1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39 
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42 
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46 
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50 
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52 
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71 
72     return 0;
73   }
74 
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77 
78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81 
82   return IsStringInit(init, arrayType, Context);
83 }
84 
85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                             Sema &S) {
87   // Get the length of the string as parsed.
88   uint64_t StrLength =
89     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90 
91 
92   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93     // C99 6.7.8p14. We have an array of character type with unknown size
94     // being initialized to a string literal.
95     llvm::APSInt ConstVal(32);
96     ConstVal = StrLength;
97     // Return a new array type (C99 6.7.8p22).
98     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
99                                            ConstVal,
100                                            ArrayType::Normal, 0);
101     return;
102   }
103 
104   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
105 
106   // We have an array of character type with known size.  However,
107   // the size may be smaller or larger than the string we are initializing.
108   // FIXME: Avoid truncation for 64-bit length strings.
109   if (S.getLangOptions().CPlusPlus) {
110     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
111       // For Pascal strings it's OK to strip off the terminating null character,
112       // so the example below is valid:
113       //
114       // unsigned char a[2] = "\pa";
115       if (SL->isPascal())
116         StrLength--;
117     }
118 
119     // [dcl.init.string]p2
120     if (StrLength > CAT->getSize().getZExtValue())
121       S.Diag(Str->getLocStart(),
122              diag::err_initializer_string_for_char_array_too_long)
123         << Str->getSourceRange();
124   } else {
125     // C99 6.7.8p14.
126     if (StrLength-1 > CAT->getSize().getZExtValue())
127       S.Diag(Str->getLocStart(),
128              diag::warn_initializer_string_for_char_array_too_long)
129         << Str->getSourceRange();
130   }
131 
132   // Set the type to the actual size that we are initializing.  If we have
133   // something like:
134   //   char x[1] = "foo";
135   // then this will set the string literal's type to char[1].
136   Str->setType(DeclT);
137 }
138 
139 //===----------------------------------------------------------------------===//
140 // Semantic checking for initializer lists.
141 //===----------------------------------------------------------------------===//
142 
143 /// @brief Semantic checking for initializer lists.
144 ///
145 /// The InitListChecker class contains a set of routines that each
146 /// handle the initialization of a certain kind of entity, e.g.,
147 /// arrays, vectors, struct/union types, scalars, etc. The
148 /// InitListChecker itself performs a recursive walk of the subobject
149 /// structure of the type to be initialized, while stepping through
150 /// the initializer list one element at a time. The IList and Index
151 /// parameters to each of the Check* routines contain the active
152 /// (syntactic) initializer list and the index into that initializer
153 /// list that represents the current initializer. Each routine is
154 /// responsible for moving that Index forward as it consumes elements.
155 ///
156 /// Each Check* routine also has a StructuredList/StructuredIndex
157 /// arguments, which contains the current "structured" (semantic)
158 /// initializer list and the index into that initializer list where we
159 /// are copying initializers as we map them over to the semantic
160 /// list. Once we have completed our recursive walk of the subobject
161 /// structure, we will have constructed a full semantic initializer
162 /// list.
163 ///
164 /// C99 designators cause changes in the initializer list traversal,
165 /// because they make the initialization "jump" into a specific
166 /// subobject and then continue the initialization from that
167 /// point. CheckDesignatedInitializer() recursively steps into the
168 /// designated subobject and manages backing out the recursion to
169 /// initialize the subobjects after the one designated.
170 namespace {
171 class InitListChecker {
172   Sema &SemaRef;
173   bool hadError;
174   bool VerifyOnly; // no diagnostics, no structure building
175   bool AllowBraceElision;
176   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
177   InitListExpr *FullyStructuredList;
178 
179   void CheckImplicitInitList(const InitializedEntity &Entity,
180                              InitListExpr *ParentIList, QualType T,
181                              unsigned &Index, InitListExpr *StructuredList,
182                              unsigned &StructuredIndex);
183   void CheckExplicitInitList(const InitializedEntity &Entity,
184                              InitListExpr *IList, QualType &T,
185                              unsigned &Index, InitListExpr *StructuredList,
186                              unsigned &StructuredIndex,
187                              bool TopLevelObject = false);
188   void CheckListElementTypes(const InitializedEntity &Entity,
189                              InitListExpr *IList, QualType &DeclType,
190                              bool SubobjectIsDesignatorContext,
191                              unsigned &Index,
192                              InitListExpr *StructuredList,
193                              unsigned &StructuredIndex,
194                              bool TopLevelObject = false);
195   void CheckSubElementType(const InitializedEntity &Entity,
196                            InitListExpr *IList, QualType ElemType,
197                            unsigned &Index,
198                            InitListExpr *StructuredList,
199                            unsigned &StructuredIndex);
200   void CheckComplexType(const InitializedEntity &Entity,
201                         InitListExpr *IList, QualType DeclType,
202                         unsigned &Index,
203                         InitListExpr *StructuredList,
204                         unsigned &StructuredIndex);
205   void CheckScalarType(const InitializedEntity &Entity,
206                        InitListExpr *IList, QualType DeclType,
207                        unsigned &Index,
208                        InitListExpr *StructuredList,
209                        unsigned &StructuredIndex);
210   void CheckReferenceType(const InitializedEntity &Entity,
211                           InitListExpr *IList, QualType DeclType,
212                           unsigned &Index,
213                           InitListExpr *StructuredList,
214                           unsigned &StructuredIndex);
215   void CheckVectorType(const InitializedEntity &Entity,
216                        InitListExpr *IList, QualType DeclType, unsigned &Index,
217                        InitListExpr *StructuredList,
218                        unsigned &StructuredIndex);
219   void CheckStructUnionTypes(const InitializedEntity &Entity,
220                              InitListExpr *IList, QualType DeclType,
221                              RecordDecl::field_iterator Field,
222                              bool SubobjectIsDesignatorContext, unsigned &Index,
223                              InitListExpr *StructuredList,
224                              unsigned &StructuredIndex,
225                              bool TopLevelObject = false);
226   void CheckArrayType(const InitializedEntity &Entity,
227                       InitListExpr *IList, QualType &DeclType,
228                       llvm::APSInt elementIndex,
229                       bool SubobjectIsDesignatorContext, unsigned &Index,
230                       InitListExpr *StructuredList,
231                       unsigned &StructuredIndex);
232   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
233                                   InitListExpr *IList, DesignatedInitExpr *DIE,
234                                   unsigned DesigIdx,
235                                   QualType &CurrentObjectType,
236                                   RecordDecl::field_iterator *NextField,
237                                   llvm::APSInt *NextElementIndex,
238                                   unsigned &Index,
239                                   InitListExpr *StructuredList,
240                                   unsigned &StructuredIndex,
241                                   bool FinishSubobjectInit,
242                                   bool TopLevelObject);
243   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
244                                            QualType CurrentObjectType,
245                                            InitListExpr *StructuredList,
246                                            unsigned StructuredIndex,
247                                            SourceRange InitRange);
248   void UpdateStructuredListElement(InitListExpr *StructuredList,
249                                    unsigned &StructuredIndex,
250                                    Expr *expr);
251   int numArrayElements(QualType DeclType);
252   int numStructUnionElements(QualType DeclType);
253 
254   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
255                                const InitializedEntity &ParentEntity,
256                                InitListExpr *ILE, bool &RequiresSecondPass);
257   void FillInValueInitializations(const InitializedEntity &Entity,
258                                   InitListExpr *ILE, bool &RequiresSecondPass);
259   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
260                               Expr *InitExpr, FieldDecl *Field,
261                               bool TopLevelObject);
262   void CheckValueInitializable(const InitializedEntity &Entity);
263 
264 public:
265   InitListChecker(Sema &S, const InitializedEntity &Entity,
266                   InitListExpr *IL, QualType &T, bool VerifyOnly,
267                   bool AllowBraceElision);
268   bool HadError() { return hadError; }
269 
270   // @brief Retrieves the fully-structured initializer list used for
271   // semantic analysis and code generation.
272   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
273 };
274 } // end anonymous namespace
275 
276 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
277   assert(VerifyOnly &&
278          "CheckValueInitializable is only inteded for verification mode.");
279 
280   SourceLocation Loc;
281   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
282                                                             true);
283   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
284   if (InitSeq.Failed())
285     hadError = true;
286 }
287 
288 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
289                                         const InitializedEntity &ParentEntity,
290                                               InitListExpr *ILE,
291                                               bool &RequiresSecondPass) {
292   SourceLocation Loc = ILE->getLocStart();
293   unsigned NumInits = ILE->getNumInits();
294   InitializedEntity MemberEntity
295     = InitializedEntity::InitializeMember(Field, &ParentEntity);
296   if (Init >= NumInits || !ILE->getInit(Init)) {
297     // FIXME: We probably don't need to handle references
298     // specially here, since value-initialization of references is
299     // handled in InitializationSequence.
300     if (Field->getType()->isReferenceType()) {
301       // C++ [dcl.init.aggr]p9:
302       //   If an incomplete or empty initializer-list leaves a
303       //   member of reference type uninitialized, the program is
304       //   ill-formed.
305       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
306         << Field->getType()
307         << ILE->getSyntacticForm()->getSourceRange();
308       SemaRef.Diag(Field->getLocation(),
309                    diag::note_uninit_reference_member);
310       hadError = true;
311       return;
312     }
313 
314     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
315                                                               true);
316     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
317     if (!InitSeq) {
318       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
319       hadError = true;
320       return;
321     }
322 
323     ExprResult MemberInit
324       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
325     if (MemberInit.isInvalid()) {
326       hadError = true;
327       return;
328     }
329 
330     if (hadError) {
331       // Do nothing
332     } else if (Init < NumInits) {
333       ILE->setInit(Init, MemberInit.takeAs<Expr>());
334     } else if (InitSeq.isConstructorInitialization()) {
335       // Value-initialization requires a constructor call, so
336       // extend the initializer list to include the constructor
337       // call and make a note that we'll need to take another pass
338       // through the initializer list.
339       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
340       RequiresSecondPass = true;
341     }
342   } else if (InitListExpr *InnerILE
343                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
344     FillInValueInitializations(MemberEntity, InnerILE,
345                                RequiresSecondPass);
346 }
347 
348 /// Recursively replaces NULL values within the given initializer list
349 /// with expressions that perform value-initialization of the
350 /// appropriate type.
351 void
352 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
353                                             InitListExpr *ILE,
354                                             bool &RequiresSecondPass) {
355   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
356          "Should not have void type");
357   SourceLocation Loc = ILE->getLocStart();
358   if (ILE->getSyntacticForm())
359     Loc = ILE->getSyntacticForm()->getLocStart();
360 
361   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
362     if (RType->getDecl()->isUnion() &&
363         ILE->getInitializedFieldInUnion())
364       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
365                               Entity, ILE, RequiresSecondPass);
366     else {
367       unsigned Init = 0;
368       for (RecordDecl::field_iterator
369              Field = RType->getDecl()->field_begin(),
370              FieldEnd = RType->getDecl()->field_end();
371            Field != FieldEnd; ++Field) {
372         if (Field->isUnnamedBitfield())
373           continue;
374 
375         if (hadError)
376           return;
377 
378         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
379         if (hadError)
380           return;
381 
382         ++Init;
383 
384         // Only look at the first initialization of a union.
385         if (RType->getDecl()->isUnion())
386           break;
387       }
388     }
389 
390     return;
391   }
392 
393   QualType ElementType;
394 
395   InitializedEntity ElementEntity = Entity;
396   unsigned NumInits = ILE->getNumInits();
397   unsigned NumElements = NumInits;
398   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
399     ElementType = AType->getElementType();
400     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
401       NumElements = CAType->getSize().getZExtValue();
402     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
403                                                          0, Entity);
404   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
405     ElementType = VType->getElementType();
406     NumElements = VType->getNumElements();
407     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
408                                                          0, Entity);
409   } else
410     ElementType = ILE->getType();
411 
412 
413   for (unsigned Init = 0; Init != NumElements; ++Init) {
414     if (hadError)
415       return;
416 
417     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
418         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
419       ElementEntity.setElementIndex(Init);
420 
421     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
422     if (!InitExpr && !ILE->hasArrayFiller()) {
423       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
424                                                                 true);
425       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
426       if (!InitSeq) {
427         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
428         hadError = true;
429         return;
430       }
431 
432       ExprResult ElementInit
433         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
434       if (ElementInit.isInvalid()) {
435         hadError = true;
436         return;
437       }
438 
439       if (hadError) {
440         // Do nothing
441       } else if (Init < NumInits) {
442         // For arrays, just set the expression used for value-initialization
443         // of the "holes" in the array.
444         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
445           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
446         else
447           ILE->setInit(Init, ElementInit.takeAs<Expr>());
448       } else {
449         // For arrays, just set the expression used for value-initialization
450         // of the rest of elements and exit.
451         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
452           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
453           return;
454         }
455 
456         if (InitSeq.isConstructorInitialization()) {
457           // Value-initialization requires a constructor call, so
458           // extend the initializer list to include the constructor
459           // call and make a note that we'll need to take another pass
460           // through the initializer list.
461           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
462           RequiresSecondPass = true;
463         }
464       }
465     } else if (InitListExpr *InnerILE
466                  = dyn_cast_or_null<InitListExpr>(InitExpr))
467       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
468   }
469 }
470 
471 
472 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
473                                  InitListExpr *IL, QualType &T,
474                                  bool VerifyOnly, bool AllowBraceElision)
475   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
476   hadError = false;
477 
478   unsigned newIndex = 0;
479   unsigned newStructuredIndex = 0;
480   FullyStructuredList
481     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
482   CheckExplicitInitList(Entity, IL, T, newIndex,
483                         FullyStructuredList, newStructuredIndex,
484                         /*TopLevelObject=*/true);
485 
486   if (!hadError && !VerifyOnly) {
487     bool RequiresSecondPass = false;
488     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
489     if (RequiresSecondPass && !hadError)
490       FillInValueInitializations(Entity, FullyStructuredList,
491                                  RequiresSecondPass);
492   }
493 }
494 
495 int InitListChecker::numArrayElements(QualType DeclType) {
496   // FIXME: use a proper constant
497   int maxElements = 0x7FFFFFFF;
498   if (const ConstantArrayType *CAT =
499         SemaRef.Context.getAsConstantArrayType(DeclType)) {
500     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
501   }
502   return maxElements;
503 }
504 
505 int InitListChecker::numStructUnionElements(QualType DeclType) {
506   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
507   int InitializableMembers = 0;
508   for (RecordDecl::field_iterator
509          Field = structDecl->field_begin(),
510          FieldEnd = structDecl->field_end();
511        Field != FieldEnd; ++Field) {
512     if (!Field->isUnnamedBitfield())
513       ++InitializableMembers;
514   }
515   if (structDecl->isUnion())
516     return std::min(InitializableMembers, 1);
517   return InitializableMembers - structDecl->hasFlexibleArrayMember();
518 }
519 
520 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
521                                             InitListExpr *ParentIList,
522                                             QualType T, unsigned &Index,
523                                             InitListExpr *StructuredList,
524                                             unsigned &StructuredIndex) {
525   int maxElements = 0;
526 
527   if (T->isArrayType())
528     maxElements = numArrayElements(T);
529   else if (T->isRecordType())
530     maxElements = numStructUnionElements(T);
531   else if (T->isVectorType())
532     maxElements = T->getAs<VectorType>()->getNumElements();
533   else
534     llvm_unreachable("CheckImplicitInitList(): Illegal type");
535 
536   if (maxElements == 0) {
537     if (!VerifyOnly)
538       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
539                    diag::err_implicit_empty_initializer);
540     ++Index;
541     hadError = true;
542     return;
543   }
544 
545   // Build a structured initializer list corresponding to this subobject.
546   InitListExpr *StructuredSubobjectInitList
547     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
548                                  StructuredIndex,
549           SourceRange(ParentIList->getInit(Index)->getLocStart(),
550                       ParentIList->getSourceRange().getEnd()));
551   unsigned StructuredSubobjectInitIndex = 0;
552 
553   // Check the element types and build the structural subobject.
554   unsigned StartIndex = Index;
555   CheckListElementTypes(Entity, ParentIList, T,
556                         /*SubobjectIsDesignatorContext=*/false, Index,
557                         StructuredSubobjectInitList,
558                         StructuredSubobjectInitIndex);
559 
560   if (VerifyOnly) {
561     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
562       hadError = true;
563   } else {
564     StructuredSubobjectInitList->setType(T);
565 
566     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
567     // Update the structured sub-object initializer so that it's ending
568     // range corresponds with the end of the last initializer it used.
569     if (EndIndex < ParentIList->getNumInits()) {
570       SourceLocation EndLoc
571         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
572       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
573     }
574 
575     // Complain about missing braces.
