1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Initialization.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/SemaInternal.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace clang;
31 
32 //===----------------------------------------------------------------------===//
33 // Sema Initialization Checking
34 //===----------------------------------------------------------------------===//
35 
36 /// Check whether T is compatible with a wide character type (wchar_t,
37 /// char16_t or char32_t).
38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
39   if (Context.typesAreCompatible(Context.getWideCharType(), T))
40     return true;
41   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
42     return Context.typesAreCompatible(Context.Char16Ty, T) ||
43            Context.typesAreCompatible(Context.Char32Ty, T);
44   }
45   return false;
46 }
47 
48 enum StringInitFailureKind {
49   SIF_None,
50   SIF_NarrowStringIntoWideChar,
51   SIF_WideStringIntoChar,
52   SIF_IncompatWideStringIntoWideChar,
53   SIF_UTF8StringIntoPlainChar,
54   SIF_PlainStringIntoUTF8Char,
55   SIF_Other
56 };
57 
58 /// Check whether the array of type AT can be initialized by the Init
59 /// expression by means of string initialization. Returns SIF_None if so,
60 /// otherwise returns a StringInitFailureKind that describes why the
61 /// initialization would not work.
62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
63                                           ASTContext &Context) {
64   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
65     return SIF_Other;
66 
67   // See if this is a string literal or @encode.
68   Init = Init->IgnoreParens();
69 
70   // Handle @encode, which is a narrow string.
71   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
72     return SIF_None;
73 
74   // Otherwise we can only handle string literals.
75   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
76   if (!SL)
77     return SIF_Other;
78 
79   const QualType ElemTy =
80       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
81 
82   switch (SL->getKind()) {
83   case StringLiteral::UTF8:
84     // char8_t array can be initialized with a UTF-8 string.
85     if (ElemTy->isChar8Type())
86       return SIF_None;
87     LLVM_FALLTHROUGH;
88   case StringLiteral::Ascii:
89     // char array can be initialized with a narrow string.
90     // Only allow char x[] = "foo";  not char x[] = L"foo";
91     if (ElemTy->isCharType())
92       return (SL->getKind() == StringLiteral::UTF8 &&
93               Context.getLangOpts().Char8)
94                  ? SIF_UTF8StringIntoPlainChar
95                  : SIF_None;
96     if (ElemTy->isChar8Type())
97       return SIF_PlainStringIntoUTF8Char;
98     if (IsWideCharCompatible(ElemTy, Context))
99       return SIF_NarrowStringIntoWideChar;
100     return SIF_Other;
101   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
102   // "An array with element type compatible with a qualified or unqualified
103   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
104   // string literal with the corresponding encoding prefix (L, u, or U,
105   // respectively), optionally enclosed in braces.
106   case StringLiteral::UTF16:
107     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
108       return SIF_None;
109     if (ElemTy->isCharType() || ElemTy->isChar8Type())
110       return SIF_WideStringIntoChar;
111     if (IsWideCharCompatible(ElemTy, Context))
112       return SIF_IncompatWideStringIntoWideChar;
113     return SIF_Other;
114   case StringLiteral::UTF32:
115     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
116       return SIF_None;
117     if (ElemTy->isCharType() || ElemTy->isChar8Type())
118       return SIF_WideStringIntoChar;
119     if (IsWideCharCompatible(ElemTy, Context))
120       return SIF_IncompatWideStringIntoWideChar;
121     return SIF_Other;
122   case StringLiteral::Wide:
123     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
124       return SIF_None;
125     if (ElemTy->isCharType() || ElemTy->isChar8Type())
126       return SIF_WideStringIntoChar;
127     if (IsWideCharCompatible(ElemTy, Context))
128       return SIF_IncompatWideStringIntoWideChar;
129     return SIF_Other;
130   }
131 
132   llvm_unreachable("missed a StringLiteral kind?");
133 }
134 
135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
136                                           ASTContext &Context) {
137   const ArrayType *arrayType = Context.getAsArrayType(declType);
138   if (!arrayType)
139     return SIF_Other;
140   return IsStringInit(init, arrayType, Context);
141 }
142 
143 /// Update the type of a string literal, including any surrounding parentheses,
144 /// to match the type of the object which it is initializing.
145 static void updateStringLiteralType(Expr *E, QualType Ty) {
146   while (true) {
147     E->setType(Ty);
148     E->setValueKind(VK_RValue);
149     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
150       break;
151     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
152       E = PE->getSubExpr();
153     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
154       assert(UO->getOpcode() == UO_Extension);
155       E = UO->getSubExpr();
156     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
157       E = GSE->getResultExpr();
158     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
159       E = CE->getChosenSubExpr();
160     } else {
161       llvm_unreachable("unexpected expr in string literal init");
162     }
163   }
164 }
165 
166 /// Fix a compound literal initializing an array so it's correctly marked
167 /// as an rvalue.
168 static void updateGNUCompoundLiteralRValue(Expr *E) {
169   while (true) {
170     E->setValueKind(VK_RValue);
171     if (isa<CompoundLiteralExpr>(E)) {
172       break;
173     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
174       E = PE->getSubExpr();
175     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
176       assert(UO->getOpcode() == UO_Extension);
177       E = UO->getSubExpr();
178     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
179       E = GSE->getResultExpr();
180     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
181       E = CE->getChosenSubExpr();
182     } else {
183       llvm_unreachable("unexpected expr in array compound literal init");
184     }
185   }
186 }
187 
188 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
189                             Sema &S) {
190   // Get the length of the string as parsed.
191   auto *ConstantArrayTy =
192       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
193   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
194 
195   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
196     // C99 6.7.8p14. We have an array of character type with unknown size
197     // being initialized to a string literal.
198     llvm::APInt ConstVal(32, StrLength);
199     // Return a new array type (C99 6.7.8p22).
200     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
201                                            ConstVal, nullptr,
202                                            ArrayType::Normal, 0);
203     updateStringLiteralType(Str, DeclT);
204     return;
205   }
206 
207   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
208 
209   // We have an array of character type with known size.  However,
210   // the size may be smaller or larger than the string we are initializing.
211   // FIXME: Avoid truncation for 64-bit length strings.
212   if (S.getLangOpts().CPlusPlus) {
213     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
214       // For Pascal strings it's OK to strip off the terminating null character,
215       // so the example below is valid:
216       //
217       // unsigned char a[2] = "\pa";
218       if (SL->isPascal())
219         StrLength--;
220     }
221 
222     // [dcl.init.string]p2
223     if (StrLength > CAT->getSize().getZExtValue())
224       S.Diag(Str->getBeginLoc(),
225              diag::err_initializer_string_for_char_array_too_long)
226           << Str->getSourceRange();
227   } else {
228     // C99 6.7.8p14.
229     if (StrLength-1 > CAT->getSize().getZExtValue())
230       S.Diag(Str->getBeginLoc(),
231              diag::ext_initializer_string_for_char_array_too_long)
232           << Str->getSourceRange();
233   }
234 
235   // Set the type to the actual size that we are initializing.  If we have
236   // something like:
237   //   char x[1] = "foo";
238   // then this will set the string literal's type to char[1].
239   updateStringLiteralType(Str, DeclT);
240 }
241 
242 //===----------------------------------------------------------------------===//
243 // Semantic checking for initializer lists.
244 //===----------------------------------------------------------------------===//
245 
246 namespace {
247 
248 /// Semantic checking for initializer lists.
249 ///
250 /// The InitListChecker class contains a set of routines that each
251 /// handle the initialization of a certain kind of entity, e.g.,
252 /// arrays, vectors, struct/union types, scalars, etc. The
253 /// InitListChecker itself performs a recursive walk of the subobject
254 /// structure of the type to be initialized, while stepping through
255 /// the initializer list one element at a time. The IList and Index
256 /// parameters to each of the Check* routines contain the active
257 /// (syntactic) initializer list and the index into that initializer
258 /// list that represents the current initializer. Each routine is
259 /// responsible for moving that Index forward as it consumes elements.
260 ///
261 /// Each Check* routine also has a StructuredList/StructuredIndex
262 /// arguments, which contains the current "structured" (semantic)
263 /// initializer list and the index into that initializer list where we
264 /// are copying initializers as we map them over to the semantic
265 /// list. Once we have completed our recursive walk of the subobject
266 /// structure, we will have constructed a full semantic initializer
267 /// list.
268 ///
269 /// C99 designators cause changes in the initializer list traversal,
270 /// because they make the initialization "jump" into a specific
271 /// subobject and then continue the initialization from that
272 /// point. CheckDesignatedInitializer() recursively steps into the
273 /// designated subobject and manages backing out the recursion to
274 /// initialize the subobjects after the one designated.
275 ///
276 /// If an initializer list contains any designators, we build a placeholder
277 /// structured list even in 'verify only' mode, so that we can track which
278 /// elements need 'empty' initializtion.
279 class InitListChecker {
280   Sema &SemaRef;
281   bool hadError = false;
282   bool VerifyOnly; // No diagnostics.
283   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
284   bool InOverloadResolution;
285   InitListExpr *FullyStructuredList = nullptr;
286   NoInitExpr *DummyExpr = nullptr;
287 
288   NoInitExpr *getDummyInit() {
289     if (!DummyExpr)
290       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
291     return DummyExpr;
292   }
293 
294   void CheckImplicitInitList(const InitializedEntity &Entity,
295                              InitListExpr *ParentIList, QualType T,
296                              unsigned &Index, InitListExpr *StructuredList,
297                              unsigned &StructuredIndex);
298   void CheckExplicitInitList(const InitializedEntity &Entity,
299                              InitListExpr *IList, QualType &T,
300                              InitListExpr *StructuredList,
301                              bool TopLevelObject = false);
302   void CheckListElementTypes(const InitializedEntity &Entity,
303                              InitListExpr *IList, QualType &DeclType,
304                              bool SubobjectIsDesignatorContext,
305                              unsigned &Index,
306                              InitListExpr *StructuredList,
307                              unsigned &StructuredIndex,
308                              bool TopLevelObject = false);
309   void CheckSubElementType(const InitializedEntity &Entity,
310                            InitListExpr *IList, QualType ElemType,
311                            unsigned &Index,
312                            InitListExpr *StructuredList,
313                            unsigned &StructuredIndex);
314   void CheckComplexType(const InitializedEntity &Entity,
315                         InitListExpr *IList, QualType DeclType,
316                         unsigned &Index,
317                         InitListExpr *StructuredList,
318                         unsigned &StructuredIndex);
319   void CheckScalarType(const InitializedEntity &Entity,
320                        InitListExpr *IList, QualType DeclType,
321                        unsigned &Index,
322                        InitListExpr *StructuredList,
323                        unsigned &StructuredIndex);
324   void CheckReferenceType(const InitializedEntity &Entity,
325                           InitListExpr *IList, QualType DeclType,
326                           unsigned &Index,
327                           InitListExpr *StructuredList,
328                           unsigned &StructuredIndex);
329   void CheckVectorType(const InitializedEntity &Entity,
330                        InitListExpr *IList, QualType DeclType, unsigned &Index,
331                        InitListExpr *StructuredList,
332                        unsigned &StructuredIndex);
333   void CheckStructUnionTypes(const InitializedEntity &Entity,
334                              InitListExpr *IList, QualType DeclType,
335                              CXXRecordDecl::base_class_range Bases,
336                              RecordDecl::field_iterator Field,
337                              bool SubobjectIsDesignatorContext, unsigned &Index,
338                              InitListExpr *StructuredList,
339                              unsigned &StructuredIndex,
340                              bool TopLevelObject = false);
341   void CheckArrayType(const InitializedEntity &Entity,
342                       InitListExpr *IList, QualType &DeclType,
343                       llvm::APSInt elementIndex,
344                       bool SubobjectIsDesignatorContext, unsigned &Index,
345                       InitListExpr *StructuredList,
346                       unsigned &StructuredIndex);
347   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
348                                   InitListExpr *IList, DesignatedInitExpr *DIE,
349                                   unsigned DesigIdx,
350                                   QualType &CurrentObjectType,
351                                   RecordDecl::field_iterator *NextField,
352                                   llvm::APSInt *NextElementIndex,
353                                   unsigned &Index,
354                                   InitListExpr *StructuredList,
355                                   unsigned &StructuredIndex,
356                                   bool FinishSubobjectInit,
357                                   bool TopLevelObject);
358   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
359                                            QualType CurrentObjectType,
360                                            InitListExpr *StructuredList,
361                                            unsigned StructuredIndex,
362                                            SourceRange InitRange,
363                                            bool IsFullyOverwritten = false);
364   void UpdateStructuredListElement(InitListExpr *StructuredList,
365                                    unsigned &StructuredIndex,
366                                    Expr *expr);
367   InitListExpr *createInitListExpr(QualType CurrentObjectType,
368                                    SourceRange InitRange,
369                                    unsigned ExpectedNumInits);
370   int numArrayElements(QualType DeclType);
371   int numStructUnionElements(QualType DeclType);
372 
373   ExprResult PerformEmptyInit(SourceLocation Loc,
374                               const InitializedEntity &Entity);
375 
376   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
377   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
378                             bool FullyOverwritten = true) {
379     // Overriding an initializer via a designator is valid with C99 designated
380     // initializers, but ill-formed with C++20 designated initializers.
381     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
382                           ? diag::ext_initializer_overrides
383                           : diag::warn_initializer_overrides;
384 
385     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
386       // In overload resolution, we have to strictly enforce the rules, and so
387       // don't allow any overriding of prior initializers. This matters for a
388       // case such as:
389       //
390       //   union U { int a, b; };
391       //   struct S { int a, b; };
392       //   void f(U), f(S);
393       //
394       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
395       // consistency, we disallow all overriding of prior initializers in
396       // overload resolution, not only overriding of union members.
397       hadError = true;
398     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
399       // If we'll be keeping around the old initializer but overwriting part of
400       // the object it initialized, and that object is not trivially
401       // destructible, this can leak. Don't allow that, not even as an
402       // extension.
403       //
404       // FIXME: It might be reasonable to allow this in cases where the part of
405       // the initializer that we're overriding has trivial destruction.
406       DiagID = diag::err_initializer_overrides_destructed;
407     } else if (!OldInit->getSourceRange().isValid()) {
408       // We need to check on source range validity because the previous
409       // initializer does not have to be an explicit initializer. e.g.,
410       //
411       // struct P { int a, b; };
412       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
413       //
414       // There is an overwrite taking place because the first braced initializer
415       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
416       //
417       // Such overwrites are harmless, so we don't diagnose them. (Note that in
418       // C++, this cannot be reached unless we've already seen and diagnosed a
419       // different conformance issue, such as a mixture of designated and
420       // non-designated initializers or a multi-level designator.)
421       return;
422     }
423 
424     if (!VerifyOnly) {
425       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
426           << NewInitRange << FullyOverwritten << OldInit->getType();
427       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
428           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
429           << OldInit->getSourceRange();
430     }
431   }
432 
433   // Explanation on the "FillWithNoInit" mode:
434   //
435   // Assume we have the following definitions (Case#1):
436   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
437   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
438   //
439   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
440   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
441   //
442   // But if we have (Case#2):
443   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
444   //
445   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
446   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
447   //
448   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
449   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
450   // initializers but with special "NoInitExpr" place holders, which tells the
451   // CodeGen not to generate any initializers for these parts.
452   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
453                               const InitializedEntity &ParentEntity,
454                               InitListExpr *ILE, bool &RequiresSecondPass,
455                               bool FillWithNoInit);
456   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
457                                const InitializedEntity &ParentEntity,
458                                InitListExpr *ILE, bool &RequiresSecondPass,
459                                bool FillWithNoInit = false);
460   void FillInEmptyInitializations(const InitializedEntity &Entity,
461                                   InitListExpr *ILE, bool &RequiresSecondPass,
462                                   InitListExpr *OuterILE, unsigned OuterIndex,
463                                   bool FillWithNoInit = false);
464   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
465                               Expr *InitExpr, FieldDecl *Field,
466                               bool TopLevelObject);
467   void CheckEmptyInitializable(const InitializedEntity &Entity,
468                                SourceLocation Loc);
469 
470 public:
471   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
472                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
473                   bool InOverloadResolution = false);
474   bool HadError() { return hadError; }
475 
476   // Retrieves the fully-structured initializer list used for
477   // semantic analysis and code generation.
478   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
479 };
480 
481 } // end anonymous namespace
482 
483 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
484                                              const InitializedEntity &Entity) {
485   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
486                                                             true);
487   MultiExprArg SubInit;
488   Expr *InitExpr;
489   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
490 
491   // C++ [dcl.init.aggr]p7:
492   //   If there are fewer initializer-clauses in the list than there are
493   //   members in the aggregate, then each member not explicitly initialized
494   //   ...
495   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
496       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
497   if (EmptyInitList) {
498     // C++1y / DR1070:
499     //   shall be initialized [...] from an empty initializer list.
500     //
501     // We apply the resolution of this DR to C++11 but not C++98, since C++98
502     // does not have useful semantics for initialization from an init list.
503     // We treat this as copy-initialization, because aggregate initialization
504     // always performs copy-initialization on its elements.
505     //
506     // Only do this if we're initializing a class type, to avoid filling in
507     // the initializer list where possible.
508     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
509                    InitListExpr(SemaRef.Context, Loc, None, Loc);
510     InitExpr->setType(SemaRef.Context.VoidTy);
511     SubInit = InitExpr;
512     Kind = InitializationKind::CreateCopy(Loc, Loc);
513   } else {
514     // C++03:
515     //   shall be value-initialized.
516   }
517 
518   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
519   // libstdc++4.6 marks the vector default constructor as explicit in
520   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
521   // stlport does so too. Look for std::__debug for libstdc++, and for
522   // std:: for stlport.  This is effectively a compiler-side implementation of
523   // LWG2193.
524   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
525           InitializationSequence::FK_ExplicitConstructor) {
526     OverloadCandidateSet::iterator Best;
527     OverloadingResult O =
528         InitSeq.getFailedCandidateSet()
529             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
530     (void)O;
531     assert(O == OR_Success && "Inconsistent overload resolution");
532     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
533     CXXRecordDecl *R = CtorDecl->getParent();
534 
535     if (CtorDecl->getMinRequiredArguments() == 0 &&
536         CtorDecl->isExplicit() && R->getDeclName() &&
537         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
538       bool IsInStd = false;
539       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
540            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
541         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
542           IsInStd = true;
543       }
544 
545       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
546               .Cases("basic_string", "deque", "forward_list", true)
547               .Cases("list", "map", "multimap", "multiset", true)
548               .Cases("priority_queue", "queue", "set", "stack", true)
549               .Cases("unordered_map", "unordered_set", "vector", true)
550               .Default(false)) {
551         InitSeq.InitializeFrom(
552             SemaRef, Entity,
553             InitializationKind::CreateValue(Loc, Loc, Loc, true),
554             MultiExprArg(), /*TopLevelOfInitList=*/false,
555             TreatUnavailableAsInvalid);
556         // Emit a warning for this.  System header warnings aren't shown
557         // by default, but people working on system headers should see it.
558         if (!VerifyOnly) {
559           SemaRef.Diag(CtorDecl->getLocation(),
560                        diag::warn_invalid_initializer_from_system_header);
561           if (Entity.getKind() == InitializedEntity::EK_Member)
562             SemaRef.Diag(Entity.getDecl()->getLocation(),
563                          diag::note_used_in_initialization_here);
564           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
565             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
566         }
567       }
568     }
569   }
570   if (!InitSeq) {
571     if (!VerifyOnly) {
572       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
573       if (Entity.getKind() == InitializedEntity::EK_Member)
574         SemaRef.Diag(Entity.getDecl()->getLocation(),
575                      diag::note_in_omitted_aggregate_initializer)
576           << /*field*/1 << Entity.getDecl();
577       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
578         bool IsTrailingArrayNewMember =
579             Entity.getParent() &&
580             Entity.getParent()->isVariableLengthArrayNew();
581         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
582           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
583           << Entity.getElementIndex();
584       }
585     }
586     hadError = true;
587     return ExprError();
588   }
589 
590   return VerifyOnly ? ExprResult()
591                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
592 }
593 
594 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
595                                               SourceLocation Loc) {
596   // If we're building a fully-structured list, we'll check this at the end
597   // once we know which elements are actually initialized. Otherwise, we know
598   // that there are no designators so we can just check now.
599   if (FullyStructuredList)
600     return;
601   PerformEmptyInit(Loc, Entity);
602 }
603 
604 void InitListChecker::FillInEmptyInitForBase(
605     unsigned Init, const CXXBaseSpecifier &Base,
606     const InitializedEntity &ParentEntity, InitListExpr *ILE,
607     bool &RequiresSecondPass, bool FillWithNoInit) {
608   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
609       SemaRef.Context, &Base, false, &ParentEntity);
610 
611   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
612     ExprResult BaseInit = FillWithNoInit
613                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
614                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
615     if (BaseInit.isInvalid()) {
616       hadError = true;
617       return;
618     }
619 
620     if (!VerifyOnly) {
621       assert(Init < ILE->getNumInits() && "should have been expanded");
622       ILE->setInit(Init, BaseInit.getAs<Expr>());
623     }
624   } else if (InitListExpr *InnerILE =
625                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
626     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
627                                ILE, Init, FillWithNoInit);
628   } else if (DesignatedInitUpdateExpr *InnerDIUE =
629                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
630     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
631                                RequiresSecondPass, ILE, Init,
632                                /*FillWithNoInit =*/true);
633   }
634 }
635 
636 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
637                                         const InitializedEntity &ParentEntity,
638                                               InitListExpr *ILE,
639                                               bool &RequiresSecondPass,
640                                               bool FillWithNoInit) {
641   SourceLocation Loc = ILE->getEndLoc();
642   unsigned NumInits = ILE->getNumInits();
643   InitializedEntity MemberEntity
644     = InitializedEntity::InitializeMember(Field, &ParentEntity);
645 
646   if (Init >= NumInits || !ILE->getInit(Init)) {
647     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
648       if (!RType->getDecl()->isUnion())
649         assert((Init < NumInits || VerifyOnly) &&
650                "This ILE should have been expanded");
651 
652     if (FillWithNoInit) {
653       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
654       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
655       if (Init < NumInits)
656         ILE->setInit(Init, Filler);
657       else
658         ILE->updateInit(SemaRef.Context, Init, Filler);
659       return;
660     }
661     // C++1y [dcl.init.aggr]p7:
662     //   If there are fewer initializer-clauses in the list than there are
663     //   members in the aggregate, then each member not explicitly initialized
664     //   shall be initialized from its brace-or-equal-initializer [...]
665     if (Field->hasInClassInitializer()) {
666       if (VerifyOnly)
667         return;
668 
669       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
670       if (DIE.isInvalid()) {
671         hadError = true;
672         return;
673       }
674       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
675       if (Init < NumInits)
676         ILE->setInit(Init, DIE.get());
677       else {
678         ILE->updateInit(SemaRef.Context, Init, DIE.get());
679         RequiresSecondPass = true;
680       }
681       return;
682     }
683 
684     if (Field->getType()->isReferenceType()) {
685       if (!VerifyOnly) {
686         // C++ [dcl.init.aggr]p9:
687         //   If an incomplete or empty initializer-list leaves a
688         //   member of reference type uninitialized, the program is
689         //   ill-formed.
690         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
691           << Field->getType()
692           << ILE->getSyntacticForm()->getSourceRange();
693         SemaRef.Diag(Field->getLocation(),
694                      diag::note_uninit_reference_member);
695       }
696       hadError = true;
697       return;
698     }
699 
700     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
701     if (MemberInit.isInvalid()) {
702       hadError = true;
703       return;
704     }
705 
706     if (hadError || VerifyOnly) {
707       // Do nothing
708     } else if (Init < NumInits) {
709       ILE->setInit(Init, MemberInit.getAs<Expr>());
710     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
711       // Empty initialization requires a constructor call, so
712       // extend the initializer list to include the constructor
713       // call and make a note that we'll need to take another pass
714       // through the initializer list.
715       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
716       RequiresSecondPass = true;
717     }
718   } else if (InitListExpr *InnerILE
719                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
720     FillInEmptyInitializations(MemberEntity, InnerILE,
721                                RequiresSecondPass, ILE, Init, FillWithNoInit);
722   } else if (DesignatedInitUpdateExpr *InnerDIUE =
723                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
724     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
725                                RequiresSecondPass, ILE, Init,
726                                /*FillWithNoInit =*/true);
727   }
728 }
729 
730 /// Recursively replaces NULL values within the given initializer list
731 /// with expressions that perform value-initialization of the
732 /// appropriate type, and finish off the InitListExpr formation.
733 void
734 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
735                                             InitListExpr *ILE,
736                                             bool &RequiresSecondPass,
737                                             InitListExpr *OuterILE,
738                                             unsigned OuterIndex,
739                                             bool FillWithNoInit) {
740   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
741          "Should not have void type");
742 
743   // We don't need to do any checks when just filling NoInitExprs; that can't
744   // fail.
745   if (FillWithNoInit && VerifyOnly)
746     return;
747 
748   // If this is a nested initializer list, we might have changed its contents
749   // (and therefore some of its properties, such as instantiation-dependence)
750   // while filling it in. Inform the outer initializer list so that its state
751   // can be updated to match.
752   // FIXME: We should fully build the inner initializers before constructing
753   // the outer InitListExpr instead of mutating AST nodes after they have
754   // been used as subexpressions of other nodes.
755   struct UpdateOuterILEWithUpdatedInit {
756     InitListExpr *Outer;
757     unsigned OuterIndex;
758     ~UpdateOuterILEWithUpdatedInit() {
759       if (Outer)
760         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
761     }
762   } UpdateOuterRAII = {OuterILE, OuterIndex};
763 
764   // A transparent ILE is not performing aggregate initialization and should
765   // not be filled in.
766   if (ILE->isTransparent())
767     return;
768 
769   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
770     const RecordDecl *RDecl = RType->getDecl();
771     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
772       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
773                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
774     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
775              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
776       for (auto *Field : RDecl->fields()) {
777         if (Field->hasInClassInitializer()) {
778           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
779                                   FillWithNoInit);
780           break;
781         }
782       }
783     } else {
784       // The fields beyond ILE->getNumInits() are default initialized, so in
785       // order to leave them uninitialized, the ILE is expanded and the extra
786       // fields are then filled with NoInitExpr.
787       unsigned NumElems = numStructUnionElements(ILE->getType());
788       if (RDecl->hasFlexibleArrayMember())
789         ++NumElems;
790       if (!VerifyOnly && ILE->getNumInits() < NumElems)
791         ILE->resizeInits(SemaRef.Context, NumElems);
792 
793       unsigned Init = 0;
794 
795       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
796         for (auto &Base : CXXRD->bases()) {
797           if (hadError)
798             return;
799 
800           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
801                                  FillWithNoInit);
802           ++Init;
803         }
804       }
805 
806       for (auto *Field : RDecl->fields()) {
807         if (Field->isUnnamedBitfield())
808           continue;
809 
810         if (hadError)
811           return;
812 
813         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
814                                 FillWithNoInit);
815         if (hadError)
816           return;
817 
818         ++Init;
819 
820         // Only look at the first initialization of a union.
821         if (RDecl->isUnion())
822           break;
823       }
824     }
825 
826     return;
827   }
828 
829   QualType ElementType;
830 
831   InitializedEntity ElementEntity = Entity;
832   unsigned NumInits = ILE->getNumInits();
833   unsigned NumElements = NumInits;
834   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
835     ElementType = AType->getElementType();
836     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
837       NumElements = CAType->getSize().getZExtValue();
838     // For an array new with an unknown bound, ask for one additional element
839     // in order to populate the array filler.
840     if (Entity.isVariableLengthArrayNew())
841       ++NumElements;
842     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
843                                                          0, Entity);
844   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
845     ElementType = VType->getElementType();
846     NumElements = VType->getNumElements();
847     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
848                                                          0, Entity);
849   } else
850     ElementType = ILE->getType();
851 
852   bool SkipEmptyInitChecks = false;
853   for (unsigned Init = 0; Init != NumElements; ++Init) {
854     if (hadError)
855       return;
856 
857     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
858         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
859       ElementEntity.setElementIndex(Init);
860 
861     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
862       return;
863 
864     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
865     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
866       ILE->setInit(Init, ILE->getArrayFiller());
867     else if (!InitExpr && !ILE->hasArrayFiller()) {
868       // In VerifyOnly mode, there's no point performing empty initialization
869       // more than once.
870       if (SkipEmptyInitChecks)
871         continue;
872 
873       Expr *Filler = nullptr;
874 
875       if (FillWithNoInit)
876         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
877       else {
878         ExprResult ElementInit =
879             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
880         if (ElementInit.isInvalid()) {
881           hadError = true;
882           return;
883         }
884 
885         Filler = ElementInit.getAs<Expr>();
886       }
887 
888       if (hadError) {
889         // Do nothing
890       } else if (VerifyOnly) {
891         SkipEmptyInitChecks = true;
892       } else if (Init < NumInits) {
893         // For arrays, just set the expression used for value-initialization
894         // of the "holes" in the array.
895         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
896           ILE->setArrayFiller(Filler);
897         else
898           ILE->setInit(Init, Filler);
899       } else {
900         // For arrays, just set the expression used for value-initialization
901         // of the rest of elements and exit.
902         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
903           ILE->setArrayFiller(Filler);
904           return;
905         }
906 
907         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
908           // Empty initialization requires a constructor call, so
909           // extend the initializer list to include the constructor
910           // call and make a note that we'll need to take another pass
911           // through the initializer list.
912           ILE->updateInit(SemaRef.Context, Init, Filler);
913           RequiresSecondPass = true;
914         }
915       }
916     } else if (InitListExpr *InnerILE
917                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
918       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
919                                  ILE, Init, FillWithNoInit);
920     } else if (DesignatedInitUpdateExpr *InnerDIUE =
921                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
922       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
923                                  RequiresSecondPass, ILE, Init,
924                                  /*FillWithNoInit =*/true);
925     }
926   }
927 }
928 
929 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
930   for (const Stmt *Init : *IL)
931     if (Init && isa<DesignatedInitExpr>(Init))
932       return true;
933   return false;
934 }
935 
936 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
937                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
938                                  bool TreatUnavailableAsInvalid,
939                                  bool InOverloadResolution)
940     : SemaRef(S), VerifyOnly(VerifyOnly),
941       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
942       InOverloadResolution(InOverloadResolution) {
943   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
944     FullyStructuredList =
945         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
946 
947     // FIXME: Check that IL isn't already the semantic form of some other
948     // InitListExpr. If it is, we'd create a broken AST.
949     if (!VerifyOnly)
950       FullyStructuredList->setSyntacticForm(IL);
951   }
952 
953   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
954                         /*TopLevelObject=*/true);
955 
956   if (!hadError && FullyStructuredList) {
957     bool RequiresSecondPass = false;
958     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
959                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
960     if (RequiresSecondPass && !hadError)
961       FillInEmptyInitializations(Entity, FullyStructuredList,
962                                  RequiresSecondPass, nullptr, 0);
963   }
964 }
965 
966 int InitListChecker::numArrayElements(QualType DeclType) {
967   // FIXME: use a proper constant
968   int maxElements = 0x7FFFFFFF;
969   if (const ConstantArrayType *CAT =
970         SemaRef.Context.getAsConstantArrayType(DeclType)) {
971     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
972   }
973   return maxElements;
974 }
975 
976 int InitListChecker::numStructUnionElements(QualType DeclType) {
977   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
978   int InitializableMembers = 0;
979   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
980     InitializableMembers += CXXRD->getNumBases();
981   for (const auto *Field : structDecl->fields())
982     if (!Field->isUnnamedBitfield())
983       ++InitializableMembers;
984 
985   if (structDecl->isUnion())
986     return std::min(InitializableMembers, 1);
987   return InitializableMembers - structDecl->hasFlexibleArrayMember();
988 }
989 
990 /// Determine whether Entity is an entity for which it is idiomatic to elide
991 /// the braces in aggregate initialization.
992 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
993   // Recursive initialization of the one and only field within an aggregate
994   // class is considered idiomatic. This case arises in particular for
995   // initialization of std::array, where the C++ standard suggests the idiom of
996   //
997   //   std::array<T, N> arr = {1, 2, 3};
998   //
999   // (where std::array is an aggregate struct containing a single array field.
1000 
1001   // FIXME: Should aggregate initialization of a struct with a single
1002   // base class and no members also suppress the warning?
1003   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
1004     return false;
1005 
1006   auto *ParentRD =
1007       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1008   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
1009     if (CXXRD->getNumBases())
1010       return false;
1011 
1012   auto FieldIt = ParentRD->field_begin();
1013   assert(FieldIt != ParentRD->field_end() &&
1014          "no fields but have initializer for member?");
1015   return ++FieldIt == ParentRD->field_end();
1016 }
1017 
1018 /// Check whether the range of the initializer \p ParentIList from element
1019 /// \p Index onwards can be used to initialize an object of type \p T. Update
1020 /// \p Index to indicate how many elements of the list were consumed.
1021 ///
1022 /// This also fills in \p StructuredList, from element \p StructuredIndex
1023 /// onwards, with the fully-braced, desugared form of the initialization.
1024 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1025                                             InitListExpr *ParentIList,
1026                                             QualType T, unsigned &Index,
1027                                             InitListExpr *StructuredList,
1028                                             unsigned &StructuredIndex) {
1029   int maxElements = 0;
1030 
1031   if (T->isArrayType())
1032     maxElements = numArrayElements(T);
1033   else if (T->isRecordType())
1034     maxElements = numStructUnionElements(T);
1035   else if (T->isVectorType())
1036     maxElements = T->castAs<VectorType>()->getNumElements();
1037   else
1038     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1039 
1040   if (maxElements == 0) {
1041     if (!VerifyOnly)
1042       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1043                    diag::err_implicit_empty_initializer);
1044     ++Index;
1045     hadError = true;
1046     return;
1047   }
1048 
1049   // Build a structured initializer list corresponding to this subobject.
1050   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1051       ParentIList, Index, T, StructuredList, StructuredIndex,
1052       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1053                   ParentIList->getSourceRange().getEnd()));
1054   unsigned StructuredSubobjectInitIndex = 0;
1055 
1056   // Check the element types and build the structural subobject.
1057   unsigned StartIndex = Index;
1058   CheckListElementTypes(Entity, ParentIList, T,
1059                         /*SubobjectIsDesignatorContext=*/false, Index,
1060                         StructuredSubobjectInitList,
1061                         StructuredSubobjectInitIndex);
1062 
1063   if (StructuredSubobjectInitList) {
1064     StructuredSubobjectInitList->setType(T);
1065 
1066     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1067     // Update the structured sub-object initializer so that it's ending
1068     // range corresponds with the end of the last initializer it used.
1069     if (EndIndex < ParentIList->getNumInits() &&
1070         ParentIList->getInit(EndIndex)) {
1071       SourceLocation EndLoc
1072         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1073       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1074     }
1075 
1076     // Complain about missing braces.
1077     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1078         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1079         !isIdiomaticBraceElisionEntity(Entity)) {
1080       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1081                    diag::warn_missing_braces)
1082           << StructuredSubobjectInitList->getSourceRange()
1083           << FixItHint::CreateInsertion(
1084                  StructuredSubobjectInitList->getBeginLoc(), "{")
1085           << FixItHint::CreateInsertion(
1086                  SemaRef.getLocForEndOfToken(
1087                      StructuredSubobjectInitList->getEndLoc()),
1088                  "}");
1089     }
1090 
1091     // Warn if this type won't be an aggregate in future versions of C++.
1092     auto *CXXRD = T->getAsCXXRecordDecl();
1093     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1094       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1095                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1096           << StructuredSubobjectInitList->getSourceRange() << T;
1097     }
1098   }
1099 }
1100 
1101 /// Warn that \p Entity was of scalar type and was initialized by a
1102 /// single-element braced initializer list.
1103 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1104                                  SourceRange Braces) {
1105   // Don't warn during template instantiation. If the initialization was
1106   // non-dependent, we warned during the initial parse; otherwise, the
1107   // type might not be scalar in some uses of the template.
1108   if (S.inTemplateInstantiation())
1109     return;
1110 
1111   unsigned DiagID = 0;
1112 
1113   switch (Entity.getKind()) {
1114   case InitializedEntity::EK_VectorElement:
1115   case InitializedEntity::EK_ComplexElement:
1116   case InitializedEntity::EK_ArrayElement:
1117   case InitializedEntity::EK_Parameter:
1118   case InitializedEntity::EK_Parameter_CF_Audited:
1119   case InitializedEntity::EK_Result:
1120     // Extra braces here are suspicious.
1121     DiagID = diag::warn_braces_around_scalar_init;
1122     break;
1123 
1124   case InitializedEntity::EK_Member:
1125     // Warn on aggregate initialization but not on ctor init list or
1126     // default member initializer.
1127     if (Entity.getParent())
1128       DiagID = diag::warn_braces_around_scalar_init;
1129     break;
1130 
1131   case InitializedEntity::EK_Variable:
1132   case InitializedEntity::EK_LambdaCapture:
1133     // No warning, might be direct-list-initialization.
1134     // FIXME: Should we warn for copy-list-initialization in these cases?
1135     break;
1136 
1137   case InitializedEntity::EK_New:
1138   case InitializedEntity::EK_Temporary:
1139   case InitializedEntity::EK_CompoundLiteralInit:
1140     // No warning, braces are part of the syntax of the underlying construct.
1141     break;
1142 
1143   case InitializedEntity::EK_RelatedResult:
1144     // No warning, we already warned when initializing the result.
1145     break;
1146 
1147   case InitializedEntity::EK_Exception:
1148   case InitializedEntity::EK_Base:
1149   case InitializedEntity::EK_Delegating:
1150   case InitializedEntity::EK_BlockElement:
1151   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1152   case InitializedEntity::EK_Binding:
1153   case InitializedEntity::EK_StmtExprResult:
1154     llvm_unreachable("unexpected braced scalar init");
1155   }
1156 
1157   if (DiagID) {
1158     S.Diag(Braces.getBegin(), DiagID)
1159       << Braces
1160       << FixItHint::CreateRemoval(Braces.getBegin())
1161       << FixItHint::CreateRemoval(Braces.getEnd());
1162   }
1163 }
1164 
1165 /// Check whether the initializer \p IList (that was written with explicit
1166 /// braces) can be used to initialize an object of type \p T.
1167 ///
1168 /// This also fills in \p StructuredList with the fully-braced, desugared
1169 /// form of the initialization.
1170 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1171                                             InitListExpr *IList, QualType &T,
1172                                             InitListExpr *StructuredList,
1173                                             bool TopLevelObject) {
1174   unsigned Index = 0, StructuredIndex = 0;
1175   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1176                         Index, StructuredList, StructuredIndex, TopLevelObject);
1177   if (StructuredList) {
1178     QualType ExprTy = T;
1179     if (!ExprTy->isArrayType())
1180       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1181     if (!VerifyOnly)
1182       IList->setType(ExprTy);
1183     StructuredList->setType(ExprTy);
1184   }
1185   if (hadError)
1186     return;
1187 
1188   // Don't complain for incomplete types, since we'll get an error elsewhere.
1189   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1190     // We have leftover initializers
1191     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1192           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1193     hadError = ExtraInitsIsError;
1194     if (VerifyOnly) {
1195       return;
1196     } else if (StructuredIndex == 1 &&
1197                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1198                    SIF_None) {
1199       unsigned DK =
1200           ExtraInitsIsError
1201               ? diag::err_excess_initializers_in_char_array_initializer
1202               : diag::ext_excess_initializers_in_char_array_initializer;
1203       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1204           << IList->getInit(Index)->getSourceRange();
1205     } else {
1206       int initKind = T->isArrayType() ? 0 :
1207                      T->isVectorType() ? 1 :
1208                      T->isScalarType() ? 2 :
1209                      T->isUnionType() ? 3 :
1210                      4;
1211 
1212       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1213                                       : diag::ext_excess_initializers;
1214       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1215           << initKind << IList->getInit(Index)->getSourceRange();
1216     }
1217   }
1218 
1219   if (!VerifyOnly) {
1220     if (T->isScalarType() && IList->getNumInits() == 1 &&
1221         !isa<InitListExpr>(IList->getInit(0)))
1222       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1223 
1224     // Warn if this is a class type that won't be an aggregate in future
1225     // versions of C++.
1226     auto *CXXRD = T->getAsCXXRecordDecl();
1227     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1228       // Don't warn if there's an equivalent default constructor that would be
1229       // used instead.
1230       bool HasEquivCtor = false;
1231       if (IList->getNumInits() == 0) {
1232         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1233         HasEquivCtor = CD && !CD->isDeleted();
1234       }
1235 
1236       if (!HasEquivCtor) {
1237         SemaRef.Diag(IList->getBeginLoc(),
1238                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1239             << IList->getSourceRange() << T;
1240       }
1241     }
1242   }
1243 }
1244 
1245 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1246                                             InitListExpr *IList,
1247                                             QualType &DeclType,
1248                                             bool SubobjectIsDesignatorContext,
1249                                             unsigned &Index,
1250                                             InitListExpr *StructuredList,
1251                                             unsigned &StructuredIndex,
1252                                             bool TopLevelObject) {
1253   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1254     // Explicitly braced initializer for complex type can be real+imaginary
1255     // parts.
