIElts; 1776 } 1777 } 1778 1779 // OpenCL requires all elements to be initialized. 1780 if (numEltsInit != maxElements) { 1781 if (!VerifyOnly) 1782 SemaRef.Diag(IList->getBeginLoc(), 1783 diag::err_vector_incorrect_num_initializers) 1784 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1785 hadError = true; 1786 } 1787 } 1788 1789 /// Check if the type of a class element has an accessible destructor, and marks 1790 /// it referenced. Returns true if we shouldn't form a reference to the 1791 /// destructor. 1792 /// 1793 /// Aggregate initialization requires a class element's destructor be 1794 /// accessible per 11.6.1 [dcl.init.aggr]: 1795 /// 1796 /// The destructor for each element of class type is potentially invoked 1797 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1798 /// occurs. 1799 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1800 Sema &SemaRef) { 1801 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1802 if (!CXXRD) 1803 return false; 1804 1805 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1806 SemaRef.CheckDestructorAccess(Loc, Destructor, 1807 SemaRef.PDiag(diag::err_access_dtor_temp) 1808 << ElementType); 1809 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1810 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1811 } 1812 1813 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1814 InitListExpr *IList, QualType &DeclType, 1815 llvm::APSInt elementIndex, 1816 bool SubobjectIsDesignatorContext, 1817 unsigned &Index, 1818 InitListExpr *StructuredList, 1819 unsigned &StructuredIndex) { 1820 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1821 1822 if (!VerifyOnly) { 1823 if (checkDestructorReference(arrayType->getElementType(), 1824 IList->getEndLoc(), SemaRef)) { 1825 hadError = true; 1826 return; 1827 } 1828 } 1829 1830 // Check for the special-case of initializing an array with a string. 1831 if (Index < IList->getNumInits()) { 1832 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1833 SIF_None) { 1834 // We place the string literal directly into the resulting 1835 // initializer list. This is the only place where the structure 1836 // of the structured initializer list doesn't match exactly, 1837 // because doing so would involve allocating one character 1838 // constant for each string. 1839 // FIXME: Should we do these checks in verify-only mode too? 1840 if (!VerifyOnly) 1841 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1842 if (StructuredList) { 1843 UpdateStructuredListElement(StructuredList, StructuredIndex, 1844 IList->getInit(Index)); 1845 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1846 } 1847 ++Index; 1848 return; 1849 } 1850 } 1851 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1852 // Check for VLAs; in standard C it would be possible to check this 1853 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1854 // them in all sorts of strange places). 1855 if (!VerifyOnly) 1856 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1857 diag::err_variable_object_no_init) 1858 << VAT->getSizeExpr()->getSourceRange(); 1859 hadError = true; 1860 ++Index; 1861 ++StructuredIndex; 1862 return; 1863 } 1864 1865 // We might know the maximum number of elements in advance. 1866 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1867 elementIndex.isUnsigned()); 1868 bool maxElementsKnown = false; 1869 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1870 maxElements = CAT->getSize(); 1871 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1872 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1873 maxElementsKnown = true; 1874 } 1875 1876 QualType elementType = arrayType->getElementType(); 1877 while (Index < IList->getNumInits()) { 1878 Expr *Init = IList->getInit(Index); 1879 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1880 // If we're not the subobject that matches up with the '{' for 1881 // the designator, we shouldn't be handling the 1882 // designator. Return immediately. 1883 if (!SubobjectIsDesignatorContext) 1884 return; 1885 1886 // Handle this designated initializer. elementIndex will be 1887 // updated to be the next array element we'll initialize. 1888 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1889 DeclType, nullptr, &elementIndex, Index, 1890 StructuredList, StructuredIndex, true, 1891 false)) { 1892 hadError = true; 1893 continue; 1894 } 1895 1896 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1897 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1898 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1899 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1900 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1901 1902 // If the array is of incomplete type, keep track of the number of 1903 // elements in the initializer. 1904 if (!maxElementsKnown && elementIndex > maxElements) 1905 maxElements = elementIndex; 1906 1907 continue; 1908 } 1909 1910 // If we know the maximum number of elements, and we've already 1911 // hit it, stop consuming elements in the initializer list. 1912 if (maxElementsKnown && elementIndex == maxElements) 1913 break; 1914 1915 InitializedEntity ElementEntity = 1916 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1917 Entity); 1918 // Check this element. 1919 CheckSubElementType(ElementEntity, IList, elementType, Index, 1920 StructuredList, StructuredIndex); 1921 ++elementIndex; 1922 1923 // If the array is of incomplete type, keep track of the number of 1924 // elements in the initializer. 1925 if (!maxElementsKnown && elementIndex > maxElements) 1926 maxElements = elementIndex; 1927 } 1928 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1929 // If this is an incomplete array type, the actual type needs to 1930 // be calculated here. 1931 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1932 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1933 // Sizing an array implicitly to zero is not allowed by ISO C, 1934 // but is supported by GNU. 1935 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1936 } 1937 1938 DeclType = SemaRef.Context.getConstantArrayType( 1939 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1940 } 1941 if (!hadError) { 1942 // If there are any members of the array that get value-initialized, check 1943 // that is possible. That happens if we know the bound and don't have 1944 // enough elements, or if we're performing an array new with an unknown 1945 // bound. 1946 if ((maxElementsKnown && elementIndex < maxElements) || 1947 Entity.isVariableLengthArrayNew()) 1948 CheckEmptyInitializable( 1949 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1950 IList->getEndLoc()); 1951 } 1952 } 1953 1954 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1955 Expr *InitExpr, 1956 FieldDecl *Field, 1957 bool TopLevelObject) { 1958 // Handle GNU flexible array initializers. 1959 unsigned FlexArrayDiag; 1960 if (isa<InitListExpr>(InitExpr) && 1961 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1962 // Empty flexible array init always allowed as an extension 1963 FlexArrayDiag = diag::ext_flexible_array_init; 1964 } else if (SemaRef.getLangOpts().CPlusPlus) { 1965 // Disallow flexible array init in C++; it is not required for gcc 1966 // compatibility, and it needs work to IRGen correctly in general. 1967 FlexArrayDiag = diag::err_flexible_array_init; 1968 } else if (!TopLevelObject) { 1969 // Disallow flexible array init on non-top-level object 1970 FlexArrayDiag = diag::err_flexible_array_init; 1971 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1972 // Disallow flexible array init on anything which is not a variable. 1973 FlexArrayDiag = diag::err_flexible_array_init; 1974 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1975 // Disallow flexible array init on local variables. 1976 FlexArrayDiag = diag::err_flexible_array_init; 1977 } else { 1978 // Allow other cases. 1979 FlexArrayDiag = diag::ext_flexible_array_init; 1980 } 1981 1982 if (!VerifyOnly) { 1983 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1984 << InitExpr->getBeginLoc(); 1985 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1986 << Field; 1987 } 1988 1989 return FlexArrayDiag != diag::ext_flexible_array_init; 1990 } 1991 1992 void InitListChecker::CheckStructUnionTypes( 1993 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1994 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1995 bool SubobjectIsDesignatorContext, unsigned &Index, 1996 InitListExpr *StructuredList, unsigned &StructuredIndex, 1997 bool TopLevelObject) { 1998 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 1999 2000 // If the record is invalid, some of it's members are invalid. To avoid 2001 // confusion, we forgo checking the intializer for the entire record. 2002 if (structDecl->isInvalidDecl()) { 2003 // Assume it was supposed to consume a single initializer. 2004 ++Index; 2005 hadError = true; 2006 return; 2007 } 2008 2009 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2010 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2011 2012 if (!VerifyOnly) 2013 for (FieldDecl *FD : RD->fields()) { 2014 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2015 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2016 hadError = true; 2017 return; 2018 } 2019 } 2020 2021 // If there's a default initializer, use it. 2022 if (isa<CXXRecordDecl>(RD) && 2023 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2024 if (!StructuredList) 2025 return; 2026 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2027 Field != FieldEnd; ++Field) { 2028 if (Field->hasInClassInitializer()) { 2029 StructuredList->setInitializedFieldInUnion(*Field); 2030 // FIXME: Actually build a CXXDefaultInitExpr? 2031 return; 2032 } 2033 } 2034 } 2035 2036 // Value-initialize the first member of the union that isn't an unnamed 2037 // bitfield. 2038 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2039 Field != FieldEnd; ++Field) { 2040 if (!Field->isUnnamedBitfield()) { 2041 CheckEmptyInitializable( 2042 InitializedEntity::InitializeMember(*Field, &Entity), 2043 IList->getEndLoc()); 2044 if (StructuredList) 2045 StructuredList->setInitializedFieldInUnion(*Field); 2046 break; 2047 } 2048 } 2049 return; 2050 } 2051 2052 bool InitializedSomething = false; 2053 2054 // If we have any base classes, they are initialized prior to the fields. 2055 for (auto &Base : Bases) { 2056 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2057 2058 // Designated inits always initialize fields, so if we see one, all 2059 // remaining base classes have no explicit initializer. 2060 if (Init && isa<DesignatedInitExpr>(Init)) 2061 Init = nullptr; 2062 2063 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2064 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2065 SemaRef.Context, &Base, false, &Entity); 2066 if (Init) { 2067 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2068 StructuredList, StructuredIndex); 2069 InitializedSomething = true; 2070 } else { 2071 CheckEmptyInitializable(BaseEntity, InitLoc); 2072 } 2073 2074 if (!VerifyOnly) 2075 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2076 hadError = true; 2077 return; 2078 } 2079 } 2080 2081 // If structDecl is a forward declaration, this loop won't do 2082 // anything except look at designated initializers; That's okay, 2083 // because an error should get printed out elsewhere. It might be 2084 // worthwhile to skip over the rest of the initializer, though. 2085 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2086 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2087 bool CheckForMissingFields = 2088 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2089 bool HasDesignatedInit = false; 2090 2091 while (Index < IList->getNumInits()) { 2092 Expr *Init = IList->getInit(Index); 2093 SourceLocation InitLoc = Init->getBeginLoc(); 2094 2095 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2096 // If we're not the subobject that matches up with the '{' for 2097 // the designator, we shouldn't be handling the 2098 // designator. Return immediately. 2099 if (!SubobjectIsDesignatorContext) 2100 return; 2101 2102 HasDesignatedInit = true; 2103 2104 // Handle this designated initializer. Field will be updated to 2105 // the next field that we'll be initializing. 2106 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2107 DeclType, &Field, nullptr, Index, 2108 StructuredList, StructuredIndex, 2109 true, TopLevelObject)) 2110 hadError = true; 2111 else if (!VerifyOnly) { 2112 // Find the field named by the designated initializer. 2113 RecordDecl::field_iterator F = RD->field_begin(); 2114 while (std::next(F) != Field) 2115 ++F; 2116 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2117 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2118 hadError = true; 2119 return; 2120 } 2121 } 2122 2123 InitializedSomething = true; 2124 2125 // Disable check for missing fields when designators are used. 2126 // This matches gcc behaviour. 2127 CheckForMissingFields = false; 2128 continue; 2129 } 2130 2131 if (Field == FieldEnd) { 2132 // We've run out of fields. We're done. 2133 break; 2134 } 2135 2136 // We've already initialized a member of a union. We're done. 2137 if (InitializedSomething && DeclType->isUnionType()) 2138 break; 2139 2140 // If we've hit the flexible array member at the end, we're done. 2141 if (Field->getType()->isIncompleteArrayType()) 2142 break; 2143 2144 if (Field->isUnnamedBitfield()) { 2145 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2146 ++Field; 2147 continue; 2148 } 2149 2150 // Make sure we can use this declaration. 2151 bool InvalidUse; 2152 if (VerifyOnly) 2153 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2154 else 2155 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2156 *Field, IList->getInit(Index)->getBeginLoc()); 2157 if (InvalidUse) { 2158 ++Index; 2159 ++Field; 2160 hadError = true; 2161 continue; 2162 } 2163 2164 if (!VerifyOnly) { 2165 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2166 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2167 hadError = true; 2168 return; 2169 } 2170 } 2171 2172 InitializedEntity MemberEntity = 2173 InitializedEntity::InitializeMember(*Field, &Entity); 2174 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2175 StructuredList, StructuredIndex); 2176 InitializedSomething = true; 2177 2178 if (DeclType->isUnionType() && StructuredList) { 2179 // Initialize the first field within the union. 2180 StructuredList->setInitializedFieldInUnion(*Field); 2181 } 2182 2183 ++Field; 2184 } 2185 2186 // Emit warnings for missing struct field initializers. 2187 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2188 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2189 !DeclType->isUnionType()) { 2190 // It is possible we have one or more unnamed bitfields remaining. 2191 // Find first (if any) named field and emit warning. 2192 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2193 it != end; ++it) { 2194 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2195 SemaRef.Diag(IList->getSourceRange().getEnd(), 2196 diag::warn_missing_field_initializers) << *it; 2197 break; 2198 } 2199 } 2200 } 2201 2202 // Check that any remaining fields can be value-initialized if we're not 2203 // building a structured list. (If we are, we'll check this later.) 2204 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2205 !Field->getType()->isIncompleteArrayType()) { 2206 for (; Field != FieldEnd && !hadError; ++Field) { 2207 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2208 CheckEmptyInitializable( 2209 InitializedEntity::InitializeMember(*Field, &Entity), 2210 IList->getEndLoc()); 2211 } 2212 } 2213 2214 // Check that the types of the remaining fields have accessible destructors. 2215 if (!VerifyOnly) { 2216 // If the initializer expression has a designated initializer, check the 2217 // elements for which a designated initializer is not provided too. 2218 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2219 : Field; 2220 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2221 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2222 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2223 hadError = true; 2224 return; 2225 } 2226 } 2227 } 2228 2229 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2230 Index >= IList->getNumInits()) 2231 return; 2232 2233 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2234 TopLevelObject)) { 2235 hadError = true; 2236 ++Index; 2237 return; 2238 } 2239 2240 InitializedEntity MemberEntity = 2241 InitializedEntity::InitializeMember(*Field, &Entity); 2242 2243 if (isa<InitListExpr>(IList->getInit(Index))) 2244 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2245 StructuredList, StructuredIndex); 2246 else 2247 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2248 StructuredList, StructuredIndex); 2249 } 2250 2251 /// Expand a field designator that refers to a member of an 2252 /// anonymous struct or union into a series of field designators that 2253 /// refers to the field within the appropriate subobject. 2254 /// 2255 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2256 DesignatedInitExpr *DIE, 2257 unsigned DesigIdx, 2258 IndirectFieldDecl *IndirectField) { 2259 typedef DesignatedInitExpr::Designator Designator; 2260 2261 // Build the replacement designators. 2262 SmallVector<Designator, 4> Replacements; 2263 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2264 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2265 if (PI + 1 == PE) 2266 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2267 DIE->getDesignator(DesigIdx)->getDotLoc(), 2268 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2269 else 2270 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2271 SourceLocation(), SourceLocation())); 2272 assert(isa<FieldDecl>(*PI)); 2273 Replacements.back().setField(cast<FieldDecl>(*PI)); 2274 } 2275 2276 // Expand the current designator into the set of replacement 2277 // designators, so we have a full subobject path down to where the 2278 // member of the anonymous struct/union is actually stored. 2279 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2280 &Replacements[0] + Replacements.size()); 2281 } 2282 2283 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2284 DesignatedInitExpr *DIE) { 2285 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2286 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2287 for (unsigned I = 0; I < NumIndexExprs; ++I) 2288 IndexExprs[I] = DIE->getSubExpr(I + 1); 2289 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2290 IndexExprs, 2291 DIE->getEqualOrColonLoc(), 2292 DIE->usesGNUSyntax(), DIE->getInit()); 2293 } 2294 2295 namespace { 2296 2297 // Callback to only accept typo corrections that are for field members of 2298 // the given struct or union. 2299 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2300 public: 2301 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2302 : Record(RD) {} 2303 2304 bool ValidateCandidate(const TypoCorrection &candidate) override { 2305 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2306 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2307 } 2308 2309 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2310 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2311 } 2312 2313 private: 2314 RecordDecl *Record; 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 /// Check the well-formedness of a C99 designated initializer. 2320 /// 2321 /// Determines whether the designated initializer @p DIE, which 2322 /// resides at the given @p Index within the initializer list @p 2323 /// IList, is well-formed for a current object of type @p DeclType 2324 /// (C99 6.7.8). The actual subobject that this designator refers to 2325 /// within the current subobject is returned in either 2326 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2327 /// 2328 /// @param IList The initializer list in which this designated 2329 /// initializer occurs. 2330 /// 2331 /// @param DIE The designated initializer expression. 2332 /// 2333 /// @param DesigIdx The index of the current designator. 2334 /// 2335 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2336 /// into which the designation in @p DIE should refer. 2337 /// 2338 /// @param NextField If non-NULL and the first designator in @p DIE is 2339 /// a field, this will be set to the field declaration corresponding 2340 /// to the field named by the designator. On input, this is expected to be 2341 /// the next field that would be initialized in the absence of designation, 2342 /// if the complete object being initialized is a struct. 2343 /// 2344 /// @param NextElementIndex If non-NULL and the first designator in @p 2345 /// DIE is an array designator or GNU array-range designator, this 2346 /// will be set to the last index initialized by this designator. 2347 /// 2348 /// @param Index Index into @p IList where the designated initializer 2349 /// @p DIE occurs. 2350 /// 2351 /// @param StructuredList The initializer list expression that 2352 /// describes all of the subobject initializers in the order they'll 2353 /// actually be initialized. 2354 /// 2355 /// @returns true if there was an error, false otherwise. 2356 bool 2357 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2358 InitListExpr *IList, 2359 DesignatedInitExpr *DIE, 2360 unsigned DesigIdx, 2361 QualType &CurrentObjectType, 2362 RecordDecl::field_iterator *NextField, 2363 llvm::APSInt *NextElementIndex, 2364 unsigned &Index, 2365 InitListExpr *StructuredList, 2366 unsigned &StructuredIndex, 2367 bool FinishSubobjectInit, 2368 bool TopLevelObject) { 2369 if (DesigIdx == DIE->size()) { 2370 // C++20 designated initialization can result in direct-list-initialization 2371 // of the designated subobject. This is the only way that we can end up 2372 // performing direct initialization as part of aggregate initialization, so 2373 // it needs special handling. 2374 if (DIE->isDirectInit()) { 2375 Expr *Init = DIE->getInit(); 2376 assert(isa<InitListExpr>(Init) && 2377 "designator result in direct non-list initialization?"); 2378 InitializationKind Kind = InitializationKind::CreateDirectList( 2379 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2380 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2381 /*TopLevelOfInitList*/ true); 2382 if (StructuredList) { 2383 ExprResult Result = VerifyOnly 2384 ? getDummyInit() 2385 : Seq.Perform(SemaRef, Entity, Kind, Init); 2386 UpdateStructuredListElement(StructuredList, StructuredIndex, 2387 Result.get()); 2388 } 2389 ++Index; 2390 return !Seq; 2391 } 2392 2393 // Check the actual initialization for the designated object type. 2394 bool prevHadError = hadError; 2395 2396 // Temporarily remove the designator expression from the 2397 // initializer list that the child calls see, so that we don't try 2398 // to re-process the designator. 2399 unsigned OldIndex = Index; 2400 IList->setInit(OldIndex, DIE->getInit()); 2401 2402 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2403 StructuredList, StructuredIndex); 2404 2405 // Restore the designated initializer expression in the syntactic 2406 // form of the initializer list. 2407 if (IList->getInit(OldIndex) != DIE->getInit()) 2408 DIE->setInit(IList->getInit(OldIndex)); 2409 IList->setInit(OldIndex, DIE); 2410 2411 return hadError && !prevHadError; 2412 } 2413 2414 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2415 bool IsFirstDesignator = (DesigIdx == 0); 2416 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2417 // Determine the structural initializer list that corresponds to the 2418 // current subobject. 2419 if (IsFirstDesignator) 2420 StructuredList = FullyStructuredList; 2421 else { 2422 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2423 StructuredList->getInit(StructuredIndex) : nullptr; 2424 if (!ExistingInit && StructuredList->hasArrayFiller()) 2425 ExistingInit = StructuredList->getArrayFiller(); 2426 2427 if (!ExistingInit) 2428 StructuredList = getStructuredSubobjectInit( 2429 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2430 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2431 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2432 StructuredList = Result; 2433 else { 2434 // We are creating an initializer list that initializes the 2435 // subobjects of the current object, but there was already an 2436 // initialization that completely initialized the current 2437 // subobject, e.g., by a compound literal: 2438 // 2439 // struct X { int a, b; }; 2440 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2441 // 2442 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2443 // designated initializer re-initializes only its current object 2444 // subobject [0].b. 2445 diagnoseInitOverride(ExistingInit, 2446 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2447 /*FullyOverwritten=*/false); 2448 2449 if (!VerifyOnly) { 2450 if (DesignatedInitUpdateExpr *E = 2451 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2452 StructuredList = E->getUpdater(); 2453 else { 2454 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2455 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2456 ExistingInit, DIE->getEndLoc()); 2457 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2458 StructuredList = DIUE->getUpdater(); 2459 } 2460 } else { 2461 // We don't need to track the structured representation of a 2462 // designated init update of an already-fully-initialized object in 2463 // verify-only mode. The only reason we would need the structure is 2464 // to determine where the uninitialized "holes" are, and in this 2465 // case, we know there aren't any and we can't introduce any. 2466 StructuredList = nullptr; 2467 } 2468 } 2469 } 2470 } 2471 2472 if (D->isFieldDesignator()) { 2473 // C99 6.7.8p7: 2474 // 2475 // If a designator has the form 2476 // 2477 // . identifier 2478 // 2479 // then the current object (defined below) shall have 2480 // structure or union type and the identifier shall be the 2481 // name of a member of that type. 2482 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2483 if (!RT) { 2484 SourceLocation Loc = D->getDotLoc(); 2485 if (Loc.isInvalid()) 2486 Loc = D->getFieldLoc(); 2487 if (!VerifyOnly) 2488 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2489 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2490 ++Index; 2491 return true; 2492 } 2493 2494 FieldDecl *KnownField = D->getField(); 2495 if (!KnownField) { 2496 IdentifierInfo *FieldName = D->getFieldName(); 2497 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2498 for (NamedDecl *ND : Lookup) { 2499 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2500 KnownField = FD; 2501 break; 2502 } 2503 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2504 // In verify mode, don't modify the original. 2505 if (VerifyOnly) 2506 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2507 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2508 D = DIE->getDesignator(DesigIdx); 2509 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2510 break; 2511 } 2512 } 2513 if (!KnownField) { 2514 if (VerifyOnly) { 2515 ++Index; 2516 return true; // No typo correction when just trying this out. 2517 } 2518 2519 // Name lookup found something, but it wasn't a field. 2520 if (!Lookup.empty()) { 2521 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2522 << FieldName; 2523 SemaRef.Diag(Lookup.front()->getLocation(), 2524 diag::note_field_designator_found); 2525 ++Index; 2526 return true; 2527 } 2528 2529 // Name lookup didn't find anything. 2530 // Determine whether this was a typo for another field name. 2531 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2532 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2533 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2534 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2535 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2536 SemaRef.diagnoseTypo( 2537 Corrected, 2538 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2539 << FieldName << CurrentObjectType); 2540 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2541 hadError = true; 2542 } else { 2543 // Typo correction didn't find anything. 2544 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2545 << FieldName << CurrentObjectType; 2546 ++Index; 2547 return true; 2548 } 2549 } 2550 } 2551 2552 unsigned NumBases = 0; 2553 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2554 NumBases = CXXRD->getNumBases(); 2555 2556 unsigned FieldIndex = NumBases; 2557 2558 for (auto *FI : RT->getDecl()->fields()) { 2559 if (FI->isUnnamedBitfield()) 2560 continue; 2561 if (declaresSameEntity(KnownField, FI)) { 2562 KnownField = FI; 2563 break; 2564 } 2565 ++FieldIndex; 2566 } 2567 2568 RecordDecl::field_iterator Field = 2569 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2570 2571 // All of the fields of a union are located at the same place in 2572 // the initializer list. 2573 if (RT->getDecl()->isUnion()) { 2574 FieldIndex = 0; 2575 if (StructuredList) { 2576 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2577 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2578 assert(StructuredList->getNumInits() == 1 2579 && "A union should never have more than one initializer!"); 2580 2581 Expr *ExistingInit = StructuredList->getInit(0); 2582 if (ExistingInit) { 2583 // We're about to throw away an initializer, emit warning. 2584 diagnoseInitOverride( 2585 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2586 } 2587 2588 // remove existing initializer 2589 StructuredList->resizeInits(SemaRef.Context, 0); 2590 StructuredList->setInitializedFieldInUnion(nullptr); 2591 } 2592 2593 StructuredList->setInitializedFieldInUnion(*Field); 2594 } 2595 } 2596 2597 // Make sure we can use this declaration. 2598 bool InvalidUse; 2599 if (VerifyOnly) 2600 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2601 else 2602 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2603 if (InvalidUse) { 2604 ++Index; 2605 return true; 2606 } 2607 2608 // C++20 [dcl.init.list]p3: 2609 // The ordered identifiers in the designators of the designated- 2610 // initializer-list shall form a subsequence of the ordered identifiers 2611 // in the direct non-static data members of T. 2612 // 2613 // Note that this is not a condition on forming the aggregate 2614 // initialization, only on actually performing initialization, 2615 // so it is not checked in VerifyOnly mode. 2616 // 2617 // FIXME: This is the only reordering diagnostic we produce, and it only 2618 // catches cases where we have a top-level field designator that jumps 2619 // backwards. This is the only such case that is reachable in an 2620 // otherwise-valid C++20 program, so is the only case that's required for 2621 // conformance, but for consistency, we should diagnose all the other 2622 // cases where a designator takes us backwards too. 2623 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2624 NextField && 2625 (*NextField == RT->getDecl()->field_end() || 2626 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2627 // Find the field that we just initialized. 2628 FieldDecl *PrevField = nullptr; 2629 for (auto FI = RT->getDecl()->field_begin(); 2630 FI != RT->getDecl()->field_end(); ++FI) { 2631 if (FI->isUnnamedBitfield()) 2632 continue; 2633 if (*NextField != RT->getDecl()->field_end() && 2634 declaresSameEntity(*FI, **NextField)) 2635 break; 2636 PrevField = *FI; 2637 } 2638 2639 if (PrevField && 2640 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2641 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2642 << KnownField << PrevField << DIE->getSourceRange(); 2643 2644 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2645 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2646 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2647 SemaRef.Diag(PrevInit->getBeginLoc(), 2648 diag::note_previous_field_init) 2649 << PrevField << PrevInit->getSourceRange(); 2650 } 2651 } 2652 } 2653 } 2654 2655 2656 // Update the designator with the field declaration. 2657 if (!VerifyOnly) 2658 D->setField(*Field); 2659 2660 // Make sure that our non-designated initializer list has space 2661 // for a subobject corresponding to this field. 2662 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2663 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2664 2665 // This designator names a flexible array member. 2666 if (Field->getType()->isIncompleteArrayType()) { 2667 bool Invalid = false; 2668 if ((DesigIdx + 1) != DIE->size()) { 2669 // We can't designate an object within the flexible array 2670 // member (because GCC doesn't allow it). 2671 if (!VerifyOnly) { 2672 DesignatedInitExpr::Designator *NextD 2673 = DIE->getDesignator(DesigIdx + 1); 2674 SemaRef.Diag(NextD->getBeginLoc(), 2675 diag::err_designator_into_flexible_array_member) 2676 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2677 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2678 << *Field; 2679 } 2680 Invalid = true; 2681 } 2682 2683 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2684 !isa<StringLiteral>(DIE->getInit())) { 2685 // The initializer is not an initializer list. 2686 if (!VerifyOnly) { 2687 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2688 diag::err_flexible_array_init_needs_braces) 2689 << DIE->getInit()->getSourceRange(); 2690 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2691 << *Field; 2692 } 2693 Invalid = true; 2694 } 2695 2696 // Check GNU flexible array initializer. 2697 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2698 TopLevelObject)) 2699 Invalid = true; 2700 2701 if (Invalid) { 2702 ++Index; 2703 return true; 2704 } 2705 2706 // Initialize the array. 2707 bool prevHadError = hadError; 2708 unsigned newStructuredIndex = FieldIndex; 2709 unsigned OldIndex = Index; 2710 IList->setInit(Index, DIE->getInit()); 2711 2712 InitializedEntity MemberEntity = 2713 InitializedEntity::InitializeMember(*Field, &Entity); 2714 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2715 StructuredList, newStructuredIndex); 2716 2717 IList->setInit(OldIndex, DIE); 2718 if (hadError && !prevHadError) { 2719 ++Field; 2720 ++FieldIndex; 2721 if (NextField) 2722 *NextField = Field; 2723 StructuredIndex = FieldIndex; 2724 return true; 2725 } 2726 } else { 2727 // Recurse to check later designated subobjects. 2728 QualType FieldType = Field->getType(); 2729 unsigned newStructuredIndex = FieldIndex; 2730 2731 InitializedEntity MemberEntity = 2732 InitializedEntity::InitializeMember(*Field, &Entity); 2733 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2734 FieldType, nullptr, nullptr, Index, 2735 StructuredList, newStructuredIndex, 2736 FinishSubobjectInit, false)) 2737 return true; 2738 } 2739 2740 // Find the position of the next field to be initialized in this 2741 // subobject. 2742 ++Field; 2743 ++FieldIndex; 2744 2745 // If this the first designator, our caller will continue checking 2746 // the rest of this struct/class/union subobject. 2747 if (IsFirstDesignator) { 2748 if (NextField) 2749 *NextField = Field; 2750 StructuredIndex = FieldIndex; 2751 return false; 2752 } 2753 2754 if (!FinishSubobjectInit) 2755 return false; 2756 2757 // We've already initialized something in the union; we're done. 2758 if (RT->getDecl()->isUnion()) 2759 return hadError; 2760 2761 // Check the remaining fields within this class/struct/union subobject. 2762 bool prevHadError = hadError; 2763 2764 auto NoBases = 2765 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2766 CXXRecordDecl::base_class_iterator()); 2767 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2768 false, Index, StructuredList, FieldIndex); 2769 return hadError && !prevHadError; 2770 } 2771 2772 // C99 6.7.8p6: 2773 // 2774 // If a designator has the form 2775 // 2776 // [ constant-expression ] 2777 // 2778 // then the current object (defined below) shall have array 2779 // type and the expression shall be an integer constant 2780 // expression. If the array is of unknown size, any 2781 // nonnegative value is valid. 2782 // 2783 // Additionally, cope with the GNU extension that permits 2784 // designators of the form 2785 // 2786 // [ constant-expression ... constant-expression ] 2787 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2788 if (!AT) { 2789 if (!VerifyOnly) 2790 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2791 << CurrentObjectType; 2792 ++Index; 2793 return true; 2794 } 2795 2796 Expr *IndexExpr = nullptr; 2797 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2798 if (D->isArrayDesignator()) { 2799 IndexExpr = DIE->getArrayIndex(*D); 2800 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2801 DesignatedEndIndex = DesignatedStartIndex; 2802 } else { 2803 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2804 2805 DesignatedStartIndex = 2806 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2807 DesignatedEndIndex = 2808 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2809 IndexExpr = DIE->getArrayRangeEnd(*D); 2810 2811 // Codegen can't handle evaluating array range designators that have side 2812 // effects, because we replicate the AST value for each initialized element. 