576     if (T->isArrayType() || T->isRecordType()) {
577       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
578                     AllowBraceElision ? diag::warn_missing_braces :
579                                         diag::err_missing_braces)
580         << StructuredSubobjectInitList->getSourceRange()
581         << FixItHint::CreateInsertion(
582               StructuredSubobjectInitList->getLocStart(), "{")
583         << FixItHint::CreateInsertion(
584               SemaRef.PP.getLocForEndOfToken(
585                                       StructuredSubobjectInitList->getLocEnd()),
586               "}");
587       if (!AllowBraceElision)
588         hadError = true;
589     }
590   }
591 }
592 
593 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
594                                             InitListExpr *IList, QualType &T,
595                                             unsigned &Index,
596                                             InitListExpr *StructuredList,
597                                             unsigned &StructuredIndex,
598                                             bool TopLevelObject) {
599   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
600   if (!VerifyOnly) {
601     SyntacticToSemantic[IList] = StructuredList;
602     StructuredList->setSyntacticForm(IList);
603   }
604   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
605                         Index, StructuredList, StructuredIndex, TopLevelObject);
606   if (!VerifyOnly) {
607     QualType ExprTy = T;
608     if (!ExprTy->isArrayType())
609       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
610     IList->setType(ExprTy);
611     StructuredList->setType(ExprTy);
612   }
613   if (hadError)
614     return;
615 
616   if (Index < IList->getNumInits()) {
617     // We have leftover initializers
618     if (VerifyOnly) {
619       if (SemaRef.getLangOptions().CPlusPlus ||
620           (SemaRef.getLangOptions().OpenCL &&
621            IList->getType()->isVectorType())) {
622         hadError = true;
623       }
624       return;
625     }
626 
627     if (StructuredIndex == 1 &&
628         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
629       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
630       if (SemaRef.getLangOptions().CPlusPlus) {
631         DK = diag::err_excess_initializers_in_char_array_initializer;
632         hadError = true;
633       }
634       // Special-case
635       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
636         << IList->getInit(Index)->getSourceRange();
637     } else if (!T->isIncompleteType()) {
638       // Don't complain for incomplete types, since we'll get an error
639       // elsewhere
640       QualType CurrentObjectType = StructuredList->getType();
641       int initKind =
642         CurrentObjectType->isArrayType()? 0 :
643         CurrentObjectType->isVectorType()? 1 :
644         CurrentObjectType->isScalarType()? 2 :
645         CurrentObjectType->isUnionType()? 3 :
646         4;
647 
648       unsigned DK = diag::warn_excess_initializers;
649       if (SemaRef.getLangOptions().CPlusPlus) {
650         DK = diag::err_excess_initializers;
651         hadError = true;
652       }
653       if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
654         DK = diag::err_excess_initializers;
655         hadError = true;
656       }
657 
658       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
659         << initKind << IList->getInit(Index)->getSourceRange();
660     }
661   }
662 
663   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
664       !TopLevelObject)
665     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
666       << IList->getSourceRange()
667       << FixItHint::CreateRemoval(IList->getLocStart())
668       << FixItHint::CreateRemoval(IList->getLocEnd());
669 }
670 
671 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
672                                             InitListExpr *IList,
673                                             QualType &DeclType,
674                                             bool SubobjectIsDesignatorContext,
675                                             unsigned &Index,
676                                             InitListExpr *StructuredList,
677                                             unsigned &StructuredIndex,
678                                             bool TopLevelObject) {
679   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
680     // Explicitly braced initializer for complex type can be real+imaginary
681     // parts.
682     CheckComplexType(Entity, IList, DeclType, Index,
683                      StructuredList, StructuredIndex);
684   } else if (DeclType->isScalarType()) {
685     CheckScalarType(Entity, IList, DeclType, Index,
686                     StructuredList, StructuredIndex);
687   } else if (DeclType->isVectorType()) {
688     CheckVectorType(Entity, IList, DeclType, Index,
689                     StructuredList, StructuredIndex);
690   } else if (DeclType->isAggregateType()) {
691     if (DeclType->isRecordType()) {
692       RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693       CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694                             SubobjectIsDesignatorContext, Index,
695                             StructuredList, StructuredIndex,
696                             TopLevelObject);
697     } else if (DeclType->isArrayType()) {
698       llvm::APSInt Zero(
699                       SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700                       false);
701       CheckArrayType(Entity, IList, DeclType, Zero,
702                      SubobjectIsDesignatorContext, Index,
703                      StructuredList, StructuredIndex);
704     } else
705       llvm_unreachable("Aggregate that isn't a structure or array?!");
706   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
707     // This type is invalid, issue a diagnostic.
708     ++Index;
709     if (!VerifyOnly)
710       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
711         << DeclType;
712     hadError = true;
713   } else if (DeclType->isRecordType()) {
714     // C++ [dcl.init]p14:
715     //   [...] If the class is an aggregate (8.5.1), and the initializer
716     //   is a brace-enclosed list, see 8.5.1.
717     //
718     // Note: 8.5.1 is handled below; here, we diagnose the case where
719     // we have an initializer list and a destination type that is not
720     // an aggregate.
721     // FIXME: In C++0x, this is yet another form of initialization.
722     if (!VerifyOnly)
723       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
724         << DeclType << IList->getSourceRange();
725     hadError = true;
726   } else if (DeclType->isReferenceType()) {
727     CheckReferenceType(Entity, IList, DeclType, Index,
728                        StructuredList, StructuredIndex);
729   } else if (DeclType->isObjCObjectType()) {
730     if (!VerifyOnly)
731       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
732         << DeclType;
733     hadError = true;
734   } else {
735     if (!VerifyOnly)
736       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
737         << DeclType;
738     hadError = true;
739   }
740 }
741 
742 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
743                                           InitListExpr *IList,
744                                           QualType ElemType,
745                                           unsigned &Index,
746                                           InitListExpr *StructuredList,
747                                           unsigned &StructuredIndex) {
748   Expr *expr = IList->getInit(Index);
749   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
750     unsigned newIndex = 0;
751     unsigned newStructuredIndex = 0;
752     InitListExpr *newStructuredList
753       = getStructuredSubobjectInit(IList, Index, ElemType,
754                                    StructuredList, StructuredIndex,
755                                    SubInitList->getSourceRange());
756     CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
757                           newStructuredList, newStructuredIndex);
758     ++StructuredIndex;
759     ++Index;
760     return;
761   } else if (ElemType->isScalarType()) {
762     return CheckScalarType(Entity, IList, ElemType, Index,
763                            StructuredList, StructuredIndex);
764   } else if (ElemType->isReferenceType()) {
765     return CheckReferenceType(Entity, IList, ElemType, Index,
766                               StructuredList, StructuredIndex);
767   }
768 
769   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
770     // arrayType can be incomplete if we're initializing a flexible
771     // array member.  There's nothing we can do with the completed
772     // type here, though.
773 
774     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
775       if (!VerifyOnly) {
776         CheckStringInit(Str, ElemType, arrayType, SemaRef);
777         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
778       }
779       ++Index;
780       return;
781     }
782 
783     // Fall through for subaggregate initialization.
784 
785   } else if (SemaRef.getLangOptions().CPlusPlus) {
786     // C++ [dcl.init.aggr]p12:
787     //   All implicit type conversions (clause 4) are considered when
788     //   initializing the aggregate member with an initializer from
789     //   an initializer-list. If the initializer can initialize a
790     //   member, the member is initialized. [...]
791 
792     // FIXME: Better EqualLoc?
793     InitializationKind Kind =
794       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
795     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
796 
797     if (Seq) {
798       if (!VerifyOnly) {
799         ExprResult Result =
800           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
801         if (Result.isInvalid())
802           hadError = true;
803 
804         UpdateStructuredListElement(StructuredList, StructuredIndex,
805                                     Result.takeAs<Expr>());
806       }
807       ++Index;
808       return;
809     }
810 
811     // Fall through for subaggregate initialization
812   } else {
813     // C99 6.7.8p13:
814     //
815     //   The initializer for a structure or union object that has
816     //   automatic storage duration shall be either an initializer
817     //   list as described below, or a single expression that has
818     //   compatible structure or union type. In the latter case, the
819     //   initial value of the object, including unnamed members, is
820     //   that of the expression.
821     ExprResult ExprRes = SemaRef.Owned(expr);
822     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
823         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
824                                                  !VerifyOnly)
825           == Sema::Compatible) {
826       if (ExprRes.isInvalid())
827         hadError = true;
828       else {
829         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
830 	      if (ExprRes.isInvalid())
831 	        hadError = true;
832       }
833       UpdateStructuredListElement(StructuredList, StructuredIndex,
834                                   ExprRes.takeAs<Expr>());
835       ++Index;
836       return;
837     }
838     ExprRes.release();
839     // Fall through for subaggregate initialization
840   }
841 
842   // C++ [dcl.init.aggr]p12:
843   //
844   //   [...] Otherwise, if the member is itself a non-empty
845   //   subaggregate, brace elision is assumed and the initializer is
846   //   considered for the initialization of the first member of
847   //   the subaggregate.
848   if (!SemaRef.getLangOptions().OpenCL &&
849       (ElemType->isAggregateType() || ElemType->isVectorType())) {
850     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
851                           StructuredIndex);
852     ++StructuredIndex;
853   } else {
854     if (!VerifyOnly) {
855       // We cannot initialize this element, so let
856       // PerformCopyInitialization produce the appropriate diagnostic.
857       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
858                                         SemaRef.Owned(expr),
859                                         /*TopLevelOfInitList=*/true);
860     }
861     hadError = true;
862     ++Index;
863     ++StructuredIndex;
864   }
865 }
866 
867 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
868                                        InitListExpr *IList, QualType DeclType,
869                                        unsigned &Index,
870                                        InitListExpr *StructuredList,
871                                        unsigned &StructuredIndex) {
872   assert(Index == 0 && "Index in explicit init list must be zero");
873 
874   // As an extension, clang supports complex initializers, which initialize
875   // a complex number component-wise.  When an explicit initializer list for
876   // a complex number contains two two initializers, this extension kicks in:
877   // it exepcts the initializer list to contain two elements convertible to
878   // the element type of the complex type. The first element initializes
879   // the real part, and the second element intitializes the imaginary part.
880 
881   if (IList->getNumInits() != 2)
882     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
883                            StructuredIndex);
884 
885   // This is an extension in C.  (The builtin _Complex type does not exist
886   // in the C++ standard.)
887   if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly)
888     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
889       << IList->getSourceRange();
890 
891   // Initialize the complex number.
892   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
893   InitializedEntity ElementEntity =
894     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
895 
896   for (unsigned i = 0; i < 2; ++i) {
897     ElementEntity.setElementIndex(Index);
898     CheckSubElementType(ElementEntity, IList, elementType, Index,
899                         StructuredList, StructuredIndex);
900   }
901 }
902 
903 
904 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
905                                       InitListExpr *IList, QualType DeclType,
906                                       unsigned &Index,
907                                       InitListExpr *StructuredList,
908                                       unsigned &StructuredIndex) {
909   if (Index >= IList->getNumInits()) {
910     if (!VerifyOnly)
911       SemaRef.Diag(IList->getLocStart(),
912                    SemaRef.getLangOptions().CPlusPlus0x ?
913                      diag::warn_cxx98_compat_empty_scalar_initializer :
914                      diag::err_empty_scalar_initializer)
915         << IList->getSourceRange();
916     hadError = !SemaRef.getLangOptions().CPlusPlus0x;
917     ++Index;
918     ++StructuredIndex;
919     return;
920   }
921 
922   Expr *expr = IList->getInit(Index);
923   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
924     if (!VerifyOnly)
925       SemaRef.Diag(SubIList->getLocStart(),
926                    diag::warn_many_braces_around_scalar_init)
927         << SubIList->getSourceRange();
928 
929     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
930                     StructuredIndex);
931     return;
932   } else if (isa<DesignatedInitExpr>(expr)) {
933     if (!VerifyOnly)
934       SemaRef.Diag(expr->getLocStart(),
935                    diag::err_designator_for_scalar_init)
936         << DeclType << expr->getSourceRange();
937     hadError = true;
938     ++Index;
939     ++StructuredIndex;
940     return;
941   }
942 
943   if (VerifyOnly) {
944     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
945       hadError = true;
946     ++Index;
947     return;
948   }
949 
950   ExprResult Result =
951     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
952                                       SemaRef.Owned(expr),
953                                       /*TopLevelOfInitList=*/true);
954 
955   Expr *ResultExpr = 0;
956 
957   if (Result.isInvalid())
958     hadError = true; // types weren't compatible.
959   else {
960     ResultExpr = Result.takeAs<Expr>();
961 
962     if (ResultExpr != expr) {
963       // The type was promoted, update initializer list.
964       IList->setInit(Index, ResultExpr);
965     }
966   }
967   if (hadError)
968     ++StructuredIndex;
969   else
970     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
971   ++Index;
972 }
973 
974 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
975                                          InitListExpr *IList, QualType DeclType,
976                                          unsigned &Index,
977                                          InitListExpr *StructuredList,
978                                          unsigned &StructuredIndex) {
979   if (Index >= IList->getNumInits()) {
980     // FIXME: It would be wonderful if we could point at the actual member. In
981     // general, it would be useful to pass location information down the stack,
982     // so that we know the location (or decl) of the "current object" being
983     // initialized.
984     if (!VerifyOnly)
985       SemaRef.Diag(IList->getLocStart(),
986                     diag::err_init_reference_member_uninitialized)
987         << DeclType
988         << IList->getSourceRange();
989     hadError = true;
990     ++Index;
991     ++StructuredIndex;
992     return;
993   }
994 
995   Expr *expr = IList->getInit(Index);
996   if (isa<InitListExpr>(expr) && !SemaRef.getLangOptions().CPlusPlus0x) {
997     if (!VerifyOnly)
998       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
999         << DeclType << IList->getSourceRange();
1000     hadError = true;
1001     ++Index;
1002     ++StructuredIndex;
1003     return;
1004   }
1005 
1006   if (VerifyOnly) {
1007     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1008       hadError = true;
1009     ++Index;
1010     return;
1011   }
1012 
1013   ExprResult Result =
1014     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1015                                       SemaRef.Owned(expr),
1016                                       /*TopLevelOfInitList=*/true);
1017 
1018   if (Result.isInvalid())
1019     hadError = true;
1020 
1021   expr = Result.takeAs<Expr>();
1022   IList->setInit(Index, expr);
1023 
1024   if (hadError)
1025     ++StructuredIndex;
1026   else
1027     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1028   ++Index;
1029 }
1030 
1031 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1032                                       InitListExpr *IList, QualType DeclType,
1033                                       unsigned &Index,
1034                                       InitListExpr *StructuredList,
1035                                       unsigned &StructuredIndex) {
1036   const VectorType *VT = DeclType->getAs<VectorType>();
1037   unsigned maxElements = VT->getNumElements();
1038   unsigned numEltsInit = 0;
1039   QualType elementType = VT->getElementType();
1040 
1041   if (Index >= IList->getNumInits()) {
1042     // Make sure the element type can be value-initialized.
1043     if (VerifyOnly)
1044       CheckValueInitializable(
1045           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1046     return;
1047   }
1048 
1049   if (!SemaRef.getLangOptions().OpenCL) {
1050     // If the initializing element is a vector, try to copy-initialize
1051     // instead of breaking it apart (which is doomed to failure anyway).
1052     Expr *Init = IList->getInit(Index);
1053     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1054       if (VerifyOnly) {
1055         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1056           hadError = true;
1057         ++Index;
1058         return;
1059       }
1060 
1061       ExprResult Result =
1062         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1063                                           SemaRef.Owned(Init),
1064                                           /*TopLevelOfInitList=*/true);
1065 
1066       Expr *ResultExpr = 0;
1067       if (Result.isInvalid())
1068         hadError = true; // types weren't compatible.
1069       else {
1070         ResultExpr = Result.takeAs<Expr>();
1071 
1072         if (ResultExpr != Init) {
1073           // The type was promoted, update initializer list.
1074           IList->setInit(Index, ResultExpr);
1075         }
1076       }
1077       if (hadError)
1078         ++StructuredIndex;
1079       else
1080         UpdateStructuredListElement(StructuredList, StructuredIndex,
1081                                     ResultExpr);
1082       ++Index;
1083       return;
1084     }
1085 
1086     InitializedEntity ElementEntity =
1087       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1088 
1089     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1090       // Don't attempt to go past the end of the init list
1091       if (Index >= IList->getNumInits()) {
1092         if (VerifyOnly)
1093           CheckValueInitializable(ElementEntity);
1094         break;
1095       }
1096 
1097       ElementEntity.setElementIndex(Index);
1098       CheckSubElementType(ElementEntity, IList, elementType, Index,
1099                           StructuredList, StructuredIndex);
1100     }
1101     return;
1102   }
1103 
1104   InitializedEntity ElementEntity =
1105     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1106 
1107   // OpenCL initializers allows vectors to be constructed from vectors.
1108   for (unsigned i = 0; i < maxElements; ++i) {
1109     // Don't attempt to go past the end of the init list
1110     if (Index >= IList->getNumInits())
1111       break;
1112 
1113     ElementEntity.setElementIndex(Index);
1114 
1115     QualType IType = IList->getInit(Index)->getType();
1116     if (!IType->isVectorType()) {
1117       CheckSubElementType(ElementEntity, IList, elementType, Index,
1118                           StructuredList, StructuredIndex);
1119       ++numEltsInit;
1120     } else {
1121       QualType VecType;
1122       const VectorType *IVT = IType->getAs<VectorType>();
1123       unsigned numIElts = IVT->getNumElements();
1124 
1125       if (IType->isExtVectorType())
1126         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1127       else
1128         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1129                                                 IVT->getVectorKind());
1130       CheckSubElementType(ElementEntity, IList, VecType, Index,
1131                           StructuredList, StructuredIndex);
1132       numEltsInit += numIElts;
1133     }
1134   }
1135 
1136   // OpenCL requires all elements to be initialized.