1256     CheckComplexType(Entity, IList, DeclType, Index,
1257                      StructuredList, StructuredIndex);
1258   } else if (DeclType->isScalarType()) {
1259     CheckScalarType(Entity, IList, DeclType, Index,
1260                     StructuredList, StructuredIndex);
1261   } else if (DeclType->isVectorType()) {
1262     CheckVectorType(Entity, IList, DeclType, Index,
1263                     StructuredList, StructuredIndex);
1264   } else if (DeclType->isRecordType()) {
1265     assert(DeclType->isAggregateType() &&
1266            "non-aggregate records should be handed in CheckSubElementType");
1267     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1268     auto Bases =
1269         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1270                                         CXXRecordDecl::base_class_iterator());
1271     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1272       Bases = CXXRD->bases();
1273     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1274                           SubobjectIsDesignatorContext, Index, StructuredList,
1275                           StructuredIndex, TopLevelObject);
1276   } else if (DeclType->isArrayType()) {
1277     llvm::APSInt Zero(
1278                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1279                     false);
1280     CheckArrayType(Entity, IList, DeclType, Zero,
1281                    SubobjectIsDesignatorContext, Index,
1282                    StructuredList, StructuredIndex);
1283   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1284     // This type is invalid, issue a diagnostic.
1285     ++Index;
1286     if (!VerifyOnly)
1287       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1288           << DeclType;
1289     hadError = true;
1290   } else if (DeclType->isReferenceType()) {
1291     CheckReferenceType(Entity, IList, DeclType, Index,
1292                        StructuredList, StructuredIndex);
1293   } else if (DeclType->isObjCObjectType()) {
1294     if (!VerifyOnly)
1295       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1296     hadError = true;
1297   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1298     // Checks for scalar type are sufficient for these types too.
1299     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1300                     StructuredIndex);
1301   } else {
1302     if (!VerifyOnly)
1303       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1304           << DeclType;
1305     hadError = true;
1306   }
1307 }
1308 
1309 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1310                                           InitListExpr *IList,
1311                                           QualType ElemType,
1312                                           unsigned &Index,
1313                                           InitListExpr *StructuredList,
1314                                           unsigned &StructuredIndex) {
1315   Expr *expr = IList->getInit(Index);
1316 
1317   if (ElemType->isReferenceType())
1318     return CheckReferenceType(Entity, IList, ElemType, Index,
1319                               StructuredList, StructuredIndex);
1320 
1321   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1322     if (SubInitList->getNumInits() == 1 &&
1323         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1324         SIF_None) {
1325       // FIXME: It would be more faithful and no less correct to include an
1326       // InitListExpr in the semantic form of the initializer list in this case.
1327       expr = SubInitList->getInit(0);
1328     }
1329     // Nested aggregate initialization and C++ initialization are handled later.
1330   } else if (isa<ImplicitValueInitExpr>(expr)) {
1331     // This happens during template instantiation when we see an InitListExpr
1332     // that we've already checked once.
1333     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1334            "found implicit initialization for the wrong type");
1335     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1336     ++Index;
1337     return;
1338   }
1339 
1340   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1341     // C++ [dcl.init.aggr]p2:
1342     //   Each member is copy-initialized from the corresponding
1343     //   initializer-clause.
1344 
1345     // FIXME: Better EqualLoc?
1346     InitializationKind Kind =
1347         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1348 
1349     // Vector elements can be initialized from other vectors in which case
1350     // we need initialization entity with a type of a vector (and not a vector
1351     // element!) initializing multiple vector elements.
1352     auto TmpEntity =
1353         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1354             ? InitializedEntity::InitializeTemporary(ElemType)
1355             : Entity;
1356 
1357     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1358                                /*TopLevelOfInitList*/ true);
1359 
1360     // C++14 [dcl.init.aggr]p13:
1361     //   If the assignment-expression can initialize a member, the member is
1362     //   initialized. Otherwise [...] brace elision is assumed
1363     //
1364     // Brace elision is never performed if the element is not an
1365     // assignment-expression.
1366     if (Seq || isa<InitListExpr>(expr)) {
1367       if (!VerifyOnly) {
1368         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1369         if (Result.isInvalid())
1370           hadError = true;
1371 
1372         UpdateStructuredListElement(StructuredList, StructuredIndex,
1373                                     Result.getAs<Expr>());
1374       } else if (!Seq) {
1375         hadError = true;
1376       } else if (StructuredList) {
1377         UpdateStructuredListElement(StructuredList, StructuredIndex,
1378                                     getDummyInit());
1379       }
1380       ++Index;
1381       return;
1382     }
1383 
1384     // Fall through for subaggregate initialization
1385   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1386     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1387     return CheckScalarType(Entity, IList, ElemType, Index,
1388                            StructuredList, StructuredIndex);
1389   } else if (const ArrayType *arrayType =
1390                  SemaRef.Context.getAsArrayType(ElemType)) {
1391     // arrayType can be incomplete if we're initializing a flexible
1392     // array member.  There's nothing we can do with the completed
1393     // type here, though.
1394 
1395     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1396       // FIXME: Should we do this checking in verify-only mode?
1397       if (!VerifyOnly)
1398         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1399       if (StructuredList)
1400         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1401       ++Index;
1402       return;
1403     }
1404 
1405     // Fall through for subaggregate initialization.
1406 
1407   } else {
1408     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1409             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1410 
1411     // C99 6.7.8p13:
1412     //
1413     //   The initializer for a structure or union object that has
1414     //   automatic storage duration shall be either an initializer
1415     //   list as described below, or a single expression that has
1416     //   compatible structure or union type. In the latter case, the
1417     //   initial value of the object, including unnamed members, is
1418     //   that of the expression.
1419     ExprResult ExprRes = expr;
1420     if (SemaRef.CheckSingleAssignmentConstraints(
1421             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1422       if (ExprRes.isInvalid())
1423         hadError = true;
1424       else {
1425         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1426         if (ExprRes.isInvalid())
1427           hadError = true;
1428       }
1429       UpdateStructuredListElement(StructuredList, StructuredIndex,
1430                                   ExprRes.getAs<Expr>());
1431       ++Index;
1432       return;
1433     }
1434     ExprRes.get();
1435     // Fall through for subaggregate initialization
1436   }
1437 
1438   // C++ [dcl.init.aggr]p12:
1439   //
1440   //   [...] Otherwise, if the member is itself a non-empty
1441   //   subaggregate, brace elision is assumed and the initializer is
1442   //   considered for the initialization of the first member of
1443   //   the subaggregate.
1444   // OpenCL vector initializer is handled elsewhere.
1445   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1446       ElemType->isAggregateType()) {
1447     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1448                           StructuredIndex);
1449     ++StructuredIndex;
1450   } else {
1451     if (!VerifyOnly) {
1452       // We cannot initialize this element, so let PerformCopyInitialization
1453       // produce the appropriate diagnostic. We already checked that this
1454       // initialization will fail.
1455       ExprResult Copy =
1456           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1457                                             /*TopLevelOfInitList=*/true);
1458       (void)Copy;
1459       assert(Copy.isInvalid() &&
1460              "expected non-aggregate initialization to fail");
1461     }
1462     hadError = true;
1463     ++Index;
1464     ++StructuredIndex;
1465   }
1466 }
1467 
1468 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1469                                        InitListExpr *IList, QualType DeclType,
1470                                        unsigned &Index,
1471                                        InitListExpr *StructuredList,
1472                                        unsigned &StructuredIndex) {
1473   assert(Index == 0 && "Index in explicit init list must be zero");
1474 
1475   // As an extension, clang supports complex initializers, which initialize
1476   // a complex number component-wise.  When an explicit initializer list for
1477   // a complex number contains two two initializers, this extension kicks in:
1478   // it exepcts the initializer list to contain two elements convertible to
1479   // the element type of the complex type. The first element initializes
1480   // the real part, and the second element intitializes the imaginary part.
1481 
1482   if (IList->getNumInits() != 2)
1483     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1484                            StructuredIndex);
1485 
1486   // This is an extension in C.  (The builtin _Complex type does not exist
1487   // in the C++ standard.)
1488   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1489     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1490         << IList->getSourceRange();
1491 
1492   // Initialize the complex number.
1493   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1494   InitializedEntity ElementEntity =
1495     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1496 
1497   for (unsigned i = 0; i < 2; ++i) {
1498     ElementEntity.setElementIndex(Index);
1499     CheckSubElementType(ElementEntity, IList, elementType, Index,
1500                         StructuredList, StructuredIndex);
1501   }
1502 }
1503 
1504 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1505                                       InitListExpr *IList, QualType DeclType,
1506                                       unsigned &Index,
1507                                       InitListExpr *StructuredList,
1508                                       unsigned &StructuredIndex) {
1509   if (Index >= IList->getNumInits()) {
1510     if (!VerifyOnly)
1511       SemaRef.Diag(IList->getBeginLoc(),
1512                    SemaRef.getLangOpts().CPlusPlus11
1513                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1514                        : diag::err_empty_scalar_initializer)
1515           << IList->getSourceRange();
1516     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1517     ++Index;
1518     ++StructuredIndex;
1519     return;
1520   }
1521 
1522   Expr *expr = IList->getInit(Index);
1523   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1524     // FIXME: This is invalid, and accepting it causes overload resolution
1525     // to pick the wrong overload in some corner cases.
1526     if (!VerifyOnly)
1527       SemaRef.Diag(SubIList->getBeginLoc(),
1528                    diag::ext_many_braces_around_scalar_init)
1529           << SubIList->getSourceRange();
1530 
1531     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1532                     StructuredIndex);
1533     return;
1534   } else if (isa<DesignatedInitExpr>(expr)) {
1535     if (!VerifyOnly)
1536       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1537           << DeclType << expr->getSourceRange();
1538     hadError = true;
1539     ++Index;
1540     ++StructuredIndex;
1541     return;
1542   }
1543 
1544   ExprResult Result;
1545   if (VerifyOnly) {
1546     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1547       Result = getDummyInit();
1548     else
1549       Result = ExprError();
1550   } else {
1551     Result =
1552         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1553                                           /*TopLevelOfInitList=*/true);
1554   }
1555 
1556   Expr *ResultExpr = nullptr;
1557 
1558   if (Result.isInvalid())
1559     hadError = true; // types weren't compatible.
1560   else {
1561     ResultExpr = Result.getAs<Expr>();
1562 
1563     if (ResultExpr != expr && !VerifyOnly) {
1564       // The type was promoted, update initializer list.
1565       // FIXME: Why are we updating the syntactic init list?
1566       IList->setInit(Index, ResultExpr);
1567     }
1568   }
1569   if (hadError)
1570     ++StructuredIndex;
1571   else
1572     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1573   ++Index;
1574 }
1575 
1576 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1577                                          InitListExpr *IList, QualType DeclType,
1578                                          unsigned &Index,
1579                                          InitListExpr *StructuredList,
1580                                          unsigned &StructuredIndex) {
1581   if (Index >= IList->getNumInits()) {
1582     // FIXME: It would be wonderful if we could point at the actual member. In
1583     // general, it would be useful to pass location information down the stack,
1584     // so that we know the location (or decl) of the "current object" being
1585     // initialized.
1586     if (!VerifyOnly)
1587       SemaRef.Diag(IList->getBeginLoc(),
1588                    diag::err_init_reference_member_uninitialized)
1589           << DeclType << IList->getSourceRange();
1590     hadError = true;
1591     ++Index;
1592     ++StructuredIndex;
1593     return;
1594   }
1595 
1596   Expr *expr = IList->getInit(Index);
1597   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1598     if (!VerifyOnly)
1599       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1600           << DeclType << IList->getSourceRange();
1601     hadError = true;
1602     ++Index;
1603     ++StructuredIndex;
1604     return;
1605   }
1606 
1607   ExprResult Result;
1608   if (VerifyOnly) {
1609     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1610       Result = getDummyInit();
1611     else
1612       Result = ExprError();
1613   } else {
1614     Result =
1615         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1616                                           /*TopLevelOfInitList=*/true);
1617   }
1618 
1619   if (Result.isInvalid())
1620     hadError = true;
1621 
1622   expr = Result.getAs<Expr>();
1623   // FIXME: Why are we updating the syntactic init list?
1624   if (!VerifyOnly)
1625     IList->setInit(Index, expr);
1626 
1627   if (hadError)
1628     ++StructuredIndex;
1629   else
1630     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1631   ++Index;
1632 }
1633 
1634 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1635                                       InitListExpr *IList, QualType DeclType,
1636                                       unsigned &Index,
1637                                       InitListExpr *StructuredList,
1638                                       unsigned &StructuredIndex) {
1639   const VectorType *VT = DeclType->castAs<VectorType>();
1640   unsigned maxElements = VT->getNumElements();
1641   unsigned numEltsInit = 0;
1642   QualType elementType = VT->getElementType();
1643 
1644   if (Index >= IList->getNumInits()) {
1645     // Make sure the element type can be value-initialized.
1646     CheckEmptyInitializable(
1647         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1648         IList->getEndLoc());
1649     return;
1650   }
1651 
1652   if (!SemaRef.getLangOpts().OpenCL) {
1653     // If the initializing element is a vector, try to copy-initialize
1654     // instead of breaking it apart (which is doomed to failure anyway).
1655     Expr *Init = IList->getInit(Index);
1656     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1657       ExprResult Result;
1658       if (VerifyOnly) {
1659         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1660           Result = getDummyInit();
1661         else
1662           Result = ExprError();
1663       } else {
1664         Result =
1665             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1666                                               /*TopLevelOfInitList=*/true);
1667       }
1668 
1669       Expr *ResultExpr = nullptr;
1670       if (Result.isInvalid())
1671         hadError = true; // types weren't compatible.
1672       else {
1673         ResultExpr = Result.getAs<Expr>();
1674 
1675         if (ResultExpr != Init && !VerifyOnly) {
1676           // The type was promoted, update initializer list.
1677           // FIXME: Why are we updating the syntactic init list?
1678           IList->setInit(Index, ResultExpr);
1679         }
1680       }
1681       if (hadError)
1682         ++StructuredIndex;
1683       else
1684         UpdateStructuredListElement(StructuredList, StructuredIndex,
1685                                     ResultExpr);
1686       ++Index;
1687       return;
1688     }
1689 
1690     InitializedEntity ElementEntity =
1691       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1692 
1693     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1694       // Don't attempt to go past the end of the init list
1695       if (Index >= IList->getNumInits()) {
1696         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1697         break;
1698       }
1699 
1700       ElementEntity.setElementIndex(Index);
1701       CheckSubElementType(ElementEntity, IList, elementType, Index,
1702                           StructuredList, StructuredIndex);
1703     }
1704 
1705     if (VerifyOnly)
1706       return;
1707 
1708     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1709     const VectorType *T = Entity.getType()->castAs<VectorType>();
1710     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1711                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1712       // The ability to use vector initializer lists is a GNU vector extension
1713       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1714       // endian machines it works fine, however on big endian machines it
1715       // exhibits surprising behaviour:
1716       //
1717       //   uint32x2_t x = {42, 64};
1718       //   return vget_lane_u32(x, 0); // Will return 64.
1719       //
1720       // Because of this, explicitly call out that it is non-portable.
1721       //
1722       SemaRef.Diag(IList->getBeginLoc(),
1723                    diag::warn_neon_vector_initializer_non_portable);
1724 
1725       const char *typeCode;
1726       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1727 
1728       if (elementType->isFloatingType())
1729         typeCode = "f";
1730       else if (elementType->isSignedIntegerType())
1731         typeCode = "s";
1732       else if (elementType->isUnsignedIntegerType())
1733         typeCode = "u";
1734       else
1735         llvm_unreachable("Invalid element type!");
1736 
1737       SemaRef.Diag(IList->getBeginLoc(),
1738                    SemaRef.Context.getTypeSize(VT) > 64
1739                        ? diag::note_neon_vector_initializer_non_portable_q
1740                        : diag::note_neon_vector_initializer_non_portable)
1741           << typeCode << typeSize;
1742     }
1743 
1744     return;
1745   }
1746 
1747   InitializedEntity ElementEntity =
1748     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1749 
1750   // OpenCL initializers allows vectors to be constructed from vectors.
1751   for (unsigned i = 0; i < maxElements; ++i) {
1752     // Don't attempt to go past the end of the init list
1753     if (Index >= IList->getNumInits())
1754       break;
1755 
1756     ElementEntity.setElementIndex(Index);
1757 
1758     QualType IType = IList->getInit(Index)->getType();
1759     if (!IType->isVectorType()) {
1760       CheckSubElementType(ElementEntity, IList, elementType, Index,
1761                           StructuredList, StructuredIndex);
1762       ++numEltsInit;
1763     } else {
1764       QualType VecType;
1765       const VectorType *IVT = IType->castAs<VectorType>();
1766       unsigned numIElts = IVT->getNumElements();
1767 
1768       if (IType->isExtVectorType())
1769         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1770       else
1771         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1772                                                 IVT->getVectorKind());
1773       CheckSubElementType(ElementEntity, IList, VecType, Index,
1774                           StructuredList, StructuredIndex);
1775       numEltsInit += numIElts;
1776     }
1777   }
1778 
1779   // OpenCL requires all elements to be initialized.
1780   if (numEltsInit != maxElements) {
1781     if (!VerifyOnly)
1782       SemaRef.Diag(IList->getBeginLoc(),
1783                    diag::err_vector_incorrect_num_initializers)
1784           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1785     hadError = true;
1786   }
1787 }
1788 
1789 /// Check if the type of a class element has an accessible destructor, and marks
1790 /// it referenced. Returns true if we shouldn't form a reference to the
1791 /// destructor.
1792 ///
1793 /// Aggregate initialization requires a class element's destructor be
1794 /// accessible per 11.6.1 [dcl.init.aggr]:
1795 ///
1796 /// The destructor for each element of class type is potentially invoked
1797 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1798 /// occurs.
1799 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1800                                      Sema &SemaRef) {
1801   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1802   if (!CXXRD)
1803     return false;
1804 
1805   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1806   SemaRef.CheckDestructorAccess(Loc, Destructor,
1807                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1808                                 << ElementType);
1809   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1810   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1811 }
1812 
1813 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1814                                      InitListExpr *IList, QualType &DeclType,
1815                                      llvm::APSInt elementIndex,
1816                                      bool SubobjectIsDesignatorContext,
1817                                      unsigned &Index,
1818                                      InitListExpr *StructuredList,
1819                                      unsigned &StructuredIndex) {
1820   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1821 
1822   if (!VerifyOnly) {
1823     if (checkDestructorReference(arrayType->getElementType(),
1824                                  IList->getEndLoc(), SemaRef)) {
1825       hadError = true;
1826       return;
1827     }
1828   }
1829 
1830   // Check for the special-case of initializing an array with a string.
1831   if (Index < IList->getNumInits()) {
1832     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1833         SIF_None) {
1834       // We place the string literal directly into the resulting
1835       // initializer list. This is the only place where the structure
1836       // of the structured initializer list doesn't match exactly,
1837       // because doing so would involve allocating one character
1838       // constant for each string.
1839       // FIXME: Should we do these checks in verify-only mode too?
1840       if (!VerifyOnly)
1841         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1842       if (StructuredList) {
1843         UpdateStructuredListElement(StructuredList, StructuredIndex,
1844                                     IList->getInit(Index));
1845         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1846       }
1847       ++Index;
1848       return;
1849     }
1850   }
1851   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1852     // Check for VLAs; in standard C it would be possible to check this
1853     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1854     // them in all sorts of strange places).
1855     if (!VerifyOnly)
1856       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1857                    diag::err_variable_object_no_init)
1858           << VAT->getSizeExpr()->getSourceRange();
1859     hadError = true;
1860     ++Index;
1861     ++StructuredIndex;
1862     return;
1863   }
1864 
1865   // We might know the maximum number of elements in advance.
1866   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1867                            elementIndex.isUnsigned());
1868   bool maxElementsKnown = false;
1869   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1870     maxElements = CAT->getSize();
1871     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1872     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1873     maxElementsKnown = true;
1874   }
1875 
1876   QualType elementType = arrayType->getElementType();
1877   while (Index < IList->getNumInits()) {
1878     Expr *Init = IList->getInit(Index);
1879     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1880       // If we're not the subobject that matches up with the '{' for
1881       // the designator, we shouldn't be handling the
1882       // designator. Return immediately.
1883       if (!SubobjectIsDesignatorContext)
1884         return;
1885 
1886       // Handle this designated initializer. elementIndex will be
1887       // updated to be the next array element we'll initialize.
1888       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1889                                      DeclType, nullptr, &elementIndex, Index,
1890                                      StructuredList, StructuredIndex, true,
1891                                      false)) {
1892         hadError = true;
1893         continue;
1894       }
1895 
1896       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1897         maxElements = maxElements.extend(elementIndex.getBitWidth());
1898       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1899         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1900       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1901 
1902       // If the array is of incomplete type, keep track of the number of
1903       // elements in the initializer.
1904       if (!maxElementsKnown && elementIndex > maxElements)
1905         maxElements = elementIndex;
1906 
1907       continue;
1908     }
1909 
1910     // If we know the maximum number of elements, and we've already
1911     // hit it, stop consuming elements in the initializer list.
1912     if (maxElementsKnown && elementIndex == maxElements)
1913       break;
1914 
1915     InitializedEntity ElementEntity =
1916       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1917                                            Entity);
1918     // Check this element.
1919     CheckSubElementType(ElementEntity, IList, elementType, Index,
1920                         StructuredList, StructuredIndex);
1921     ++elementIndex;
1922 
1923     // If the array is of incomplete type, keep track of the number of
1924     // elements in the initializer.
1925     if (!maxElementsKnown && elementIndex > maxElements)
1926       maxElements = elementIndex;
1927   }
1928   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1929     // If this is an incomplete array type, the actual type needs to
1930     // be calculated here.
1931     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1932     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1933       // Sizing an array implicitly to zero is not allowed by ISO C,
1934       // but is supported by GNU.
1935       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1936     }
1937 
1938     DeclType = SemaRef.Context.getConstantArrayType(
1939         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1940   }
1941   if (!hadError) {
1942     // If there are any members of the array that get value-initialized, check
1943     // that is possible. That happens if we know the bound and don't have
1944     // enough elements, or if we're performing an array new with an unknown
1945     // bound.
1946     if ((maxElementsKnown && elementIndex < maxElements) ||
1947         Entity.isVariableLengthArrayNew())
1948       CheckEmptyInitializable(
1949           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1950           IList->getEndLoc());
1951   }
1952 }
1953 
1954 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1955                                              Expr *InitExpr,
1956                                              FieldDecl *Field,
1957                                              bool TopLevelObject) {
1958   // Handle GNU flexible array initializers.
1959   unsigned FlexArrayDiag;
1960   if (isa<InitListExpr>(InitExpr) &&
1961       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1962     // Empty flexible array init always allowed as an extension
1963     FlexArrayDiag = diag::ext_flexible_array_init;
1964   } else if (SemaRef.getLangOpts().CPlusPlus) {
1965     // Disallow flexible array init in C++; it is not required for gcc
1966     // compatibility, and it needs work to IRGen correctly in general.
1967     FlexArrayDiag = diag::err_flexible_array_init;
1968   } else if (!TopLevelObject) {
1969     // Disallow flexible array init on non-top-level object
1970     FlexArrayDiag = diag::err_flexible_array_init;
1971   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1972     // Disallow flexible array init on anything which is not a variable.
1973     FlexArrayDiag = diag::err_flexible_array_init;
1974   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1975     // Disallow flexible array init on local variables.
1976     FlexArrayDiag = diag::err_flexible_array_init;
1977   } else {
1978     // Allow other cases.
1979     FlexArrayDiag = diag::ext_flexible_array_init;
1980   }
1981 
1982   if (!VerifyOnly) {
1983     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1984         << InitExpr->getBeginLoc();
1985     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1986       << Field;
1987   }
1988 
1989   return FlexArrayDiag != diag::ext_flexible_array_init;
1990 }
1991 
1992 void InitListChecker::CheckStructUnionTypes(
1993     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1994     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1995     bool SubobjectIsDesignatorContext, unsigned &Index,
1996     InitListExpr *StructuredList, unsigned &StructuredIndex,
1997     bool TopLevelObject) {
1998   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
1999 
2000   // If the record is invalid, some of it's members are invalid. To avoid
2001   // confusion, we forgo checking the intializer for the entire record.
2002   if (structDecl->isInvalidDecl()) {
2003     // Assume it was supposed to consume a single initializer.
2004     ++Index;
2005     hadError = true;
2006     return;
2007   }
2008 
2009   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2010     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2011 
2012     if (!VerifyOnly)
2013       for (FieldDecl *FD : RD->fields()) {
2014         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2015         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2016           hadError = true;
2017           return;
2018         }
2019       }
2020 
2021     // If there's a default initializer, use it.
2022     if (isa<CXXRecordDecl>(RD) &&
2023         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2024       if (!StructuredList)
2025         return;
2026       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2027            Field != FieldEnd; ++Field) {
2028         if (Field->hasInClassInitializer()) {
2029           StructuredList->setInitializedFieldInUnion(*Field);
2030           // FIXME: Actually build a CXXDefaultInitExpr?
2031           return;
2032         }
2033       }
2034     }
2035 
2036     // Value-initialize the first member of the union that isn't an unnamed
2037     // bitfield.
2038     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2039          Field != FieldEnd; ++Field) {
2040       if (!Field->isUnnamedBitfield()) {
2041         CheckEmptyInitializable(
2042             InitializedEntity::InitializeMember(*Field, &Entity),
2043             IList->getEndLoc());
2044         if (StructuredList)
2045           StructuredList->setInitializedFieldInUnion(*Field);
2046         break;
2047       }
2048     }
2049     return;
2050   }
2051 
2052   bool InitializedSomething = false;
2053 
2054   // If we have any base classes, they are initialized prior to the fields.
2055   for (auto &Base : Bases) {
2056     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2057 
2058     // Designated inits always initialize fields, so if we see one, all
2059     // remaining base classes have no explicit initializer.
2060     if (Init && isa<DesignatedInitExpr>(Init))
2061       Init = nullptr;
2062 
2063     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2064     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2065         SemaRef.Context, &Base, false, &Entity);
2066     if (Init) {
2067       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2068                           StructuredList, StructuredIndex);
2069       InitializedSomething = true;
2070     } else {
2071       CheckEmptyInitializable(BaseEntity, InitLoc);
2072     }
2073 
2074     if (!VerifyOnly)
2075       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2076         hadError = true;
2077         return;
2078       }
2079   }
2080 
2081   // If structDecl is a forward declaration, this loop won't do
2082   // anything except look at designated initializers; That's okay,
2083   // because an error should get printed out elsewhere. It might be
2084   // worthwhile to skip over the rest of the initializer, though.
2085   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2086   RecordDecl::field_iterator FieldEnd = RD->field_end();
2087   bool CheckForMissingFields =
2088     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2089   bool HasDesignatedInit = false;
2090 
2091   while (Index < IList->getNumInits()) {
2092     Expr *Init = IList->getInit(Index);
2093     SourceLocation InitLoc = Init->getBeginLoc();
2094 
2095     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2096       // If we're not the subobject that matches up with the '{' for
2097       // the designator, we shouldn't be handling the
2098       // designator. Return immediately.
2099       if (!SubobjectIsDesignatorContext)
2100         return;
2101 
2102       HasDesignatedInit = true;
2103 
2104       // Handle this designated initializer. Field will be updated to
2105       // the next field that we'll be initializing.
2106       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2107                                      DeclType, &Field, nullptr, Index,
2108                                      StructuredList, StructuredIndex,
2109                                      true, TopLevelObject))
2110         hadError = true;
2111       else if (!VerifyOnly) {
2112         // Find the field named by the designated initializer.
2113         RecordDecl::field_iterator F = RD->field_begin();
2114         while (std::next(F) != Field)
2115           ++F;
2116         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2117         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2118           hadError = true;
2119           return;
2120         }
2121       }
2122 
2123       InitializedSomething = true;
2124 
2125       // Disable check for missing fields when designators are used.
2126       // This matches gcc behaviour.
2127       CheckForMissingFields = false;
2128       continue;
2129     }
2130 
2131     if (Field == FieldEnd) {
2132       // We've run out of fields. We're done.
2133       break;
2134     }
2135 
2136     // We've already initialized a member of a union. We're done.
2137     if (InitializedSomething && DeclType->isUnionType())
2138       break;
2139 
2140     // If we've hit the flexible array member at the end, we're done.
2141     if (Field->getType()->isIncompleteArrayType())
2142       break;
2143 
2144     if (Field->isUnnamedBitfield()) {
2145       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2146       ++Field;
2147       continue;
2148     }
2149 
2150     // Make sure we can use this declaration.
2151     bool InvalidUse;
2152     if (VerifyOnly)
2153       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2154     else
2155       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2156           *Field, IList->getInit(Index)->getBeginLoc());
2157     if (InvalidUse) {
2158       ++Index;
2159       ++Field;
2160       hadError = true;
2161       continue;
2162     }
2163 
2164     if (!VerifyOnly) {
2165       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2166       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2167         hadError = true;
2168         return;
2169       }
2170     }
2171 
2172     InitializedEntity MemberEntity =
2173       InitializedEntity::InitializeMember(*Field, &Entity);
2174     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2175                         StructuredList, StructuredIndex);
2176     InitializedSomething = true;
2177 
2178     if (DeclType->isUnionType() && StructuredList) {
2179       // Initialize the first field within the union.
2180       StructuredList->setInitializedFieldInUnion(*Field);
2181     }
2182 
2183     ++Field;
2184   }
2185 
2186   // Emit warnings for missing struct field initializers.
2187   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2188       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2189       !DeclType->isUnionType()) {
2190     // It is possible we have one or more unnamed bitfields remaining.
2191     // Find first (if any) named field and emit warning.
2192     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2193          it != end; ++it) {
2194       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2195         SemaRef.Diag(IList->getSourceRange().getEnd(),
2196                      diag::warn_missing_field_initializers) << *it;
2197         break;
2198       }
2199     }
2200   }
2201 
2202   // Check that any remaining fields can be value-initialized if we're not
2203   // building a structured list. (If we are, we'll check this later.)
2204   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2205       !Field->getType()->isIncompleteArrayType()) {
2206     for (; Field != FieldEnd && !hadError; ++Field) {
2207       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2208         CheckEmptyInitializable(
2209             InitializedEntity::InitializeMember(*Field, &Entity),
2210             IList->getEndLoc());
2211     }
2212   }
2213 
2214   // Check that the types of the remaining fields have accessible destructors.
2215   if (!VerifyOnly) {
2216     // If the initializer expression has a designated initializer, check the
2217     // elements for which a designated initializer is not provided too.
2218     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2219                                                      : Field;
2220     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2221       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2222       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2223         hadError = true;
2224         return;
2225       }
2226     }
2227   }
2228 
2229   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2230       Index >= IList->getNumInits())
2231     return;
2232 
2233   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2234                              TopLevelObject)) {
2235     hadError = true;
2236     ++Index;
2237     return;
2238   }
2239 
2240   InitializedEntity MemberEntity =
2241     InitializedEntity::InitializeMember(*Field, &Entity);
2242 
2243   if (isa<InitListExpr>(IList->getInit(Index)))
2244     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2245                         StructuredList, StructuredIndex);
2246   else
2247     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2248                           StructuredList, StructuredIndex);
2249 }
2250 
2251 /// Expand a field designator that refers to a member of an
2252 /// anonymous struct or union into a series of field designators that
2253 /// refers to the field within the appropriate subobject.
2254 ///
2255 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2256                                            DesignatedInitExpr *DIE,
2257                                            unsigned DesigIdx,
2258                                            IndirectFieldDecl *IndirectField) {
2259   typedef DesignatedInitExpr::Designator Designator;
2260 
2261   // Build the replacement designators.
2262   SmallVector<Designator, 4> Replacements;
2263   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2264        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2265     if (PI + 1 == PE)
2266       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2267                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2268                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2269     else
2270       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2271                                         SourceLocation(), SourceLocation()));
2272     assert(isa<FieldDecl>(*PI));
2273     Replacements.back().setField(cast<FieldDecl>(*PI));
2274   }
2275 
2276   // Expand the current designator into the set of replacement
2277   // designators, so we have a full subobject path down to where the
2278   // member of the anonymous struct/union is actually stored.
2279   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2280                         &Replacements[0] + Replacements.size());
2281 }
2282 
2283 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2284                                                    DesignatedInitExpr *DIE) {
2285   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2286   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2287   for (unsigned I = 0; I < NumIndexExprs; ++I)
2288     IndexExprs[I] = DIE->getSubExpr(I + 1);
2289   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2290                                     IndexExprs,
2291                                     DIE->getEqualOrColonLoc(),
2292                                     DIE->usesGNUSyntax(), DIE->getInit());
2293 }
2294 
2295 namespace {
2296 
2297 // Callback to only accept typo corrections that are for field members of
2298 // the given struct or union.
2299 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2300  public:
2301   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2302       : Record(RD) {}
2303 
2304   bool ValidateCandidate(const TypoCorrection &candidate) override {
2305     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2306     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2307   }
2308 
2309   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2310     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2311   }
2312 
2313  private:
2314   RecordDecl *Record;
2315 };
2316 
2317 } // end anonymous namespace
2318 
2319 /// Check the well-formedness of a C99 designated initializer.
2320 ///
2321 /// Determines whether the designated initializer @p DIE, which
2322 /// resides at the given @p Index within the initializer list @p
2323 /// IList, is well-formed for a current object of type @p DeclType
2324 /// (C99 6.7.8). The actual subobject that this designator refers to
2325 /// within the current subobject is returned in either
2326 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2327 ///
2328 /// @param IList  The initializer list in which this designated
2329 /// initializer occurs.
2330 ///
2331 /// @param DIE The designated initializer expression.
2332 ///
2333 /// @param DesigIdx  The index of the current designator.
2334 ///
2335 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2336 /// into which the designation in @p DIE should refer.
2337 ///
2338 /// @param NextField  If non-NULL and the first designator in @p DIE is
2339 /// a field, this will be set to the field declaration corresponding
2340 /// to the field named by the designator. On input, this is expected to be
2341 /// the next field that would be initialized in the absence of designation,
2342 /// if the complete object being initialized is a struct.
2343 ///
2344 /// @param NextElementIndex  If non-NULL and the first designator in @p
2345 /// DIE is an array designator or GNU array-range designator, this
2346 /// will be set to the last index initialized by this designator.
2347 ///
2348 /// @param Index  Index into @p IList where the designated initializer
2349 /// @p DIE occurs.
2350 ///
2351 /// @param StructuredList  The initializer list expression that
2352 /// describes all of the subobject initializers in the order they'll
2353 /// actually be initialized.
2354 ///
2355 /// @returns true if there was an error, false otherwise.
2356 bool
2357 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2358                                             InitListExpr *IList,
2359                                             DesignatedInitExpr *DIE,
2360                                             unsigned DesigIdx,
2361                                             QualType &CurrentObjectType,
2362                                           RecordDecl::field_iterator *NextField,
2363                                             llvm::APSInt *NextElementIndex,
2364                                             unsigned &Index,
2365                                             InitListExpr *StructuredList,
2366                                             unsigned &StructuredIndex,
2367                                             bool FinishSubobjectInit,
2368                                             bool TopLevelObject) {
2369   if (DesigIdx == DIE->size()) {
2370     // C++20 designated initialization can result in direct-list-initialization
2371     // of the designated subobject. This is the only way that we can end up
2372     // performing direct initialization as part of aggregate initialization, so
2373     // it needs special handling.
2374     if (DIE->isDirectInit()) {
2375       Expr *Init = DIE->getInit();
2376       assert(isa<InitListExpr>(Init) &&
2377              "designator result in direct non-list initialization?");
2378       InitializationKind Kind = InitializationKind::CreateDirectList(
2379           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2380       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2381                                  /*TopLevelOfInitList*/ true);
2382       if (StructuredList) {
2383         ExprResult Result = VerifyOnly
2384                                 ? getDummyInit()
2385                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2386         UpdateStructuredListElement(StructuredList, StructuredIndex,
2387                                     Result.get());
2388       }
2389       ++Index;
2390       return !Seq;
2391     }
2392 
2393     // Check the actual initialization for the designated object type.
2394     bool prevHadError = hadError;
2395 
2396     // Temporarily remove the designator expression from the
2397     // initializer list that the child calls see, so that we don't try
2398     // to re-process the designator.
2399     unsigned OldIndex = Index;
2400     IList->setInit(OldIndex, DIE->getInit());
2401 
2402     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2403                         StructuredList, StructuredIndex);
2404 
2405     // Restore the designated initializer expression in the syntactic
2406     // form of the initializer list.
2407     if (IList->getInit(OldIndex) != DIE->getInit())
2408       DIE->setInit(IList->getInit(OldIndex));
2409     IList->setInit(OldIndex, DIE);
2410 
2411     return hadError && !prevHadError;
2412   }
2413 
2414   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2415   bool IsFirstDesignator = (DesigIdx == 0);
2416   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2417     // Determine the structural initializer list that corresponds to the
2418     // current subobject.
2419     if (IsFirstDesignator)
2420       StructuredList = FullyStructuredList;
2421     else {
2422       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2423           StructuredList->getInit(StructuredIndex) : nullptr;
2424       if (!ExistingInit && StructuredList->hasArrayFiller())
2425         ExistingInit = StructuredList->getArrayFiller();
2426 
2427       if (!ExistingInit)
2428         StructuredList = getStructuredSubobjectInit(
2429             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2430             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2431       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2432         StructuredList = Result;
2433       else {
2434         // We are creating an initializer list that initializes the
2435         // subobjects of the current object, but there was already an
2436         // initialization that completely initialized the current
2437         // subobject, e.g., by a compound literal:
2438         //
2439         // struct X { int a, b; };
2440         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2441         //
2442         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2443         // designated initializer re-initializes only its current object
2444         // subobject [0].b.
2445         diagnoseInitOverride(ExistingInit,
2446                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2447                              /*FullyOverwritten=*/false);
2448 
2449         if (!VerifyOnly) {
2450           if (DesignatedInitUpdateExpr *E =
2451                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2452             StructuredList = E->getUpdater();
2453           else {
2454             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2455                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2456                                          ExistingInit, DIE->getEndLoc());
2457             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2458             StructuredList = DIUE->getUpdater();
2459           }
2460         } else {
2461           // We don't need to track the structured representation of a
2462           // designated init update of an already-fully-initialized object in
2463           // verify-only mode. The only reason we would need the structure is
2464           // to determine where the uninitialized "holes" are, and in this
2465           // case, we know there aren't any and we can't introduce any.
2466           StructuredList = nullptr;
2467         }
2468       }
2469     }
2470   }
2471 
2472   if (D->isFieldDesignator()) {
2473     // C99 6.7.8p7:
2474     //
2475     //   If a designator has the form
2476     //
2477     //      . identifier
2478     //
2479     //   then the current object (defined below) shall have
2480     //   structure or union type and the identifier shall be the
2481     //   name of a member of that type.
2482     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2483     if (!RT) {
2484       SourceLocation Loc = D->getDotLoc();
2485       if (Loc.isInvalid())
2486         Loc = D->getFieldLoc();
2487       if (!VerifyOnly)
2488         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2489           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2490       ++Index;
2491       return true;
2492     }
2493 
2494     FieldDecl *KnownField = D->getField();
2495     if (!KnownField) {
2496       IdentifierInfo *FieldName = D->getFieldName();
2497       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2498       for (NamedDecl *ND : Lookup) {
2499         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2500           KnownField = FD;
2501           break;
2502         }
2503         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2504           // In verify mode, don't modify the original.
2505           if (VerifyOnly)
2506             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2507           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2508           D = DIE->getDesignator(DesigIdx);
2509           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2510           break;
2511         }
2512       }
2513       if (!KnownField) {
2514         if (VerifyOnly) {
2515           ++Index;
2516           return true;  // No typo correction when just trying this out.
2517         }
2518 
2519         // Name lookup found something, but it wasn't a field.
2520         if (!Lookup.empty()) {
2521           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2522             << FieldName;
2523           SemaRef.Diag(Lookup.front()->getLocation(),
2524                        diag::note_field_designator_found);
2525           ++Index;
2526           return true;
2527         }
2528 
2529         // Name lookup didn't find anything.
2530         // Determine whether this was a typo for another field name.
2531         FieldInitializerValidatorCCC CCC(RT->getDecl());
2532         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2533                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2534                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2535                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2536           SemaRef.diagnoseTypo(
2537               Corrected,
2538               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2539                 << FieldName << CurrentObjectType);
2540           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2541           hadError = true;
2542         } else {
2543           // Typo correction didn't find anything.