2813 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2814 // elements with something that has a side effect, so codegen can emit an 2815 // "error unsupported" error instead of miscompiling the app. 2816 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2817 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2818 FullyStructuredList->sawArrayRangeDesignator(); 2819 } 2820 2821 if (isa<ConstantArrayType>(AT)) { 2822 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2823 DesignatedStartIndex 2824 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2825 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2826 DesignatedEndIndex 2827 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2828 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2829 if (DesignatedEndIndex >= MaxElements) { 2830 if (!VerifyOnly) 2831 SemaRef.Diag(IndexExpr->getBeginLoc(), 2832 diag::err_array_designator_too_large) 2833 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2834 << IndexExpr->getSourceRange(); 2835 ++Index; 2836 return true; 2837 } 2838 } else { 2839 unsigned DesignatedIndexBitWidth = 2840 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2841 DesignatedStartIndex = 2842 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2843 DesignatedEndIndex = 2844 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2845 DesignatedStartIndex.setIsUnsigned(true); 2846 DesignatedEndIndex.setIsUnsigned(true); 2847 } 2848 2849 bool IsStringLiteralInitUpdate = 2850 StructuredList && StructuredList->isStringLiteralInit(); 2851 if (IsStringLiteralInitUpdate && VerifyOnly) { 2852 // We're just verifying an update to a string literal init. We don't need 2853 // to split the string up into individual characters to do that. 2854 StructuredList = nullptr; 2855 } else if (IsStringLiteralInitUpdate) { 2856 // We're modifying a string literal init; we have to decompose the string 2857 // so we can modify the individual characters. 2858 ASTContext &Context = SemaRef.Context; 2859 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2860 2861 // Compute the character type 2862 QualType CharTy = AT->getElementType(); 2863 2864 // Compute the type of the integer literals. 2865 QualType PromotedCharTy = CharTy; 2866 if (CharTy->isPromotableIntegerType()) 2867 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2868 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2869 2870 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2871 // Get the length of the string. 2872 uint64_t StrLen = SL->getLength(); 2873 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2874 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2875 StructuredList->resizeInits(Context, StrLen); 2876 2877 // Build a literal for each character in the string, and put them into 2878 // the init list. 2879 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2880 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2881 Expr *Init = new (Context) IntegerLiteral( 2882 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2883 if (CharTy != PromotedCharTy) 2884 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2885 Init, nullptr, VK_RValue); 2886 StructuredList->updateInit(Context, i, Init); 2887 } 2888 } else { 2889 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2890 std::string Str; 2891 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2892 2893 // Get the length of the string. 2894 uint64_t StrLen = Str.size(); 2895 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2896 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2897 StructuredList->resizeInits(Context, StrLen); 2898 2899 // Build a literal for each character in the string, and put them into 2900 // the init list. 2901 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2902 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2903 Expr *Init = new (Context) IntegerLiteral( 2904 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2905 if (CharTy != PromotedCharTy) 2906 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2907 Init, nullptr, VK_RValue); 2908 StructuredList->updateInit(Context, i, Init); 2909 } 2910 } 2911 } 2912 2913 // Make sure that our non-designated initializer list has space 2914 // for a subobject corresponding to this array element. 2915 if (StructuredList && 2916 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2917 StructuredList->resizeInits(SemaRef.Context, 2918 DesignatedEndIndex.getZExtValue() + 1); 2919 2920 // Repeatedly perform subobject initializations in the range 2921 // [DesignatedStartIndex, DesignatedEndIndex]. 2922 2923 // Move to the next designator 2924 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2925 unsigned OldIndex = Index; 2926 2927 InitializedEntity ElementEntity = 2928 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2929 2930 while (DesignatedStartIndex <= DesignatedEndIndex) { 2931 // Recurse to check later designated subobjects. 2932 QualType ElementType = AT->getElementType(); 2933 Index = OldIndex; 2934 2935 ElementEntity.setElementIndex(ElementIndex); 2936 if (CheckDesignatedInitializer( 2937 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2938 nullptr, Index, StructuredList, ElementIndex, 2939 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2940 false)) 2941 return true; 2942 2943 // Move to the next index in the array that we'll be initializing. 2944 ++DesignatedStartIndex; 2945 ElementIndex = DesignatedStartIndex.getZExtValue(); 2946 } 2947 2948 // If this the first designator, our caller will continue checking 2949 // the rest of this array subobject. 2950 if (IsFirstDesignator) { 2951 if (NextElementIndex) 2952 *NextElementIndex = DesignatedStartIndex; 2953 StructuredIndex = ElementIndex; 2954 return false; 2955 } 2956 2957 if (!FinishSubobjectInit) 2958 return false; 2959 2960 // Check the remaining elements within this array subobject. 2961 bool prevHadError = hadError; 2962 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2963 /*SubobjectIsDesignatorContext=*/false, Index, 2964 StructuredList, ElementIndex); 2965 return hadError && !prevHadError; 2966 } 2967 2968 // Get the structured initializer list for a subobject of type 2969 // @p CurrentObjectType. 2970 InitListExpr * 2971 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2972 QualType CurrentObjectType, 2973 InitListExpr *StructuredList, 2974 unsigned StructuredIndex, 2975 SourceRange InitRange, 2976 bool IsFullyOverwritten) { 2977 if (!StructuredList) 2978 return nullptr; 2979 2980 Expr *ExistingInit = nullptr; 2981 if (StructuredIndex < StructuredList->getNumInits()) 2982 ExistingInit = StructuredList->getInit(StructuredIndex); 2983 2984 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2985 // There might have already been initializers for subobjects of the current 2986 // object, but a subsequent initializer list will overwrite the entirety 2987 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2988 // 2989 // struct P { char x[6]; }; 2990 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2991 // 2992 // The first designated initializer is ignored, and l.x is just "f". 2993 if (!IsFullyOverwritten) 2994 return Result; 2995 2996 if (ExistingInit) { 2997 // We are creating an initializer list that initializes the 2998 // subobjects of the current object, but there was already an 2999 // initialization that completely initialized the current 3000 // subobject: 3001 // 3002 // struct X { int a, b; }; 3003 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3004 // 3005 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3006 // designated initializer overwrites the [0].b initializer 3007 // from the prior initialization. 3008 // 3009 // When the existing initializer is an expression rather than an 3010 // initializer list, we cannot decompose and update it in this way. 3011 // For example: 3012 // 3013 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3014 // 3015 // This case is handled by CheckDesignatedInitializer. 3016 diagnoseInitOverride(ExistingInit, InitRange); 3017 } 3018 3019 unsigned ExpectedNumInits = 0; 3020 if (Index < IList->getNumInits()) { 3021 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3022 ExpectedNumInits = Init->getNumInits(); 3023 else 3024 ExpectedNumInits = IList->getNumInits() - Index; 3025 } 3026 3027 InitListExpr *Result = 3028 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3029 3030 // Link this new initializer list into the structured initializer 3031 // lists. 3032 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3033 return Result; 3034 } 3035 3036 InitListExpr * 3037 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3038 SourceRange InitRange, 3039 unsigned ExpectedNumInits) { 3040 InitListExpr *Result 3041 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3042 InitRange.getBegin(), None, 3043 InitRange.getEnd()); 3044 3045 QualType ResultType = CurrentObjectType; 3046 if (!ResultType->isArrayType()) 3047 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3048 Result->setType(ResultType); 3049 3050 // Pre-allocate storage for the structured initializer list. 3051 unsigned NumElements = 0; 3052 3053 if (const ArrayType *AType 3054 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3055 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3056 NumElements = CAType->getSize().getZExtValue(); 3057 // Simple heuristic so that we don't allocate a very large 3058 // initializer with many empty entries at the end. 3059 if (NumElements > ExpectedNumInits) 3060 NumElements = 0; 3061 } 3062 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3063 NumElements = VType->getNumElements(); 3064 } else if (CurrentObjectType->isRecordType()) { 3065 NumElements = numStructUnionElements(CurrentObjectType); 3066 } 3067 3068 Result->reserveInits(SemaRef.Context, NumElements); 3069 3070 return Result; 3071 } 3072 3073 /// Update the initializer at index @p StructuredIndex within the 3074 /// structured initializer list to the value @p expr. 3075 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3076 unsigned &StructuredIndex, 3077 Expr *expr) { 3078 // No structured initializer list to update 3079 if (!StructuredList) 3080 return; 3081 3082 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3083 StructuredIndex, expr)) { 3084 // This initializer overwrites a previous initializer. Warn. 3085 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3086 } 3087 3088 ++StructuredIndex; 3089 } 3090 3091 /// Determine whether we can perform aggregate initialization for the purposes 3092 /// of overload resolution. 3093 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3094 const InitializedEntity &Entity, InitListExpr *From) { 3095 QualType Type = Entity.getType(); 3096 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3097 /*TreatUnavailableAsInvalid=*/false, 3098 /*InOverloadResolution=*/true); 3099 return !Check.HadError(); 3100 } 3101 3102 /// Check that the given Index expression is a valid array designator 3103 /// value. This is essentially just a wrapper around 3104 /// VerifyIntegerConstantExpression that also checks for negative values 3105 /// and produces a reasonable diagnostic if there is a 3106 /// failure. Returns the index expression, possibly with an implicit cast 3107 /// added, on success. If everything went okay, Value will receive the 3108 /// value of the constant expression. 3109 static ExprResult 3110 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3111 SourceLocation Loc = Index->getBeginLoc(); 3112 3113 // Make sure this is an integer constant expression. 3114 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 3115 if (Result.isInvalid()) 3116 return Result; 3117 3118 if (Value.isSigned() && Value.isNegative()) 3119 return S.Diag(Loc, diag::err_array_designator_negative) 3120 << Value.toString(10) << Index->getSourceRange(); 3121 3122 Value.setIsUnsigned(true); 3123 return Result; 3124 } 3125 3126 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3127 SourceLocation EqualOrColonLoc, 3128 bool GNUSyntax, 3129 ExprResult Init) { 3130 typedef DesignatedInitExpr::Designator ASTDesignator; 3131 3132 bool Invalid = false; 3133 SmallVector<ASTDesignator, 32> Designators; 3134 SmallVector<Expr *, 32> InitExpressions; 3135 3136 // Build designators and check array designator expressions. 3137 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3138 const Designator &D = Desig.getDesignator(Idx); 3139 switch (D.getKind()) { 3140 case Designator::FieldDesignator: 3141 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3142 D.getFieldLoc())); 3143 break; 3144 3145 case Designator::ArrayDesignator: { 3146 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3147 llvm::APSInt IndexValue; 3148 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3149 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3150 if (!Index) 3151 Invalid = true; 3152 else { 3153 Designators.push_back(ASTDesignator(InitExpressions.size(), 3154 D.getLBracketLoc(), 3155 D.getRBracketLoc())); 3156 InitExpressions.push_back(Index); 3157 } 3158 break; 3159 } 3160 3161 case Designator::ArrayRangeDesignator: { 3162 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3163 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3164 llvm::APSInt StartValue; 3165 llvm::APSInt EndValue; 3166 bool StartDependent = StartIndex->isTypeDependent() || 3167 StartIndex->isValueDependent(); 3168 bool EndDependent = EndIndex->isTypeDependent() || 3169 EndIndex->isValueDependent(); 3170 if (!StartDependent) 3171 StartIndex = 3172 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3173 if (!EndDependent) 3174 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3175 3176 if (!StartIndex || !EndIndex) 3177 Invalid = true; 3178 else { 3179 // Make sure we're comparing values with the same bit width. 3180 if (StartDependent || EndDependent) { 3181 // Nothing to compute. 3182 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3183 EndValue = EndValue.extend(StartValue.getBitWidth()); 3184 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3185 StartValue = StartValue.extend(EndValue.getBitWidth()); 3186 3187 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3188 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3189 << StartValue.toString(10) << EndValue.toString(10) 3190 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3191 Invalid = true; 3192 } else { 3193 Designators.push_back(ASTDesignator(InitExpressions.size(), 3194 D.getLBracketLoc(), 3195 D.getEllipsisLoc(), 3196 D.getRBracketLoc())); 3197 InitExpressions.push_back(StartIndex); 3198 InitExpressions.push_back(EndIndex); 3199 } 3200 } 3201 break; 3202 } 3203 } 3204 } 3205 3206 if (Invalid || Init.isInvalid()) 3207 return ExprError(); 3208 3209 // Clear out the expressions within the designation. 3210 Desig.ClearExprs(*this); 3211 3212 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3213 EqualOrColonLoc, GNUSyntax, 3214 Init.getAs<Expr>()); 3215 } 3216 3217 //===----------------------------------------------------------------------===// 3218 // Initialization entity 3219 //===----------------------------------------------------------------------===// 3220 3221 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3222 const InitializedEntity &Parent) 3223 : Parent(&Parent), Index(Index) 3224 { 3225 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3226 Kind = EK_ArrayElement; 3227 Type = AT->getElementType(); 3228 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3229 Kind = EK_VectorElement; 3230 Type = VT->getElementType(); 3231 } else { 3232 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3233 assert(CT && "Unexpected type"); 3234 Kind = EK_ComplexElement; 3235 Type = CT->getElementType(); 3236 } 3237 } 3238 3239 InitializedEntity 3240 InitializedEntity::InitializeBase(ASTContext &Context, 3241 const CXXBaseSpecifier *Base, 3242 bool IsInheritedVirtualBase, 3243 const InitializedEntity *Parent) { 3244 InitializedEntity Result; 3245 Result.Kind = EK_Base; 3246 Result.Parent = Parent; 3247 Result.Base = reinterpret_cast<uintptr_t>(Base); 3248 if (IsInheritedVirtualBase) 3249 Result.Base |= 0x01; 3250 3251 Result.Type = Base->getType(); 3252 return Result; 3253 } 3254 3255 DeclarationName InitializedEntity::getName() const { 3256 switch (getKind()) { 3257 case EK_Parameter: 3258 case EK_Parameter_CF_Audited: { 3259 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3260 return (D ? D->getDeclName() : DeclarationName()); 3261 } 3262 3263 case EK_Variable: 3264 case EK_Member: 3265 case EK_Binding: 3266 return Variable.VariableOrMember->getDeclName(); 3267 3268 case EK_LambdaCapture: 3269 return DeclarationName(Capture.VarID); 3270 3271 case EK_Result: 3272 case EK_StmtExprResult: 3273 case EK_Exception: 3274 case EK_New: 3275 case EK_Temporary: 3276 case EK_Base: 3277 case EK_Delegating: 3278 case EK_ArrayElement: 3279 case EK_VectorElement: 3280 case EK_ComplexElement: 3281 case EK_BlockElement: 3282 case EK_LambdaToBlockConversionBlockElement: 3283 case EK_CompoundLiteralInit: 3284 case EK_RelatedResult: 3285 return DeclarationName(); 3286 } 3287 3288 llvm_unreachable("Invalid EntityKind!"); 3289 } 3290 3291 ValueDecl *InitializedEntity::getDecl() const { 3292 switch (getKind()) { 3293 case EK_Variable: 3294 case EK_Member: 3295 case EK_Binding: 3296 return Variable.VariableOrMember; 3297 3298 case EK_Parameter: 3299 case EK_Parameter_CF_Audited: 3300 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3301 3302 case EK_Result: 3303 case EK_StmtExprResult: 3304 case EK_Exception: 3305 case EK_New: 3306 case EK_Temporary: 3307 case EK_Base: 3308 case EK_Delegating: 3309 case EK_ArrayElement: 3310 case EK_VectorElement: 3311 case EK_ComplexElement: 3312 case EK_BlockElement: 3313 case EK_LambdaToBlockConversionBlockElement: 3314 case EK_LambdaCapture: 3315 case EK_CompoundLiteralInit: 3316 case EK_RelatedResult: 3317 return nullptr; 3318 } 3319 3320 llvm_unreachable("Invalid EntityKind!"); 3321 } 3322 3323 bool InitializedEntity::allowsNRVO() const { 3324 switch (getKind()) { 3325 case EK_Result: 3326 case EK_Exception: 3327 return LocAndNRVO.NRVO; 3328 3329 case EK_StmtExprResult: 3330 case EK_Variable: 3331 case EK_Parameter: 3332 case EK_Parameter_CF_Audited: 3333 case EK_Member: 3334 case EK_Binding: 3335 case EK_New: 3336 case EK_Temporary: 3337 case EK_CompoundLiteralInit: 3338 case EK_Base: 3339 case EK_Delegating: 3340 case EK_ArrayElement: 3341 case EK_VectorElement: 3342 case EK_ComplexElement: 3343 case EK_BlockElement: 3344 case EK_LambdaToBlockConversionBlockElement: 3345 case EK_LambdaCapture: 3346 case EK_RelatedResult: 3347 break; 3348 } 3349 3350 return false; 3351 } 3352 3353 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3354 assert(getParent() != this); 3355 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3356 for (unsigned I = 0; I != Depth; ++I) 3357 OS << "`-"; 3358 3359 switch (getKind()) { 3360 case EK_Variable: OS << "Variable"; break; 3361 case EK_Parameter: OS << "Parameter"; break; 3362 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3363 break; 3364 case EK_Result: OS << "Result"; break; 3365 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3366 case EK_Exception: OS << "Exception"; break; 3367 case EK_Member: OS << "Member"; break; 3368 case EK_Binding: OS << "Binding"; break; 3369 case EK_New: OS << "New"; break; 3370 case EK_Temporary: OS << "Temporary"; break; 3371 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3372 case EK_RelatedResult: OS << "RelatedResult"; break; 3373 case EK_Base: OS << "Base"; break; 3374 case EK_Delegating: OS << "Delegating"; break; 3375 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3376 case EK_VectorElement: OS << "VectorElement " << Index; break; 3377 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3378 case EK_BlockElement: OS << "Block"; break; 3379 case EK_LambdaToBlockConversionBlockElement: 3380 OS << "Block (lambda)"; 3381 break; 3382 case EK_LambdaCapture: 3383 OS << "LambdaCapture "; 3384 OS << DeclarationName(Capture.VarID); 3385 break; 3386 } 3387 3388 if (auto *D = getDecl()) { 3389 OS << " "; 3390 D->printQualifiedName(OS); 3391 } 3392 3393 OS << " '" << getType().getAsString() << "'\n"; 3394 3395 return Depth + 1; 3396 } 3397 3398 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3399 dumpImpl(llvm::errs()); 3400 } 3401 3402 //===----------------------------------------------------------------------===// 3403 // Initialization sequence 3404 //===----------------------------------------------------------------------===// 3405 3406 void InitializationSequence::Step::Destroy() { 3407 switch (Kind) { 3408 case SK_ResolveAddressOfOverloadedFunction: 3409 case SK_CastDerivedToBaseRValue: 3410 case SK_CastDerivedToBaseXValue: 3411 case SK_CastDerivedToBaseLValue: 3412 case SK_BindReference: 3413 case SK_BindReferenceToTemporary: 3414 case SK_FinalCopy: 3415 case SK_ExtraneousCopyToTemporary: 3416 case SK_UserConversion: 3417 case SK_QualificationConversionRValue: 3418 case SK_QualificationConversionXValue: 3419 case SK_QualificationConversionLValue: 3420 case SK_AtomicConversion: 3421 case SK_ListInitialization: 3422 case SK_UnwrapInitList: 3423 case SK_RewrapInitList: 3424 case SK_ConstructorInitialization: 3425 case SK_ConstructorInitializationFromList: 3426 case SK_ZeroInitialization: 3427 case SK_CAssignment: 3428 case SK_StringInit: 3429 case SK_ObjCObjectConversion: 3430 case SK_ArrayLoopIndex: 3431 case SK_ArrayLoopInit: 3432 case SK_ArrayInit: 3433 case SK_GNUArrayInit: 3434 case SK_ParenthesizedArrayInit: 3435 case SK_PassByIndirectCopyRestore: 3436 case SK_PassByIndirectRestore: 3437 case SK_ProduceObjCObject: 3438 case SK_StdInitializerList: 3439 case SK_StdInitializerListConstructorCall: 3440 case SK_OCLSamplerInit: 3441 case SK_OCLZeroOpaqueType: 3442 break; 3443 3444 case SK_ConversionSequence: 3445 case SK_ConversionSequenceNoNarrowing: 3446 delete ICS; 3447 } 3448 } 3449 3450 bool InitializationSequence::isDirectReferenceBinding() const { 3451 // There can be some lvalue adjustments after the SK_BindReference step. 3452 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3453 if (I->Kind == SK_BindReference) 3454 return true; 3455 if (I->Kind == SK_BindReferenceToTemporary) 3456 return false; 3457 } 3458 return false; 3459 } 3460 3461 bool InitializationSequence::isAmbiguous() const { 3462 if (!Failed()) 3463 return false; 3464 3465 switch (getFailureKind()) { 3466 case FK_TooManyInitsForReference: 3467 case FK_ParenthesizedListInitForReference: 3468 case FK_ArrayNeedsInitList: 3469 case FK_ArrayNeedsInitListOrStringLiteral: 3470 case FK_ArrayNeedsInitListOrWideStringLiteral: 3471 case FK_NarrowStringIntoWideCharArray: 3472 case FK_WideStringIntoCharArray: 3473 case FK_IncompatWideStringIntoWideChar: 3474 case FK_PlainStringIntoUTF8Char: 3475 case FK_UTF8StringIntoPlainChar: 3476 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3477 case FK_NonConstLValueReferenceBindingToTemporary: 3478 case FK_NonConstLValueReferenceBindingToBitfield: 3479 case FK_NonConstLValueReferenceBindingToVectorElement: 3480 case FK_NonConstLValueReferenceBindingToUnrelated: 3481 case FK_RValueReferenceBindingToLValue: 3482 case FK_ReferenceAddrspaceMismatchTemporary: 3483 case FK_ReferenceInitDropsQualifiers: 3484 case FK_ReferenceInitFailed: 3485 case FK_ConversionFailed: 3486 case FK_ConversionFromPropertyFailed: 3487 case FK_TooManyInitsForScalar: 3488 case FK_ParenthesizedListInitForScalar: 3489 case FK_ReferenceBindingToInitList: 3490 case FK_InitListBadDestinationType: 3491 case FK_DefaultInitOfConst: 3492 case FK_Incomplete: 3493 case FK_ArrayTypeMismatch: 3494 case FK_NonConstantArrayInit: 3495 case FK_ListInitializationFailed: 3496 case FK_VariableLengthArrayHasInitializer: 3497 case FK_PlaceholderType: 3498 case FK_ExplicitConstructor: 3499 case FK_AddressOfUnaddressableFunction: 3500 return false; 3501 3502 case FK_ReferenceInitOverloadFailed: 3503 case FK_UserConversionOverloadFailed: 3504 case FK_ConstructorOverloadFailed: 3505 case FK_ListConstructorOverloadFailed: 3506 return FailedOverloadResult == OR_Ambiguous; 3507 } 3508 3509 llvm_unreachable("Invalid EntityKind!"); 3510 } 3511 3512 bool InitializationSequence::isConstructorInitialization() const { 3513 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3514 } 3515 3516 void 3517 InitializationSequence 3518 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3519 DeclAccessPair Found, 3520 bool HadMultipleCandidates) { 3521 Step S; 3522 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3523 S.Type = Function->getType(); 3524 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3525 S.Function.Function = Function; 3526 S.Function.FoundDecl = Found; 3527 Steps.push_back(S); 3528 } 3529 3530 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3531 ExprValueKind VK) { 3532 Step S; 3533 switch (VK) { 3534 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3535 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3536 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3537 } 3538 S.Type = BaseType; 3539 Steps.push_back(S); 3540 } 3541 3542 void InitializationSequence::AddReferenceBindingStep(QualType T, 3543 bool BindingTemporary) { 3544 Step S; 3545 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3546 S.Type = T; 3547 Steps.push_back(S); 3548 } 3549 3550 void InitializationSequence::AddFinalCopy(QualType T) { 3551 Step S; 3552 S.Kind = SK_FinalCopy; 3553 S.Type = T; 3554 Steps.push_back(S); 3555 } 3556 3557 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3558 Step S; 3559 S.Kind = SK_ExtraneousCopyToTemporary; 3560 S.Type = T; 3561 Steps.push_back(S); 3562 } 3563 3564 void 3565 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3566 DeclAccessPair FoundDecl, 3567 QualType T, 3568 bool HadMultipleCandidates) { 3569 Step S; 3570 S.Kind = SK_UserConversion; 3571 S.Type = T; 3572 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3573 S.Function.Function = Function; 3574 S.Function.FoundDecl = FoundDecl; 3575 Steps.push_back(S); 3576 } 3577 3578 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3579 ExprValueKind VK) { 3580 Step S; 3581 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3582 switch (VK) { 3583 case VK_RValue: 3584 S.Kind = SK_QualificationConversionRValue; 3585 break; 3586 case VK_XValue: 3587 S.Kind = SK_QualificationConversionXValue; 3588 break; 3589 case VK_LValue: 3590 S.Kind = SK_QualificationConversionLValue; 3591 break; 3592 } 3593 S.Type = Ty; 3594 Steps.push_back(S); 3595 } 3596 3597 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3598 Step S; 3599 S.Kind = SK_AtomicConversion; 3600 S.Type = Ty; 3601 Steps.push_back(S); 3602 } 3603 3604 void InitializationSequence::AddConversionSequenceStep( 3605 const ImplicitConversionSequence &ICS, QualType T, 3606 bool TopLevelOfInitList) { 3607 Step S; 3608 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3609 : SK_ConversionSequence; 3610 S.Type = T; 3611 S.ICS = new ImplicitConversionSequence(ICS); 3612 Steps.push_back(S); 3613 } 3614 3615 void InitializationSequence::AddListInitializationStep(QualType T) { 3616 Step S; 3617 S.Kind = SK_ListInitialization; 3618 S.Type = T; 3619 Steps.push_back(S); 3620 } 3621 3622 void InitializationSequence::AddConstructorInitializationStep( 3623 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3624 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3625 Step S; 3626 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3627 : SK_ConstructorInitializationFromList 3628 : SK_ConstructorInitialization; 3629 S.Type = T; 3630 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3631 S.Function.Function = Constructor; 3632 S.Function.FoundDecl = FoundDecl; 3633 Steps.push_back(S); 3634 } 3635 3636 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3637 Step S; 3638 S.Kind = SK_ZeroInitialization; 3639 S.Type = T; 3640 Steps.push_back(S); 3641 } 3642 3643 void InitializationSequence::AddCAssignmentStep(QualType T) { 3644 Step S; 3645 S.Kind = SK_CAssignment; 3646 S.Type = T; 3647 Steps.push_back(S); 3648 } 3649 3650 void InitializationSequence::AddStringInitStep(QualType T) { 3651 Step S; 3652 S.Kind = SK_StringInit; 3653 S.Type = T; 3654 Steps.push_back(S); 3655 } 3656 3657 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3658 Step S; 3659 S.Kind = SK_ObjCObjectConversion; 3660 S.Type = T; 3661 Steps.push_back(S); 3662 } 3663 3664 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3665 Step S; 3666 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3667 S.Type = T; 3668 Steps.push_back(S); 3669 } 3670 3671 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3672 Step S; 3673 S.Kind = SK_ArrayLoopIndex; 3674 S.Type = EltT; 3675 Steps.insert(Steps.begin(), S); 3676 3677 S.Kind = SK_ArrayLoopInit; 3678 S.Type = T; 3679 Steps.push_back(S); 3680 } 3681 3682 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3683 Step S; 3684 S.Kind = SK_ParenthesizedArrayInit; 3685 S.Type = T; 3686 Steps.push_back(S); 3687 } 3688 3689 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3690 bool shouldCopy) { 3691 Step s; 3692 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3693 : SK_PassByIndirectRestore); 3694 s.Type = type; 3695 Steps.push_back(s); 3696 } 3697 3698 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3699 Step S; 3700 S.Kind = SK_ProduceObjCObject; 3701 S.Type = T; 3702 Steps.push_back(S); 3703 } 3704 3705 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3706 Step S; 3707 S.Kind = SK_StdInitializerList; 3708 S.Type = T; 3709 Steps.push_back(S); 3710 } 3711 3712 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3713 Step S; 3714 S.Kind = SK_OCLSamplerInit; 3715 S.Type = T; 3716 Steps.push_back(S); 3717 } 3718 3719 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3720 Step S; 3721 S.Kind = SK_OCLZeroOpaqueType; 3722 S.Type = T; 3723 Steps.push_back(S); 3724 } 3725 3726 void InitializationSequence::RewrapReferenceInitList(QualType T, 3727 InitListExpr *Syntactic) { 3728 assert(Syntactic->getNumInits() == 1 && 3729 "Can only rewrap trivial init lists."); 3730 Step S; 3731 S.Kind = SK_UnwrapInitList; 3732 S.Type = Syntactic->getInit(0)->getType(); 3733 Steps.insert(Steps.begin(), S); 3734 3735 S.Kind = SK_RewrapInitList; 3736 S.Type = T; 3737 S.WrappingSyntacticList = Syntactic; 3738 Steps.push_back(S); 3739 } 3740 3741 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3742 OverloadingResult Result) { 3743 setSequenceKind(FailedSequence); 3744 this->Failure = Failure; 3745 this->FailedOverloadResult = Result; 3746 } 3747 3748 //===----------------------------------------------------------------------===// 3749 // Attempt initialization 3750 //===----------------------------------------------------------------------===// 3751 3752 /// Tries to add a zero initializer. Returns true if that worked. 3753 static bool 3754 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3755 const InitializedEntity &Entity) { 3756 if (Entity.getKind() != InitializedEntity::EK_Variable) 3757 return false; 3758 3759 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3760 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3761 return false; 3762 3763 QualType VariableTy = VD->getType().getCanonicalType(); 3764 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3765 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3766 if (!Init.empty()) { 3767 Sequence.AddZeroInitializationStep(Entity.getType()); 3768 Sequence.SetZeroInitializationFixit(Init, Loc); 3769 return true; 3770 } 3771 return false; 3772 } 3773 3774 static void MaybeProduceObjCObject(Sema &S, 3775 InitializationSequence &Sequence, 3776 const InitializedEntity &Entity) { 3777 if (!S.getLangOpts().ObjCAutoRefCount) return; 3778 3779 /// When initializing a parameter, produce the value if it's marked 3780 /// __attribute__((ns_consumed)). 3781 if (Entity.isParameterKind()) { 3782 if (!Entity.isParameterConsumed()) 3783 return; 3784 3785 assert(Entity.getType()->isObjCRetainableType() && 3786 "consuming an object of unretainable type?"); 3787 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3788 3789 /// When initializing a return value, if the return type is a 3790 /// retainable type, then returns need to immediately retain the 3791 /// object. If an autorelease is required, it will be done at the 3792 /// last instant. 3793 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3794 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3795 if (!Entity.getType()->isObjCRetainableType()) 3796 return; 3797 3798 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3799 } 3800 } 3801 3802 static void TryListInitialization(Sema &S, 3803 const InitializedEntity &Entity, 3804 const InitializationKind &Kind, 3805 InitListExpr *InitList, 3806 InitializationSequence &Sequence, 3807 bool TreatUnavailableAsInvalid); 3808 3809 /// When initializing from init list via constructor, handle 3810 /// initialization of an object of type std::initializer_list<T>. 3811 /// 3812 /// \return true if we have handled initialization of an object of type 3813 /// std::initializer_list<T>, false otherwise. 3814 static bool TryInitializerListConstruction(Sema &S, 3815 InitListExpr *List, 3816 QualType DestType, 3817 InitializationSequence &Sequence, 3818 bool TreatUnavailableAsInvalid) { 3819 QualType E; 3820 if (!S.isStdInitializerList(DestType, &E)) 3821 return false; 3822 3823 if (!S.isCompleteType(List->getExprLoc(), E)) { 3824 Sequence.setIncompleteTypeFailure(E); 3825 return true; 3826 } 3827 3828 // Try initializing a temporary array from the init list. 3829 QualType ArrayType = S.Context.getConstantArrayType( 3830 E.withConst(), 3831 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3832 List->getNumInits()), 3833 nullptr, clang::ArrayType::Normal, 0); 3834 InitializedEntity HiddenArray = 3835 InitializedEntity::InitializeTemporary(ArrayType); 3836 InitializationKind Kind = InitializationKind::CreateDirectList( 3837 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3838 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3839 TreatUnavailableAsInvalid); 3840 if (Sequence) 3841 Sequence.AddStdInitializerListConstructionStep(DestType); 3842 return true; 3843 } 3844 3845 /// Determine if the constructor has the signature of a copy or move 3846 /// constructor for the type T of the class in which it was found. That is, 3847 /// determine if its first parameter is of type T or reference to (possibly 3848 /// cv-qualified) T. 3849 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3850 const ConstructorInfo &Info) { 3851 if (Info.Constructor->getNumParams() == 0) 3852 return false; 3853 3854 QualType ParmT = 3855 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3856 QualType ClassT = 3857 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3858 3859 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3860 } 3861 3862 static OverloadingResult 3863 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3864 MultiExprArg Args, 3865 OverloadCandidateSet &CandidateSet, 3866 QualType DestType, 3867 DeclContext::lookup_result Ctors, 3868 OverloadCandidateSet::iterator &Best, 3869 bool CopyInitializing, bool AllowExplicit, 3870 bool OnlyListConstructors, bool IsListInit, 3871 bool SecondStepOfCopyInit = false) { 3872 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3873 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3874 3875 for (NamedDecl *D : Ctors) { 3876 auto Info = getConstructorInfo(D); 3877 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3878 continue; 3879 3880 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3881 continue; 3882 3883 // C++11 [over.best.ics]p4: 3884 // ... and the constructor or user-defined conversion function is a 3885 // candidate by 3886 // - 13.3.1.3, when the argument is the temporary in the second step 3887 // of a class copy-initialization, or 3888 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3889 // - the second phase of 13.3.1.7 when the initializer list has exactly 3890 // one element that is itself an initializer list, and the target is 3891 // the first parameter of a constructor of class X, and the conversion 3892 // is to X or reference to (possibly cv-qualified X), 3893 // user-defined conversion sequences are not considered. 3894 bool SuppressUserConversions = 3895 SecondStepOfCopyInit || 3896 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3897 hasCopyOrMoveCtorParam(S.Context, Info)); 3898 3899 if (Info.ConstructorTmpl) 3900 S.AddTemplateOverloadCandidate( 3901 Info.ConstructorTmpl, Info.FoundDecl, 3902 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3903 /*PartialOverloading=*/false, AllowExplicit); 3904 else { 3905 // C++ [over.match.copy]p1: 3906 // - When initializing a temporary to be bound to the first parameter 3907 // of a constructor [for type T] that takes a reference to possibly 3908 // cv-qualified T as its first argument, called with a single 3909 // argument in the context of direct-initialization, explicit 3910 // conversion functions are also considered. 3911 // FIXME: What if a constructor template instantiates to such a signature? 3912 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3913 Args.size() == 1 && 3914 hasCopyOrMoveCtorParam(S.Context, Info); 3915 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3916 CandidateSet, SuppressUserConversions, 3917 /*PartialOverloading=*/false, AllowExplicit, 3918 AllowExplicitConv); 3919 } 3920 } 3921 3922 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3923 // 3924 // When initializing an object of class type T by constructor 3925 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3926 // from a single expression of class type U, conversion functions of 3927 // U that convert to the non-reference type cv T are candidates. 