1137   if (numEltsInit != maxElements) {
1138     if (!VerifyOnly)
1139       SemaRef.Diag(IList->getLocStart(),
1140                    diag::err_vector_incorrect_num_initializers)
1141         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1142     hadError = true;
1143   }
1144 }
1145 
1146 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1147                                      InitListExpr *IList, QualType &DeclType,
1148                                      llvm::APSInt elementIndex,
1149                                      bool SubobjectIsDesignatorContext,
1150                                      unsigned &Index,
1151                                      InitListExpr *StructuredList,
1152                                      unsigned &StructuredIndex) {
1153   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1154 
1155   // Check for the special-case of initializing an array with a string.
1156   if (Index < IList->getNumInits()) {
1157     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1158                                  SemaRef.Context)) {
1159       // We place the string literal directly into the resulting
1160       // initializer list. This is the only place where the structure
1161       // of the structured initializer list doesn't match exactly,
1162       // because doing so would involve allocating one character
1163       // constant for each string.
1164       if (!VerifyOnly) {
1165         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1166         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1167         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1168       }
1169       ++Index;
1170       return;
1171     }
1172   }
1173   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1174     // Check for VLAs; in standard C it would be possible to check this
1175     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1176     // them in all sorts of strange places).
1177     if (!VerifyOnly)
1178       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1179                     diag::err_variable_object_no_init)
1180         << VAT->getSizeExpr()->getSourceRange();
1181     hadError = true;
1182     ++Index;
1183     ++StructuredIndex;
1184     return;
1185   }
1186 
1187   // We might know the maximum number of elements in advance.
1188   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1189                            elementIndex.isUnsigned());
1190   bool maxElementsKnown = false;
1191   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1192     maxElements = CAT->getSize();
1193     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1194     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1195     maxElementsKnown = true;
1196   }
1197 
1198   QualType elementType = arrayType->getElementType();
1199   while (Index < IList->getNumInits()) {
1200     Expr *Init = IList->getInit(Index);
1201     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1202       // If we're not the subobject that matches up with the '{' for
1203       // the designator, we shouldn't be handling the
1204       // designator. Return immediately.
1205       if (!SubobjectIsDesignatorContext)
1206         return;
1207 
1208       // Handle this designated initializer. elementIndex will be
1209       // updated to be the next array element we'll initialize.
1210       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1211                                      DeclType, 0, &elementIndex, Index,
1212                                      StructuredList, StructuredIndex, true,
1213                                      false)) {
1214         hadError = true;
1215         continue;
1216       }
1217 
1218       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1219         maxElements = maxElements.extend(elementIndex.getBitWidth());
1220       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1221         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1222       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1223 
1224       // If the array is of incomplete type, keep track of the number of
1225       // elements in the initializer.
1226       if (!maxElementsKnown && elementIndex > maxElements)
1227         maxElements = elementIndex;
1228 
1229       continue;
1230     }
1231 
1232     // If we know the maximum number of elements, and we've already
1233     // hit it, stop consuming elements in the initializer list.
1234     if (maxElementsKnown && elementIndex == maxElements)
1235       break;
1236 
1237     InitializedEntity ElementEntity =
1238       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1239                                            Entity);
1240     // Check this element.
1241     CheckSubElementType(ElementEntity, IList, elementType, Index,
1242                         StructuredList, StructuredIndex);
1243     ++elementIndex;
1244 
1245     // If the array is of incomplete type, keep track of the number of
1246     // elements in the initializer.
1247     if (!maxElementsKnown && elementIndex > maxElements)
1248       maxElements = elementIndex;
1249   }
1250   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1251     // If this is an incomplete array type, the actual type needs to
1252     // be calculated here.
1253     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1254     if (maxElements == Zero) {
1255       // Sizing an array implicitly to zero is not allowed by ISO C,
1256       // but is supported by GNU.
1257       SemaRef.Diag(IList->getLocStart(),
1258                     diag::ext_typecheck_zero_array_size);
1259     }
1260 
1261     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1262                                                      ArrayType::Normal, 0);
1263   }
1264   if (!hadError && VerifyOnly) {
1265     // Check if there are any members of the array that get value-initialized.
1266     // If so, check if doing that is possible.
1267     // FIXME: This needs to detect holes left by designated initializers too.
1268     if (maxElementsKnown && elementIndex < maxElements)
1269       CheckValueInitializable(InitializedEntity::InitializeElement(
1270                                                   SemaRef.Context, 0, Entity));
1271   }
1272 }
1273 
1274 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1275                                              Expr *InitExpr,
1276                                              FieldDecl *Field,
1277                                              bool TopLevelObject) {
1278   // Handle GNU flexible array initializers.
1279   unsigned FlexArrayDiag;
1280   if (isa<InitListExpr>(InitExpr) &&
1281       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1282     // Empty flexible array init always allowed as an extension
1283     FlexArrayDiag = diag::ext_flexible_array_init;
1284   } else if (SemaRef.getLangOptions().CPlusPlus) {
1285     // Disallow flexible array init in C++; it is not required for gcc
1286     // compatibility, and it needs work to IRGen correctly in general.
1287     FlexArrayDiag = diag::err_flexible_array_init;
1288   } else if (!TopLevelObject) {
1289     // Disallow flexible array init on non-top-level object
1290     FlexArrayDiag = diag::err_flexible_array_init;
1291   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1292     // Disallow flexible array init on anything which is not a variable.
1293     FlexArrayDiag = diag::err_flexible_array_init;
1294   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1295     // Disallow flexible array init on local variables.
1296     FlexArrayDiag = diag::err_flexible_array_init;
1297   } else {
1298     // Allow other cases.
1299     FlexArrayDiag = diag::ext_flexible_array_init;
1300   }
1301 
1302   if (!VerifyOnly) {
1303     SemaRef.Diag(InitExpr->getLocStart(),
1304                  FlexArrayDiag)
1305       << InitExpr->getLocStart();
1306     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1307       << Field;
1308   }
1309 
1310   return FlexArrayDiag != diag::ext_flexible_array_init;
1311 }
1312 
1313 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1314                                             InitListExpr *IList,
1315                                             QualType DeclType,
1316                                             RecordDecl::field_iterator Field,
1317                                             bool SubobjectIsDesignatorContext,
1318                                             unsigned &Index,
1319                                             InitListExpr *StructuredList,
1320                                             unsigned &StructuredIndex,
1321                                             bool TopLevelObject) {
1322   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1323 
1324   // If the record is invalid, some of it's members are invalid. To avoid
1325   // confusion, we forgo checking the intializer for the entire record.
1326   if (structDecl->isInvalidDecl()) {
1327     hadError = true;
1328     return;
1329   }
1330 
1331   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1332     // Value-initialize the first named member of the union.
1333     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1334     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1335          Field != FieldEnd; ++Field) {
1336       if (Field->getDeclName()) {
1337         if (VerifyOnly)
1338           CheckValueInitializable(
1339               InitializedEntity::InitializeMember(*Field, &Entity));
1340         else
1341           StructuredList->setInitializedFieldInUnion(*Field);
1342         break;
1343       }
1344     }
1345     return;
1346   }
1347 
1348   // If structDecl is a forward declaration, this loop won't do
1349   // anything except look at designated initializers; That's okay,
1350   // because an error should get printed out elsewhere. It might be
1351   // worthwhile to skip over the rest of the initializer, though.
1352   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1353   RecordDecl::field_iterator FieldEnd = RD->field_end();
1354   bool InitializedSomething = false;
1355   bool CheckForMissingFields = true;
1356   while (Index < IList->getNumInits()) {
1357     Expr *Init = IList->getInit(Index);
1358 
1359     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1360       // If we're not the subobject that matches up with the '{' for
1361       // the designator, we shouldn't be handling the
1362       // designator. Return immediately.
1363       if (!SubobjectIsDesignatorContext)
1364         return;
1365 
1366       // Handle this designated initializer. Field will be updated to
1367       // the next field that we'll be initializing.
1368       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1369                                      DeclType, &Field, 0, Index,
1370                                      StructuredList, StructuredIndex,
1371                                      true, TopLevelObject))
1372         hadError = true;
1373 
1374       InitializedSomething = true;
1375 
1376       // Disable check for missing fields when designators are used.
1377       // This matches gcc behaviour.
1378       CheckForMissingFields = false;
1379       continue;
1380     }
1381 
1382     if (Field == FieldEnd) {
1383       // We've run out of fields. We're done.
1384       break;
1385     }
1386 
1387     // We've already initialized a member of a union. We're done.
1388     if (InitializedSomething && DeclType->isUnionType())
1389       break;
1390 
1391     // If we've hit the flexible array member at the end, we're done.
1392     if (Field->getType()->isIncompleteArrayType())
1393       break;
1394 
1395     if (Field->isUnnamedBitfield()) {
1396       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1397       ++Field;
1398       continue;
1399     }
1400 
1401     // Make sure we can use this declaration.
1402     bool InvalidUse;
1403     if (VerifyOnly)
1404       InvalidUse = !SemaRef.CanUseDecl(*Field);
1405     else
1406       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1407                                           IList->getInit(Index)->getLocStart());
1408     if (InvalidUse) {
1409       ++Index;
1410       ++Field;
1411       hadError = true;
1412       continue;
1413     }
1414 
1415     InitializedEntity MemberEntity =
1416       InitializedEntity::InitializeMember(*Field, &Entity);
1417     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1418                         StructuredList, StructuredIndex);
1419     InitializedSomething = true;
1420 
1421     if (DeclType->isUnionType() && !VerifyOnly) {
1422       // Initialize the first field within the union.
1423       StructuredList->setInitializedFieldInUnion(*Field);
1424     }
1425 
1426     ++Field;
1427   }
1428 
1429   // Emit warnings for missing struct field initializers.
1430   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1431       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1432       !DeclType->isUnionType()) {
1433     // It is possible we have one or more unnamed bitfields remaining.
1434     // Find first (if any) named field and emit warning.
1435     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1436          it != end; ++it) {
1437       if (!it->isUnnamedBitfield()) {
1438         SemaRef.Diag(IList->getSourceRange().getEnd(),
1439                      diag::warn_missing_field_initializers) << it->getName();
1440         break;
1441       }
1442     }
1443   }
1444 
1445   // Check that any remaining fields can be value-initialized.
1446   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1447       !Field->getType()->isIncompleteArrayType()) {
1448     // FIXME: Should check for holes left by designated initializers too.
1449     for (; Field != FieldEnd && !hadError; ++Field) {
1450       if (!Field->isUnnamedBitfield())
1451         CheckValueInitializable(
1452             InitializedEntity::InitializeMember(*Field, &Entity));
1453     }
1454   }
1455 
1456   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1457       Index >= IList->getNumInits())
1458     return;
1459 
1460   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1461                              TopLevelObject)) {
1462     hadError = true;
1463     ++Index;
1464     return;
1465   }
1466 
1467   InitializedEntity MemberEntity =
1468     InitializedEntity::InitializeMember(*Field, &Entity);
1469 
1470   if (isa<InitListExpr>(IList->getInit(Index)))
1471     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1472                         StructuredList, StructuredIndex);
1473   else
1474     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1475                           StructuredList, StructuredIndex);
1476 }
1477 
1478 /// \brief Expand a field designator that refers to a member of an
1479 /// anonymous struct or union into a series of field designators that
1480 /// refers to the field within the appropriate subobject.
1481 ///
1482 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1483                                            DesignatedInitExpr *DIE,
1484                                            unsigned DesigIdx,
1485                                            IndirectFieldDecl *IndirectField) {
1486   typedef DesignatedInitExpr::Designator Designator;
1487 
1488   // Build the replacement designators.
1489   SmallVector<Designator, 4> Replacements;
1490   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1491        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1492     if (PI + 1 == PE)
1493       Replacements.push_back(Designator((IdentifierInfo *)0,
1494                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1495                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1496     else
1497       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1498                                         SourceLocation()));
1499     assert(isa<FieldDecl>(*PI));
1500     Replacements.back().setField(cast<FieldDecl>(*PI));
1501   }
1502 
1503   // Expand the current designator into the set of replacement
1504   // designators, so we have a full subobject path down to where the
1505   // member of the anonymous struct/union is actually stored.
1506   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1507                         &Replacements[0] + Replacements.size());
1508 }
1509 
1510 /// \brief Given an implicit anonymous field, search the IndirectField that
1511 ///  corresponds to FieldName.
1512 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1513                                                  IdentifierInfo *FieldName) {
1514   assert(AnonField->isAnonymousStructOrUnion());
1515   Decl *NextDecl = AnonField->getNextDeclInContext();
1516   while (IndirectFieldDecl *IF =
1517           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1518     if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1519       return IF;
1520     NextDecl = NextDecl->getNextDeclInContext();
1521   }
1522   return 0;
1523 }
1524 
1525 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1526                                                    DesignatedInitExpr *DIE) {
1527   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1528   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1529   for (unsigned I = 0; I < NumIndexExprs; ++I)
1530     IndexExprs[I] = DIE->getSubExpr(I + 1);
1531   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1532                                     DIE->size(), IndexExprs.data(),
1533                                     NumIndexExprs, DIE->getEqualOrColonLoc(),
1534                                     DIE->usesGNUSyntax(), DIE->getInit());
1535 }
1536 
1537 namespace {
1538 
1539 // Callback to only accept typo corrections that are for field members of
1540 // the given struct or union.
1541 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1542  public:
1543   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1544       : Record(RD) {}
1545 
1546   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1547     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1548     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1549   }
1550 
1551  private:
1552   RecordDecl *Record;
1553 };
1554 
1555 }
1556 
1557 /// @brief Check the well-formedness of a C99 designated initializer.
1558 ///
1559 /// Determines whether the designated initializer @p DIE, which
1560 /// resides at the given @p Index within the initializer list @p
1561 /// IList, is well-formed for a current object of type @p DeclType
1562 /// (C99 6.7.8). The actual subobject that this designator refers to
1563 /// within the current subobject is returned in either
1564 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1565 ///
1566 /// @param IList  The initializer list in which this designated
1567 /// initializer occurs.
1568 ///
1569 /// @param DIE The designated initializer expression.
1570 ///
1571 /// @param DesigIdx  The index of the current designator.
1572 ///
1573 /// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1574 /// into which the designation in @p DIE should refer.
1575 ///
1576 /// @param NextField  If non-NULL and the first designator in @p DIE is
1577 /// a field, this will be set to the field declaration corresponding
1578 /// to the field named by the designator.
1579 ///
1580 /// @param NextElementIndex  If non-NULL and the first designator in @p
1581 /// DIE is an array designator or GNU array-range designator, this
1582 /// will be set to the last index initialized by this designator.
1583 ///
1584 /// @param Index  Index into @p IList where the designated initializer
1585 /// @p DIE occurs.
1586 ///
1587 /// @param StructuredList  The initializer list expression that
1588 /// describes all of the subobject initializers in the order they'll
1589 /// actually be initialized.
1590 ///
1591 /// @returns true if there was an error, false otherwise.
1592 bool
1593 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1594                                             InitListExpr *IList,
1595                                             DesignatedInitExpr *DIE,
1596                                             unsigned DesigIdx,
1597                                             QualType &CurrentObjectType,
1598                                           RecordDecl::field_iterator *NextField,
1599                                             llvm::APSInt *NextElementIndex,
1600                                             unsigned &Index,
1601                                             InitListExpr *StructuredList,
1602                                             unsigned &StructuredIndex,
1603                                             bool FinishSubobjectInit,
1604                                             bool TopLevelObject) {
1605   if (DesigIdx == DIE->size()) {
1606     // Check the actual initialization for the designated object type.
1607     bool prevHadError = hadError;
1608 
1609     // Temporarily remove the designator expression from the
1610     // initializer list that the child calls see, so that we don't try
1611     // to re-process the designator.
1612     unsigned OldIndex = Index;
1613     IList->setInit(OldIndex, DIE->getInit());
1614 
1615     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1616                         StructuredList, StructuredIndex);
1617 
1618     // Restore the designated initializer expression in the syntactic
1619     // form of the initializer list.
1620     if (IList->getInit(OldIndex) != DIE->getInit())
1621       DIE->setInit(IList->getInit(OldIndex));
1622     IList->setInit(OldIndex, DIE);
1623 
1624     return hadError && !prevHadError;
1625   }
1626 
1627   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1628   bool IsFirstDesignator = (DesigIdx == 0);
1629   if (!VerifyOnly) {
1630     assert((IsFirstDesignator || StructuredList) &&
1631            "Need a non-designated initializer list to start from");
1632 
1633     // Determine the structural initializer list that corresponds to the
1634     // current subobject.
1635     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1636       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1637                                    StructuredList, StructuredIndex,
1638                                    SourceRange(D->getStartLocation(),
1639                                                DIE->getSourceRange().getEnd()));
1640     assert(StructuredList && "Expected a structured initializer list");
1641   }
1642 
1643   if (D->isFieldDesignator()) {
1644     // C99 6.7.8p7:
1645     //
1646     //   If a designator has the form
1647     //
1648     //      . identifier
1649     //
1650     //   then the current object (defined below) shall have
1651     //   structure or union type and the identifier shall be the
1652     //   name of a member of that type.
1653     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1654     if (!RT) {
1655       SourceLocation Loc = D->getDotLoc();
1656       if (Loc.isInvalid())
1657         Loc = D->getFieldLoc();
1658       if (!VerifyOnly)
1659         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1660           << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1661       ++Index;
1662       return true;
1663     }
1664 
1665     // Note: we perform a linear search of the fields here, despite
1666     // the fact that we have a faster lookup method, because we always
1667     // need to compute the field's index.