2544           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2545             << FieldName << CurrentObjectType;
2546           ++Index;
2547           return true;
2548         }
2549       }
2550     }
2551 
2552     unsigned NumBases = 0;
2553     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2554       NumBases = CXXRD->getNumBases();
2555 
2556     unsigned FieldIndex = NumBases;
2557 
2558     for (auto *FI : RT->getDecl()->fields()) {
2559       if (FI->isUnnamedBitfield())
2560         continue;
2561       if (declaresSameEntity(KnownField, FI)) {
2562         KnownField = FI;
2563         break;
2564       }
2565       ++FieldIndex;
2566     }
2567 
2568     RecordDecl::field_iterator Field =
2569         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2570 
2571     // All of the fields of a union are located at the same place in
2572     // the initializer list.
2573     if (RT->getDecl()->isUnion()) {
2574       FieldIndex = 0;
2575       if (StructuredList) {
2576         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2577         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2578           assert(StructuredList->getNumInits() == 1
2579                  && "A union should never have more than one initializer!");
2580 
2581           Expr *ExistingInit = StructuredList->getInit(0);
2582           if (ExistingInit) {
2583             // We're about to throw away an initializer, emit warning.
2584             diagnoseInitOverride(
2585                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2586           }
2587 
2588           // remove existing initializer
2589           StructuredList->resizeInits(SemaRef.Context, 0);
2590           StructuredList->setInitializedFieldInUnion(nullptr);
2591         }
2592 
2593         StructuredList->setInitializedFieldInUnion(*Field);
2594       }
2595     }
2596 
2597     // Make sure we can use this declaration.
2598     bool InvalidUse;
2599     if (VerifyOnly)
2600       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2601     else
2602       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2603     if (InvalidUse) {
2604       ++Index;
2605       return true;
2606     }
2607 
2608     // C++20 [dcl.init.list]p3:
2609     //   The ordered identifiers in the designators of the designated-
2610     //   initializer-list shall form a subsequence of the ordered identifiers
2611     //   in the direct non-static data members of T.
2612     //
2613     // Note that this is not a condition on forming the aggregate
2614     // initialization, only on actually performing initialization,
2615     // so it is not checked in VerifyOnly mode.
2616     //
2617     // FIXME: This is the only reordering diagnostic we produce, and it only
2618     // catches cases where we have a top-level field designator that jumps
2619     // backwards. This is the only such case that is reachable in an
2620     // otherwise-valid C++20 program, so is the only case that's required for
2621     // conformance, but for consistency, we should diagnose all the other
2622     // cases where a designator takes us backwards too.
2623     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2624         NextField &&
2625         (*NextField == RT->getDecl()->field_end() ||
2626          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2627       // Find the field that we just initialized.
2628       FieldDecl *PrevField = nullptr;
2629       for (auto FI = RT->getDecl()->field_begin();
2630            FI != RT->getDecl()->field_end(); ++FI) {
2631         if (FI->isUnnamedBitfield())
2632           continue;
2633         if (*NextField != RT->getDecl()->field_end() &&
2634             declaresSameEntity(*FI, **NextField))
2635           break;
2636         PrevField = *FI;
2637       }
2638 
2639       if (PrevField &&
2640           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2641         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2642             << KnownField << PrevField << DIE->getSourceRange();
2643 
2644         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2645         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2646           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2647             SemaRef.Diag(PrevInit->getBeginLoc(),
2648                          diag::note_previous_field_init)
2649                 << PrevField << PrevInit->getSourceRange();
2650           }
2651         }
2652       }
2653     }
2654 
2655 
2656     // Update the designator with the field declaration.
2657     if (!VerifyOnly)
2658       D->setField(*Field);
2659 
2660     // Make sure that our non-designated initializer list has space
2661     // for a subobject corresponding to this field.
2662     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2663       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2664 
2665     // This designator names a flexible array member.
2666     if (Field->getType()->isIncompleteArrayType()) {
2667       bool Invalid = false;
2668       if ((DesigIdx + 1) != DIE->size()) {
2669         // We can't designate an object within the flexible array
2670         // member (because GCC doesn't allow it).
2671         if (!VerifyOnly) {
2672           DesignatedInitExpr::Designator *NextD
2673             = DIE->getDesignator(DesigIdx + 1);
2674           SemaRef.Diag(NextD->getBeginLoc(),
2675                        diag::err_designator_into_flexible_array_member)
2676               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2677           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2678             << *Field;
2679         }
2680         Invalid = true;
2681       }
2682 
2683       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2684           !isa<StringLiteral>(DIE->getInit())) {
2685         // The initializer is not an initializer list.
2686         if (!VerifyOnly) {
2687           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2688                        diag::err_flexible_array_init_needs_braces)
2689               << DIE->getInit()->getSourceRange();
2690           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2691             << *Field;
2692         }
2693         Invalid = true;
2694       }
2695 
2696       // Check GNU flexible array initializer.
2697       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2698                                              TopLevelObject))
2699         Invalid = true;
2700 
2701       if (Invalid) {
2702         ++Index;
2703         return true;
2704       }
2705 
2706       // Initialize the array.
2707       bool prevHadError = hadError;
2708       unsigned newStructuredIndex = FieldIndex;
2709       unsigned OldIndex = Index;
2710       IList->setInit(Index, DIE->getInit());
2711 
2712       InitializedEntity MemberEntity =
2713         InitializedEntity::InitializeMember(*Field, &Entity);
2714       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2715                           StructuredList, newStructuredIndex);
2716 
2717       IList->setInit(OldIndex, DIE);
2718       if (hadError && !prevHadError) {
2719         ++Field;
2720         ++FieldIndex;
2721         if (NextField)
2722           *NextField = Field;
2723         StructuredIndex = FieldIndex;
2724         return true;
2725       }
2726     } else {
2727       // Recurse to check later designated subobjects.
2728       QualType FieldType = Field->getType();
2729       unsigned newStructuredIndex = FieldIndex;
2730 
2731       InitializedEntity MemberEntity =
2732         InitializedEntity::InitializeMember(*Field, &Entity);
2733       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2734                                      FieldType, nullptr, nullptr, Index,
2735                                      StructuredList, newStructuredIndex,
2736                                      FinishSubobjectInit, false))
2737         return true;
2738     }
2739 
2740     // Find the position of the next field to be initialized in this
2741     // subobject.
2742     ++Field;
2743     ++FieldIndex;
2744 
2745     // If this the first designator, our caller will continue checking
2746     // the rest of this struct/class/union subobject.
2747     if (IsFirstDesignator) {
2748       if (NextField)
2749         *NextField = Field;
2750       StructuredIndex = FieldIndex;
2751       return false;
2752     }
2753 
2754     if (!FinishSubobjectInit)
2755       return false;
2756 
2757     // We've already initialized something in the union; we're done.
2758     if (RT->getDecl()->isUnion())
2759       return hadError;
2760 
2761     // Check the remaining fields within this class/struct/union subobject.
2762     bool prevHadError = hadError;
2763 
2764     auto NoBases =
2765         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2766                                         CXXRecordDecl::base_class_iterator());
2767     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2768                           false, Index, StructuredList, FieldIndex);
2769     return hadError && !prevHadError;
2770   }
2771 
2772   // C99 6.7.8p6:
2773   //
2774   //   If a designator has the form
2775   //
2776   //      [ constant-expression ]
2777   //
2778   //   then the current object (defined below) shall have array
2779   //   type and the expression shall be an integer constant
2780   //   expression. If the array is of unknown size, any
2781   //   nonnegative value is valid.
2782   //
2783   // Additionally, cope with the GNU extension that permits
2784   // designators of the form
2785   //
2786   //      [ constant-expression ... constant-expression ]
2787   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2788   if (!AT) {
2789     if (!VerifyOnly)
2790       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2791         << CurrentObjectType;
2792     ++Index;
2793     return true;
2794   }
2795 
2796   Expr *IndexExpr = nullptr;
2797   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2798   if (D->isArrayDesignator()) {
2799     IndexExpr = DIE->getArrayIndex(*D);
2800     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2801     DesignatedEndIndex = DesignatedStartIndex;
2802   } else {
2803     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2804 
2805     DesignatedStartIndex =
2806       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2807     DesignatedEndIndex =
2808       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2809     IndexExpr = DIE->getArrayRangeEnd(*D);
2810 
2811     // Codegen can't handle evaluating array range designators that have side
2812     // effects, because we replicate the AST value for each initialized element.
2813     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2814     // elements with something that has a side effect, so codegen can emit an
2815     // "error unsupported" error instead of miscompiling the app.
2816     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2817         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2818       FullyStructuredList->sawArrayRangeDesignator();
2819   }
2820 
2821   if (isa<ConstantArrayType>(AT)) {
2822     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2823     DesignatedStartIndex
2824       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2825     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2826     DesignatedEndIndex
2827       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2828     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2829     if (DesignatedEndIndex >= MaxElements) {
2830       if (!VerifyOnly)
2831         SemaRef.Diag(IndexExpr->getBeginLoc(),
2832                      diag::err_array_designator_too_large)
2833             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2834             << IndexExpr->getSourceRange();
2835       ++Index;
2836       return true;
2837     }
2838   } else {
2839     unsigned DesignatedIndexBitWidth =
2840       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2841     DesignatedStartIndex =
2842       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2843     DesignatedEndIndex =
2844       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2845     DesignatedStartIndex.setIsUnsigned(true);
2846     DesignatedEndIndex.setIsUnsigned(true);
2847   }
2848 
2849   bool IsStringLiteralInitUpdate =
2850       StructuredList && StructuredList->isStringLiteralInit();
2851   if (IsStringLiteralInitUpdate && VerifyOnly) {
2852     // We're just verifying an update to a string literal init. We don't need
2853     // to split the string up into individual characters to do that.
2854     StructuredList = nullptr;
2855   } else if (IsStringLiteralInitUpdate) {
2856     // We're modifying a string literal init; we have to decompose the string
2857     // so we can modify the individual characters.
2858     ASTContext &Context = SemaRef.Context;
2859     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2860 
2861     // Compute the character type
2862     QualType CharTy = AT->getElementType();
2863 
2864     // Compute the type of the integer literals.
2865     QualType PromotedCharTy = CharTy;
2866     if (CharTy->isPromotableIntegerType())
2867       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2868     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2869 
2870     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2871       // Get the length of the string.
2872       uint64_t StrLen = SL->getLength();
2873       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2874         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2875       StructuredList->resizeInits(Context, StrLen);
2876 
2877       // Build a literal for each character in the string, and put them into
2878       // the init list.
2879       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2880         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2881         Expr *Init = new (Context) IntegerLiteral(
2882             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2883         if (CharTy != PromotedCharTy)
2884           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2885                                           Init, nullptr, VK_RValue);
2886         StructuredList->updateInit(Context, i, Init);
2887       }
2888     } else {
2889       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2890       std::string Str;
2891       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2892 
2893       // Get the length of the string.
2894       uint64_t StrLen = Str.size();
2895       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2896         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2897       StructuredList->resizeInits(Context, StrLen);
2898 
2899       // Build a literal for each character in the string, and put them into
2900       // the init list.
2901       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2902         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2903         Expr *Init = new (Context) IntegerLiteral(
2904             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2905         if (CharTy != PromotedCharTy)
2906           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2907                                           Init, nullptr, VK_RValue);
2908         StructuredList->updateInit(Context, i, Init);
2909       }
2910     }
2911   }
2912 
2913   // Make sure that our non-designated initializer list has space
2914   // for a subobject corresponding to this array element.
2915   if (StructuredList &&
2916       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2917     StructuredList->resizeInits(SemaRef.Context,
2918                                 DesignatedEndIndex.getZExtValue() + 1);
2919 
2920   // Repeatedly perform subobject initializations in the range
2921   // [DesignatedStartIndex, DesignatedEndIndex].
2922 
2923   // Move to the next designator
2924   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2925   unsigned OldIndex = Index;
2926 
2927   InitializedEntity ElementEntity =
2928     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2929 
2930   while (DesignatedStartIndex <= DesignatedEndIndex) {
2931     // Recurse to check later designated subobjects.
2932     QualType ElementType = AT->getElementType();
2933     Index = OldIndex;
2934 
2935     ElementEntity.setElementIndex(ElementIndex);
2936     if (CheckDesignatedInitializer(
2937             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2938             nullptr, Index, StructuredList, ElementIndex,
2939             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2940             false))
2941       return true;
2942 
2943     // Move to the next index in the array that we'll be initializing.
2944     ++DesignatedStartIndex;
2945     ElementIndex = DesignatedStartIndex.getZExtValue();
2946   }
2947 
2948   // If this the first designator, our caller will continue checking
2949   // the rest of this array subobject.
2950   if (IsFirstDesignator) {
2951     if (NextElementIndex)
2952       *NextElementIndex = DesignatedStartIndex;
2953     StructuredIndex = ElementIndex;
2954     return false;
2955   }
2956 
2957   if (!FinishSubobjectInit)
2958     return false;
2959 
2960   // Check the remaining elements within this array subobject.
2961   bool prevHadError = hadError;
2962   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2963                  /*SubobjectIsDesignatorContext=*/false, Index,
2964                  StructuredList, ElementIndex);
2965   return hadError && !prevHadError;
2966 }
2967 
2968 // Get the structured initializer list for a subobject of type
2969 // @p CurrentObjectType.
2970 InitListExpr *
2971 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2972                                             QualType CurrentObjectType,
2973                                             InitListExpr *StructuredList,
2974                                             unsigned StructuredIndex,
2975                                             SourceRange InitRange,
2976                                             bool IsFullyOverwritten) {
2977   if (!StructuredList)
2978     return nullptr;
2979 
2980   Expr *ExistingInit = nullptr;
2981   if (StructuredIndex < StructuredList->getNumInits())
2982     ExistingInit = StructuredList->getInit(StructuredIndex);
2983 
2984   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2985     // There might have already been initializers for subobjects of the current
2986     // object, but a subsequent initializer list will overwrite the entirety
2987     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2988     //
2989     // struct P { char x[6]; };
2990     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2991     //
2992     // The first designated initializer is ignored, and l.x is just "f".
2993     if (!IsFullyOverwritten)
2994       return Result;
2995 
2996   if (ExistingInit) {
2997     // We are creating an initializer list that initializes the
2998     // subobjects of the current object, but there was already an
2999     // initialization that completely initialized the current
3000     // subobject:
3001     //
3002     // struct X { int a, b; };
3003     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3004     //
3005     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3006     // designated initializer overwrites the [0].b initializer
3007     // from the prior initialization.
3008     //
3009     // When the existing initializer is an expression rather than an
3010     // initializer list, we cannot decompose and update it in this way.
3011     // For example:
3012     //
3013     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3014     //
3015     // This case is handled by CheckDesignatedInitializer.
3016     diagnoseInitOverride(ExistingInit, InitRange);
3017   }
3018 
3019   unsigned ExpectedNumInits = 0;
3020   if (Index < IList->getNumInits()) {
3021     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3022       ExpectedNumInits = Init->getNumInits();
3023     else
3024       ExpectedNumInits = IList->getNumInits() - Index;
3025   }
3026 
3027   InitListExpr *Result =
3028       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3029 
3030   // Link this new initializer list into the structured initializer
3031   // lists.
3032   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3033   return Result;
3034 }
3035 
3036 InitListExpr *
3037 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3038                                     SourceRange InitRange,
3039                                     unsigned ExpectedNumInits) {
3040   InitListExpr *Result
3041     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3042                                          InitRange.getBegin(), None,
3043                                          InitRange.getEnd());
3044 
3045   QualType ResultType = CurrentObjectType;
3046   if (!ResultType->isArrayType())
3047     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3048   Result->setType(ResultType);
3049 
3050   // Pre-allocate storage for the structured initializer list.
3051   unsigned NumElements = 0;
3052 
3053   if (const ArrayType *AType
3054       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3055     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3056       NumElements = CAType->getSize().getZExtValue();
3057       // Simple heuristic so that we don't allocate a very large
3058       // initializer with many empty entries at the end.
3059       if (NumElements > ExpectedNumInits)
3060         NumElements = 0;
3061     }
3062   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3063     NumElements = VType->getNumElements();
3064   } else if (CurrentObjectType->isRecordType()) {
3065     NumElements = numStructUnionElements(CurrentObjectType);
3066   }
3067 
3068   Result->reserveInits(SemaRef.Context, NumElements);
3069 
3070   return Result;
3071 }
3072 
3073 /// Update the initializer at index @p StructuredIndex within the
3074 /// structured initializer list to the value @p expr.
3075 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3076                                                   unsigned &StructuredIndex,
3077                                                   Expr *expr) {
3078   // No structured initializer list to update
3079   if (!StructuredList)
3080     return;
3081 
3082   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3083                                                   StructuredIndex, expr)) {
3084     // This initializer overwrites a previous initializer. Warn.
3085     diagnoseInitOverride(PrevInit, expr->getSourceRange());
3086   }
3087 
3088   ++StructuredIndex;
3089 }
3090 
3091 /// Determine whether we can perform aggregate initialization for the purposes
3092 /// of overload resolution.
3093 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3094     const InitializedEntity &Entity, InitListExpr *From) {
3095   QualType Type = Entity.getType();
3096   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3097                         /*TreatUnavailableAsInvalid=*/false,
3098                         /*InOverloadResolution=*/true);
3099   return !Check.HadError();
3100 }
3101 
3102 /// Check that the given Index expression is a valid array designator
3103 /// value. This is essentially just a wrapper around
3104 /// VerifyIntegerConstantExpression that also checks for negative values
3105 /// and produces a reasonable diagnostic if there is a
3106 /// failure. Returns the index expression, possibly with an implicit cast
3107 /// added, on success.  If everything went okay, Value will receive the
3108 /// value of the constant expression.
3109 static ExprResult
3110 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3111   SourceLocation Loc = Index->getBeginLoc();
3112 
3113   // Make sure this is an integer constant expression.
3114   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
3115   if (Result.isInvalid())
3116     return Result;
3117 
3118   if (Value.isSigned() && Value.isNegative())
3119     return S.Diag(Loc, diag::err_array_designator_negative)
3120       << Value.toString(10) << Index->getSourceRange();
3121 
3122   Value.setIsUnsigned(true);
3123   return Result;
3124 }
3125 
3126 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3127                                             SourceLocation EqualOrColonLoc,
3128                                             bool GNUSyntax,
3129                                             ExprResult Init) {
3130   typedef DesignatedInitExpr::Designator ASTDesignator;
3131 
3132   bool Invalid = false;
3133   SmallVector<ASTDesignator, 32> Designators;
3134   SmallVector<Expr *, 32> InitExpressions;
3135 
3136   // Build designators and check array designator expressions.
3137   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3138     const Designator &D = Desig.getDesignator(Idx);
3139     switch (D.getKind()) {
3140     case Designator::FieldDesignator:
3141       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3142                                           D.getFieldLoc()));
3143       break;
3144 
3145     case Designator::ArrayDesignator: {
3146       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3147       llvm::APSInt IndexValue;
3148       if (!Index->isTypeDependent() && !Index->isValueDependent())
3149         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3150       if (!Index)
3151         Invalid = true;
3152       else {
3153         Designators.push_back(ASTDesignator(InitExpressions.size(),
3154                                             D.getLBracketLoc(),
3155                                             D.getRBracketLoc()));
3156         InitExpressions.push_back(Index);
3157       }
3158       break;
3159     }
3160 
3161     case Designator::ArrayRangeDesignator: {
3162       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3163       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3164       llvm::APSInt StartValue;
3165       llvm::APSInt EndValue;
3166       bool StartDependent = StartIndex->isTypeDependent() ||
3167                             StartIndex->isValueDependent();
3168       bool EndDependent = EndIndex->isTypeDependent() ||
3169                           EndIndex->isValueDependent();
3170       if (!StartDependent)
3171         StartIndex =
3172             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3173       if (!EndDependent)
3174         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3175 
3176       if (!StartIndex || !EndIndex)
3177         Invalid = true;
3178       else {
3179         // Make sure we're comparing values with the same bit width.
3180         if (StartDependent || EndDependent) {
3181           // Nothing to compute.
3182         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3183           EndValue = EndValue.extend(StartValue.getBitWidth());
3184         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3185           StartValue = StartValue.extend(EndValue.getBitWidth());
3186 
3187         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3188           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3189             << StartValue.toString(10) << EndValue.toString(10)
3190             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3191           Invalid = true;
3192         } else {
3193           Designators.push_back(ASTDesignator(InitExpressions.size(),
3194                                               D.getLBracketLoc(),
3195                                               D.getEllipsisLoc(),
3196                                               D.getRBracketLoc()));
3197           InitExpressions.push_back(StartIndex);
3198           InitExpressions.push_back(EndIndex);
3199         }
3200       }
3201       break;
3202     }
3203     }
3204   }
3205 
3206   if (Invalid || Init.isInvalid())
3207     return ExprError();
3208 
3209   // Clear out the expressions within the designation.
3210   Desig.ClearExprs(*this);
3211 
3212   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3213                                     EqualOrColonLoc, GNUSyntax,
3214                                     Init.getAs<Expr>());
3215 }
3216 
3217 //===----------------------------------------------------------------------===//
3218 // Initialization entity
3219 //===----------------------------------------------------------------------===//
3220 
3221 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3222                                      const InitializedEntity &Parent)
3223   : Parent(&Parent), Index(Index)
3224 {
3225   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3226     Kind = EK_ArrayElement;
3227     Type = AT->getElementType();
3228   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3229     Kind = EK_VectorElement;
3230     Type = VT->getElementType();
3231   } else {
3232     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3233     assert(CT && "Unexpected type");
3234     Kind = EK_ComplexElement;
3235     Type = CT->getElementType();
3236   }
3237 }
3238 
3239 InitializedEntity
3240 InitializedEntity::InitializeBase(ASTContext &Context,
3241                                   const CXXBaseSpecifier *Base,
3242                                   bool IsInheritedVirtualBase,
3243                                   const InitializedEntity *Parent) {
3244   InitializedEntity Result;
3245   Result.Kind = EK_Base;
3246   Result.Parent = Parent;
3247   Result.Base = reinterpret_cast<uintptr_t>(Base);
3248   if (IsInheritedVirtualBase)
3249     Result.Base |= 0x01;
3250 
3251   Result.Type = Base->getType();
3252   return Result;
3253 }
3254 
3255 DeclarationName InitializedEntity::getName() const {
3256   switch (getKind()) {
3257   case EK_Parameter:
3258   case EK_Parameter_CF_Audited: {
3259     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3260     return (D ? D->getDeclName() : DeclarationName());
3261   }
3262 
3263   case EK_Variable:
3264   case EK_Member:
3265   case EK_Binding:
3266     return Variable.VariableOrMember->getDeclName();
3267 
3268   case EK_LambdaCapture:
3269     return DeclarationName(Capture.VarID);
3270 
3271   case EK_Result:
3272   case EK_StmtExprResult:
3273   case EK_Exception:
3274   case EK_New:
3275   case EK_Temporary:
3276   case EK_Base:
3277   case EK_Delegating:
3278   case EK_ArrayElement:
3279   case EK_VectorElement:
3280   case EK_ComplexElement:
3281   case EK_BlockElement:
3282   case EK_LambdaToBlockConversionBlockElement:
3283   case EK_CompoundLiteralInit:
3284   case EK_RelatedResult:
3285     return DeclarationName();
3286   }
3287 
3288   llvm_unreachable("Invalid EntityKind!");
3289 }
3290 
3291 ValueDecl *InitializedEntity::getDecl() const {
3292   switch (getKind()) {
3293   case EK_Variable:
3294   case EK_Member:
3295   case EK_Binding:
3296     return Variable.VariableOrMember;
3297 
3298   case EK_Parameter:
3299   case EK_Parameter_CF_Audited:
3300     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3301 
3302   case EK_Result:
3303   case EK_StmtExprResult:
3304   case EK_Exception:
3305   case EK_New:
3306   case EK_Temporary:
3307   case EK_Base:
3308   case EK_Delegating:
3309   case EK_ArrayElement:
3310   case EK_VectorElement:
3311   case EK_ComplexElement:
3312   case EK_BlockElement:
3313   case EK_LambdaToBlockConversionBlockElement:
3314   case EK_LambdaCapture:
3315   case EK_CompoundLiteralInit:
3316   case EK_RelatedResult:
3317     return nullptr;
3318   }
3319 
3320   llvm_unreachable("Invalid EntityKind!");
3321 }
3322 
3323 bool InitializedEntity::allowsNRVO() const {
3324   switch (getKind()) {
3325   case EK_Result:
3326   case EK_Exception:
3327     return LocAndNRVO.NRVO;
3328 
3329   case EK_StmtExprResult:
3330   case EK_Variable:
3331   case EK_Parameter:
3332   case EK_Parameter_CF_Audited:
3333   case EK_Member:
3334   case EK_Binding:
3335   case EK_New:
3336   case EK_Temporary:
3337   case EK_CompoundLiteralInit:
3338   case EK_Base:
3339   case EK_Delegating:
3340   case EK_ArrayElement:
3341   case EK_VectorElement:
3342   case EK_ComplexElement:
3343   case EK_BlockElement:
3344   case EK_LambdaToBlockConversionBlockElement:
3345   case EK_LambdaCapture:
3346   case EK_RelatedResult:
3347     break;
3348   }
3349 
3350   return false;
3351 }
3352 
3353 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3354   assert(getParent() != this);
3355   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3356   for (unsigned I = 0; I != Depth; ++I)
3357     OS << "`-";
3358 
3359   switch (getKind()) {
3360   case EK_Variable: OS << "Variable"; break;
3361   case EK_Parameter: OS << "Parameter"; break;
3362   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3363     break;
3364   case EK_Result: OS << "Result"; break;
3365   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3366   case EK_Exception: OS << "Exception"; break;
3367   case EK_Member: OS << "Member"; break;
3368   case EK_Binding: OS << "Binding"; break;
3369   case EK_New: OS << "New"; break;
3370   case EK_Temporary: OS << "Temporary"; break;
3371   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3372   case EK_RelatedResult: OS << "RelatedResult"; break;
3373   case EK_Base: OS << "Base"; break;
3374   case EK_Delegating: OS << "Delegating"; break;
3375   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3376   case EK_VectorElement: OS << "VectorElement " << Index; break;
3377   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3378   case EK_BlockElement: OS << "Block"; break;
3379   case EK_LambdaToBlockConversionBlockElement:
3380     OS << "Block (lambda)";
3381     break;
3382   case EK_LambdaCapture:
3383     OS << "LambdaCapture ";
3384     OS << DeclarationName(Capture.VarID);
3385     break;
3386   }
3387 
3388   if (auto *D = getDecl()) {
3389     OS << " ";
3390     D->printQualifiedName(OS);
3391   }
3392 
3393   OS << " '" << getType().getAsString() << "'\n";
3394 
3395   return Depth + 1;
3396 }
3397 
3398 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3399   dumpImpl(llvm::errs());
3400 }
3401 
3402 //===----------------------------------------------------------------------===//
3403 // Initialization sequence
3404 //===----------------------------------------------------------------------===//
3405 
3406 void InitializationSequence::Step::Destroy() {
3407   switch (Kind) {
3408   case SK_ResolveAddressOfOverloadedFunction:
3409   case SK_CastDerivedToBaseRValue:
3410   case SK_CastDerivedToBaseXValue:
3411   case SK_CastDerivedToBaseLValue:
3412   case SK_BindReference:
3413   case SK_BindReferenceToTemporary:
3414   case SK_FinalCopy:
3415   case SK_ExtraneousCopyToTemporary:
3416   case SK_UserConversion:
3417   case SK_QualificationConversionRValue:
3418   case SK_QualificationConversionXValue:
3419   case SK_QualificationConversionLValue:
3420   case SK_AtomicConversion:
3421   case SK_ListInitialization:
3422   case SK_UnwrapInitList:
3423   case SK_RewrapInitList:
3424   case SK_ConstructorInitialization:
3425   case SK_ConstructorInitializationFromList:
3426   case SK_ZeroInitialization:
3427   case SK_CAssignment:
3428   case SK_StringInit:
3429   case SK_ObjCObjectConversion:
3430   case SK_ArrayLoopIndex:
3431   case SK_ArrayLoopInit:
3432   case SK_ArrayInit:
3433   case SK_GNUArrayInit:
3434   case SK_ParenthesizedArrayInit:
3435   case SK_PassByIndirectCopyRestore:
3436   case SK_PassByIndirectRestore:
3437   case SK_ProduceObjCObject:
3438   case SK_StdInitializerList:
3439   case SK_StdInitializerListConstructorCall:
3440   case SK_OCLSamplerInit:
3441   case SK_OCLZeroOpaqueType:
3442     break;
3443 
3444   case SK_ConversionSequence:
3445   case SK_ConversionSequenceNoNarrowing:
3446     delete ICS;
3447   }
3448 }
3449 
3450 bool InitializationSequence::isDirectReferenceBinding() const {
3451   // There can be some lvalue adjustments after the SK_BindReference step.
3452   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3453     if (I->Kind == SK_BindReference)
3454       return true;
3455     if (I->Kind == SK_BindReferenceToTemporary)
3456       return false;
3457   }
3458   return false;
3459 }
3460 
3461 bool InitializationSequence::isAmbiguous() const {
3462   if (!Failed())
3463     return false;
3464 
3465   switch (getFailureKind()) {
3466   case FK_TooManyInitsForReference:
3467   case FK_ParenthesizedListInitForReference:
3468   case FK_ArrayNeedsInitList:
3469   case FK_ArrayNeedsInitListOrStringLiteral:
3470   case FK_ArrayNeedsInitListOrWideStringLiteral:
3471   case FK_NarrowStringIntoWideCharArray:
3472   case FK_WideStringIntoCharArray:
3473   case FK_IncompatWideStringIntoWideChar:
3474   case FK_PlainStringIntoUTF8Char:
3475   case FK_UTF8StringIntoPlainChar:
3476   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3477   case FK_NonConstLValueReferenceBindingToTemporary:
3478   case FK_NonConstLValueReferenceBindingToBitfield:
3479   case FK_NonConstLValueReferenceBindingToVectorElement:
3480   case FK_NonConstLValueReferenceBindingToUnrelated:
3481   case FK_RValueReferenceBindingToLValue:
3482   case FK_ReferenceAddrspaceMismatchTemporary:
3483   case FK_ReferenceInitDropsQualifiers:
3484   case FK_ReferenceInitFailed:
3485   case FK_ConversionFailed:
3486   case FK_ConversionFromPropertyFailed:
3487   case FK_TooManyInitsForScalar:
3488   case FK_ParenthesizedListInitForScalar:
3489   case FK_ReferenceBindingToInitList:
3490   case FK_InitListBadDestinationType:
3491   case FK_DefaultInitOfConst:
3492   case FK_Incomplete:
3493   case FK_ArrayTypeMismatch:
3494   case FK_NonConstantArrayInit:
3495   case FK_ListInitializationFailed:
3496   case FK_VariableLengthArrayHasInitializer:
3497   case FK_PlaceholderType:
3498   case FK_ExplicitConstructor:
3499   case FK_AddressOfUnaddressableFunction:
3500     return false;
3501 
3502   case FK_ReferenceInitOverloadFailed:
3503   case FK_UserConversionOverloadFailed:
3504   case FK_ConstructorOverloadFailed:
3505   case FK_ListConstructorOverloadFailed:
3506     return FailedOverloadResult == OR_Ambiguous;
3507   }
3508 
3509   llvm_unreachable("Invalid EntityKind!");
3510 }
3511 
3512 bool InitializationSequence::isConstructorInitialization() const {
3513   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3514 }
3515 
3516 void
3517 InitializationSequence
3518 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3519                                    DeclAccessPair Found,
3520                                    bool HadMultipleCandidates) {
3521   Step S;
3522   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3523   S.Type = Function->getType();
3524   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3525   S.Function.Function = Function;
3526   S.Function.FoundDecl = Found;
3527   Steps.push_back(S);
3528 }
3529 
3530 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3531                                                       ExprValueKind VK) {
3532   Step S;
3533   switch (VK) {
3534   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3535   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3536   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3537   }
3538   S.Type = BaseType;
3539   Steps.push_back(S);
3540 }
3541 
3542 void InitializationSequence::AddReferenceBindingStep(QualType T,
3543                                                      bool BindingTemporary) {
3544   Step S;
3545   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3546   S.Type = T;
3547   Steps.push_back(S);
3548 }
3549 
3550 void InitializationSequence::AddFinalCopy(QualType T) {
3551   Step S;
3552   S.Kind = SK_FinalCopy;
3553   S.Type = T;
3554   Steps.push_back(S);
3555 }
3556 
3557 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3558   Step S;
3559   S.Kind = SK_ExtraneousCopyToTemporary;
3560   S.Type = T;
3561   Steps.push_back(S);
3562 }
3563 
3564 void
3565 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3566                                               DeclAccessPair FoundDecl,
3567                                               QualType T,
3568                                               bool HadMultipleCandidates) {
3569   Step S;
3570   S.Kind = SK_UserConversion;
3571   S.Type = T;
3572   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3573   S.Function.Function = Function;
3574   S.Function.FoundDecl = FoundDecl;
3575   Steps.push_back(S);
3576 }
3577 
3578 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3579                                                             ExprValueKind VK) {
3580   Step S;
3581   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3582   switch (VK) {
3583   case VK_RValue:
3584     S.Kind = SK_QualificationConversionRValue;
3585     break;
3586   case VK_XValue:
3587     S.Kind = SK_QualificationConversionXValue;
3588     break;
3589   case VK_LValue:
3590     S.Kind = SK_QualificationConversionLValue;
3591     break;
3592   }
3593   S.Type = Ty;
3594   Steps.push_back(S);
3595 }
3596 
3597 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3598   Step S;
3599   S.Kind = SK_AtomicConversion;
3600   S.Type = Ty;
3601   Steps.push_back(S);
3602 }
3603 
3604 void InitializationSequence::AddConversionSequenceStep(
3605     const ImplicitConversionSequence &ICS, QualType T,
3606     bool TopLevelOfInitList) {
3607   Step S;
3608   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3609                               : SK_ConversionSequence;
3610   S.Type = T;
3611   S.ICS = new ImplicitConversionSequence(ICS);
3612   Steps.push_back(S);
3613 }
3614 
3615 void InitializationSequence::AddListInitializationStep(QualType T) {
3616   Step S;
3617   S.Kind = SK_ListInitialization;
3618   S.Type = T;
3619   Steps.push_back(S);
3620 }
3621 
3622 void InitializationSequence::AddConstructorInitializationStep(
3623     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3624     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3625   Step S;
3626   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3627                                      : SK_ConstructorInitializationFromList
3628                         : SK_ConstructorInitialization;
3629   S.Type = T;
3630   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3631   S.Function.Function = Constructor;
3632   S.Function.FoundDecl = FoundDecl;
3633   Steps.push_back(S);
3634 }
3635 
3636 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3637   Step S;
3638   S.Kind = SK_ZeroInitialization;
3639   S.Type = T;
3640   Steps.push_back(S);
3641 }
3642 
3643 void InitializationSequence::AddCAssignmentStep(QualType T) {
3644   Step S;
3645   S.Kind = SK_CAssignment;
3646   S.Type = T;
3647   Steps.push_back(S);
3648 }
3649 
3650 void InitializationSequence::AddStringInitStep(QualType T) {
3651   Step S;
3652   S.Kind = SK_StringInit;
3653   S.Type = T;
3654   Steps.push_back(S);
3655 }
3656 
3657 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3658   Step S;
3659   S.Kind = SK_ObjCObjectConversion;
3660   S.Type = T;
3661   Steps.push_back(S);
3662 }
3663 
3664 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3665   Step S;
3666   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3667   S.Type = T;
3668   Steps.push_back(S);
3669 }
3670 
3671 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3672   Step S;
3673   S.Kind = SK_ArrayLoopIndex;
3674   S.Type = EltT;
3675   Steps.insert(Steps.begin(), S);
3676 
3677   S.Kind = SK_ArrayLoopInit;
3678   S.Type = T;
3679   Steps.push_back(S);
3680 }
3681 
3682 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3683   Step S;
3684   S.Kind = SK_ParenthesizedArrayInit;
3685   S.Type = T;
3686   Steps.push_back(S);
3687 }
3688 
3689 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3690                                                               bool shouldCopy) {
3691   Step s;
3692   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3693                        : SK_PassByIndirectRestore);
3694   s.Type = type;
3695   Steps.push_back(s);
3696 }
3697 
3698 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3699   Step S;
3700   S.Kind = SK_ProduceObjCObject;
3701   S.Type = T;
3702   Steps.push_back(S);
3703 }
3704 
3705 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3706   Step S;
3707   S.Kind = SK_StdInitializerList;
3708   S.Type = T;
3709   Steps.push_back(S);
3710 }
3711 
3712 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3713   Step S;
3714   S.Kind = SK_OCLSamplerInit;
3715   S.Type = T;
3716   Steps.push_back(S);
3717 }
3718 
3719 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3720   Step S;
3721   S.Kind = SK_OCLZeroOpaqueType;
3722   S.Type = T;
3723   Steps.push_back(S);
3724 }
3725 
3726 void InitializationSequence::RewrapReferenceInitList(QualType T,
3727                                                      InitListExpr *Syntactic) {
3728   assert(Syntactic->getNumInits() == 1 &&
3729          "Can only rewrap trivial init lists.");
3730   Step S;
3731   S.Kind = SK_UnwrapInitList;
3732   S.Type = Syntactic->getInit(0)->getType();
3733   Steps.insert(Steps.begin(), S);
3734 
3735   S.Kind = SK_RewrapInitList;
3736   S.Type = T;
3737   S.WrappingSyntacticList = Syntactic;
3738   Steps.push_back(S);
3739 }
3740 
3741 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3742                                                 OverloadingResult Result) {
3743   setSequenceKind(FailedSequence);
3744   this->Failure = Failure;
3745   this->FailedOverloadResult = Result;
3746 }
3747 
3748 //===----------------------------------------------------------------------===//
3749 // Attempt initialization
3750 //===----------------------------------------------------------------------===//
3751 
3752 /// Tries to add a zero initializer. Returns true if that worked.
3753 static bool
3754 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3755                                    const InitializedEntity &Entity) {
3756   if (Entity.getKind() != InitializedEntity::EK_Variable)
3757     return false;
3758 
3759   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3760   if (VD->getInit() || VD->getEndLoc().isMacroID())
3761     return false;
3762 
3763   QualType VariableTy = VD->getType().getCanonicalType();
3764   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3765   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3766   if (!Init.empty()) {
3767     Sequence.AddZeroInitializationStep(Entity.getType());
3768     Sequence.SetZeroInitializationFixit(Init, Loc);
3769     return true;
3770   }
3771   return false;
3772 }
3773 
3774 static void MaybeProduceObjCObject(Sema &S,
3775                                    InitializationSequence &Sequence,
3776                                    const InitializedEntity &Entity) {
3777   if (!S.getLangOpts().ObjCAutoRefCount) return;
3778 
3779   /// When initializing a parameter, produce the value if it's marked
3780   /// __attribute__((ns_consumed)).
3781   if (Entity.isParameterKind()) {
3782     if (!Entity.isParameterConsumed())
3783       return;
3784 
3785     assert(Entity.getType()->isObjCRetainableType() &&
3786            "consuming an object of unretainable type?");
3787     Sequence.AddProduceObjCObjectStep(Entity.getType());
3788 
3789   /// When initializing a return value, if the return type is a
3790   /// retainable type, then returns need to immediately retain the
3791   /// object.  If an autorelease is required, it will be done at the
3792   /// last instant.
3793   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3794              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3795     if (!Entity.getType()->isObjCRetainableType())
3796       return;
3797 
3798     Sequence.AddProduceObjCObjectStep(Entity.getType());
3799   }
3800 }
3801 
3802 static void TryListInitialization(Sema &S,
3803                                   const InitializedEntity &Entity,
3804                                   const InitializationKind &Kind,
3805                                   InitListExpr *InitList,
3806                                   InitializationSequence &Sequence,
3807                                   bool TreatUnavailableAsInvalid);
3808 
3809 /// When initializing from init list via constructor, handle
3810 /// initialization of an object of type std::initializer_list<T>.
3811 ///
3812 /// \return true if we have handled initialization of an object of type
3813 /// std::initializer_list<T>, false otherwise.
3814 static bool TryInitializerListConstruction(Sema &S,
3815                                            InitListExpr *List,
3816                                            QualType DestType,
3817                                            InitializationSequence &Sequence,
3818                                            bool TreatUnavailableAsInvalid) {
3819   QualType E;
3820   if (!S.isStdInitializerList(DestType, &E))
3821     return false;
3822 
3823   if (!S.isCompleteType(List->getExprLoc(), E)) {
3824     Sequence.setIncompleteTypeFailure(E);
3825     return true;
3826   }
3827 
3828   // Try initializing a temporary array from the init list.
3829   QualType ArrayType = S.Context.getConstantArrayType(
3830       E.withConst(),
3831       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3832                   List->getNumInits()),
3833       nullptr, clang::ArrayType::Normal, 0);
3834   InitializedEntity HiddenArray =
3835       InitializedEntity::InitializeTemporary(ArrayType);
3836   InitializationKind Kind = InitializationKind::CreateDirectList(
3837       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3838   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3839                         TreatUnavailableAsInvalid);
3840   if (Sequence)
3841     Sequence.AddStdInitializerListConstructionStep(DestType);
3842   return true;
3843 }
3844 
3845 /// Determine if the constructor has the signature of a copy or move
3846 /// constructor for the type T of the class in which it was found. That is,
3847 /// determine if its first parameter is of type T or reference to (possibly
3848 /// cv-qualified) T.