3928 // Explicit conversion functions are only candidates during 3929 // direct-initialization. 3930 // 3931 // Note: SecondStepOfCopyInit is only ever true in this case when 3932 // evaluating whether to produce a C++98 compatibility warning. 3933 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3934 !SecondStepOfCopyInit) { 3935 Expr *Initializer = Args[0]; 3936 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3937 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3938 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3939 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3940 NamedDecl *D = *I; 3941 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3942 D = D->getUnderlyingDecl(); 3943 3944 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3945 CXXConversionDecl *Conv; 3946 if (ConvTemplate) 3947 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3948 else 3949 Conv = cast<CXXConversionDecl>(D); 3950 3951 if (ConvTemplate) 3952 S.AddTemplateConversionCandidate( 3953 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3954 CandidateSet, AllowExplicit, AllowExplicit, 3955 /*AllowResultConversion*/ false); 3956 else 3957 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3958 DestType, CandidateSet, AllowExplicit, 3959 AllowExplicit, 3960 /*AllowResultConversion*/ false); 3961 } 3962 } 3963 } 3964 3965 // Perform overload resolution and return the result. 3966 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3967 } 3968 3969 /// Attempt initialization by constructor (C++ [dcl.init]), which 3970 /// enumerates the constructors of the initialized entity and performs overload 3971 /// resolution to select the best. 3972 /// \param DestType The destination class type. 3973 /// \param DestArrayType The destination type, which is either DestType or 3974 /// a (possibly multidimensional) array of DestType. 3975 /// \param IsListInit Is this list-initialization? 3976 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3977 /// list-initialization from {x} where x is the same 3978 /// type as the entity? 3979 static void TryConstructorInitialization(Sema &S, 3980 const InitializedEntity &Entity, 3981 const InitializationKind &Kind, 3982 MultiExprArg Args, QualType DestType, 3983 QualType DestArrayType, 3984 InitializationSequence &Sequence, 3985 bool IsListInit = false, 3986 bool IsInitListCopy = false) { 3987 assert(((!IsListInit && !IsInitListCopy) || 3988 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3989 "IsListInit/IsInitListCopy must come with a single initializer list " 3990 "argument."); 3991 InitListExpr *ILE = 3992 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3993 MultiExprArg UnwrappedArgs = 3994 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 3995 3996 // The type we're constructing needs to be complete. 3997 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3998 Sequence.setIncompleteTypeFailure(DestType); 3999 return; 4000 } 4001 4002 // C++17 [dcl.init]p17: 4003 // - If the initializer expression is a prvalue and the cv-unqualified 4004 // version of the source type is the same class as the class of the 4005 // destination, the initializer expression is used to initialize the 4006 // destination object. 4007 // Per DR (no number yet), this does not apply when initializing a base 4008 // class or delegating to another constructor from a mem-initializer. 4009 // ObjC++: Lambda captured by the block in the lambda to block conversion 4010 // should avoid copy elision. 4011 if (S.getLangOpts().CPlusPlus17 && 4012 Entity.getKind() != InitializedEntity::EK_Base && 4013 Entity.getKind() != InitializedEntity::EK_Delegating && 4014 Entity.getKind() != 4015 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4016 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4017 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4018 // Convert qualifications if necessary. 4019 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4020 if (ILE) 4021 Sequence.RewrapReferenceInitList(DestType, ILE); 4022 return; 4023 } 4024 4025 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4026 assert(DestRecordType && "Constructor initialization requires record type"); 4027 CXXRecordDecl *DestRecordDecl 4028 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4029 4030 // Build the candidate set directly in the initialization sequence 4031 // structure, so that it will persist if we fail. 4032 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4033 4034 // Determine whether we are allowed to call explicit constructors or 4035 // explicit conversion operators. 4036 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4037 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4038 4039 // - Otherwise, if T is a class type, constructors are considered. The 4040 // applicable constructors are enumerated, and the best one is chosen 4041 // through overload resolution. 4042 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4043 4044 OverloadingResult Result = OR_No_Viable_Function; 4045 OverloadCandidateSet::iterator Best; 4046 bool AsInitializerList = false; 4047 4048 // C++11 [over.match.list]p1, per DR1467: 4049 // When objects of non-aggregate type T are list-initialized, such that 4050 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4051 // according to the rules in this section, overload resolution selects 4052 // the constructor in two phases: 4053 // 4054 // - Initially, the candidate functions are the initializer-list 4055 // constructors of the class T and the argument list consists of the 4056 // initializer list as a single argument. 4057 if (IsListInit) { 4058 AsInitializerList = true; 4059 4060 // If the initializer list has no elements and T has a default constructor, 4061 // the first phase is omitted. 4062 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4063 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4064 CandidateSet, DestType, Ctors, Best, 4065 CopyInitialization, AllowExplicit, 4066 /*OnlyListConstructors=*/true, 4067 IsListInit); 4068 } 4069 4070 // C++11 [over.match.list]p1: 4071 // - If no viable initializer-list constructor is found, overload resolution 4072 // is performed again, where the candidate functions are all the 4073 // constructors of the class T and the argument list consists of the 4074 // elements of the initializer list. 4075 if (Result == OR_No_Viable_Function) { 4076 AsInitializerList = false; 4077 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4078 CandidateSet, DestType, Ctors, Best, 4079 CopyInitialization, AllowExplicit, 4080 /*OnlyListConstructors=*/false, 4081 IsListInit); 4082 } 4083 if (Result) { 4084 Sequence.SetOverloadFailure(IsListInit ? 4085 InitializationSequence::FK_ListConstructorOverloadFailed : 4086 InitializationSequence::FK_ConstructorOverloadFailed, 4087 Result); 4088 return; 4089 } 4090 4091 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4092 4093 // In C++17, ResolveConstructorOverload can select a conversion function 4094 // instead of a constructor. 4095 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4096 // Add the user-defined conversion step that calls the conversion function. 4097 QualType ConvType = CD->getConversionType(); 4098 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4099 "should not have selected this conversion function"); 4100 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4101 HadMultipleCandidates); 4102 if (!S.Context.hasSameType(ConvType, DestType)) 4103 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4104 if (IsListInit) 4105 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4106 return; 4107 } 4108 4109 // C++11 [dcl.init]p6: 4110 // If a program calls for the default initialization of an object 4111 // of a const-qualified type T, T shall be a class type with a 4112 // user-provided default constructor. 4113 // C++ core issue 253 proposal: 4114 // If the implicit default constructor initializes all subobjects, no 4115 // initializer should be required. 4116 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4117 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4118 if (Kind.getKind() == InitializationKind::IK_Default && 4119 Entity.getType().isConstQualified()) { 4120 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4121 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4122 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4123 return; 4124 } 4125 } 4126 4127 // C++11 [over.match.list]p1: 4128 // In copy-list-initialization, if an explicit constructor is chosen, the 4129 // initializer is ill-formed. 4130 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4131 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4132 return; 4133 } 4134 4135 // Add the constructor initialization step. Any cv-qualification conversion is 4136 // subsumed by the initialization. 4137 Sequence.AddConstructorInitializationStep( 4138 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4139 IsListInit | IsInitListCopy, AsInitializerList); 4140 } 4141 4142 static bool 4143 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4144 Expr *Initializer, 4145 QualType &SourceType, 4146 QualType &UnqualifiedSourceType, 4147 QualType UnqualifiedTargetType, 4148 InitializationSequence &Sequence) { 4149 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4150 S.Context.OverloadTy) { 4151 DeclAccessPair Found; 4152 bool HadMultipleCandidates = false; 4153 if (FunctionDecl *Fn 4154 = S.ResolveAddressOfOverloadedFunction(Initializer, 4155 UnqualifiedTargetType, 4156 false, Found, 4157 &HadMultipleCandidates)) { 4158 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4159 HadMultipleCandidates); 4160 SourceType = Fn->getType(); 4161 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4162 } else if (!UnqualifiedTargetType->isRecordType()) { 4163 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4164 return true; 4165 } 4166 } 4167 return false; 4168 } 4169 4170 static void TryReferenceInitializationCore(Sema &S, 4171 const InitializedEntity &Entity, 4172 const InitializationKind &Kind, 4173 Expr *Initializer, 4174 QualType cv1T1, QualType T1, 4175 Qualifiers T1Quals, 4176 QualType cv2T2, QualType T2, 4177 Qualifiers T2Quals, 4178 InitializationSequence &Sequence); 4179 4180 static void TryValueInitialization(Sema &S, 4181 const InitializedEntity &Entity, 4182 const InitializationKind &Kind, 4183 InitializationSequence &Sequence, 4184 InitListExpr *InitList = nullptr); 4185 4186 /// Attempt list initialization of a reference. 4187 static void TryReferenceListInitialization(Sema &S, 4188 const InitializedEntity &Entity, 4189 const InitializationKind &Kind, 4190 InitListExpr *InitList, 4191 InitializationSequence &Sequence, 4192 bool TreatUnavailableAsInvalid) { 4193 // First, catch C++03 where this isn't possible. 4194 if (!S.getLangOpts().CPlusPlus11) { 4195 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4196 return; 4197 } 4198 // Can't reference initialize a compound literal. 4199 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4200 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4201 return; 4202 } 4203 4204 QualType DestType = Entity.getType(); 4205 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4206 Qualifiers T1Quals; 4207 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4208 4209 // Reference initialization via an initializer list works thus: 4210 // If the initializer list consists of a single element that is 4211 // reference-related to the referenced type, bind directly to that element 4212 // (possibly creating temporaries). 4213 // Otherwise, initialize a temporary with the initializer list and 4214 // bind to that. 4215 if (InitList->getNumInits() == 1) { 4216 Expr *Initializer = InitList->getInit(0); 4217 QualType cv2T2 = Initializer->getType(); 4218 Qualifiers T2Quals; 4219 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4220 4221 // If this fails, creating a temporary wouldn't work either. 4222 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4223 T1, Sequence)) 4224 return; 4225 4226 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4227 Sema::ReferenceCompareResult RefRelationship 4228 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4229 if (RefRelationship >= Sema::Ref_Related) { 4230 // Try to bind the reference here. 4231 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4232 T1Quals, cv2T2, T2, T2Quals, Sequence); 4233 if (Sequence) 4234 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4235 return; 4236 } 4237 4238 // Update the initializer if we've resolved an overloaded function. 4239 if (Sequence.step_begin() != Sequence.step_end()) 4240 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4241 } 4242 4243 // Not reference-related. Create a temporary and bind to that. 4244 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4245 4246 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4247 TreatUnavailableAsInvalid); 4248 if (Sequence) { 4249 if (DestType->isRValueReferenceType() || 4250 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4251 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4252 else 4253 Sequence.SetFailed( 4254 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4255 } 4256 } 4257 4258 /// Attempt list initialization (C++0x [dcl.init.list]) 4259 static void TryListInitialization(Sema &S, 4260 const InitializedEntity &Entity, 4261 const InitializationKind &Kind, 4262 InitListExpr *InitList, 4263 InitializationSequence &Sequence, 4264 bool TreatUnavailableAsInvalid) { 4265 QualType DestType = Entity.getType(); 4266 4267 // C++ doesn't allow scalar initialization with more than one argument. 4268 // But C99 complex numbers are scalars and it makes sense there. 4269 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4270 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4271 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4272 return; 4273 } 4274 if (DestType->isReferenceType()) { 4275 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4276 TreatUnavailableAsInvalid); 4277 return; 4278 } 4279 4280 if (DestType->isRecordType() && 4281 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4282 Sequence.setIncompleteTypeFailure(DestType); 4283 return; 4284 } 4285 4286 // C++11 [dcl.init.list]p3, per DR1467: 4287 // - If T is a class type and the initializer list has a single element of 4288 // type cv U, where U is T or a class derived from T, the object is 4289 // initialized from that element (by copy-initialization for 4290 // copy-list-initialization, or by direct-initialization for 4291 // direct-list-initialization). 4292 // - Otherwise, if T is a character array and the initializer list has a 4293 // single element that is an appropriately-typed string literal 4294 // (8.5.2 [dcl.init.string]), initialization is performed as described 4295 // in that section. 4296 // - Otherwise, if T is an aggregate, [...] (continue below). 4297 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4298 if (DestType->isRecordType()) { 4299 QualType InitType = InitList->getInit(0)->getType(); 4300 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4301 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4302 Expr *InitListAsExpr = InitList; 4303 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4304 DestType, Sequence, 4305 /*InitListSyntax*/false, 4306 /*IsInitListCopy*/true); 4307 return; 4308 } 4309 } 4310 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4311 Expr *SubInit[1] = {InitList->getInit(0)}; 4312 if (!isa<VariableArrayType>(DestAT) && 4313 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4314 InitializationKind SubKind = 4315 Kind.getKind() == InitializationKind::IK_DirectList 4316 ? InitializationKind::CreateDirect(Kind.getLocation(), 4317 InitList->getLBraceLoc(), 4318 InitList->getRBraceLoc()) 4319 : Kind; 4320 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4321 /*TopLevelOfInitList*/ true, 4322 TreatUnavailableAsInvalid); 4323 4324 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4325 // the element is not an appropriately-typed string literal, in which 4326 // case we should proceed as in C++11 (below). 4327 if (Sequence) { 4328 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4329 return; 4330 } 4331 } 4332 } 4333 } 4334 4335 // C++11 [dcl.init.list]p3: 4336 // - If T is an aggregate, aggregate initialization is performed. 4337 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4338 (S.getLangOpts().CPlusPlus11 && 4339 S.isStdInitializerList(DestType, nullptr))) { 4340 if (S.getLangOpts().CPlusPlus11) { 4341 // - Otherwise, if the initializer list has no elements and T is a 4342 // class type with a default constructor, the object is 4343 // value-initialized. 4344 if (InitList->getNumInits() == 0) { 4345 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4346 if (S.LookupDefaultConstructor(RD)) { 4347 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4348 return; 4349 } 4350 } 4351 4352 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4353 // an initializer_list object constructed [...] 4354 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4355 TreatUnavailableAsInvalid)) 4356 return; 4357 4358 // - Otherwise, if T is a class type, constructors are considered. 4359 Expr *InitListAsExpr = InitList; 4360 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4361 DestType, Sequence, /*InitListSyntax*/true); 4362 } else 4363 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4364 return; 4365 } 4366 4367 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4368 InitList->getNumInits() == 1) { 4369 Expr *E = InitList->getInit(0); 4370 4371 // - Otherwise, if T is an enumeration with a fixed underlying type, 4372 // the initializer-list has a single element v, and the initialization 4373 // is direct-list-initialization, the object is initialized with the 4374 // value T(v); if a narrowing conversion is required to convert v to 4375 // the underlying type of T, the program is ill-formed. 4376 auto *ET = DestType->getAs<EnumType>(); 4377 if (S.getLangOpts().CPlusPlus17 && 4378 Kind.getKind() == InitializationKind::IK_DirectList && 4379 ET && ET->getDecl()->isFixed() && 4380 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4381 (E->getType()->isIntegralOrEnumerationType() || 4382 E->getType()->isFloatingType())) { 4383 // There are two ways that T(v) can work when T is an enumeration type. 4384 // If there is either an implicit conversion sequence from v to T or 4385 // a conversion function that can convert from v to T, then we use that. 4386 // Otherwise, if v is of integral, enumeration, or floating-point type, 4387 // it is converted to the enumeration type via its underlying type. 4388 // There is no overlap possible between these two cases (except when the 4389 // source value is already of the destination type), and the first 4390 // case is handled by the general case for single-element lists below. 4391 ImplicitConversionSequence ICS; 4392 ICS.setStandard(); 4393 ICS.Standard.setAsIdentityConversion(); 4394 if (!E->isRValue()) 4395 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4396 // If E is of a floating-point type, then the conversion is ill-formed 4397 // due to narrowing, but go through the motions in order to produce the 4398 // right diagnostic. 4399 ICS.Standard.Second = E->getType()->isFloatingType() 4400 ? ICK_Floating_Integral 4401 : ICK_Integral_Conversion; 4402 ICS.Standard.setFromType(E->getType()); 4403 ICS.Standard.setToType(0, E->getType()); 4404 ICS.Standard.setToType(1, DestType); 4405 ICS.Standard.setToType(2, DestType); 4406 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4407 /*TopLevelOfInitList*/true); 4408 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4409 return; 4410 } 4411 4412 // - Otherwise, if the initializer list has a single element of type E 4413 // [...references are handled above...], the object or reference is 4414 // initialized from that element (by copy-initialization for 4415 // copy-list-initialization, or by direct-initialization for 4416 // direct-list-initialization); if a narrowing conversion is required 4417 // to convert the element to T, the program is ill-formed. 4418 // 4419 // Per core-24034, this is direct-initialization if we were performing 4420 // direct-list-initialization and copy-initialization otherwise. 4421 // We can't use InitListChecker for this, because it always performs 4422 // copy-initialization. This only matters if we might use an 'explicit' 4423 // conversion operator, or for the special case conversion of nullptr_t to 4424 // bool, so we only need to handle those cases. 4425 // 4426 // FIXME: Why not do this in all cases? 4427 Expr *Init = InitList->getInit(0); 4428 if (Init->getType()->isRecordType() || 4429 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4430 InitializationKind SubKind = 4431 Kind.getKind() == InitializationKind::IK_DirectList 4432 ? InitializationKind::CreateDirect(Kind.getLocation(), 4433 InitList->getLBraceLoc(), 4434 InitList->getRBraceLoc()) 4435 : Kind; 4436 Expr *SubInit[1] = { Init }; 4437 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4438 /*TopLevelOfInitList*/true, 4439 TreatUnavailableAsInvalid); 4440 if (Sequence) 4441 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4442 return; 4443 } 4444 } 4445 4446 InitListChecker CheckInitList(S, Entity, InitList, 4447 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4448 if (CheckInitList.HadError()) { 4449 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4450 return; 4451 } 4452 4453 // Add the list initialization step with the built init list. 4454 Sequence.AddListInitializationStep(DestType); 4455 } 4456 4457 /// Try a reference initialization that involves calling a conversion 4458 /// function. 4459 static OverloadingResult TryRefInitWithConversionFunction( 4460 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4461 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4462 InitializationSequence &Sequence) { 4463 QualType DestType = Entity.getType(); 4464 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4465 QualType T1 = cv1T1.getUnqualifiedType(); 4466 QualType cv2T2 = Initializer->getType(); 4467 QualType T2 = cv2T2.getUnqualifiedType(); 4468 4469 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4470 "Must have incompatible references when binding via conversion"); 4471 4472 // Build the candidate set directly in the initialization sequence 4473 // structure, so that it will persist if we fail. 4474 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4475 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4476 4477 // Determine whether we are allowed to call explicit conversion operators. 4478 // Note that none of [over.match.copy], [over.match.conv], nor 4479 // [over.match.ref] permit an explicit constructor to be chosen when 4480 // initializing a reference, not even for direct-initialization. 4481 bool AllowExplicitCtors = false; 4482 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4483 4484 const RecordType *T1RecordType = nullptr; 4485 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4486 S.isCompleteType(Kind.getLocation(), T1)) { 4487 // The type we're converting to is a class type. Enumerate its constructors 4488 // to see if there is a suitable conversion. 4489 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4490 4491 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4492 auto Info = getConstructorInfo(D); 4493 if (!Info.Constructor) 4494 continue; 4495 4496 if (!Info.Constructor->isInvalidDecl() && 4497 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4498 if (Info.ConstructorTmpl) 4499 S.AddTemplateOverloadCandidate( 4500 Info.ConstructorTmpl, Info.FoundDecl, 4501 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4502 /*SuppressUserConversions=*/true, 4503 /*PartialOverloading*/ false, AllowExplicitCtors); 4504 else 4505 S.AddOverloadCandidate( 4506 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4507 /*SuppressUserConversions=*/true, 4508 /*PartialOverloading*/ false, AllowExplicitCtors); 4509 } 4510 } 4511 } 4512 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4513 return OR_No_Viable_Function; 4514 4515 const RecordType *T2RecordType = nullptr; 4516 if ((T2RecordType = T2->getAs<RecordType>()) && 4517 S.isCompleteType(Kind.getLocation(), T2)) { 4518 // The type we're converting from is a class type, enumerate its conversion 4519 // functions. 4520 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4521 4522 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4523 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4524 NamedDecl *D = *I; 4525 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4526 if (isa<UsingShadowDecl>(D)) 4527 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4528 4529 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4530 CXXConversionDecl *Conv; 4531 if (ConvTemplate) 4532 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4533 else 4534 Conv = cast<CXXConversionDecl>(D); 4535 4536 // If the conversion function doesn't return a reference type, 4537 // it can't be considered for this conversion unless we're allowed to 4538 // consider rvalues. 4539 // FIXME: Do we need to make sure that we only consider conversion 4540 // candidates with reference-compatible results? That might be needed to 4541 // break recursion. 4542 if ((AllowRValues || 4543 Conv->getConversionType()->isLValueReferenceType())) { 4544 if (ConvTemplate) 4545 S.AddTemplateConversionCandidate( 4546 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4547 CandidateSet, 4548 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4549 else 4550 S.AddConversionCandidate( 4551 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4552 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4553 } 4554 } 4555 } 4556 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4557 return OR_No_Viable_Function; 4558 4559 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4560 4561 // Perform overload resolution. If it fails, return the failed result. 4562 OverloadCandidateSet::iterator Best; 4563 if (OverloadingResult Result 4564 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4565 return Result; 4566 4567 FunctionDecl *Function = Best->Function; 4568 // This is the overload that will be used for this initialization step if we 4569 // use this initialization. Mark it as referenced. 4570 Function->setReferenced(); 4571 4572 // Compute the returned type and value kind of the conversion. 4573 QualType cv3T3; 4574 if (isa<CXXConversionDecl>(Function)) 4575 cv3T3 = Function->getReturnType(); 4576 else 4577 cv3T3 = T1; 4578 4579 ExprValueKind VK = VK_RValue; 4580 if (cv3T3->isLValueReferenceType()) 4581 VK = VK_LValue; 4582 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4583 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4584 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4585 4586 // Add the user-defined conversion step. 4587 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4588 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4589 HadMultipleCandidates); 4590 4591 // Determine whether we'll need to perform derived-to-base adjustments or 4592 // other conversions. 4593 Sema::ReferenceConversions RefConv; 4594 Sema::ReferenceCompareResult NewRefRelationship = 4595 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4596 4597 // Add the final conversion sequence, if necessary. 4598 if (NewRefRelationship == Sema::Ref_Incompatible) { 4599 assert(!isa<CXXConstructorDecl>(Function) && 4600 "should not have conversion after constructor"); 4601 4602 ImplicitConversionSequence ICS; 4603 ICS.setStandard(); 4604 ICS.Standard = Best->FinalConversion; 4605 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4606 4607 // Every implicit conversion results in a prvalue, except for a glvalue 4608 // derived-to-base conversion, which we handle below. 4609 cv3T3 = ICS.Standard.getToType(2); 4610 VK = VK_RValue; 4611 } 4612 4613 // If the converted initializer is a prvalue, its type T4 is adjusted to 4614 // type "cv1 T4" and the temporary materialization conversion is applied. 4615 // 4616 // We adjust the cv-qualifications to match the reference regardless of 4617 // whether we have a prvalue so that the AST records the change. In this 4618 // case, T4 is "cv3 T3". 4619 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4620 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4621 Sequence.AddQualificationConversionStep(cv1T4, VK); 4622 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4623 VK = IsLValueRef ? VK_LValue : VK_XValue; 4624 4625 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4626 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4627 else if (RefConv & Sema::ReferenceConversions::ObjC) 4628 Sequence.AddObjCObjectConversionStep(cv1T1); 4629 else if (RefConv & Sema::ReferenceConversions::Function) 4630 Sequence.AddQualificationConversionStep(cv1T1, VK); 4631 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4632 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4633 Sequence.AddQualificationConversionStep(cv1T1, VK); 4634 } 4635 4636 return OR_Success; 4637 } 4638 4639 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4640 const InitializedEntity &Entity, 4641 Expr *CurInitExpr); 4642 4643 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4644 static void TryReferenceInitialization(Sema &S, 4645 const InitializedEntity &Entity, 4646 const InitializationKind &Kind, 4647 Expr *Initializer, 4648 InitializationSequence &Sequence) { 4649 QualType DestType = Entity.getType(); 4650 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4651 Qualifiers T1Quals; 4652 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4653 QualType cv2T2 = Initializer->getType(); 4654 Qualifiers T2Quals; 4655 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4656 4657 // If the initializer is the address of an overloaded function, try 4658 // to resolve the overloaded function. If all goes well, T2 is the 4659 // type of the resulting function. 4660 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4661 T1, Sequence)) 4662 return; 4663 4664 // Delegate everything else to a subfunction. 4665 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4666 T1Quals, cv2T2, T2, T2Quals, Sequence); 4667 } 4668 4669 /// Determine whether an expression is a non-referenceable glvalue (one to 4670 /// which a reference can never bind). Attempting to bind a reference to 4671 /// such a glvalue will always create a temporary. 4672 static bool isNonReferenceableGLValue(Expr *E) { 4673 return E->refersToBitField() || E->refersToVectorElement(); 4674 } 4675 4676 /// Reference initialization without resolving overloaded functions. 4677 static void TryReferenceInitializationCore(Sema &S, 4678 const InitializedEntity &Entity, 4679 const InitializationKind &Kind, 4680 Expr *Initializer, 4681 QualType cv1T1, QualType T1, 4682 Qualifiers T1Quals, 4683 QualType cv2T2, QualType T2, 4684 Qualifiers T2Quals, 4685 InitializationSequence &Sequence) { 4686 QualType DestType = Entity.getType(); 4687 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4688 4689 // Compute some basic properties of the types and the initializer. 4690 bool isLValueRef = DestType->isLValueReferenceType(); 4691 bool isRValueRef = !isLValueRef; 4692 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4693 4694 Sema::ReferenceConversions RefConv; 4695 Sema::ReferenceCompareResult RefRelationship = 4696 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4697 4698 // C++0x [dcl.init.ref]p5: 4699 // A reference to type "cv1 T1" is initialized by an expression of type 4700 // "cv2 T2" as follows: 4701 // 4702 // - If the reference is an lvalue reference and the initializer 4703 // expression 4704 // Note the analogous bullet points for rvalue refs to functions. Because 4705 // there are no function rvalues in C++, rvalue refs to functions are treated 4706 // like lvalue refs. 4707 OverloadingResult ConvOvlResult = OR_Success; 4708 bool T1Function = T1->isFunctionType(); 4709 if (isLValueRef || T1Function) { 4710 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4711 (RefRelationship == Sema::Ref_Compatible || 4712 (Kind.isCStyleOrFunctionalCast() && 4713 RefRelationship == Sema::Ref_Related))) { 4714 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4715 // reference-compatible with "cv2 T2," or 4716 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4717 Sema::ReferenceConversions::ObjC)) { 4718 // If we're converting the pointee, add any qualifiers first; 4719 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4720 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4721 Sequence.AddQualificationConversionStep( 4722 S.Context.getQualifiedType(T2, T1Quals), 4723 Initializer->getValueKind()); 4724 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4725 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4726 else 4727 Sequence.AddObjCObjectConversionStep(cv1T1); 4728 } else if (RefConv & (Sema::ReferenceConversions::Qualification | 4729 Sema::ReferenceConversions::Function)) { 4730 // Perform a (possibly multi-level) qualification conversion. 4731 // FIXME: Should we use a different step kind for function conversions? 4732 Sequence.AddQualificationConversionStep(cv1T1, 4733 Initializer->getValueKind()); 4734 } 4735 4736 // We only create a temporary here when binding a reference to a 4737 // bit-field or vector element. Those cases are't supposed to be 4738 // handled by this bullet, but the outcome is the same either way. 4739 Sequence.AddReferenceBindingStep(cv1T1, false); 4740 return; 4741 } 4742 4743 // - has a class type (i.e., T2 is a class type), where T1 is not 4744 // reference-related to T2, and can be implicitly converted to an 4745 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4746 // with "cv3 T3" (this conversion is selected by enumerating the 4747 // applicable conversion functions (13.3.1.6) and choosing the best 4748 // one through overload resolution (13.3)), 4749 // If we have an rvalue ref to function type here, the rhs must be 4750 // an rvalue. DR1287 removed the "implicitly" here. 4751 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4752 (isLValueRef || InitCategory.isRValue())) { 4753 ConvOvlResult = TryRefInitWithConversionFunction( 4754 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4755 /*IsLValueRef*/ isLValueRef, Sequence); 4756 if (ConvOvlResult == OR_Success) 4757 return; 4758 if (ConvOvlResult != OR_No_Viable_Function) 4759 Sequence.SetOverloadFailure( 4760 InitializationSequence::FK_ReferenceInitOverloadFailed, 4761 ConvOvlResult); 4762 } 4763 } 4764 4765 // - Otherwise, the reference shall be an lvalue reference to a 4766 // non-volatile const type (i.e., cv1 shall be const), or the reference 4767 // shall be an rvalue reference. 4768 // For address spaces, we interpret this to mean that an addr space 4769 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4770 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4771 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4772 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4773 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4774 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4775 Sequence.SetOverloadFailure( 4776 InitializationSequence::FK_ReferenceInitOverloadFailed, 4777 ConvOvlResult); 4778 else if (!InitCategory.isLValue()) 4779 Sequence.SetFailed( 4780 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4781 ? InitializationSequence:: 4782 FK_NonConstLValueReferenceBindingToTemporary 4783 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4784 else { 4785 InitializationSequence::FailureKind FK; 4786 switch (RefRelationship) { 4787 case Sema::Ref_Compatible: 4788 if (Initializer->refersToBitField()) 4789 FK = InitializationSequence:: 4790 FK_NonConstLValueReferenceBindingToBitfield; 4791 else if (Initializer->refersToVectorElement()) 4792 FK = InitializationSequence:: 4793 FK_NonConstLValueReferenceBindingToVectorElement; 4794 else 4795 llvm_unreachable("unexpected kind of compatible initializer"); 4796 break; 4797 case Sema::Ref_Related: 4798 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4799 break; 4800 case Sema::Ref_Incompatible: 4801 FK = InitializationSequence:: 4802 FK_NonConstLValueReferenceBindingToUnrelated; 4803 break; 4804 } 4805 Sequence.SetFailed(FK); 4806 } 4807 return; 4808 } 4809 4810 // - If the initializer expression 4811 // - is an 4812 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4813 // [1z] rvalue (but not a bit-field) or 4814 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4815 // 4816 // Note: functions are handled above and below rather than here... 4817 if (!T1Function && 4818 (RefRelationship == Sema::Ref_Compatible || 4819 (Kind.isCStyleOrFunctionalCast() && 4820 RefRelationship == Sema::Ref_Related)) && 4821 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4822 (InitCategory.isPRValue() && 4823 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4824 T2->isArrayType())))) { 4825 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4826 if (InitCategory.isPRValue() && T2->isRecordType()) { 4827 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4828 // compiler the freedom to perform a copy here or bind to the 4829 // object, while C++0x requires that we bind directly to the 4830 // object. Hence, we always bind to the object without making an 4831 // extra copy. However, in C++03 requires that we check for the 4832 // presence of a suitable copy constructor: 4833 // 4834 // The constructor that would be used to make the copy shall 4835 // be callable whether or not the copy is actually done. 4836 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4837 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4838 else if (S.getLangOpts().CPlusPlus11) 4839 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4840 } 4841 4842 // C++1z [dcl.init.ref]/5.2.1.2: 4843 // If the converted initializer is a prvalue, its type T4 is adjusted 4844 // to type "cv1 T4" and the temporary materialization conversion is 4845 // applied. 