1668     FieldDecl *KnownField = D->getField();
1669     IdentifierInfo *FieldName = D->getFieldName();
1670     unsigned FieldIndex = 0;
1671     RecordDecl::field_iterator
1672       Field = RT->getDecl()->field_begin(),
1673       FieldEnd = RT->getDecl()->field_end();
1674     for (; Field != FieldEnd; ++Field) {
1675       if (Field->isUnnamedBitfield())
1676         continue;
1677 
1678       // If we find a field representing an anonymous field, look in the
1679       // IndirectFieldDecl that follow for the designated initializer.
1680       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1681         if (IndirectFieldDecl *IF =
1682             FindIndirectFieldDesignator(*Field, FieldName)) {
1683           // In verify mode, don't modify the original.
1684           if (VerifyOnly)
1685             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1686           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1687           D = DIE->getDesignator(DesigIdx);
1688           break;
1689         }
1690       }
1691       if (KnownField && KnownField == *Field)
1692         break;
1693       if (FieldName && FieldName == Field->getIdentifier())
1694         break;
1695 
1696       ++FieldIndex;
1697     }
1698 
1699     if (Field == FieldEnd) {
1700       if (VerifyOnly) {
1701         ++Index;
1702         return true; // No typo correction when just trying this out.
1703       }
1704 
1705       // There was no normal field in the struct with the designated
1706       // name. Perform another lookup for this name, which may find
1707       // something that we can't designate (e.g., a member function),
1708       // may find nothing, or may find a member of an anonymous
1709       // struct/union.
1710       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1711       FieldDecl *ReplacementField = 0;
1712       if (Lookup.first == Lookup.second) {
1713         // Name lookup didn't find anything. Determine whether this
1714         // was a typo for another field name.
1715         FieldInitializerValidatorCCC Validator(RT->getDecl());
1716         TypoCorrection Corrected = SemaRef.CorrectTypo(
1717             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1718             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1719             RT->getDecl());
1720         if (Corrected) {
1721           std::string CorrectedStr(
1722               Corrected.getAsString(SemaRef.getLangOptions()));
1723           std::string CorrectedQuotedStr(
1724               Corrected.getQuoted(SemaRef.getLangOptions()));
1725           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1726           SemaRef.Diag(D->getFieldLoc(),
1727                        diag::err_field_designator_unknown_suggest)
1728             << FieldName << CurrentObjectType << CorrectedQuotedStr
1729             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1730           SemaRef.Diag(ReplacementField->getLocation(),
1731                        diag::note_previous_decl) << CorrectedQuotedStr;
1732           hadError = true;
1733         } else {
1734           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1735             << FieldName << CurrentObjectType;
1736           ++Index;
1737           return true;
1738         }
1739       }
1740 
1741       if (!ReplacementField) {
1742         // Name lookup found something, but it wasn't a field.
1743         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1744           << FieldName;
1745         SemaRef.Diag((*Lookup.first)->getLocation(),
1746                       diag::note_field_designator_found);
1747         ++Index;
1748         return true;
1749       }
1750 
1751       if (!KnownField) {
1752         // The replacement field comes from typo correction; find it
1753         // in the list of fields.
1754         FieldIndex = 0;
1755         Field = RT->getDecl()->field_begin();
1756         for (; Field != FieldEnd; ++Field) {
1757           if (Field->isUnnamedBitfield())
1758             continue;
1759 
1760           if (ReplacementField == *Field ||
1761               Field->getIdentifier() == ReplacementField->getIdentifier())
1762             break;
1763 
1764           ++FieldIndex;
1765         }
1766       }
1767     }
1768 
1769     // All of the fields of a union are located at the same place in
1770     // the initializer list.
1771     if (RT->getDecl()->isUnion()) {
1772       FieldIndex = 0;
1773       if (!VerifyOnly)
1774         StructuredList->setInitializedFieldInUnion(*Field);
1775     }
1776 
1777     // Make sure we can use this declaration.
1778     bool InvalidUse;
1779     if (VerifyOnly)
1780       InvalidUse = !SemaRef.CanUseDecl(*Field);
1781     else
1782       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1783     if (InvalidUse) {
1784       ++Index;
1785       return true;
1786     }
1787 
1788     if (!VerifyOnly) {
1789       // Update the designator with the field declaration.
1790       D->setField(*Field);
1791 
1792       // Make sure that our non-designated initializer list has space
1793       // for a subobject corresponding to this field.
1794       if (FieldIndex >= StructuredList->getNumInits())
1795         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1796     }
1797 
1798     // This designator names a flexible array member.
1799     if (Field->getType()->isIncompleteArrayType()) {
1800       bool Invalid = false;
1801       if ((DesigIdx + 1) != DIE->size()) {
1802         // We can't designate an object within the flexible array
1803         // member (because GCC doesn't allow it).
1804         if (!VerifyOnly) {
1805           DesignatedInitExpr::Designator *NextD
1806             = DIE->getDesignator(DesigIdx + 1);
1807           SemaRef.Diag(NextD->getStartLocation(),
1808                         diag::err_designator_into_flexible_array_member)
1809             << SourceRange(NextD->getStartLocation(),
1810                            DIE->getSourceRange().getEnd());
1811           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1812             << *Field;
1813         }
1814         Invalid = true;
1815       }
1816 
1817       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1818           !isa<StringLiteral>(DIE->getInit())) {
1819         // The initializer is not an initializer list.
1820         if (!VerifyOnly) {
1821           SemaRef.Diag(DIE->getInit()->getLocStart(),
1822                         diag::err_flexible_array_init_needs_braces)
1823             << DIE->getInit()->getSourceRange();
1824           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1825             << *Field;
1826         }
1827         Invalid = true;
1828       }
1829 
1830       // Check GNU flexible array initializer.
1831       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1832                                              TopLevelObject))
1833         Invalid = true;
1834 
1835       if (Invalid) {
1836         ++Index;
1837         return true;
1838       }
1839 
1840       // Initialize the array.
1841       bool prevHadError = hadError;
1842       unsigned newStructuredIndex = FieldIndex;
1843       unsigned OldIndex = Index;
1844       IList->setInit(Index, DIE->getInit());
1845 
1846       InitializedEntity MemberEntity =
1847         InitializedEntity::InitializeMember(*Field, &Entity);
1848       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1849                           StructuredList, newStructuredIndex);
1850 
1851       IList->setInit(OldIndex, DIE);
1852       if (hadError && !prevHadError) {
1853         ++Field;
1854         ++FieldIndex;
1855         if (NextField)
1856           *NextField = Field;
1857         StructuredIndex = FieldIndex;
1858         return true;
1859       }
1860     } else {
1861       // Recurse to check later designated subobjects.
1862       QualType FieldType = (*Field)->getType();
1863       unsigned newStructuredIndex = FieldIndex;
1864 
1865       InitializedEntity MemberEntity =
1866         InitializedEntity::InitializeMember(*Field, &Entity);
1867       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1868                                      FieldType, 0, 0, Index,
1869                                      StructuredList, newStructuredIndex,
1870                                      true, false))
1871         return true;
1872     }
1873 
1874     // Find the position of the next field to be initialized in this
1875     // subobject.
1876     ++Field;
1877     ++FieldIndex;
1878 
1879     // If this the first designator, our caller will continue checking
1880     // the rest of this struct/class/union subobject.
1881     if (IsFirstDesignator) {
1882       if (NextField)
1883         *NextField = Field;
1884       StructuredIndex = FieldIndex;
1885       return false;
1886     }
1887 
1888     if (!FinishSubobjectInit)
1889       return false;
1890 
1891     // We've already initialized something in the union; we're done.
1892     if (RT->getDecl()->isUnion())
1893       return hadError;
1894 
1895     // Check the remaining fields within this class/struct/union subobject.
1896     bool prevHadError = hadError;
1897 
1898     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1899                           StructuredList, FieldIndex);
1900     return hadError && !prevHadError;
1901   }
1902 
1903   // C99 6.7.8p6:
1904   //
1905   //   If a designator has the form
1906   //
1907   //      [ constant-expression ]
1908   //
1909   //   then the current object (defined below) shall have array
1910   //   type and the expression shall be an integer constant
1911   //   expression. If the array is of unknown size, any
1912   //   nonnegative value is valid.
1913   //
1914   // Additionally, cope with the GNU extension that permits
1915   // designators of the form
1916   //
1917   //      [ constant-expression ... constant-expression ]
1918   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1919   if (!AT) {
1920     if (!VerifyOnly)
1921       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1922         << CurrentObjectType;
1923     ++Index;
1924     return true;
1925   }
1926 
1927   Expr *IndexExpr = 0;
1928   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1929   if (D->isArrayDesignator()) {
1930     IndexExpr = DIE->getArrayIndex(*D);
1931     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1932     DesignatedEndIndex = DesignatedStartIndex;
1933   } else {
1934     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1935 
1936     DesignatedStartIndex =
1937       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1938     DesignatedEndIndex =
1939       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1940     IndexExpr = DIE->getArrayRangeEnd(*D);
1941 
1942     // Codegen can't handle evaluating array range designators that have side
1943     // effects, because we replicate the AST value for each initialized element.
1944     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1945     // elements with something that has a side effect, so codegen can emit an
1946     // "error unsupported" error instead of miscompiling the app.
1947     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1948         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1949       FullyStructuredList->sawArrayRangeDesignator();
1950   }
1951 
1952   if (isa<ConstantArrayType>(AT)) {
1953     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1954     DesignatedStartIndex
1955       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1956     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1957     DesignatedEndIndex
1958       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1959     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1960     if (DesignatedEndIndex >= MaxElements) {
1961       if (!VerifyOnly)
1962         SemaRef.Diag(IndexExpr->getLocStart(),
1963                       diag::err_array_designator_too_large)
1964           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1965           << IndexExpr->getSourceRange();
1966       ++Index;
1967       return true;
1968     }
1969   } else {
1970     // Make sure the bit-widths and signedness match.
1971     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1972       DesignatedEndIndex
1973         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1974     else if (DesignatedStartIndex.getBitWidth() <
1975              DesignatedEndIndex.getBitWidth())
1976       DesignatedStartIndex
1977         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1978     DesignatedStartIndex.setIsUnsigned(true);
1979     DesignatedEndIndex.setIsUnsigned(true);
1980   }
1981 
1982   // Make sure that our non-designated initializer list has space
1983   // for a subobject corresponding to this array element.
1984   if (!VerifyOnly &&
1985       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1986     StructuredList->resizeInits(SemaRef.Context,
1987                                 DesignatedEndIndex.getZExtValue() + 1);
1988 
1989   // Repeatedly perform subobject initializations in the range
1990   // [DesignatedStartIndex, DesignatedEndIndex].
1991 
1992   // Move to the next designator
1993   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1994   unsigned OldIndex = Index;
1995 
1996   InitializedEntity ElementEntity =
1997     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1998 
1999   while (DesignatedStartIndex <= DesignatedEndIndex) {
2000     // Recurse to check later designated subobjects.
2001     QualType ElementType = AT->getElementType();
2002     Index = OldIndex;
2003 
2004     ElementEntity.setElementIndex(ElementIndex);
2005     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2006                                    ElementType, 0, 0, Index,
2007                                    StructuredList, ElementIndex,
2008                                    (DesignatedStartIndex == DesignatedEndIndex),
2009                                    false))
2010       return true;
2011 
2012     // Move to the next index in the array that we'll be initializing.
2013     ++DesignatedStartIndex;
2014     ElementIndex = DesignatedStartIndex.getZExtValue();
2015   }
2016 
2017   // If this the first designator, our caller will continue checking
2018   // the rest of this array subobject.
2019   if (IsFirstDesignator) {
2020     if (NextElementIndex)
2021       *NextElementIndex = DesignatedStartIndex;
2022     StructuredIndex = ElementIndex;
2023     return false;
2024   }
2025 
2026   if (!FinishSubobjectInit)
2027     return false;
2028 
2029   // Check the remaining elements within this array subobject.
2030   bool prevHadError = hadError;
2031   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2032                  /*SubobjectIsDesignatorContext=*/false, Index,
2033                  StructuredList, ElementIndex);
2034   return hadError && !prevHadError;
2035 }
2036 
2037 // Get the structured initializer list for a subobject of type
2038 // @p CurrentObjectType.
2039 InitListExpr *
2040 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2041                                             QualType CurrentObjectType,
2042                                             InitListExpr *StructuredList,
2043                                             unsigned StructuredIndex,
2044                                             SourceRange InitRange) {
2045   if (VerifyOnly)
2046     return 0; // No structured list in verification-only mode.
2047   Expr *ExistingInit = 0;
2048   if (!StructuredList)
2049     ExistingInit = SyntacticToSemantic.lookup(IList);
2050   else if (StructuredIndex < StructuredList->getNumInits())
2051     ExistingInit = StructuredList->getInit(StructuredIndex);
2052 
2053   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2054     return Result;
2055 
2056   if (ExistingInit) {
2057     // We are creating an initializer list that initializes the
2058     // subobjects of the current object, but there was already an
2059     // initialization that completely initialized the current
2060     // subobject, e.g., by a compound literal:
2061     //
2062     // struct X { int a, b; };
2063     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2064     //
2065     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2066     // designated initializer re-initializes the whole
2067     // subobject [0], overwriting previous initializers.
2068     SemaRef.Diag(InitRange.getBegin(),
2069                  diag::warn_subobject_initializer_overrides)
2070       << InitRange;
2071     SemaRef.Diag(ExistingInit->getLocStart(),
2072                   diag::note_previous_initializer)
2073       << /*FIXME:has side effects=*/0
2074       << ExistingInit->getSourceRange();
2075   }
2076 
2077   InitListExpr *Result
2078     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2079                                          InitRange.getBegin(), 0, 0,
2080                                          InitRange.getEnd());
2081 
2082   QualType ResultType = CurrentObjectType;
2083   if (!ResultType->isArrayType())
2084     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2085   Result->setType(ResultType);
2086 
2087   // Pre-allocate storage for the structured initializer list.
2088   unsigned NumElements = 0;
2089   unsigned NumInits = 0;
2090   bool GotNumInits = false;
2091   if (!StructuredList) {
2092     NumInits = IList->getNumInits();
2093     GotNumInits = true;
2094   } else if (Index < IList->getNumInits()) {
2095     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2096       NumInits = SubList->getNumInits();
2097       GotNumInits = true;
2098     }
2099   }
2100 
2101   if (const ArrayType *AType
2102       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2103     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2104       NumElements = CAType->getSize().getZExtValue();
2105       // Simple heuristic so that we don't allocate a very large
2106       // initializer with many empty entries at the end.
2107       if (GotNumInits && NumElements > NumInits)
2108         NumElements = 0;
2109     }
2110   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2111     NumElements = VType->getNumElements();
2112   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2113     RecordDecl *RDecl = RType->getDecl();
2114     if (RDecl->isUnion())
2115       NumElements = 1;
2116     else
2117       NumElements = std::distance(RDecl->field_begin(),
2118                                   RDecl->field_end());
2119   }
2120 
2121   Result->reserveInits(SemaRef.Context, NumElements);
2122 
2123   // Link this new initializer list into the structured initializer
2124   // lists.
2125   if (StructuredList)
2126     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2127   else {
2128     Result->setSyntacticForm(IList);
2129     SyntacticToSemantic[IList] = Result;
2130   }
2131 
2132   return Result;
2133 }
2134 
2135 /// Update the initializer at index @p StructuredIndex within the
2136 /// structured initializer list to the value @p expr.
2137 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2138                                                   unsigned &StructuredIndex,
2139                                                   Expr *expr) {
2140   // No structured initializer list to update
2141   if (!StructuredList)
2142     return;
2143 
2144   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2145                                                   StructuredIndex, expr)) {
2146     // This initializer overwrites a previous initializer. Warn.
2147     SemaRef.Diag(expr->getLocStart(),
2148                   diag::warn_initializer_overrides)
2149       << expr->getSourceRange();
2150     SemaRef.Diag(PrevInit->getLocStart(),
2151                   diag::note_previous_initializer)
2152       << /*FIXME:has side effects=*/0
2153       << PrevInit->getSourceRange();
2154   }
2155 
2156   ++StructuredIndex;
2157 }
2158 
2159 /// Check that the given Index expression is a valid array designator
2160 /// value. This is essentially just a wrapper around
2161 /// VerifyIntegerConstantExpression that also checks for negative values
2162 /// and produces a reasonable diagnostic if there is a
2163 /// failure. Returns the index expression, possibly with an implicit cast
2164 /// added, on success.  If everything went okay, Value will receive the
2165 /// value of the constant expression.
2166 static ExprResult
2167 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2168   SourceLocation Loc = Index->getLocStart();
2169 
2170   // Make sure this is an integer constant expression.
2171   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2172   if (Result.isInvalid())
2173     return Result;
2174 
2175   if (Value.isSigned() && Value.isNegative())
2176     return S.Diag(Loc, diag::err_array_designator_negative)
2177       << Value.toString(10) << Index->getSourceRange();
2178 
2179   Value.setIsUnsigned(true);
2180   return Result;
2181 }
2182 
2183 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2184                                             SourceLocation Loc,
2185                                             bool GNUSyntax,
2186                                             ExprResult Init) {
2187   typedef DesignatedInitExpr::Designator ASTDesignator;
2188 
2189   bool Invalid = false;
2190   SmallVector<ASTDesignator, 32> Designators;
2191   SmallVector<Expr *, 32> InitExpressions;
2192 
2193   // Build designators and check array designator expressions.