3849 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3850                                    const ConstructorInfo &Info) {
3851   if (Info.Constructor->getNumParams() == 0)
3852     return false;
3853 
3854   QualType ParmT =
3855       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3856   QualType ClassT =
3857       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3858 
3859   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3860 }
3861 
3862 static OverloadingResult
3863 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3864                            MultiExprArg Args,
3865                            OverloadCandidateSet &CandidateSet,
3866                            QualType DestType,
3867                            DeclContext::lookup_result Ctors,
3868                            OverloadCandidateSet::iterator &Best,
3869                            bool CopyInitializing, bool AllowExplicit,
3870                            bool OnlyListConstructors, bool IsListInit,
3871                            bool SecondStepOfCopyInit = false) {
3872   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3873   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3874 
3875   for (NamedDecl *D : Ctors) {
3876     auto Info = getConstructorInfo(D);
3877     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3878       continue;
3879 
3880     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3881       continue;
3882 
3883     // C++11 [over.best.ics]p4:
3884     //   ... and the constructor or user-defined conversion function is a
3885     //   candidate by
3886     //   - 13.3.1.3, when the argument is the temporary in the second step
3887     //     of a class copy-initialization, or
3888     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3889     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3890     //     one element that is itself an initializer list, and the target is
3891     //     the first parameter of a constructor of class X, and the conversion
3892     //     is to X or reference to (possibly cv-qualified X),
3893     //   user-defined conversion sequences are not considered.
3894     bool SuppressUserConversions =
3895         SecondStepOfCopyInit ||
3896         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3897          hasCopyOrMoveCtorParam(S.Context, Info));
3898 
3899     if (Info.ConstructorTmpl)
3900       S.AddTemplateOverloadCandidate(
3901           Info.ConstructorTmpl, Info.FoundDecl,
3902           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3903           /*PartialOverloading=*/false, AllowExplicit);
3904     else {
3905       // C++ [over.match.copy]p1:
3906       //   - When initializing a temporary to be bound to the first parameter
3907       //     of a constructor [for type T] that takes a reference to possibly
3908       //     cv-qualified T as its first argument, called with a single
3909       //     argument in the context of direct-initialization, explicit
3910       //     conversion functions are also considered.
3911       // FIXME: What if a constructor template instantiates to such a signature?
3912       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3913                                Args.size() == 1 &&
3914                                hasCopyOrMoveCtorParam(S.Context, Info);
3915       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3916                              CandidateSet, SuppressUserConversions,
3917                              /*PartialOverloading=*/false, AllowExplicit,
3918                              AllowExplicitConv);
3919     }
3920   }
3921 
3922   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3923   //
3924   // When initializing an object of class type T by constructor
3925   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3926   // from a single expression of class type U, conversion functions of
3927   // U that convert to the non-reference type cv T are candidates.
3928   // Explicit conversion functions are only candidates during
3929   // direct-initialization.
3930   //
3931   // Note: SecondStepOfCopyInit is only ever true in this case when
3932   // evaluating whether to produce a C++98 compatibility warning.
3933   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3934       !SecondStepOfCopyInit) {
3935     Expr *Initializer = Args[0];
3936     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3937     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3938       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3939       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3940         NamedDecl *D = *I;
3941         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3942         D = D->getUnderlyingDecl();
3943 
3944         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3945         CXXConversionDecl *Conv;
3946         if (ConvTemplate)
3947           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3948         else
3949           Conv = cast<CXXConversionDecl>(D);
3950 
3951         if (ConvTemplate)
3952           S.AddTemplateConversionCandidate(
3953               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3954               CandidateSet, AllowExplicit, AllowExplicit,
3955               /*AllowResultConversion*/ false);
3956         else
3957           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3958                                    DestType, CandidateSet, AllowExplicit,
3959                                    AllowExplicit,
3960                                    /*AllowResultConversion*/ false);
3961       }
3962     }
3963   }
3964 
3965   // Perform overload resolution and return the result.
3966   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3967 }
3968 
3969 /// Attempt initialization by constructor (C++ [dcl.init]), which
3970 /// enumerates the constructors of the initialized entity and performs overload
3971 /// resolution to select the best.
3972 /// \param DestType       The destination class type.
3973 /// \param DestArrayType  The destination type, which is either DestType or
3974 ///                       a (possibly multidimensional) array of DestType.
3975 /// \param IsListInit     Is this list-initialization?
3976 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3977 ///                       list-initialization from {x} where x is the same
3978 ///                       type as the entity?
3979 static void TryConstructorInitialization(Sema &S,
3980                                          const InitializedEntity &Entity,
3981                                          const InitializationKind &Kind,
3982                                          MultiExprArg Args, QualType DestType,
3983                                          QualType DestArrayType,
3984                                          InitializationSequence &Sequence,
3985                                          bool IsListInit = false,
3986                                          bool IsInitListCopy = false) {
3987   assert(((!IsListInit && !IsInitListCopy) ||
3988           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3989          "IsListInit/IsInitListCopy must come with a single initializer list "
3990          "argument.");
3991   InitListExpr *ILE =
3992       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3993   MultiExprArg UnwrappedArgs =
3994       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3995 
3996   // The type we're constructing needs to be complete.
3997   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3998     Sequence.setIncompleteTypeFailure(DestType);
3999     return;
4000   }
4001 
4002   // C++17 [dcl.init]p17:
4003   //     - If the initializer expression is a prvalue and the cv-unqualified
4004   //       version of the source type is the same class as the class of the
4005   //       destination, the initializer expression is used to initialize the
4006   //       destination object.
4007   // Per DR (no number yet), this does not apply when initializing a base
4008   // class or delegating to another constructor from a mem-initializer.
4009   // ObjC++: Lambda captured by the block in the lambda to block conversion
4010   // should avoid copy elision.
4011   if (S.getLangOpts().CPlusPlus17 &&
4012       Entity.getKind() != InitializedEntity::EK_Base &&
4013       Entity.getKind() != InitializedEntity::EK_Delegating &&
4014       Entity.getKind() !=
4015           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4016       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4017       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4018     // Convert qualifications if necessary.
4019     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4020     if (ILE)
4021       Sequence.RewrapReferenceInitList(DestType, ILE);
4022     return;
4023   }
4024 
4025   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4026   assert(DestRecordType && "Constructor initialization requires record type");
4027   CXXRecordDecl *DestRecordDecl
4028     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4029 
4030   // Build the candidate set directly in the initialization sequence
4031   // structure, so that it will persist if we fail.
4032   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4033 
4034   // Determine whether we are allowed to call explicit constructors or
4035   // explicit conversion operators.
4036   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4037   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4038 
4039   //   - Otherwise, if T is a class type, constructors are considered. The
4040   //     applicable constructors are enumerated, and the best one is chosen
4041   //     through overload resolution.
4042   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4043 
4044   OverloadingResult Result = OR_No_Viable_Function;
4045   OverloadCandidateSet::iterator Best;
4046   bool AsInitializerList = false;
4047 
4048   // C++11 [over.match.list]p1, per DR1467:
4049   //   When objects of non-aggregate type T are list-initialized, such that
4050   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4051   //   according to the rules in this section, overload resolution selects
4052   //   the constructor in two phases:
4053   //
4054   //   - Initially, the candidate functions are the initializer-list
4055   //     constructors of the class T and the argument list consists of the
4056   //     initializer list as a single argument.
4057   if (IsListInit) {
4058     AsInitializerList = true;
4059 
4060     // If the initializer list has no elements and T has a default constructor,
4061     // the first phase is omitted.
4062     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4063       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4064                                           CandidateSet, DestType, Ctors, Best,
4065                                           CopyInitialization, AllowExplicit,
4066                                           /*OnlyListConstructors=*/true,
4067                                           IsListInit);
4068   }
4069 
4070   // C++11 [over.match.list]p1:
4071   //   - If no viable initializer-list constructor is found, overload resolution
4072   //     is performed again, where the candidate functions are all the
4073   //     constructors of the class T and the argument list consists of the
4074   //     elements of the initializer list.
4075   if (Result == OR_No_Viable_Function) {
4076     AsInitializerList = false;
4077     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4078                                         CandidateSet, DestType, Ctors, Best,
4079                                         CopyInitialization, AllowExplicit,
4080                                         /*OnlyListConstructors=*/false,
4081                                         IsListInit);
4082   }
4083   if (Result) {
4084     Sequence.SetOverloadFailure(IsListInit ?
4085                       InitializationSequence::FK_ListConstructorOverloadFailed :
4086                       InitializationSequence::FK_ConstructorOverloadFailed,
4087                                 Result);
4088     return;
4089   }
4090 
4091   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4092 
4093   // In C++17, ResolveConstructorOverload can select a conversion function
4094   // instead of a constructor.
4095   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4096     // Add the user-defined conversion step that calls the conversion function.
4097     QualType ConvType = CD->getConversionType();
4098     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4099            "should not have selected this conversion function");
4100     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4101                                    HadMultipleCandidates);
4102     if (!S.Context.hasSameType(ConvType, DestType))
4103       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4104     if (IsListInit)
4105       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4106     return;
4107   }
4108 
4109   // C++11 [dcl.init]p6:
4110   //   If a program calls for the default initialization of an object
4111   //   of a const-qualified type T, T shall be a class type with a
4112   //   user-provided default constructor.
4113   // C++ core issue 253 proposal:
4114   //   If the implicit default constructor initializes all subobjects, no
4115   //   initializer should be required.
4116   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
4117   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4118   if (Kind.getKind() == InitializationKind::IK_Default &&
4119       Entity.getType().isConstQualified()) {
4120     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4121       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4122         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4123       return;
4124     }
4125   }
4126 
4127   // C++11 [over.match.list]p1:
4128   //   In copy-list-initialization, if an explicit constructor is chosen, the
4129   //   initializer is ill-formed.
4130   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4131     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4132     return;
4133   }
4134 
4135   // Add the constructor initialization step. Any cv-qualification conversion is
4136   // subsumed by the initialization.
4137   Sequence.AddConstructorInitializationStep(
4138       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4139       IsListInit | IsInitListCopy, AsInitializerList);
4140 }
4141 
4142 static bool
4143 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4144                                              Expr *Initializer,
4145                                              QualType &SourceType,
4146                                              QualType &UnqualifiedSourceType,
4147                                              QualType UnqualifiedTargetType,
4148                                              InitializationSequence &Sequence) {
4149   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4150         S.Context.OverloadTy) {
4151     DeclAccessPair Found;
4152     bool HadMultipleCandidates = false;
4153     if (FunctionDecl *Fn
4154         = S.ResolveAddressOfOverloadedFunction(Initializer,
4155                                                UnqualifiedTargetType,
4156                                                false, Found,
4157                                                &HadMultipleCandidates)) {
4158       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4159                                                 HadMultipleCandidates);
4160       SourceType = Fn->getType();
4161       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4162     } else if (!UnqualifiedTargetType->isRecordType()) {
4163       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4164       return true;
4165     }
4166   }
4167   return false;
4168 }
4169 
4170 static void TryReferenceInitializationCore(Sema &S,
4171                                            const InitializedEntity &Entity,
4172                                            const InitializationKind &Kind,
4173                                            Expr *Initializer,
4174                                            QualType cv1T1, QualType T1,
4175                                            Qualifiers T1Quals,
4176                                            QualType cv2T2, QualType T2,
4177                                            Qualifiers T2Quals,
4178                                            InitializationSequence &Sequence);
4179 
4180 static void TryValueInitialization(Sema &S,
4181                                    const InitializedEntity &Entity,
4182                                    const InitializationKind &Kind,
4183                                    InitializationSequence &Sequence,
4184                                    InitListExpr *InitList = nullptr);
4185 
4186 /// Attempt list initialization of a reference.
4187 static void TryReferenceListInitialization(Sema &S,
4188                                            const InitializedEntity &Entity,
4189                                            const InitializationKind &Kind,
4190                                            InitListExpr *InitList,
4191                                            InitializationSequence &Sequence,
4192                                            bool TreatUnavailableAsInvalid) {
4193   // First, catch C++03 where this isn't possible.
4194   if (!S.getLangOpts().CPlusPlus11) {
4195     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4196     return;
4197   }
4198   // Can't reference initialize a compound literal.
4199   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4200     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4201     return;
4202   }
4203 
4204   QualType DestType = Entity.getType();
4205   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4206   Qualifiers T1Quals;
4207   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4208 
4209   // Reference initialization via an initializer list works thus:
4210   // If the initializer list consists of a single element that is
4211   // reference-related to the referenced type, bind directly to that element
4212   // (possibly creating temporaries).
4213   // Otherwise, initialize a temporary with the initializer list and
4214   // bind to that.
4215   if (InitList->getNumInits() == 1) {
4216     Expr *Initializer = InitList->getInit(0);
4217     QualType cv2T2 = Initializer->getType();
4218     Qualifiers T2Quals;
4219     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4220 
4221     // If this fails, creating a temporary wouldn't work either.
4222     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4223                                                      T1, Sequence))
4224       return;
4225 
4226     SourceLocation DeclLoc = Initializer->getBeginLoc();
4227     Sema::ReferenceCompareResult RefRelationship
4228       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4229     if (RefRelationship >= Sema::Ref_Related) {
4230       // Try to bind the reference here.
4231       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4232                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4233       if (Sequence)
4234         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4235       return;
4236     }
4237 
4238     // Update the initializer if we've resolved an overloaded function.
4239     if (Sequence.step_begin() != Sequence.step_end())
4240       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4241   }
4242 
4243   // Not reference-related. Create a temporary and bind to that.
4244   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4245 
4246   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4247                         TreatUnavailableAsInvalid);
4248   if (Sequence) {
4249     if (DestType->isRValueReferenceType() ||
4250         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4251       Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
4252     else
4253       Sequence.SetFailed(
4254           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4255   }
4256 }
4257 
4258 /// Attempt list initialization (C++0x [dcl.init.list])
4259 static void TryListInitialization(Sema &S,
4260                                   const InitializedEntity &Entity,
4261                                   const InitializationKind &Kind,
4262                                   InitListExpr *InitList,
4263                                   InitializationSequence &Sequence,
4264                                   bool TreatUnavailableAsInvalid) {
4265   QualType DestType = Entity.getType();
4266 
4267   // C++ doesn't allow scalar initialization with more than one argument.
4268   // But C99 complex numbers are scalars and it makes sense there.
4269   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4270       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4271     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4272     return;
4273   }
4274   if (DestType->isReferenceType()) {
4275     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4276                                    TreatUnavailableAsInvalid);
4277     return;
4278   }
4279 
4280   if (DestType->isRecordType() &&
4281       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4282     Sequence.setIncompleteTypeFailure(DestType);
4283     return;
4284   }
4285 
4286   // C++11 [dcl.init.list]p3, per DR1467:
4287   // - If T is a class type and the initializer list has a single element of
4288   //   type cv U, where U is T or a class derived from T, the object is
4289   //   initialized from that element (by copy-initialization for
4290   //   copy-list-initialization, or by direct-initialization for
4291   //   direct-list-initialization).
4292   // - Otherwise, if T is a character array and the initializer list has a
4293   //   single element that is an appropriately-typed string literal
4294   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4295   //   in that section.
4296   // - Otherwise, if T is an aggregate, [...] (continue below).
4297   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4298     if (DestType->isRecordType()) {
4299       QualType InitType = InitList->getInit(0)->getType();
4300       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4301           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4302         Expr *InitListAsExpr = InitList;
4303         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4304                                      DestType, Sequence,
4305                                      /*InitListSyntax*/false,
4306                                      /*IsInitListCopy*/true);
4307         return;
4308       }
4309     }
4310     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4311       Expr *SubInit[1] = {InitList->getInit(0)};
4312       if (!isa<VariableArrayType>(DestAT) &&
4313           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4314         InitializationKind SubKind =
4315             Kind.getKind() == InitializationKind::IK_DirectList
4316                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4317                                                    InitList->getLBraceLoc(),
4318                                                    InitList->getRBraceLoc())
4319                 : Kind;
4320         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4321                                 /*TopLevelOfInitList*/ true,
4322                                 TreatUnavailableAsInvalid);
4323 
4324         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4325         // the element is not an appropriately-typed string literal, in which
4326         // case we should proceed as in C++11 (below).
4327         if (Sequence) {
4328           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4329           return;
4330         }
4331       }
4332     }
4333   }
4334 
4335   // C++11 [dcl.init.list]p3:
4336   //   - If T is an aggregate, aggregate initialization is performed.
4337   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4338       (S.getLangOpts().CPlusPlus11 &&
4339        S.isStdInitializerList(DestType, nullptr))) {
4340     if (S.getLangOpts().CPlusPlus11) {
4341       //   - Otherwise, if the initializer list has no elements and T is a
4342       //     class type with a default constructor, the object is
4343       //     value-initialized.
4344       if (InitList->getNumInits() == 0) {
4345         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4346         if (S.LookupDefaultConstructor(RD)) {
4347           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4348           return;
4349         }
4350       }
4351 
4352       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4353       //     an initializer_list object constructed [...]
4354       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4355                                          TreatUnavailableAsInvalid))
4356         return;
4357 
4358       //   - Otherwise, if T is a class type, constructors are considered.
4359       Expr *InitListAsExpr = InitList;
4360       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4361                                    DestType, Sequence, /*InitListSyntax*/true);
4362     } else
4363       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4364     return;
4365   }
4366 
4367   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4368       InitList->getNumInits() == 1) {
4369     Expr *E = InitList->getInit(0);
4370 
4371     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4372     //     the initializer-list has a single element v, and the initialization
4373     //     is direct-list-initialization, the object is initialized with the
4374     //     value T(v); if a narrowing conversion is required to convert v to
4375     //     the underlying type of T, the program is ill-formed.
4376     auto *ET = DestType->getAs<EnumType>();
4377     if (S.getLangOpts().CPlusPlus17 &&
4378         Kind.getKind() == InitializationKind::IK_DirectList &&
4379         ET && ET->getDecl()->isFixed() &&
4380         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4381         (E->getType()->isIntegralOrEnumerationType() ||
4382          E->getType()->isFloatingType())) {
4383       // There are two ways that T(v) can work when T is an enumeration type.
4384       // If there is either an implicit conversion sequence from v to T or
4385       // a conversion function that can convert from v to T, then we use that.
4386       // Otherwise, if v is of integral, enumeration, or floating-point type,
4387       // it is converted to the enumeration type via its underlying type.
4388       // There is no overlap possible between these two cases (except when the
4389       // source value is already of the destination type), and the first
4390       // case is handled by the general case for single-element lists below.
4391       ImplicitConversionSequence ICS;
4392       ICS.setStandard();
4393       ICS.Standard.setAsIdentityConversion();
4394       if (!E->isRValue())
4395         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4396       // If E is of a floating-point type, then the conversion is ill-formed
4397       // due to narrowing, but go through the motions in order to produce the
4398       // right diagnostic.
4399       ICS.Standard.Second = E->getType()->isFloatingType()
4400                                 ? ICK_Floating_Integral
4401                                 : ICK_Integral_Conversion;
4402       ICS.Standard.setFromType(E->getType());
4403       ICS.Standard.setToType(0, E->getType());
4404       ICS.Standard.setToType(1, DestType);
4405       ICS.Standard.setToType(2, DestType);
4406       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4407                                          /*TopLevelOfInitList*/true);
4408       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4409       return;
4410     }
4411 
4412     //   - Otherwise, if the initializer list has a single element of type E
4413     //     [...references are handled above...], the object or reference is
4414     //     initialized from that element (by copy-initialization for
4415     //     copy-list-initialization, or by direct-initialization for
4416     //     direct-list-initialization); if a narrowing conversion is required
4417     //     to convert the element to T, the program is ill-formed.
4418     //
4419     // Per core-24034, this is direct-initialization if we were performing
4420     // direct-list-initialization and copy-initialization otherwise.
4421     // We can't use InitListChecker for this, because it always performs
4422     // copy-initialization. This only matters if we might use an 'explicit'
4423     // conversion operator, or for the special case conversion of nullptr_t to
4424     // bool, so we only need to handle those cases.
4425     //
4426     // FIXME: Why not do this in all cases?
4427     Expr *Init = InitList->getInit(0);
4428     if (Init->getType()->isRecordType() ||
4429         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4430       InitializationKind SubKind =
4431           Kind.getKind() == InitializationKind::IK_DirectList
4432               ? InitializationKind::CreateDirect(Kind.getLocation(),
4433                                                  InitList->getLBraceLoc(),
4434                                                  InitList->getRBraceLoc())
4435               : Kind;
4436       Expr *SubInit[1] = { Init };
4437       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4438                               /*TopLevelOfInitList*/true,
4439                               TreatUnavailableAsInvalid);
4440       if (Sequence)
4441         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4442       return;
4443     }
4444   }
4445 
4446   InitListChecker CheckInitList(S, Entity, InitList,
4447           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4448   if (CheckInitList.HadError()) {
4449     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4450     return;
4451   }
4452 
4453   // Add the list initialization step with the built init list.
4454   Sequence.AddListInitializationStep(DestType);
4455 }
4456 
4457 /// Try a reference initialization that involves calling a conversion
4458 /// function.
4459 static OverloadingResult TryRefInitWithConversionFunction(
4460     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4461     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4462     InitializationSequence &Sequence) {
4463   QualType DestType = Entity.getType();
4464   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4465   QualType T1 = cv1T1.getUnqualifiedType();
4466   QualType cv2T2 = Initializer->getType();
4467   QualType T2 = cv2T2.getUnqualifiedType();
4468 
4469   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4470          "Must have incompatible references when binding via conversion");
4471 
4472   // Build the candidate set directly in the initialization sequence
4473   // structure, so that it will persist if we fail.
4474   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4475   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4476 
4477   // Determine whether we are allowed to call explicit conversion operators.
4478   // Note that none of [over.match.copy], [over.match.conv], nor
4479   // [over.match.ref] permit an explicit constructor to be chosen when
4480   // initializing a reference, not even for direct-initialization.
4481   bool AllowExplicitCtors = false;
4482   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4483 
4484   const RecordType *T1RecordType = nullptr;
4485   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4486       S.isCompleteType(Kind.getLocation(), T1)) {
4487     // The type we're converting to is a class type. Enumerate its constructors
4488     // to see if there is a suitable conversion.
4489     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4490 
4491     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4492       auto Info = getConstructorInfo(D);
4493       if (!Info.Constructor)
4494         continue;
4495 
4496       if (!Info.Constructor->isInvalidDecl() &&
4497           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4498         if (Info.ConstructorTmpl)
4499           S.AddTemplateOverloadCandidate(
4500               Info.ConstructorTmpl, Info.FoundDecl,
4501               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4502               /*SuppressUserConversions=*/true,
4503               /*PartialOverloading*/ false, AllowExplicitCtors);
4504         else
4505           S.AddOverloadCandidate(
4506               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4507               /*SuppressUserConversions=*/true,
4508               /*PartialOverloading*/ false, AllowExplicitCtors);
4509       }
4510     }
4511   }
4512   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4513     return OR_No_Viable_Function;
4514 
4515   const RecordType *T2RecordType = nullptr;
4516   if ((T2RecordType = T2->getAs<RecordType>()) &&
4517       S.isCompleteType(Kind.getLocation(), T2)) {
4518     // The type we're converting from is a class type, enumerate its conversion
4519     // functions.
4520     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4521 
4522     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4523     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4524       NamedDecl *D = *I;
4525       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4526       if (isa<UsingShadowDecl>(D))
4527         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4528 
4529       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4530       CXXConversionDecl *Conv;
4531       if (ConvTemplate)
4532         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4533       else
4534         Conv = cast<CXXConversionDecl>(D);
4535 
4536       // If the conversion function doesn't return a reference type,
4537       // it can't be considered for this conversion unless we're allowed to
4538       // consider rvalues.
4539       // FIXME: Do we need to make sure that we only consider conversion
4540       // candidates with reference-compatible results? That might be needed to
4541       // break recursion.
4542       if ((AllowRValues ||
4543            Conv->getConversionType()->isLValueReferenceType())) {
4544         if (ConvTemplate)
4545           S.AddTemplateConversionCandidate(
4546               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4547               CandidateSet,
4548               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4549         else
4550           S.AddConversionCandidate(
4551               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4552               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4553       }
4554     }
4555   }
4556   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4557     return OR_No_Viable_Function;
4558 
4559   SourceLocation DeclLoc = Initializer->getBeginLoc();
4560 
4561   // Perform overload resolution. If it fails, return the failed result.
4562   OverloadCandidateSet::iterator Best;
4563   if (OverloadingResult Result
4564         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4565     return Result;
4566 
4567   FunctionDecl *Function = Best->Function;
4568   // This is the overload that will be used for this initialization step if we
4569   // use this initialization. Mark it as referenced.
4570   Function->setReferenced();
4571 
4572   // Compute the returned type and value kind of the conversion.
4573   QualType cv3T3;
4574   if (isa<CXXConversionDecl>(Function))
4575     cv3T3 = Function->getReturnType();
4576   else
4577     cv3T3 = T1;
4578 
4579   ExprValueKind VK = VK_RValue;
4580   if (cv3T3->isLValueReferenceType())
4581     VK = VK_LValue;
4582   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4583     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4584   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4585 
4586   // Add the user-defined conversion step.
4587   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4588   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4589                                  HadMultipleCandidates);
4590 
4591   // Determine whether we'll need to perform derived-to-base adjustments or
4592   // other conversions.
4593   Sema::ReferenceConversions RefConv;
4594   Sema::ReferenceCompareResult NewRefRelationship =
4595       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4596 
4597   // Add the final conversion sequence, if necessary.
4598   if (NewRefRelationship == Sema::Ref_Incompatible) {
4599     assert(!isa<CXXConstructorDecl>(Function) &&
4600            "should not have conversion after constructor");
4601 
4602     ImplicitConversionSequence ICS;
4603     ICS.setStandard();
4604     ICS.Standard = Best->FinalConversion;
4605     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4606 
4607     // Every implicit conversion results in a prvalue, except for a glvalue
4608     // derived-to-base conversion, which we handle below.
4609     cv3T3 = ICS.Standard.getToType(2);
4610     VK = VK_RValue;
4611   }
4612 
4613   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4614   //   type "cv1 T4" and the temporary materialization conversion is applied.
4615   //
4616   // We adjust the cv-qualifications to match the reference regardless of
4617   // whether we have a prvalue so that the AST records the change. In this
4618   // case, T4 is "cv3 T3".
4619   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4620   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4621     Sequence.AddQualificationConversionStep(cv1T4, VK);
4622   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4623   VK = IsLValueRef ? VK_LValue : VK_XValue;
4624 
4625   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4626     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4627   else if (RefConv & Sema::ReferenceConversions::ObjC)
4628     Sequence.AddObjCObjectConversionStep(cv1T1);
4629   else if (RefConv & Sema::ReferenceConversions::Function)
4630     Sequence.AddQualificationConversionStep(cv1T1, VK);
4631   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4632     if (!S.Context.hasSameType(cv1T4, cv1T1))
4633       Sequence.AddQualificationConversionStep(cv1T1, VK);
4634   }
4635 
4636   return OR_Success;
4637 }
4638 
4639 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4640                                            const InitializedEntity &Entity,
4641                                            Expr *CurInitExpr);
4642 
4643 /// Attempt reference initialization (C++0x [dcl.init.ref])
4644 static void TryReferenceInitialization(Sema &S,
4645                                        const InitializedEntity &Entity,
4646                                        const InitializationKind &Kind,
4647                                        Expr *Initializer,
4648                                        InitializationSequence &Sequence) {
4649   QualType DestType = Entity.getType();
4650   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4651   Qualifiers T1Quals;
4652   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4653   QualType cv2T2 = Initializer->getType();
4654   Qualifiers T2Quals;
4655   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4656 
4657   // If the initializer is the address of an overloaded function, try
4658   // to resolve the overloaded function. If all goes well, T2 is the
4659   // type of the resulting function.
4660   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4661                                                    T1, Sequence))
4662     return;
4663 
4664   // Delegate everything else to a subfunction.
4665   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4666                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4667 }
4668 
4669 /// Determine whether an expression is a non-referenceable glvalue (one to
4670 /// which a reference can never bind). Attempting to bind a reference to
4671 /// such a glvalue will always create a temporary.
4672 static bool isNonReferenceableGLValue(Expr *E) {
4673   return E->refersToBitField() || E->refersToVectorElement();
4674 }
4675 
4676 /// Reference initialization without resolving overloaded functions.
4677 static void TryReferenceInitializationCore(Sema &S,
4678                                            const InitializedEntity &Entity,
4679                                            const InitializationKind &Kind,
4680                                            Expr *Initializer,
4681                                            QualType cv1T1, QualType T1,
4682                                            Qualifiers T1Quals,
4683                                            QualType cv2T2, QualType T2,
4684                                            Qualifiers T2Quals,
4685                                            InitializationSequence &Sequence) {
4686   QualType DestType = Entity.getType();
4687   SourceLocation DeclLoc = Initializer->getBeginLoc();
4688 
4689   // Compute some basic properties of the types and the initializer.
4690   bool isLValueRef = DestType->isLValueReferenceType();
4691   bool isRValueRef = !isLValueRef;
4692   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4693 
4694   Sema::ReferenceConversions RefConv;
4695   Sema::ReferenceCompareResult RefRelationship =
4696       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4697 
4698   // C++0x [dcl.init.ref]p5:
4699   //   A reference to type "cv1 T1" is initialized by an expression of type
4700   //   "cv2 T2" as follows:
4701   //
4702   //     - If the reference is an lvalue reference and the initializer
4703   //       expression
4704   // Note the analogous bullet points for rvalue refs to functions. Because
4705   // there are no function rvalues in C++, rvalue refs to functions are treated
4706   // like lvalue refs.
4707   OverloadingResult ConvOvlResult = OR_Success;
4708   bool T1Function = T1->isFunctionType();
4709   if (isLValueRef || T1Function) {
4710     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4711         (RefRelationship == Sema::Ref_Compatible ||
4712          (Kind.isCStyleOrFunctionalCast() &&
4713           RefRelationship == Sema::Ref_Related))) {
4714       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4715       //     reference-compatible with "cv2 T2," or
4716       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4717                      Sema::ReferenceConversions::ObjC)) {
4718         // If we're converting the pointee, add any qualifiers first;
4719         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4720         if (RefConv & (Sema::ReferenceConversions::Qualification))
4721           Sequence.AddQualificationConversionStep(
4722               S.Context.getQualifiedType(T2, T1Quals),
4723               Initializer->getValueKind());
4724         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4725           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4726         else
4727           Sequence.AddObjCObjectConversionStep(cv1T1);
4728       } else if (RefConv & (Sema::ReferenceConversions::Qualification |
4729                             Sema::ReferenceConversions::Function)) {
4730         // Perform a (possibly multi-level) qualification conversion.
4731         // FIXME: Should we use a different step kind for function conversions?
4732         Sequence.AddQualificationConversionStep(cv1T1,
4733                                                 Initializer->getValueKind());
4734       }
4735 
4736       // We only create a temporary here when binding a reference to a
4737       // bit-field or vector element. Those cases are't supposed to be
4738       // handled by this bullet, but the outcome is the same either way.
4739       Sequence.AddReferenceBindingStep(cv1T1, false);
4740       return;
4741     }
4742 
4743     //     - has a class type (i.e., T2 is a class type), where T1 is not
4744     //       reference-related to T2, and can be implicitly converted to an
4745     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4746     //       with "cv3 T3" (this conversion is selected by enumerating the
4747     //       applicable conversion functions (13.3.1.6) and choosing the best
4748     //       one through overload resolution (13.3)),
4749     // If we have an rvalue ref to function type here, the rhs must be
4750     // an rvalue. DR1287 removed the "implicitly" here.
4751     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4752         (isLValueRef || InitCategory.isRValue())) {
4753       ConvOvlResult = TryRefInitWithConversionFunction(
4754           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4755           /*IsLValueRef*/ isLValueRef, Sequence);
4756       if (ConvOvlResult == OR_Success)
4757         return;
4758       if (ConvOvlResult != OR_No_Viable_Function)
4759         Sequence.SetOverloadFailure(
4760             InitializationSequence::FK_ReferenceInitOverloadFailed,
4761             ConvOvlResult);
4762     }
4763   }
4764 
4765   //     - Otherwise, the reference shall be an lvalue reference to a
4766   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4767   //       shall be an rvalue reference.
4768   //       For address spaces, we interpret this to mean that an addr space
4769   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4770   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4771                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4772     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4773       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4774     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4775       Sequence.SetOverloadFailure(
4776                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4777                                   ConvOvlResult);
4778     else if (!InitCategory.isLValue())
4779       Sequence.SetFailed(
4780           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4781               ? InitializationSequence::
4782                     FK_NonConstLValueReferenceBindingToTemporary
4783               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4784     else {
4785       InitializationSequence::FailureKind FK;
4786       switch (RefRelationship) {
4787       case Sema::Ref_Compatible:
4788         if (Initializer->refersToBitField())
4789           FK = InitializationSequence::
4790               FK_NonConstLValueReferenceBindingToBitfield;
4791         else if (Initializer->refersToVectorElement())
4792           FK = InitializationSequence::
4793               FK_NonConstLValueReferenceBindingToVectorElement;
4794         else
4795           llvm_unreachable("unexpected kind of compatible initializer");
4796         break;
4797       case Sema::Ref_Related:
4798         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4799         break;
4800       case Sema::Ref_Incompatible:
4801         FK = InitializationSequence::
4802             FK_NonConstLValueReferenceBindingToUnrelated;
4803         break;
4804       }
4805       Sequence.SetFailed(FK);
4806     }
4807     return;
4808   }
4809 
4810   //    - If the initializer expression
4811   //      - is an
4812   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4813   // [1z]   rvalue (but not a bit-field) or
4814   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4815   //
4816   // Note: functions are handled above and below rather than here...
4817   if (!T1Function &&
4818       (RefRelationship == Sema::Ref_Compatible ||
4819        (Kind.isCStyleOrFunctionalCast() &&
4820         RefRelationship == Sema::Ref_Related)) &&
4821       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4822        (InitCategory.isPRValue() &&
4823         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4824          T2->isArrayType())))) {
4825     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4826     if (InitCategory.isPRValue() && T2->isRecordType()) {
4827       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4828       // compiler the freedom to perform a copy here or bind to the
4829       // object, while C++0x requires that we bind directly to the
4830       // object. Hence, we always bind to the object without making an
4831       // extra copy. However, in C++03 requires that we check for the
4832       // presence of a suitable copy constructor:
4833       //
4834       //   The constructor that would be used to make the copy shall
4835       //   be callable whether or not the copy is actually done.
4836       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4837         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4838       else if (S.getLangOpts().CPlusPlus11)
4839         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4840     }
4841 
4842     // C++1z [dcl.init.ref]/5.2.1.2:
4843     //   If the converted initializer is a prvalue, its type T4 is adjusted
4844     //   to type "cv1 T4" and the temporary materialization conversion is
4845     //   applied.
4846     // Postpone address space conversions to after the temporary materialization
4847     // conversion to allow creating temporaries in the alloca address space.
4848     auto T1QualsIgnoreAS = T1Quals;
4849     auto T2QualsIgnoreAS = T2Quals;
4850     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4851       T1QualsIgnoreAS.removeAddressSpace();
4852       T2QualsIgnoreAS.removeAddressSpace();
4853     }
4854     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4855     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4856       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4857     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4858     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4859     // Add addr space conversion if required.
4860     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4861       auto T4Quals = cv1T4.getQualifiers();
4862       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4863       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4864       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4865       cv1T4 = cv1T4WithAS;
4866     }
4867 
4868     //   In any case, the reference is bound to the resulting glvalue (or to
4869     //   an appropriate base class subobject).
4870     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4871       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4872     else if (RefConv & Sema::ReferenceConversions::ObjC)
4873       Sequence.AddObjCObjectConversionStep(cv1T1);
4874     else if (RefConv & Sema::ReferenceConversions::Qualification) {
4875       if (!S.Context.hasSameType(cv1T4, cv1T1))
4876         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4877     }
4878     return;
4879   }
4880 
4881   //       - has a class type (i.e., T2 is a class type), where T1 is not
4882   //         reference-related to T2, and can be implicitly converted to an
4883   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4884   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4885   //
4886   // DR1287 removes the "implicitly" here.
4887   if (T2->isRecordType()) {
4888     if (RefRelationship == Sema::Ref_Incompatible) {
4889       ConvOvlResult = TryRefInitWithConversionFunction(
4890           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4891           /*IsLValueRef*/ isLValueRef, Sequence);
4892       if (ConvOvlResult)
4893         Sequence.SetOverloadFailure(
4894             InitializationSequence::FK_ReferenceInitOverloadFailed,
4895             ConvOvlResult);
4896 
4897       return;
4898     }
4899 
4900     if (RefRelationship == Sema::Ref_Compatible &&
4901         isRValueRef && InitCategory.isLValue()) {
4902       Sequence.SetFailed(
4903         InitializationSequence::FK_RValueReferenceBindingToLValue);
4904       return;
4905     }
4906 
4907     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4908     return;
4909   }
4910 
4911   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4912   //        from the initializer expression using the rules for a non-reference
4913   //        copy-initialization (8.5). The reference is then bound to the
4914   //        temporary. [...]
4915 
4916   // Ignore address space of reference type at this point and perform address
4917   // space conversion after the reference binding step.
4918   QualType cv1T1IgnoreAS =
4919       T1Quals.hasAddressSpace()
4920           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4921           : cv1T1;
4922 
4923   InitializedEntity TempEntity =
4924       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4925 
4926   // FIXME: Why do we use an implicit conversion here rather than trying
4927   // copy-initialization?
4928   ImplicitConversionSequence ICS
4929     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4930                               /*SuppressUserConversions=*/false,
4931                               Sema::AllowedExplicit::None,
4932                               /*FIXME:InOverloadResolution=*/false,
4933                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4934                               /*AllowObjCWritebackConversion=*/false);
4935 
4936   if (ICS.isBad()) {
4937     // FIXME: Use the conversion function set stored in ICS to turn
4938     // this into an overloading ambiguity diagnostic. However, we need
4939     // to keep that set as an OverloadCandidateSet rather than as some
4940     // other kind of set.
4941     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4942       Sequence.SetOverloadFailure(
4943                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4944                                   ConvOvlResult);
4945     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4946       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4947     else
4948       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4949     return;
4950   } else {
4951     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4952   }
4953 
4954   //        [...] If T1 is reference-related to T2, cv1 must be the
4955   //        same cv-qualification as, or greater cv-qualification
4956   //        than, cv2; otherwise, the program is ill-formed.
4957   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4958   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4959   if ((RefRelationship == Sema::Ref_Related &&
4960        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4961       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4962     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4963     return;
4964   }
4965 
4966   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4967   //   reference, the initializer expression shall not be an lvalue.
4968   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4969       InitCategory.isLValue()) {
4970     Sequence.SetFailed(
4971                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4972     return;
4973   }
4974 
4975   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
4976 
4977   if (T1Quals.hasAddressSpace()) {
4978     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
4979                                               LangAS::Default)) {
4980       Sequence.SetFailed(
4981           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
4982       return;
4983     }
4984     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4985                                                                : VK_XValue);
4986   }
4987 }
4988 
4989 /// Attempt character array initialization from a string literal
4990 /// (C++ [dcl.init.string], C99 6.7.8).
4991 static void TryStringLiteralInitialization(Sema &S,
4992                                            const InitializedEntity &Entity,
4993                                            const InitializationKind &Kind,
4994                                            Expr *Initializer,
4995                                        InitializationSequence &Sequence) {
4996   Sequence.AddStringInitStep(Entity.getType());
4997 }
4998 
4999 /// Attempt value initialization (C++ [dcl.init]p7).
5000 static void TryValueInitialization(Sema &S,
5001                                    const InitializedEntity &Entity,
5002                                    const InitializationKind &Kind,
5003                                    InitializationSequence &Sequence,
5004                                    InitListExpr *InitList) {
5005   assert((!InitList || InitList->getNumInits() == 0) &&
5006          "Shouldn't use value-init for non-empty init lists");
5007 
5008   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5009   //
5010   //   To value-initialize an object of type T means:
5011   QualType T = Entity.getType();
5012 
5013   //     -- if T is an array type, then each element is value-initialized;
5014   T = S.Context.getBaseElementType(T);
5015 
5016   if (const RecordType *RT = T->getAs<RecordType>()) {
5017     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5018       bool NeedZeroInitialization = true;
5019       // C++98:
5020       // -- if T is a class type (clause 9) with a user-declared constructor
5021       //    (12.1), then the default constructor for T is called (and the
5022       //    initialization is ill-formed if T has no accessible default
5023       //    constructor);
5024       // C++11:
5025       // -- if T is a class type (clause 9) with either no default constructor
5026       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5027       //    or deleted, then the object is default-initialized;
5028       //
5029       // Note that the C++11 rule is the same as the C++98 rule if there are no
5030       // defaulted or deleted constructors, so we just use it unconditionally.