4846 // Postpone address space conversions to after the temporary materialization 4847 // conversion to allow creating temporaries in the alloca address space. 4848 auto T1QualsIgnoreAS = T1Quals; 4849 auto T2QualsIgnoreAS = T2Quals; 4850 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4851 T1QualsIgnoreAS.removeAddressSpace(); 4852 T2QualsIgnoreAS.removeAddressSpace(); 4853 } 4854 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4855 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4856 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4857 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4858 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4859 // Add addr space conversion if required. 4860 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4861 auto T4Quals = cv1T4.getQualifiers(); 4862 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4863 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4864 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4865 cv1T4 = cv1T4WithAS; 4866 } 4867 4868 // In any case, the reference is bound to the resulting glvalue (or to 4869 // an appropriate base class subobject). 4870 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4871 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4872 else if (RefConv & Sema::ReferenceConversions::ObjC) 4873 Sequence.AddObjCObjectConversionStep(cv1T1); 4874 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4875 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4876 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 4877 } 4878 return; 4879 } 4880 4881 // - has a class type (i.e., T2 is a class type), where T1 is not 4882 // reference-related to T2, and can be implicitly converted to an 4883 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4884 // where "cv1 T1" is reference-compatible with "cv3 T3", 4885 // 4886 // DR1287 removes the "implicitly" here. 4887 if (T2->isRecordType()) { 4888 if (RefRelationship == Sema::Ref_Incompatible) { 4889 ConvOvlResult = TryRefInitWithConversionFunction( 4890 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4891 /*IsLValueRef*/ isLValueRef, Sequence); 4892 if (ConvOvlResult) 4893 Sequence.SetOverloadFailure( 4894 InitializationSequence::FK_ReferenceInitOverloadFailed, 4895 ConvOvlResult); 4896 4897 return; 4898 } 4899 4900 if (RefRelationship == Sema::Ref_Compatible && 4901 isRValueRef && InitCategory.isLValue()) { 4902 Sequence.SetFailed( 4903 InitializationSequence::FK_RValueReferenceBindingToLValue); 4904 return; 4905 } 4906 4907 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4908 return; 4909 } 4910 4911 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4912 // from the initializer expression using the rules for a non-reference 4913 // copy-initialization (8.5). The reference is then bound to the 4914 // temporary. [...] 4915 4916 // Ignore address space of reference type at this point and perform address 4917 // space conversion after the reference binding step. 4918 QualType cv1T1IgnoreAS = 4919 T1Quals.hasAddressSpace() 4920 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4921 : cv1T1; 4922 4923 InitializedEntity TempEntity = 4924 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4925 4926 // FIXME: Why do we use an implicit conversion here rather than trying 4927 // copy-initialization? 4928 ImplicitConversionSequence ICS 4929 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4930 /*SuppressUserConversions=*/false, 4931 Sema::AllowedExplicit::None, 4932 /*FIXME:InOverloadResolution=*/false, 4933 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4934 /*AllowObjCWritebackConversion=*/false); 4935 4936 if (ICS.isBad()) { 4937 // FIXME: Use the conversion function set stored in ICS to turn 4938 // this into an overloading ambiguity diagnostic. However, we need 4939 // to keep that set as an OverloadCandidateSet rather than as some 4940 // other kind of set. 4941 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4942 Sequence.SetOverloadFailure( 4943 InitializationSequence::FK_ReferenceInitOverloadFailed, 4944 ConvOvlResult); 4945 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4946 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4947 else 4948 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4949 return; 4950 } else { 4951 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4952 } 4953 4954 // [...] If T1 is reference-related to T2, cv1 must be the 4955 // same cv-qualification as, or greater cv-qualification 4956 // than, cv2; otherwise, the program is ill-formed. 4957 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4958 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4959 if ((RefRelationship == Sema::Ref_Related && 4960 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4961 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4962 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4963 return; 4964 } 4965 4966 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4967 // reference, the initializer expression shall not be an lvalue. 4968 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4969 InitCategory.isLValue()) { 4970 Sequence.SetFailed( 4971 InitializationSequence::FK_RValueReferenceBindingToLValue); 4972 return; 4973 } 4974 4975 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 4976 4977 if (T1Quals.hasAddressSpace()) { 4978 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4979 LangAS::Default)) { 4980 Sequence.SetFailed( 4981 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4982 return; 4983 } 4984 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4985 : VK_XValue); 4986 } 4987 } 4988 4989 /// Attempt character array initialization from a string literal 4990 /// (C++ [dcl.init.string], C99 6.7.8). 4991 static void TryStringLiteralInitialization(Sema &S, 4992 const InitializedEntity &Entity, 4993 const InitializationKind &Kind, 4994 Expr *Initializer, 4995 InitializationSequence &Sequence) { 4996 Sequence.AddStringInitStep(Entity.getType()); 4997 } 4998 4999 /// Attempt value initialization (C++ [dcl.init]p7). 5000 static void TryValueInitialization(Sema &S, 5001 const InitializedEntity &Entity, 5002 const InitializationKind &Kind, 5003 InitializationSequence &Sequence, 5004 InitListExpr *InitList) { 5005 assert((!InitList || InitList->getNumInits() == 0) && 5006 "Shouldn't use value-init for non-empty init lists"); 5007 5008 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5009 // 5010 // To value-initialize an object of type T means: 5011 QualType T = Entity.getType(); 5012 5013 // -- if T is an array type, then each element is value-initialized; 5014 T = S.Context.getBaseElementType(T); 5015 5016 if (const RecordType *RT = T->getAs<RecordType>()) { 5017 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5018 bool NeedZeroInitialization = true; 5019 // C++98: 5020 // -- if T is a class type (clause 9) with a user-declared constructor 5021 // (12.1), then the default constructor for T is called (and the 5022 // initialization is ill-formed if T has no accessible default 5023 // constructor); 5024 // C++11: 5025 // -- if T is a class type (clause 9) with either no default constructor 5026 // (12.1 [class.ctor]) or a default constructor that is user-provided 5027 // or deleted, then the object is default-initialized; 5028 // 5029 // Note that the C++11 rule is the same as the C++98 rule if there are no 5030 // defaulted or deleted constructors, so we just use it unconditionally. 5031 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5032 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5033 NeedZeroInitialization = false; 5034 5035 // -- if T is a (possibly cv-qualified) non-union class type without a 5036 // user-provided or deleted default constructor, then the object is 5037 // zero-initialized and, if T has a non-trivial default constructor, 5038 // default-initialized; 5039 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5040 // constructor' part was removed by DR1507. 5041 if (NeedZeroInitialization) 5042 Sequence.AddZeroInitializationStep(Entity.getType()); 5043 5044 // C++03: 5045 // -- if T is a non-union class type without a user-declared constructor, 5046 // then every non-static data member and base class component of T is 5047 // value-initialized; 5048 // [...] A program that calls for [...] value-initialization of an 5049 // entity of reference type is ill-formed. 5050 // 5051 // C++11 doesn't need this handling, because value-initialization does not 5052 // occur recursively there, and the implicit default constructor is 5053 // defined as deleted in the problematic cases. 5054 if (!S.getLangOpts().CPlusPlus11 && 5055 ClassDecl->hasUninitializedReferenceMember()) { 5056 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5057 return; 5058 } 5059 5060 // If this is list-value-initialization, pass the empty init list on when 5061 // building the constructor call. This affects the semantics of a few 5062 // things (such as whether an explicit default constructor can be called). 5063 Expr *InitListAsExpr = InitList; 5064 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5065 bool InitListSyntax = InitList; 5066 5067 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5068 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5069 return TryConstructorInitialization( 5070 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5071 } 5072 } 5073 5074 Sequence.AddZeroInitializationStep(Entity.getType()); 5075 } 5076 5077 /// Attempt default initialization (C++ [dcl.init]p6). 5078 static void TryDefaultInitialization(Sema &S, 5079 const InitializedEntity &Entity, 5080 const InitializationKind &Kind, 5081 InitializationSequence &Sequence) { 5082 assert(Kind.getKind() == InitializationKind::IK_Default); 5083 5084 // C++ [dcl.init]p6: 5085 // To default-initialize an object of type T means: 5086 // - if T is an array type, each element is default-initialized; 5087 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5088 5089 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5090 // constructor for T is called (and the initialization is ill-formed if 5091 // T has no accessible default constructor); 5092 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5093 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5094 Entity.getType(), Sequence); 5095 return; 5096 } 5097 5098 // - otherwise, no initialization is performed. 5099 5100 // If a program calls for the default initialization of an object of 5101 // a const-qualified type T, T shall be a class type with a user-provided 5102 // default constructor. 5103 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5104 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5105 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5106 return; 5107 } 5108 5109 // If the destination type has a lifetime property, zero-initialize it. 5110 if (DestType.getQualifiers().hasObjCLifetime()) { 5111 Sequence.AddZeroInitializationStep(Entity.getType()); 5112 return; 5113 } 5114 } 5115 5116 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5117 /// which enumerates all conversion functions and performs overload resolution 5118 /// to select the best. 5119 static void TryUserDefinedConversion(Sema &S, 5120 QualType DestType, 5121 const InitializationKind &Kind, 5122 Expr *Initializer, 5123 InitializationSequence &Sequence, 5124 bool TopLevelOfInitList) { 5125 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5126 QualType SourceType = Initializer->getType(); 5127 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5128 "Must have a class type to perform a user-defined conversion"); 5129 5130 // Build the candidate set directly in the initialization sequence 5131 // structure, so that it will persist if we fail. 5132 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5133 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5134 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5135 5136 // Determine whether we are allowed to call explicit constructors or 5137 // explicit conversion operators. 5138 bool AllowExplicit = Kind.AllowExplicit(); 5139 5140 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5141 // The type we're converting to is a class type. Enumerate its constructors 5142 // to see if there is a suitable conversion. 5143 CXXRecordDecl *DestRecordDecl 5144 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5145 5146 // Try to complete the type we're converting to. 5147 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5148 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5149 auto Info = getConstructorInfo(D); 5150 if (!Info.Constructor) 5151 continue; 5152 5153 if (!Info.Constructor->isInvalidDecl() && 5154 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5155 if (Info.ConstructorTmpl) 5156 S.AddTemplateOverloadCandidate( 5157 Info.ConstructorTmpl, Info.FoundDecl, 5158 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5159 /*SuppressUserConversions=*/true, 5160 /*PartialOverloading*/ false, AllowExplicit); 5161 else 5162 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5163 Initializer, CandidateSet, 5164 /*SuppressUserConversions=*/true, 5165 /*PartialOverloading*/ false, AllowExplicit); 5166 } 5167 } 5168 } 5169 } 5170 5171 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5172 5173 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5174 // The type we're converting from is a class type, enumerate its conversion 5175 // functions. 5176 5177 // We can only enumerate the conversion functions for a complete type; if 5178 // the type isn't complete, simply skip this step. 5179 if (S.isCompleteType(DeclLoc, SourceType)) { 5180 CXXRecordDecl *SourceRecordDecl 5181 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5182 5183 const auto &Conversions = 5184 SourceRecordDecl->getVisibleConversionFunctions(); 5185 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5186 NamedDecl *D = *I; 5187 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5188 if (isa<UsingShadowDecl>(D)) 5189 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5190 5191 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5192 CXXConversionDecl *Conv; 5193 if (ConvTemplate) 5194 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5195 else 5196 Conv = cast<CXXConversionDecl>(D); 5197 5198 if (ConvTemplate) 5199 S.AddTemplateConversionCandidate( 5200 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5201 CandidateSet, AllowExplicit, AllowExplicit); 5202 else 5203 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5204 DestType, CandidateSet, AllowExplicit, 5205 AllowExplicit); 5206 } 5207 } 5208 } 5209 5210 // Perform overload resolution. If it fails, return the failed result. 5211 OverloadCandidateSet::iterator Best; 5212 if (OverloadingResult Result 5213 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5214 Sequence.SetOverloadFailure( 5215 InitializationSequence::FK_UserConversionOverloadFailed, 5216 Result); 5217 return; 5218 } 5219 5220 FunctionDecl *Function = Best->Function; 5221 Function->setReferenced(); 5222 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5223 5224 if (isa<CXXConstructorDecl>(Function)) { 5225 // Add the user-defined conversion step. Any cv-qualification conversion is 5226 // subsumed by the initialization. Per DR5, the created temporary is of the 5227 // cv-unqualified type of the destination. 5228 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5229 DestType.getUnqualifiedType(), 5230 HadMultipleCandidates); 5231 5232 // C++14 and before: 5233 // - if the function is a constructor, the call initializes a temporary 5234 // of the cv-unqualified version of the destination type. The [...] 5235 // temporary [...] is then used to direct-initialize, according to the 5236 // rules above, the object that is the destination of the 5237 // copy-initialization. 5238 // Note that this just performs a simple object copy from the temporary. 5239 // 5240 // C++17: 5241 // - if the function is a constructor, the call is a prvalue of the 5242 // cv-unqualified version of the destination type whose return object 5243 // is initialized by the constructor. The call is used to 5244 // direct-initialize, according to the rules above, the object that 5245 // is the destination of the copy-initialization. 5246 // Therefore we need to do nothing further. 5247 // 5248 // FIXME: Mark this copy as extraneous. 5249 if (!S.getLangOpts().CPlusPlus17) 5250 Sequence.AddFinalCopy(DestType); 5251 else if (DestType.hasQualifiers()) 5252 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5253 return; 5254 } 5255 5256 // Add the user-defined conversion step that calls the conversion function. 5257 QualType ConvType = Function->getCallResultType(); 5258 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5259 HadMultipleCandidates); 5260 5261 if (ConvType->getAs<RecordType>()) { 5262 // The call is used to direct-initialize [...] the object that is the 5263 // destination of the copy-initialization. 5264 // 5265 // In C++17, this does not call a constructor if we enter /17.6.1: 5266 // - If the initializer expression is a prvalue and the cv-unqualified 5267 // version of the source type is the same as the class of the 5268 // destination [... do not make an extra copy] 5269 // 5270 // FIXME: Mark this copy as extraneous. 5271 if (!S.getLangOpts().CPlusPlus17 || 5272 Function->getReturnType()->isReferenceType() || 5273 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5274 Sequence.AddFinalCopy(DestType); 5275 else if (!S.Context.hasSameType(ConvType, DestType)) 5276 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5277 return; 5278 } 5279 5280 // If the conversion following the call to the conversion function 5281 // is interesting, add it as a separate step. 5282 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5283 Best->FinalConversion.Third) { 5284 ImplicitConversionSequence ICS; 5285 ICS.setStandard(); 5286 ICS.Standard = Best->FinalConversion; 5287 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5288 } 5289 } 5290 5291 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5292 /// a function with a pointer return type contains a 'return false;' statement. 5293 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5294 /// code using that header. 5295 /// 5296 /// Work around this by treating 'return false;' as zero-initializing the result 5297 /// if it's used in a pointer-returning function in a system header. 5298 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5299 const InitializedEntity &Entity, 5300 const Expr *Init) { 5301 return S.getLangOpts().CPlusPlus11 && 5302 Entity.getKind() == InitializedEntity::EK_Result && 5303 Entity.getType()->isPointerType() && 5304 isa<CXXBoolLiteralExpr>(Init) && 5305 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5306 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5307 } 5308 5309 /// The non-zero enum values here are indexes into diagnostic alternatives. 5310 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5311 5312 /// Determines whether this expression is an acceptable ICR source. 5313 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5314 bool isAddressOf, bool &isWeakAccess) { 5315 // Skip parens. 5316 e = e->IgnoreParens(); 5317 5318 // Skip address-of nodes. 5319 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5320 if (op->getOpcode() == UO_AddrOf) 5321 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5322 isWeakAccess); 5323 5324 // Skip certain casts. 5325 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5326 switch (ce->getCastKind()) { 5327 case CK_Dependent: 5328 case CK_BitCast: 5329 case CK_LValueBitCast: 5330 case CK_NoOp: 5331 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5332 5333 case CK_ArrayToPointerDecay: 5334 return IIK_nonscalar; 5335 5336 case CK_NullToPointer: 5337 return IIK_okay; 5338 5339 default: 5340 break; 5341 } 5342 5343 // If we have a declaration reference, it had better be a local variable. 5344 } else if (isa<DeclRefExpr>(e)) { 5345 // set isWeakAccess to true, to mean that there will be an implicit 5346 // load which requires a cleanup. 5347 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5348 isWeakAccess = true; 5349 5350 if (!isAddressOf) return IIK_nonlocal; 5351 5352 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5353 if (!var) return IIK_nonlocal; 5354 5355 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5356 5357 // If we have a conditional operator, check both sides. 5358 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5359 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5360 isWeakAccess)) 5361 return iik; 5362 5363 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5364 5365 // These are never scalar. 5366 } else if (isa<ArraySubscriptExpr>(e)) { 5367 return IIK_nonscalar; 5368 5369 // Otherwise, it needs to be a null pointer constant. 5370 } else { 5371 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5372 ? IIK_okay : IIK_nonlocal); 5373 } 5374 5375 return IIK_nonlocal; 5376 } 5377 5378 /// Check whether the given expression is a valid operand for an 5379 /// indirect copy/restore. 5380 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5381 assert(src->isRValue()); 5382 bool isWeakAccess = false; 5383 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5384 // If isWeakAccess to true, there will be an implicit 5385 // load which requires a cleanup. 5386 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5387 S.Cleanup.setExprNeedsCleanups(true); 5388 5389 if (iik == IIK_okay) return; 5390 5391 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5392 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5393 << src->getSourceRange(); 5394 } 5395 5396 /// Determine whether we have compatible array types for the 5397 /// purposes of GNU by-copy array initialization. 5398 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5399 const ArrayType *Source) { 5400 // If the source and destination array types are equivalent, we're 5401 // done. 5402 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5403 return true; 5404 5405 // Make sure that the element types are the same. 5406 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5407 return false; 5408 5409 // The only mismatch we allow is when the destination is an 5410 // incomplete array type and the source is a constant array type. 5411 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5412 } 5413 5414 static bool tryObjCWritebackConversion(Sema &S, 5415 InitializationSequence &Sequence, 5416 const InitializedEntity &Entity, 5417 Expr *Initializer) { 5418 bool ArrayDecay = false; 5419 QualType ArgType = Initializer->getType(); 5420 QualType ArgPointee; 5421 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5422 ArrayDecay = true; 5423 ArgPointee = ArgArrayType->getElementType(); 5424 ArgType = S.Context.getPointerType(ArgPointee); 5425 } 5426 5427 // Handle write-back conversion. 5428 QualType ConvertedArgType; 5429 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5430 ConvertedArgType)) 5431 return false; 5432 5433 // We should copy unless we're passing to an argument explicitly 5434 // marked 'out'. 5435 bool ShouldCopy = true; 5436 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5437 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5438 5439 // Do we need an lvalue conversion? 5440 if (ArrayDecay || Initializer->isGLValue()) { 5441 ImplicitConversionSequence ICS; 5442 ICS.setStandard(); 5443 ICS.Standard.setAsIdentityConversion(); 5444 5445 QualType ResultType; 5446 if (ArrayDecay) { 5447 ICS.Standard.First = ICK_Array_To_Pointer; 5448 ResultType = S.Context.getPointerType(ArgPointee); 5449 } else { 5450 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5451 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5452 } 5453 5454 Sequence.AddConversionSequenceStep(ICS, ResultType); 5455 } 5456 5457 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5458 return true; 5459 } 5460 5461 static bool TryOCLSamplerInitialization(Sema &S, 5462 InitializationSequence &Sequence, 5463 QualType DestType, 5464 Expr *Initializer) { 5465 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5466 (!Initializer->isIntegerConstantExpr(S.Context) && 5467 !Initializer->getType()->isSamplerT())) 5468 return false; 5469 5470 Sequence.AddOCLSamplerInitStep(DestType); 5471 return true; 5472 } 5473 5474 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5475 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5476 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5477 } 5478 5479 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5480 InitializationSequence &Sequence, 5481 QualType DestType, 5482 Expr *Initializer) { 5483 if (!S.getLangOpts().OpenCL) 5484 return false; 5485 5486 // 5487 // OpenCL 1.2 spec, s6.12.10 5488 // 5489 // The event argument can also be used to associate the 5490 // async_work_group_copy with a previous async copy allowing 5491 // an event to be shared by multiple async copies; otherwise 5492 // event should be zero. 5493 // 5494 if (DestType->isEventT() || DestType->isQueueT()) { 5495 if (!IsZeroInitializer(Initializer, S)) 5496 return false; 5497 5498 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5499 return true; 5500 } 5501 5502 // We should allow zero initialization for all types defined in the 5503 // cl_intel_device_side_avc_motion_estimation extension, except 5504 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5505 if (S.getOpenCLOptions().isEnabled( 5506 "cl_intel_device_side_avc_motion_estimation") && 5507 DestType->isOCLIntelSubgroupAVCType()) { 5508 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5509 DestType->isOCLIntelSubgroupAVCMceResultType()) 5510 return false; 5511 if (!IsZeroInitializer(Initializer, S)) 5512 return false; 5513 5514 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5515 return true; 5516 } 5517 5518 return false; 5519 } 5520 5521 InitializationSequence::InitializationSequence(Sema &S, 5522 const InitializedEntity &Entity, 5523 const InitializationKind &Kind, 5524 MultiExprArg Args, 5525 bool TopLevelOfInitList, 5526 bool TreatUnavailableAsInvalid) 5527 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5528 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5529 TreatUnavailableAsInvalid); 5530 } 5531 5532 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5533 /// address of that function, this returns true. Otherwise, it returns false. 5534 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5535 auto *DRE = dyn_cast<DeclRefExpr>(E); 5536 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5537 return false; 5538 5539 return !S.checkAddressOfFunctionIsAvailable( 5540 cast<FunctionDecl>(DRE->getDecl())); 5541 } 5542 5543 /// Determine whether we can perform an elementwise array copy for this kind 5544 /// of entity. 5545 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5546 switch (Entity.getKind()) { 5547 case InitializedEntity::EK_LambdaCapture: 5548 // C++ [expr.prim.lambda]p24: 5549 // For array members, the array elements are direct-initialized in 5550 // increasing subscript order. 5551 return true; 5552 5553 case InitializedEntity::EK_Variable: 5554 // C++ [dcl.decomp]p1: 5555 // [...] each element is copy-initialized or direct-initialized from the 5556 // corresponding element of the assignment-expression [...] 5557 return isa<DecompositionDecl>(Entity.getDecl()); 5558 5559 case InitializedEntity::EK_Member: 5560 // C++ [class.copy.ctor]p14: 5561 // - if the member is an array, each element is direct-initialized with 5562 // the corresponding subobject of x 5563 return Entity.isImplicitMemberInitializer(); 5564 5565 case InitializedEntity::EK_ArrayElement: 5566 // All the above cases are intended to apply recursively, even though none 5567 // of them actually say that. 5568 if (auto *E = Entity.getParent()) 5569 return canPerformArrayCopy(*E); 5570 break; 5571 5572 default: 5573 break; 5574 } 5575 5576 return false; 5577 } 5578 5579 void InitializationSequence::InitializeFrom(Sema &S, 5580 const InitializedEntity &Entity, 5581 const InitializationKind &Kind, 5582 MultiExprArg Args, 5583 bool TopLevelOfInitList, 5584 bool TreatUnavailableAsInvalid) { 5585 ASTContext &Context = S.Context; 5586 5587 // Eliminate non-overload placeholder types in the arguments. We 5588 // need to do this before checking whether types are dependent 5589 // because lowering a pseudo-object expression might well give us 5590 // something of dependent type. 5591 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5592 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5593 // FIXME: should we be doing this here? 5594 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5595 if (result.isInvalid()) { 5596 SetFailed(FK_PlaceholderType); 5597 return; 5598 } 5599 Args[I] = result.get(); 5600 } 5601 5602 // C++0x [dcl.init]p16: 5603 // The semantics of initializers are as follows. The destination type is 5604 // the type of the object or reference being initialized and the source 5605 // type is the type of the initializer expression. The source type is not 5606 // defined when the initializer is a braced-init-list or when it is a 5607 // parenthesized list of expressions. 5608 QualType DestType = Entity.getType(); 5609 5610 if (DestType->isDependentType() || 5611 Expr::hasAnyTypeDependentArguments(Args)) { 5612 SequenceKind = DependentSequence; 5613 return; 5614 } 5615 5616 // Almost everything is a normal sequence. 5617 setSequenceKind(NormalSequence); 5618 5619 QualType SourceType; 5620 Expr *Initializer = nullptr; 5621 if (Args.size() == 1) { 5622 Initializer = Args[0]; 5623 if (S.getLangOpts().ObjC) { 5624 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5625 DestType, Initializer->getType(), 5626 Initializer) || 5627 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5628 Args[0] = Initializer; 5629 } 5630 if (!isa<InitListExpr>(Initializer)) 5631 SourceType = Initializer->getType(); 5632 } 5633 5634 // - If the initializer is a (non-parenthesized) braced-init-list, the 5635 // object is list-initialized (8.5.4). 5636 if (Kind.getKind() != InitializationKind::IK_Direct) { 5637 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5638 TryListInitialization(S, Entity, Kind, InitList, *this, 5639 TreatUnavailableAsInvalid); 5640 return; 5641 } 5642 } 5643 5644 // - If the destination type is a reference type, see 8.5.3. 5645 if (DestType->isReferenceType()) { 5646 // C++0x [dcl.init.ref]p1: 5647 // A variable declared to be a T& or T&&, that is, "reference to type T" 5648 // (8.3.2), shall be initialized by an object, or function, of type T or 5649 // by an object that can be converted into a T. 5650 // (Therefore, multiple arguments are not permitted.) 5651 if (Args.size() != 1) 5652 SetFailed(FK_TooManyInitsForReference); 5653 // C++17 [dcl.init.ref]p5: 5654 // A reference [...] is initialized by an expression [...] as follows: 5655 // If the initializer is not an expression, presumably we should reject, 5656 // but the standard fails to actually say so. 5657 else if (isa<InitListExpr>(Args[0])) 5658 SetFailed(FK_ParenthesizedListInitForReference); 5659 else 5660 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5661 return; 5662 } 5663 5664 // - If the initializer is (), the object is value-initialized. 5665 if (Kind.getKind() == InitializationKind::IK_Value || 5666 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5667 TryValueInitialization(S, Entity, Kind, *this); 5668 return; 5669 } 5670 5671 // Handle default initialization. 5672 if (Kind.getKind() == InitializationKind::IK_Default) { 5673 TryDefaultInitialization(S, Entity, Kind, *this); 5674 return; 5675 } 5676 5677 // - If the destination type is an array of characters, an array of 5678 // char16_t, an array of char32_t, or an array of wchar_t, and the 5679 // initializer is a string literal, see 8.5.2. 5680 // - Otherwise, if the destination type is an array, the program is 5681 // ill-formed. 5682 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5683 if (Initializer && isa<VariableArrayType>(DestAT)) { 5684 SetFailed(FK_VariableLengthArrayHasInitializer); 5685 return; 5686 } 5687 5688 if (Initializer) { 5689 switch (IsStringInit(Initializer, DestAT, Context)) { 5690 case SIF_None: 5691 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5692 return; 5693 case SIF_NarrowStringIntoWideChar: 5694 SetFailed(FK_NarrowStringIntoWideCharArray); 5695 return; 5696 case SIF_WideStringIntoChar: 5697 SetFailed(FK_WideStringIntoCharArray); 5698 return; 5699 case SIF_IncompatWideStringIntoWideChar: 5700 SetFailed(FK_IncompatWideStringIntoWideChar); 5701 return; 5702 case SIF_PlainStringIntoUTF8Char: 5703 SetFailed(FK_PlainStringIntoUTF8Char); 5704 return; 5705 case SIF_UTF8StringIntoPlainChar: 5706 SetFailed(FK_UTF8StringIntoPlainChar); 5707 return; 5708 case SIF_Other: 5709 break; 5710 } 5711 } 5712 5713 // Some kinds of initialization permit an array to be initialized from 5714 // another array of the same type, and perform elementwise initialization. 5715 if (Initializer && isa<ConstantArrayType>(DestAT) && 5716 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5717 Entity.getType()) && 5718 canPerformArrayCopy(Entity)) { 5719 // If source is a prvalue, use it directly. 5720 if (Initializer->getValueKind() == VK_RValue) { 5721 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5722 return; 5723 } 5724 5725 // Emit element-at-a-time copy loop. 5726 InitializedEntity Element = 5727 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5728 QualType InitEltT = 5729 Context.getAsArrayType(Initializer->getType())->getElementType(); 5730 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5731 Initializer->getValueKind(), 5732 Initializer->getObjectKind()); 5733 Expr *OVEAsExpr = &OVE; 5734 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5735 TreatUnavailableAsInvalid); 5736 if (!Failed()) 5737 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5738 return; 5739 } 5740 5741 // Note: as an GNU C extension, we allow initialization of an 5742 // array from a compound literal that creates an array of the same 5743 // type, so long as the initializer has no side effects. 5744 if (!S.getLangOpts().CPlusPlus && Initializer && 5745 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5746 Initializer->getType()->isArrayType()) { 5747 const ArrayType *SourceAT 5748 = Context.getAsArrayType(Initializer->getType()); 5749 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5750 SetFailed(FK_ArrayTypeMismatch); 5751 else if (Initializer->HasSideEffects(S.Context)) 5752 SetFailed(FK_NonConstantArrayInit); 5753 else { 5754 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5755 } 5756 } 5757 // Note: as a GNU C++ extension, we allow list-initialization of a 5758 // class member of array type from a parenthesized initializer list. 5759 else if (S.getLangOpts().CPlusPlus && 5760 Entity.getKind() == InitializedEntity::EK_Member && 5761 Initializer && isa<InitListExpr>(Initializer)) { 5762 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5763 *this, TreatUnavailableAsInvalid); 5764 AddParenthesizedArrayInitStep(DestType); 5765 } else if (DestAT->getElementType()->isCharType()) 5766 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5767 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5768 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5769 else 5770 SetFailed(FK_ArrayNeedsInitList); 5771 5772 return; 5773 } 5774 5775 // Determine whether we should consider writeback conversions for 5776 // Objective-C ARC. 5777 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5778 Entity.isParameterKind(); 5779 5780 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5781 return; 5782 5783 // We're at the end of the line for C: it's either a write-back conversion 5784 // or it's a C assignment. There's no need to check anything else. 5785 if (!S.getLangOpts().CPlusPlus) { 5786 // If allowed, check whether this is an Objective-C writeback conversion. 