2194   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2195     const Designator &D = Desig.getDesignator(Idx);
2196     switch (D.getKind()) {
2197     case Designator::FieldDesignator:
2198       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2199                                           D.getFieldLoc()));
2200       break;
2201 
2202     case Designator::ArrayDesignator: {
2203       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2204       llvm::APSInt IndexValue;
2205       if (!Index->isTypeDependent() && !Index->isValueDependent())
2206         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2207       if (!Index)
2208         Invalid = true;
2209       else {
2210         Designators.push_back(ASTDesignator(InitExpressions.size(),
2211                                             D.getLBracketLoc(),
2212                                             D.getRBracketLoc()));
2213         InitExpressions.push_back(Index);
2214       }
2215       break;
2216     }
2217 
2218     case Designator::ArrayRangeDesignator: {
2219       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2220       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2221       llvm::APSInt StartValue;
2222       llvm::APSInt EndValue;
2223       bool StartDependent = StartIndex->isTypeDependent() ||
2224                             StartIndex->isValueDependent();
2225       bool EndDependent = EndIndex->isTypeDependent() ||
2226                           EndIndex->isValueDependent();
2227       if (!StartDependent)
2228         StartIndex =
2229             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2230       if (!EndDependent)
2231         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2232 
2233       if (!StartIndex || !EndIndex)
2234         Invalid = true;
2235       else {
2236         // Make sure we're comparing values with the same bit width.
2237         if (StartDependent || EndDependent) {
2238           // Nothing to compute.
2239         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2240           EndValue = EndValue.extend(StartValue.getBitWidth());
2241         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2242           StartValue = StartValue.extend(EndValue.getBitWidth());
2243 
2244         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2245           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2246             << StartValue.toString(10) << EndValue.toString(10)
2247             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2248           Invalid = true;
2249         } else {
2250           Designators.push_back(ASTDesignator(InitExpressions.size(),
2251                                               D.getLBracketLoc(),
2252                                               D.getEllipsisLoc(),
2253                                               D.getRBracketLoc()));
2254           InitExpressions.push_back(StartIndex);
2255           InitExpressions.push_back(EndIndex);
2256         }
2257       }
2258       break;
2259     }
2260     }
2261   }
2262 
2263   if (Invalid || Init.isInvalid())
2264     return ExprError();
2265 
2266   // Clear out the expressions within the designation.
2267   Desig.ClearExprs(*this);
2268 
2269   DesignatedInitExpr *DIE
2270     = DesignatedInitExpr::Create(Context,
2271                                  Designators.data(), Designators.size(),
2272                                  InitExpressions.data(), InitExpressions.size(),
2273                                  Loc, GNUSyntax, Init.takeAs<Expr>());
2274 
2275   if (!getLangOptions().C99)
2276     Diag(DIE->getLocStart(), diag::ext_designated_init)
2277       << DIE->getSourceRange();
2278 
2279   return Owned(DIE);
2280 }
2281 
2282 //===----------------------------------------------------------------------===//
2283 // Initialization entity
2284 //===----------------------------------------------------------------------===//
2285 
2286 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2287                                      const InitializedEntity &Parent)
2288   : Parent(&Parent), Index(Index)
2289 {
2290   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2291     Kind = EK_ArrayElement;
2292     Type = AT->getElementType();
2293   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2294     Kind = EK_VectorElement;
2295     Type = VT->getElementType();
2296   } else {
2297     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2298     assert(CT && "Unexpected type");
2299     Kind = EK_ComplexElement;
2300     Type = CT->getElementType();
2301   }
2302 }
2303 
2304 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2305                                                     CXXBaseSpecifier *Base,
2306                                                     bool IsInheritedVirtualBase)
2307 {
2308   InitializedEntity Result;
2309   Result.Kind = EK_Base;
2310   Result.Base = reinterpret_cast<uintptr_t>(Base);
2311   if (IsInheritedVirtualBase)
2312     Result.Base |= 0x01;
2313 
2314   Result.Type = Base->getType();
2315   return Result;
2316 }
2317 
2318 DeclarationName InitializedEntity::getName() const {
2319   switch (getKind()) {
2320   case EK_Parameter: {
2321     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2322     return (D ? D->getDeclName() : DeclarationName());
2323   }
2324 
2325   case EK_Variable:
2326   case EK_Member:
2327     return VariableOrMember->getDeclName();
2328 
2329   case EK_LambdaCapture:
2330     return Capture.Var->getDeclName();
2331 
2332   case EK_Result:
2333   case EK_Exception:
2334   case EK_New:
2335   case EK_Temporary:
2336   case EK_Base:
2337   case EK_Delegating:
2338   case EK_ArrayElement:
2339   case EK_VectorElement:
2340   case EK_ComplexElement:
2341   case EK_BlockElement:
2342     return DeclarationName();
2343   }
2344 
2345   llvm_unreachable("Invalid EntityKind!");
2346 }
2347 
2348 DeclaratorDecl *InitializedEntity::getDecl() const {
2349   switch (getKind()) {
2350   case EK_Variable:
2351   case EK_Member:
2352     return VariableOrMember;
2353 
2354   case EK_Parameter:
2355     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2356 
2357   case EK_Result:
2358   case EK_Exception:
2359   case EK_New:
2360   case EK_Temporary:
2361   case EK_Base:
2362   case EK_Delegating:
2363   case EK_ArrayElement:
2364   case EK_VectorElement:
2365   case EK_ComplexElement:
2366   case EK_BlockElement:
2367   case EK_LambdaCapture:
2368     return 0;
2369   }
2370 
2371   llvm_unreachable("Invalid EntityKind!");
2372 }
2373 
2374 bool InitializedEntity::allowsNRVO() const {
2375   switch (getKind()) {
2376   case EK_Result:
2377   case EK_Exception:
2378     return LocAndNRVO.NRVO;
2379 
2380   case EK_Variable:
2381   case EK_Parameter:
2382   case EK_Member:
2383   case EK_New:
2384   case EK_Temporary:
2385   case EK_Base:
2386   case EK_Delegating:
2387   case EK_ArrayElement:
2388   case EK_VectorElement:
2389   case EK_ComplexElement:
2390   case EK_BlockElement:
2391   case EK_LambdaCapture:
2392     break;
2393   }
2394 
2395   return false;
2396 }
2397 
2398 //===----------------------------------------------------------------------===//
2399 // Initialization sequence
2400 //===----------------------------------------------------------------------===//
2401 
2402 void InitializationSequence::Step::Destroy() {
2403   switch (Kind) {
2404   case SK_ResolveAddressOfOverloadedFunction:
2405   case SK_CastDerivedToBaseRValue:
2406   case SK_CastDerivedToBaseXValue:
2407   case SK_CastDerivedToBaseLValue:
2408   case SK_BindReference:
2409   case SK_BindReferenceToTemporary:
2410   case SK_ExtraneousCopyToTemporary:
2411   case SK_UserConversion:
2412   case SK_QualificationConversionRValue:
2413   case SK_QualificationConversionXValue:
2414   case SK_QualificationConversionLValue:
2415   case SK_ListInitialization:
2416   case SK_ListConstructorCall:
2417   case SK_UnwrapInitList:
2418   case SK_RewrapInitList:
2419   case SK_ConstructorInitialization:
2420   case SK_ZeroInitialization:
2421   case SK_CAssignment:
2422   case SK_StringInit:
2423   case SK_ObjCObjectConversion:
2424   case SK_ArrayInit:
2425   case SK_ParenthesizedArrayInit:
2426   case SK_PassByIndirectCopyRestore:
2427   case SK_PassByIndirectRestore:
2428   case SK_ProduceObjCObject:
2429   case SK_StdInitializerList:
2430     break;
2431 
2432   case SK_ConversionSequence:
2433     delete ICS;
2434   }
2435 }
2436 
2437 bool InitializationSequence::isDirectReferenceBinding() const {
2438   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2439 }
2440 
2441 bool InitializationSequence::isAmbiguous() const {
2442   if (!Failed())
2443     return false;
2444 
2445   switch (getFailureKind()) {
2446   case FK_TooManyInitsForReference:
2447   case FK_ArrayNeedsInitList:
2448   case FK_ArrayNeedsInitListOrStringLiteral:
2449   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2450   case FK_NonConstLValueReferenceBindingToTemporary:
2451   case FK_NonConstLValueReferenceBindingToUnrelated:
2452   case FK_RValueReferenceBindingToLValue:
2453   case FK_ReferenceInitDropsQualifiers:
2454   case FK_ReferenceInitFailed:
2455   case FK_ConversionFailed:
2456   case FK_ConversionFromPropertyFailed:
2457   case FK_TooManyInitsForScalar:
2458   case FK_ReferenceBindingToInitList:
2459   case FK_InitListBadDestinationType:
2460   case FK_DefaultInitOfConst:
2461   case FK_Incomplete:
2462   case FK_ArrayTypeMismatch:
2463   case FK_NonConstantArrayInit:
2464   case FK_ListInitializationFailed:
2465   case FK_VariableLengthArrayHasInitializer:
2466   case FK_PlaceholderType:
2467   case FK_InitListElementCopyFailure:
2468     return false;
2469 
2470   case FK_ReferenceInitOverloadFailed:
2471   case FK_UserConversionOverloadFailed:
2472   case FK_ConstructorOverloadFailed:
2473   case FK_ListConstructorOverloadFailed:
2474     return FailedOverloadResult == OR_Ambiguous;
2475   }
2476 
2477   llvm_unreachable("Invalid EntityKind!");
2478 }
2479 
2480 bool InitializationSequence::isConstructorInitialization() const {
2481   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2482 }
2483 
2484 void
2485 InitializationSequence
2486 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2487                                    DeclAccessPair Found,
2488                                    bool HadMultipleCandidates) {
2489   Step S;
2490   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2491   S.Type = Function->getType();
2492   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2493   S.Function.Function = Function;
2494   S.Function.FoundDecl = Found;
2495   Steps.push_back(S);
2496 }
2497 
2498 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2499                                                       ExprValueKind VK) {
2500   Step S;
2501   switch (VK) {
2502   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2503   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2504   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2505   }
2506   S.Type = BaseType;
2507   Steps.push_back(S);
2508 }
2509 
2510 void InitializationSequence::AddReferenceBindingStep(QualType T,
2511                                                      bool BindingTemporary) {
2512   Step S;
2513   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2514   S.Type = T;
2515   Steps.push_back(S);
2516 }
2517 
2518 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2519   Step S;
2520   S.Kind = SK_ExtraneousCopyToTemporary;
2521   S.Type = T;
2522   Steps.push_back(S);
2523 }
2524 
2525 void
2526 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2527                                               DeclAccessPair FoundDecl,
2528                                               QualType T,
2529                                               bool HadMultipleCandidates) {
2530   Step S;
2531   S.Kind = SK_UserConversion;
2532   S.Type = T;
2533   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2534   S.Function.Function = Function;
2535   S.Function.FoundDecl = FoundDecl;
2536   Steps.push_back(S);
2537 }
2538 
2539 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2540                                                             ExprValueKind VK) {
2541   Step S;
2542   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2543   switch (VK) {
2544   case VK_RValue:
2545     S.Kind = SK_QualificationConversionRValue;
2546     break;
2547   case VK_XValue:
2548     S.Kind = SK_QualificationConversionXValue;
2549     break;
2550   case VK_LValue:
2551     S.Kind = SK_QualificationConversionLValue;
2552     break;
2553   }
2554   S.Type = Ty;
2555   Steps.push_back(S);
2556 }
2557 
2558 void InitializationSequence::AddConversionSequenceStep(
2559                                        const ImplicitConversionSequence &ICS,
2560                                                        QualType T) {
2561   Step S;
2562   S.Kind = SK_ConversionSequence;
2563   S.Type = T;
2564   S.ICS = new ImplicitConversionSequence(ICS);
2565   Steps.push_back(S);
2566 }
2567 
2568 void InitializationSequence::AddListInitializationStep(QualType T) {
2569   Step S;
2570   S.Kind = SK_ListInitialization;
2571   S.Type = T;
2572   Steps.push_back(S);
2573 }
2574 
2575 void
2576 InitializationSequence
2577 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2578                                    AccessSpecifier Access,
2579                                    QualType T,
2580                                    bool HadMultipleCandidates,
2581                                    bool FromInitList, bool AsInitList) {
2582   Step S;
2583   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2584                                        : SK_ConstructorInitialization;
2585   S.Type = T;
2586   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2587   S.Function.Function = Constructor;
2588   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2589   Steps.push_back(S);
2590 }
2591 
2592 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2593   Step S;
2594   S.Kind = SK_ZeroInitialization;
2595   S.Type = T;
2596   Steps.push_back(S);
2597 }
2598 
2599 void InitializationSequence::AddCAssignmentStep(QualType T) {
2600   Step S;
2601   S.Kind = SK_CAssignment;
2602   S.Type = T;
2603   Steps.push_back(S);
2604 }
2605 
2606 void InitializationSequence::AddStringInitStep(QualType T) {
2607   Step S;
2608   S.Kind = SK_StringInit;
2609   S.Type = T;
2610   Steps.push_back(S);
2611 }
2612 
2613 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2614   Step S;
2615   S.Kind = SK_ObjCObjectConversion;
2616   S.Type = T;
2617   Steps.push_back(S);
2618 }
2619 
2620 void InitializationSequence::AddArrayInitStep(QualType T) {
2621   Step S;
2622   S.Kind = SK_ArrayInit;
2623   S.Type = T;
2624   Steps.push_back(S);
2625 }
2626 
2627 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2628   Step S;
2629   S.Kind = SK_ParenthesizedArrayInit;
2630   S.Type = T;
2631   Steps.push_back(S);
2632 }
2633 
2634 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2635                                                               bool shouldCopy) {
2636   Step s;
2637   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2638                        : SK_PassByIndirectRestore);
2639   s.Type = type;
2640   Steps.push_back(s);
2641 }
2642 
2643 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2644   Step S;
2645   S.Kind = SK_ProduceObjCObject;
2646   S.Type = T;
2647   Steps.push_back(S);
2648 }
2649 
2650 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2651   Step S;
2652   S.Kind = SK_StdInitializerList;
2653   S.Type = T;
2654   Steps.push_back(S);
2655 }
2656 
2657 void InitializationSequence::RewrapReferenceInitList(QualType T,
2658                                                      InitListExpr *Syntactic) {
2659   assert(Syntactic->getNumInits() == 1 &&
2660          "Can only rewrap trivial init lists.");
2661   Step S;
2662   S.Kind = SK_UnwrapInitList;
2663   S.Type = Syntactic->getInit(0)->getType();
2664   Steps.insert(Steps.begin(), S);
2665 
2666   S.Kind = SK_RewrapInitList;
2667   S.Type = T;
2668   S.WrappingSyntacticList = Syntactic;
2669   Steps.push_back(S);
2670 }
2671 
2672 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2673                                                 OverloadingResult Result) {
2674   setSequenceKind(FailedSequence);
2675   this->Failure = Failure;
2676   this->FailedOverloadResult = Result;
2677 }
2678 
2679 //===----------------------------------------------------------------------===//
2680 // Attempt initialization
2681 //===----------------------------------------------------------------------===//
2682 
2683 static void MaybeProduceObjCObject(Sema &S,
2684                                    InitializationSequence &Sequence,
2685                                    const InitializedEntity &Entity) {
2686   if (!S.getLangOptions().ObjCAutoRefCount) return;
2687 
2688   /// When initializing a parameter, produce the value if it's marked
2689   /// __attribute__((ns_consumed)).
2690   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2691     if (!Entity.isParameterConsumed())
2692       return;
2693 
2694     assert(Entity.getType()->isObjCRetainableType() &&
2695            "consuming an object of unretainable type?");
2696     Sequence.AddProduceObjCObjectStep(Entity.getType());
2697 
2698   /// When initializing a return value, if the return type is a
2699   /// retainable type, then returns need to immediately retain the
2700   /// object.  If an autorelease is required, it will be done at the
2701   /// last instant.
2702   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2703     if (!Entity.getType()->isObjCRetainableType())
2704       return;
2705 
2706     Sequence.AddProduceObjCObjectStep(Entity.getType());
2707   }
2708 }
2709 
2710 /// \brief When initializing from init list via constructor, deal with the
2711 /// empty init list and std::initializer_list special cases.
2712 ///
2713 /// \return True if this was a special case, false otherwise.
2714 static bool TryListConstructionSpecialCases(Sema &S,
2715                                             InitListExpr *List,
2716                                             CXXRecordDecl *DestRecordDecl,
2717                                             QualType DestType,
2718                                             InitializationSequence &Sequence) {
2719   // C++11 [dcl.init.list]p3:
2720   //   List-initialization of an object or reference of type T is defined as
2721   //   follows:
2722   //   - If T is an aggregate, aggregate initialization is performed.
2723   if (DestType->isAggregateType())
2724     return false;
2725 
2726   //   - Otherwise, if the initializer list has no elements and T is a class
2727   //     type with a default constructor, the object is value-initialized.
2728   if (List->getNumInits() == 0) {
2729     if (CXXConstructorDecl *DefaultConstructor =
2730             S.LookupDefaultConstructor(DestRecordDecl)) {
2731       if (DefaultConstructor->isDeleted() ||
2732           S.isFunctionConsideredUnavailable(DefaultConstructor)) {
2733         // Fake an overload resolution failure.