5031       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5032       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5033         NeedZeroInitialization = false;
5034 
5035       // -- if T is a (possibly cv-qualified) non-union class type without a
5036       //    user-provided or deleted default constructor, then the object is
5037       //    zero-initialized and, if T has a non-trivial default constructor,
5038       //    default-initialized;
5039       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5040       // constructor' part was removed by DR1507.
5041       if (NeedZeroInitialization)
5042         Sequence.AddZeroInitializationStep(Entity.getType());
5043 
5044       // C++03:
5045       // -- if T is a non-union class type without a user-declared constructor,
5046       //    then every non-static data member and base class component of T is
5047       //    value-initialized;
5048       // [...] A program that calls for [...] value-initialization of an
5049       // entity of reference type is ill-formed.
5050       //
5051       // C++11 doesn't need this handling, because value-initialization does not
5052       // occur recursively there, and the implicit default constructor is
5053       // defined as deleted in the problematic cases.
5054       if (!S.getLangOpts().CPlusPlus11 &&
5055           ClassDecl->hasUninitializedReferenceMember()) {
5056         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5057         return;
5058       }
5059 
5060       // If this is list-value-initialization, pass the empty init list on when
5061       // building the constructor call. This affects the semantics of a few
5062       // things (such as whether an explicit default constructor can be called).
5063       Expr *InitListAsExpr = InitList;
5064       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5065       bool InitListSyntax = InitList;
5066 
5067       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5068       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5069       return TryConstructorInitialization(
5070           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5071     }
5072   }
5073 
5074   Sequence.AddZeroInitializationStep(Entity.getType());
5075 }
5076 
5077 /// Attempt default initialization (C++ [dcl.init]p6).
5078 static void TryDefaultInitialization(Sema &S,
5079                                      const InitializedEntity &Entity,
5080                                      const InitializationKind &Kind,
5081                                      InitializationSequence &Sequence) {
5082   assert(Kind.getKind() == InitializationKind::IK_Default);
5083 
5084   // C++ [dcl.init]p6:
5085   //   To default-initialize an object of type T means:
5086   //     - if T is an array type, each element is default-initialized;
5087   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5088 
5089   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5090   //       constructor for T is called (and the initialization is ill-formed if
5091   //       T has no accessible default constructor);
5092   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5093     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5094                                  Entity.getType(), Sequence);
5095     return;
5096   }
5097 
5098   //     - otherwise, no initialization is performed.
5099 
5100   //   If a program calls for the default initialization of an object of
5101   //   a const-qualified type T, T shall be a class type with a user-provided
5102   //   default constructor.
5103   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5104     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5105       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5106     return;
5107   }
5108 
5109   // If the destination type has a lifetime property, zero-initialize it.
5110   if (DestType.getQualifiers().hasObjCLifetime()) {
5111     Sequence.AddZeroInitializationStep(Entity.getType());
5112     return;
5113   }
5114 }
5115 
5116 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5117 /// which enumerates all conversion functions and performs overload resolution
5118 /// to select the best.
5119 static void TryUserDefinedConversion(Sema &S,
5120                                      QualType DestType,
5121                                      const InitializationKind &Kind,
5122                                      Expr *Initializer,
5123                                      InitializationSequence &Sequence,
5124                                      bool TopLevelOfInitList) {
5125   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5126   QualType SourceType = Initializer->getType();
5127   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5128          "Must have a class type to perform a user-defined conversion");
5129 
5130   // Build the candidate set directly in the initialization sequence
5131   // structure, so that it will persist if we fail.
5132   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5133   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5134   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5135 
5136   // Determine whether we are allowed to call explicit constructors or
5137   // explicit conversion operators.
5138   bool AllowExplicit = Kind.AllowExplicit();
5139 
5140   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5141     // The type we're converting to is a class type. Enumerate its constructors
5142     // to see if there is a suitable conversion.
5143     CXXRecordDecl *DestRecordDecl
5144       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5145 
5146     // Try to complete the type we're converting to.
5147     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5148       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5149         auto Info = getConstructorInfo(D);
5150         if (!Info.Constructor)
5151           continue;
5152 
5153         if (!Info.Constructor->isInvalidDecl() &&
5154             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5155           if (Info.ConstructorTmpl)
5156             S.AddTemplateOverloadCandidate(
5157                 Info.ConstructorTmpl, Info.FoundDecl,
5158                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5159                 /*SuppressUserConversions=*/true,
5160                 /*PartialOverloading*/ false, AllowExplicit);
5161           else
5162             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5163                                    Initializer, CandidateSet,
5164                                    /*SuppressUserConversions=*/true,
5165                                    /*PartialOverloading*/ false, AllowExplicit);
5166         }
5167       }
5168     }
5169   }
5170 
5171   SourceLocation DeclLoc = Initializer->getBeginLoc();
5172 
5173   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5174     // The type we're converting from is a class type, enumerate its conversion
5175     // functions.
5176 
5177     // We can only enumerate the conversion functions for a complete type; if
5178     // the type isn't complete, simply skip this step.
5179     if (S.isCompleteType(DeclLoc, SourceType)) {
5180       CXXRecordDecl *SourceRecordDecl
5181         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5182 
5183       const auto &Conversions =
5184           SourceRecordDecl->getVisibleConversionFunctions();
5185       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5186         NamedDecl *D = *I;
5187         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5188         if (isa<UsingShadowDecl>(D))
5189           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5190 
5191         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5192         CXXConversionDecl *Conv;
5193         if (ConvTemplate)
5194           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5195         else
5196           Conv = cast<CXXConversionDecl>(D);
5197 
5198         if (ConvTemplate)
5199           S.AddTemplateConversionCandidate(
5200               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5201               CandidateSet, AllowExplicit, AllowExplicit);
5202         else
5203           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5204                                    DestType, CandidateSet, AllowExplicit,
5205                                    AllowExplicit);
5206       }
5207     }
5208   }
5209 
5210   // Perform overload resolution. If it fails, return the failed result.
5211   OverloadCandidateSet::iterator Best;
5212   if (OverloadingResult Result
5213         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5214     Sequence.SetOverloadFailure(
5215                         InitializationSequence::FK_UserConversionOverloadFailed,
5216                                 Result);
5217     return;
5218   }
5219 
5220   FunctionDecl *Function = Best->Function;
5221   Function->setReferenced();
5222   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5223 
5224   if (isa<CXXConstructorDecl>(Function)) {
5225     // Add the user-defined conversion step. Any cv-qualification conversion is
5226     // subsumed by the initialization. Per DR5, the created temporary is of the
5227     // cv-unqualified type of the destination.
5228     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5229                                    DestType.getUnqualifiedType(),
5230                                    HadMultipleCandidates);
5231 
5232     // C++14 and before:
5233     //   - if the function is a constructor, the call initializes a temporary
5234     //     of the cv-unqualified version of the destination type. The [...]
5235     //     temporary [...] is then used to direct-initialize, according to the
5236     //     rules above, the object that is the destination of the
5237     //     copy-initialization.
5238     // Note that this just performs a simple object copy from the temporary.
5239     //
5240     // C++17:
5241     //   - if the function is a constructor, the call is a prvalue of the
5242     //     cv-unqualified version of the destination type whose return object
5243     //     is initialized by the constructor. The call is used to
5244     //     direct-initialize, according to the rules above, the object that
5245     //     is the destination of the copy-initialization.
5246     // Therefore we need to do nothing further.
5247     //
5248     // FIXME: Mark this copy as extraneous.
5249     if (!S.getLangOpts().CPlusPlus17)
5250       Sequence.AddFinalCopy(DestType);
5251     else if (DestType.hasQualifiers())
5252       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5253     return;
5254   }
5255 
5256   // Add the user-defined conversion step that calls the conversion function.
5257   QualType ConvType = Function->getCallResultType();
5258   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5259                                  HadMultipleCandidates);
5260 
5261   if (ConvType->getAs<RecordType>()) {
5262     //   The call is used to direct-initialize [...] the object that is the
5263     //   destination of the copy-initialization.
5264     //
5265     // In C++17, this does not call a constructor if we enter /17.6.1:
5266     //   - If the initializer expression is a prvalue and the cv-unqualified
5267     //     version of the source type is the same as the class of the
5268     //     destination [... do not make an extra copy]
5269     //
5270     // FIXME: Mark this copy as extraneous.
5271     if (!S.getLangOpts().CPlusPlus17 ||
5272         Function->getReturnType()->isReferenceType() ||
5273         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5274       Sequence.AddFinalCopy(DestType);
5275     else if (!S.Context.hasSameType(ConvType, DestType))
5276       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5277     return;
5278   }
5279 
5280   // If the conversion following the call to the conversion function
5281   // is interesting, add it as a separate step.
5282   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5283       Best->FinalConversion.Third) {
5284     ImplicitConversionSequence ICS;
5285     ICS.setStandard();
5286     ICS.Standard = Best->FinalConversion;
5287     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5288   }
5289 }
5290 
5291 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5292 /// a function with a pointer return type contains a 'return false;' statement.
5293 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5294 /// code using that header.
5295 ///
5296 /// Work around this by treating 'return false;' as zero-initializing the result
5297 /// if it's used in a pointer-returning function in a system header.
5298 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5299                                               const InitializedEntity &Entity,
5300                                               const Expr *Init) {
5301   return S.getLangOpts().CPlusPlus11 &&
5302          Entity.getKind() == InitializedEntity::EK_Result &&
5303          Entity.getType()->isPointerType() &&
5304          isa<CXXBoolLiteralExpr>(Init) &&
5305          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5306          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5307 }
5308 
5309 /// The non-zero enum values here are indexes into diagnostic alternatives.
5310 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5311 
5312 /// Determines whether this expression is an acceptable ICR source.
5313 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5314                                          bool isAddressOf, bool &isWeakAccess) {
5315   // Skip parens.
5316   e = e->IgnoreParens();
5317 
5318   // Skip address-of nodes.
5319   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5320     if (op->getOpcode() == UO_AddrOf)
5321       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5322                                 isWeakAccess);
5323 
5324   // Skip certain casts.
5325   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5326     switch (ce->getCastKind()) {
5327     case CK_Dependent:
5328     case CK_BitCast:
5329     case CK_LValueBitCast:
5330     case CK_NoOp:
5331       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5332 
5333     case CK_ArrayToPointerDecay:
5334       return IIK_nonscalar;
5335 
5336     case CK_NullToPointer:
5337       return IIK_okay;
5338 
5339     default:
5340       break;
5341     }
5342 
5343   // If we have a declaration reference, it had better be a local variable.
5344   } else if (isa<DeclRefExpr>(e)) {
5345     // set isWeakAccess to true, to mean that there will be an implicit
5346     // load which requires a cleanup.
5347     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5348       isWeakAccess = true;
5349 
5350     if (!isAddressOf) return IIK_nonlocal;
5351 
5352     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5353     if (!var) return IIK_nonlocal;
5354 
5355     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5356 
5357   // If we have a conditional operator, check both sides.
5358   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5359     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5360                                                 isWeakAccess))
5361       return iik;
5362 
5363     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5364 
5365   // These are never scalar.
5366   } else if (isa<ArraySubscriptExpr>(e)) {
5367     return IIK_nonscalar;
5368 
5369   // Otherwise, it needs to be a null pointer constant.
5370   } else {
5371     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5372             ? IIK_okay : IIK_nonlocal);
5373   }
5374 
5375   return IIK_nonlocal;
5376 }
5377 
5378 /// Check whether the given expression is a valid operand for an
5379 /// indirect copy/restore.
5380 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5381   assert(src->isRValue());
5382   bool isWeakAccess = false;
5383   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5384   // If isWeakAccess to true, there will be an implicit
5385   // load which requires a cleanup.
5386   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5387     S.Cleanup.setExprNeedsCleanups(true);
5388 
5389   if (iik == IIK_okay) return;
5390 
5391   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5392     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5393     << src->getSourceRange();
5394 }
5395 
5396 /// Determine whether we have compatible array types for the
5397 /// purposes of GNU by-copy array initialization.
5398 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5399                                     const ArrayType *Source) {
5400   // If the source and destination array types are equivalent, we're
5401   // done.
5402   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5403     return true;
5404 
5405   // Make sure that the element types are the same.
5406   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5407     return false;
5408 
5409   // The only mismatch we allow is when the destination is an
5410   // incomplete array type and the source is a constant array type.
5411   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5412 }
5413 
5414 static bool tryObjCWritebackConversion(Sema &S,
5415                                        InitializationSequence &Sequence,
5416                                        const InitializedEntity &Entity,
5417                                        Expr *Initializer) {
5418   bool ArrayDecay = false;
5419   QualType ArgType = Initializer->getType();
5420   QualType ArgPointee;
5421   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5422     ArrayDecay = true;
5423     ArgPointee = ArgArrayType->getElementType();
5424     ArgType = S.Context.getPointerType(ArgPointee);
5425   }
5426 
5427   // Handle write-back conversion.
5428   QualType ConvertedArgType;
5429   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5430                                    ConvertedArgType))
5431     return false;
5432 
5433   // We should copy unless we're passing to an argument explicitly
5434   // marked 'out'.
5435   bool ShouldCopy = true;
5436   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5437     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5438 
5439   // Do we need an lvalue conversion?
5440   if (ArrayDecay || Initializer->isGLValue()) {
5441     ImplicitConversionSequence ICS;
5442     ICS.setStandard();
5443     ICS.Standard.setAsIdentityConversion();
5444 
5445     QualType ResultType;
5446     if (ArrayDecay) {
5447       ICS.Standard.First = ICK_Array_To_Pointer;
5448       ResultType = S.Context.getPointerType(ArgPointee);
5449     } else {
5450       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5451       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5452     }
5453 
5454     Sequence.AddConversionSequenceStep(ICS, ResultType);
5455   }
5456 
5457   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5458   return true;
5459 }
5460 
5461 static bool TryOCLSamplerInitialization(Sema &S,
5462                                         InitializationSequence &Sequence,
5463                                         QualType DestType,
5464                                         Expr *Initializer) {
5465   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5466       (!Initializer->isIntegerConstantExpr(S.Context) &&
5467       !Initializer->getType()->isSamplerT()))
5468     return false;
5469 
5470   Sequence.AddOCLSamplerInitStep(DestType);
5471   return true;
5472 }
5473 
5474 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5475   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5476     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5477 }
5478 
5479 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5480                                                InitializationSequence &Sequence,
5481                                                QualType DestType,
5482                                                Expr *Initializer) {
5483   if (!S.getLangOpts().OpenCL)
5484     return false;
5485 
5486   //
5487   // OpenCL 1.2 spec, s6.12.10
5488   //
5489   // The event argument can also be used to associate the
5490   // async_work_group_copy with a previous async copy allowing
5491   // an event to be shared by multiple async copies; otherwise
5492   // event should be zero.
5493   //
5494   if (DestType->isEventT() || DestType->isQueueT()) {
5495     if (!IsZeroInitializer(Initializer, S))
5496       return false;
5497 
5498     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5499     return true;
5500   }
5501 
5502   // We should allow zero initialization for all types defined in the
5503   // cl_intel_device_side_avc_motion_estimation extension, except
5504   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5505   if (S.getOpenCLOptions().isEnabled(
5506           "cl_intel_device_side_avc_motion_estimation") &&
5507       DestType->isOCLIntelSubgroupAVCType()) {
5508     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5509         DestType->isOCLIntelSubgroupAVCMceResultType())
5510       return false;
5511     if (!IsZeroInitializer(Initializer, S))
5512       return false;
5513 
5514     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5515     return true;
5516   }
5517 
5518   return false;
5519 }
5520 
5521 InitializationSequence::InitializationSequence(Sema &S,
5522                                                const InitializedEntity &Entity,
5523                                                const InitializationKind &Kind,
5524                                                MultiExprArg Args,
5525                                                bool TopLevelOfInitList,
5526                                                bool TreatUnavailableAsInvalid)
5527     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5528   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5529                  TreatUnavailableAsInvalid);
5530 }
5531 
5532 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5533 /// address of that function, this returns true. Otherwise, it returns false.
5534 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5535   auto *DRE = dyn_cast<DeclRefExpr>(E);
5536   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5537     return false;
5538 
5539   return !S.checkAddressOfFunctionIsAvailable(
5540       cast<FunctionDecl>(DRE->getDecl()));
5541 }
5542 
5543 /// Determine whether we can perform an elementwise array copy for this kind
5544 /// of entity.
5545 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5546   switch (Entity.getKind()) {
5547   case InitializedEntity::EK_LambdaCapture:
5548     // C++ [expr.prim.lambda]p24:
5549     //   For array members, the array elements are direct-initialized in
5550     //   increasing subscript order.
5551     return true;
5552 
5553   case InitializedEntity::EK_Variable:
5554     // C++ [dcl.decomp]p1:
5555     //   [...] each element is copy-initialized or direct-initialized from the
5556     //   corresponding element of the assignment-expression [...]
5557     return isa<DecompositionDecl>(Entity.getDecl());
5558 
5559   case InitializedEntity::EK_Member:
5560     // C++ [class.copy.ctor]p14:
5561     //   - if the member is an array, each element is direct-initialized with
5562     //     the corresponding subobject of x
5563     return Entity.isImplicitMemberInitializer();
5564 
5565   case InitializedEntity::EK_ArrayElement:
5566     // All the above cases are intended to apply recursively, even though none
5567     // of them actually say that.
5568     if (auto *E = Entity.getParent())
5569       return canPerformArrayCopy(*E);
5570     break;
5571 
5572   default:
5573     break;
5574   }
5575 
5576   return false;
5577 }
5578 
5579 void InitializationSequence::InitializeFrom(Sema &S,
5580                                             const InitializedEntity &Entity,
5581                                             const InitializationKind &Kind,
5582                                             MultiExprArg Args,
5583                                             bool TopLevelOfInitList,
5584                                             bool TreatUnavailableAsInvalid) {
5585   ASTContext &Context = S.Context;
5586 
5587   // Eliminate non-overload placeholder types in the arguments.  We
5588   // need to do this before checking whether types are dependent
5589   // because lowering a pseudo-object expression might well give us
5590   // something of dependent type.
5591   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5592     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5593       // FIXME: should we be doing this here?
5594       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5595       if (result.isInvalid()) {
5596         SetFailed(FK_PlaceholderType);
5597         return;
5598       }
5599       Args[I] = result.get();
5600     }
5601 
5602   // C++0x [dcl.init]p16:
5603   //   The semantics of initializers are as follows. The destination type is
5604   //   the type of the object or reference being initialized and the source
5605   //   type is the type of the initializer expression. The source type is not
5606   //   defined when the initializer is a braced-init-list or when it is a
5607   //   parenthesized list of expressions.
5608   QualType DestType = Entity.getType();
5609 
5610   if (DestType->isDependentType() ||
5611       Expr::hasAnyTypeDependentArguments(Args)) {
5612     SequenceKind = DependentSequence;
5613     return;
5614   }
5615 
5616   // Almost everything is a normal sequence.
5617   setSequenceKind(NormalSequence);
5618 
5619   QualType SourceType;
5620   Expr *Initializer = nullptr;
5621   if (Args.size() == 1) {
5622     Initializer = Args[0];
5623     if (S.getLangOpts().ObjC) {
5624       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5625                                               DestType, Initializer->getType(),
5626                                               Initializer) ||
5627           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5628         Args[0] = Initializer;
5629     }
5630     if (!isa<InitListExpr>(Initializer))
5631       SourceType = Initializer->getType();
5632   }
5633 
5634   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5635   //       object is list-initialized (8.5.4).
5636   if (Kind.getKind() != InitializationKind::IK_Direct) {
5637     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5638       TryListInitialization(S, Entity, Kind, InitList, *this,
5639                             TreatUnavailableAsInvalid);
5640       return;
5641     }
5642   }
5643 
5644   //     - If the destination type is a reference type, see 8.5.3.
5645   if (DestType->isReferenceType()) {
5646     // C++0x [dcl.init.ref]p1:
5647     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5648     //   (8.3.2), shall be initialized by an object, or function, of type T or
5649     //   by an object that can be converted into a T.
5650     // (Therefore, multiple arguments are not permitted.)
5651     if (Args.size() != 1)
5652       SetFailed(FK_TooManyInitsForReference);
5653     // C++17 [dcl.init.ref]p5:
5654     //   A reference [...] is initialized by an expression [...] as follows:
5655     // If the initializer is not an expression, presumably we should reject,
5656     // but the standard fails to actually say so.
5657     else if (isa<InitListExpr>(Args[0]))
5658       SetFailed(FK_ParenthesizedListInitForReference);
5659     else
5660       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5661     return;
5662   }
5663 
5664   //     - If the initializer is (), the object is value-initialized.
5665   if (Kind.getKind() == InitializationKind::IK_Value ||
5666       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5667     TryValueInitialization(S, Entity, Kind, *this);
5668     return;
5669   }
5670 
5671   // Handle default initialization.
5672   if (Kind.getKind() == InitializationKind::IK_Default) {
5673     TryDefaultInitialization(S, Entity, Kind, *this);
5674     return;
5675   }
5676 
5677   //     - If the destination type is an array of characters, an array of
5678   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5679   //       initializer is a string literal, see 8.5.2.
5680   //     - Otherwise, if the destination type is an array, the program is
5681   //       ill-formed.
5682   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5683     if (Initializer && isa<VariableArrayType>(DestAT)) {
5684       SetFailed(FK_VariableLengthArrayHasInitializer);
5685       return;
5686     }
5687 
5688     if (Initializer) {
5689       switch (IsStringInit(Initializer, DestAT, Context)) {
5690       case SIF_None:
5691         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5692         return;
5693       case SIF_NarrowStringIntoWideChar:
5694         SetFailed(FK_NarrowStringIntoWideCharArray);
5695         return;
5696       case SIF_WideStringIntoChar:
5697         SetFailed(FK_WideStringIntoCharArray);
5698         return;
5699       case SIF_IncompatWideStringIntoWideChar:
5700         SetFailed(FK_IncompatWideStringIntoWideChar);
5701         return;
5702       case SIF_PlainStringIntoUTF8Char:
5703         SetFailed(FK_PlainStringIntoUTF8Char);
5704         return;
5705       case SIF_UTF8StringIntoPlainChar:
5706         SetFailed(FK_UTF8StringIntoPlainChar);
5707         return;
5708       case SIF_Other:
5709         break;
5710       }
5711     }
5712 
5713     // Some kinds of initialization permit an array to be initialized from
5714     // another array of the same type, and perform elementwise initialization.
5715     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5716         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5717                                          Entity.getType()) &&
5718         canPerformArrayCopy(Entity)) {
5719       // If source is a prvalue, use it directly.
5720       if (Initializer->getValueKind() == VK_RValue) {
5721         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5722         return;
5723       }
5724 
5725       // Emit element-at-a-time copy loop.
5726       InitializedEntity Element =
5727           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5728       QualType InitEltT =
5729           Context.getAsArrayType(Initializer->getType())->getElementType();
5730       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5731                           Initializer->getValueKind(),
5732                           Initializer->getObjectKind());
5733       Expr *OVEAsExpr = &OVE;
5734       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5735                      TreatUnavailableAsInvalid);
5736       if (!Failed())
5737         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5738       return;
5739     }
5740 
5741     // Note: as an GNU C extension, we allow initialization of an
5742     // array from a compound literal that creates an array of the same
5743     // type, so long as the initializer has no side effects.
5744     if (!S.getLangOpts().CPlusPlus && Initializer &&
5745         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5746         Initializer->getType()->isArrayType()) {
5747       const ArrayType *SourceAT
5748         = Context.getAsArrayType(Initializer->getType());
5749       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5750         SetFailed(FK_ArrayTypeMismatch);
5751       else if (Initializer->HasSideEffects(S.Context))
5752         SetFailed(FK_NonConstantArrayInit);
5753       else {
5754         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5755       }
5756     }
5757     // Note: as a GNU C++ extension, we allow list-initialization of a
5758     // class member of array type from a parenthesized initializer list.
5759     else if (S.getLangOpts().CPlusPlus &&
5760              Entity.getKind() == InitializedEntity::EK_Member &&
5761              Initializer && isa<InitListExpr>(Initializer)) {
5762       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5763                             *this, TreatUnavailableAsInvalid);
5764       AddParenthesizedArrayInitStep(DestType);
5765     } else if (DestAT->getElementType()->isCharType())
5766       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5767     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5768       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5769     else
5770       SetFailed(FK_ArrayNeedsInitList);
5771 
5772     return;
5773   }
5774 
5775   // Determine whether we should consider writeback conversions for
5776   // Objective-C ARC.
5777   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5778          Entity.isParameterKind();
5779 
5780   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5781     return;
5782 
5783   // We're at the end of the line for C: it's either a write-back conversion
5784   // or it's a C assignment. There's no need to check anything else.
5785   if (!S.getLangOpts().CPlusPlus) {
5786     // If allowed, check whether this is an Objective-C writeback conversion.
5787     if (allowObjCWritebackConversion &&
5788         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5789       return;
5790     }
5791 
5792     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5793       return;
5794 
5795     // Handle initialization in C
5796     AddCAssignmentStep(DestType);
5797     MaybeProduceObjCObject(S, *this, Entity);
5798     return;
5799   }
5800 
5801   assert(S.getLangOpts().CPlusPlus);
5802 
5803   //     - If the destination type is a (possibly cv-qualified) class type:
5804   if (DestType->isRecordType()) {
5805     //     - If the initialization is direct-initialization, or if it is
5806     //       copy-initialization where the cv-unqualified version of the
5807     //       source type is the same class as, or a derived class of, the
5808     //       class of the destination, constructors are considered. [...]
5809     if (Kind.getKind() == InitializationKind::IK_Direct ||
5810         (Kind.getKind() == InitializationKind::IK_Copy &&
5811          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5812           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5813       TryConstructorInitialization(S, Entity, Kind, Args,
5814                                    DestType, DestType, *this);
5815     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5816     //       user-defined conversion sequences that can convert from the source
5817     //       type to the destination type or (when a conversion function is
5818     //       used) to a derived class thereof are enumerated as described in
5819     //       13.3.1.4, and the best one is chosen through overload resolution
5820     //       (13.3).
5821     else
5822       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5823                                TopLevelOfInitList);
5824     return;
5825   }
5826 
5827   assert(Args.size() >= 1 && "Zero-argument case handled above");
5828 
5829   // The remaining cases all need a source type.
5830   if (Args.size() > 1) {
5831     SetFailed(FK_TooManyInitsForScalar);
5832     return;
5833   } else if (isa<InitListExpr>(Args[0])) {
5834     SetFailed(FK_ParenthesizedListInitForScalar);
5835     return;
5836   }
5837 
5838   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5839   //      type, conversion functions are considered.
5840   if (!SourceType.isNull() && SourceType->isRecordType()) {
5841     // For a conversion to _Atomic(T) from either T or a class type derived
5842     // from T, initialize the T object then convert to _Atomic type.
5843     bool NeedAtomicConversion = false;
5844     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5845       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5846           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5847                           Atomic->getValueType())) {
5848         DestType = Atomic->getValueType();
5849         NeedAtomicConversion = true;
5850       }
5851     }
5852 
5853     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5854                              TopLevelOfInitList);
5855     MaybeProduceObjCObject(S, *this, Entity);
5856     if (!Failed() && NeedAtomicConversion)
5857       AddAtomicConversionStep(Entity.getType());
5858     return;
5859   }
5860 
5861   //    - Otherwise, if the initialization is direct-initialization, the source
5862   //    type is std::nullptr_t, and the destination type is bool, the initial
5863   //    value of the object being initialized is false.
5864   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5865       DestType->isBooleanType() &&
5866       Kind.getKind() == InitializationKind::IK_Direct) {
5867     AddConversionSequenceStep(
5868         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5869                                                      Initializer->isGLValue()),
5870         DestType);
5871     return;
5872   }
5873 
5874   //    - Otherwise, the initial value of the object being initialized is the
5875   //      (possibly converted) value of the initializer expression. Standard
5876   //      conversions (Clause 4) will be used, if necessary, to convert the
5877   //      initializer expression to the cv-unqualified version of the
5878   //      destination type; no user-defined conversions are considered.
5879 
5880   ImplicitConversionSequence ICS
5881     = S.TryImplicitConversion(Initializer, DestType,
5882                               /*SuppressUserConversions*/true,
5883                               Sema::AllowedExplicit::None,
5884                               /*InOverloadResolution*/ false,
5885                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5886                               allowObjCWritebackConversion);
5887 
5888   if (ICS.isStandard() &&
5889       ICS.Standard.Second == ICK_Writeback_Conversion) {
5890     // Objective-C ARC writeback conversion.
5891 
5892     // We should copy unless we're passing to an argument explicitly
5893     // marked 'out'.
5894     bool ShouldCopy = true;
5895     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5896       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5897 
5898     // If there was an lvalue adjustment, add it as a separate conversion.
5899     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5900         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5901       ImplicitConversionSequence LvalueICS;
5902       LvalueICS.setStandard();
5903       LvalueICS.Standard.setAsIdentityConversion();
5904       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5905       LvalueICS.Standard.First = ICS.Standard.First;
5906       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5907     }
5908 
5909     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5910   } else if (ICS.isBad()) {
5911     DeclAccessPair dap;
5912     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5913       AddZeroInitializationStep(Entity.getType());
5914     } else if (Initializer->getType() == Context.OverloadTy &&
5915                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5916                                                      false, dap))
5917       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5918     else if (Initializer->getType()->isFunctionType() &&
5919              isExprAnUnaddressableFunction(S, Initializer))
5920       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5921     else
5922       SetFailed(InitializationSequence::FK_ConversionFailed);
5923   } else {
5924     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5925 
5926     MaybeProduceObjCObject(S, *this, Entity);
5927   }
5928 }
5929 
5930 InitializationSequence::~InitializationSequence() {
5931   for (auto &S : Steps)
5932     S.Destroy();
5933 }
5934 
5935 //===----------------------------------------------------------------------===//
5936 // Perform initialization
5937 //===----------------------------------------------------------------------===//
5938 static Sema::AssignmentAction
5939 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5940   switch(Entity.getKind()) {
5941   case InitializedEntity::EK_Variable:
5942   case InitializedEntity::EK_New:
5943   case InitializedEntity::EK_Exception:
5944   case InitializedEntity::EK_Base:
5945   case InitializedEntity::EK_Delegating:
5946     return Sema::AA_Initializing;
5947 
5948   case InitializedEntity::EK_Parameter:
5949     if (Entity.getDecl() &&
5950         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5951       return Sema::AA_Sending;
5952 
5953     return Sema::AA_Passing;
5954 
5955   case InitializedEntity::EK_Parameter_CF_Audited:
5956     if (Entity.getDecl() &&
5957       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5958       return Sema::AA_Sending;
5959 
5960     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5961 
5962   case InitializedEntity::EK_Result:
5963   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5964     return Sema::AA_Returning;
5965 
5966   case InitializedEntity::EK_Temporary:
5967   case InitializedEntity::EK_RelatedResult:
5968     // FIXME: Can we tell apart casting vs. converting?
5969     return Sema::AA_Casting;
5970 
5971   case InitializedEntity::EK_Member:
5972   case InitializedEntity::EK_Binding:
5973   case InitializedEntity::EK_ArrayElement:
5974   case InitializedEntity::EK_VectorElement:
5975   case InitializedEntity::EK_ComplexElement:
5976   case InitializedEntity::EK_BlockElement:
5977   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5978   case InitializedEntity::EK_LambdaCapture:
5979   case InitializedEntity::EK_CompoundLiteralInit:
5980     return Sema::AA_Initializing;
5981   }
5982 
5983   llvm_unreachable("Invalid EntityKind!");
5984 }
5985 
5986 /// Whether we should bind a created object as a temporary when
5987 /// initializing the given entity.
5988 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5989   switch (Entity.getKind()) {
5990   case InitializedEntity::EK_ArrayElement:
5991   case InitializedEntity::EK_Member:
5992   case InitializedEntity::EK_Result:
5993   case InitializedEntity::EK_StmtExprResult:
5994   case InitializedEntity::EK_New:
5995   case InitializedEntity::EK_Variable:
5996   case InitializedEntity::EK_Base:
5997   case InitializedEntity::EK_Delegating:
5998   case InitializedEntity::EK_VectorElement:
5999   case InitializedEntity::EK_ComplexElement:
6000   case InitializedEntity::EK_Exception:
6001   case InitializedEntity::EK_BlockElement:
6002   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6003   case InitializedEntity::EK_LambdaCapture:
6004   case InitializedEntity::EK_CompoundLiteralInit:
6005     return false;
6006 
6007   case InitializedEntity::EK_Parameter:
6008   case InitializedEntity::EK_Parameter_CF_Audited:
6009   case InitializedEntity::EK_Temporary:
6010   case InitializedEntity::EK_RelatedResult:
6011   case InitializedEntity::EK_Binding:
6012     return true;
6013   }
6014 
6015   llvm_unreachable("missed an InitializedEntity kind?");
6016 }
6017 
6018 /// Whether the given entity, when initialized with an object
6019 /// created for that initialization, requires destruction.
6020 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6021   switch (Entity.getKind()) {
6022     case InitializedEntity::EK_Result:
6023     case InitializedEntity::EK_StmtExprResult:
6024     case InitializedEntity::EK_New:
6025     case InitializedEntity::EK_Base:
6026     case InitializedEntity::EK_Delegating:
6027     case InitializedEntity::EK_VectorElement:
6028     case InitializedEntity::EK_ComplexElement:
6029     case InitializedEntity::EK_BlockElement:
6030     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6031     case InitializedEntity::EK_LambdaCapture:
6032       return false;
6033 
6034     case InitializedEntity::EK_Member:
6035     case InitializedEntity::EK_Binding:
6036     case InitializedEntity::EK_Variable:
6037     case InitializedEntity::EK_Parameter:
6038     case InitializedEntity::EK_Parameter_CF_Audited:
6039     case InitializedEntity::EK_Temporary:
6040     case InitializedEntity::EK_ArrayElement:
6041     case InitializedEntity::EK_Exception:
6042     case InitializedEntity::EK_CompoundLiteralInit:
6043     case InitializedEntity::EK_RelatedResult:
6044       return true;
6045   }
6046 
6047   llvm_unreachable("missed an InitializedEntity kind?");
6048 }
6049 
6050 /// Get the location at which initialization diagnostics should appear.
6051 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6052                                            Expr *Initializer) {
6053   switch (Entity.getKind()) {
6054   case InitializedEntity::EK_Result:
6055   case InitializedEntity::EK_StmtExprResult:
6056     return Entity.getReturnLoc();
6057 
6058   case InitializedEntity::EK_Exception:
6059     return Entity.getThrowLoc();
6060 
6061   case InitializedEntity::EK_Variable:
6062   case InitializedEntity::EK_Binding:
6063     return Entity.getDecl()->getLocation();
6064 
6065   case InitializedEntity::EK_LambdaCapture:
6066     return Entity.getCaptureLoc();
6067 
6068   case InitializedEntity::EK_ArrayElement:
6069   case InitializedEntity::EK_Member:
6070   case InitializedEntity::EK_Parameter:
6071   case InitializedEntity::EK_Parameter_CF_Audited:
6072   case InitializedEntity::EK_Temporary:
6073   case InitializedEntity::EK_New:
6074   case InitializedEntity::EK_Base:
6075   case InitializedEntity::EK_Delegating:
6076   case InitializedEntity::EK_VectorElement:
6077   case InitializedEntity::EK_ComplexElement:
6078   case InitializedEntity::EK_BlockElement:
6079   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6080   case InitializedEntity::EK_CompoundLiteralInit:
6081   case InitializedEntity::EK_RelatedResult:
6082     return Initializer->getBeginLoc();
6083   }
6084   llvm_unreachable("missed an InitializedEntity kind?");
6085 }
6086 
6087 /// Make a (potentially elidable) temporary copy of the object
6088 /// provided by the given initializer by calling the appropriate copy
6089 /// constructor.
6090 ///
6091 /// \param S The Sema object used for type-checking.
6092 ///
6093 /// \param T The type of the temporary object, which must either be
6094 /// the type of the initializer expression or a superclass thereof.
6095 ///
6096 /// \param Entity The entity being initialized.
6097 ///
6098 /// \param CurInit The initializer expression.
6099 ///
6100 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6101 /// is permitted in C++03 (but not C++0x) when binding a reference to
6102 /// an rvalue.
6103 ///
6104 /// \returns An expression that copies the initializer expression into
6105 /// a temporary object, or an error expression if a copy could not be
6106 /// created.
6107 static ExprResult CopyObject(Sema &S,
6108                              QualType T,
6109                              const InitializedEntity &Entity,
6110                              ExprResult CurInit,
6111                              bool IsExtraneousCopy) {
6112   if (CurInit.isInvalid())
6113     return CurInit;
6114   // Determine which class type we're copying to.
6115   Expr *CurInitExpr = (Expr *)CurInit.get();
6116   CXXRecordDecl *Class = nullptr;
6117   if (const RecordType *Record = T->getAs<RecordType>())
6118     Class = cast<CXXRecordDecl>(Record->getDecl());
6119   if (!Class)
6120     return CurInit;
6121 
6122   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6123 
6124   // Make sure that the type we are copying is complete.
6125   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6126     return CurInit;
6127 
6128   // Perform overload resolution using the class's constructors. Per
6129   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6130   // is direct-initialization.
6131   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6132   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6133 
6134   OverloadCandidateSet::iterator Best;
6135   switch (ResolveConstructorOverload(
6136       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6137       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6138       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6139       /*SecondStepOfCopyInit=*/true)) {
6140   case OR_Success:
6141     break;
6142 
6143   case OR_No_Viable_Function:
6144     CandidateSet.NoteCandidates(
6145         PartialDiagnosticAt(
6146             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6147                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6148                              : diag::err_temp_copy_no_viable)
6149                      << (int)Entity.getKind() << CurInitExpr->getType()
6150                      << CurInitExpr->getSourceRange()),
6151         S, OCD_AllCandidates, CurInitExpr);
6152     if (!IsExtraneousCopy || S.isSFINAEContext())
6153       return ExprError();
6154     return CurInit;
6155 
6156   case OR_Ambiguous:
6157     CandidateSet.NoteCandidates(
6158         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6159                                      << (int)Entity.getKind()
6160                                      << CurInitExpr->getType()
6161                                      << CurInitExpr->getSourceRange()),
6162         S, OCD_AmbiguousCandidates, CurInitExpr);
6163     return ExprError();
6164 
6165   case OR_Deleted:
6166     S.Diag(Loc, diag::err_temp_copy_deleted)
6167       << (int)Entity.getKind() << CurInitExpr->getType()
6168       << CurInitExpr->getSourceRange();
6169     S.NoteDeletedFunction(Best->Function);
6170     return ExprError();
6171   }
6172 
6173   bool HadMultipleCandidates = CandidateSet.size() > 1;
6174 
6175   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6176   SmallVector<Expr*, 8> ConstructorArgs;
6177   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6178 
6179   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6180                            IsExtraneousCopy);
6181 
6182   if (IsExtraneousCopy) {
6183     // If this is a totally extraneous copy for C++03 reference
6184     // binding purposes, just return the original initialization
6185     // expression. We don't generate an (elided) copy operation here
6186     // because doing so would require us to pass down a flag to avoid
6187     // infinite recursion, where each step adds another extraneous,
6188     // elidable copy.
6189 
6190     // Instantiate the default arguments of any extra parameters in
6191     // the selected copy constructor, as if we were going to create a
6192     // proper call to the copy constructor.
6193     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6194       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6195       if (S.RequireCompleteType(Loc, Parm->getType(),
6196                                 diag::err_call_incomplete_argument))
6197         break;
6198 
6199       // Build the default argument expression; we don't actually care
6200       // if this succeeds or not, because this routine will complain
6201       // if there was a problem.
6202       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6203     }
6204 
6205     return CurInitExpr;
6206   }
6207 
6208   // Determine the arguments required to actually perform the
6209   // constructor call (we might have derived-to-base conversions, or
6210   // the copy constructor may have default arguments).
6211   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6212     return ExprError();
6213 
6214   // C++0x [class.copy]p32:
6215   //   When certain criteria are met, an implementation is allowed to
6216   //   omit the copy/move construction of a class object, even if the
6217   //   copy/move constructor and/or destructor for the object have
6218   //   side effects. [...]
6219   //     - when a temporary class object that has not been bound to a
6220   //       reference (12.2) would be copied/moved to a class object
6221   //       with the same cv-unqualified type, the copy/move operation
6222   //       can be omitted by constructing the temporary object
6223   //       directly into the target of the omitted copy/move
6224   //
6225   // Note that the other three bullets are handled elsewhere. Copy
6226   // elision for return statements and throw expressions are handled as part
6227   // of constructor initialization, while copy elision for exception handlers
6228   // is handled by the run-time.