5787 if (allowObjCWritebackConversion && 5788 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5789 return; 5790 } 5791 5792 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5793 return; 5794 5795 // Handle initialization in C 5796 AddCAssignmentStep(DestType); 5797 MaybeProduceObjCObject(S, *this, Entity); 5798 return; 5799 } 5800 5801 assert(S.getLangOpts().CPlusPlus); 5802 5803 // - If the destination type is a (possibly cv-qualified) class type: 5804 if (DestType->isRecordType()) { 5805 // - If the initialization is direct-initialization, or if it is 5806 // copy-initialization where the cv-unqualified version of the 5807 // source type is the same class as, or a derived class of, the 5808 // class of the destination, constructors are considered. [...] 5809 if (Kind.getKind() == InitializationKind::IK_Direct || 5810 (Kind.getKind() == InitializationKind::IK_Copy && 5811 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5812 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5813 TryConstructorInitialization(S, Entity, Kind, Args, 5814 DestType, DestType, *this); 5815 // - Otherwise (i.e., for the remaining copy-initialization cases), 5816 // user-defined conversion sequences that can convert from the source 5817 // type to the destination type or (when a conversion function is 5818 // used) to a derived class thereof are enumerated as described in 5819 // 13.3.1.4, and the best one is chosen through overload resolution 5820 // (13.3). 5821 else 5822 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5823 TopLevelOfInitList); 5824 return; 5825 } 5826 5827 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5828 5829 // The remaining cases all need a source type. 5830 if (Args.size() > 1) { 5831 SetFailed(FK_TooManyInitsForScalar); 5832 return; 5833 } else if (isa<InitListExpr>(Args[0])) { 5834 SetFailed(FK_ParenthesizedListInitForScalar); 5835 return; 5836 } 5837 5838 // - Otherwise, if the source type is a (possibly cv-qualified) class 5839 // type, conversion functions are considered. 5840 if (!SourceType.isNull() && SourceType->isRecordType()) { 5841 // For a conversion to _Atomic(T) from either T or a class type derived 5842 // from T, initialize the T object then convert to _Atomic type. 5843 bool NeedAtomicConversion = false; 5844 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5845 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5846 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5847 Atomic->getValueType())) { 5848 DestType = Atomic->getValueType(); 5849 NeedAtomicConversion = true; 5850 } 5851 } 5852 5853 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5854 TopLevelOfInitList); 5855 MaybeProduceObjCObject(S, *this, Entity); 5856 if (!Failed() && NeedAtomicConversion) 5857 AddAtomicConversionStep(Entity.getType()); 5858 return; 5859 } 5860 5861 // - Otherwise, if the initialization is direct-initialization, the source 5862 // type is std::nullptr_t, and the destination type is bool, the initial 5863 // value of the object being initialized is false. 5864 if (!SourceType.isNull() && SourceType->isNullPtrType() && 5865 DestType->isBooleanType() && 5866 Kind.getKind() == InitializationKind::IK_Direct) { 5867 AddConversionSequenceStep( 5868 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 5869 Initializer->isGLValue()), 5870 DestType); 5871 return; 5872 } 5873 5874 // - Otherwise, the initial value of the object being initialized is the 5875 // (possibly converted) value of the initializer expression. Standard 5876 // conversions (Clause 4) will be used, if necessary, to convert the 5877 // initializer expression to the cv-unqualified version of the 5878 // destination type; no user-defined conversions are considered. 5879 5880 ImplicitConversionSequence ICS 5881 = S.TryImplicitConversion(Initializer, DestType, 5882 /*SuppressUserConversions*/true, 5883 Sema::AllowedExplicit::None, 5884 /*InOverloadResolution*/ false, 5885 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5886 allowObjCWritebackConversion); 5887 5888 if (ICS.isStandard() && 5889 ICS.Standard.Second == ICK_Writeback_Conversion) { 5890 // Objective-C ARC writeback conversion. 5891 5892 // We should copy unless we're passing to an argument explicitly 5893 // marked 'out'. 5894 bool ShouldCopy = true; 5895 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5896 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5897 5898 // If there was an lvalue adjustment, add it as a separate conversion. 5899 if (ICS.Standard.First == ICK_Array_To_Pointer || 5900 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5901 ImplicitConversionSequence LvalueICS; 5902 LvalueICS.setStandard(); 5903 LvalueICS.Standard.setAsIdentityConversion(); 5904 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5905 LvalueICS.Standard.First = ICS.Standard.First; 5906 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5907 } 5908 5909 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5910 } else if (ICS.isBad()) { 5911 DeclAccessPair dap; 5912 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5913 AddZeroInitializationStep(Entity.getType()); 5914 } else if (Initializer->getType() == Context.OverloadTy && 5915 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5916 false, dap)) 5917 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5918 else if (Initializer->getType()->isFunctionType() && 5919 isExprAnUnaddressableFunction(S, Initializer)) 5920 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5921 else 5922 SetFailed(InitializationSequence::FK_ConversionFailed); 5923 } else { 5924 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5925 5926 MaybeProduceObjCObject(S, *this, Entity); 5927 } 5928 } 5929 5930 InitializationSequence::~InitializationSequence() { 5931 for (auto &S : Steps) 5932 S.Destroy(); 5933 } 5934 5935 //===----------------------------------------------------------------------===// 5936 // Perform initialization 5937 //===----------------------------------------------------------------------===// 5938 static Sema::AssignmentAction 5939 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5940 switch(Entity.getKind()) { 5941 case InitializedEntity::EK_Variable: 5942 case InitializedEntity::EK_New: 5943 case InitializedEntity::EK_Exception: 5944 case InitializedEntity::EK_Base: 5945 case InitializedEntity::EK_Delegating: 5946 return Sema::AA_Initializing; 5947 5948 case InitializedEntity::EK_Parameter: 5949 if (Entity.getDecl() && 5950 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5951 return Sema::AA_Sending; 5952 5953 return Sema::AA_Passing; 5954 5955 case InitializedEntity::EK_Parameter_CF_Audited: 5956 if (Entity.getDecl() && 5957 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5958 return Sema::AA_Sending; 5959 5960 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5961 5962 case InitializedEntity::EK_Result: 5963 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5964 return Sema::AA_Returning; 5965 5966 case InitializedEntity::EK_Temporary: 5967 case InitializedEntity::EK_RelatedResult: 5968 // FIXME: Can we tell apart casting vs. converting? 5969 return Sema::AA_Casting; 5970 5971 case InitializedEntity::EK_Member: 5972 case InitializedEntity::EK_Binding: 5973 case InitializedEntity::EK_ArrayElement: 5974 case InitializedEntity::EK_VectorElement: 5975 case InitializedEntity::EK_ComplexElement: 5976 case InitializedEntity::EK_BlockElement: 5977 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5978 case InitializedEntity::EK_LambdaCapture: 5979 case InitializedEntity::EK_CompoundLiteralInit: 5980 return Sema::AA_Initializing; 5981 } 5982 5983 llvm_unreachable("Invalid EntityKind!"); 5984 } 5985 5986 /// Whether we should bind a created object as a temporary when 5987 /// initializing the given entity. 5988 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5989 switch (Entity.getKind()) { 5990 case InitializedEntity::EK_ArrayElement: 5991 case InitializedEntity::EK_Member: 5992 case InitializedEntity::EK_Result: 5993 case InitializedEntity::EK_StmtExprResult: 5994 case InitializedEntity::EK_New: 5995 case InitializedEntity::EK_Variable: 5996 case InitializedEntity::EK_Base: 5997 case InitializedEntity::EK_Delegating: 5998 case InitializedEntity::EK_VectorElement: 5999 case InitializedEntity::EK_ComplexElement: 6000 case InitializedEntity::EK_Exception: 6001 case InitializedEntity::EK_BlockElement: 6002 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6003 case InitializedEntity::EK_LambdaCapture: 6004 case InitializedEntity::EK_CompoundLiteralInit: 6005 return false; 6006 6007 case InitializedEntity::EK_Parameter: 6008 case InitializedEntity::EK_Parameter_CF_Audited: 6009 case InitializedEntity::EK_Temporary: 6010 case InitializedEntity::EK_RelatedResult: 6011 case InitializedEntity::EK_Binding: 6012 return true; 6013 } 6014 6015 llvm_unreachable("missed an InitializedEntity kind?"); 6016 } 6017 6018 /// Whether the given entity, when initialized with an object 6019 /// created for that initialization, requires destruction. 6020 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6021 switch (Entity.getKind()) { 6022 case InitializedEntity::EK_Result: 6023 case InitializedEntity::EK_StmtExprResult: 6024 case InitializedEntity::EK_New: 6025 case InitializedEntity::EK_Base: 6026 case InitializedEntity::EK_Delegating: 6027 case InitializedEntity::EK_VectorElement: 6028 case InitializedEntity::EK_ComplexElement: 6029 case InitializedEntity::EK_BlockElement: 6030 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6031 case InitializedEntity::EK_LambdaCapture: 6032 return false; 6033 6034 case InitializedEntity::EK_Member: 6035 case InitializedEntity::EK_Binding: 6036 case InitializedEntity::EK_Variable: 6037 case InitializedEntity::EK_Parameter: 6038 case InitializedEntity::EK_Parameter_CF_Audited: 6039 case InitializedEntity::EK_Temporary: 6040 case InitializedEntity::EK_ArrayElement: 6041 case InitializedEntity::EK_Exception: 6042 case InitializedEntity::EK_CompoundLiteralInit: 6043 case InitializedEntity::EK_RelatedResult: 6044 return true; 6045 } 6046 6047 llvm_unreachable("missed an InitializedEntity kind?"); 6048 } 6049 6050 /// Get the location at which initialization diagnostics should appear. 6051 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6052 Expr *Initializer) { 6053 switch (Entity.getKind()) { 6054 case InitializedEntity::EK_Result: 6055 case InitializedEntity::EK_StmtExprResult: 6056 return Entity.getReturnLoc(); 6057 6058 case InitializedEntity::EK_Exception: 6059 return Entity.getThrowLoc(); 6060 6061 case InitializedEntity::EK_Variable: 6062 case InitializedEntity::EK_Binding: 6063 return Entity.getDecl()->getLocation(); 6064 6065 case InitializedEntity::EK_LambdaCapture: 6066 return Entity.getCaptureLoc(); 6067 6068 case InitializedEntity::EK_ArrayElement: 6069 case InitializedEntity::EK_Member: 6070 case InitializedEntity::EK_Parameter: 6071 case InitializedEntity::EK_Parameter_CF_Audited: 6072 case InitializedEntity::EK_Temporary: 6073 case InitializedEntity::EK_New: 6074 case InitializedEntity::EK_Base: 6075 case InitializedEntity::EK_Delegating: 6076 case InitializedEntity::EK_VectorElement: 6077 case InitializedEntity::EK_ComplexElement: 6078 case InitializedEntity::EK_BlockElement: 6079 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6080 case InitializedEntity::EK_CompoundLiteralInit: 6081 case InitializedEntity::EK_RelatedResult: 6082 return Initializer->getBeginLoc(); 6083 } 6084 llvm_unreachable("missed an InitializedEntity kind?"); 6085 } 6086 6087 /// Make a (potentially elidable) temporary copy of the object 6088 /// provided by the given initializer by calling the appropriate copy 6089 /// constructor. 6090 /// 6091 /// \param S The Sema object used for type-checking. 6092 /// 6093 /// \param T The type of the temporary object, which must either be 6094 /// the type of the initializer expression or a superclass thereof. 6095 /// 6096 /// \param Entity The entity being initialized. 6097 /// 6098 /// \param CurInit The initializer expression. 6099 /// 6100 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6101 /// is permitted in C++03 (but not C++0x) when binding a reference to 6102 /// an rvalue. 6103 /// 6104 /// \returns An expression that copies the initializer expression into 6105 /// a temporary object, or an error expression if a copy could not be 6106 /// created. 6107 static ExprResult CopyObject(Sema &S, 6108 QualType T, 6109 const InitializedEntity &Entity, 6110 ExprResult CurInit, 6111 bool IsExtraneousCopy) { 6112 if (CurInit.isInvalid()) 6113 return CurInit; 6114 // Determine which class type we're copying to. 6115 Expr *CurInitExpr = (Expr *)CurInit.get(); 6116 CXXRecordDecl *Class = nullptr; 6117 if (const RecordType *Record = T->getAs<RecordType>()) 6118 Class = cast<CXXRecordDecl>(Record->getDecl()); 6119 if (!Class) 6120 return CurInit; 6121 6122 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6123 6124 // Make sure that the type we are copying is complete. 6125 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6126 return CurInit; 6127 6128 // Perform overload resolution using the class's constructors. Per 6129 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6130 // is direct-initialization. 6131 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6132 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6133 6134 OverloadCandidateSet::iterator Best; 6135 switch (ResolveConstructorOverload( 6136 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6137 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6138 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6139 /*SecondStepOfCopyInit=*/true)) { 6140 case OR_Success: 6141 break; 6142 6143 case OR_No_Viable_Function: 6144 CandidateSet.NoteCandidates( 6145 PartialDiagnosticAt( 6146 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6147 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6148 : diag::err_temp_copy_no_viable) 6149 << (int)Entity.getKind() << CurInitExpr->getType() 6150 << CurInitExpr->getSourceRange()), 6151 S, OCD_AllCandidates, CurInitExpr); 6152 if (!IsExtraneousCopy || S.isSFINAEContext()) 6153 return ExprError(); 6154 return CurInit; 6155 6156 case OR_Ambiguous: 6157 CandidateSet.NoteCandidates( 6158 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6159 << (int)Entity.getKind() 6160 << CurInitExpr->getType() 6161 << CurInitExpr->getSourceRange()), 6162 S, OCD_AmbiguousCandidates, CurInitExpr); 6163 return ExprError(); 6164 6165 case OR_Deleted: 6166 S.Diag(Loc, diag::err_temp_copy_deleted) 6167 << (int)Entity.getKind() << CurInitExpr->getType() 6168 << CurInitExpr->getSourceRange(); 6169 S.NoteDeletedFunction(Best->Function); 6170 return ExprError(); 6171 } 6172 6173 bool HadMultipleCandidates = CandidateSet.size() > 1; 6174 6175 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6176 SmallVector<Expr*, 8> ConstructorArgs; 6177 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6178 6179 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6180 IsExtraneousCopy); 6181 6182 if (IsExtraneousCopy) { 6183 // If this is a totally extraneous copy for C++03 reference 6184 // binding purposes, just return the original initialization 6185 // expression. We don't generate an (elided) copy operation here 6186 // because doing so would require us to pass down a flag to avoid 6187 // infinite recursion, where each step adds another extraneous, 6188 // elidable copy. 6189 6190 // Instantiate the default arguments of any extra parameters in 6191 // the selected copy constructor, as if we were going to create a 6192 // proper call to the copy constructor. 6193 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6194 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6195 if (S.RequireCompleteType(Loc, Parm->getType(), 6196 diag::err_call_incomplete_argument)) 6197 break; 6198 6199 // Build the default argument expression; we don't actually care 6200 // if this succeeds or not, because this routine will complain 6201 // if there was a problem. 6202 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6203 } 6204 6205 return CurInitExpr; 6206 } 6207 6208 // Determine the arguments required to actually perform the 6209 // constructor call (we might have derived-to-base conversions, or 6210 // the copy constructor may have default arguments). 6211 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6212 return ExprError(); 6213 6214 // C++0x [class.copy]p32: 6215 // When certain criteria are met, an implementation is allowed to 6216 // omit the copy/move construction of a class object, even if the 6217 // copy/move constructor and/or destructor for the object have 6218 // side effects. [...] 6219 // - when a temporary class object that has not been bound to a 6220 // reference (12.2) would be copied/moved to a class object 6221 // with the same cv-unqualified type, the copy/move operation 6222 // can be omitted by constructing the temporary object 6223 // directly into the target of the omitted copy/move 6224 // 6225 // Note that the other three bullets are handled elsewhere. Copy 6226 // elision for return statements and throw expressions are handled as part 6227 // of constructor initialization, while copy elision for exception handlers 6228 // is handled by the run-time. 6229 // 6230 // FIXME: If the function parameter is not the same type as the temporary, we 6231 // should still be able to elide the copy, but we don't have a way to 6232 // represent in the AST how much should be elided in this case. 6233 bool Elidable = 6234 CurInitExpr->isTemporaryObject(S.Context, Class) && 6235 S.Context.hasSameUnqualifiedType( 6236 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6237 CurInitExpr->getType()); 6238 6239 // Actually perform the constructor call. 6240 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6241 Elidable, 6242 ConstructorArgs, 6243 HadMultipleCandidates, 6244 /*ListInit*/ false, 6245 /*StdInitListInit*/ false, 6246 /*ZeroInit*/ false, 6247 CXXConstructExpr::CK_Complete, 6248 SourceRange()); 6249 6250 // If we're supposed to bind temporaries, do so. 6251 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6252 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6253 return CurInit; 6254 } 6255 6256 /// Check whether elidable copy construction for binding a reference to 6257 /// a temporary would have succeeded if we were building in C++98 mode, for 6258 /// -Wc++98-compat. 6259 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6260 const InitializedEntity &Entity, 6261 Expr *CurInitExpr) { 6262 assert(S.getLangOpts().CPlusPlus11); 6263 6264 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6265 if (!Record) 6266 return; 6267 6268 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6269 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6270 return; 6271 6272 // Find constructors which would have been considered. 6273 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6274 DeclContext::lookup_result Ctors = 6275 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6276 6277 // Perform overload resolution. 6278 OverloadCandidateSet::iterator Best; 6279 OverloadingResult OR = ResolveConstructorOverload( 6280 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6281 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6282 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6283 /*SecondStepOfCopyInit=*/true); 6284 6285 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6286 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6287 << CurInitExpr->getSourceRange(); 6288 6289 switch (OR) { 6290 case OR_Success: 6291 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6292 Best->FoundDecl, Entity, Diag); 6293 // FIXME: Check default arguments as far as that's possible. 6294 break; 6295 6296 case OR_No_Viable_Function: 6297 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6298 OCD_AllCandidates, CurInitExpr); 6299 break; 6300 6301 case OR_Ambiguous: 6302 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6303 OCD_AmbiguousCandidates, CurInitExpr); 6304 break; 6305 6306 case OR_Deleted: 6307 S.Diag(Loc, Diag); 6308 S.NoteDeletedFunction(Best->Function); 6309 break; 6310 } 6311 } 6312 6313 void InitializationSequence::PrintInitLocationNote(Sema &S, 6314 const InitializedEntity &Entity) { 6315 if (Entity.isParameterKind() && Entity.getDecl()) { 6316 if (Entity.getDecl()->getLocation().isInvalid()) 6317 return; 6318 6319 if (Entity.getDecl()->getDeclName()) 6320 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6321 << Entity.getDecl()->getDeclName(); 6322 else 6323 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6324 } 6325 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6326 Entity.getMethodDecl()) 6327 S.Diag(Entity.getMethodDecl()->getLocation(), 6328 diag::note_method_return_type_change) 6329 << Entity.getMethodDecl()->getDeclName(); 6330 } 6331 6332 /// Returns true if the parameters describe a constructor initialization of 6333 /// an explicit temporary object, e.g. "Point(x, y)". 6334 static bool isExplicitTemporary(const InitializedEntity &Entity, 6335 const InitializationKind &Kind, 6336 unsigned NumArgs) { 6337 switch (Entity.getKind()) { 6338 case InitializedEntity::EK_Temporary: 6339 case InitializedEntity::EK_CompoundLiteralInit: 6340 case InitializedEntity::EK_RelatedResult: 6341 break; 6342 default: 6343 return false; 6344 } 6345 6346 switch (Kind.getKind()) { 6347 case InitializationKind::IK_DirectList: 6348 return true; 6349 // FIXME: Hack to work around cast weirdness. 6350 case InitializationKind::IK_Direct: 6351 case InitializationKind::IK_Value: 6352 return NumArgs != 1; 6353 default: 6354 return false; 6355 } 6356 } 6357 6358 static ExprResult 6359 PerformConstructorInitialization(Sema &S, 6360 const InitializedEntity &Entity, 6361 const InitializationKind &Kind, 6362 MultiExprArg Args, 6363 const InitializationSequence::Step& Step, 6364 bool &ConstructorInitRequiresZeroInit, 6365 bool IsListInitialization, 6366 bool IsStdInitListInitialization, 6367 SourceLocation LBraceLoc, 6368 SourceLocation RBraceLoc) { 6369 unsigned NumArgs = Args.size(); 6370 CXXConstructorDecl *Constructor 6371 = cast<CXXConstructorDecl>(Step.Function.Function); 6372 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6373 6374 // Build a call to the selected constructor. 6375 SmallVector<Expr*, 8> ConstructorArgs; 6376 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6377 ? Kind.getEqualLoc() 6378 : Kind.getLocation(); 6379 6380 if (Kind.getKind() == InitializationKind::IK_Default) { 6381 // Force even a trivial, implicit default constructor to be 6382 // semantically checked. We do this explicitly because we don't build 6383 // the definition for completely trivial constructors. 6384 assert(Constructor->getParent() && "No parent class for constructor."); 6385 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6386 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6387 S.runWithSufficientStackSpace(Loc, [&] { 6388 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6389 }); 6390 } 6391 } 6392 6393 ExprResult CurInit((Expr *)nullptr); 6394 6395 // C++ [over.match.copy]p1: 6396 // - When initializing a temporary to be bound to the first parameter 6397 // of a constructor that takes a reference to possibly cv-qualified 6398 // T as its first argument, called with a single argument in the 6399 // context of direct-initialization, explicit conversion functions 6400 // are also considered. 6401 bool AllowExplicitConv = 6402 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6403 hasCopyOrMoveCtorParam(S.Context, 6404 getConstructorInfo(Step.Function.FoundDecl)); 6405 6406 // Determine the arguments required to actually perform the constructor 6407 // call. 6408 if (S.CompleteConstructorCall(Constructor, Args, 6409 Loc, ConstructorArgs, 6410 AllowExplicitConv, 6411 IsListInitialization)) 6412 return ExprError(); 6413 6414 6415 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6416 // An explicitly-constructed temporary, e.g., X(1, 2). 6417 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6418 return ExprError(); 6419 6420 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6421 if (!TSInfo) 6422 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6423 SourceRange ParenOrBraceRange = 6424 (Kind.getKind() == InitializationKind::IK_DirectList) 6425 ? SourceRange(LBraceLoc, RBraceLoc) 6426 : Kind.getParenOrBraceRange(); 6427 6428 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6429 Step.Function.FoundDecl.getDecl())) { 6430 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6431 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6432 return ExprError(); 6433 } 6434 S.MarkFunctionReferenced(Loc, Constructor); 6435 6436 CurInit = CXXTemporaryObjectExpr::Create( 6437 S.Context, Constructor, 6438 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6439 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6440 IsListInitialization, IsStdInitListInitialization, 6441 ConstructorInitRequiresZeroInit); 6442 } else { 6443 CXXConstructExpr::ConstructionKind ConstructKind = 6444 CXXConstructExpr::CK_Complete; 6445 6446 if (Entity.getKind() == InitializedEntity::EK_Base) { 6447 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6448 CXXConstructExpr::CK_VirtualBase : 6449 CXXConstructExpr::CK_NonVirtualBase; 6450 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6451 ConstructKind = CXXConstructExpr::CK_Delegating; 6452 } 6453 6454 // Only get the parenthesis or brace range if it is a list initialization or 6455 // direct construction. 6456 SourceRange ParenOrBraceRange; 6457 if (IsListInitialization) 6458 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6459 else if (Kind.getKind() == InitializationKind::IK_Direct) 6460 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6461 6462 // If the entity allows NRVO, mark the construction as elidable 6463 // unconditionally. 6464 if (Entity.allowsNRVO()) 6465 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6466 Step.Function.FoundDecl, 6467 Constructor, /*Elidable=*/true, 6468 ConstructorArgs, 6469 HadMultipleCandidates, 6470 IsListInitialization, 6471 IsStdInitListInitialization, 6472 ConstructorInitRequiresZeroInit, 6473 ConstructKind, 6474 ParenOrBraceRange); 6475 else 6476 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6477 Step.Function.FoundDecl, 6478 Constructor, 6479 ConstructorArgs, 6480 HadMultipleCandidates, 6481 IsListInitialization, 6482 IsStdInitListInitialization, 6483 ConstructorInitRequiresZeroInit, 6484 ConstructKind, 6485 ParenOrBraceRange); 6486 } 6487 if (CurInit.isInvalid()) 6488 return ExprError(); 6489 6490 // Only check access if all of that succeeded. 6491 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6492 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6493 return ExprError(); 6494 6495 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6496 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6497 return ExprError(); 6498 6499 if (shouldBindAsTemporary(Entity)) 6500 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6501 6502 return CurInit; 6503 } 6504 6505 namespace { 6506 enum LifetimeKind { 6507 /// The lifetime of a temporary bound to this entity ends at the end of the 6508 /// full-expression, and that's (probably) fine. 6509 LK_FullExpression, 6510 6511 /// The lifetime of a temporary bound to this entity is extended to the 6512 /// lifeitme of the entity itself. 6513 LK_Extended, 6514 6515 /// The lifetime of a temporary bound to this entity probably ends too soon, 6516 /// because the entity is allocated in a new-expression. 6517 LK_New, 6518 6519 /// The lifetime of a temporary bound to this entity ends too soon, because 6520 /// the entity is a return object. 6521 LK_Return, 6522 6523 /// The lifetime of a temporary bound to this entity ends too soon, because 6524 /// the entity is the result of a statement expression. 6525 LK_StmtExprResult, 6526 6527 /// This is a mem-initializer: if it would extend a temporary (other than via 6528 /// a default member initializer), the program is ill-formed. 6529 LK_MemInitializer, 6530 }; 6531 using LifetimeResult = 6532 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6533 } 6534 6535 /// Determine the declaration which an initialized entity ultimately refers to, 6536 /// for the purpose of lifetime-extending a temporary bound to a reference in 6537 /// the initialization of \p Entity. 6538 static LifetimeResult getEntityLifetime( 6539 const InitializedEntity *Entity, 6540 const InitializedEntity *InitField = nullptr) { 6541 // C++11 [class.temporary]p5: 6542 switch (Entity->getKind()) { 6543 case InitializedEntity::EK_Variable: 6544 // The temporary [...] persists for the lifetime of the reference 6545 return {Entity, LK_Extended}; 6546 6547 case InitializedEntity::EK_Member: 6548 // For subobjects, we look at the complete object. 6549 if (Entity->getParent()) 6550 return getEntityLifetime(Entity->getParent(), Entity); 6551 6552 // except: 6553 // C++17 [class.base.init]p8: 6554 // A temporary expression bound to a reference member in a 6555 // mem-initializer is ill-formed. 6556 // C++17 [class.base.init]p11: 6557 // A temporary expression bound to a reference member from a 6558 // default member initializer is ill-formed. 6559 // 6560 // The context of p11 and its example suggest that it's only the use of a 6561 // default member initializer from a constructor that makes the program 6562 // ill-formed, not its mere existence, and that it can even be used by 6563 // aggregate initialization. 6564 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6565 : LK_MemInitializer}; 6566 6567 case InitializedEntity::EK_Binding: 6568 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6569 // type. 6570 return {Entity, LK_Extended}; 6571 6572 case InitializedEntity::EK_Parameter: 6573 case InitializedEntity::EK_Parameter_CF_Audited: 6574 // -- A temporary bound to a reference parameter in a function call 6575 // persists until the completion of the full-expression containing 6576 // the call. 6577 return {nullptr, LK_FullExpression}; 6578 6579 case InitializedEntity::EK_Result: 6580 // -- The lifetime of a temporary bound to the returned value in a 6581 // function return statement is not extended; the temporary is 6582 // destroyed at the end of the full-expression in the return statement. 6583 return {nullptr, LK_Return}; 6584 6585 case InitializedEntity::EK_StmtExprResult: 6586 // FIXME: Should we lifetime-extend through the result of a statement 6587 // expression? 6588 return {nullptr, LK_StmtExprResult}; 6589 6590 case InitializedEntity::EK_New: 6591 // -- A temporary bound to a reference in a new-initializer persists 6592 // until the completion of the full-expression containing the 6593 // new-initializer. 6594 return {nullptr, LK_New}; 6595 6596 case InitializedEntity::EK_Temporary: 6597 case InitializedEntity::EK_CompoundLiteralInit: 6598 case InitializedEntity::EK_RelatedResult: 6599 // We don't yet know the storage duration of the surrounding temporary. 6600 // Assume it's got full-expression duration for now, it will patch up our 6601 // storage duration if that's not correct. 6602 return {nullptr, LK_FullExpression}; 6603 6604 case InitializedEntity::EK_ArrayElement: 6605 // For subobjects, we look at the complete object. 6606 return getEntityLifetime(Entity->getParent(), InitField); 6607 6608 case InitializedEntity::EK_Base: 6609 // For subobjects, we look at the complete object. 6610 if (Entity->getParent()) 6611 return getEntityLifetime(Entity->getParent(), InitField); 6612 return {InitField, LK_MemInitializer}; 6613 6614 case InitializedEntity::EK_Delegating: 6615 // We can reach this case for aggregate initialization in a constructor: 6616 // struct A { int &&r; }; 6617 // struct B : A { B() : A{0} {} }; 6618 // In this case, use the outermost field decl as the context. 6619 return {InitField, LK_MemInitializer}; 6620 6621 case InitializedEntity::EK_BlockElement: 6622 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6623 case InitializedEntity::EK_LambdaCapture: 6624 case InitializedEntity::EK_VectorElement: 6625 case InitializedEntity::EK_ComplexElement: 6626 return {nullptr, LK_FullExpression}; 6627 6628 case InitializedEntity::EK_Exception: 6629 // FIXME: Can we diagnose lifetime problems with exceptions? 6630 return {nullptr, LK_FullExpression}; 6631 } 6632 llvm_unreachable("unknown entity kind"); 6633 } 6634 6635 namespace { 6636 enum ReferenceKind { 6637 /// Lifetime would be extended by a reference binding to a temporary. 6638 RK_ReferenceBinding, 6639 /// Lifetime would be extended by a std::initializer_list object binding to 6640 /// its backing array. 6641 RK_StdInitializerList, 6642 }; 6643 6644 /// A temporary or local variable. This will be one of: 6645 /// * A MaterializeTemporaryExpr. 6646 /// * A DeclRefExpr whose declaration is a local. 6647 /// * An AddrLabelExpr. 6648 /// * A BlockExpr for a block with captures. 6649 using Local = Expr*; 6650 6651 /// Expressions we stepped over when looking for the local state. Any steps 6652 /// that would inhibit lifetime extension or take us out of subexpressions of 6653 /// the initializer are included. 6654 struct IndirectLocalPathEntry { 6655 enum EntryKind { 6656 DefaultInit, 6657 AddressOf, 6658 VarInit, 6659 LValToRVal, 6660 LifetimeBoundCall, 6661 GslReferenceInit, 6662 GslPointerInit 6663 } Kind; 6664 Expr *E; 6665 const Decl *D = nullptr; 6666 IndirectLocalPathEntry() {} 6667 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6668 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6669 : Kind(K), E(E), D(D) {} 6670 }; 6671 6672 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6673 6674 struct RevertToOldSizeRAII { 6675 IndirectLocalPath &Path; 6676 unsigned OldSize = Path.size(); 6677 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6678 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6679 }; 6680 6681 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6682 ReferenceKind RK)>; 6683 } 6684 6685 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6686 for (auto E : Path) 6687 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6688 return true; 6689 return false; 6690 } 6691 6692 static bool pathContainsInit(IndirectLocalPath &Path) { 6693 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6694 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6695 E.Kind == IndirectLocalPathEntry::VarInit; 6696 }); 6697 } 6698 6699 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6700 Expr *Init, LocalVisitor Visit, 6701 bool RevisitSubinits, 6702 bool EnableLifetimeWarnings); 6703 6704 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6705 Expr *Init, ReferenceKind RK, 6706 LocalVisitor Visit, 6707 bool EnableLifetimeWarnings); 6708 6709 template <typename T> static bool isRecordWithAttr(QualType Type) { 6710 if (auto *RD = Type->getAsCXXRecordDecl()) 6711 return RD->hasAttr<T>(); 6712 return false; 6713 } 6714 6715 // Decl::isInStdNamespace will return false for iterators in some STL 6716 // implementations due to them being defined in a namespace outside of the std 6717 // namespace. 6718 static bool isInStlNamespace(const Decl *D) { 6719 const DeclContext *DC = D->getDeclContext(); 6720 if (!DC) 6721 return false; 6722 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6723 if (const IdentifierInfo *II = ND->getIdentifier()) { 6724 StringRef Name = II->getName(); 6725 if (Name.size() >= 2 && Name.front() == '_' && 6726 (Name[1] == '_' || isUppercase(Name[1]))) 6727 return true; 6728 } 6729 6730 return DC->isStdNamespace(); 6731 } 6732 6733 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6734 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6735 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6736 return true; 6737 if (!isInStlNamespace(Callee->getParent())) 6738 return false; 6739 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6740 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6741 return false; 6742 if (Callee->getReturnType()->isPointerType() || 6743 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6744 if (!Callee->getIdentifier()) 6745 return false; 6746 return llvm::StringSwitch<bool>(Callee->getName()) 6747 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6748 .Cases("end", "rend", "cend", "crend", true) 6749 .Cases("c_str", "data", "get", true) 6750 // Map and set types. 6751 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6752 .Default(false); 6753 } else if (Callee->getReturnType()->isReferenceType()) { 6754 if (!Callee->getIdentifier()) { 6755 auto OO = Callee->getOverloadedOperator(); 6756 return OO == OverloadedOperatorKind::OO_Subscript || 6757 OO == OverloadedOperatorKind::OO_Star; 6758 } 6759 return llvm::StringSwitch<bool>(Callee->getName()) 6760 .Cases("front", "back", "at", "top", "value", true) 6761 .Default(false); 6762 } 6763 return false; 6764 } 6765 6766 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6767 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6768 return false; 6769 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6770 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6771 return false; 6772 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6773 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6774 return false; 6775 if (FD->getReturnType()->isPointerType() || 6776 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6777 return llvm::StringSwitch<bool>(FD->getName()) 6778 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6779 .Cases("end", "rend", "cend", "crend", true) 6780 .Case("data", true) 6781 .Default(false); 6782 } else if (FD->getReturnType()->isReferenceType()) { 6783 return llvm::StringSwitch<bool>(FD->getName()) 6784 .Cases("get", "any_cast", true) 6785 .Default(false); 6786 } 6787 return false; 6788 } 6789 6790 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6791 LocalVisitor Visit) { 6792 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6793 // We are not interested in the temporary base objects of gsl Pointers: 6794 // Temp().ptr; // Here ptr might not dangle. 