2734         OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2735         DeclAccessPair FoundDecl = DeclAccessPair::make(DefaultConstructor,
2736                                               DefaultConstructor->getAccess());
2737         if (FunctionTemplateDecl *ConstructorTmpl =
2738                 dyn_cast<FunctionTemplateDecl>(DefaultConstructor))
2739           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2740                                          /*ExplicitArgs*/ 0,
2741                                          ArrayRef<Expr*>(), CandidateSet,
2742                                          /*SuppressUserConversions*/ false);
2743         else
2744           S.AddOverloadCandidate(DefaultConstructor, FoundDecl,
2745                                  ArrayRef<Expr*>(), CandidateSet,
2746                                  /*SuppressUserConversions*/ false);
2747         Sequence.SetOverloadFailure(
2748                        InitializationSequence::FK_ListConstructorOverloadFailed,
2749                        OR_Deleted);
2750       } else
2751         Sequence.AddConstructorInitializationStep(DefaultConstructor,
2752                                                 DefaultConstructor->getAccess(),
2753                                                   DestType,
2754                                                   /*MultipleCandidates=*/false,
2755                                                   /*FromInitList=*/true,
2756                                                   /*AsInitList=*/false);
2757       return true;
2758     }
2759   }
2760 
2761   //   - Otherwise, if T is a specialization of std::initializer_list, [...]
2762   QualType E;
2763   if (S.isStdInitializerList(DestType, &E)) {
2764     // Check that each individual element can be copy-constructed. But since we
2765     // have no place to store further information, we'll recalculate everything
2766     // later.
2767     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2768         S.Context.getConstantArrayType(E,
2769             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2770                         List->getNumInits()),
2771             ArrayType::Normal, 0));
2772     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2773         0, HiddenArray);
2774     for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2775       Element.setElementIndex(i);
2776       if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2777         Sequence.SetFailed(
2778             InitializationSequence::FK_InitListElementCopyFailure);
2779         return true;
2780       }
2781     }
2782     Sequence.AddStdInitializerListConstructionStep(DestType);
2783     return true;
2784   }
2785 
2786   // Not a special case.
2787   return false;
2788 }
2789 
2790 static OverloadingResult
2791 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2792                            Expr **Args, unsigned NumArgs,
2793                            OverloadCandidateSet &CandidateSet,
2794                            DeclContext::lookup_iterator Con,
2795                            DeclContext::lookup_iterator ConEnd,
2796                            OverloadCandidateSet::iterator &Best,
2797                            bool CopyInitializing, bool AllowExplicit,
2798                            bool OnlyListConstructors, bool InitListSyntax) {
2799   CandidateSet.clear();
2800 
2801   for (; Con != ConEnd; ++Con) {
2802     NamedDecl *D = *Con;
2803     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2804     bool SuppressUserConversions = false;
2805 
2806     // Find the constructor (which may be a template).
2807     CXXConstructorDecl *Constructor = 0;
2808     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2809     if (ConstructorTmpl)
2810       Constructor = cast<CXXConstructorDecl>(
2811                                            ConstructorTmpl->getTemplatedDecl());
2812     else {
2813       Constructor = cast<CXXConstructorDecl>(D);
2814 
2815       // If we're performing copy initialization using a copy constructor, we
2816       // suppress user-defined conversions on the arguments. We do the same for
2817       // move constructors.
2818       if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2819           Constructor->isCopyOrMoveConstructor())
2820         SuppressUserConversions = true;
2821     }
2822 
2823     if (!Constructor->isInvalidDecl() &&
2824         (AllowExplicit || !Constructor->isExplicit()) &&
2825         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2826       if (ConstructorTmpl)
2827         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2828                                        /*ExplicitArgs*/ 0,
2829                                        llvm::makeArrayRef(Args, NumArgs),
2830                                        CandidateSet, SuppressUserConversions);
2831       else {
2832         // C++ [over.match.copy]p1:
2833         //   - When initializing a temporary to be bound to the first parameter
2834         //     of a constructor that takes a reference to possibly cv-qualified
2835         //     T as its first argument, called with a single argument in the
2836         //     context of direct-initialization, explicit conversion functions
2837         //     are also considered.
2838         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2839                                  NumArgs == 1 &&
2840                                  Constructor->isCopyOrMoveConstructor();
2841         S.AddOverloadCandidate(Constructor, FoundDecl,
2842                                llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2843                                SuppressUserConversions,
2844                                /*PartialOverloading=*/false,
2845                                /*AllowExplicit=*/AllowExplicitConv);
2846       }
2847     }
2848   }
2849 
2850   // Perform overload resolution and return the result.
2851   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2852 }
2853 
2854 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2855 /// enumerates the constructors of the initialized entity and performs overload
2856 /// resolution to select the best.
2857 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2858 /// class type.
2859 static void TryConstructorInitialization(Sema &S,
2860                                          const InitializedEntity &Entity,
2861                                          const InitializationKind &Kind,
2862                                          Expr **Args, unsigned NumArgs,
2863                                          QualType DestType,
2864                                          InitializationSequence &Sequence,
2865                                          bool InitListSyntax = false) {
2866   assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2867          "InitListSyntax must come with a single initializer list argument.");
2868 
2869   // Check constructor arguments for self reference.
2870   if (DeclaratorDecl *DD = Entity.getDecl())
2871     // Parameters arguments are occassionially constructed with itself,
2872     // for instance, in recursive functions.  Skip them.
2873     if (!isa<ParmVarDecl>(DD))
2874       for (unsigned i = 0; i < NumArgs; ++i)
2875         S.CheckSelfReference(DD, Args[i]);
2876 
2877   // The type we're constructing needs to be complete.
2878   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2879     Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2880     return;
2881   }
2882 
2883   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2884   assert(DestRecordType && "Constructor initialization requires record type");
2885   CXXRecordDecl *DestRecordDecl
2886     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2887 
2888   if (InitListSyntax &&
2889       TryListConstructionSpecialCases(S, cast<InitListExpr>(Args[0]),
2890                                       DestRecordDecl, DestType, Sequence))
2891     return;
2892 
2893   // Build the candidate set directly in the initialization sequence
2894   // structure, so that it will persist if we fail.
2895   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2896 
2897   // Determine whether we are allowed to call explicit constructors or
2898   // explicit conversion operators.
2899   bool AllowExplicit = Kind.AllowExplicit();
2900   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2901 
2902   //   - Otherwise, if T is a class type, constructors are considered. The
2903   //     applicable constructors are enumerated, and the best one is chosen
2904   //     through overload resolution.
2905   DeclContext::lookup_iterator ConStart, ConEnd;
2906   llvm::tie(ConStart, ConEnd) = S.LookupConstructors(DestRecordDecl);
2907 
2908   OverloadingResult Result = OR_No_Viable_Function;
2909   OverloadCandidateSet::iterator Best;
2910   bool AsInitializerList = false;
2911 
2912   // C++11 [over.match.list]p1:
2913   //   When objects of non-aggregate type T are list-initialized, overload
2914   //   resolution selects the constructor in two phases:
2915   //   - Initially, the candidate functions are the initializer-list
2916   //     constructors of the class T and the argument list consists of the
2917   //     initializer list as a single argument.
2918   if (InitListSyntax) {
2919     AsInitializerList = true;
2920     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2921                                         CandidateSet, ConStart, ConEnd, Best,
2922                                         CopyInitialization, AllowExplicit,
2923                                         /*OnlyListConstructor=*/true,
2924                                         InitListSyntax);
2925 
2926     // Time to unwrap the init list.
2927     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2928     Args = ILE->getInits();
2929     NumArgs = ILE->getNumInits();
2930   }
2931 
2932   // C++11 [over.match.list]p1:
2933   //   - If no viable initializer-list constructor is found, overload resolution
2934   //     is performed again, where the candidate functions are all the
2935   //     constructors of the class T nad the argument list consists of the
2936   //     elements of the initializer list.
2937   if (Result == OR_No_Viable_Function) {
2938     AsInitializerList = false;
2939     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2940                                         CandidateSet, ConStart, ConEnd, Best,
2941                                         CopyInitialization, AllowExplicit,
2942                                         /*OnlyListConstructors=*/false,
2943                                         InitListSyntax);
2944   }
2945   if (Result) {
2946     Sequence.SetOverloadFailure(InitListSyntax ?
2947                       InitializationSequence::FK_ListConstructorOverloadFailed :
2948                       InitializationSequence::FK_ConstructorOverloadFailed,
2949                                 Result);
2950     return;
2951   }
2952 
2953   // C++0x [dcl.init]p6:
2954   //   If a program calls for the default initialization of an object
2955   //   of a const-qualified type T, T shall be a class type with a
2956   //   user-provided default constructor.
2957   if (Kind.getKind() == InitializationKind::IK_Default &&
2958       Entity.getType().isConstQualified() &&
2959       cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2960     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2961     return;
2962   }
2963 
2964   // Add the constructor initialization step. Any cv-qualification conversion is
2965   // subsumed by the initialization.
2966   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2967   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2968   Sequence.AddConstructorInitializationStep(CtorDecl,
2969                                             Best->FoundDecl.getAccess(),
2970                                             DestType, HadMultipleCandidates,
2971                                             InitListSyntax, AsInitializerList);
2972 }
2973 
2974 static bool
2975 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2976                                              Expr *Initializer,
2977                                              QualType &SourceType,
2978                                              QualType &UnqualifiedSourceType,
2979                                              QualType UnqualifiedTargetType,
2980                                              InitializationSequence &Sequence) {
2981   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2982         S.Context.OverloadTy) {
2983     DeclAccessPair Found;
2984     bool HadMultipleCandidates = false;
2985     if (FunctionDecl *Fn
2986         = S.ResolveAddressOfOverloadedFunction(Initializer,
2987                                                UnqualifiedTargetType,
2988                                                false, Found,
2989                                                &HadMultipleCandidates)) {
2990       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2991                                                 HadMultipleCandidates);
2992       SourceType = Fn->getType();
2993       UnqualifiedSourceType = SourceType.getUnqualifiedType();
2994     } else if (!UnqualifiedTargetType->isRecordType()) {
2995       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2996       return true;
2997     }
2998   }
2999   return false;
3000 }
3001 
3002 static void TryReferenceInitializationCore(Sema &S,
3003                                            const InitializedEntity &Entity,
3004                                            const InitializationKind &Kind,
3005                                            Expr *Initializer,
3006                                            QualType cv1T1, QualType T1,
3007                                            Qualifiers T1Quals,
3008                                            QualType cv2T2, QualType T2,
3009                                            Qualifiers T2Quals,
3010                                            InitializationSequence &Sequence);
3011 
3012 static void TryListInitialization(Sema &S,
3013                                   const InitializedEntity &Entity,
3014                                   const InitializationKind &Kind,
3015                                   InitListExpr *InitList,
3016                                   InitializationSequence &Sequence);
3017 
3018 /// \brief Attempt list initialization of a reference.
3019 static void TryReferenceListInitialization(Sema &S,
3020                                            const InitializedEntity &Entity,
3021                                            const InitializationKind &Kind,
3022                                            InitListExpr *InitList,
3023                                            InitializationSequence &Sequence)
3024 {
3025   // First, catch C++03 where this isn't possible.
3026   if (!S.getLangOptions().CPlusPlus0x) {
3027     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3028     return;
3029   }
3030 
3031   QualType DestType = Entity.getType();
3032   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3033   Qualifiers T1Quals;
3034   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3035 
3036   // Reference initialization via an initializer list works thus:
3037   // If the initializer list consists of a single element that is
3038   // reference-related to the referenced type, bind directly to that element
3039   // (possibly creating temporaries).
3040   // Otherwise, initialize a temporary with the initializer list and
3041   // bind to that.
3042   if (InitList->getNumInits() == 1) {
3043     Expr *Initializer = InitList->getInit(0);
3044     QualType cv2T2 = Initializer->getType();
3045     Qualifiers T2Quals;
3046     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3047 
3048     // If this fails, creating a temporary wouldn't work either.
3049     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3050                                                      T1, Sequence))
3051       return;
3052 
3053     SourceLocation DeclLoc = Initializer->getLocStart();
3054     bool dummy1, dummy2, dummy3;
3055     Sema::ReferenceCompareResult RefRelationship
3056       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3057                                        dummy2, dummy3);
3058     if (RefRelationship >= Sema::Ref_Related) {
3059       // Try to bind the reference here.
3060       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3061                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3062       if (Sequence)
3063         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3064       return;
3065     }
3066   }
3067 
3068   // Not reference-related. Create a temporary and bind to that.
3069   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3070 
3071   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3072   if (Sequence) {
3073     if (DestType->isRValueReferenceType() ||
3074         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3075       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3076     else
3077       Sequence.SetFailed(
3078           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3079   }
3080 }
3081 
3082 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3083 static void TryListInitialization(Sema &S,
3084                                   const InitializedEntity &Entity,
3085                                   const InitializationKind &Kind,
3086                                   InitListExpr *InitList,
3087                                   InitializationSequence &Sequence) {
3088   QualType DestType = Entity.getType();
3089 
3090   // C++ doesn't allow scalar initialization with more than one argument.
3091   // But C99 complex numbers are scalars and it makes sense there.
3092   if (S.getLangOptions().CPlusPlus && DestType->isScalarType() &&
3093       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3094     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3095     return;
3096   }
3097   if (DestType->isReferenceType()) {
3098     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3099     return;
3100   }
3101   if (DestType->isRecordType()) {
3102     if (S.RequireCompleteType(InitList->getLocStart(), DestType, S.PDiag())) {
3103       Sequence.SetFailed(InitializationSequence::FK_Incomplete);
3104       return;
3105     }
3106 
3107     if (!DestType->isAggregateType()) {
3108       if (S.getLangOptions().CPlusPlus0x) {
3109         Expr *Arg = InitList;
3110         // A direct-initializer is not list-syntax, i.e. there's no special
3111         // treatment of "A a({1, 2});".
3112         TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3113                                      Sequence,
3114                                Kind.getKind() != InitializationKind::IK_Direct);
3115       } else
3116         Sequence.SetFailed(
3117             InitializationSequence::FK_InitListBadDestinationType);
3118       return;
3119     }
3120   }
3121 
3122   InitListChecker CheckInitList(S, Entity, InitList,
3123           DestType, /*VerifyOnly=*/true,
3124           Kind.getKind() != InitializationKind::IK_DirectList ||
3125             !S.getLangOptions().CPlusPlus0x);
3126   if (CheckInitList.HadError()) {
3127     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3128     return;
3129   }
3130 
3131   // Add the list initialization step with the built init list.
3132   Sequence.AddListInitializationStep(DestType);
3133 }
3134 
3135 /// \brief Try a reference initialization that involves calling a conversion
3136 /// function.
3137 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3138                                              const InitializedEntity &Entity,
3139                                              const InitializationKind &Kind,
3140                                              Expr *Initializer,
3141                                              bool AllowRValues,
3142                                              InitializationSequence &Sequence) {
3143   QualType DestType = Entity.getType();
3144   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3145   QualType T1 = cv1T1.getUnqualifiedType();
3146   QualType cv2T2 = Initializer->getType();
3147   QualType T2 = cv2T2.getUnqualifiedType();
3148 
3149   bool DerivedToBase;
3150   bool ObjCConversion;
3151   bool ObjCLifetimeConversion;
3152   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3153                                          T1, T2, DerivedToBase,
3154                                          ObjCConversion,
3155                                          ObjCLifetimeConversion) &&
3156          "Must have incompatible references when binding via conversion");
3157   (void)DerivedToBase;
3158   (void)ObjCConversion;
3159   (void)ObjCLifetimeConversion;
3160 
3161   // Build the candidate set directly in the initialization sequence
3162   // structure, so that it will persist if we fail.
3163   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3164   CandidateSet.clear();
3165 
3166   // Determine whether we are allowed to call explicit constructors or
3167   // explicit conversion operators.
3168   bool AllowExplicit = Kind.AllowExplicit();
3169   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3170 
3171   const RecordType *T1RecordType = 0;
3172   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3173       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3174     // The type we're converting to is a class type. Enumerate its constructors
3175     // to see if there is a suitable conversion.
3176     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3177 
3178     DeclContext::lookup_iterator Con, ConEnd;
3179     for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3180          Con != ConEnd; ++Con) {
3181       NamedDecl *D = *Con;
3182       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3183 
3184       // Find the constructor (which may be a template).
3185       CXXConstructorDecl *Constructor = 0;
3186       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3187       if (ConstructorTmpl)
3188         Constructor = cast<CXXConstructorDecl>(
3189                                          ConstructorTmpl->getTemplatedDecl());
3190       else
3191         Constructor = cast<CXXConstructorDecl>(D);
3192 
3193       if (!Constructor->isInvalidDecl() &&
3194           Constructor->isConvertingConstructor(AllowExplicit)) {
3195         if (ConstructorTmpl)
3196           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3197                                          /*ExplicitArgs*/ 0,
3198                                          Initializer, CandidateSet,
3199                                          /*SuppressUserConversions=*/true);
3200         else
3201           S.AddOverloadCandidate(Constructor, FoundDecl,
3202                                  Initializer, CandidateSet,
3203                                  /*SuppressUserConversions=*/true);
3204       }
3205     }
3206   }
3207   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3208     return OR_No_Viable_Function;
3209 
3210   const RecordType *T2RecordType = 0;
3211   if ((T2RecordType = T2->getAs<RecordType>()) &&
3212       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3213     // The type we're converting from is a class type, enumerate its conversion
3214     // functions.