6229   //
6230   // FIXME: If the function parameter is not the same type as the temporary, we
6231   // should still be able to elide the copy, but we don't have a way to
6232   // represent in the AST how much should be elided in this case.
6233   bool Elidable =
6234       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6235       S.Context.hasSameUnqualifiedType(
6236           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6237           CurInitExpr->getType());
6238 
6239   // Actually perform the constructor call.
6240   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6241                                     Elidable,
6242                                     ConstructorArgs,
6243                                     HadMultipleCandidates,
6244                                     /*ListInit*/ false,
6245                                     /*StdInitListInit*/ false,
6246                                     /*ZeroInit*/ false,
6247                                     CXXConstructExpr::CK_Complete,
6248                                     SourceRange());
6249 
6250   // If we're supposed to bind temporaries, do so.
6251   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6252     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6253   return CurInit;
6254 }
6255 
6256 /// Check whether elidable copy construction for binding a reference to
6257 /// a temporary would have succeeded if we were building in C++98 mode, for
6258 /// -Wc++98-compat.
6259 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6260                                            const InitializedEntity &Entity,
6261                                            Expr *CurInitExpr) {
6262   assert(S.getLangOpts().CPlusPlus11);
6263 
6264   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6265   if (!Record)
6266     return;
6267 
6268   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6269   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6270     return;
6271 
6272   // Find constructors which would have been considered.
6273   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6274   DeclContext::lookup_result Ctors =
6275       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6276 
6277   // Perform overload resolution.
6278   OverloadCandidateSet::iterator Best;
6279   OverloadingResult OR = ResolveConstructorOverload(
6280       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6281       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6282       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6283       /*SecondStepOfCopyInit=*/true);
6284 
6285   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6286     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6287     << CurInitExpr->getSourceRange();
6288 
6289   switch (OR) {
6290   case OR_Success:
6291     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6292                              Best->FoundDecl, Entity, Diag);
6293     // FIXME: Check default arguments as far as that's possible.
6294     break;
6295 
6296   case OR_No_Viable_Function:
6297     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6298                                 OCD_AllCandidates, CurInitExpr);
6299     break;
6300 
6301   case OR_Ambiguous:
6302     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6303                                 OCD_AmbiguousCandidates, CurInitExpr);
6304     break;
6305 
6306   case OR_Deleted:
6307     S.Diag(Loc, Diag);
6308     S.NoteDeletedFunction(Best->Function);
6309     break;
6310   }
6311 }
6312 
6313 void InitializationSequence::PrintInitLocationNote(Sema &S,
6314                                               const InitializedEntity &Entity) {
6315   if (Entity.isParameterKind() && Entity.getDecl()) {
6316     if (Entity.getDecl()->getLocation().isInvalid())
6317       return;
6318 
6319     if (Entity.getDecl()->getDeclName())
6320       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6321         << Entity.getDecl()->getDeclName();
6322     else
6323       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6324   }
6325   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6326            Entity.getMethodDecl())
6327     S.Diag(Entity.getMethodDecl()->getLocation(),
6328            diag::note_method_return_type_change)
6329       << Entity.getMethodDecl()->getDeclName();
6330 }
6331 
6332 /// Returns true if the parameters describe a constructor initialization of
6333 /// an explicit temporary object, e.g. "Point(x, y)".
6334 static bool isExplicitTemporary(const InitializedEntity &Entity,
6335                                 const InitializationKind &Kind,
6336                                 unsigned NumArgs) {
6337   switch (Entity.getKind()) {
6338   case InitializedEntity::EK_Temporary:
6339   case InitializedEntity::EK_CompoundLiteralInit:
6340   case InitializedEntity::EK_RelatedResult:
6341     break;
6342   default:
6343     return false;
6344   }
6345 
6346   switch (Kind.getKind()) {
6347   case InitializationKind::IK_DirectList:
6348     return true;
6349   // FIXME: Hack to work around cast weirdness.
6350   case InitializationKind::IK_Direct:
6351   case InitializationKind::IK_Value:
6352     return NumArgs != 1;
6353   default:
6354     return false;
6355   }
6356 }
6357 
6358 static ExprResult
6359 PerformConstructorInitialization(Sema &S,
6360                                  const InitializedEntity &Entity,
6361                                  const InitializationKind &Kind,
6362                                  MultiExprArg Args,
6363                                  const InitializationSequence::Step& Step,
6364                                  bool &ConstructorInitRequiresZeroInit,
6365                                  bool IsListInitialization,
6366                                  bool IsStdInitListInitialization,
6367                                  SourceLocation LBraceLoc,
6368                                  SourceLocation RBraceLoc) {
6369   unsigned NumArgs = Args.size();
6370   CXXConstructorDecl *Constructor
6371     = cast<CXXConstructorDecl>(Step.Function.Function);
6372   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6373 
6374   // Build a call to the selected constructor.
6375   SmallVector<Expr*, 8> ConstructorArgs;
6376   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6377                          ? Kind.getEqualLoc()
6378                          : Kind.getLocation();
6379 
6380   if (Kind.getKind() == InitializationKind::IK_Default) {
6381     // Force even a trivial, implicit default constructor to be
6382     // semantically checked. We do this explicitly because we don't build
6383     // the definition for completely trivial constructors.
6384     assert(Constructor->getParent() && "No parent class for constructor.");
6385     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6386         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6387       S.runWithSufficientStackSpace(Loc, [&] {
6388         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6389       });
6390     }
6391   }
6392 
6393   ExprResult CurInit((Expr *)nullptr);
6394 
6395   // C++ [over.match.copy]p1:
6396   //   - When initializing a temporary to be bound to the first parameter
6397   //     of a constructor that takes a reference to possibly cv-qualified
6398   //     T as its first argument, called with a single argument in the
6399   //     context of direct-initialization, explicit conversion functions
6400   //     are also considered.
6401   bool AllowExplicitConv =
6402       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6403       hasCopyOrMoveCtorParam(S.Context,
6404                              getConstructorInfo(Step.Function.FoundDecl));
6405 
6406   // Determine the arguments required to actually perform the constructor
6407   // call.
6408   if (S.CompleteConstructorCall(Constructor, Args,
6409                                 Loc, ConstructorArgs,
6410                                 AllowExplicitConv,
6411                                 IsListInitialization))
6412     return ExprError();
6413 
6414 
6415   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6416     // An explicitly-constructed temporary, e.g., X(1, 2).
6417     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6418       return ExprError();
6419 
6420     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6421     if (!TSInfo)
6422       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6423     SourceRange ParenOrBraceRange =
6424         (Kind.getKind() == InitializationKind::IK_DirectList)
6425         ? SourceRange(LBraceLoc, RBraceLoc)
6426         : Kind.getParenOrBraceRange();
6427 
6428     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6429             Step.Function.FoundDecl.getDecl())) {
6430       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6431       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6432         return ExprError();
6433     }
6434     S.MarkFunctionReferenced(Loc, Constructor);
6435 
6436     CurInit = CXXTemporaryObjectExpr::Create(
6437         S.Context, Constructor,
6438         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6439         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6440         IsListInitialization, IsStdInitListInitialization,
6441         ConstructorInitRequiresZeroInit);
6442   } else {
6443     CXXConstructExpr::ConstructionKind ConstructKind =
6444       CXXConstructExpr::CK_Complete;
6445 
6446     if (Entity.getKind() == InitializedEntity::EK_Base) {
6447       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6448         CXXConstructExpr::CK_VirtualBase :
6449         CXXConstructExpr::CK_NonVirtualBase;
6450     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6451       ConstructKind = CXXConstructExpr::CK_Delegating;
6452     }
6453 
6454     // Only get the parenthesis or brace range if it is a list initialization or
6455     // direct construction.
6456     SourceRange ParenOrBraceRange;
6457     if (IsListInitialization)
6458       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6459     else if (Kind.getKind() == InitializationKind::IK_Direct)
6460       ParenOrBraceRange = Kind.getParenOrBraceRange();
6461 
6462     // If the entity allows NRVO, mark the construction as elidable
6463     // unconditionally.
6464     if (Entity.allowsNRVO())
6465       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6466                                         Step.Function.FoundDecl,
6467                                         Constructor, /*Elidable=*/true,
6468                                         ConstructorArgs,
6469                                         HadMultipleCandidates,
6470                                         IsListInitialization,
6471                                         IsStdInitListInitialization,
6472                                         ConstructorInitRequiresZeroInit,
6473                                         ConstructKind,
6474                                         ParenOrBraceRange);
6475     else
6476       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6477                                         Step.Function.FoundDecl,
6478                                         Constructor,
6479                                         ConstructorArgs,
6480                                         HadMultipleCandidates,
6481                                         IsListInitialization,
6482                                         IsStdInitListInitialization,
6483                                         ConstructorInitRequiresZeroInit,
6484                                         ConstructKind,
6485                                         ParenOrBraceRange);
6486   }
6487   if (CurInit.isInvalid())
6488     return ExprError();
6489 
6490   // Only check access if all of that succeeded.
6491   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6492   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6493     return ExprError();
6494 
6495   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6496     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6497       return ExprError();
6498 
6499   if (shouldBindAsTemporary(Entity))
6500     CurInit = S.MaybeBindToTemporary(CurInit.get());
6501 
6502   return CurInit;
6503 }
6504 
6505 namespace {
6506 enum LifetimeKind {
6507   /// The lifetime of a temporary bound to this entity ends at the end of the
6508   /// full-expression, and that's (probably) fine.
6509   LK_FullExpression,
6510 
6511   /// The lifetime of a temporary bound to this entity is extended to the
6512   /// lifeitme of the entity itself.
6513   LK_Extended,
6514 
6515   /// The lifetime of a temporary bound to this entity probably ends too soon,
6516   /// because the entity is allocated in a new-expression.
6517   LK_New,
6518 
6519   /// The lifetime of a temporary bound to this entity ends too soon, because
6520   /// the entity is a return object.
6521   LK_Return,
6522 
6523   /// The lifetime of a temporary bound to this entity ends too soon, because
6524   /// the entity is the result of a statement expression.
6525   LK_StmtExprResult,
6526 
6527   /// This is a mem-initializer: if it would extend a temporary (other than via
6528   /// a default member initializer), the program is ill-formed.
6529   LK_MemInitializer,
6530 };
6531 using LifetimeResult =
6532     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6533 }
6534 
6535 /// Determine the declaration which an initialized entity ultimately refers to,
6536 /// for the purpose of lifetime-extending a temporary bound to a reference in
6537 /// the initialization of \p Entity.
6538 static LifetimeResult getEntityLifetime(
6539     const InitializedEntity *Entity,
6540     const InitializedEntity *InitField = nullptr) {
6541   // C++11 [class.temporary]p5:
6542   switch (Entity->getKind()) {
6543   case InitializedEntity::EK_Variable:
6544     //   The temporary [...] persists for the lifetime of the reference
6545     return {Entity, LK_Extended};
6546 
6547   case InitializedEntity::EK_Member:
6548     // For subobjects, we look at the complete object.
6549     if (Entity->getParent())
6550       return getEntityLifetime(Entity->getParent(), Entity);
6551 
6552     //   except:
6553     // C++17 [class.base.init]p8:
6554     //   A temporary expression bound to a reference member in a
6555     //   mem-initializer is ill-formed.
6556     // C++17 [class.base.init]p11:
6557     //   A temporary expression bound to a reference member from a
6558     //   default member initializer is ill-formed.
6559     //
6560     // The context of p11 and its example suggest that it's only the use of a
6561     // default member initializer from a constructor that makes the program
6562     // ill-formed, not its mere existence, and that it can even be used by
6563     // aggregate initialization.
6564     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6565                                                          : LK_MemInitializer};
6566 
6567   case InitializedEntity::EK_Binding:
6568     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6569     // type.
6570     return {Entity, LK_Extended};
6571 
6572   case InitializedEntity::EK_Parameter:
6573   case InitializedEntity::EK_Parameter_CF_Audited:
6574     //   -- A temporary bound to a reference parameter in a function call
6575     //      persists until the completion of the full-expression containing
6576     //      the call.
6577     return {nullptr, LK_FullExpression};
6578 
6579   case InitializedEntity::EK_Result:
6580     //   -- The lifetime of a temporary bound to the returned value in a
6581     //      function return statement is not extended; the temporary is
6582     //      destroyed at the end of the full-expression in the return statement.
6583     return {nullptr, LK_Return};
6584 
6585   case InitializedEntity::EK_StmtExprResult:
6586     // FIXME: Should we lifetime-extend through the result of a statement
6587     // expression?
6588     return {nullptr, LK_StmtExprResult};
6589 
6590   case InitializedEntity::EK_New:
6591     //   -- A temporary bound to a reference in a new-initializer persists
6592     //      until the completion of the full-expression containing the
6593     //      new-initializer.
6594     return {nullptr, LK_New};
6595 
6596   case InitializedEntity::EK_Temporary:
6597   case InitializedEntity::EK_CompoundLiteralInit:
6598   case InitializedEntity::EK_RelatedResult:
6599     // We don't yet know the storage duration of the surrounding temporary.
6600     // Assume it's got full-expression duration for now, it will patch up our
6601     // storage duration if that's not correct.
6602     return {nullptr, LK_FullExpression};
6603 
6604   case InitializedEntity::EK_ArrayElement:
6605     // For subobjects, we look at the complete object.
6606     return getEntityLifetime(Entity->getParent(), InitField);
6607 
6608   case InitializedEntity::EK_Base:
6609     // For subobjects, we look at the complete object.
6610     if (Entity->getParent())
6611       return getEntityLifetime(Entity->getParent(), InitField);
6612     return {InitField, LK_MemInitializer};
6613 
6614   case InitializedEntity::EK_Delegating:
6615     // We can reach this case for aggregate initialization in a constructor:
6616     //   struct A { int &&r; };
6617     //   struct B : A { B() : A{0} {} };
6618     // In this case, use the outermost field decl as the context.
6619     return {InitField, LK_MemInitializer};
6620 
6621   case InitializedEntity::EK_BlockElement:
6622   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6623   case InitializedEntity::EK_LambdaCapture:
6624   case InitializedEntity::EK_VectorElement:
6625   case InitializedEntity::EK_ComplexElement:
6626     return {nullptr, LK_FullExpression};
6627 
6628   case InitializedEntity::EK_Exception:
6629     // FIXME: Can we diagnose lifetime problems with exceptions?
6630     return {nullptr, LK_FullExpression};
6631   }
6632   llvm_unreachable("unknown entity kind");
6633 }
6634 
6635 namespace {
6636 enum ReferenceKind {
6637   /// Lifetime would be extended by a reference binding to a temporary.
6638   RK_ReferenceBinding,
6639   /// Lifetime would be extended by a std::initializer_list object binding to
6640   /// its backing array.
6641   RK_StdInitializerList,
6642 };
6643 
6644 /// A temporary or local variable. This will be one of:
6645 ///  * A MaterializeTemporaryExpr.
6646 ///  * A DeclRefExpr whose declaration is a local.
6647 ///  * An AddrLabelExpr.
6648 ///  * A BlockExpr for a block with captures.
6649 using Local = Expr*;
6650 
6651 /// Expressions we stepped over when looking for the local state. Any steps
6652 /// that would inhibit lifetime extension or take us out of subexpressions of
6653 /// the initializer are included.
6654 struct IndirectLocalPathEntry {
6655   enum EntryKind {
6656     DefaultInit,
6657     AddressOf,
6658     VarInit,
6659     LValToRVal,
6660     LifetimeBoundCall,
6661     GslReferenceInit,
6662     GslPointerInit
6663   } Kind;
6664   Expr *E;
6665   const Decl *D = nullptr;
6666   IndirectLocalPathEntry() {}
6667   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6668   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6669       : Kind(K), E(E), D(D) {}
6670 };
6671 
6672 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6673 
6674 struct RevertToOldSizeRAII {
6675   IndirectLocalPath &Path;
6676   unsigned OldSize = Path.size();
6677   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6678   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6679 };
6680 
6681 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6682                                              ReferenceKind RK)>;
6683 }
6684 
6685 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6686   for (auto E : Path)
6687     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6688       return true;
6689   return false;
6690 }
6691 
6692 static bool pathContainsInit(IndirectLocalPath &Path) {
6693   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6694     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6695            E.Kind == IndirectLocalPathEntry::VarInit;
6696   });
6697 }
6698 
6699 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6700                                              Expr *Init, LocalVisitor Visit,
6701                                              bool RevisitSubinits,
6702                                              bool EnableLifetimeWarnings);
6703 
6704 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6705                                                   Expr *Init, ReferenceKind RK,
6706                                                   LocalVisitor Visit,
6707                                                   bool EnableLifetimeWarnings);
6708 
6709 template <typename T> static bool isRecordWithAttr(QualType Type) {
6710   if (auto *RD = Type->getAsCXXRecordDecl())
6711     return RD->hasAttr<T>();
6712   return false;
6713 }
6714 
6715 // Decl::isInStdNamespace will return false for iterators in some STL
6716 // implementations due to them being defined in a namespace outside of the std
6717 // namespace.
6718 static bool isInStlNamespace(const Decl *D) {
6719   const DeclContext *DC = D->getDeclContext();
6720   if (!DC)
6721     return false;
6722   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6723     if (const IdentifierInfo *II = ND->getIdentifier()) {
6724       StringRef Name = II->getName();
6725       if (Name.size() >= 2 && Name.front() == '_' &&
6726           (Name[1] == '_' || isUppercase(Name[1])))
6727         return true;
6728     }
6729 
6730   return DC->isStdNamespace();
6731 }
6732 
6733 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6734   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6735     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6736       return true;
6737   if (!isInStlNamespace(Callee->getParent()))
6738     return false;
6739   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6740       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6741     return false;
6742   if (Callee->getReturnType()->isPointerType() ||
6743       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6744     if (!Callee->getIdentifier())
6745       return false;
6746     return llvm::StringSwitch<bool>(Callee->getName())
6747         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6748         .Cases("end", "rend", "cend", "crend", true)
6749         .Cases("c_str", "data", "get", true)
6750         // Map and set types.
6751         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6752         .Default(false);
6753   } else if (Callee->getReturnType()->isReferenceType()) {
6754     if (!Callee->getIdentifier()) {
6755       auto OO = Callee->getOverloadedOperator();
6756       return OO == OverloadedOperatorKind::OO_Subscript ||
6757              OO == OverloadedOperatorKind::OO_Star;
6758     }
6759     return llvm::StringSwitch<bool>(Callee->getName())
6760         .Cases("front", "back", "at", "top", "value", true)
6761         .Default(false);
6762   }
6763   return false;
6764 }
6765 
6766 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6767   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6768     return false;
6769   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6770   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6771     return false;
6772   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6773       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6774     return false;
6775   if (FD->getReturnType()->isPointerType() ||
6776       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6777     return llvm::StringSwitch<bool>(FD->getName())
6778         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6779         .Cases("end", "rend", "cend", "crend", true)
6780         .Case("data", true)
6781         .Default(false);
6782   } else if (FD->getReturnType()->isReferenceType()) {
6783     return llvm::StringSwitch<bool>(FD->getName())
6784         .Cases("get", "any_cast", true)
6785         .Default(false);
6786   }
6787   return false;
6788 }
6789 
6790 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6791                                     LocalVisitor Visit) {
6792   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6793     // We are not interested in the temporary base objects of gsl Pointers:
6794     //   Temp().ptr; // Here ptr might not dangle.
6795     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6796       return;
6797     // Once we initialized a value with a reference, it can no longer dangle.
6798     if (!Value) {
6799       for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6800         if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6801           continue;
6802         if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6803           return;
6804         break;
6805       }
6806     }
6807     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6808                           : IndirectLocalPathEntry::GslReferenceInit,
6809                     Arg, D});
6810     if (Arg->isGLValue())
6811       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6812                                             Visit,
6813                                             /*EnableLifetimeWarnings=*/true);
6814     else
6815       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6816                                        /*EnableLifetimeWarnings=*/true);
6817     Path.pop_back();
6818   };
6819 
6820   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6821     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6822     if (MD && shouldTrackImplicitObjectArg(MD))
6823       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6824                       !MD->getReturnType()->isReferenceType());
6825     return;
6826   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6827     FunctionDecl *Callee = OCE->getDirectCallee();
6828     if (Callee && Callee->isCXXInstanceMember() &&
6829         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6830       VisitPointerArg(Callee, OCE->getArg(0),
6831                       !Callee->getReturnType()->isReferenceType());
6832     return;
6833   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6834     FunctionDecl *Callee = CE->getDirectCallee();
6835     if (Callee && shouldTrackFirstArgument(Callee))
6836       VisitPointerArg(Callee, CE->getArg(0),
6837                       !Callee->getReturnType()->isReferenceType());
6838     return;
6839   }
6840 
6841   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6842     const auto *Ctor = CCE->getConstructor();
6843     const CXXRecordDecl *RD = Ctor->getParent();
6844     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6845       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6846   }
6847 }
6848 
6849 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6850   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6851   if (!TSI)
6852     return false;
6853   // Don't declare this variable in the second operand of the for-statement;
6854   // GCC miscompiles that by ending its lifetime before evaluating the
6855   // third operand. See gcc.gnu.org/PR86769.
6856   AttributedTypeLoc ATL;
6857   for (TypeLoc TL = TSI->getTypeLoc();
6858        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6859        TL = ATL.getModifiedLoc()) {
6860     if (ATL.getAttrAs<LifetimeBoundAttr>())
6861       return true;
6862   }
6863   return false;
6864 }
6865 
6866 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6867                                         LocalVisitor Visit) {
6868   const FunctionDecl *Callee;
6869   ArrayRef<Expr*> Args;
6870 
6871   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6872     Callee = CE->getDirectCallee();
6873     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6874   } else {
6875     auto *CCE = cast<CXXConstructExpr>(Call);
6876     Callee = CCE->getConstructor();
6877     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6878   }
6879   if (!Callee)
6880     return;
6881 
6882   Expr *ObjectArg = nullptr;
6883   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6884     ObjectArg = Args[0];
6885     Args = Args.slice(1);
6886   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6887     ObjectArg = MCE->getImplicitObjectArgument();
6888   }
6889 
6890   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6891     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6892     if (Arg->isGLValue())
6893       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6894                                             Visit,
6895                                             /*EnableLifetimeWarnings=*/false);
6896     else
6897       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6898                                        /*EnableLifetimeWarnings=*/false);
6899     Path.pop_back();
6900   };
6901 
6902   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6903     VisitLifetimeBoundArg(Callee, ObjectArg);
6904 
6905   for (unsigned I = 0,
6906                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6907        I != N; ++I) {
6908     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6909       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6910   }
6911 }
6912 
6913 /// Visit the locals that would be reachable through a reference bound to the
6914 /// glvalue expression \c Init.
6915 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6916                                                   Expr *Init, ReferenceKind RK,
6917                                                   LocalVisitor Visit,
6918                                                   bool EnableLifetimeWarnings) {
6919   RevertToOldSizeRAII RAII(Path);
6920 
6921   // Walk past any constructs which we can lifetime-extend across.
6922   Expr *Old;
6923   do {
6924     Old = Init;
6925 
6926     if (auto *FE = dyn_cast<FullExpr>(Init))
6927       Init = FE->getSubExpr();
6928 
6929     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6930       // If this is just redundant braces around an initializer, step over it.
6931       if (ILE->isTransparent())
6932         Init = ILE->getInit(0);
6933     }
6934 
6935     // Step over any subobject adjustments; we may have a materialized
6936     // temporary inside them.
6937     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6938 
6939     // Per current approach for DR1376, look through casts to reference type
6940     // when performing lifetime extension.
6941     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6942       if (CE->getSubExpr()->isGLValue())
6943         Init = CE->getSubExpr();
6944 
6945     // Per the current approach for DR1299, look through array element access
6946     // on array glvalues when performing lifetime extension.
6947     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6948       Init = ASE->getBase();
6949       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6950       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6951         Init = ICE->getSubExpr();
6952       else
6953         // We can't lifetime extend through this but we might still find some
6954         // retained temporaries.
6955         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
6956                                                 EnableLifetimeWarnings);
6957     }
6958 
6959     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6960     // constructor inherits one as an implicit mem-initializer.
6961     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6962       Path.push_back(
6963           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6964       Init = DIE->getExpr();
6965     }
6966   } while (Init != Old);
6967 
6968   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6969     if (Visit(Path, Local(MTE), RK))
6970       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
6971                                        EnableLifetimeWarnings);
6972   }
6973 
6974   if (isa<CallExpr>(Init)) {
6975     if (EnableLifetimeWarnings)
6976       handleGslAnnotatedTypes(Path, Init, Visit);
6977     return visitLifetimeBoundArguments(Path, Init, Visit);
6978   }
6979 
6980   switch (Init->getStmtClass()) {
6981   case Stmt::DeclRefExprClass: {
6982     // If we find the name of a local non-reference parameter, we could have a
6983     // lifetime problem.
6984     auto *DRE = cast<DeclRefExpr>(Init);
6985     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6986     if (VD && VD->hasLocalStorage() &&
6987         !DRE->refersToEnclosingVariableOrCapture()) {
6988       if (!VD->getType()->isReferenceType()) {
6989         Visit(Path, Local(DRE), RK);
6990       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6991         // The lifetime of a reference parameter is unknown; assume it's OK
6992         // for now.
6993         break;
6994       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6995         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6996         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6997                                               RK_ReferenceBinding, Visit,
6998                                               EnableLifetimeWarnings);
6999       }
7000     }
7001     break;
7002   }
7003 
7004   case Stmt::UnaryOperatorClass: {
7005     // The only unary operator that make sense to handle here
7006     // is Deref.  All others don't resolve to a "name."  This includes
7007     // handling all sorts of rvalues passed to a unary operator.
7008     const UnaryOperator *U = cast<UnaryOperator>(Init);
7009     if (U->getOpcode() == UO_Deref)
7010       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7011                                        EnableLifetimeWarnings);
7012     break;
7013   }
7014 
7015   case Stmt::OMPArraySectionExprClass: {
7016     visitLocalsRetainedByInitializer(Path,
7017                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7018                                      Visit, true, EnableLifetimeWarnings);
7019     break;
7020   }
7021 
7022   case Stmt::ConditionalOperatorClass:
7023   case Stmt::BinaryConditionalOperatorClass: {
7024     auto *C = cast<AbstractConditionalOperator>(Init);
7025     if (!C->getTrueExpr()->getType()->isVoidType())
7026       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7027                                             EnableLifetimeWarnings);
7028     if (!C->getFalseExpr()->getType()->isVoidType())
7029       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7030                                             EnableLifetimeWarnings);
7031     break;
7032   }
7033 
7034   // FIXME: Visit the left-hand side of an -> or ->*.
7035 
7036   default:
7037     break;
7038   }
7039 }
7040 
7041 /// Visit the locals that would be reachable through an object initialized by
7042 /// the prvalue expression \c Init.
7043 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7044                                              Expr *Init, LocalVisitor Visit,
7045                                              bool RevisitSubinits,
7046                                              bool EnableLifetimeWarnings) {
7047   RevertToOldSizeRAII RAII(Path);
7048 
7049   Expr *Old;
7050   do {
7051     Old = Init;
7052 
7053     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7054     // constructor inherits one as an implicit mem-initializer.
7055     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7056       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7057       Init = DIE->getExpr();
7058     }
7059 
7060     if (auto *FE = dyn_cast<FullExpr>(Init))
7061       Init = FE->getSubExpr();
7062 
7063     // Dig out the expression which constructs the extended temporary.
7064     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7065 
7066     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7067       Init = BTE->getSubExpr();
7068 
7069     Init = Init->IgnoreParens();
7070 
7071     // Step over value-preserving rvalue casts.
7072     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7073       switch (CE->getCastKind()) {
7074       case CK_LValueToRValue:
7075         // If we can match the lvalue to a const object, we can look at its
7076         // initializer.
7077         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7078         return visitLocalsRetainedByReferenceBinding(
7079             Path, Init, RK_ReferenceBinding,
7080             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7081           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7082             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7083             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7084                 !isVarOnPath(Path, VD)) {
7085               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7086               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7087                                                EnableLifetimeWarnings);
7088             }
7089           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7090             if (MTE->getType().isConstQualified())
7091               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7092                                                true, EnableLifetimeWarnings);
7093           }
7094           return false;
7095         }, EnableLifetimeWarnings);
7096 
7097         // We assume that objects can be retained by pointers cast to integers,
7098         // but not if the integer is cast to floating-point type or to _Complex.
7099         // We assume that casts to 'bool' do not preserve enough information to
7100         // retain a local object.
7101       case CK_NoOp:
7102       case CK_BitCast:
7103       case CK_BaseToDerived:
7104       case CK_DerivedToBase:
7105       case CK_UncheckedDerivedToBase:
7106       case CK_Dynamic:
7107       case CK_ToUnion:
7108       case CK_UserDefinedConversion:
7109       case CK_ConstructorConversion:
7110       case CK_IntegralToPointer:
7111       case CK_PointerToIntegral:
7112       case CK_VectorSplat:
7113       case CK_IntegralCast:
7114       case CK_CPointerToObjCPointerCast:
7115       case CK_BlockPointerToObjCPointerCast:
7116       case CK_AnyPointerToBlockPointerCast:
7117       case CK_AddressSpaceConversion:
7118         break;
7119 
7120       case CK_ArrayToPointerDecay:
7121         // Model array-to-pointer decay as taking the address of the array
7122         // lvalue.
7123         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7124         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7125                                                      RK_ReferenceBinding, Visit,
7126                                                      EnableLifetimeWarnings);
7127 
7128       default:
7129         return;
7130       }
7131 
7132       Init = CE->getSubExpr();
7133     }
7134   } while (Old != Init);
7135 
7136   // C++17 [dcl.init.list]p6:
7137   //   initializing an initializer_list object from the array extends the
7138   //   lifetime of the array exactly like binding a reference to a temporary.
7139   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7140     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7141                                                  RK_StdInitializerList, Visit,
7142                                                  EnableLifetimeWarnings);
7143 
7144   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7145     // We already visited the elements of this initializer list while
7146     // performing the initialization. Don't visit them again unless we've
7147     // changed the lifetime of the initialized entity.
7148     if (!RevisitSubinits)
7149       return;
7150 
7151     if (ILE->isTransparent())
7152       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7153                                               RevisitSubinits,
7154                                               EnableLifetimeWarnings);
7155 
7156     if (ILE->getType()->isArrayType()) {
7157       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7158         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7159                                          RevisitSubinits,
7160                                          EnableLifetimeWarnings);
7161       return;
7162     }
7163 
7164     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7165       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7166 
7167       // If we lifetime-extend a braced initializer which is initializing an
7168       // aggregate, and that aggregate contains reference members which are
7169       // bound to temporaries, those temporaries are also lifetime-extended.
7170       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7171           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7172         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7173                                               RK_ReferenceBinding, Visit,
7174                                               EnableLifetimeWarnings);
7175       else {
7176         unsigned Index = 0;
7177         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7178           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7179                                            RevisitSubinits,
7180                                            EnableLifetimeWarnings);
7181         for (const auto *I : RD->fields()) {
7182           if (Index >= ILE->getNumInits())
7183             break;
7184           if (I->isUnnamedBitfield())
7185             continue;
7186           Expr *SubInit = ILE->getInit(Index);
7187           if (I->getType()->isReferenceType())
7188             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7189                                                   RK_ReferenceBinding, Visit,
7190                                                   EnableLifetimeWarnings);
7191           else
7192             // This might be either aggregate-initialization of a member or
7193             // initialization of a std::initializer_list object. Regardless,
7194             // we should recursively lifetime-extend that initializer.
7195             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7196                                              RevisitSubinits,
7197                                              EnableLifetimeWarnings);
7198           ++Index;
7199         }
7200       }
7201     }
7202     return;
7203   }
7204 
7205   // The lifetime of an init-capture is that of the closure object constructed
7206   // by a lambda-expression.
7207   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7208     for (Expr *E : LE->capture_inits()) {
7209       if (!E)
7210         continue;
7211       if (E->isGLValue())
7212         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7213                                               Visit, EnableLifetimeWarnings);
7214       else
7215         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7216                                          EnableLifetimeWarnings);
7217     }
7218   }
7219 
7220   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7221     if (EnableLifetimeWarnings)
7222       handleGslAnnotatedTypes(Path, Init, Visit);
7223     return visitLifetimeBoundArguments(Path, Init, Visit);
7224   }
7225 
7226   switch (Init->getStmtClass()) {
7227   case Stmt::UnaryOperatorClass: {
7228     auto *UO = cast<UnaryOperator>(Init);
7229     // If the initializer is the address of a local, we could have a lifetime
7230     // problem.
7231     if (UO->getOpcode() == UO_AddrOf) {
7232       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7233       // it. Don't produce a redundant warning about the lifetime of the
7234       // temporary.
7235       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7236         return;
7237 
7238       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7239       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7240                                             RK_ReferenceBinding, Visit,
7241                                             EnableLifetimeWarnings);
7242     }
7243     break;
7244   }
7245 
7246   case Stmt::BinaryOperatorClass: {
7247     // Handle pointer arithmetic.
7248     auto *BO = cast<BinaryOperator>(Init);
7249     BinaryOperatorKind BOK = BO->getOpcode();
7250     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7251       break;
7252 
7253     if (BO->getLHS()->getType()->isPointerType())
7254       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7255                                        EnableLifetimeWarnings);
7256     else if (BO->getRHS()->getType()->isPointerType())
7257       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7258                                        EnableLifetimeWarnings);
7259     break;
7260   }
7261 
7262   case Stmt::ConditionalOperatorClass:
7263   case Stmt::BinaryConditionalOperatorClass: {
7264     auto *C = cast<AbstractConditionalOperator>(Init);
7265     // In C++, we can have a throw-expression operand, which has 'void' type
7266     // and isn't interesting from a lifetime perspective.
7267     if (!C->getTrueExpr()->getType()->isVoidType())
7268       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7269                                        EnableLifetimeWarnings);
7270     if (!C->getFalseExpr()->getType()->isVoidType())
7271       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7272                                        EnableLifetimeWarnings);
7273     break;
7274   }
7275 
7276   case Stmt::BlockExprClass:
7277     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7278       // This is a local block, whose lifetime is that of the function.
7279       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7280     }
7281     break;
7282 
7283   case Stmt::AddrLabelExprClass:
7284     // We want to warn if the address of a label would escape the function.
7285     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7286     break;
7287 
7288   default:
7289     break;
7290   }
7291 }
7292 
7293 /// Determine whether this is an indirect path to a temporary that we are
7294 /// supposed to lifetime-extend along (but don't).
7295 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7296   for (auto Elem : Path) {
7297     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
7298       return false;
7299   }
7300   return true;
7301 }
7302 
7303 /// Find the range for the first interesting entry in the path at or after I.
7304 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7305                                       Expr *E) {
7306   for (unsigned N = Path.size(); I != N; ++I) {
7307     switch (Path[I].Kind) {
7308     case IndirectLocalPathEntry::AddressOf:
7309     case IndirectLocalPathEntry::LValToRVal:
7310     case IndirectLocalPathEntry::LifetimeBoundCall:
7311     case IndirectLocalPathEntry::GslReferenceInit:
7312     case IndirectLocalPathEntry::GslPointerInit:
7313       // These exist primarily to mark the path as not permitting or
7314       // supporting lifetime extension.
7315       break;
7316 
7317     case IndirectLocalPathEntry::VarInit:
7318       if (cast<VarDecl>(Path[I].D)->isImplicit())
7319         return SourceRange();
7320       LLVM_FALLTHROUGH;
7321     case IndirectLocalPathEntry::DefaultInit:
7322       return Path[I].E->getSourceRange();
7323     }
7324   }
7325   return E->getSourceRange();
7326 }
7327 
7328 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7329   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7330     if (It->Kind == IndirectLocalPathEntry::VarInit)
7331       continue;
7332     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7333       continue;
7334     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7335            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7336   }
7337   return false;
7338 }
7339 
7340 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7341                                     Expr *Init) {
7342   LifetimeResult LR = getEntityLifetime(&Entity);
7343   LifetimeKind LK = LR.getInt();
7344   const InitializedEntity *ExtendingEntity = LR.getPointer();
7345 
7346   // If this entity doesn't have an interesting lifetime, don't bother looking
7347   // for temporaries within its initializer.
7348   if (LK == LK_FullExpression)
7349     return;
7350 
7351   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7352                               ReferenceKind RK) -> bool {
7353     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7354     SourceLocation DiagLoc = DiagRange.getBegin();
7355 
7356     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7357 
7358     bool IsGslPtrInitWithGslTempOwner = false;
7359     bool IsLocalGslOwner = false;
7360     if (pathOnlyInitializesGslPointer(Path)) {
7361       if (isa<DeclRefExpr>(L)) {
7362         // We do not want to follow the references when returning a pointer originating
7363         // from a local owner to avoid the following false positive:
7364         //   int &p = *localUniquePtr;
7365         //   someContainer.add(std::move(localUniquePtr));
7366         //   return p;
7367         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7368         if (pathContainsInit(Path) || !IsLocalGslOwner)
7369           return false;
7370       } else {
7371         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7372                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7373         // Skipping a chain of initializing gsl::Pointer annotated objects.
7374         // We are looking only for the final source to find out if it was
7375         // a local or temporary owner or the address of a local variable/param.
7376         if (!IsGslPtrInitWithGslTempOwner)
7377           return true;
7378       }
7379     }
7380 
7381     switch (LK) {
7382     case LK_FullExpression:
7383       llvm_unreachable("already handled this");
7384 
7385     case LK_Extended: {
7386       if (!MTE) {
7387         // The initialized entity has lifetime beyond the full-expression,
7388         // and the local entity does too, so don't warn.
7389         //
7390         // FIXME: We should consider warning if a static / thread storage
7391         // duration variable retains an automatic storage duration local.
7392         return false;
7393       }
7394 
7395       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7396         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7397         return false;
7398       }
7399 
7400       // Lifetime-extend the temporary.
7401       if (Path.empty()) {
7402         // Update the storage duration of the materialized temporary.
7403         // FIXME: Rebuild the expression instead of mutating it.
7404         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7405                               ExtendingEntity->allocateManglingNumber());
7406         // Also visit the temporaries lifetime-extended by this initializer.
7407         return true;
7408       }
7409 
7410       if (shouldLifetimeExtendThroughPath(Path)) {
7411         // We're supposed to lifetime-extend the temporary along this path (per
7412         // the resolution of DR1815), but we don't support that yet.
7413         //
7414         // FIXME: Properly handle this situation. Perhaps the easiest approach
7415         // would be to clone the initializer expression on each use that would
7416         // lifetime extend its temporaries.
7417         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7418             << RK << DiagRange;
7419       } else {
7420         // If the path goes through the initialization of a variable or field,
7421         // it can't possibly reach a temporary created in this full-expression.
7422         // We will have already diagnosed any problems with the initializer.
7423         if (pathContainsInit(Path))
7424           return false;
7425 
7426         Diag(DiagLoc, diag::warn_dangling_variable)
7427             << RK << !Entity.getParent()
7428             << ExtendingEntity->getDecl()->isImplicit()
7429             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7430       }
7431       break;
7432     }
7433 
7434     case LK_MemInitializer: {
7435       if (isa<MaterializeTemporaryExpr>(L)) {
7436         // Under C++ DR1696, if a mem-initializer (or a default member
7437         // initializer used by the absence of one) would lifetime-extend a
7438         // temporary, the program is ill-formed.
7439         if (auto *ExtendingDecl =
7440                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7441           if (IsGslPtrInitWithGslTempOwner) {
7442             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7443                 << ExtendingDecl << DiagRange;
7444             Diag(ExtendingDecl->getLocation(),
7445                  diag::note_ref_or_ptr_member_declared_here)
7446                 << true;
7447             return false;
7448           }
7449           bool IsSubobjectMember = ExtendingEntity != &Entity;
7450           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7451                             ? diag::err_dangling_member
7452                             : diag::warn_dangling_member)
7453               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7454           // Don't bother adding a note pointing to the field if we're inside
7455           // its default member initializer; our primary diagnostic points to
7456           // the same place in that case.
7457           if (Path.empty() ||
7458               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7459             Diag(ExtendingDecl->getLocation(),
7460                  diag::note_lifetime_extending_member_declared_here)
7461                 << RK << IsSubobjectMember;
7462           }
7463         } else {
7464           // We have a mem-initializer but no particular field within it; this
7465           // is either a base class or a delegating initializer directly
7466           // initializing the base-class from something that doesn't live long
7467           // enough.
7468           //
7469           // FIXME: Warn on this.
7470           return false;
7471         }
7472       } else {
7473         // Paths via a default initializer can only occur during error recovery
7474         // (there's no other way that a default initializer can refer to a
7475         // local). Don't produce a bogus warning on those cases.
7476         if (pathContainsInit(Path))
7477           return false;
7478 
7479         // Suppress false positives for code like the one below:
7480         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7481         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7482           return false;
7483 
7484         auto *DRE = dyn_cast<DeclRefExpr>(L);
7485         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7486         if (!VD) {
7487           // A member was initialized to a local block.
7488           // FIXME: Warn on this.