6795 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6796 return; 6797 // Once we initialized a value with a reference, it can no longer dangle. 6798 if (!Value) { 6799 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6800 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6801 continue; 6802 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6803 return; 6804 break; 6805 } 6806 } 6807 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6808 : IndirectLocalPathEntry::GslReferenceInit, 6809 Arg, D}); 6810 if (Arg->isGLValue()) 6811 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6812 Visit, 6813 /*EnableLifetimeWarnings=*/true); 6814 else 6815 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6816 /*EnableLifetimeWarnings=*/true); 6817 Path.pop_back(); 6818 }; 6819 6820 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6821 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6822 if (MD && shouldTrackImplicitObjectArg(MD)) 6823 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6824 !MD->getReturnType()->isReferenceType()); 6825 return; 6826 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6827 FunctionDecl *Callee = OCE->getDirectCallee(); 6828 if (Callee && Callee->isCXXInstanceMember() && 6829 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6830 VisitPointerArg(Callee, OCE->getArg(0), 6831 !Callee->getReturnType()->isReferenceType()); 6832 return; 6833 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6834 FunctionDecl *Callee = CE->getDirectCallee(); 6835 if (Callee && shouldTrackFirstArgument(Callee)) 6836 VisitPointerArg(Callee, CE->getArg(0), 6837 !Callee->getReturnType()->isReferenceType()); 6838 return; 6839 } 6840 6841 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6842 const auto *Ctor = CCE->getConstructor(); 6843 const CXXRecordDecl *RD = Ctor->getParent(); 6844 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6845 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6846 } 6847 } 6848 6849 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6850 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6851 if (!TSI) 6852 return false; 6853 // Don't declare this variable in the second operand of the for-statement; 6854 // GCC miscompiles that by ending its lifetime before evaluating the 6855 // third operand. See gcc.gnu.org/PR86769. 6856 AttributedTypeLoc ATL; 6857 for (TypeLoc TL = TSI->getTypeLoc(); 6858 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6859 TL = ATL.getModifiedLoc()) { 6860 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6861 return true; 6862 } 6863 return false; 6864 } 6865 6866 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6867 LocalVisitor Visit) { 6868 const FunctionDecl *Callee; 6869 ArrayRef<Expr*> Args; 6870 6871 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6872 Callee = CE->getDirectCallee(); 6873 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6874 } else { 6875 auto *CCE = cast<CXXConstructExpr>(Call); 6876 Callee = CCE->getConstructor(); 6877 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6878 } 6879 if (!Callee) 6880 return; 6881 6882 Expr *ObjectArg = nullptr; 6883 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6884 ObjectArg = Args[0]; 6885 Args = Args.slice(1); 6886 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6887 ObjectArg = MCE->getImplicitObjectArgument(); 6888 } 6889 6890 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6891 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6892 if (Arg->isGLValue()) 6893 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6894 Visit, 6895 /*EnableLifetimeWarnings=*/false); 6896 else 6897 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6898 /*EnableLifetimeWarnings=*/false); 6899 Path.pop_back(); 6900 }; 6901 6902 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6903 VisitLifetimeBoundArg(Callee, ObjectArg); 6904 6905 for (unsigned I = 0, 6906 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6907 I != N; ++I) { 6908 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6909 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6910 } 6911 } 6912 6913 /// Visit the locals that would be reachable through a reference bound to the 6914 /// glvalue expression \c Init. 6915 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6916 Expr *Init, ReferenceKind RK, 6917 LocalVisitor Visit, 6918 bool EnableLifetimeWarnings) { 6919 RevertToOldSizeRAII RAII(Path); 6920 6921 // Walk past any constructs which we can lifetime-extend across. 6922 Expr *Old; 6923 do { 6924 Old = Init; 6925 6926 if (auto *FE = dyn_cast<FullExpr>(Init)) 6927 Init = FE->getSubExpr(); 6928 6929 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6930 // If this is just redundant braces around an initializer, step over it. 6931 if (ILE->isTransparent()) 6932 Init = ILE->getInit(0); 6933 } 6934 6935 // Step over any subobject adjustments; we may have a materialized 6936 // temporary inside them. 6937 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6938 6939 // Per current approach for DR1376, look through casts to reference type 6940 // when performing lifetime extension. 6941 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6942 if (CE->getSubExpr()->isGLValue()) 6943 Init = CE->getSubExpr(); 6944 6945 // Per the current approach for DR1299, look through array element access 6946 // on array glvalues when performing lifetime extension. 6947 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6948 Init = ASE->getBase(); 6949 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6950 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6951 Init = ICE->getSubExpr(); 6952 else 6953 // We can't lifetime extend through this but we might still find some 6954 // retained temporaries. 6955 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 6956 EnableLifetimeWarnings); 6957 } 6958 6959 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6960 // constructor inherits one as an implicit mem-initializer. 6961 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6962 Path.push_back( 6963 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6964 Init = DIE->getExpr(); 6965 } 6966 } while (Init != Old); 6967 6968 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6969 if (Visit(Path, Local(MTE), RK)) 6970 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 6971 EnableLifetimeWarnings); 6972 } 6973 6974 if (isa<CallExpr>(Init)) { 6975 if (EnableLifetimeWarnings) 6976 handleGslAnnotatedTypes(Path, Init, Visit); 6977 return visitLifetimeBoundArguments(Path, Init, Visit); 6978 } 6979 6980 switch (Init->getStmtClass()) { 6981 case Stmt::DeclRefExprClass: { 6982 // If we find the name of a local non-reference parameter, we could have a 6983 // lifetime problem. 6984 auto *DRE = cast<DeclRefExpr>(Init); 6985 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6986 if (VD && VD->hasLocalStorage() && 6987 !DRE->refersToEnclosingVariableOrCapture()) { 6988 if (!VD->getType()->isReferenceType()) { 6989 Visit(Path, Local(DRE), RK); 6990 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6991 // The lifetime of a reference parameter is unknown; assume it's OK 6992 // for now. 6993 break; 6994 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6995 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6996 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6997 RK_ReferenceBinding, Visit, 6998 EnableLifetimeWarnings); 6999 } 7000 } 7001 break; 7002 } 7003 7004 case Stmt::UnaryOperatorClass: { 7005 // The only unary operator that make sense to handle here 7006 // is Deref. All others don't resolve to a "name." This includes 7007 // handling all sorts of rvalues passed to a unary operator. 7008 const UnaryOperator *U = cast<UnaryOperator>(Init); 7009 if (U->getOpcode() == UO_Deref) 7010 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7011 EnableLifetimeWarnings); 7012 break; 7013 } 7014 7015 case Stmt::OMPArraySectionExprClass: { 7016 visitLocalsRetainedByInitializer(Path, 7017 cast<OMPArraySectionExpr>(Init)->getBase(), 7018 Visit, true, EnableLifetimeWarnings); 7019 break; 7020 } 7021 7022 case Stmt::ConditionalOperatorClass: 7023 case Stmt::BinaryConditionalOperatorClass: { 7024 auto *C = cast<AbstractConditionalOperator>(Init); 7025 if (!C->getTrueExpr()->getType()->isVoidType()) 7026 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7027 EnableLifetimeWarnings); 7028 if (!C->getFalseExpr()->getType()->isVoidType()) 7029 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7030 EnableLifetimeWarnings); 7031 break; 7032 } 7033 7034 // FIXME: Visit the left-hand side of an -> or ->*. 7035 7036 default: 7037 break; 7038 } 7039 } 7040 7041 /// Visit the locals that would be reachable through an object initialized by 7042 /// the prvalue expression \c Init. 7043 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7044 Expr *Init, LocalVisitor Visit, 7045 bool RevisitSubinits, 7046 bool EnableLifetimeWarnings) { 7047 RevertToOldSizeRAII RAII(Path); 7048 7049 Expr *Old; 7050 do { 7051 Old = Init; 7052 7053 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7054 // constructor inherits one as an implicit mem-initializer. 7055 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7056 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7057 Init = DIE->getExpr(); 7058 } 7059 7060 if (auto *FE = dyn_cast<FullExpr>(Init)) 7061 Init = FE->getSubExpr(); 7062 7063 // Dig out the expression which constructs the extended temporary. 7064 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7065 7066 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7067 Init = BTE->getSubExpr(); 7068 7069 Init = Init->IgnoreParens(); 7070 7071 // Step over value-preserving rvalue casts. 7072 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7073 switch (CE->getCastKind()) { 7074 case CK_LValueToRValue: 7075 // If we can match the lvalue to a const object, we can look at its 7076 // initializer. 7077 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7078 return visitLocalsRetainedByReferenceBinding( 7079 Path, Init, RK_ReferenceBinding, 7080 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7081 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7082 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7083 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7084 !isVarOnPath(Path, VD)) { 7085 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7086 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7087 EnableLifetimeWarnings); 7088 } 7089 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7090 if (MTE->getType().isConstQualified()) 7091 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7092 true, EnableLifetimeWarnings); 7093 } 7094 return false; 7095 }, EnableLifetimeWarnings); 7096 7097 // We assume that objects can be retained by pointers cast to integers, 7098 // but not if the integer is cast to floating-point type or to _Complex. 7099 // We assume that casts to 'bool' do not preserve enough information to 7100 // retain a local object. 7101 case CK_NoOp: 7102 case CK_BitCast: 7103 case CK_BaseToDerived: 7104 case CK_DerivedToBase: 7105 case CK_UncheckedDerivedToBase: 7106 case CK_Dynamic: 7107 case CK_ToUnion: 7108 case CK_UserDefinedConversion: 7109 case CK_ConstructorConversion: 7110 case CK_IntegralToPointer: 7111 case CK_PointerToIntegral: 7112 case CK_VectorSplat: 7113 case CK_IntegralCast: 7114 case CK_CPointerToObjCPointerCast: 7115 case CK_BlockPointerToObjCPointerCast: 7116 case CK_AnyPointerToBlockPointerCast: 7117 case CK_AddressSpaceConversion: 7118 break; 7119 7120 case CK_ArrayToPointerDecay: 7121 // Model array-to-pointer decay as taking the address of the array 7122 // lvalue. 7123 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7124 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7125 RK_ReferenceBinding, Visit, 7126 EnableLifetimeWarnings); 7127 7128 default: 7129 return; 7130 } 7131 7132 Init = CE->getSubExpr(); 7133 } 7134 } while (Old != Init); 7135 7136 // C++17 [dcl.init.list]p6: 7137 // initializing an initializer_list object from the array extends the 7138 // lifetime of the array exactly like binding a reference to a temporary. 7139 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7140 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7141 RK_StdInitializerList, Visit, 7142 EnableLifetimeWarnings); 7143 7144 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7145 // We already visited the elements of this initializer list while 7146 // performing the initialization. Don't visit them again unless we've 7147 // changed the lifetime of the initialized entity. 7148 if (!RevisitSubinits) 7149 return; 7150 7151 if (ILE->isTransparent()) 7152 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7153 RevisitSubinits, 7154 EnableLifetimeWarnings); 7155 7156 if (ILE->getType()->isArrayType()) { 7157 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7158 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7159 RevisitSubinits, 7160 EnableLifetimeWarnings); 7161 return; 7162 } 7163 7164 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7165 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7166 7167 // If we lifetime-extend a braced initializer which is initializing an 7168 // aggregate, and that aggregate contains reference members which are 7169 // bound to temporaries, those temporaries are also lifetime-extended. 7170 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7171 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7172 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7173 RK_ReferenceBinding, Visit, 7174 EnableLifetimeWarnings); 7175 else { 7176 unsigned Index = 0; 7177 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7178 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7179 RevisitSubinits, 7180 EnableLifetimeWarnings); 7181 for (const auto *I : RD->fields()) { 7182 if (Index >= ILE->getNumInits()) 7183 break; 7184 if (I->isUnnamedBitfield()) 7185 continue; 7186 Expr *SubInit = ILE->getInit(Index); 7187 if (I->getType()->isReferenceType()) 7188 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7189 RK_ReferenceBinding, Visit, 7190 EnableLifetimeWarnings); 7191 else 7192 // This might be either aggregate-initialization of a member or 7193 // initialization of a std::initializer_list object. Regardless, 7194 // we should recursively lifetime-extend that initializer. 7195 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7196 RevisitSubinits, 7197 EnableLifetimeWarnings); 7198 ++Index; 7199 } 7200 } 7201 } 7202 return; 7203 } 7204 7205 // The lifetime of an init-capture is that of the closure object constructed 7206 // by a lambda-expression. 7207 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7208 for (Expr *E : LE->capture_inits()) { 7209 if (!E) 7210 continue; 7211 if (E->isGLValue()) 7212 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7213 Visit, EnableLifetimeWarnings); 7214 else 7215 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7216 EnableLifetimeWarnings); 7217 } 7218 } 7219 7220 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7221 if (EnableLifetimeWarnings) 7222 handleGslAnnotatedTypes(Path, Init, Visit); 7223 return visitLifetimeBoundArguments(Path, Init, Visit); 7224 } 7225 7226 switch (Init->getStmtClass()) { 7227 case Stmt::UnaryOperatorClass: { 7228 auto *UO = cast<UnaryOperator>(Init); 7229 // If the initializer is the address of a local, we could have a lifetime 7230 // problem. 7231 if (UO->getOpcode() == UO_AddrOf) { 7232 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7233 // it. Don't produce a redundant warning about the lifetime of the 7234 // temporary. 7235 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7236 return; 7237 7238 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7239 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7240 RK_ReferenceBinding, Visit, 7241 EnableLifetimeWarnings); 7242 } 7243 break; 7244 } 7245 7246 case Stmt::BinaryOperatorClass: { 7247 // Handle pointer arithmetic. 7248 auto *BO = cast<BinaryOperator>(Init); 7249 BinaryOperatorKind BOK = BO->getOpcode(); 7250 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7251 break; 7252 7253 if (BO->getLHS()->getType()->isPointerType()) 7254 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7255 EnableLifetimeWarnings); 7256 else if (BO->getRHS()->getType()->isPointerType()) 7257 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7258 EnableLifetimeWarnings); 7259 break; 7260 } 7261 7262 case Stmt::ConditionalOperatorClass: 7263 case Stmt::BinaryConditionalOperatorClass: { 7264 auto *C = cast<AbstractConditionalOperator>(Init); 7265 // In C++, we can have a throw-expression operand, which has 'void' type 7266 // and isn't interesting from a lifetime perspective. 7267 if (!C->getTrueExpr()->getType()->isVoidType()) 7268 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7269 EnableLifetimeWarnings); 7270 if (!C->getFalseExpr()->getType()->isVoidType()) 7271 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7272 EnableLifetimeWarnings); 7273 break; 7274 } 7275 7276 case Stmt::BlockExprClass: 7277 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7278 // This is a local block, whose lifetime is that of the function. 7279 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7280 } 7281 break; 7282 7283 case Stmt::AddrLabelExprClass: 7284 // We want to warn if the address of a label would escape the function. 7285 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7286 break; 7287 7288 default: 7289 break; 7290 } 7291 } 7292 7293 /// Determine whether this is an indirect path to a temporary that we are 7294 /// supposed to lifetime-extend along (but don't). 7295 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7296 for (auto Elem : Path) { 7297 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7298 return false; 7299 } 7300 return true; 7301 } 7302 7303 /// Find the range for the first interesting entry in the path at or after I. 7304 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7305 Expr *E) { 7306 for (unsigned N = Path.size(); I != N; ++I) { 7307 switch (Path[I].Kind) { 7308 case IndirectLocalPathEntry::AddressOf: 7309 case IndirectLocalPathEntry::LValToRVal: 7310 case IndirectLocalPathEntry::LifetimeBoundCall: 7311 case IndirectLocalPathEntry::GslReferenceInit: 7312 case IndirectLocalPathEntry::GslPointerInit: 7313 // These exist primarily to mark the path as not permitting or 7314 // supporting lifetime extension. 7315 break; 7316 7317 case IndirectLocalPathEntry::VarInit: 7318 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7319 return SourceRange(); 7320 LLVM_FALLTHROUGH; 7321 case IndirectLocalPathEntry::DefaultInit: 7322 return Path[I].E->getSourceRange(); 7323 } 7324 } 7325 return E->getSourceRange(); 7326 } 7327 7328 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7329 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7330 if (It->Kind == IndirectLocalPathEntry::VarInit) 7331 continue; 7332 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7333 continue; 7334 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7335 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7336 } 7337 return false; 7338 } 7339 7340 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7341 Expr *Init) { 7342 LifetimeResult LR = getEntityLifetime(&Entity); 7343 LifetimeKind LK = LR.getInt(); 7344 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7345 7346 // If this entity doesn't have an interesting lifetime, don't bother looking 7347 // for temporaries within its initializer. 7348 if (LK == LK_FullExpression) 7349 return; 7350 7351 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7352 ReferenceKind RK) -> bool { 7353 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7354 SourceLocation DiagLoc = DiagRange.getBegin(); 7355 7356 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7357 7358 bool IsGslPtrInitWithGslTempOwner = false; 7359 bool IsLocalGslOwner = false; 7360 if (pathOnlyInitializesGslPointer(Path)) { 7361 if (isa<DeclRefExpr>(L)) { 7362 // We do not want to follow the references when returning a pointer originating 7363 // from a local owner to avoid the following false positive: 7364 // int &p = *localUniquePtr; 7365 // someContainer.add(std::move(localUniquePtr)); 7366 // return p; 7367 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7368 if (pathContainsInit(Path) || !IsLocalGslOwner) 7369 return false; 7370 } else { 7371 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7372 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7373 // Skipping a chain of initializing gsl::Pointer annotated objects. 7374 // We are looking only for the final source to find out if it was 7375 // a local or temporary owner or the address of a local variable/param. 7376 if (!IsGslPtrInitWithGslTempOwner) 7377 return true; 7378 } 7379 } 7380 7381 switch (LK) { 7382 case LK_FullExpression: 7383 llvm_unreachable("already handled this"); 7384 7385 case LK_Extended: { 7386 if (!MTE) { 7387 // The initialized entity has lifetime beyond the full-expression, 7388 // and the local entity does too, so don't warn. 7389 // 7390 // FIXME: We should consider warning if a static / thread storage 7391 // duration variable retains an automatic storage duration local. 7392 return false; 7393 } 7394 7395 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7396 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7397 return false; 7398 } 7399 7400 // Lifetime-extend the temporary. 7401 if (Path.empty()) { 7402 // Update the storage duration of the materialized temporary. 7403 // FIXME: Rebuild the expression instead of mutating it. 7404 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7405 ExtendingEntity->allocateManglingNumber()); 7406 // Also visit the temporaries lifetime-extended by this initializer. 7407 return true; 7408 } 7409 7410 if (shouldLifetimeExtendThroughPath(Path)) { 7411 // We're supposed to lifetime-extend the temporary along this path (per 7412 // the resolution of DR1815), but we don't support that yet. 7413 // 7414 // FIXME: Properly handle this situation. Perhaps the easiest approach 7415 // would be to clone the initializer expression on each use that would 7416 // lifetime extend its temporaries. 7417 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7418 << RK << DiagRange; 7419 } else { 7420 // If the path goes through the initialization of a variable or field, 7421 // it can't possibly reach a temporary created in this full-expression. 7422 // We will have already diagnosed any problems with the initializer. 7423 if (pathContainsInit(Path)) 7424 return false; 7425 7426 Diag(DiagLoc, diag::warn_dangling_variable) 7427 << RK << !Entity.getParent() 7428 << ExtendingEntity->getDecl()->isImplicit() 7429 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7430 } 7431 break; 7432 } 7433 7434 case LK_MemInitializer: { 7435 if (isa<MaterializeTemporaryExpr>(L)) { 7436 // Under C++ DR1696, if a mem-initializer (or a default member 7437 // initializer used by the absence of one) would lifetime-extend a 7438 // temporary, the program is ill-formed. 7439 if (auto *ExtendingDecl = 7440 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7441 if (IsGslPtrInitWithGslTempOwner) { 7442 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7443 << ExtendingDecl << DiagRange; 7444 Diag(ExtendingDecl->getLocation(), 7445 diag::note_ref_or_ptr_member_declared_here) 7446 << true; 7447 return false; 7448 } 7449 bool IsSubobjectMember = ExtendingEntity != &Entity; 7450 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7451 ? diag::err_dangling_member 7452 : diag::warn_dangling_member) 7453 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7454 // Don't bother adding a note pointing to the field if we're inside 7455 // its default member initializer; our primary diagnostic points to 7456 // the same place in that case. 7457 if (Path.empty() || 7458 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7459 Diag(ExtendingDecl->getLocation(), 7460 diag::note_lifetime_extending_member_declared_here) 7461 << RK << IsSubobjectMember; 7462 } 7463 } else { 7464 // We have a mem-initializer but no particular field within it; this 7465 // is either a base class or a delegating initializer directly 7466 // initializing the base-class from something that doesn't live long 7467 // enough. 7468 // 7469 // FIXME: Warn on this. 7470 return false; 7471 } 7472 } else { 7473 // Paths via a default initializer can only occur during error recovery 7474 // (there's no other way that a default initializer can refer to a 7475 // local). Don't produce a bogus warning on those cases. 7476 if (pathContainsInit(Path)) 7477 return false; 7478 7479 // Suppress false positives for code like the one below: 7480 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7481 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7482 return false; 7483 7484 auto *DRE = dyn_cast<DeclRefExpr>(L); 7485 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7486 if (!VD) { 7487 // A member was initialized to a local block. 7488 // FIXME: Warn on this. 7489 return false; 7490 } 7491 7492 if (auto *Member = 7493 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7494 bool IsPointer = !Member->getType()->isReferenceType(); 7495 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7496 : diag::warn_bind_ref_member_to_parameter) 7497 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7498 Diag(Member->getLocation(), 7499 diag::note_ref_or_ptr_member_declared_here) 7500 << (unsigned)IsPointer; 7501 } 7502 } 7503 break; 7504 } 7505 7506 case LK_New: 7507 if (isa<MaterializeTemporaryExpr>(L)) { 7508 if (IsGslPtrInitWithGslTempOwner) 7509 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7510 else 7511 Diag(DiagLoc, RK == RK_ReferenceBinding 7512 ? diag::warn_new_dangling_reference 7513 : diag::warn_new_dangling_initializer_list) 7514 << !Entity.getParent() << DiagRange; 7515 } else { 7516 // We can't determine if the allocation outlives the local declaration. 7517 return false; 7518 } 7519 break; 7520 7521 case LK_Return: 7522 case LK_StmtExprResult: 7523 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7524 // We can't determine if the local variable outlives the statement 7525 // expression. 7526 if (LK == LK_StmtExprResult) 7527 return false; 7528 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7529 << Entity.getType()->isReferenceType() << DRE->getDecl() 7530 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7531 } else if (isa<BlockExpr>(L)) { 7532 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7533 } else if (isa<AddrLabelExpr>(L)) { 7534 // Don't warn when returning a label from a statement expression. 7535 // Leaving the scope doesn't end its lifetime. 7536 if (LK == LK_StmtExprResult) 7537 return false; 7538 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7539 } else { 7540 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7541 << Entity.getType()->isReferenceType() << DiagRange; 7542 } 7543 break; 7544 } 7545 7546 for (unsigned I = 0; I != Path.size(); ++I) { 7547 auto Elem = Path[I]; 7548 7549 switch (Elem.Kind) { 7550 case IndirectLocalPathEntry::AddressOf: 7551 case IndirectLocalPathEntry::LValToRVal: 7552 // These exist primarily to mark the path as not permitting or 7553 // supporting lifetime extension. 7554 break; 7555 7556 case IndirectLocalPathEntry::LifetimeBoundCall: 7557 case IndirectLocalPathEntry::GslPointerInit: 7558 case IndirectLocalPathEntry::GslReferenceInit: 7559 // FIXME: Consider adding a note for these. 7560 break; 7561 7562 case IndirectLocalPathEntry::DefaultInit: { 7563 auto *FD = cast<FieldDecl>(Elem.D); 7564 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7565 << FD << nextPathEntryRange(Path, I + 1, L); 7566 break; 7567 } 7568 7569 case IndirectLocalPathEntry::VarInit: 7570 const VarDecl *VD = cast<VarDecl>(Elem.D); 7571 Diag(VD->getLocation(), diag::note_local_var_initializer) 7572 << VD->getType()->isReferenceType() 7573 << VD->isImplicit() << VD->getDeclName() 7574 << nextPathEntryRange(Path, I + 1, L); 7575 break; 7576 } 7577 } 7578 7579 // We didn't lifetime-extend, so don't go any further; we don't need more 7580 // warnings or errors on inner temporaries within this one's initializer. 7581 return false; 7582 }; 7583 7584 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7585 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7586 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7587 if (Init->isGLValue()) 7588 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7589 TemporaryVisitor, 7590 EnableLifetimeWarnings); 7591 else 7592 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7593 EnableLifetimeWarnings); 7594 } 7595 7596 static void DiagnoseNarrowingInInitList(Sema &S, 7597 const ImplicitConversionSequence &ICS, 7598 QualType PreNarrowingType, 7599 QualType EntityType, 7600 const Expr *PostInit); 7601 7602 /// Provide warnings when std::move is used on construction. 7603 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7604 bool IsReturnStmt) { 7605 if (!InitExpr) 7606 return; 7607 7608 if (S.inTemplateInstantiation()) 7609 return; 7610 7611 QualType DestType = InitExpr->getType(); 7612 if (!DestType->isRecordType()) 7613 return; 7614 7615 unsigned DiagID = 0; 7616 if (IsReturnStmt) { 7617 const CXXConstructExpr *CCE = 7618 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7619 if (!CCE || CCE->getNumArgs() != 1) 7620 return; 7621 7622 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7623 return; 7624 7625 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7626 } 7627 7628 // Find the std::move call and get the argument. 7629 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7630 if (!CE || !CE->isCallToStdMove()) 7631 return; 7632 7633 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7634 7635 if (IsReturnStmt) { 7636 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7637 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7638 return; 7639 7640 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7641 if (!VD || !VD->hasLocalStorage()) 7642 return; 7643 7644 // __block variables are not moved implicitly. 7645 if (VD->hasAttr<BlocksAttr>()) 7646 return; 7647 7648 QualType SourceType = VD->getType(); 7649 if (!SourceType->isRecordType()) 7650 return; 7651 7652 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7653 return; 7654 } 7655 7656 // If we're returning a function parameter, copy elision 7657 // is not possible. 7658 if (isa<ParmVarDecl>(VD)) 7659 DiagID = diag::warn_redundant_move_on_return; 7660 else 7661 DiagID = diag::warn_pessimizing_move_on_return; 7662 } else { 7663 DiagID = diag::warn_pessimizing_move_on_initialization; 7664 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7665 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7666 return; 7667 } 7668 7669 S.Diag(CE->getBeginLoc(), DiagID); 7670 7671 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7672 // is within a macro. 7673 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7674 if (CallBegin.isMacroID()) 7675 return; 7676 SourceLocation RParen = CE->getRParenLoc(); 7677 if (RParen.isMacroID()) 7678 return; 7679 SourceLocation LParen; 7680 SourceLocation ArgLoc = Arg->getBeginLoc(); 7681 7682 // Special testing for the argument location. Since the fix-it needs the 7683 // location right before the argument, the argument location can be in a 7684 // macro only if it is at the beginning of the macro. 7685 while (ArgLoc.isMacroID() && 7686 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7687 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7688 } 7689 7690 if (LParen.isMacroID()) 7691 return; 7692 7693 LParen = ArgLoc.getLocWithOffset(-1); 7694 7695 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7696 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7697 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7698 } 7699 7700 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7701 // Check to see if we are dereferencing a null pointer. If so, this is 7702 // undefined behavior, so warn about it. This only handles the pattern 7703 // "*null", which is a very syntactic check. 7704 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7705 if (UO->getOpcode() == UO_Deref && 7706 UO->getSubExpr()->IgnoreParenCasts()-> 7707 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7708 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7709 S.PDiag(diag::warn_binding_null_to_reference) 7710 << UO->getSubExpr()->getSourceRange()); 7711 } 7712 } 7713 7714 MaterializeTemporaryExpr * 7715 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7716 bool BoundToLvalueReference) { 7717 auto MTE = new (Context) 7718 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7719 7720 // Order an ExprWithCleanups for lifetime marks. 7721 // 7722 // TODO: It'll be good to have a single place to check the access of the 7723 // destructor and generate ExprWithCleanups for various uses. Currently these 7724 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7725 // but there may be a chance to merge them. 7726 Cleanup.setExprNeedsCleanups(false); 7727 return MTE; 7728 } 7729 7730 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7731 // In C++98, we don't want to implicitly create an xvalue. 7732 // FIXME: This means that AST consumers need to deal with "prvalues" that 7733 // denote materialized temporaries. Maybe we should add another ValueKind 7734 // for "xvalue pretending to be a prvalue" for C++98 support. 7735 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7736 return E; 7737 7738 // C++1z [conv.rval]/1: T shall be a complete type. 7739 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7740 // If so, we should check for a non-abstract class type here too. 7741 QualType T = E->getType(); 7742 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7743 return ExprError(); 7744 7745 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7746 } 7747 7748 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7749 ExprValueKind VK, 7750 CheckedConversionKind CCK) { 7751 7752 CastKind CK = CK_NoOp; 7753 7754 if (VK == VK_RValue) { 7755 auto PointeeTy = Ty->getPointeeType(); 7756 auto ExprPointeeTy = E->getType()->getPointeeType(); 7757 if (!PointeeTy.isNull() && 7758 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7759 CK = CK_AddressSpaceConversion; 7760 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7761 CK = CK_AddressSpaceConversion; 7762 } 7763 7764 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7765 } 7766 7767 ExprResult InitializationSequence::Perform(Sema &S, 7768 const InitializedEntity &Entity, 7769 const InitializationKind &Kind, 7770 MultiExprArg Args, 7771 QualType *ResultType) { 7772 if (Failed()) { 7773 Diagnose(S, Entity, Kind, Args); 7774 return ExprError(); 7775 } 7776 if (!ZeroInitializationFixit.empty()) { 7777 unsigned DiagID = diag::err_default_init_const; 7778 if (Decl *D = Entity.getDecl()) 7779 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7780 DiagID = diag::ext_default_init_const; 7781 7782 // The initialization would have succeeded with this fixit. Since the fixit 7783 // is on the error, we need to build a valid AST in this case, so this isn't 7784 // handled in the Failed() branch above. 7785 QualType DestType = Entity.getType(); 7786 S.Diag(Kind.getLocation(), DiagID) 7787 << DestType << (bool)DestType->getAs<RecordType>() 7788 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7789 ZeroInitializationFixit); 7790 } 7791 7792 if (getKind() == DependentSequence) { 7793 // If the declaration is a non-dependent, incomplete array type 7794 // that has an initializer, then its type will be completed once 7795 // the initializer is instantiated. 7796 if (ResultType && !Entity.getType()->isDependentType() && 7797 Args.size() == 1) { 7798 QualType DeclType = Entity.getType(); 7799 if (const IncompleteArrayType *ArrayT 7800 = S.Context.getAsIncompleteArrayType(DeclType)) { 7801 // FIXME: We don't currently have the ability to accurately 7802 // compute the length of an initializer list without 7803 // performing full type-checking of the initializer list 7804 // (since we have to determine where braces are implicitly 7805 // introduced and such). So, we fall back to making the array 7806 // type a dependently-sized array type with no specified 7807 // bound. 7808 if (isa<InitListExpr>((Expr *)Args[0])) { 7809 SourceRange Brackets; 7810 7811 // Scavange the location of the brackets from the entity, if we can. 7812 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7813 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7814 TypeLoc TL = TInfo->getTypeLoc(); 7815 if (IncompleteArrayTypeLoc ArrayLoc = 7816 TL.getAs<IncompleteArrayTypeLoc>()) 7817 Brackets = ArrayLoc.getBracketsRange(); 7818 } 7819 } 7820 7821 *ResultType 7822 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7823 /*NumElts=*/nullptr, 7824 ArrayT->getSizeModifier(), 7825 ArrayT->getIndexTypeCVRQualifiers(), 7826 Brackets); 7827 } 7828 7829 } 7830 } 7831 if (Kind.getKind() == InitializationKind::IK_Direct && 7832 !Kind.isExplicitCast()) { 7833 // Rebuild the ParenListExpr. 