3215     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3216 
3217     const UnresolvedSetImpl *Conversions
3218       = T2RecordDecl->getVisibleConversionFunctions();
3219     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3220            E = Conversions->end(); I != E; ++I) {
3221       NamedDecl *D = *I;
3222       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3223       if (isa<UsingShadowDecl>(D))
3224         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3225 
3226       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3227       CXXConversionDecl *Conv;
3228       if (ConvTemplate)
3229         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3230       else
3231         Conv = cast<CXXConversionDecl>(D);
3232 
3233       // If the conversion function doesn't return a reference type,
3234       // it can't be considered for this conversion unless we're allowed to
3235       // consider rvalues.
3236       // FIXME: Do we need to make sure that we only consider conversion
3237       // candidates with reference-compatible results? That might be needed to
3238       // break recursion.
3239       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3240           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3241         if (ConvTemplate)
3242           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3243                                            ActingDC, Initializer,
3244                                            DestType, CandidateSet);
3245         else
3246           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3247                                    Initializer, DestType, CandidateSet);
3248       }
3249     }
3250   }
3251   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3252     return OR_No_Viable_Function;
3253 
3254   SourceLocation DeclLoc = Initializer->getLocStart();
3255 
3256   // Perform overload resolution. If it fails, return the failed result.
3257   OverloadCandidateSet::iterator Best;
3258   if (OverloadingResult Result
3259         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3260     return Result;
3261 
3262   FunctionDecl *Function = Best->Function;
3263 
3264   // This is the overload that will actually be used for the initialization, so
3265   // mark it as used.
3266   S.MarkFunctionReferenced(DeclLoc, Function);
3267 
3268   // Compute the returned type of the conversion.
3269   if (isa<CXXConversionDecl>(Function))
3270     T2 = Function->getResultType();
3271   else
3272     T2 = cv1T1;
3273 
3274   // Add the user-defined conversion step.
3275   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3276   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3277                                  T2.getNonLValueExprType(S.Context),
3278                                  HadMultipleCandidates);
3279 
3280   // Determine whether we need to perform derived-to-base or
3281   // cv-qualification adjustments.
3282   ExprValueKind VK = VK_RValue;
3283   if (T2->isLValueReferenceType())
3284     VK = VK_LValue;
3285   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3286     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3287 
3288   bool NewDerivedToBase = false;
3289   bool NewObjCConversion = false;
3290   bool NewObjCLifetimeConversion = false;
3291   Sema::ReferenceCompareResult NewRefRelationship
3292     = S.CompareReferenceRelationship(DeclLoc, T1,
3293                                      T2.getNonLValueExprType(S.Context),
3294                                      NewDerivedToBase, NewObjCConversion,
3295                                      NewObjCLifetimeConversion);
3296   if (NewRefRelationship == Sema::Ref_Incompatible) {
3297     // If the type we've converted to is not reference-related to the
3298     // type we're looking for, then there is another conversion step
3299     // we need to perform to produce a temporary of the right type
3300     // that we'll be binding to.
3301     ImplicitConversionSequence ICS;
3302     ICS.setStandard();
3303     ICS.Standard = Best->FinalConversion;
3304     T2 = ICS.Standard.getToType(2);
3305     Sequence.AddConversionSequenceStep(ICS, T2);
3306   } else if (NewDerivedToBase)
3307     Sequence.AddDerivedToBaseCastStep(
3308                                 S.Context.getQualifiedType(T1,
3309                                   T2.getNonReferenceType().getQualifiers()),
3310                                       VK);
3311   else if (NewObjCConversion)
3312     Sequence.AddObjCObjectConversionStep(
3313                                 S.Context.getQualifiedType(T1,
3314                                   T2.getNonReferenceType().getQualifiers()));
3315 
3316   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3317     Sequence.AddQualificationConversionStep(cv1T1, VK);
3318 
3319   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3320   return OR_Success;
3321 }
3322 
3323 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3324                                            const InitializedEntity &Entity,
3325                                            Expr *CurInitExpr);
3326 
3327 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3328 static void TryReferenceInitialization(Sema &S,
3329                                        const InitializedEntity &Entity,
3330                                        const InitializationKind &Kind,
3331                                        Expr *Initializer,
3332                                        InitializationSequence &Sequence) {
3333   QualType DestType = Entity.getType();
3334   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3335   Qualifiers T1Quals;
3336   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3337   QualType cv2T2 = Initializer->getType();
3338   Qualifiers T2Quals;
3339   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3340 
3341   // If the initializer is the address of an overloaded function, try
3342   // to resolve the overloaded function. If all goes well, T2 is the
3343   // type of the resulting function.
3344   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3345                                                    T1, Sequence))
3346     return;
3347 
3348   // Delegate everything else to a subfunction.
3349   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3350                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3351 }
3352 
3353 /// \brief Reference initialization without resolving overloaded functions.
3354 static void TryReferenceInitializationCore(Sema &S,
3355                                            const InitializedEntity &Entity,
3356                                            const InitializationKind &Kind,
3357                                            Expr *Initializer,
3358                                            QualType cv1T1, QualType T1,
3359                                            Qualifiers T1Quals,
3360                                            QualType cv2T2, QualType T2,
3361                                            Qualifiers T2Quals,
3362                                            InitializationSequence &Sequence) {
3363   QualType DestType = Entity.getType();
3364   SourceLocation DeclLoc = Initializer->getLocStart();
3365   // Compute some basic properties of the types and the initializer.
3366   bool isLValueRef = DestType->isLValueReferenceType();
3367   bool isRValueRef = !isLValueRef;
3368   bool DerivedToBase = false;
3369   bool ObjCConversion = false;
3370   bool ObjCLifetimeConversion = false;
3371   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3372   Sema::ReferenceCompareResult RefRelationship
3373     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3374                                      ObjCConversion, ObjCLifetimeConversion);
3375 
3376   // C++0x [dcl.init.ref]p5:
3377   //   A reference to type "cv1 T1" is initialized by an expression of type
3378   //   "cv2 T2" as follows:
3379   //
3380   //     - If the reference is an lvalue reference and the initializer
3381   //       expression
3382   // Note the analogous bullet points for rvlaue refs to functions. Because
3383   // there are no function rvalues in C++, rvalue refs to functions are treated
3384   // like lvalue refs.
3385   OverloadingResult ConvOvlResult = OR_Success;
3386   bool T1Function = T1->isFunctionType();
3387   if (isLValueRef || T1Function) {
3388     if (InitCategory.isLValue() &&
3389         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3390          (Kind.isCStyleOrFunctionalCast() &&
3391           RefRelationship == Sema::Ref_Related))) {
3392       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3393       //     reference-compatible with "cv2 T2," or
3394       //
3395       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3396       // bit-field when we're determining whether the reference initialization
3397       // can occur. However, we do pay attention to whether it is a bit-field
3398       // to decide whether we're actually binding to a temporary created from
3399       // the bit-field.
3400       if (DerivedToBase)
3401         Sequence.AddDerivedToBaseCastStep(
3402                          S.Context.getQualifiedType(T1, T2Quals),
3403                          VK_LValue);
3404       else if (ObjCConversion)
3405         Sequence.AddObjCObjectConversionStep(
3406                                      S.Context.getQualifiedType(T1, T2Quals));
3407 
3408       if (T1Quals != T2Quals)
3409         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3410       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3411         (Initializer->getBitField() || Initializer->refersToVectorElement());
3412       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3413       return;
3414     }
3415 
3416     //     - has a class type (i.e., T2 is a class type), where T1 is not
3417     //       reference-related to T2, and can be implicitly converted to an
3418     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3419     //       with "cv3 T3" (this conversion is selected by enumerating the
3420     //       applicable conversion functions (13.3.1.6) and choosing the best
3421     //       one through overload resolution (13.3)),
3422     // If we have an rvalue ref to function type here, the rhs must be
3423     // an rvalue.
3424     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3425         (isLValueRef || InitCategory.isRValue())) {
3426       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3427                                                        Initializer,
3428                                                    /*AllowRValues=*/isRValueRef,
3429                                                        Sequence);
3430       if (ConvOvlResult == OR_Success)
3431         return;
3432       if (ConvOvlResult != OR_No_Viable_Function) {
3433         Sequence.SetOverloadFailure(
3434                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3435                                     ConvOvlResult);
3436       }
3437     }
3438   }
3439 
3440   //     - Otherwise, the reference shall be an lvalue reference to a
3441   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3442   //       shall be an rvalue reference.
3443   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3444     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3445       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3446     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3447       Sequence.SetOverloadFailure(
3448                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3449                                   ConvOvlResult);
3450     else
3451       Sequence.SetFailed(InitCategory.isLValue()
3452         ? (RefRelationship == Sema::Ref_Related
3453              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3454              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3455         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3456 
3457     return;
3458   }
3459 
3460   //    - If the initializer expression
3461   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3462   //        "cv1 T1" is reference-compatible with "cv2 T2"
3463   // Note: functions are handled below.
3464   if (!T1Function &&
3465       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3466        (Kind.isCStyleOrFunctionalCast() &&
3467         RefRelationship == Sema::Ref_Related)) &&
3468       (InitCategory.isXValue() ||
3469        (InitCategory.isPRValue() && T2->isRecordType()) ||
3470        (InitCategory.isPRValue() && T2->isArrayType()))) {
3471     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3472     if (InitCategory.isPRValue() && T2->isRecordType()) {
3473       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3474       // compiler the freedom to perform a copy here or bind to the
3475       // object, while C++0x requires that we bind directly to the
3476       // object. Hence, we always bind to the object without making an
3477       // extra copy. However, in C++03 requires that we check for the
3478       // presence of a suitable copy constructor:
3479       //
3480       //   The constructor that would be used to make the copy shall
3481       //   be callable whether or not the copy is actually done.
3482       if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt)
3483         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3484       else if (S.getLangOptions().CPlusPlus0x)
3485         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3486     }
3487 
3488     if (DerivedToBase)
3489       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3490                                         ValueKind);
3491     else if (ObjCConversion)
3492       Sequence.AddObjCObjectConversionStep(
3493                                        S.Context.getQualifiedType(T1, T2Quals));
3494 
3495     if (T1Quals != T2Quals)
3496       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3497     Sequence.AddReferenceBindingStep(cv1T1,
3498                                  /*bindingTemporary=*/InitCategory.isPRValue());
3499     return;
3500   }
3501 
3502   //       - has a class type (i.e., T2 is a class type), where T1 is not
3503   //         reference-related to T2, and can be implicitly converted to an
3504   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3505   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3506   if (T2->isRecordType()) {
3507     if (RefRelationship == Sema::Ref_Incompatible) {
3508       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3509                                                        Kind, Initializer,
3510                                                        /*AllowRValues=*/true,
3511                                                        Sequence);
3512       if (ConvOvlResult)
3513         Sequence.SetOverloadFailure(
3514                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3515                                     ConvOvlResult);
3516 
3517       return;
3518     }
3519 
3520     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3521     return;
3522   }
3523 
3524   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3525   //        from the initializer expression using the rules for a non-reference
3526   //        copy initialization (8.5). The reference is then bound to the
3527   //        temporary. [...]
3528 
3529   // Determine whether we are allowed to call explicit constructors or
3530   // explicit conversion operators.
3531   bool AllowExplicit = Kind.AllowExplicit();
3532 
3533   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3534 
3535   ImplicitConversionSequence ICS
3536     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3537                               /*SuppressUserConversions*/ false,
3538                               AllowExplicit,
3539                               /*FIXME:InOverloadResolution=*/false,
3540                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3541                               /*AllowObjCWritebackConversion=*/false);
3542 
3543   if (ICS.isBad()) {
3544     // FIXME: Use the conversion function set stored in ICS to turn
3545     // this into an overloading ambiguity diagnostic. However, we need
3546     // to keep that set as an OverloadCandidateSet rather than as some
3547     // other kind of set.
3548     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3549       Sequence.SetOverloadFailure(
3550                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3551                                   ConvOvlResult);
3552     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3553       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3554     else
3555       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3556     return;
3557   } else {
3558     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3559   }
3560 
3561   //        [...] If T1 is reference-related to T2, cv1 must be the
3562   //        same cv-qualification as, or greater cv-qualification
3563   //        than, cv2; otherwise, the program is ill-formed.
3564   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3565   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3566   if (RefRelationship == Sema::Ref_Related &&
3567       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3568     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3569     return;
3570   }
3571 
3572   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3573   //   reference, the initializer expression shall not be an lvalue.
3574   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3575       InitCategory.isLValue()) {
3576     Sequence.SetFailed(
3577                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3578     return;
3579   }
3580 
3581   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3582   return;
3583 }
3584 
3585 /// \brief Attempt character array initialization from a string literal
3586 /// (C++ [dcl.init.string], C99 6.7.8).
3587 static void TryStringLiteralInitialization(Sema &S,
3588                                            const InitializedEntity &Entity,
3589                                            const InitializationKind &Kind,
3590                                            Expr *Initializer,
3591                                        InitializationSequence &Sequence) {
3592   Sequence.AddStringInitStep(Entity.getType());
3593 }
3594 
3595 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3596 static void TryValueInitialization(Sema &S,
3597                                    const InitializedEntity &Entity,
3598                                    const InitializationKind &Kind,
3599                                    InitializationSequence &Sequence) {
3600   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3601   //
3602   //   To value-initialize an object of type T means:
3603   QualType T = Entity.getType();
3604 
3605   //     -- if T is an array type, then each element is value-initialized;
3606   T = S.Context.getBaseElementType(T);
3607 
3608   if (const RecordType *RT = T->getAs<RecordType>()) {
3609     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3610       // C++98:
3611       // -- if T is a class type (clause 9) with a user-declared
3612       //    constructor (12.1), then the default constructor for T is
3613       //    called (and the initialization is ill-formed if T has no
3614       //    accessible default constructor);
3615       if (!S.getLangOptions().CPlusPlus0x) {
3616         if (ClassDecl->hasUserDeclaredConstructor())
3617           // FIXME: we really want to refer to a single subobject of the array,
3618           // but Entity doesn't have a way to capture that (yet).
3619           return TryConstructorInitialization(S, Entity, Kind, 0, 0,
3620                                               T, Sequence);
3621       } else {
3622         // C++11:
3623         // -- if T is a class type (clause 9) with either no default constructor
3624         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3625         //    or deleted, then the object is default-initialized;
3626         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3627         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3628           return TryConstructorInitialization(S, Entity, Kind, 0, 0,
3629                                               T, Sequence);
3630       }
3631 
3632       // -- if T is a (possibly cv-qualified) non-union class type without a
3633       //    user-provided or deleted default constructor, then the object is
3634       //    zero-initialized and, if T has a non-trivial default constructor,
3635       //    default-initialized;
3636       if ((ClassDecl->getTagKind() == TTK_Class ||
3637            ClassDecl->getTagKind() == TTK_Struct)) {
3638         Sequence.AddZeroInitializationStep(Entity.getType());
3639         return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3640       }
3641     }
3642   }
3643 
3644   Sequence.AddZeroInitializationStep(Entity.getType());
3645 }
3646 
3647 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3648 static void TryDefaultInitialization(Sema &S,
3649                                      const InitializedEntity &Entity,
3650                                      const InitializationKind &Kind,
3651                                      InitializationSequence &Sequence) {
3652   assert(Kind.getKind() == InitializationKind::IK_Default);
3653 
3654   // C++ [dcl.init]p6:
3655   //   To default-initialize an object of type T means:
3656   //     - if T is an array type, each element is default-initialized;
3657   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3658 
3659   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3660   //       constructor for T is called (and the initialization is ill-formed if
3661   //       T has no accessible default constructor);
3662   if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
3663     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3664     return;
3665   }
3666 
3667   //     - otherwise, no initialization is performed.
3668 
3669   //   If a program calls for the default initialization of an object of
3670   //   a const-qualified type T, T shall be a class type with a user-provided
3671   //   default constructor.
3672   if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
3673     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3674     return;
3675   }
3676 
3677   // If the destination type has a lifetime property, zero-initialize it.
3678   if (DestType.getQualifiers().hasObjCLifetime()) {
3679     Sequence.AddZeroInitializationStep(Entity.getType());
3680     return;
3681   }
3682 }
3683 
3684 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3685 /// which enumerates all conversion functions and performs overload resolution
3686 /// to select the best.
3687 static void TryUserDefinedConversion(Sema &S,
3688                                      const InitializedEntity &Entity,
3689                                      const InitializationKind &Kind,
3690                                      Expr *Initializer,
3691                                      InitializationSequence &Sequence) {
3692   QualType DestType = Entity.getType();
3693   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3694   QualType SourceType = Initializer->getType();
3695   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3696          "Must have a class type to perform a user-defined conversion");
3697 
3698   // Build the candidate set directly in the initialization sequence
3699   // structure, so that it will persist if we fail.
3700   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3701   CandidateSet.clear();
3702 
3703   // Determine whether we are allowed to call explicit constructors or
3704   // explicit conversion operators.
3705   bool AllowExplicit = Kind.AllowExplicit();
3706 
3707   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3708     // The type we're converting to is a class type. Enumerate its constructors
3709     // to see if there is a suitable conversion.
3710     CXXRecordDecl *DestRecordDecl
3711       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3712 
3713     // Try to complete the type we're converting to.