7489           return false;
7490         }
7491 
7492         if (auto *Member =
7493                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7494           bool IsPointer = !Member->getType()->isReferenceType();
7495           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7496                                   : diag::warn_bind_ref_member_to_parameter)
7497               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7498           Diag(Member->getLocation(),
7499                diag::note_ref_or_ptr_member_declared_here)
7500               << (unsigned)IsPointer;
7501         }
7502       }
7503       break;
7504     }
7505 
7506     case LK_New:
7507       if (isa<MaterializeTemporaryExpr>(L)) {
7508         if (IsGslPtrInitWithGslTempOwner)
7509           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7510         else
7511           Diag(DiagLoc, RK == RK_ReferenceBinding
7512                             ? diag::warn_new_dangling_reference
7513                             : diag::warn_new_dangling_initializer_list)
7514               << !Entity.getParent() << DiagRange;
7515       } else {
7516         // We can't determine if the allocation outlives the local declaration.
7517         return false;
7518       }
7519       break;
7520 
7521     case LK_Return:
7522     case LK_StmtExprResult:
7523       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7524         // We can't determine if the local variable outlives the statement
7525         // expression.
7526         if (LK == LK_StmtExprResult)
7527           return false;
7528         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7529             << Entity.getType()->isReferenceType() << DRE->getDecl()
7530             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7531       } else if (isa<BlockExpr>(L)) {
7532         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7533       } else if (isa<AddrLabelExpr>(L)) {
7534         // Don't warn when returning a label from a statement expression.
7535         // Leaving the scope doesn't end its lifetime.
7536         if (LK == LK_StmtExprResult)
7537           return false;
7538         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7539       } else {
7540         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7541          << Entity.getType()->isReferenceType() << DiagRange;
7542       }
7543       break;
7544     }
7545 
7546     for (unsigned I = 0; I != Path.size(); ++I) {
7547       auto Elem = Path[I];
7548 
7549       switch (Elem.Kind) {
7550       case IndirectLocalPathEntry::AddressOf:
7551       case IndirectLocalPathEntry::LValToRVal:
7552         // These exist primarily to mark the path as not permitting or
7553         // supporting lifetime extension.
7554         break;
7555 
7556       case IndirectLocalPathEntry::LifetimeBoundCall:
7557       case IndirectLocalPathEntry::GslPointerInit:
7558       case IndirectLocalPathEntry::GslReferenceInit:
7559         // FIXME: Consider adding a note for these.
7560         break;
7561 
7562       case IndirectLocalPathEntry::DefaultInit: {
7563         auto *FD = cast<FieldDecl>(Elem.D);
7564         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7565             << FD << nextPathEntryRange(Path, I + 1, L);
7566         break;
7567       }
7568 
7569       case IndirectLocalPathEntry::VarInit:
7570         const VarDecl *VD = cast<VarDecl>(Elem.D);
7571         Diag(VD->getLocation(), diag::note_local_var_initializer)
7572             << VD->getType()->isReferenceType()
7573             << VD->isImplicit() << VD->getDeclName()
7574             << nextPathEntryRange(Path, I + 1, L);
7575         break;
7576       }
7577     }
7578 
7579     // We didn't lifetime-extend, so don't go any further; we don't need more
7580     // warnings or errors on inner temporaries within this one's initializer.
7581     return false;
7582   };
7583 
7584   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7585       diag::warn_dangling_lifetime_pointer, SourceLocation());
7586   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7587   if (Init->isGLValue())
7588     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7589                                           TemporaryVisitor,
7590                                           EnableLifetimeWarnings);
7591   else
7592     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7593                                      EnableLifetimeWarnings);
7594 }
7595 
7596 static void DiagnoseNarrowingInInitList(Sema &S,
7597                                         const ImplicitConversionSequence &ICS,
7598                                         QualType PreNarrowingType,
7599                                         QualType EntityType,
7600                                         const Expr *PostInit);
7601 
7602 /// Provide warnings when std::move is used on construction.
7603 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7604                                     bool IsReturnStmt) {
7605   if (!InitExpr)
7606     return;
7607 
7608   if (S.inTemplateInstantiation())
7609     return;
7610 
7611   QualType DestType = InitExpr->getType();
7612   if (!DestType->isRecordType())
7613     return;
7614 
7615   unsigned DiagID = 0;
7616   if (IsReturnStmt) {
7617     const CXXConstructExpr *CCE =
7618         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7619     if (!CCE || CCE->getNumArgs() != 1)
7620       return;
7621 
7622     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7623       return;
7624 
7625     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7626   }
7627 
7628   // Find the std::move call and get the argument.
7629   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7630   if (!CE || !CE->isCallToStdMove())
7631     return;
7632 
7633   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7634 
7635   if (IsReturnStmt) {
7636     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7637     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7638       return;
7639 
7640     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7641     if (!VD || !VD->hasLocalStorage())
7642       return;
7643 
7644     // __block variables are not moved implicitly.
7645     if (VD->hasAttr<BlocksAttr>())
7646       return;
7647 
7648     QualType SourceType = VD->getType();
7649     if (!SourceType->isRecordType())
7650       return;
7651 
7652     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7653       return;
7654     }
7655 
7656     // If we're returning a function parameter, copy elision
7657     // is not possible.
7658     if (isa<ParmVarDecl>(VD))
7659       DiagID = diag::warn_redundant_move_on_return;
7660     else
7661       DiagID = diag::warn_pessimizing_move_on_return;
7662   } else {
7663     DiagID = diag::warn_pessimizing_move_on_initialization;
7664     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7665     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7666       return;
7667   }
7668 
7669   S.Diag(CE->getBeginLoc(), DiagID);
7670 
7671   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7672   // is within a macro.
7673   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7674   if (CallBegin.isMacroID())
7675     return;
7676   SourceLocation RParen = CE->getRParenLoc();
7677   if (RParen.isMacroID())
7678     return;
7679   SourceLocation LParen;
7680   SourceLocation ArgLoc = Arg->getBeginLoc();
7681 
7682   // Special testing for the argument location.  Since the fix-it needs the
7683   // location right before the argument, the argument location can be in a
7684   // macro only if it is at the beginning of the macro.
7685   while (ArgLoc.isMacroID() &&
7686          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7687     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7688   }
7689 
7690   if (LParen.isMacroID())
7691     return;
7692 
7693   LParen = ArgLoc.getLocWithOffset(-1);
7694 
7695   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7696       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7697       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7698 }
7699 
7700 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7701   // Check to see if we are dereferencing a null pointer.  If so, this is
7702   // undefined behavior, so warn about it.  This only handles the pattern
7703   // "*null", which is a very syntactic check.
7704   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7705     if (UO->getOpcode() == UO_Deref &&
7706         UO->getSubExpr()->IgnoreParenCasts()->
7707         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7708     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7709                           S.PDiag(diag::warn_binding_null_to_reference)
7710                             << UO->getSubExpr()->getSourceRange());
7711   }
7712 }
7713 
7714 MaterializeTemporaryExpr *
7715 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7716                                      bool BoundToLvalueReference) {
7717   auto MTE = new (Context)
7718       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7719 
7720   // Order an ExprWithCleanups for lifetime marks.
7721   //
7722   // TODO: It'll be good to have a single place to check the access of the
7723   // destructor and generate ExprWithCleanups for various uses. Currently these
7724   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7725   // but there may be a chance to merge them.
7726   Cleanup.setExprNeedsCleanups(false);
7727   return MTE;
7728 }
7729 
7730 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7731   // In C++98, we don't want to implicitly create an xvalue.
7732   // FIXME: This means that AST consumers need to deal with "prvalues" that
7733   // denote materialized temporaries. Maybe we should add another ValueKind
7734   // for "xvalue pretending to be a prvalue" for C++98 support.
7735   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7736     return E;
7737 
7738   // C++1z [conv.rval]/1: T shall be a complete type.
7739   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7740   // If so, we should check for a non-abstract class type here too.
7741   QualType T = E->getType();
7742   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7743     return ExprError();
7744 
7745   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7746 }
7747 
7748 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7749                                                 ExprValueKind VK,
7750                                                 CheckedConversionKind CCK) {
7751 
7752   CastKind CK = CK_NoOp;
7753 
7754   if (VK == VK_RValue) {
7755     auto PointeeTy = Ty->getPointeeType();
7756     auto ExprPointeeTy = E->getType()->getPointeeType();
7757     if (!PointeeTy.isNull() &&
7758         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7759       CK = CK_AddressSpaceConversion;
7760   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7761     CK = CK_AddressSpaceConversion;
7762   }
7763 
7764   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7765 }
7766 
7767 ExprResult InitializationSequence::Perform(Sema &S,
7768                                            const InitializedEntity &Entity,
7769                                            const InitializationKind &Kind,
7770                                            MultiExprArg Args,
7771                                            QualType *ResultType) {
7772   if (Failed()) {
7773     Diagnose(S, Entity, Kind, Args);
7774     return ExprError();
7775   }
7776   if (!ZeroInitializationFixit.empty()) {
7777     unsigned DiagID = diag::err_default_init_const;
7778     if (Decl *D = Entity.getDecl())
7779       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7780         DiagID = diag::ext_default_init_const;
7781 
7782     // The initialization would have succeeded with this fixit. Since the fixit
7783     // is on the error, we need to build a valid AST in this case, so this isn't
7784     // handled in the Failed() branch above.
7785     QualType DestType = Entity.getType();
7786     S.Diag(Kind.getLocation(), DiagID)
7787         << DestType << (bool)DestType->getAs<RecordType>()
7788         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7789                                       ZeroInitializationFixit);
7790   }
7791 
7792   if (getKind() == DependentSequence) {
7793     // If the declaration is a non-dependent, incomplete array type
7794     // that has an initializer, then its type will be completed once
7795     // the initializer is instantiated.
7796     if (ResultType && !Entity.getType()->isDependentType() &&
7797         Args.size() == 1) {
7798       QualType DeclType = Entity.getType();
7799       if (const IncompleteArrayType *ArrayT
7800                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7801         // FIXME: We don't currently have the ability to accurately
7802         // compute the length of an initializer list without
7803         // performing full type-checking of the initializer list
7804         // (since we have to determine where braces are implicitly
7805         // introduced and such).  So, we fall back to making the array
7806         // type a dependently-sized array type with no specified
7807         // bound.
7808         if (isa<InitListExpr>((Expr *)Args[0])) {
7809           SourceRange Brackets;
7810 
7811           // Scavange the location of the brackets from the entity, if we can.
7812           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7813             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7814               TypeLoc TL = TInfo->getTypeLoc();
7815               if (IncompleteArrayTypeLoc ArrayLoc =
7816                       TL.getAs<IncompleteArrayTypeLoc>())
7817                 Brackets = ArrayLoc.getBracketsRange();
7818             }
7819           }
7820 
7821           *ResultType
7822             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7823                                                    /*NumElts=*/nullptr,
7824                                                    ArrayT->getSizeModifier(),
7825                                        ArrayT->getIndexTypeCVRQualifiers(),
7826                                                    Brackets);
7827         }
7828 
7829       }
7830     }
7831     if (Kind.getKind() == InitializationKind::IK_Direct &&
7832         !Kind.isExplicitCast()) {
7833       // Rebuild the ParenListExpr.
7834       SourceRange ParenRange = Kind.getParenOrBraceRange();
7835       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7836                                   Args);
7837     }
7838     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7839            Kind.isExplicitCast() ||
7840            Kind.getKind() == InitializationKind::IK_DirectList);
7841     return ExprResult(Args[0]);
7842   }
7843 
7844   // No steps means no initialization.
7845   if (Steps.empty())
7846     return ExprResult((Expr *)nullptr);
7847 
7848   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7849       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7850       !Entity.isParameterKind()) {
7851     // Produce a C++98 compatibility warning if we are initializing a reference
7852     // from an initializer list. For parameters, we produce a better warning
7853     // elsewhere.
7854     Expr *Init = Args[0];
7855     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7856         << Init->getSourceRange();
7857   }
7858 
7859   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7860   QualType ETy = Entity.getType();
7861   bool HasGlobalAS = ETy.hasAddressSpace() &&
7862                      ETy.getAddressSpace() == LangAS::opencl_global;
7863 
7864   if (S.getLangOpts().OpenCLVersion >= 200 &&
7865       ETy->isAtomicType() && !HasGlobalAS &&
7866       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7867     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7868         << 1
7869         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7870     return ExprError();
7871   }
7872 
7873   QualType DestType = Entity.getType().getNonReferenceType();
7874   // FIXME: Ugly hack around the fact that Entity.getType() is not
7875   // the same as Entity.getDecl()->getType() in cases involving type merging,
7876   //  and we want latter when it makes sense.
7877   if (ResultType)
7878     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7879                                      Entity.getType();
7880 
7881   ExprResult CurInit((Expr *)nullptr);
7882   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7883 
7884   // For initialization steps that start with a single initializer,
7885   // grab the only argument out the Args and place it into the "current"
7886   // initializer.
7887   switch (Steps.front().Kind) {
7888   case SK_ResolveAddressOfOverloadedFunction:
7889   case SK_CastDerivedToBaseRValue:
7890   case SK_CastDerivedToBaseXValue:
7891   case SK_CastDerivedToBaseLValue:
7892   case SK_BindReference:
7893   case SK_BindReferenceToTemporary:
7894   case SK_FinalCopy:
7895   case SK_ExtraneousCopyToTemporary:
7896   case SK_UserConversion:
7897   case SK_QualificationConversionLValue:
7898   case SK_QualificationConversionXValue:
7899   case SK_QualificationConversionRValue:
7900   case SK_AtomicConversion:
7901   case SK_ConversionSequence:
7902   case SK_ConversionSequenceNoNarrowing:
7903   case SK_ListInitialization:
7904   case SK_UnwrapInitList:
7905   case SK_RewrapInitList:
7906   case SK_CAssignment:
7907   case SK_StringInit:
7908   case SK_ObjCObjectConversion:
7909   case SK_ArrayLoopIndex:
7910   case SK_ArrayLoopInit:
7911   case SK_ArrayInit:
7912   case SK_GNUArrayInit:
7913   case SK_ParenthesizedArrayInit:
7914   case SK_PassByIndirectCopyRestore:
7915   case SK_PassByIndirectRestore:
7916   case SK_ProduceObjCObject:
7917   case SK_StdInitializerList:
7918   case SK_OCLSamplerInit:
7919   case SK_OCLZeroOpaqueType: {
7920     assert(Args.size() == 1);
7921     CurInit = Args[0];
7922     if (!CurInit.get()) return ExprError();
7923     break;
7924   }
7925 
7926   case SK_ConstructorInitialization:
7927   case SK_ConstructorInitializationFromList:
7928   case SK_StdInitializerListConstructorCall:
7929   case SK_ZeroInitialization:
7930     break;
7931   }
7932 
7933   // Promote from an unevaluated context to an unevaluated list context in
7934   // C++11 list-initialization; we need to instantiate entities usable in
7935   // constant expressions here in order to perform narrowing checks =(
7936   EnterExpressionEvaluationContext Evaluated(
7937       S, EnterExpressionEvaluationContext::InitList,
7938       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7939 
7940   // C++ [class.abstract]p2:
7941   //   no objects of an abstract class can be created except as subobjects
7942   //   of a class derived from it
7943   auto checkAbstractType = [&](QualType T) -> bool {
7944     if (Entity.getKind() == InitializedEntity::EK_Base ||
7945         Entity.getKind() == InitializedEntity::EK_Delegating)
7946       return false;
7947     return S.RequireNonAbstractType(Kind.getLocation(), T,
7948                                     diag::err_allocation_of_abstract_type);
7949   };
7950 
7951   // Walk through the computed steps for the initialization sequence,
7952   // performing the specified conversions along the way.
7953   bool ConstructorInitRequiresZeroInit = false;
7954   for (step_iterator Step = step_begin(), StepEnd = step_end();
7955        Step != StepEnd; ++Step) {
7956     if (CurInit.isInvalid())
7957       return ExprError();
7958 
7959     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7960 
7961     switch (Step->Kind) {
7962     case SK_ResolveAddressOfOverloadedFunction:
7963       // Overload resolution determined which function invoke; update the
7964       // initializer to reflect that choice.
7965       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7966       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7967         return ExprError();
7968       CurInit = S.FixOverloadedFunctionReference(CurInit,
7969                                                  Step->Function.FoundDecl,
7970                                                  Step->Function.Function);
7971       break;
7972 
7973     case SK_CastDerivedToBaseRValue:
7974     case SK_CastDerivedToBaseXValue:
7975     case SK_CastDerivedToBaseLValue: {
7976       // We have a derived-to-base cast that produces either an rvalue or an
7977       // lvalue. Perform that cast.
7978 
7979       CXXCastPath BasePath;
7980 
7981       // Casts to inaccessible base classes are allowed with C-style casts.
7982       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7983       if (S.CheckDerivedToBaseConversion(
7984               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7985               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7986         return ExprError();
7987 
7988       ExprValueKind VK =
7989           Step->Kind == SK_CastDerivedToBaseLValue ?
7990               VK_LValue :
7991               (Step->Kind == SK_CastDerivedToBaseXValue ?
7992                    VK_XValue :
7993                    VK_RValue);
7994       CurInit =
7995           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7996                                    CurInit.get(), &BasePath, VK);
7997       break;
7998     }
7999 
8000     case SK_BindReference:
8001       // Reference binding does not have any corresponding ASTs.
8002 
8003       // Check exception specifications
8004       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8005         return ExprError();
8006 
8007       // We don't check for e.g. function pointers here, since address
8008       // availability checks should only occur when the function first decays
8009       // into a pointer or reference.
8010       if (CurInit.get()->getType()->isFunctionProtoType()) {
8011         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8012           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8013             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8014                                                      DRE->getBeginLoc()))
8015               return ExprError();
8016           }
8017         }
8018       }
8019 
8020       CheckForNullPointerDereference(S, CurInit.get());
8021       break;
8022 
8023     case SK_BindReferenceToTemporary: {
8024       // Make sure the "temporary" is actually an rvalue.
8025       assert(CurInit.get()->isRValue() && "not a temporary");
8026 
8027       // Check exception specifications
8028       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8029         return ExprError();
8030 
8031       // Materialize the temporary into memory.
8032       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8033           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
8034       CurInit = MTE;
8035 
8036       // If we're extending this temporary to automatic storage duration -- we
8037       // need to register its cleanup during the full-expression's cleanups.
8038       if (MTE->getStorageDuration() == SD_Automatic &&
8039           MTE->getType().isDestructedType())
8040         S.Cleanup.setExprNeedsCleanups(true);
8041       break;
8042     }
8043 
8044     case SK_FinalCopy:
8045       if (checkAbstractType(Step->Type))
8046         return ExprError();
8047 
8048       // If the overall initialization is initializing a temporary, we already
8049       // bound our argument if it was necessary to do so. If not (if we're
8050       // ultimately initializing a non-temporary), our argument needs to be
8051       // bound since it's initializing a function parameter.
8052       // FIXME: This is a mess. Rationalize temporary destruction.
8053       if (!shouldBindAsTemporary(Entity))
8054         CurInit = S.MaybeBindToTemporary(CurInit.get());
8055       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8056                            /*IsExtraneousCopy=*/false);
8057       break;
8058 
8059     case SK_ExtraneousCopyToTemporary:
8060       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8061                            /*IsExtraneousCopy=*/true);
8062       break;
8063 
8064     case SK_UserConversion: {
8065       // We have a user-defined conversion that invokes either a constructor
8066       // or a conversion function.
8067       CastKind CastKind;
8068       FunctionDecl *Fn = Step->Function.Function;
8069       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8070       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8071       bool CreatedObject = false;
8072       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8073         // Build a call to the selected constructor.
8074         SmallVector<Expr*, 8> ConstructorArgs;
8075         SourceLocation Loc = CurInit.get()->getBeginLoc();
8076 
8077         // Determine the arguments required to actually perform the constructor
8078         // call.
8079         Expr *Arg = CurInit.get();
8080         if (S.CompleteConstructorCall(Constructor,
8081                                       MultiExprArg(&Arg, 1),
8082                                       Loc, ConstructorArgs))
8083           return ExprError();
8084 
8085         // Build an expression that constructs a temporary.
8086         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8087                                           FoundFn, Constructor,
8088                                           ConstructorArgs,
8089                                           HadMultipleCandidates,
8090                                           /*ListInit*/ false,
8091                                           /*StdInitListInit*/ false,
8092                                           /*ZeroInit*/ false,
8093                                           CXXConstructExpr::CK_Complete,
8094                                           SourceRange());
8095         if (CurInit.isInvalid())
8096           return ExprError();
8097 
8098         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8099                                  Entity);
8100         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8101           return ExprError();
8102 
8103         CastKind = CK_ConstructorConversion;
8104         CreatedObject = true;
8105       } else {
8106         // Build a call to the conversion function.
8107         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8108         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8109                                     FoundFn);
8110         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8111           return ExprError();
8112 
8113         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8114                                            HadMultipleCandidates);
8115         if (CurInit.isInvalid())
8116           return ExprError();
8117 
8118         CastKind = CK_UserDefinedConversion;
8119         CreatedObject = Conversion->getReturnType()->isRecordType();
8120       }
8121 
8122       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8123         return ExprError();
8124 
8125       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
8126                                          CastKind, CurInit.get(), nullptr,
8127                                          CurInit.get()->getValueKind());
8128 
8129       if (shouldBindAsTemporary(Entity))
8130         // The overall entity is temporary, so this expression should be
8131         // destroyed at the end of its full-expression.
8132         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8133       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8134         // The object outlasts the full-expression, but we need to prepare for
8135         // a destructor being run on it.
8136         // FIXME: It makes no sense to do this here. This should happen
8137         // regardless of how we initialized the entity.
8138         QualType T = CurInit.get()->getType();
8139         if (const RecordType *Record = T->getAs<RecordType>()) {
8140           CXXDestructorDecl *Destructor
8141             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8142           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8143                                   S.PDiag(diag::err_access_dtor_temp) << T);
8144           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8145           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8146             return ExprError();
8147         }
8148       }
8149       break;
8150     }
8151 
8152     case SK_QualificationConversionLValue:
8153     case SK_QualificationConversionXValue:
8154     case SK_QualificationConversionRValue: {
8155       // Perform a qualification conversion; these can never go wrong.
8156       ExprValueKind VK =
8157           Step->Kind == SK_QualificationConversionLValue
8158               ? VK_LValue
8159               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8160                                                                 : VK_RValue);
8161       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8162       break;
8163     }
8164 
8165     case SK_AtomicConversion: {
8166       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
8167       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8168                                     CK_NonAtomicToAtomic, VK_RValue);
8169       break;
8170     }
8171 
8172     case SK_ConversionSequence:
8173     case SK_ConversionSequenceNoNarrowing: {
8174       if (const auto *FromPtrType =
8175               CurInit.get()->getType()->getAs<PointerType>()) {
8176         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8177           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8178               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8179             S.Diag(CurInit.get()->getExprLoc(),
8180                    diag::warn_noderef_to_dereferenceable_pointer)
8181                 << CurInit.get()->getSourceRange();
8182           }
8183         }
8184       }
8185 
8186       Sema::CheckedConversionKind CCK
8187         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8188         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8189         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8190         : Sema::CCK_ImplicitConversion;
8191       ExprResult CurInitExprRes =
8192         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8193                                     getAssignmentAction(Entity), CCK);
8194       if (CurInitExprRes.isInvalid())
8195         return ExprError();
8196 
8197       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8198 
8199       CurInit = CurInitExprRes;
8200 
8201       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8202           S.getLangOpts().CPlusPlus)
8203         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8204                                     CurInit.get());
8205 
8206       break;
8207     }
8208 
8209     case SK_ListInitialization: {
8210       if (checkAbstractType(Step->Type))
8211         return ExprError();
8212 
8213       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8214       // If we're not initializing the top-level entity, we need to create an
8215       // InitializeTemporary entity for our target type.
8216       QualType Ty = Step->Type;
8217       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8218       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8219       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8220       InitListChecker PerformInitList(S, InitEntity,
8221           InitList, Ty, /*VerifyOnly=*/false,
8222           /*TreatUnavailableAsInvalid=*/false);
8223       if (PerformInitList.HadError())
8224         return ExprError();
8225 
8226       // Hack: We must update *ResultType if available in order to set the
8227       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8228       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8229       if (ResultType &&
8230           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8231         if ((*ResultType)->isRValueReferenceType())
8232           Ty = S.Context.getRValueReferenceType(Ty);
8233         else if ((*ResultType)->isLValueReferenceType())
8234           Ty = S.Context.getLValueReferenceType(Ty,
8235             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8236         *ResultType = Ty;
8237       }
8238 
8239       InitListExpr *StructuredInitList =
8240           PerformInitList.getFullyStructuredList();
8241       CurInit.get();
8242       CurInit = shouldBindAsTemporary(InitEntity)
8243           ? S.MaybeBindToTemporary(StructuredInitList)
8244           : StructuredInitList;
8245       break;
8246     }
8247 
8248     case SK_ConstructorInitializationFromList: {
8249       if (checkAbstractType(Step->Type))
8250         return ExprError();
8251 
8252       // When an initializer list is passed for a parameter of type "reference
8253       // to object", we don't get an EK_Temporary entity, but instead an
8254       // EK_Parameter entity with reference type.
8255       // FIXME: This is a hack. What we really should do is create a user
8256       // conversion step for this case, but this makes it considerably more
8257       // complicated. For now, this will do.
8258       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8259                                         Entity.getType().getNonReferenceType());
8260       bool UseTemporary = Entity.getType()->isReferenceType();
8261       assert(Args.size() == 1 && "expected a single argument for list init");
8262       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8263       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8264         << InitList->getSourceRange();
8265       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8266       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8267                                                                    Entity,
8268                                                  Kind, Arg, *Step,
8269                                                ConstructorInitRequiresZeroInit,
8270                                                /*IsListInitialization*/true,
8271                                                /*IsStdInitListInit*/false,
8272                                                InitList->getLBraceLoc(),
8273                                                InitList->getRBraceLoc());
8274       break;
8275     }
8276 
8277     case SK_UnwrapInitList:
8278       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8279       break;
8280 
8281     case SK_RewrapInitList: {
8282       Expr *E = CurInit.get();
8283       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8284       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8285           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8286       ILE->setSyntacticForm(Syntactic);
8287       ILE->setType(E->getType());
8288       ILE->setValueKind(E->getValueKind());
8289       CurInit = ILE;
8290       break;
8291     }
8292 
8293     case SK_ConstructorInitialization:
8294     case SK_StdInitializerListConstructorCall: {
8295       if (checkAbstractType(Step->Type))
8296         return ExprError();
8297 
8298       // When an initializer list is passed for a parameter of type "reference
8299       // to object", we don't get an EK_Temporary entity, but instead an
8300       // EK_Parameter entity with reference type.
8301       // FIXME: This is a hack. What we really should do is create a user
8302       // conversion step for this case, but this makes it considerably more
8303       // complicated. For now, this will do.
8304       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8305                                         Entity.getType().getNonReferenceType());
8306       bool UseTemporary = Entity.getType()->isReferenceType();
8307       bool IsStdInitListInit =
8308           Step->Kind == SK_StdInitializerListConstructorCall;
8309       Expr *Source = CurInit.get();
8310       SourceRange Range = Kind.hasParenOrBraceRange()
8311                               ? Kind.getParenOrBraceRange()
8312                               : SourceRange();
8313       CurInit = PerformConstructorInitialization(
8314           S, UseTemporary ? TempEntity : Entity, Kind,
8315           Source ? MultiExprArg(Source) : Args, *Step,
8316           ConstructorInitRequiresZeroInit,
8317           /*IsListInitialization*/ IsStdInitListInit,
8318           /*IsStdInitListInitialization*/ IsStdInitListInit,
8319           /*LBraceLoc*/ Range.getBegin(),
8320           /*RBraceLoc*/ Range.getEnd());
8321       break;
8322     }
8323 
8324     case SK_ZeroInitialization: {
8325       step_iterator NextStep = Step;
8326       ++NextStep;
8327       if (NextStep != StepEnd &&
8328           (NextStep->Kind == SK_ConstructorInitialization ||
8329            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8330         // The need for zero-initialization is recorded directly into
8331         // the call to the object's constructor within the next step.
8332         ConstructorInitRequiresZeroInit = true;
8333       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8334                  S.getLangOpts().CPlusPlus &&
8335                  !Kind.isImplicitValueInit()) {
8336         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8337         if (!TSInfo)
8338           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8339                                                     Kind.getRange().getBegin());
8340 
8341         CurInit = new (S.Context) CXXScalarValueInitExpr(
8342             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8343             Kind.getRange().getEnd());
8344       } else {
8345         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8346       }
8347       break;
8348     }
8349 
8350     case SK_CAssignment: {
8351       QualType SourceType = CurInit.get()->getType();
8352 
8353       // Save off the initial CurInit in case we need to emit a diagnostic
8354       ExprResult InitialCurInit = CurInit;
8355       ExprResult Result = CurInit;
8356       Sema::AssignConvertType ConvTy =
8357         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8358             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8359       if (Result.isInvalid())
8360         return ExprError();
8361       CurInit = Result;
8362 
8363       // If this is a call, allow conversion to a transparent union.
8364       ExprResult CurInitExprRes = CurInit;
8365       if (ConvTy != Sema::Compatible &&
8366           Entity.isParameterKind() &&
8367           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8368             == Sema::Compatible)
8369         ConvTy = Sema::Compatible;
8370       if (CurInitExprRes.isInvalid())
8371         return ExprError();
8372       CurInit = CurInitExprRes;
8373 
8374       bool Complained;
8375       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8376                                      Step->Type, SourceType,
8377                                      InitialCurInit.get(),
8378                                      getAssignmentAction(Entity, true),
8379                                      &Complained)) {
8380         PrintInitLocationNote(S, Entity);
8381         return ExprError();
8382       } else if (Complained)
8383         PrintInitLocationNote(S, Entity);
8384       break;
8385     }
8386 
8387     case SK_StringInit: {
8388       QualType Ty = Step->Type;
8389       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
8390                       S.Context.getAsArrayType(Ty), S);
8391       break;
8392     }
8393 
8394     case SK_ObjCObjectConversion:
8395       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8396                           CK_ObjCObjectLValueCast,
8397                           CurInit.get()->getValueKind());
8398       break;
8399 
8400     case SK_ArrayLoopIndex: {
8401       Expr *Cur = CurInit.get();
8402       Expr *BaseExpr = new (S.Context)
8403           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8404                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8405       Expr *IndexExpr =
8406           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8407       CurInit = S.CreateBuiltinArraySubscriptExpr(
8408           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8409       ArrayLoopCommonExprs.push_back(BaseExpr);
8410       break;
8411     }
8412 
8413     case SK_ArrayLoopInit: {
8414       assert(!ArrayLoopCommonExprs.empty() &&
8415              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8416       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8417       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8418                                                   CurInit.get());
8419       break;
8420     }
8421 
8422     case SK_GNUArrayInit:
8423       // Okay: we checked everything before creating this step. Note that
8424       // this is a GNU extension.
8425       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8426         << Step->Type << CurInit.get()->getType()
8427         << CurInit.get()->getSourceRange();
8428       updateGNUCompoundLiteralRValue(CurInit.get());
8429       LLVM_FALLTHROUGH;
8430     case SK_ArrayInit:
8431       // If the destination type is an incomplete array type, update the
8432       // type accordingly.
8433       if (ResultType) {
8434         if (const IncompleteArrayType *IncompleteDest
8435                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8436           if (const ConstantArrayType *ConstantSource
8437                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8438             *ResultType = S.Context.getConstantArrayType(
8439                                              IncompleteDest->getElementType(),
8440                                              ConstantSource->getSize(),
8441                                              ConstantSource->getSizeExpr(),
8442                                              ArrayType::Normal, 0);
8443           }
8444         }
8445       }
8446       break;
8447 
8448     case SK_ParenthesizedArrayInit:
8449       // Okay: we checked everything before creating this step. Note that
8450       // this is a GNU extension.
8451       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8452         << CurInit.get()->getSourceRange();
8453       break;
8454 
8455     case SK_PassByIndirectCopyRestore:
8456     case SK_PassByIndirectRestore:
8457       checkIndirectCopyRestoreSource(S, CurInit.get());
8458       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8459           CurInit.get(), Step->Type,
8460           Step->Kind == SK_PassByIndirectCopyRestore);
8461       break;
8462 
8463     case SK_ProduceObjCObject:
8464       CurInit =
8465           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8466                                    CurInit.get(), nullptr, VK_RValue);
8467       break;
8468 
8469     case SK_StdInitializerList: {
8470       S.Diag(CurInit.get()->getExprLoc(),
8471              diag::warn_cxx98_compat_initializer_list_init)
8472         << CurInit.get()->getSourceRange();
8473 
8474       // Materialize the temporary into memory.
8475       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8476           CurInit.get()->getType(), CurInit.get(),
8477           /*BoundToLvalueReference=*/false);
8478 
8479       // Wrap it in a construction of a std::initializer_list<T>.
8480       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8481 
8482       // Bind the result, in case the library has given initializer_list a
8483       // non-trivial destructor.
8484       if (shouldBindAsTemporary(Entity))
8485         CurInit = S.MaybeBindToTemporary(CurInit.get());
8486       break;
8487     }
8488 
8489     case SK_OCLSamplerInit: {
8490       // Sampler initialization have 5 cases:
8491       //   1. function argument passing
8492       //      1a. argument is a file-scope variable
8493       //      1b. argument is a function-scope variable
8494       //      1c. argument is one of caller function's parameters
8495       //   2. variable initialization
8496       //      2a. initializing a file-scope variable
8497       //      2b. initializing a function-scope variable
8498       //
8499       // For file-scope variables, since they cannot be initialized by function
8500       // call of __translate_sampler_initializer in LLVM IR, their references
8501       // need to be replaced by a cast from their literal initializers to
8502       // sampler type. Since sampler variables can only be used in function
8503       // calls as arguments, we only need to replace them when handling the
8504       // argument passing.
8505       assert(Step->Type->isSamplerT() &&
8506              "Sampler initialization on non-sampler type.");
8507       Expr *Init = CurInit.get()->IgnoreParens();
8508       QualType SourceType = Init->getType();
8509       // Case 1
8510       if (Entity.isParameterKind()) {
8511         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8512           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8513             << SourceType;
8514           break;
8515         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8516           auto Var = cast<VarDecl>(DRE->getDecl());
8517           // Case 1b and 1c
8518           // No cast from integer to sampler is needed.
8519           if (!Var->hasGlobalStorage()) {
8520             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8521                                                CK_LValueToRValue, Init,
8522                                                /*BasePath=*/nullptr, VK_RValue);
8523             break;
8524           }
8525           // Case 1a
8526           // For function call with a file-scope sampler variable as argument,
8527           // get the integer literal.
8528           // Do not diagnose if the file-scope variable does not have initializer
8529           // since this has already been diagnosed when parsing the variable
8530           // declaration.
8531           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8532             break;
8533           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8534             Var->getInit()))->getSubExpr();
8535           SourceType = Init->getType();
8536         }
8537       } else {
8538         // Case 2
8539         // Check initializer is 32 bit integer constant.
8540         // If the initializer is taken from global variable, do not diagnose since
8541         // this has already been done when parsing the variable declaration.
8542         if (!Init->isConstantInitializer(S.Context, false))
8543           break;
8544 
8545         if (!SourceType->isIntegerType() ||
8546             32 != S.Context.getIntWidth(SourceType)) {
8547           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8548             << SourceType;
8549           break;
8550         }
8551 
8552         Expr::EvalResult EVResult;
8553         Init->EvaluateAsInt(EVResult, S.Context);
8554         llvm::APSInt Result = EVResult.Val.getInt();
8555         const uint64_t SamplerValue = Result.getLimitedValue();
8556         // 32-bit value of sampler's initializer is interpreted as
8557         // bit-field with the following structure:
8558         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8559         // |31        6|5    4|3             1|                 0|
8560         // This structure corresponds to enum values of sampler properties
8561         // defined in SPIR spec v1.2 and also opencl-c.h
8562         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8563         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8564         if (FilterMode != 1 && FilterMode != 2 &&
8565             !S.getOpenCLOptions().isEnabled(
8566                 "cl_intel_device_side_avc_motion_estimation"))
8567           S.Diag(Kind.getLocation(),
8568                  diag::warn_sampler_initializer_invalid_bits)
8569                  << "Filter Mode";
8570         if (AddressingMode > 4)
8571           S.Diag(Kind.getLocation(),
8572                  diag::warn_sampler_initializer_invalid_bits)
8573                  << "Addressing Mode";
8574       }
8575 
8576       // Cases 1a, 2a and 2b
8577       // Insert cast from integer to sampler.
8578       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8579                                       CK_IntToOCLSampler);
8580       break;
8581     }
8582     case SK_OCLZeroOpaqueType: {
8583       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8584               Step->Type->isOCLIntelSubgroupAVCType()) &&
8585              "Wrong type for initialization of OpenCL opaque type.");
8586 
8587       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8588                                     CK_ZeroToOCLOpaqueType,
8589                                     CurInit.get()->getValueKind());
8590       break;
8591     }
8592     }
8593   }
8594 
8595   // Check whether the initializer has a shorter lifetime than the initialized
8596   // entity, and if not, either lifetime-extend or warn as appropriate.
8597   if (auto *Init = CurInit.get())
8598     S.checkInitializerLifetime(Entity, Init);
8599 
8600   // Diagnose non-fatal problems with the completed initialization.
8601   if (Entity.getKind() == InitializedEntity::EK_Member &&
8602       cast<FieldDecl>(Entity.getDecl())->isBitField())
8603     S.CheckBitFieldInitialization(Kind.getLocation(),
8604                                   cast<FieldDecl>(Entity.getDecl()),
8605                                   CurInit.get());
8606 
8607   // Check for std::move on construction.
8608   if (const Expr *E = CurInit.get()) {
8609     CheckMoveOnConstruction(S, E,
8610                             Entity.getKind() == InitializedEntity::EK_Result);
8611   }
8612 
8613   return CurInit;
8614 }
8615 
8616 /// Somewhere within T there is an uninitialized reference subobject.
8617 /// Dig it out and diagnose it.
8618 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8619                                            QualType T) {
8620   if (T->isReferenceType()) {
8621     S.Diag(Loc, diag::err_reference_without_init)
8622       << T.getNonReferenceType();
8623     return true;
8624   }
8625 
8626   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8627   if (!RD || !RD->hasUninitializedReferenceMember())
8628     return false;
8629 
8630   for (const auto *FI : RD->fields()) {
8631     if (FI->isUnnamedBitfield())
8632       continue;
8633 
8634     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8635       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8636       return true;
8637     }
8638   }
8639 
8640   for (const auto &BI : RD->bases()) {
8641     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8642       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8643       return true;
8644     }
8645   }
8646 
8647   return false;
8648 }
8649 
8650 
8651 //===----------------------------------------------------------------------===//
8652 // Diagnose initialization failures
8653 //===----------------------------------------------------------------------===//
8654 
8655 /// Emit notes associated with an initialization that failed due to a
8656 /// "simple" conversion failure.
8657 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8658                                    Expr *op) {
8659   QualType destType = entity.getType();
8660   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8661       op->getType()->isObjCObjectPointerType()) {
8662 
8663     // Emit a possible note about the conversion failing because the
8664     // operand is a message send with a related result type.
8665     S.EmitRelatedResultTypeNote(op);
8666 
8667     // Emit a possible note about a return failing because we're
8668     // expecting a related result type.
8669     if (entity.getKind() == InitializedEntity::EK_Result)
8670       S.EmitRelatedResultTypeNoteForReturn(destType);
8671   }
8672 }
8673 
8674 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8675                              InitListExpr *InitList) {
8676   QualType DestType = Entity.getType();
8677 
8678   QualType E;
8679   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8680     QualType ArrayType = S.Context.getConstantArrayType(
8681         E.withConst(),
8682         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8683                     InitList->getNumInits()),
8684         nullptr, clang::ArrayType::Normal, 0);
8685     InitializedEntity HiddenArray =
8686         InitializedEntity::InitializeTemporary(ArrayType);
8687     return diagnoseListInit(S, HiddenArray, InitList);
8688   }
8689 
8690   if (DestType->isReferenceType()) {
8691     // A list-initialization failure for a reference means that we tried to
8692     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8693     // inner initialization failed.
8694     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8695     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8696     SourceLocation Loc = InitList->getBeginLoc();
8697     if (auto *D = Entity.getDecl())
8698       Loc = D->getLocation();
8699     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8700     return;
8701   }
8702 
8703   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8704                                    /*VerifyOnly=*/false,
8705                                    /*TreatUnavailableAsInvalid=*/false);
8706   assert(DiagnoseInitList.HadError() &&
8707          "Inconsistent init list check result.");
8708 }
8709 
8710 bool InitializationSequence::Diagnose(Sema &S,
8711                                       const InitializedEntity &Entity,
8712                                       const InitializationKind &Kind,
8713                                       ArrayRef<Expr *> Args) {
8714   if (!Failed())
8715     return false;
8716 
8717   // When we want to diagnose only one element of a braced-init-list,
8718   // we need to factor it out.