7834 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7835 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7836 Args); 7837 } 7838 assert(Kind.getKind() == InitializationKind::IK_Copy || 7839 Kind.isExplicitCast() || 7840 Kind.getKind() == InitializationKind::IK_DirectList); 7841 return ExprResult(Args[0]); 7842 } 7843 7844 // No steps means no initialization. 7845 if (Steps.empty()) 7846 return ExprResult((Expr *)nullptr); 7847 7848 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7849 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7850 !Entity.isParameterKind()) { 7851 // Produce a C++98 compatibility warning if we are initializing a reference 7852 // from an initializer list. For parameters, we produce a better warning 7853 // elsewhere. 7854 Expr *Init = Args[0]; 7855 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7856 << Init->getSourceRange(); 7857 } 7858 7859 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7860 QualType ETy = Entity.getType(); 7861 bool HasGlobalAS = ETy.hasAddressSpace() && 7862 ETy.getAddressSpace() == LangAS::opencl_global; 7863 7864 if (S.getLangOpts().OpenCLVersion >= 200 && 7865 ETy->isAtomicType() && !HasGlobalAS && 7866 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7867 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7868 << 1 7869 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7870 return ExprError(); 7871 } 7872 7873 QualType DestType = Entity.getType().getNonReferenceType(); 7874 // FIXME: Ugly hack around the fact that Entity.getType() is not 7875 // the same as Entity.getDecl()->getType() in cases involving type merging, 7876 // and we want latter when it makes sense. 7877 if (ResultType) 7878 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7879 Entity.getType(); 7880 7881 ExprResult CurInit((Expr *)nullptr); 7882 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7883 7884 // For initialization steps that start with a single initializer, 7885 // grab the only argument out the Args and place it into the "current" 7886 // initializer. 7887 switch (Steps.front().Kind) { 7888 case SK_ResolveAddressOfOverloadedFunction: 7889 case SK_CastDerivedToBaseRValue: 7890 case SK_CastDerivedToBaseXValue: 7891 case SK_CastDerivedToBaseLValue: 7892 case SK_BindReference: 7893 case SK_BindReferenceToTemporary: 7894 case SK_FinalCopy: 7895 case SK_ExtraneousCopyToTemporary: 7896 case SK_UserConversion: 7897 case SK_QualificationConversionLValue: 7898 case SK_QualificationConversionXValue: 7899 case SK_QualificationConversionRValue: 7900 case SK_AtomicConversion: 7901 case SK_ConversionSequence: 7902 case SK_ConversionSequenceNoNarrowing: 7903 case SK_ListInitialization: 7904 case SK_UnwrapInitList: 7905 case SK_RewrapInitList: 7906 case SK_CAssignment: 7907 case SK_StringInit: 7908 case SK_ObjCObjectConversion: 7909 case SK_ArrayLoopIndex: 7910 case SK_ArrayLoopInit: 7911 case SK_ArrayInit: 7912 case SK_GNUArrayInit: 7913 case SK_ParenthesizedArrayInit: 7914 case SK_PassByIndirectCopyRestore: 7915 case SK_PassByIndirectRestore: 7916 case SK_ProduceObjCObject: 7917 case SK_StdInitializerList: 7918 case SK_OCLSamplerInit: 7919 case SK_OCLZeroOpaqueType: { 7920 assert(Args.size() == 1); 7921 CurInit = Args[0]; 7922 if (!CurInit.get()) return ExprError(); 7923 break; 7924 } 7925 7926 case SK_ConstructorInitialization: 7927 case SK_ConstructorInitializationFromList: 7928 case SK_StdInitializerListConstructorCall: 7929 case SK_ZeroInitialization: 7930 break; 7931 } 7932 7933 // Promote from an unevaluated context to an unevaluated list context in 7934 // C++11 list-initialization; we need to instantiate entities usable in 7935 // constant expressions here in order to perform narrowing checks =( 7936 EnterExpressionEvaluationContext Evaluated( 7937 S, EnterExpressionEvaluationContext::InitList, 7938 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7939 7940 // C++ [class.abstract]p2: 7941 // no objects of an abstract class can be created except as subobjects 7942 // of a class derived from it 7943 auto checkAbstractType = [&](QualType T) -> bool { 7944 if (Entity.getKind() == InitializedEntity::EK_Base || 7945 Entity.getKind() == InitializedEntity::EK_Delegating) 7946 return false; 7947 return S.RequireNonAbstractType(Kind.getLocation(), T, 7948 diag::err_allocation_of_abstract_type); 7949 }; 7950 7951 // Walk through the computed steps for the initialization sequence, 7952 // performing the specified conversions along the way. 7953 bool ConstructorInitRequiresZeroInit = false; 7954 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7955 Step != StepEnd; ++Step) { 7956 if (CurInit.isInvalid()) 7957 return ExprError(); 7958 7959 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7960 7961 switch (Step->Kind) { 7962 case SK_ResolveAddressOfOverloadedFunction: 7963 // Overload resolution determined which function invoke; update the 7964 // initializer to reflect that choice. 7965 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7966 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7967 return ExprError(); 7968 CurInit = S.FixOverloadedFunctionReference(CurInit, 7969 Step->Function.FoundDecl, 7970 Step->Function.Function); 7971 break; 7972 7973 case SK_CastDerivedToBaseRValue: 7974 case SK_CastDerivedToBaseXValue: 7975 case SK_CastDerivedToBaseLValue: { 7976 // We have a derived-to-base cast that produces either an rvalue or an 7977 // lvalue. Perform that cast. 7978 7979 CXXCastPath BasePath; 7980 7981 // Casts to inaccessible base classes are allowed with C-style casts. 7982 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7983 if (S.CheckDerivedToBaseConversion( 7984 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7985 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7986 return ExprError(); 7987 7988 ExprValueKind VK = 7989 Step->Kind == SK_CastDerivedToBaseLValue ? 7990 VK_LValue : 7991 (Step->Kind == SK_CastDerivedToBaseXValue ? 7992 VK_XValue : 7993 VK_RValue); 7994 CurInit = 7995 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7996 CurInit.get(), &BasePath, VK); 7997 break; 7998 } 7999 8000 case SK_BindReference: 8001 // Reference binding does not have any corresponding ASTs. 8002 8003 // Check exception specifications 8004 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8005 return ExprError(); 8006 8007 // We don't check for e.g. function pointers here, since address 8008 // availability checks should only occur when the function first decays 8009 // into a pointer or reference. 8010 if (CurInit.get()->getType()->isFunctionProtoType()) { 8011 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8012 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8013 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8014 DRE->getBeginLoc())) 8015 return ExprError(); 8016 } 8017 } 8018 } 8019 8020 CheckForNullPointerDereference(S, CurInit.get()); 8021 break; 8022 8023 case SK_BindReferenceToTemporary: { 8024 // Make sure the "temporary" is actually an rvalue. 8025 assert(CurInit.get()->isRValue() && "not a temporary"); 8026 8027 // Check exception specifications 8028 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8029 return ExprError(); 8030 8031 // Materialize the temporary into memory. 8032 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8033 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8034 CurInit = MTE; 8035 8036 // If we're extending this temporary to automatic storage duration -- we 8037 // need to register its cleanup during the full-expression's cleanups. 8038 if (MTE->getStorageDuration() == SD_Automatic && 8039 MTE->getType().isDestructedType()) 8040 S.Cleanup.setExprNeedsCleanups(true); 8041 break; 8042 } 8043 8044 case SK_FinalCopy: 8045 if (checkAbstractType(Step->Type)) 8046 return ExprError(); 8047 8048 // If the overall initialization is initializing a temporary, we already 8049 // bound our argument if it was necessary to do so. If not (if we're 8050 // ultimately initializing a non-temporary), our argument needs to be 8051 // bound since it's initializing a function parameter. 8052 // FIXME: This is a mess. Rationalize temporary destruction. 8053 if (!shouldBindAsTemporary(Entity)) 8054 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8055 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8056 /*IsExtraneousCopy=*/false); 8057 break; 8058 8059 case SK_ExtraneousCopyToTemporary: 8060 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8061 /*IsExtraneousCopy=*/true); 8062 break; 8063 8064 case SK_UserConversion: { 8065 // We have a user-defined conversion that invokes either a constructor 8066 // or a conversion function. 8067 CastKind CastKind; 8068 FunctionDecl *Fn = Step->Function.Function; 8069 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8070 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8071 bool CreatedObject = false; 8072 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8073 // Build a call to the selected constructor. 8074 SmallVector<Expr*, 8> ConstructorArgs; 8075 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8076 8077 // Determine the arguments required to actually perform the constructor 8078 // call. 8079 Expr *Arg = CurInit.get(); 8080 if (S.CompleteConstructorCall(Constructor, 8081 MultiExprArg(&Arg, 1), 8082 Loc, ConstructorArgs)) 8083 return ExprError(); 8084 8085 // Build an expression that constructs a temporary. 8086 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8087 FoundFn, Constructor, 8088 ConstructorArgs, 8089 HadMultipleCandidates, 8090 /*ListInit*/ false, 8091 /*StdInitListInit*/ false, 8092 /*ZeroInit*/ false, 8093 CXXConstructExpr::CK_Complete, 8094 SourceRange()); 8095 if (CurInit.isInvalid()) 8096 return ExprError(); 8097 8098 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8099 Entity); 8100 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8101 return ExprError(); 8102 8103 CastKind = CK_ConstructorConversion; 8104 CreatedObject = true; 8105 } else { 8106 // Build a call to the conversion function. 8107 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8108 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8109 FoundFn); 8110 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8111 return ExprError(); 8112 8113 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8114 HadMultipleCandidates); 8115 if (CurInit.isInvalid()) 8116 return ExprError(); 8117 8118 CastKind = CK_UserDefinedConversion; 8119 CreatedObject = Conversion->getReturnType()->isRecordType(); 8120 } 8121 8122 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8123 return ExprError(); 8124 8125 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 8126 CastKind, CurInit.get(), nullptr, 8127 CurInit.get()->getValueKind()); 8128 8129 if (shouldBindAsTemporary(Entity)) 8130 // The overall entity is temporary, so this expression should be 8131 // destroyed at the end of its full-expression. 8132 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8133 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8134 // The object outlasts the full-expression, but we need to prepare for 8135 // a destructor being run on it. 8136 // FIXME: It makes no sense to do this here. This should happen 8137 // regardless of how we initialized the entity. 8138 QualType T = CurInit.get()->getType(); 8139 if (const RecordType *Record = T->getAs<RecordType>()) { 8140 CXXDestructorDecl *Destructor 8141 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8142 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8143 S.PDiag(diag::err_access_dtor_temp) << T); 8144 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8145 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8146 return ExprError(); 8147 } 8148 } 8149 break; 8150 } 8151 8152 case SK_QualificationConversionLValue: 8153 case SK_QualificationConversionXValue: 8154 case SK_QualificationConversionRValue: { 8155 // Perform a qualification conversion; these can never go wrong. 8156 ExprValueKind VK = 8157 Step->Kind == SK_QualificationConversionLValue 8158 ? VK_LValue 8159 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8160 : VK_RValue); 8161 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8162 break; 8163 } 8164 8165 case SK_AtomicConversion: { 8166 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8167 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8168 CK_NonAtomicToAtomic, VK_RValue); 8169 break; 8170 } 8171 8172 case SK_ConversionSequence: 8173 case SK_ConversionSequenceNoNarrowing: { 8174 if (const auto *FromPtrType = 8175 CurInit.get()->getType()->getAs<PointerType>()) { 8176 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8177 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8178 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8179 S.Diag(CurInit.get()->getExprLoc(), 8180 diag::warn_noderef_to_dereferenceable_pointer) 8181 << CurInit.get()->getSourceRange(); 8182 } 8183 } 8184 } 8185 8186 Sema::CheckedConversionKind CCK 8187 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8188 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8189 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8190 : Sema::CCK_ImplicitConversion; 8191 ExprResult CurInitExprRes = 8192 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8193 getAssignmentAction(Entity), CCK); 8194 if (CurInitExprRes.isInvalid()) 8195 return ExprError(); 8196 8197 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8198 8199 CurInit = CurInitExprRes; 8200 8201 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8202 S.getLangOpts().CPlusPlus) 8203 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8204 CurInit.get()); 8205 8206 break; 8207 } 8208 8209 case SK_ListInitialization: { 8210 if (checkAbstractType(Step->Type)) 8211 return ExprError(); 8212 8213 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8214 // If we're not initializing the top-level entity, we need to create an 8215 // InitializeTemporary entity for our target type. 8216 QualType Ty = Step->Type; 8217 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8218 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8219 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8220 InitListChecker PerformInitList(S, InitEntity, 8221 InitList, Ty, /*VerifyOnly=*/false, 8222 /*TreatUnavailableAsInvalid=*/false); 8223 if (PerformInitList.HadError()) 8224 return ExprError(); 8225 8226 // Hack: We must update *ResultType if available in order to set the 8227 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8228 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8229 if (ResultType && 8230 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8231 if ((*ResultType)->isRValueReferenceType()) 8232 Ty = S.Context.getRValueReferenceType(Ty); 8233 else if ((*ResultType)->isLValueReferenceType()) 8234 Ty = S.Context.getLValueReferenceType(Ty, 8235 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8236 *ResultType = Ty; 8237 } 8238 8239 InitListExpr *StructuredInitList = 8240 PerformInitList.getFullyStructuredList(); 8241 CurInit.get(); 8242 CurInit = shouldBindAsTemporary(InitEntity) 8243 ? S.MaybeBindToTemporary(StructuredInitList) 8244 : StructuredInitList; 8245 break; 8246 } 8247 8248 case SK_ConstructorInitializationFromList: { 8249 if (checkAbstractType(Step->Type)) 8250 return ExprError(); 8251 8252 // When an initializer list is passed for a parameter of type "reference 8253 // to object", we don't get an EK_Temporary entity, but instead an 8254 // EK_Parameter entity with reference type. 8255 // FIXME: This is a hack. What we really should do is create a user 8256 // conversion step for this case, but this makes it considerably more 8257 // complicated. For now, this will do. 8258 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8259 Entity.getType().getNonReferenceType()); 8260 bool UseTemporary = Entity.getType()->isReferenceType(); 8261 assert(Args.size() == 1 && "expected a single argument for list init"); 8262 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8263 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8264 << InitList->getSourceRange(); 8265 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8266 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8267 Entity, 8268 Kind, Arg, *Step, 8269 ConstructorInitRequiresZeroInit, 8270 /*IsListInitialization*/true, 8271 /*IsStdInitListInit*/false, 8272 InitList->getLBraceLoc(), 8273 InitList->getRBraceLoc()); 8274 break; 8275 } 8276 8277 case SK_UnwrapInitList: 8278 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8279 break; 8280 8281 case SK_RewrapInitList: { 8282 Expr *E = CurInit.get(); 8283 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8284 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8285 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8286 ILE->setSyntacticForm(Syntactic); 8287 ILE->setType(E->getType()); 8288 ILE->setValueKind(E->getValueKind()); 8289 CurInit = ILE; 8290 break; 8291 } 8292 8293 case SK_ConstructorInitialization: 8294 case SK_StdInitializerListConstructorCall: { 8295 if (checkAbstractType(Step->Type)) 8296 return ExprError(); 8297 8298 // When an initializer list is passed for a parameter of type "reference 8299 // to object", we don't get an EK_Temporary entity, but instead an 8300 // EK_Parameter entity with reference type. 8301 // FIXME: This is a hack. What we really should do is create a user 8302 // conversion step for this case, but this makes it considerably more 8303 // complicated. For now, this will do. 8304 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8305 Entity.getType().getNonReferenceType()); 8306 bool UseTemporary = Entity.getType()->isReferenceType(); 8307 bool IsStdInitListInit = 8308 Step->Kind == SK_StdInitializerListConstructorCall; 8309 Expr *Source = CurInit.get(); 8310 SourceRange Range = Kind.hasParenOrBraceRange() 8311 ? Kind.getParenOrBraceRange() 8312 : SourceRange(); 8313 CurInit = PerformConstructorInitialization( 8314 S, UseTemporary ? TempEntity : Entity, Kind, 8315 Source ? MultiExprArg(Source) : Args, *Step, 8316 ConstructorInitRequiresZeroInit, 8317 /*IsListInitialization*/ IsStdInitListInit, 8318 /*IsStdInitListInitialization*/ IsStdInitListInit, 8319 /*LBraceLoc*/ Range.getBegin(), 8320 /*RBraceLoc*/ Range.getEnd()); 8321 break; 8322 } 8323 8324 case SK_ZeroInitialization: { 8325 step_iterator NextStep = Step; 8326 ++NextStep; 8327 if (NextStep != StepEnd && 8328 (NextStep->Kind == SK_ConstructorInitialization || 8329 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8330 // The need for zero-initialization is recorded directly into 8331 // the call to the object's constructor within the next step. 8332 ConstructorInitRequiresZeroInit = true; 8333 } else if (Kind.getKind() == InitializationKind::IK_Value && 8334 S.getLangOpts().CPlusPlus && 8335 !Kind.isImplicitValueInit()) { 8336 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8337 if (!TSInfo) 8338 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8339 Kind.getRange().getBegin()); 8340 8341 CurInit = new (S.Context) CXXScalarValueInitExpr( 8342 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8343 Kind.getRange().getEnd()); 8344 } else { 8345 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8346 } 8347 break; 8348 } 8349 8350 case SK_CAssignment: { 8351 QualType SourceType = CurInit.get()->getType(); 8352 8353 // Save off the initial CurInit in case we need to emit a diagnostic 8354 ExprResult InitialCurInit = CurInit; 8355 ExprResult Result = CurInit; 8356 Sema::AssignConvertType ConvTy = 8357 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8358 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8359 if (Result.isInvalid()) 8360 return ExprError(); 8361 CurInit = Result; 8362 8363 // If this is a call, allow conversion to a transparent union. 8364 ExprResult CurInitExprRes = CurInit; 8365 if (ConvTy != Sema::Compatible && 8366 Entity.isParameterKind() && 8367 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8368 == Sema::Compatible) 8369 ConvTy = Sema::Compatible; 8370 if (CurInitExprRes.isInvalid()) 8371 return ExprError(); 8372 CurInit = CurInitExprRes; 8373 8374 bool Complained; 8375 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8376 Step->Type, SourceType, 8377 InitialCurInit.get(), 8378 getAssignmentAction(Entity, true), 8379 &Complained)) { 8380 PrintInitLocationNote(S, Entity); 8381 return ExprError(); 8382 } else if (Complained) 8383 PrintInitLocationNote(S, Entity); 8384 break; 8385 } 8386 8387 case SK_StringInit: { 8388 QualType Ty = Step->Type; 8389 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8390 S.Context.getAsArrayType(Ty), S); 8391 break; 8392 } 8393 8394 case SK_ObjCObjectConversion: 8395 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8396 CK_ObjCObjectLValueCast, 8397 CurInit.get()->getValueKind()); 8398 break; 8399 8400 case SK_ArrayLoopIndex: { 8401 Expr *Cur = CurInit.get(); 8402 Expr *BaseExpr = new (S.Context) 8403 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8404 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8405 Expr *IndexExpr = 8406 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8407 CurInit = S.CreateBuiltinArraySubscriptExpr( 8408 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8409 ArrayLoopCommonExprs.push_back(BaseExpr); 8410 break; 8411 } 8412 8413 case SK_ArrayLoopInit: { 8414 assert(!ArrayLoopCommonExprs.empty() && 8415 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8416 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8417 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8418 CurInit.get()); 8419 break; 8420 } 8421 8422 case SK_GNUArrayInit: 8423 // Okay: we checked everything before creating this step. Note that 8424 // this is a GNU extension. 8425 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8426 << Step->Type << CurInit.get()->getType() 8427 << CurInit.get()->getSourceRange(); 8428 updateGNUCompoundLiteralRValue(CurInit.get()); 8429 LLVM_FALLTHROUGH; 8430 case SK_ArrayInit: 8431 // If the destination type is an incomplete array type, update the 8432 // type accordingly. 8433 if (ResultType) { 8434 if (const IncompleteArrayType *IncompleteDest 8435 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8436 if (const ConstantArrayType *ConstantSource 8437 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8438 *ResultType = S.Context.getConstantArrayType( 8439 IncompleteDest->getElementType(), 8440 ConstantSource->getSize(), 8441 ConstantSource->getSizeExpr(), 8442 ArrayType::Normal, 0); 8443 } 8444 } 8445 } 8446 break; 8447 8448 case SK_ParenthesizedArrayInit: 8449 // Okay: we checked everything before creating this step. Note that 8450 // this is a GNU extension. 8451 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8452 << CurInit.get()->getSourceRange(); 8453 break; 8454 8455 case SK_PassByIndirectCopyRestore: 8456 case SK_PassByIndirectRestore: 8457 checkIndirectCopyRestoreSource(S, CurInit.get()); 8458 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8459 CurInit.get(), Step->Type, 8460 Step->Kind == SK_PassByIndirectCopyRestore); 8461 break; 8462 8463 case SK_ProduceObjCObject: 8464 CurInit = 8465 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8466 CurInit.get(), nullptr, VK_RValue); 8467 break; 8468 8469 case SK_StdInitializerList: { 8470 S.Diag(CurInit.get()->getExprLoc(), 8471 diag::warn_cxx98_compat_initializer_list_init) 8472 << CurInit.get()->getSourceRange(); 8473 8474 // Materialize the temporary into memory. 8475 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8476 CurInit.get()->getType(), CurInit.get(), 8477 /*BoundToLvalueReference=*/false); 8478 8479 // Wrap it in a construction of a std::initializer_list<T>. 8480 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8481 8482 // Bind the result, in case the library has given initializer_list a 8483 // non-trivial destructor. 8484 if (shouldBindAsTemporary(Entity)) 8485 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8486 break; 8487 } 8488 8489 case SK_OCLSamplerInit: { 8490 // Sampler initialization have 5 cases: 8491 // 1. function argument passing 8492 // 1a. argument is a file-scope variable 8493 // 1b. argument is a function-scope variable 8494 // 1c. argument is one of caller function's parameters 8495 // 2. variable initialization 8496 // 2a. initializing a file-scope variable 8497 // 2b. initializing a function-scope variable 8498 // 8499 // For file-scope variables, since they cannot be initialized by function 8500 // call of __translate_sampler_initializer in LLVM IR, their references 8501 // need to be replaced by a cast from their literal initializers to 8502 // sampler type. Since sampler variables can only be used in function 8503 // calls as arguments, we only need to replace them when handling the 8504 // argument passing. 8505 assert(Step->Type->isSamplerT() && 8506 "Sampler initialization on non-sampler type."); 8507 Expr *Init = CurInit.get()->IgnoreParens(); 8508 QualType SourceType = Init->getType(); 8509 // Case 1 8510 if (Entity.isParameterKind()) { 8511 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8512 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8513 << SourceType; 8514 break; 8515 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8516 auto Var = cast<VarDecl>(DRE->getDecl()); 8517 // Case 1b and 1c 8518 // No cast from integer to sampler is needed. 8519 if (!Var->hasGlobalStorage()) { 8520 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8521 CK_LValueToRValue, Init, 8522 /*BasePath=*/nullptr, VK_RValue); 8523 break; 8524 } 8525 // Case 1a 8526 // For function call with a file-scope sampler variable as argument, 8527 // get the integer literal. 8528 // Do not diagnose if the file-scope variable does not have initializer 8529 // since this has already been diagnosed when parsing the variable 8530 // declaration. 8531 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8532 break; 8533 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8534 Var->getInit()))->getSubExpr(); 8535 SourceType = Init->getType(); 8536 } 8537 } else { 8538 // Case 2 8539 // Check initializer is 32 bit integer constant. 8540 // If the initializer is taken from global variable, do not diagnose since 8541 // this has already been done when parsing the variable declaration. 8542 if (!Init->isConstantInitializer(S.Context, false)) 8543 break; 8544 8545 if (!SourceType->isIntegerType() || 8546 32 != S.Context.getIntWidth(SourceType)) { 8547 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8548 << SourceType; 8549 break; 8550 } 8551 8552 Expr::EvalResult EVResult; 8553 Init->EvaluateAsInt(EVResult, S.Context); 8554 llvm::APSInt Result = EVResult.Val.getInt(); 8555 const uint64_t SamplerValue = Result.getLimitedValue(); 8556 // 32-bit value of sampler's initializer is interpreted as 8557 // bit-field with the following structure: 8558 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8559 // |31 6|5 4|3 1| 0| 8560 // This structure corresponds to enum values of sampler properties 8561 // defined in SPIR spec v1.2 and also opencl-c.h 8562 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8563 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8564 if (FilterMode != 1 && FilterMode != 2 && 8565 !S.getOpenCLOptions().isEnabled( 8566 "cl_intel_device_side_avc_motion_estimation")) 8567 S.Diag(Kind.getLocation(), 8568 diag::warn_sampler_initializer_invalid_bits) 8569 << "Filter Mode"; 8570 if (AddressingMode > 4) 8571 S.Diag(Kind.getLocation(), 8572 diag::warn_sampler_initializer_invalid_bits) 8573 << "Addressing Mode"; 8574 } 8575 8576 // Cases 1a, 2a and 2b 8577 // Insert cast from integer to sampler. 8578 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8579 CK_IntToOCLSampler); 8580 break; 8581 } 8582 case SK_OCLZeroOpaqueType: { 8583 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8584 Step->Type->isOCLIntelSubgroupAVCType()) && 8585 "Wrong type for initialization of OpenCL opaque type."); 8586 8587 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8588 CK_ZeroToOCLOpaqueType, 8589 CurInit.get()->getValueKind()); 8590 break; 8591 } 8592 } 8593 } 8594 8595 // Check whether the initializer has a shorter lifetime than the initialized 8596 // entity, and if not, either lifetime-extend or warn as appropriate. 8597 if (auto *Init = CurInit.get()) 8598 S.checkInitializerLifetime(Entity, Init); 8599 8600 // Diagnose non-fatal problems with the completed initialization. 8601 if (Entity.getKind() == InitializedEntity::EK_Member && 8602 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8603 S.CheckBitFieldInitialization(Kind.getLocation(), 8604 cast<FieldDecl>(Entity.getDecl()), 8605 CurInit.get()); 8606 8607 // Check for std::move on construction. 8608 if (const Expr *E = CurInit.get()) { 8609 CheckMoveOnConstruction(S, E, 8610 Entity.getKind() == InitializedEntity::EK_Result); 8611 } 8612 8613 return CurInit; 8614 } 8615 8616 /// Somewhere within T there is an uninitialized reference subobject. 8617 /// Dig it out and diagnose it. 8618 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8619 QualType T) { 8620 if (T->isReferenceType()) { 8621 S.Diag(Loc, diag::err_reference_without_init) 8622 << T.getNonReferenceType(); 8623 return true; 8624 } 8625 8626 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8627 if (!RD || !RD->hasUninitializedReferenceMember()) 8628 return false; 8629 8630 for (const auto *FI : RD->fields()) { 8631 if (FI->isUnnamedBitfield()) 8632 continue; 8633 8634 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8635 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8636 return true; 8637 } 8638 } 8639 8640 for (const auto &BI : RD->bases()) { 8641 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8642 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8643 return true; 8644 } 8645 } 8646 8647 return false; 8648 } 8649 8650 8651 //===----------------------------------------------------------------------===// 8652 // Diagnose initialization failures 8653 //===----------------------------------------------------------------------===// 8654 8655 /// Emit notes associated with an initialization that failed due to a 8656 /// "simple" conversion failure. 8657 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8658 Expr *op) { 8659 QualType destType = entity.getType(); 8660 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8661 op->getType()->isObjCObjectPointerType()) { 8662 8663 // Emit a possible note about the conversion failing because the 8664 // operand is a message send with a related result type. 8665 S.EmitRelatedResultTypeNote(op); 8666 8667 // Emit a possible note about a return failing because we're 8668 // expecting a related result type. 8669 if (entity.getKind() == InitializedEntity::EK_Result) 8670 S.EmitRelatedResultTypeNoteForReturn(destType); 8671 } 8672 } 8673 8674 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8675 InitListExpr *InitList) { 8676 QualType DestType = Entity.getType(); 8677 8678 QualType E; 8679 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8680 QualType ArrayType = S.Context.getConstantArrayType( 8681 E.withConst(), 8682 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8683 InitList->getNumInits()), 8684 nullptr, clang::ArrayType::Normal, 0); 8685 InitializedEntity HiddenArray = 8686 InitializedEntity::InitializeTemporary(ArrayType); 8687 return diagnoseListInit(S, HiddenArray, InitList); 8688 } 8689 8690 if (DestType->isReferenceType()) { 8691 // A list-initialization failure for a reference means that we tried to 8692 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8693 // inner initialization failed. 8694 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8695 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8696 SourceLocation Loc = InitList->getBeginLoc(); 8697 if (auto *D = Entity.getDecl()) 8698 Loc = D->getLocation(); 8699 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8700 return; 8701 } 8702 8703 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8704 /*VerifyOnly=*/false, 8705 /*TreatUnavailableAsInvalid=*/false); 8706 assert(DiagnoseInitList.HadError() && 8707 "Inconsistent init list check result."); 8708 } 8709 8710 bool InitializationSequence::Diagnose(Sema &S, 8711 const InitializedEntity &Entity, 8712 const InitializationKind &Kind, 8713 ArrayRef<Expr *> Args) { 8714 if (!Failed()) 8715 return false; 8716 8717 // When we want to diagnose only one element of a braced-init-list, 8718 // we need to factor it out. 8719 Expr *OnlyArg; 8720 if (Args.size() == 1) { 8721 auto *List = dyn_cast<InitListExpr>(Args[0]); 8722 if (List && List->getNumInits() == 1) 8723 OnlyArg = List->getInit(0); 8724 else 8725 OnlyArg = Args[0]; 8726 } 8727 else 8728 OnlyArg = nullptr; 8729 8730 QualType DestType = Entity.getType(); 8731 switch (Failure) { 8732 case FK_TooManyInitsForReference: 8733 // FIXME: Customize for the initialized entity? 8734 if (Args.empty()) { 8735 // Dig out the reference subobject which is uninitialized and diagnose it. 8736 // If this is value-initialization, this could be nested some way within 8737 // the target type. 8738 assert(Kind.getKind() == InitializationKind::IK_Value || 8739 DestType->isReferenceType()); 8740 bool Diagnosed = 8741 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8742 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8743 (void)Diagnosed; 8744 } else // FIXME: diagnostic below could be better! 8745 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8746 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8747 break; 8748 case FK_ParenthesizedListInitForReference: 8749 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8750 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8751 break; 8752 8753 case FK_ArrayNeedsInitList: 8754 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8755 break; 8756 case FK_ArrayNeedsInitListOrStringLiteral: 8757 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8758 break; 8759 case FK_ArrayNeedsInitListOrWideStringLiteral: 8760 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8761 break; 8762 case FK_NarrowStringIntoWideCharArray: 8763 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8764 break; 8765 case FK_WideStringIntoCharArray: 8766 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8767 break; 8768 case FK_IncompatWideStringIntoWideChar: 8769 S.Diag(Kind.getLocation(), 8770 diag::err_array_init_incompat_wide_string_into_wchar); 8771 break; 8772 case FK_PlainStringIntoUTF8Char: 8773 S.Diag(Kind.getLocation(), 8774 diag::err_array_init_plain_string_into_char8_t); 8775 S.Diag(Args.front()->getBeginLoc(), 8776 diag::note_array_init_plain_string_into_char8_t) 8777 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8778 break; 8779 case FK_UTF8StringIntoPlainChar: 8780 S.Diag(Kind.getLocation(), 8781 diag::err_array_init_utf8_string_into_char) 8782 << S.getLangOpts().CPlusPlus2a; 8783 break; 8784 case FK_ArrayTypeMismatch: 8785 case FK_NonConstantArrayInit: 8786 S.Diag(Kind.getLocation(), 8787 (Failure == FK_ArrayTypeMismatch 8788 ? diag::err_array_init_different_type 8789 : diag::err_array_init_non_constant_array)) 8790 << DestType.getNonReferenceType() 8791 << OnlyArg->getType() 8792 << Args[0]->getSourceRange(); 8793 break; 8794 8795 case FK_VariableLengthArrayHasInitializer: 8796 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8797 << Args[0]->getSourceRange(); 8798 break; 8799 8800 case FK_AddressOfOverloadFailed: { 8801 DeclAccessPair Found; 8802 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8803 DestType.getNonReferenceType(), 8804 true, 8805 Found); 8806 break; 8807 } 8808 8809 case FK_AddressOfUnaddressableFunction: { 8810 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8811 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8812 OnlyArg->getBeginLoc()); 8813 break; 8814 } 8815 8816 case FK_ReferenceInitOverloadFailed: 8817 case FK_UserConversionOverloadFailed: 8818 switch (FailedOverloadResult) { 8819 case OR_Ambiguous: 8820 8821 FailedCandidateSet.NoteCandidates( 8822 PartialDiagnosticAt( 8823 Kind.getLocation(), 8824 Failure == FK_UserConversionOverloadFailed 8825 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8826 << OnlyArg->getType() << DestType 8827 << Args[0]->getSourceRange()) 8828 : (S.PDiag(diag::err_ref_init_ambiguous) 8829 << DestType << OnlyArg->getType() 8830 << Args[0]->getSourceRange())), 8831 S, OCD_AmbiguousCandidates, Args); 8832 break; 8833 8834 case OR_No_Viable_Function: { 8835 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8836 if (!S.RequireCompleteType(Kind.getLocation(), 8837 DestType.getNonReferenceType(), 8838 diag::err_typecheck_nonviable_condition_incomplete, 8839 OnlyArg->getType(), Args[0]->getSourceRange())) 8840 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8841 << (Entity.getKind() == InitializedEntity::EK_Result) 8842 << OnlyArg->getType() << Args[0]->getSourceRange() 8843 << DestType.getNonReferenceType(); 8844 8845 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8846 break; 8847 } 8848 case OR_Deleted: { 8849 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8850 << OnlyArg->getType() << DestType.getNonReferenceType() 8851 << Args[0]->getSourceRange(); 8852 OverloadCandidateSet::iterator Best; 8853 OverloadingResult Ovl 8854 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8855 if (Ovl == OR_Deleted) { 8856 S.NoteDeletedFunction(Best->Function); 8857 } else { 8858 llvm_unreachable("Inconsistent overload resolution?"); 8859 } 8860 break; 8861 } 8862 8863 case OR_Success: 8864 llvm_unreachable("Conversion did not fail!"); 8865 } 8866 break; 8867 8868 case FK_NonConstLValueReferenceBindingToTemporary: 8869 if (isa<InitListExpr>(Args[0])) { 8870 S.Diag(Kind.getLocation(), 8871 diag::err_lvalue_reference_bind_to_initlist) 8872 << DestType.getNonReferenceType().isVolatileQualified() 8873 << DestType.getNonReferenceType() 8874 << Args[0]->getSourceRange(); 8875 break; 8876 } 8877 LLVM_FALLTHROUGH; 8878 8879 case FK_NonConstLValueReferenceBindingToUnrelated: 8880 S.Diag(Kind.getLocation(), 8881 Failure == FK_NonConstLValueReferenceBindingToTemporary 8882 ? diag::err_lvalue_reference_bind_to_temporary 8883 : diag::err_lvalue_reference_bind_to_unrelated) 8884 << DestType.getNonReferenceType().isVolatileQualified() 8885 << DestType.getNonReferenceType() 8886 << OnlyArg->getType() 8887 << Args[0]->getSourceRange(); 8888 break; 8889 8890 case FK_NonConstLValueReferenceBindingToBitfield: { 8891 // We don't necessarily have an unambiguous source bit-field. 