8719   Expr *OnlyArg;
8720   if (Args.size() == 1) {
8721     auto *List = dyn_cast<InitListExpr>(Args[0]);
8722     if (List && List->getNumInits() == 1)
8723       OnlyArg = List->getInit(0);
8724     else
8725       OnlyArg = Args[0];
8726   }
8727   else
8728     OnlyArg = nullptr;
8729 
8730   QualType DestType = Entity.getType();
8731   switch (Failure) {
8732   case FK_TooManyInitsForReference:
8733     // FIXME: Customize for the initialized entity?
8734     if (Args.empty()) {
8735       // Dig out the reference subobject which is uninitialized and diagnose it.
8736       // If this is value-initialization, this could be nested some way within
8737       // the target type.
8738       assert(Kind.getKind() == InitializationKind::IK_Value ||
8739              DestType->isReferenceType());
8740       bool Diagnosed =
8741         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8742       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8743       (void)Diagnosed;
8744     } else  // FIXME: diagnostic below could be better!
8745       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8746           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8747     break;
8748   case FK_ParenthesizedListInitForReference:
8749     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8750       << 1 << Entity.getType() << Args[0]->getSourceRange();
8751     break;
8752 
8753   case FK_ArrayNeedsInitList:
8754     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8755     break;
8756   case FK_ArrayNeedsInitListOrStringLiteral:
8757     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8758     break;
8759   case FK_ArrayNeedsInitListOrWideStringLiteral:
8760     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8761     break;
8762   case FK_NarrowStringIntoWideCharArray:
8763     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8764     break;
8765   case FK_WideStringIntoCharArray:
8766     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8767     break;
8768   case FK_IncompatWideStringIntoWideChar:
8769     S.Diag(Kind.getLocation(),
8770            diag::err_array_init_incompat_wide_string_into_wchar);
8771     break;
8772   case FK_PlainStringIntoUTF8Char:
8773     S.Diag(Kind.getLocation(),
8774            diag::err_array_init_plain_string_into_char8_t);
8775     S.Diag(Args.front()->getBeginLoc(),
8776            diag::note_array_init_plain_string_into_char8_t)
8777         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8778     break;
8779   case FK_UTF8StringIntoPlainChar:
8780     S.Diag(Kind.getLocation(),
8781            diag::err_array_init_utf8_string_into_char)
8782       << S.getLangOpts().CPlusPlus2a;
8783     break;
8784   case FK_ArrayTypeMismatch:
8785   case FK_NonConstantArrayInit:
8786     S.Diag(Kind.getLocation(),
8787            (Failure == FK_ArrayTypeMismatch
8788               ? diag::err_array_init_different_type
8789               : diag::err_array_init_non_constant_array))
8790       << DestType.getNonReferenceType()
8791       << OnlyArg->getType()
8792       << Args[0]->getSourceRange();
8793     break;
8794 
8795   case FK_VariableLengthArrayHasInitializer:
8796     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8797       << Args[0]->getSourceRange();
8798     break;
8799 
8800   case FK_AddressOfOverloadFailed: {
8801     DeclAccessPair Found;
8802     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8803                                          DestType.getNonReferenceType(),
8804                                          true,
8805                                          Found);
8806     break;
8807   }
8808 
8809   case FK_AddressOfUnaddressableFunction: {
8810     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8811     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8812                                         OnlyArg->getBeginLoc());
8813     break;
8814   }
8815 
8816   case FK_ReferenceInitOverloadFailed:
8817   case FK_UserConversionOverloadFailed:
8818     switch (FailedOverloadResult) {
8819     case OR_Ambiguous:
8820 
8821       FailedCandidateSet.NoteCandidates(
8822           PartialDiagnosticAt(
8823               Kind.getLocation(),
8824               Failure == FK_UserConversionOverloadFailed
8825                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8826                      << OnlyArg->getType() << DestType
8827                      << Args[0]->getSourceRange())
8828                   : (S.PDiag(diag::err_ref_init_ambiguous)
8829                      << DestType << OnlyArg->getType()
8830                      << Args[0]->getSourceRange())),
8831           S, OCD_AmbiguousCandidates, Args);
8832       break;
8833 
8834     case OR_No_Viable_Function: {
8835       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8836       if (!S.RequireCompleteType(Kind.getLocation(),
8837                                  DestType.getNonReferenceType(),
8838                           diag::err_typecheck_nonviable_condition_incomplete,
8839                                OnlyArg->getType(), Args[0]->getSourceRange()))
8840         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8841           << (Entity.getKind() == InitializedEntity::EK_Result)
8842           << OnlyArg->getType() << Args[0]->getSourceRange()
8843           << DestType.getNonReferenceType();
8844 
8845       FailedCandidateSet.NoteCandidates(S, Args, Cands);
8846       break;
8847     }
8848     case OR_Deleted: {
8849       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8850         << OnlyArg->getType() << DestType.getNonReferenceType()
8851         << Args[0]->getSourceRange();
8852       OverloadCandidateSet::iterator Best;
8853       OverloadingResult Ovl
8854         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8855       if (Ovl == OR_Deleted) {
8856         S.NoteDeletedFunction(Best->Function);
8857       } else {
8858         llvm_unreachable("Inconsistent overload resolution?");
8859       }
8860       break;
8861     }
8862 
8863     case OR_Success:
8864       llvm_unreachable("Conversion did not fail!");
8865     }
8866     break;
8867 
8868   case FK_NonConstLValueReferenceBindingToTemporary:
8869     if (isa<InitListExpr>(Args[0])) {
8870       S.Diag(Kind.getLocation(),
8871              diag::err_lvalue_reference_bind_to_initlist)
8872       << DestType.getNonReferenceType().isVolatileQualified()
8873       << DestType.getNonReferenceType()
8874       << Args[0]->getSourceRange();
8875       break;
8876     }
8877     LLVM_FALLTHROUGH;
8878 
8879   case FK_NonConstLValueReferenceBindingToUnrelated:
8880     S.Diag(Kind.getLocation(),
8881            Failure == FK_NonConstLValueReferenceBindingToTemporary
8882              ? diag::err_lvalue_reference_bind_to_temporary
8883              : diag::err_lvalue_reference_bind_to_unrelated)
8884       << DestType.getNonReferenceType().isVolatileQualified()
8885       << DestType.getNonReferenceType()
8886       << OnlyArg->getType()
8887       << Args[0]->getSourceRange();
8888     break;
8889 
8890   case FK_NonConstLValueReferenceBindingToBitfield: {
8891     // We don't necessarily have an unambiguous source bit-field.
8892     FieldDecl *BitField = Args[0]->getSourceBitField();
8893     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8894       << DestType.isVolatileQualified()
8895       << (BitField ? BitField->getDeclName() : DeclarationName())
8896       << (BitField != nullptr)
8897       << Args[0]->getSourceRange();
8898     if (BitField)
8899       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8900     break;
8901   }
8902 
8903   case FK_NonConstLValueReferenceBindingToVectorElement:
8904     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8905       << DestType.isVolatileQualified()
8906       << Args[0]->getSourceRange();
8907     break;
8908 
8909   case FK_RValueReferenceBindingToLValue:
8910     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8911       << DestType.getNonReferenceType() << OnlyArg->getType()
8912       << Args[0]->getSourceRange();
8913     break;
8914 
8915   case FK_ReferenceAddrspaceMismatchTemporary:
8916     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
8917         << DestType << Args[0]->getSourceRange();
8918     break;
8919 
8920   case FK_ReferenceInitDropsQualifiers: {
8921     QualType SourceType = OnlyArg->getType();
8922     QualType NonRefType = DestType.getNonReferenceType();
8923     Qualifiers DroppedQualifiers =
8924         SourceType.getQualifiers() - NonRefType.getQualifiers();
8925 
8926     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
8927             SourceType.getQualifiers()))
8928       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8929           << NonRefType << SourceType << 1 /*addr space*/
8930           << Args[0]->getSourceRange();
8931     else if (DroppedQualifiers.hasQualifiers())
8932       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8933           << NonRefType << SourceType << 0 /*cv quals*/
8934           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
8935           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
8936     else
8937       // FIXME: Consider decomposing the type and explaining which qualifiers
8938       // were dropped where, or on which level a 'const' is missing, etc.
8939       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8940           << NonRefType << SourceType << 2 /*incompatible quals*/
8941           << Args[0]->getSourceRange();
8942     break;
8943   }
8944 
8945   case FK_ReferenceInitFailed:
8946     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8947       << DestType.getNonReferenceType()
8948       << DestType.getNonReferenceType()->isIncompleteType()
8949       << OnlyArg->isLValue()
8950       << OnlyArg->getType()
8951       << Args[0]->getSourceRange();
8952     emitBadConversionNotes(S, Entity, Args[0]);
8953     break;
8954 
8955   case FK_ConversionFailed: {
8956     QualType FromType = OnlyArg->getType();
8957     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8958       << (int)Entity.getKind()
8959       << DestType
8960       << OnlyArg->isLValue()
8961       << FromType
8962       << Args[0]->getSourceRange();
8963     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8964     S.Diag(Kind.getLocation(), PDiag);
8965     emitBadConversionNotes(S, Entity, Args[0]);
8966     break;
8967   }
8968 
8969   case FK_ConversionFromPropertyFailed:
8970     // No-op. This error has already been reported.
8971     break;
8972 
8973   case FK_TooManyInitsForScalar: {
8974     SourceRange R;
8975 
8976     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8977     if (InitList && InitList->getNumInits() >= 1) {
8978       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8979     } else {
8980       assert(Args.size() > 1 && "Expected multiple initializers!");
8981       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8982     }
8983 
8984     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8985     if (Kind.isCStyleOrFunctionalCast())
8986       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8987         << R;
8988     else
8989       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8990         << /*scalar=*/2 << R;
8991     break;
8992   }
8993 
8994   case FK_ParenthesizedListInitForScalar:
8995     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8996       << 0 << Entity.getType() << Args[0]->getSourceRange();
8997     break;
8998 
8999   case FK_ReferenceBindingToInitList:
9000     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9001       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9002     break;
9003 
9004   case FK_InitListBadDestinationType:
9005     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9006       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9007     break;
9008 
9009   case FK_ListConstructorOverloadFailed:
9010   case FK_ConstructorOverloadFailed: {
9011     SourceRange ArgsRange;
9012     if (Args.size())
9013       ArgsRange =
9014           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9015 
9016     if (Failure == FK_ListConstructorOverloadFailed) {
9017       assert(Args.size() == 1 &&
9018              "List construction from other than 1 argument.");
9019       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9020       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9021     }
9022 
9023     // FIXME: Using "DestType" for the entity we're printing is probably
9024     // bad.
9025     switch (FailedOverloadResult) {
9026       case OR_Ambiguous:
9027         FailedCandidateSet.NoteCandidates(
9028             PartialDiagnosticAt(Kind.getLocation(),
9029                                 S.PDiag(diag::err_ovl_ambiguous_init)
9030                                     << DestType << ArgsRange),
9031             S, OCD_AmbiguousCandidates, Args);
9032         break;
9033 
9034       case OR_No_Viable_Function:
9035         if (Kind.getKind() == InitializationKind::IK_Default &&
9036             (Entity.getKind() == InitializedEntity::EK_Base ||
9037              Entity.getKind() == InitializedEntity::EK_Member) &&
9038             isa<CXXConstructorDecl>(S.CurContext)) {
9039           // This is implicit default initialization of a member or
9040           // base within a constructor. If no viable function was
9041           // found, notify the user that they need to explicitly
9042           // initialize this base/member.
9043           CXXConstructorDecl *Constructor
9044             = cast<CXXConstructorDecl>(S.CurContext);
9045           const CXXRecordDecl *InheritedFrom = nullptr;
9046           if (auto Inherited = Constructor->getInheritedConstructor())
9047             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9048           if (Entity.getKind() == InitializedEntity::EK_Base) {
9049             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9050               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9051               << S.Context.getTypeDeclType(Constructor->getParent())
9052               << /*base=*/0
9053               << Entity.getType()
9054               << InheritedFrom;
9055 
9056             RecordDecl *BaseDecl
9057               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9058                                                                   ->getDecl();
9059             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9060               << S.Context.getTagDeclType(BaseDecl);
9061           } else {
9062             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9063               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9064               << S.Context.getTypeDeclType(Constructor->getParent())
9065               << /*member=*/1
9066               << Entity.getName()
9067               << InheritedFrom;
9068             S.Diag(Entity.getDecl()->getLocation(),
9069                    diag::note_member_declared_at);
9070 
9071             if (const RecordType *Record
9072                                  = Entity.getType()->getAs<RecordType>())
9073               S.Diag(Record->getDecl()->getLocation(),
9074                      diag::note_previous_decl)
9075                 << S.Context.getTagDeclType(Record->getDecl());
9076           }
9077           break;
9078         }
9079 
9080         FailedCandidateSet.NoteCandidates(
9081             PartialDiagnosticAt(
9082                 Kind.getLocation(),
9083                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9084                     << DestType << ArgsRange),
9085             S, OCD_AllCandidates, Args);
9086         break;
9087 
9088       case OR_Deleted: {
9089         OverloadCandidateSet::iterator Best;
9090         OverloadingResult Ovl
9091           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9092         if (Ovl != OR_Deleted) {
9093           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9094               << DestType << ArgsRange;
9095           llvm_unreachable("Inconsistent overload resolution?");
9096           break;
9097         }
9098 
9099         // If this is a defaulted or implicitly-declared function, then
9100         // it was implicitly deleted. Make it clear that the deletion was
9101         // implicit.
9102         if (S.isImplicitlyDeleted(Best->Function))
9103           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9104             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9105             << DestType << ArgsRange;
9106         else
9107           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9108               << DestType << ArgsRange;
9109 
9110         S.NoteDeletedFunction(Best->Function);
9111         break;
9112       }
9113 
9114       case OR_Success:
9115         llvm_unreachable("Conversion did not fail!");
9116     }
9117   }
9118   break;
9119 
9120   case FK_DefaultInitOfConst:
9121     if (Entity.getKind() == InitializedEntity::EK_Member &&
9122         isa<CXXConstructorDecl>(S.CurContext)) {
9123       // This is implicit default-initialization of a const member in
9124       // a constructor. Complain that it needs to be explicitly
9125       // initialized.
9126       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9127       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9128         << (Constructor->getInheritedConstructor() ? 2 :
9129             Constructor->isImplicit() ? 1 : 0)
9130         << S.Context.getTypeDeclType(Constructor->getParent())
9131         << /*const=*/1
9132         << Entity.getName();
9133       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9134         << Entity.getName();
9135     } else {
9136       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9137           << DestType << (bool)DestType->getAs<RecordType>();
9138     }
9139     break;
9140 
9141   case FK_Incomplete:
9142     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9143                           diag::err_init_incomplete_type);
9144     break;
9145 
9146   case FK_ListInitializationFailed: {
9147     // Run the init list checker again to emit diagnostics.
9148     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9149     diagnoseListInit(S, Entity, InitList);
9150     break;
9151   }
9152 
9153   case FK_PlaceholderType: {
9154     // FIXME: Already diagnosed!
9155     break;
9156   }
9157 
9158   case FK_ExplicitConstructor: {
9159     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9160       << Args[0]->getSourceRange();
9161     OverloadCandidateSet::iterator Best;
9162     OverloadingResult Ovl
9163       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9164     (void)Ovl;
9165     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9166     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9167     S.Diag(CtorDecl->getLocation(),
9168            diag::note_explicit_ctor_deduction_guide_here) << false;
9169     break;
9170   }
9171   }
9172 
9173   PrintInitLocationNote(S, Entity);
9174   return true;
9175 }
9176 
9177 void InitializationSequence::dump(raw_ostream &OS) const {
9178   switch (SequenceKind) {
9179   case FailedSequence: {
9180     OS << "Failed sequence: ";
9181     switch (Failure) {
9182     case FK_TooManyInitsForReference:
9183       OS << "too many initializers for reference";
9184       break;
9185 
9186     case FK_ParenthesizedListInitForReference:
9187       OS << "parenthesized list init for reference";
9188       break;
9189 
9190     case FK_ArrayNeedsInitList:
9191       OS << "array requires initializer list";
9192       break;
9193 
9194     case FK_AddressOfUnaddressableFunction:
9195       OS << "address of unaddressable function was taken";
9196       break;
9197 
9198     case FK_ArrayNeedsInitListOrStringLiteral:
9199       OS << "array requires initializer list or string literal";
9200       break;
9201 
9202     case FK_ArrayNeedsInitListOrWideStringLiteral:
9203       OS << "array requires initializer list or wide string literal";
9204       break;
9205 
9206     case FK_NarrowStringIntoWideCharArray:
9207       OS << "narrow string into wide char array";
9208       break;
9209 
9210     case FK_WideStringIntoCharArray:
9211       OS << "wide string into char array";
9212       break;
9213 
9214     case FK_IncompatWideStringIntoWideChar:
9215       OS << "incompatible wide string into wide char array";
9216       break;
9217 
9218     case FK_PlainStringIntoUTF8Char:
9219       OS << "plain string literal into char8_t array";
9220       break;
9221 
9222     case FK_UTF8StringIntoPlainChar:
9223       OS << "u8 string literal into char array";
9224       break;
9225 
9226     case FK_ArrayTypeMismatch:
9227       OS << "array type mismatch";
9228       break;
9229 
9230     case FK_NonConstantArrayInit:
9231       OS << "non-constant array initializer";
9232       break;
9233 
9234     case FK_AddressOfOverloadFailed:
9235       OS << "address of overloaded function failed";
9236       break;
9237 
9238     case FK_ReferenceInitOverloadFailed:
9239       OS << "overload resolution for reference initialization failed";
9240       break;
9241 
9242     case FK_NonConstLValueReferenceBindingToTemporary:
9243       OS << "non-const lvalue reference bound to temporary";
9244       break;
9245 
9246     case FK_NonConstLValueReferenceBindingToBitfield:
9247       OS << "non-const lvalue reference bound to bit-field";
9248       break;
9249 
9250     case FK_NonConstLValueReferenceBindingToVectorElement:
9251       OS << "non-const lvalue reference bound to vector element";
9252       break;
9253 
9254     case FK_NonConstLValueReferenceBindingToUnrelated:
9255       OS << "non-const lvalue reference bound to unrelated type";
9256       break;
9257 
9258     case FK_RValueReferenceBindingToLValue:
9259       OS << "rvalue reference bound to an lvalue";
9260       break;
9261 
9262     case FK_ReferenceInitDropsQualifiers:
9263       OS << "reference initialization drops qualifiers";
9264       break;
9265 
9266     case FK_ReferenceAddrspaceMismatchTemporary:
9267       OS << "reference with mismatching address space bound to temporary";
9268       break;
9269 
9270     case FK_ReferenceInitFailed:
9271       OS << "reference initialization failed";
9272       break;
9273 
9274     case FK_ConversionFailed:
9275       OS << "conversion failed";
9276       break;
9277 
9278     case FK_ConversionFromPropertyFailed:
9279       OS << "conversion from property failed";
9280       break;
9281 
9282     case FK_TooManyInitsForScalar:
9283       OS << "too many initializers for scalar";
9284       break;
9285 
9286     case FK_ParenthesizedListInitForScalar:
9287       OS << "parenthesized list init for reference";
9288       break;
9289 
9290     case FK_ReferenceBindingToInitList:
9291       OS << "referencing binding to initializer list";
9292       break;
9293 
9294     case FK_InitListBadDestinationType:
9295       OS << "initializer list for non-aggregate, non-scalar type";
9296       break;
9297 
9298     case FK_UserConversionOverloadFailed:
9299       OS << "overloading failed for user-defined conversion";
9300       break;
9301 
9302     case FK_ConstructorOverloadFailed:
9303       OS << "constructor overloading failed";
9304       break;
9305 
9306     case FK_DefaultInitOfConst:
9307       OS << "default initialization of a const variable";
9308       break;
9309 
9310     case FK_Incomplete:
9311       OS << "initialization of incomplete type";
9312       break;
9313 
9314     case FK_ListInitializationFailed:
9315       OS << "list initialization checker failure";
9316       break;
9317 
9318     case FK_VariableLengthArrayHasInitializer:
9319       OS << "variable length array has an initializer";
9320       break;
9321 
9322     case FK_PlaceholderType:
9323       OS << "initializer expression isn't contextually valid";
9324       break;
9325 
9326     case FK_ListConstructorOverloadFailed:
9327       OS << "list constructor overloading failed";
9328       break;
9329 
9330     case FK_ExplicitConstructor:
9331       OS << "list copy initialization chose explicit constructor";
9332       break;
9333     }
9334     OS << '\n';
9335     return;
9336   }
9337 
9338   case DependentSequence:
9339     OS << "Dependent sequence\n";
9340     return;
9341 
9342   case NormalSequence:
9343     OS << "Normal sequence: ";
9344     break;
9345   }
9346 
9347   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9348     if (S != step_begin()) {
9349       OS << " -> ";
9350     }
9351 
9352     switch (S->Kind) {
9353     case SK_ResolveAddressOfOverloadedFunction:
9354       OS << "resolve address of overloaded function";
9355       break;
9356 
9357     case SK_CastDerivedToBaseRValue:
9358       OS << "derived-to-base (rvalue)";
9359       break;
9360 
9361     case SK_CastDerivedToBaseXValue:
9362       OS << "derived-to-base (xvalue)";
9363       break;
9364 
9365     case SK_CastDerivedToBaseLValue:
9366       OS << "derived-to-base (lvalue)";
9367       break;
9368 
9369     case SK_BindReference:
9370       OS << "bind reference to lvalue";
9371       break;
9372 
9373     case SK_BindReferenceToTemporary:
9374       OS << "bind reference to a temporary";
9375       break;
9376 
9377     case SK_FinalCopy:
9378       OS << "final copy in class direct-initialization";
9379       break;
9380 
9381     case SK_ExtraneousCopyToTemporary:
9382       OS << "extraneous C++03 copy to temporary";
9383       break;
9384 
9385     case SK_UserConversion:
9386       OS << "user-defined conversion via " << *S->Function.Function;
9387       break;
9388 
9389     case SK_QualificationConversionRValue:
9390       OS << "qualification conversion (rvalue)";
9391       break;
9392 
9393     case SK_QualificationConversionXValue:
9394       OS << "qualification conversion (xvalue)";
9395       break;
9396 
9397     case SK_QualificationConversionLValue:
9398       OS << "qualification conversion (lvalue)";
9399       break;
9400 
9401     case SK_AtomicConversion:
9402       OS << "non-atomic-to-atomic conversion";
9403       break;
9404 
9405     case SK_ConversionSequence:
9406       OS << "implicit conversion sequence (";
9407       S->ICS->dump(); // FIXME: use OS
9408       OS << ")";
9409       break;
9410 
9411     case SK_ConversionSequenceNoNarrowing:
9412       OS << "implicit conversion sequence with narrowing prohibited (";
9413       S->ICS->dump(); // FIXME: use OS
9414       OS << ")";
9415       break;
9416 
9417     case SK_ListInitialization:
9418       OS << "list aggregate initialization";
9419       break;
9420 
9421     case SK_UnwrapInitList:
9422       OS << "unwrap reference initializer list";
9423       break;
9424 
9425     case SK_RewrapInitList:
9426       OS << "rewrap reference initializer list";
9427       break;
9428 
9429     case SK_ConstructorInitialization:
9430       OS << "constructor initialization";
9431       break;
9432 
9433     case SK_ConstructorInitializationFromList:
9434       OS << "list initialization via constructor";
9435       break;
9436 
9437     case SK_ZeroInitialization:
9438       OS << "zero initialization";
9439       break;
9440 
9441     case SK_CAssignment:
9442       OS << "C assignment";
9443       break;
9444 
9445     case SK_StringInit:
9446       OS << "string initialization";
9447       break;
9448 
9449     case SK_ObjCObjectConversion:
9450       OS << "Objective-C object conversion";
9451       break;
9452 
9453     case SK_ArrayLoopIndex:
9454       OS << "indexing for array initialization loop";
9455       break;
9456 
9457     case SK_ArrayLoopInit:
9458       OS << "array initialization loop";
9459       break;
9460 
9461     case SK_ArrayInit:
9462       OS << "array initialization";
9463       break;
9464 
9465     case SK_GNUArrayInit:
9466       OS << "array initialization (GNU extension)";
9467       break;
9468 
9469     case SK_ParenthesizedArrayInit:
9470       OS << "parenthesized array initialization";
9471       break;
9472 
9473     case SK_PassByIndirectCopyRestore:
9474       OS << "pass by indirect copy and restore";
9475       break;
9476 
9477     case SK_PassByIndirectRestore:
9478       OS << "pass by indirect restore";
9479       break;
9480 
9481     case SK_ProduceObjCObject:
9482       OS << "Objective-C object retension";
9483       break;
9484 
9485     case SK_StdInitializerList:
9486       OS << "std::initializer_list from initializer list";
9487       break;
9488 
9489     case SK_StdInitializerListConstructorCall:
9490       OS << "list initialization from std::initializer_list";
9491       break;
9492 
9493     case SK_OCLSamplerInit:
9494       OS << "OpenCL sampler_t from integer constant";
9495       break;
9496 
9497     case SK_OCLZeroOpaqueType:
9498       OS << "OpenCL opaque type from zero";
9499       break;
9500     }
9501 
9502     OS << " [" << S->Type.getAsString() << ']';
9503   }
9504 
9505   OS << '\n';
9506 }
9507 
9508 void InitializationSequence::dump() const {
9509   dump(llvm::errs());
9510 }
9511 
9512 static bool NarrowingErrs(const LangOptions &L) {
9513   return L.CPlusPlus11 &&
9514          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9515 }
9516 
9517 static void DiagnoseNarrowingInInitList(Sema &S,
9518                                         const ImplicitConversionSequence &ICS,
9519                                         QualType PreNarrowingType,
9520                                         QualType EntityType,
9521                                         const Expr *PostInit) {
9522   const StandardConversionSequence *SCS = nullptr;
9523   switch (ICS.getKind()) {
9524   case ImplicitConversionSequence::StandardConversion:
9525     SCS = &ICS.Standard;
9526     break;
9527   case ImplicitConversionSequence::UserDefinedConversion:
9528     SCS = &ICS.UserDefined.After;
9529     break;
9530   case ImplicitConversionSequence::AmbiguousConversion:
9531   case ImplicitConversionSequence::EllipsisConversion:
9532   case ImplicitConversionSequence::BadConversion:
9533     return;
9534   }
9535 
9536   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9537   APValue ConstantValue;
9538   QualType ConstantType;
9539   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9540                                 ConstantType)) {
9541   case NK_Not_Narrowing:
9542   case NK_Dependent_Narrowing:
9543     // No narrowing occurred.
9544     return;
9545 
9546   case NK_Type_Narrowing:
9547     // This was a floating-to-integer conversion, which is always considered a
9548     // narrowing conversion even if the value is a constant and can be
9549     // represented exactly as an integer.
9550     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9551                                         ? diag::ext_init_list_type_narrowing
9552                                         : diag::warn_init_list_type_narrowing)
9553         << PostInit->getSourceRange()
9554         << PreNarrowingType.getLocalUnqualifiedType()
9555         << EntityType.getLocalUnqualifiedType();
9556     break;
9557 
9558   case NK_Constant_Narrowing:
9559     // A constant value was narrowed.
9560     S.Diag(PostInit->getBeginLoc(),
9561            NarrowingErrs(S.getLangOpts())
9562                ? diag::ext_init_list_constant_narrowing
9563                : diag::warn_init_list_constant_narrowing)
9564         << PostInit->getSourceRange()
9565         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9566         << EntityType.getLocalUnqualifiedType();
9567     break;
9568 
9569   case NK_Variable_Narrowing:
9570     // A variable's value may have been narrowed.
9571     S.Diag(PostInit->getBeginLoc(),
9572            NarrowingErrs(S.getLangOpts())
9573                ? diag::ext_init_list_variable_narrowing
9574                : diag::warn_init_list_variable_narrowing)
9575         << PostInit->getSourceRange()
9576         << PreNarrowingType.getLocalUnqualifiedType()
9577         << EntityType.getLocalUnqualifiedType();
9578     break;
9579   }
9580 
9581   SmallString<128> StaticCast;
9582   llvm::raw_svector_ostream OS(StaticCast);
9583   OS << "static_cast<";
9584   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9585     // It's important to use the typedef's name if there is one so that the
9586     // fixit doesn't break code using types like int64_t.
9587     //
9588     // FIXME: This will break if the typedef requires qualification.  But
9589     // getQualifiedNameAsString() includes non-machine-parsable components.
9590     OS << *TT->getDecl();
9591   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9592     OS << BT->getName(S.getLangOpts());
9593   else {
9594     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9595     // with a broken cast.
9596     return;
9597   }
9598   OS << ">(";
9599   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9600       << PostInit->getSourceRange()
9601       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9602       << FixItHint::CreateInsertion(
9603              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9604 }
9605 
9606 //===----------------------------------------------------------------------===//
9607 // Initialization helper functions
9608 //===----------------------------------------------------------------------===//
9609 bool
9610 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9611                                    ExprResult Init) {
9612   if (Init.isInvalid())
9613     return false;
9614 
9615   Expr *InitE = Init.get();
9616   assert(InitE && "No initialization expression");
9617 
9618   InitializationKind Kind =
9619       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9620   InitializationSequence Seq(*this, Entity, Kind, InitE);
9621   return !Seq.Failed();
9622 }
9623 
9624 ExprResult
9625 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9626                                 SourceLocation EqualLoc,
9627                                 ExprResult Init,
9628                                 bool TopLevelOfInitList,
9629                                 bool AllowExplicit) {
9630   if (Init.isInvalid())
9631     return ExprError();
9632 
9633   Expr *InitE = Init.get();
9634   assert(InitE && "No initialization expression?");
9635 
9636   if (EqualLoc.isInvalid())
9637     EqualLoc = InitE->getBeginLoc();
9638 
9639   InitializationKind Kind = InitializationKind::CreateCopy(
9640       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9641   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9642 
9643   // Prevent infinite recursion when performing parameter copy-initialization.
9644   const bool ShouldTrackCopy =
9645       Entity.isParameterKind() && Seq.isConstructorInitialization();
9646   if (ShouldTrackCopy) {
9647     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9648         CurrentParameterCopyTypes.end()) {
9649       Seq.SetOverloadFailure(
9650           InitializationSequence::FK_ConstructorOverloadFailed,
9651           OR_No_Viable_Function);
9652 
9653       // Try to give a meaningful diagnostic note for the problematic
9654       // constructor.
9655       const auto LastStep = Seq.step_end() - 1;
9656       assert(LastStep->Kind ==
9657              InitializationSequence::SK_ConstructorInitialization);
9658       const FunctionDecl *Function = LastStep->Function.Function;
9659       auto Candidate =
9660           llvm::find_if(Seq.getFailedCandidateSet(),
9661                         [Function](const OverloadCandidate &Candidate) -> bool {
9662                           return Candidate.Viable &&
9663                                  Candidate.Function == Function &&
9664                                  Candidate.Conversions.size() > 0;
9665                         });
9666       if (Candidate != Seq.getFailedCandidateSet().end() &&
9667           Function->getNumParams() > 0) {
9668         Candidate->Viable = false;
9669         Candidate->FailureKind = ovl_fail_bad_conversion;
9670         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9671                                          InitE,
9672                                          Function->getParamDecl(0)->getType());
9673       }
9674     }
9675     CurrentParameterCopyTypes.push_back(Entity.getType());
9676   }
9677 
9678   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9679 
9680   if (ShouldTrackCopy)
9681     CurrentParameterCopyTypes.pop_back();
9682 
9683   return Result;
9684 }
9685 
9686 /// Determine whether RD is, or is derived from, a specialization of CTD.
9687 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9688                                               ClassTemplateDecl *CTD) {
9689   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9690     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9691     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9692   };
9693   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9694 }
9695 
9696 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9697     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9698     const InitializationKind &Kind, MultiExprArg Inits) {
9699   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9700       TSInfo->getType()->getContainedDeducedType());
9701   assert(DeducedTST && "not a deduced template specialization type");
9702 
9703   auto TemplateName = DeducedTST->getTemplateName();
9704   if (TemplateName.isDependent())
9705     return Context.DependentTy;
9706 
9707   // We can only perform deduction for class templates.
9708   auto *Template =
9709       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9710   if (!Template) {
9711     Diag(Kind.getLocation(),
9712          diag::err_deduced_non_class_template_specialization_type)
9713       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9714     if (auto *TD = TemplateName.getAsTemplateDecl())
9715       Diag(TD->getLocation(), diag::note_template_decl_here);
9716     return QualType();
9717   }
9718 
9719   // Can't deduce from dependent arguments.
9720   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9721     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9722          diag::warn_cxx14_compat_class_template_argument_deduction)
9723         << TSInfo->getTypeLoc().getSourceRange() << 0;
9724     return Context.DependentTy;
9725   }
9726 
9727   // FIXME: Perform "exact type" matching first, per CWG discussion?
9728   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9729 
9730   // FIXME: Do we need/want a std::initializer_list<T> special case?
9731 
9732   // Look up deduction guides, including those synthesized from constructors.
9733   //
9734   // C++1z [over.match.class.deduct]p1:
9735   //   A set of functions and function templates is formed comprising:
9736   //   - For each constructor of the class template designated by the
9737   //     template-name, a function template [...]
9738   //  - For each deduction-guide, a function or function template [...]
9739   DeclarationNameInfo NameInfo(
9740       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9741       TSInfo->getTypeLoc().getEndLoc());
9742   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9743   LookupQualifiedName(Guides, Template->getDeclContext());
9744 
9745   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9746   // clear on this, but they're not found by name so access does not apply.
9747   Guides.suppressDiagnostics();
9748 
9749   // Figure out if this is list-initialization.
9750   InitListExpr *ListInit =
9751       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9752           ? dyn_cast<InitListExpr>(Inits[0])
9753           : nullptr;
9754 
9755   // C++1z [over.match.class.deduct]p1:
9756   //   Initialization and overload resolution are performed as described in
9757   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9758   //   (as appropriate for the type of initialization performed) for an object
9759   //   of a hypothetical class type, where the selected functions and function
9760   //   templates are considered to be the constructors of that class type
9761   //
9762   // Since we know we're initializing a class type of a type unrelated to that
9763   // of the initializer, this reduces to something fairly reasonable.
9764   OverloadCandidateSet Candidates(Kind.getLocation(),
9765                                   OverloadCandidateSet::CSK_Normal);
9766   OverloadCandidateSet::iterator Best;
9767 
9768   bool HasAnyDeductionGuide = false;
9769   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9770 
9771   auto tryToResolveOverload =
9772       [&](bool OnlyListConstructors) -> OverloadingResult {
9773     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9774     HasAnyDeductionGuide = false;
9775 
9776     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9777       NamedDecl *D = (*I)->getUnderlyingDecl();
9778       if (D->isInvalidDecl())
9779         continue;
9780 
9781       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9782       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9783           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9784       if (!GD)
9785         continue;
9786 
9787       if (!GD->isImplicit())
9788         HasAnyDeductionGuide = true;
9789 
9790       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9791       //   For copy-initialization, the candidate functions are all the
9792       //   converting constructors (12.3.1) of that class.
9793       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9794       //   The converting constructors of T are candidate functions.
9795       if (!AllowExplicit) {
9796         // Overload resolution checks whether the deduction guide is declared
9797         // explicit for us.
9798 
9799         // When looking for a converting constructor, deduction guides that
9800         // could never be called with one argument are not interesting to
9801         // check or note.
9802         if (GD->getMinRequiredArguments() > 1 ||
9803             (GD->getNumParams() == 0 && !GD->isVariadic()))
9804           continue;
9805       }
9806 
9807       // C++ [over.match.list]p1.1: (first phase list initialization)
9808       //   Initially, the candidate functions are the initializer-list
9809       //   constructors of the class T
9810       if (OnlyListConstructors && !isInitListConstructor(GD))
9811         continue;
9812 
9813       // C++ [over.match.list]p1.2: (second phase list initialization)
9814       //   the candidate functions are all the constructors of the class T
9815       // C++ [over.match.ctor]p1: (all other cases)
9816       //   the candidate functions are all the constructors of the class of
9817       //   the object being initialized
9818 
9819       // C++ [over.best.ics]p4:
9820       //   When [...] the constructor [...] is a candidate by
9821       //    - [over.match.copy] (in all cases)
9822       // FIXME: The "second phase of [over.match.list] case can also
9823       // theoretically happen here, but it's not clear whether we can
9824       // ever have a parameter of the right type.
9825       bool SuppressUserConversions = Kind.isCopyInit();
9826 
9827       if (TD)
9828         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9829                                      Inits, Candidates, SuppressUserConversions,
9830                                      /*PartialOverloading*/ false,
9831                                      AllowExplicit);
9832       else
9833         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9834                              SuppressUserConversions,
9835                              /*PartialOverloading*/ false, AllowExplicit);
9836     }
9837     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9838   };
9839 
9840   OverloadingResult Result = OR_No_Viable_Function;
9841 
9842   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9843   // try initializer-list constructors.
9844   if (ListInit) {
9845     bool TryListConstructors = true;
9846 
9847     // Try list constructors unless the list is empty and the class has one or
9848     // more default constructors, in which case those constructors win.
9849     if (!ListInit->getNumInits()) {
9850       for (NamedDecl *D : Guides) {
9851         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9852         if (FD && FD->getMinRequiredArguments() == 0) {
9853           TryListConstructors = false;
9854           break;
9855         }
9856       }
9857     } else if (ListInit->getNumInits() == 1) {
9858       // C++ [over.match.class.deduct]:
9859       //   As an exception, the first phase in [over.match.list] (considering
9860       //   initializer-list constructors) is omitted if the initializer list
9861       //   consists of a single expression of type cv U, where U is a
9862       //   specialization of C or a class derived from a specialization of C.
9863       Expr *E = ListInit->getInit(0);
9864       auto *RD = E->getType()->getAsCXXRecordDecl();
9865       if (!isa<InitListExpr>(E) && RD &&
9866           isCompleteType(Kind.getLocation(), E->getType()) &&
9867           isOrIsDerivedFromSpecializationOf(RD, Template))
9868         TryListConstructors = false;
9869     }
9870 
9871     if (TryListConstructors)
9872       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9873     // Then unwrap the initializer list and try again considering all
9874     // constructors.
9875     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9876   }
9877 
9878   // If list-initialization fails, or if we're doing any other kind of
9879   // initialization, we (eventually) consider constructors.
9880   if (Result == OR_No_Viable_Function)
9881     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9882 
9883   switch (Result) {
9884   case OR_Ambiguous:
9885     // FIXME: For list-initialization candidates, it'd usually be better to
9886     // list why they were not viable when given the initializer list itself as
9887     // an argument.
9888     Candidates.NoteCandidates(
9889         PartialDiagnosticAt(
9890             Kind.getLocation(),
9891             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9892                 << TemplateName),
9893         *this, OCD_AmbiguousCandidates, Inits);
9894     return QualType();
9895 
9896   case OR_No_Viable_Function: {
9897     CXXRecordDecl *Primary =
9898         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9899     bool Complete =
9900         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9901     Candidates.NoteCandidates(
9902         PartialDiagnosticAt(
9903             Kind.getLocation(),
9904             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9905                            : diag::err_deduced_class_template_incomplete)
9906                 << TemplateName << !Guides.empty()),
9907         *this, OCD_AllCandidates, Inits);
9908     return QualType();
9909   }
9910 
9911   case OR_Deleted: {
9912     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9913       << TemplateName;
9914     NoteDeletedFunction(Best->Function);
9915     return QualType();
9916   }
9917 
9918   case OR_Success:
9919     // C++ [over.match.list]p1:
9920     //   In copy-list-initialization, if an explicit constructor is chosen, the
9921     //   initialization is ill-formed.
9922     if (Kind.isCopyInit() && ListInit &&
9923         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9924       bool IsDeductionGuide = !Best->Function->isImplicit();
9925       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9926           << TemplateName << IsDeductionGuide;
9927       Diag(Best->Function->getLocation(),
9928            diag::note_explicit_ctor_deduction_guide_here)
9929           << IsDeductionGuide;
9930       return QualType();
9931     }
9932 
9933     // Make sure we didn't select an unusable deduction guide, and mark it
9934     // as referenced.
9935     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9936     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9937     break;
9938   }
9939 
9940   // C++ [dcl.type.class.deduct]p1:
9941   //  The placeholder is replaced by the return type of the function selected
9942   //  by overload resolution for class template deduction.
9943   QualType DeducedType =
9944       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9945   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9946        diag::warn_cxx14_compat_class_template_argument_deduction)
9947       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9948 
9949   // Warn if CTAD was used on a type that does not have any user-defined
9950   // deduction guides.
9951   if (!HasAnyDeductionGuide) {
9952     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9953          diag::warn_ctad_maybe_unsupported)
9954         << TemplateName;
9955     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9956   }
9957 
9958   return DeducedType;
9959 }
9960