8892 FieldDecl *BitField = Args[0]->getSourceBitField(); 8893 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8894 << DestType.isVolatileQualified() 8895 << (BitField ? BitField->getDeclName() : DeclarationName()) 8896 << (BitField != nullptr) 8897 << Args[0]->getSourceRange(); 8898 if (BitField) 8899 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8900 break; 8901 } 8902 8903 case FK_NonConstLValueReferenceBindingToVectorElement: 8904 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8905 << DestType.isVolatileQualified() 8906 << Args[0]->getSourceRange(); 8907 break; 8908 8909 case FK_RValueReferenceBindingToLValue: 8910 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8911 << DestType.getNonReferenceType() << OnlyArg->getType() 8912 << Args[0]->getSourceRange(); 8913 break; 8914 8915 case FK_ReferenceAddrspaceMismatchTemporary: 8916 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8917 << DestType << Args[0]->getSourceRange(); 8918 break; 8919 8920 case FK_ReferenceInitDropsQualifiers: { 8921 QualType SourceType = OnlyArg->getType(); 8922 QualType NonRefType = DestType.getNonReferenceType(); 8923 Qualifiers DroppedQualifiers = 8924 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8925 8926 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8927 SourceType.getQualifiers())) 8928 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8929 << NonRefType << SourceType << 1 /*addr space*/ 8930 << Args[0]->getSourceRange(); 8931 else if (DroppedQualifiers.hasQualifiers()) 8932 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8933 << NonRefType << SourceType << 0 /*cv quals*/ 8934 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8935 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8936 else 8937 // FIXME: Consider decomposing the type and explaining which qualifiers 8938 // were dropped where, or on which level a 'const' is missing, etc. 8939 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8940 << NonRefType << SourceType << 2 /*incompatible quals*/ 8941 << Args[0]->getSourceRange(); 8942 break; 8943 } 8944 8945 case FK_ReferenceInitFailed: 8946 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8947 << DestType.getNonReferenceType() 8948 << DestType.getNonReferenceType()->isIncompleteType() 8949 << OnlyArg->isLValue() 8950 << OnlyArg->getType() 8951 << Args[0]->getSourceRange(); 8952 emitBadConversionNotes(S, Entity, Args[0]); 8953 break; 8954 8955 case FK_ConversionFailed: { 8956 QualType FromType = OnlyArg->getType(); 8957 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8958 << (int)Entity.getKind() 8959 << DestType 8960 << OnlyArg->isLValue() 8961 << FromType 8962 << Args[0]->getSourceRange(); 8963 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8964 S.Diag(Kind.getLocation(), PDiag); 8965 emitBadConversionNotes(S, Entity, Args[0]); 8966 break; 8967 } 8968 8969 case FK_ConversionFromPropertyFailed: 8970 // No-op. This error has already been reported. 8971 break; 8972 8973 case FK_TooManyInitsForScalar: { 8974 SourceRange R; 8975 8976 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8977 if (InitList && InitList->getNumInits() >= 1) { 8978 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8979 } else { 8980 assert(Args.size() > 1 && "Expected multiple initializers!"); 8981 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8982 } 8983 8984 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8985 if (Kind.isCStyleOrFunctionalCast()) 8986 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8987 << R; 8988 else 8989 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8990 << /*scalar=*/2 << R; 8991 break; 8992 } 8993 8994 case FK_ParenthesizedListInitForScalar: 8995 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8996 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8997 break; 8998 8999 case FK_ReferenceBindingToInitList: 9000 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 9001 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 9002 break; 9003 9004 case FK_InitListBadDestinationType: 9005 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 9006 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 9007 break; 9008 9009 case FK_ListConstructorOverloadFailed: 9010 case FK_ConstructorOverloadFailed: { 9011 SourceRange ArgsRange; 9012 if (Args.size()) 9013 ArgsRange = 9014 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9015 9016 if (Failure == FK_ListConstructorOverloadFailed) { 9017 assert(Args.size() == 1 && 9018 "List construction from other than 1 argument."); 9019 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9020 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9021 } 9022 9023 // FIXME: Using "DestType" for the entity we're printing is probably 9024 // bad. 9025 switch (FailedOverloadResult) { 9026 case OR_Ambiguous: 9027 FailedCandidateSet.NoteCandidates( 9028 PartialDiagnosticAt(Kind.getLocation(), 9029 S.PDiag(diag::err_ovl_ambiguous_init) 9030 << DestType << ArgsRange), 9031 S, OCD_AmbiguousCandidates, Args); 9032 break; 9033 9034 case OR_No_Viable_Function: 9035 if (Kind.getKind() == InitializationKind::IK_Default && 9036 (Entity.getKind() == InitializedEntity::EK_Base || 9037 Entity.getKind() == InitializedEntity::EK_Member) && 9038 isa<CXXConstructorDecl>(S.CurContext)) { 9039 // This is implicit default initialization of a member or 9040 // base within a constructor. If no viable function was 9041 // found, notify the user that they need to explicitly 9042 // initialize this base/member. 9043 CXXConstructorDecl *Constructor 9044 = cast<CXXConstructorDecl>(S.CurContext); 9045 const CXXRecordDecl *InheritedFrom = nullptr; 9046 if (auto Inherited = Constructor->getInheritedConstructor()) 9047 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9048 if (Entity.getKind() == InitializedEntity::EK_Base) { 9049 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9050 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9051 << S.Context.getTypeDeclType(Constructor->getParent()) 9052 << /*base=*/0 9053 << Entity.getType() 9054 << InheritedFrom; 9055 9056 RecordDecl *BaseDecl 9057 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9058 ->getDecl(); 9059 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9060 << S.Context.getTagDeclType(BaseDecl); 9061 } else { 9062 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9063 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9064 << S.Context.getTypeDeclType(Constructor->getParent()) 9065 << /*member=*/1 9066 << Entity.getName() 9067 << InheritedFrom; 9068 S.Diag(Entity.getDecl()->getLocation(), 9069 diag::note_member_declared_at); 9070 9071 if (const RecordType *Record 9072 = Entity.getType()->getAs<RecordType>()) 9073 S.Diag(Record->getDecl()->getLocation(), 9074 diag::note_previous_decl) 9075 << S.Context.getTagDeclType(Record->getDecl()); 9076 } 9077 break; 9078 } 9079 9080 FailedCandidateSet.NoteCandidates( 9081 PartialDiagnosticAt( 9082 Kind.getLocation(), 9083 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9084 << DestType << ArgsRange), 9085 S, OCD_AllCandidates, Args); 9086 break; 9087 9088 case OR_Deleted: { 9089 OverloadCandidateSet::iterator Best; 9090 OverloadingResult Ovl 9091 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9092 if (Ovl != OR_Deleted) { 9093 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9094 << DestType << ArgsRange; 9095 llvm_unreachable("Inconsistent overload resolution?"); 9096 break; 9097 } 9098 9099 // If this is a defaulted or implicitly-declared function, then 9100 // it was implicitly deleted. Make it clear that the deletion was 9101 // implicit. 9102 if (S.isImplicitlyDeleted(Best->Function)) 9103 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9104 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9105 << DestType << ArgsRange; 9106 else 9107 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9108 << DestType << ArgsRange; 9109 9110 S.NoteDeletedFunction(Best->Function); 9111 break; 9112 } 9113 9114 case OR_Success: 9115 llvm_unreachable("Conversion did not fail!"); 9116 } 9117 } 9118 break; 9119 9120 case FK_DefaultInitOfConst: 9121 if (Entity.getKind() == InitializedEntity::EK_Member && 9122 isa<CXXConstructorDecl>(S.CurContext)) { 9123 // This is implicit default-initialization of a const member in 9124 // a constructor. Complain that it needs to be explicitly 9125 // initialized. 9126 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9127 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9128 << (Constructor->getInheritedConstructor() ? 2 : 9129 Constructor->isImplicit() ? 1 : 0) 9130 << S.Context.getTypeDeclType(Constructor->getParent()) 9131 << /*const=*/1 9132 << Entity.getName(); 9133 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9134 << Entity.getName(); 9135 } else { 9136 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9137 << DestType << (bool)DestType->getAs<RecordType>(); 9138 } 9139 break; 9140 9141 case FK_Incomplete: 9142 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9143 diag::err_init_incomplete_type); 9144 break; 9145 9146 case FK_ListInitializationFailed: { 9147 // Run the init list checker again to emit diagnostics. 9148 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9149 diagnoseListInit(S, Entity, InitList); 9150 break; 9151 } 9152 9153 case FK_PlaceholderType: { 9154 // FIXME: Already diagnosed! 9155 break; 9156 } 9157 9158 case FK_ExplicitConstructor: { 9159 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9160 << Args[0]->getSourceRange(); 9161 OverloadCandidateSet::iterator Best; 9162 OverloadingResult Ovl 9163 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9164 (void)Ovl; 9165 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9166 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9167 S.Diag(CtorDecl->getLocation(), 9168 diag::note_explicit_ctor_deduction_guide_here) << false; 9169 break; 9170 } 9171 } 9172 9173 PrintInitLocationNote(S, Entity); 9174 return true; 9175 } 9176 9177 void InitializationSequence::dump(raw_ostream &OS) const { 9178 switch (SequenceKind) { 9179 case FailedSequence: { 9180 OS << "Failed sequence: "; 9181 switch (Failure) { 9182 case FK_TooManyInitsForReference: 9183 OS << "too many initializers for reference"; 9184 break; 9185 9186 case FK_ParenthesizedListInitForReference: 9187 OS << "parenthesized list init for reference"; 9188 break; 9189 9190 case FK_ArrayNeedsInitList: 9191 OS << "array requires initializer list"; 9192 break; 9193 9194 case FK_AddressOfUnaddressableFunction: 9195 OS << "address of unaddressable function was taken"; 9196 break; 9197 9198 case FK_ArrayNeedsInitListOrStringLiteral: 9199 OS << "array requires initializer list or string literal"; 9200 break; 9201 9202 case FK_ArrayNeedsInitListOrWideStringLiteral: 9203 OS << "array requires initializer list or wide string literal"; 9204 break; 9205 9206 case FK_NarrowStringIntoWideCharArray: 9207 OS << "narrow string into wide char array"; 9208 break; 9209 9210 case FK_WideStringIntoCharArray: 9211 OS << "wide string into char array"; 9212 break; 9213 9214 case FK_IncompatWideStringIntoWideChar: 9215 OS << "incompatible wide string into wide char array"; 9216 break; 9217 9218 case FK_PlainStringIntoUTF8Char: 9219 OS << "plain string literal into char8_t array"; 9220 break; 9221 9222 case FK_UTF8StringIntoPlainChar: 9223 OS << "u8 string literal into char array"; 9224 break; 9225 9226 case FK_ArrayTypeMismatch: 9227 OS << "array type mismatch"; 9228 break; 9229 9230 case FK_NonConstantArrayInit: 9231 OS << "non-constant array initializer"; 9232 break; 9233 9234 case FK_AddressOfOverloadFailed: 9235 OS << "address of overloaded function failed"; 9236 break; 9237 9238 case FK_ReferenceInitOverloadFailed: 9239 OS << "overload resolution for reference initialization failed"; 9240 break; 9241 9242 case FK_NonConstLValueReferenceBindingToTemporary: 9243 OS << "non-const lvalue reference bound to temporary"; 9244 break; 9245 9246 case FK_NonConstLValueReferenceBindingToBitfield: 9247 OS << "non-const lvalue reference bound to bit-field"; 9248 break; 9249 9250 case FK_NonConstLValueReferenceBindingToVectorElement: 9251 OS << "non-const lvalue reference bound to vector element"; 9252 break; 9253 9254 case FK_NonConstLValueReferenceBindingToUnrelated: 9255 OS << "non-const lvalue reference bound to unrelated type"; 9256 break; 9257 9258 case FK_RValueReferenceBindingToLValue: 9259 OS << "rvalue reference bound to an lvalue"; 9260 break; 9261 9262 case FK_ReferenceInitDropsQualifiers: 9263 OS << "reference initialization drops qualifiers"; 9264 break; 9265 9266 case FK_ReferenceAddrspaceMismatchTemporary: 9267 OS << "reference with mismatching address space bound to temporary"; 9268 break; 9269 9270 case FK_ReferenceInitFailed: 9271 OS << "reference initialization failed"; 9272 break; 9273 9274 case FK_ConversionFailed: 9275 OS << "conversion failed"; 9276 break; 9277 9278 case FK_ConversionFromPropertyFailed: 9279 OS << "conversion from property failed"; 9280 break; 9281 9282 case FK_TooManyInitsForScalar: 9283 OS << "too many initializers for scalar"; 9284 break; 9285 9286 case FK_ParenthesizedListInitForScalar: 9287 OS << "parenthesized list init for reference"; 9288 break; 9289 9290 case FK_ReferenceBindingToInitList: 9291 OS << "referencing binding to initializer list"; 9292 break; 9293 9294 case FK_InitListBadDestinationType: 9295 OS << "initializer list for non-aggregate, non-scalar type"; 9296 break; 9297 9298 case FK_UserConversionOverloadFailed: 9299 OS << "overloading failed for user-defined conversion"; 9300 break; 9301 9302 case FK_ConstructorOverloadFailed: 9303 OS << "constructor overloading failed"; 9304 break; 9305 9306 case FK_DefaultInitOfConst: 9307 OS << "default initialization of a const variable"; 9308 break; 9309 9310 case FK_Incomplete: 9311 OS << "initialization of incomplete type"; 9312 break; 9313 9314 case FK_ListInitializationFailed: 9315 OS << "list initialization checker failure"; 9316 break; 9317 9318 case FK_VariableLengthArrayHasInitializer: 9319 OS << "variable length array has an initializer"; 9320 break; 9321 9322 case FK_PlaceholderType: 9323 OS << "initializer expression isn't contextually valid"; 9324 break; 9325 9326 case FK_ListConstructorOverloadFailed: 9327 OS << "list constructor overloading failed"; 9328 break; 9329 9330 case FK_ExplicitConstructor: 9331 OS << "list copy initialization chose explicit constructor"; 9332 break; 9333 } 9334 OS << '\n'; 9335 return; 9336 } 9337 9338 case DependentSequence: 9339 OS << "Dependent sequence\n"; 9340 return; 9341 9342 case NormalSequence: 9343 OS << "Normal sequence: "; 9344 break; 9345 } 9346 9347 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9348 if (S != step_begin()) { 9349 OS << " -> "; 9350 } 9351 9352 switch (S->Kind) { 9353 case SK_ResolveAddressOfOverloadedFunction: 9354 OS << "resolve address of overloaded function"; 9355 break; 9356 9357 case SK_CastDerivedToBaseRValue: 9358 OS << "derived-to-base (rvalue)"; 9359 break; 9360 9361 case SK_CastDerivedToBaseXValue: 9362 OS << "derived-to-base (xvalue)"; 9363 break; 9364 9365 case SK_CastDerivedToBaseLValue: 9366 OS << "derived-to-base (lvalue)"; 9367 break; 9368 9369 case SK_BindReference: 9370 OS << "bind reference to lvalue"; 9371 break; 9372 9373 case SK_BindReferenceToTemporary: 9374 OS << "bind reference to a temporary"; 9375 break; 9376 9377 case SK_FinalCopy: 9378 OS << "final copy in class direct-initialization"; 9379 break; 9380 9381 case SK_ExtraneousCopyToTemporary: 9382 OS << "extraneous C++03 copy to temporary"; 9383 break; 9384 9385 case SK_UserConversion: 9386 OS << "user-defined conversion via " << *S->Function.Function; 9387 break; 9388 9389 case SK_QualificationConversionRValue: 9390 OS << "qualification conversion (rvalue)"; 9391 break; 9392 9393 case SK_QualificationConversionXValue: 9394 OS << "qualification conversion (xvalue)"; 9395 break; 9396 9397 case SK_QualificationConversionLValue: 9398 OS << "qualification conversion (lvalue)"; 9399 break; 9400 9401 case SK_AtomicConversion: 9402 OS << "non-atomic-to-atomic conversion"; 9403 break; 9404 9405 case SK_ConversionSequence: 9406 OS << "implicit conversion sequence ("; 9407 S->ICS->dump(); // FIXME: use OS 9408 OS << ")"; 9409 break; 9410 9411 case SK_ConversionSequenceNoNarrowing: 9412 OS << "implicit conversion sequence with narrowing prohibited ("; 9413 S->ICS->dump(); // FIXME: use OS 9414 OS << ")"; 9415 break; 9416 9417 case SK_ListInitialization: 9418 OS << "list aggregate initialization"; 9419 break; 9420 9421 case SK_UnwrapInitList: 9422 OS << "unwrap reference initializer list"; 9423 break; 9424 9425 case SK_RewrapInitList: 9426 OS << "rewrap reference initializer list"; 9427 break; 9428 9429 case SK_ConstructorInitialization: 9430 OS << "constructor initialization"; 9431 break; 9432 9433 case SK_ConstructorInitializationFromList: 9434 OS << "list initialization via constructor"; 9435 break; 9436 9437 case SK_ZeroInitialization: 9438 OS << "zero initialization"; 9439 break; 9440 9441 case SK_CAssignment: 9442 OS << "C assignment"; 9443 break; 9444 9445 case SK_StringInit: 9446 OS << "string initialization"; 9447 break; 9448 9449 case SK_ObjCObjectConversion: 9450 OS << "Objective-C object conversion"; 9451 break; 9452 9453 case SK_ArrayLoopIndex: 9454 OS << "indexing for array initialization loop"; 9455 break; 9456 9457 case SK_ArrayLoopInit: 9458 OS << "array initialization loop"; 9459 break; 9460 9461 case SK_ArrayInit: 9462 OS << "array initialization"; 9463 break; 9464 9465 case SK_GNUArrayInit: 9466 OS << "array initialization (GNU extension)"; 9467 break; 9468 9469 case SK_ParenthesizedArrayInit: 9470 OS << "parenthesized array initialization"; 9471 break; 9472 9473 case SK_PassByIndirectCopyRestore: 9474 OS << "pass by indirect copy and restore"; 9475 break; 9476 9477 case SK_PassByIndirectRestore: 9478 OS << "pass by indirect restore"; 9479 break; 9480 9481 case SK_ProduceObjCObject: 9482 OS << "Objective-C object retension"; 9483 break; 9484 9485 case SK_StdInitializerList: 9486 OS << "std::initializer_list from initializer list"; 9487 break; 9488 9489 case SK_StdInitializerListConstructorCall: 9490 OS << "list initialization from std::initializer_list"; 9491 break; 9492 9493 case SK_OCLSamplerInit: 9494 OS << "OpenCL sampler_t from integer constant"; 9495 break; 9496 9497 case SK_OCLZeroOpaqueType: 9498 OS << "OpenCL opaque type from zero"; 9499 break; 9500 } 9501 9502 OS << " [" << S->Type.getAsString() << ']'; 9503 } 9504 9505 OS << '\n'; 9506 } 9507 9508 void InitializationSequence::dump() const { 9509 dump(llvm::errs()); 9510 } 9511 9512 static bool NarrowingErrs(const LangOptions &L) { 9513 return L.CPlusPlus11 && 9514 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9515 } 9516 9517 static void DiagnoseNarrowingInInitList(Sema &S, 9518 const ImplicitConversionSequence &ICS, 9519 QualType PreNarrowingType, 9520 QualType EntityType, 9521 const Expr *PostInit) { 9522 const StandardConversionSequence *SCS = nullptr; 9523 switch (ICS.getKind()) { 9524 case ImplicitConversionSequence::StandardConversion: 9525 SCS = &ICS.Standard; 9526 break; 9527 case ImplicitConversionSequence::UserDefinedConversion: 9528 SCS = &ICS.UserDefined.After; 9529 break; 9530 case ImplicitConversionSequence::AmbiguousConversion: 9531 case ImplicitConversionSequence::EllipsisConversion: 9532 case ImplicitConversionSequence::BadConversion: 9533 return; 9534 } 9535 9536 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9537 APValue ConstantValue; 9538 QualType ConstantType; 9539 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9540 ConstantType)) { 9541 case NK_Not_Narrowing: 9542 case NK_Dependent_Narrowing: 9543 // No narrowing occurred. 9544 return; 9545 9546 case NK_Type_Narrowing: 9547 // This was a floating-to-integer conversion, which is always considered a 9548 // narrowing conversion even if the value is a constant and can be 9549 // represented exactly as an integer. 9550 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9551 ? diag::ext_init_list_type_narrowing 9552 : diag::warn_init_list_type_narrowing) 9553 << PostInit->getSourceRange() 9554 << PreNarrowingType.getLocalUnqualifiedType() 9555 << EntityType.getLocalUnqualifiedType(); 9556 break; 9557 9558 case NK_Constant_Narrowing: 9559 // A constant value was narrowed. 9560 S.Diag(PostInit->getBeginLoc(), 9561 NarrowingErrs(S.getLangOpts()) 9562 ? diag::ext_init_list_constant_narrowing 9563 : diag::warn_init_list_constant_narrowing) 9564 << PostInit->getSourceRange() 9565 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9566 << EntityType.getLocalUnqualifiedType(); 9567 break; 9568 9569 case NK_Variable_Narrowing: 9570 // A variable's value may have been narrowed. 9571 S.Diag(PostInit->getBeginLoc(), 9572 NarrowingErrs(S.getLangOpts()) 9573 ? diag::ext_init_list_variable_narrowing 9574 : diag::warn_init_list_variable_narrowing) 9575 << PostInit->getSourceRange() 9576 << PreNarrowingType.getLocalUnqualifiedType() 9577 << EntityType.getLocalUnqualifiedType(); 9578 break; 9579 } 9580 9581 SmallString<128> StaticCast; 9582 llvm::raw_svector_ostream OS(StaticCast); 9583 OS << "static_cast<"; 9584 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9585 // It's important to use the typedef's name if there is one so that the 9586 // fixit doesn't break code using types like int64_t. 9587 // 9588 // FIXME: This will break if the typedef requires qualification. But 9589 // getQualifiedNameAsString() includes non-machine-parsable components. 9590 OS << *TT->getDecl(); 9591 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9592 OS << BT->getName(S.getLangOpts()); 9593 else { 9594 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9595 // with a broken cast. 9596 return; 9597 } 9598 OS << ">("; 9599 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9600 << PostInit->getSourceRange() 9601 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9602 << FixItHint::CreateInsertion( 9603 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9604 } 9605 9606 //===----------------------------------------------------------------------===// 9607 // Initialization helper functions 9608 //===----------------------------------------------------------------------===// 9609 bool 9610 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9611 ExprResult Init) { 9612 if (Init.isInvalid()) 9613 return false; 9614 9615 Expr *InitE = Init.get(); 9616 assert(InitE && "No initialization expression"); 9617 9618 InitializationKind Kind = 9619 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9620 InitializationSequence Seq(*this, Entity, Kind, InitE); 9621 return !Seq.Failed(); 9622 } 9623 9624 ExprResult 9625 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9626 SourceLocation EqualLoc, 9627 ExprResult Init, 9628 bool TopLevelOfInitList, 9629 bool AllowExplicit) { 9630 if (Init.isInvalid()) 9631 return ExprError(); 9632 9633 Expr *InitE = Init.get(); 9634 assert(InitE && "No initialization expression?"); 9635 9636 if (EqualLoc.isInvalid()) 9637 EqualLoc = InitE->getBeginLoc(); 9638 9639 InitializationKind Kind = InitializationKind::CreateCopy( 9640 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9641 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9642 9643 // Prevent infinite recursion when performing parameter copy-initialization. 9644 const bool ShouldTrackCopy = 9645 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9646 if (ShouldTrackCopy) { 9647 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9648 CurrentParameterCopyTypes.end()) { 9649 Seq.SetOverloadFailure( 9650 InitializationSequence::FK_ConstructorOverloadFailed, 9651 OR_No_Viable_Function); 9652 9653 // Try to give a meaningful diagnostic note for the problematic 9654 // constructor. 9655 const auto LastStep = Seq.step_end() - 1; 9656 assert(LastStep->Kind == 9657 InitializationSequence::SK_ConstructorInitialization); 9658 const FunctionDecl *Function = LastStep->Function.Function; 9659 auto Candidate = 9660 llvm::find_if(Seq.getFailedCandidateSet(), 9661 [Function](const OverloadCandidate &Candidate) -> bool { 9662 return Candidate.Viable && 9663 Candidate.Function == Function && 9664 Candidate.Conversions.size() > 0; 9665 }); 9666 if (Candidate != Seq.getFailedCandidateSet().end() && 9667 Function->getNumParams() > 0) { 9668 Candidate->Viable = false; 9669 Candidate->FailureKind = ovl_fail_bad_conversion; 9670 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9671 InitE, 9672 Function->getParamDecl(0)->getType()); 9673 } 9674 } 9675 CurrentParameterCopyTypes.push_back(Entity.getType()); 9676 } 9677 9678 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9679 9680 if (ShouldTrackCopy) 9681 CurrentParameterCopyTypes.pop_back(); 9682 9683 return Result; 9684 } 9685 9686 /// Determine whether RD is, or is derived from, a specialization of CTD. 9687 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9688 ClassTemplateDecl *CTD) { 9689 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9690 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9691 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9692 }; 9693 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9694 } 9695 9696 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9697 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9698 const InitializationKind &Kind, MultiExprArg Inits) { 9699 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9700 TSInfo->getType()->getContainedDeducedType()); 9701 assert(DeducedTST && "not a deduced template specialization type"); 9702 9703 auto TemplateName = DeducedTST->getTemplateName(); 9704 if (TemplateName.isDependent()) 9705 return Context.DependentTy; 9706 9707 // We can only perform deduction for class templates. 9708 auto *Template = 9709 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9710 if (!Template) { 9711 Diag(Kind.getLocation(), 9712 diag::err_deduced_non_class_template_specialization_type) 9713 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9714 if (auto *TD = TemplateName.getAsTemplateDecl()) 9715 Diag(TD->getLocation(), diag::note_template_decl_here); 9716 return QualType(); 9717 } 9718 9719 // Can't deduce from dependent arguments. 9720 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9721 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9722 diag::warn_cxx14_compat_class_template_argument_deduction) 9723 << TSInfo->getTypeLoc().getSourceRange() << 0; 9724 return Context.DependentTy; 9725 } 9726 9727 // FIXME: Perform "exact type" matching first, per CWG discussion? 9728 // Or implement this via an implied 'T(T) -> T' deduction guide? 9729 9730 // FIXME: Do we need/want a std::initializer_list<T> special case? 9731 9732 // Look up deduction guides, including those synthesized from constructors. 9733 // 9734 // C++1z [over.match.class.deduct]p1: 9735 // A set of functions and function templates is formed comprising: 9736 // - For each constructor of the class template designated by the 9737 // template-name, a function template [...] 9738 // - For each deduction-guide, a function or function template [...] 9739 DeclarationNameInfo NameInfo( 9740 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9741 TSInfo->getTypeLoc().getEndLoc()); 9742 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9743 LookupQualifiedName(Guides, Template->getDeclContext()); 9744 9745 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9746 // clear on this, but they're not found by name so access does not apply. 9747 Guides.suppressDiagnostics(); 9748 9749 // Figure out if this is list-initialization. 9750 InitListExpr *ListInit = 9751 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9752 ? dyn_cast<InitListExpr>(Inits[0]) 9753 : nullptr; 9754 9755 // C++1z [over.match.class.deduct]p1: 9756 // Initialization and overload resolution are performed as described in 9757 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9758 // (as appropriate for the type of initialization performed) for an object 9759 // of a hypothetical class type, where the selected functions and function 9760 // templates are considered to be the constructors of that class type 9761 // 9762 // Since we know we're initializing a class type of a type unrelated to that 9763 // of the initializer, this reduces to something fairly reasonable. 9764 OverloadCandidateSet Candidates(Kind.getLocation(), 9765 OverloadCandidateSet::CSK_Normal); 9766 OverloadCandidateSet::iterator Best; 9767 9768 bool HasAnyDeductionGuide = false; 9769 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9770 9771 auto tryToResolveOverload = 9772 [&](bool OnlyListConstructors) -> OverloadingResult { 9773 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9774 HasAnyDeductionGuide = false; 9775 9776 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9777 NamedDecl *D = (*I)->getUnderlyingDecl(); 9778 if (D->isInvalidDecl()) 9779 continue; 9780 9781 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9782 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9783 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9784 if (!GD) 9785 continue; 9786 9787 if (!GD->isImplicit()) 9788 HasAnyDeductionGuide = true; 9789 9790 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9791 // For copy-initialization, the candidate functions are all the 9792 // converting constructors (12.3.1) of that class. 9793 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9794 // The converting constructors of T are candidate functions. 9795 if (!AllowExplicit) { 9796 // Overload resolution checks whether the deduction guide is declared 9797 // explicit for us. 9798 9799 // When looking for a converting constructor, deduction guides that 9800 // could never be called with one argument are not interesting to 9801 // check or note. 9802 if (GD->getMinRequiredArguments() > 1 || 9803 (GD->getNumParams() == 0 && !GD->isVariadic())) 9804 continue; 9805 } 9806 9807 // C++ [over.match.list]p1.1: (first phase list initialization) 9808 // Initially, the candidate functions are the initializer-list 9809 // constructors of the class T 9810 if (OnlyListConstructors && !isInitListConstructor(GD)) 9811 continue; 9812 9813 // C++ [over.match.list]p1.2: (second phase list initialization) 9814 // the candidate functions are all the constructors of the class T 9815 // C++ [over.match.ctor]p1: (all other cases) 9816 // the candidate functions are all the constructors of the class of 9817 // the object being initialized 9818 9819 // C++ [over.best.ics]p4: 9820 // When [...] the constructor [...] is a candidate by 9821 // - [over.match.copy] (in all cases) 9822 // FIXME: The "second phase of [over.match.list] case can also 9823 // theoretically happen here, but it's not clear whether we can 9824 // ever have a parameter of the right type. 9825 bool SuppressUserConversions = Kind.isCopyInit(); 9826 9827 if (TD) 9828 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9829 Inits, Candidates, SuppressUserConversions, 9830 /*PartialOverloading*/ false, 9831 AllowExplicit); 9832 else 9833 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9834 SuppressUserConversions, 9835 /*PartialOverloading*/ false, AllowExplicit); 9836 } 9837 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9838 }; 9839 9840 OverloadingResult Result = OR_No_Viable_Function; 9841 9842 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9843 // try initializer-list constructors. 9844 if (ListInit) { 9845 bool TryListConstructors = true; 9846 9847 // Try list constructors unless the list is empty and the class has one or 9848 // more default constructors, in which case those constructors win. 9849 if (!ListInit->getNumInits()) { 9850 for (NamedDecl *D : Guides) { 9851 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9852 if (FD && FD->getMinRequiredArguments() == 0) { 9853 TryListConstructors = false; 9854 break; 9855 } 9856 } 9857 } else if (ListInit->getNumInits() == 1) { 9858 // C++ [over.match.class.deduct]: 9859 // As an exception, the first phase in [over.match.list] (considering 9860 // initializer-list constructors) is omitted if the initializer list 9861 // consists of a single expression of type cv U, where U is a 9862 // specialization of C or a class derived from a specialization of C. 9863 Expr *E = ListInit->getInit(0); 9864 auto *RD = E->getType()->getAsCXXRecordDecl(); 9865 if (!isa<InitListExpr>(E) && RD && 9866 isCompleteType(Kind.getLocation(), E->getType()) && 9867 isOrIsDerivedFromSpecializationOf(RD, Template)) 9868 TryListConstructors = false; 9869 } 9870 9871 if (TryListConstructors) 9872 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9873 // Then unwrap the initializer list and try again considering all 9874 // constructors. 9875 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9876 } 9877 9878 // If list-initialization fails, or if we're doing any other kind of 9879 // initialization, we (eventually) consider constructors. 9880 if (Result == OR_No_Viable_Function) 9881 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9882 9883 switch (Result) { 9884 case OR_Ambiguous: 9885 // FIXME: For list-initialization candidates, it'd usually be better to 9886 // list why they were not viable when given the initializer list itself as 9887 // an argument. 9888 Candidates.NoteCandidates( 9889 PartialDiagnosticAt( 9890 Kind.getLocation(), 9891 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9892 << TemplateName), 9893 *this, OCD_AmbiguousCandidates, Inits); 9894 return QualType(); 9895 9896 case OR_No_Viable_Function: { 9897 CXXRecordDecl *Primary = 9898 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9899 bool Complete = 9900 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9901 Candidates.NoteCandidates( 9902 PartialDiagnosticAt( 9903 Kind.getLocation(), 9904 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9905 : diag::err_deduced_class_template_incomplete) 9906 << TemplateName << !Guides.empty()), 9907 *this, OCD_AllCandidates, Inits); 9908 return QualType(); 9909 } 9910 9911 case OR_Deleted: { 9912 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9913 << TemplateName; 9914 NoteDeletedFunction(Best->Function); 9915 return QualType(); 9916 } 9917 9918 case OR_Success: 9919 // C++ [over.match.list]p1: 9920 // In copy-list-initialization, if an explicit constructor is chosen, the 9921 // initialization is ill-formed. 9922 if (Kind.isCopyInit() && ListInit && 9923 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9924 bool IsDeductionGuide = !Best->Function->isImplicit(); 9925 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9926 << TemplateName << IsDeductionGuide; 9927 Diag(Best->Function->getLocation(), 9928 diag::note_explicit_ctor_deduction_guide_here) 9929 << IsDeductionGuide; 9930 return QualType(); 9931 } 9932 9933 // Make sure we didn't select an unusable deduction guide, and mark it 9934 // as referenced. 9935 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9936 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9937 break; 9938 } 9939 9940 // C++ [dcl.type.class.deduct]p1: 9941 // The placeholder is replaced by the return type of the function selected 9942 // by overload resolution for class template deduction. 9943 QualType DeducedType = 9944 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9945 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9946 diag::warn_cxx14_compat_class_template_argument_deduction) 9947 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9948 9949 // Warn if CTAD was used on a type that does not have any user-defined 9950 // deduction guides. 9951 if (!HasAnyDeductionGuide) { 9952 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9953 diag::warn_ctad_maybe_unsupported) 9954 << TemplateName; 9955 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9956 } 9957 9958 return DeducedType; 9959 } 9960