3714     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3715       DeclContext::lookup_iterator Con, ConEnd;
3716       for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3717            Con != ConEnd; ++Con) {
3718         NamedDecl *D = *Con;
3719         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3720 
3721         // Find the constructor (which may be a template).
3722         CXXConstructorDecl *Constructor = 0;
3723         FunctionTemplateDecl *ConstructorTmpl
3724           = dyn_cast<FunctionTemplateDecl>(D);
3725         if (ConstructorTmpl)
3726           Constructor = cast<CXXConstructorDecl>(
3727                                            ConstructorTmpl->getTemplatedDecl());
3728         else
3729           Constructor = cast<CXXConstructorDecl>(D);
3730 
3731         if (!Constructor->isInvalidDecl() &&
3732             Constructor->isConvertingConstructor(AllowExplicit)) {
3733           if (ConstructorTmpl)
3734             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3735                                            /*ExplicitArgs*/ 0,
3736                                            Initializer, CandidateSet,
3737                                            /*SuppressUserConversions=*/true);
3738           else
3739             S.AddOverloadCandidate(Constructor, FoundDecl,
3740                                    Initializer, CandidateSet,
3741                                    /*SuppressUserConversions=*/true);
3742         }
3743       }
3744     }
3745   }
3746 
3747   SourceLocation DeclLoc = Initializer->getLocStart();
3748 
3749   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3750     // The type we're converting from is a class type, enumerate its conversion
3751     // functions.
3752 
3753     // We can only enumerate the conversion functions for a complete type; if
3754     // the type isn't complete, simply skip this step.
3755     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3756       CXXRecordDecl *SourceRecordDecl
3757         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3758 
3759       const UnresolvedSetImpl *Conversions
3760         = SourceRecordDecl->getVisibleConversionFunctions();
3761       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3762            E = Conversions->end();
3763            I != E; ++I) {
3764         NamedDecl *D = *I;
3765         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3766         if (isa<UsingShadowDecl>(D))
3767           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3768 
3769         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3770         CXXConversionDecl *Conv;
3771         if (ConvTemplate)
3772           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3773         else
3774           Conv = cast<CXXConversionDecl>(D);
3775 
3776         if (AllowExplicit || !Conv->isExplicit()) {
3777           if (ConvTemplate)
3778             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3779                                              ActingDC, Initializer, DestType,
3780                                              CandidateSet);
3781           else
3782             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3783                                      Initializer, DestType, CandidateSet);
3784         }
3785       }
3786     }
3787   }
3788 
3789   // Perform overload resolution. If it fails, return the failed result.
3790   OverloadCandidateSet::iterator Best;
3791   if (OverloadingResult Result
3792         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3793     Sequence.SetOverloadFailure(
3794                         InitializationSequence::FK_UserConversionOverloadFailed,
3795                                 Result);
3796     return;
3797   }
3798 
3799   FunctionDecl *Function = Best->Function;
3800   S.MarkFunctionReferenced(DeclLoc, Function);
3801   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3802 
3803   if (isa<CXXConstructorDecl>(Function)) {
3804     // Add the user-defined conversion step. Any cv-qualification conversion is
3805     // subsumed by the initialization. Per DR5, the created temporary is of the
3806     // cv-unqualified type of the destination.
3807     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3808                                    DestType.getUnqualifiedType(),
3809                                    HadMultipleCandidates);
3810     return;
3811   }
3812 
3813   // Add the user-defined conversion step that calls the conversion function.
3814   QualType ConvType = Function->getCallResultType();
3815   if (ConvType->getAs<RecordType>()) {
3816     // If we're converting to a class type, there may be an copy of
3817     // the resulting temporary object (possible to create an object of
3818     // a base class type). That copy is not a separate conversion, so
3819     // we just make a note of the actual destination type (possibly a
3820     // base class of the type returned by the conversion function) and
3821     // let the user-defined conversion step handle the conversion.
3822     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3823                                    HadMultipleCandidates);
3824     return;
3825   }
3826 
3827   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3828                                  HadMultipleCandidates);
3829 
3830   // If the conversion following the call to the conversion function
3831   // is interesting, add it as a separate step.
3832   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3833       Best->FinalConversion.Third) {
3834     ImplicitConversionSequence ICS;
3835     ICS.setStandard();
3836     ICS.Standard = Best->FinalConversion;
3837     Sequence.AddConversionSequenceStep(ICS, DestType);
3838   }
3839 }
3840 
3841 /// The non-zero enum values here are indexes into diagnostic alternatives.
3842 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3843 
3844 /// Determines whether this expression is an acceptable ICR source.
3845 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3846                                          bool isAddressOf) {
3847   // Skip parens.
3848   e = e->IgnoreParens();
3849 
3850   // Skip address-of nodes.
3851   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3852     if (op->getOpcode() == UO_AddrOf)
3853       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3854 
3855   // Skip certain casts.
3856   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3857     switch (ce->getCastKind()) {
3858     case CK_Dependent:
3859     case CK_BitCast:
3860     case CK_LValueBitCast:
3861     case CK_NoOp:
3862       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3863 
3864     case CK_ArrayToPointerDecay:
3865       return IIK_nonscalar;
3866 
3867     case CK_NullToPointer:
3868       return IIK_okay;
3869 
3870     default:
3871       break;
3872     }
3873 
3874   // If we have a declaration reference, it had better be a local variable.
3875   } else if (isa<DeclRefExpr>(e)) {
3876     if (!isAddressOf) return IIK_nonlocal;
3877 
3878     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3879     if (!var) return IIK_nonlocal;
3880 
3881     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3882 
3883   // If we have a conditional operator, check both sides.
3884   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3885     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3886       return iik;
3887 
3888     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3889 
3890   // These are never scalar.
3891   } else if (isa<ArraySubscriptExpr>(e)) {
3892     return IIK_nonscalar;
3893 
3894   // Otherwise, it needs to be a null pointer constant.
3895   } else {
3896     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3897             ? IIK_okay : IIK_nonlocal);
3898   }
3899 
3900   return IIK_nonlocal;
3901 }
3902 
3903 /// Check whether the given expression is a valid operand for an
3904 /// indirect copy/restore.
3905 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3906   assert(src->isRValue());
3907 
3908   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3909   if (iik == IIK_okay) return;
3910 
3911   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3912     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3913     << src->getSourceRange();
3914 }
3915 
3916 /// \brief Determine whether we have compatible array types for the
3917 /// purposes of GNU by-copy array initialization.
3918 static bool hasCompatibleArrayTypes(ASTContext &Context,
3919                                     const ArrayType *Dest,
3920                                     const ArrayType *Source) {
3921   // If the source and destination array types are equivalent, we're
3922   // done.
3923   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3924     return true;
3925 
3926   // Make sure that the element types are the same.
3927   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3928     return false;
3929 
3930   // The only mismatch we allow is when the destination is an
3931   // incomplete array type and the source is a constant array type.
3932   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3933 }
3934 
3935 static bool tryObjCWritebackConversion(Sema &S,
3936                                        InitializationSequence &Sequence,
3937                                        const InitializedEntity &Entity,
3938                                        Expr *Initializer) {
3939   bool ArrayDecay = false;
3940   QualType ArgType = Initializer->getType();
3941   QualType ArgPointee;
3942   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3943     ArrayDecay = true;
3944     ArgPointee = ArgArrayType->getElementType();
3945     ArgType = S.Context.getPointerType(ArgPointee);
3946   }
3947 
3948   // Handle write-back conversion.
3949   QualType ConvertedArgType;
3950   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3951                                    ConvertedArgType))
3952     return false;
3953 
3954   // We should copy unless we're passing to an argument explicitly
3955   // marked 'out'.
3956   bool ShouldCopy = true;
3957   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3958     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3959 
3960   // Do we need an lvalue conversion?
3961   if (ArrayDecay || Initializer->isGLValue()) {
3962     ImplicitConversionSequence ICS;
3963     ICS.setStandard();
3964     ICS.Standard.setAsIdentityConversion();
3965 
3966     QualType ResultType;
3967     if (ArrayDecay) {
3968       ICS.Standard.First = ICK_Array_To_Pointer;
3969       ResultType = S.Context.getPointerType(ArgPointee);
3970     } else {
3971       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3972       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3973     }
3974 
3975     Sequence.AddConversionSequenceStep(ICS, ResultType);
3976   }
3977 
3978   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3979   return true;
3980 }
3981 
3982 InitializationSequence::InitializationSequence(Sema &S,
3983                                                const InitializedEntity &Entity,
3984                                                const InitializationKind &Kind,
3985                                                Expr **Args,
3986                                                unsigned NumArgs)
3987     : FailedCandidateSet(Kind.getLocation()) {
3988   ASTContext &Context = S.Context;
3989 
3990   // C++0x [dcl.init]p16:
3991   //   The semantics of initializers are as follows. The destination type is
3992   //   the type of the object or reference being initialized and the source
3993   //   type is the type of the initializer expression. The source type is not
3994   //   defined when the initializer is a braced-init-list or when it is a
3995   //   parenthesized list of expressions.
3996   QualType DestType = Entity.getType();
3997 
3998   if (DestType->isDependentType() ||
3999       Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
4000     SequenceKind = DependentSequence;
4001     return;
4002   }
4003 
4004   // Almost everything is a normal sequence.
4005   setSequenceKind(NormalSequence);
4006 
4007   for (unsigned I = 0; I != NumArgs; ++I)
4008     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4009       // FIXME: should we be doing this here?
4010       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4011       if (result.isInvalid()) {
4012         SetFailed(FK_PlaceholderType);
4013         return;
4014       }
4015       Args[I] = result.take();
4016     }
4017 
4018 
4019   QualType SourceType;
4020   Expr *Initializer = 0;
4021   if (NumArgs == 1) {
4022     Initializer = Args[0];
4023     if (!isa<InitListExpr>(Initializer))
4024       SourceType = Initializer->getType();
4025   }
4026 
4027   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4028   //       object is list-initialized (8.5.4).
4029   if (Kind.getKind() != InitializationKind::IK_Direct) {
4030     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4031       TryListInitialization(S, Entity, Kind, InitList, *this);
4032       return;
4033     }
4034   }
4035 
4036   //     - If the destination type is a reference type, see 8.5.3.
4037   if (DestType->isReferenceType()) {
4038     // C++0x [dcl.init.ref]p1:
4039     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4040     //   (8.3.2), shall be initialized by an object, or function, of type T or
4041     //   by an object that can be converted into a T.
4042     // (Therefore, multiple arguments are not permitted.)
4043     if (NumArgs != 1)
4044       SetFailed(FK_TooManyInitsForReference);
4045     else
4046       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4047     return;
4048   }
4049 
4050   //     - If the initializer is (), the object is value-initialized.
4051   if (Kind.getKind() == InitializationKind::IK_Value ||
4052       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4053     TryValueInitialization(S, Entity, Kind, *this);
4054     return;
4055   }
4056 
4057   // Handle default initialization.
4058   if (Kind.getKind() == InitializationKind::IK_Default) {
4059     TryDefaultInitialization(S, Entity, Kind, *this);
4060     return;
4061   }
4062 
4063   //     - If the destination type is an array of characters, an array of
4064   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4065   //       initializer is a string literal, see 8.5.2.
4066   //     - Otherwise, if the destination type is an array, the program is
4067   //       ill-formed.
4068   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4069     if (Initializer && isa<VariableArrayType>(DestAT)) {
4070       SetFailed(FK_VariableLengthArrayHasInitializer);
4071       return;
4072     }
4073 
4074     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4075       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4076       return;
4077     }
4078 
4079     // Note: as an GNU C extension, we allow initialization of an
4080     // array from a compound literal that creates an array of the same
4081     // type, so long as the initializer has no side effects.
4082     if (!S.getLangOptions().CPlusPlus && Initializer &&
4083         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4084         Initializer->getType()->isArrayType()) {
4085       const ArrayType *SourceAT
4086         = Context.getAsArrayType(Initializer->getType());
4087       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4088         SetFailed(FK_ArrayTypeMismatch);
4089       else if (Initializer->HasSideEffects(S.Context))
4090         SetFailed(FK_NonConstantArrayInit);
4091       else {
4092         AddArrayInitStep(DestType);
4093       }
4094     }
4095     // Note: as a GNU C++ extension, we allow initialization of a
4096     // class member from a parenthesized initializer list.
4097     else if (S.getLangOptions().CPlusPlus &&
4098              Entity.getKind() == InitializedEntity::EK_Member &&
4099              Initializer && isa<InitListExpr>(Initializer)) {
4100       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4101                             *this);
4102       AddParenthesizedArrayInitStep(DestType);
4103     } else if (DestAT->getElementType()->isAnyCharacterType())
4104       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4105     else
4106       SetFailed(FK_ArrayNeedsInitList);
4107 
4108     return;
4109   }
4110 
4111   // Determine whether we should consider writeback conversions for
4112   // Objective-C ARC.
4113   bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
4114     Entity.getKind() == InitializedEntity::EK_Parameter;
4115 
4116   // We're at the end of the line for C: it's either a write-back conversion
4117   // or it's a C assignment. There's no need to check anything else.
4118   if (!S.getLangOptions().CPlusPlus) {
4119     // If allowed, check whether this is an Objective-C writeback conversion.
4120     if (allowObjCWritebackConversion &&
4121         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4122       return;
4123     }
4124 
4125     // Handle initialization in C
4126     AddCAssignmentStep(DestType);
4127     MaybeProduceObjCObject(S, *this, Entity);
4128     return;
4129   }
4130 
4131   assert(S.getLangOptions().CPlusPlus);
4132 
4133   //     - If the destination type is a (possibly cv-qualified) class type:
4134   if (DestType->isRecordType()) {
4135     //     - If the initialization is direct-initialization, or if it is
4136     //       copy-initialization where the cv-unqualified version of the
4137     //       source type is the same class as, or a derived class of, the
4138     //       class of the destination, constructors are considered. [...]
4139     if (Kind.getKind() == InitializationKind::IK_Direct ||
4140         (Kind.getKind() == InitializationKind::IK_Copy &&
4141          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4142           S.IsDerivedFrom(SourceType, DestType))))
4143       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4144                                    Entity.getType(), *this);
4145     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4146     //       user-defined conversion sequences that can convert from the source
4147     //       type to the destination type or (when a conversion function is
4148     //       used) to a derived class thereof are enumerated as described in
4149     //       13.3.1.4, and the best one is chosen through overload resolution
4150     //       (13.3).
4151     else
4152       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4153     return;
4154   }
4155 
4156   if (NumArgs > 1) {
4157     SetFailed(FK_TooManyInitsForScalar);
4158     return;
4159   }
4160   assert(NumArgs == 1 && "Zero-argument case handled above");
4161 
4162   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4163   //      type, conversion functions are considered.
4164   if (!SourceType.isNull() && SourceType->isRecordType()) {
4165     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4166     MaybeProduceObjCObject(S, *this, Entity);
4167     return;
4168   }
4169 
4170   //    - Otherwise, the initial value of the object being initialized is the
4171   //      (possibly converted) value of the initializer expression. Standard
4172   //      conversions (Clause 4) will be used, if necessary, to convert the
4173   //      initializer expression to the cv-unqualified version of the
4174   //      destination type; no user-defined conversions are considered.
4175 
4176   ImplicitConversionSequence ICS
4177     = S.TryImplicitConversion(Initializer, Entity.getType(),
4178                               /*SuppressUserConversions*/true,
4179                               /*AllowExplicitConversions*/ false,
4180                               /*InOverloadResolution*/ false,
4181                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4182                               allowObjCWritebackConversion);
4183 
4184   if (ICS.isStandard() &&
4185       ICS.Standard.Second == ICK_Writeback_Conversion) {
4186     // Objective-C ARC writeback conversion.
4187 
4188     // We should copy unless we're passing to an argument explicitly
4189     // marked 'out'.
4190     bool ShouldCopy = true;
4191     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4192       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4193 
4194     // If there was an lvalue adjustment, add it as a separate conversion.
4195     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4196         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4197       ImplicitConversionSequence LvalueICS;
4198       LvalueICS.setStandard();
4199       LvalueICS.Standard.setAsIdentityConversion();
4200       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4201       LvalueICS.Standard.First = ICS.Standard.First;
4202       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4203     }
4204 
4205     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4206   } else if (ICS.isBad()) {
4207     DeclAccessPair dap;
4208     if (Initializer->getType() == Context.OverloadTy &&
4209           !S.ResolveAddressOfOverloadedFunction(Initializer
4210                       , DestType, false, dap))
4211       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4212     else
4213       SetFailed(InitializationSequence::FK_ConversionFailed);
4214   } else {
4215     AddConversionSequenceStep(ICS, Entity.getType());
4216 
4217     MaybeProduceObjCObject(S, *this, Entity);
4218   }
4219 }
4220 
4221 InitializationSequence::~InitializationSequence() {
4222   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4223                                           StepEnd = Steps.end();
4224        Step != StepEnd; ++Step)
4225     Step->Destroy();
4226 }
4227 
4228 //===----------------------------------------------------------------------===//
4229 // Perform initialization
4230 //===----------------------------------------------------------------------===//
4231 static Sema::AssignmentAction
4232 getAssignmentAction(const InitializedEntity &Entity) {
4233   switch(Entity.getKind()) {
4234   case InitializedEntity::EK_Variable:
4235   case InitializedEntity::EK_New:
4236   case InitializedEntity::EK_Exception:
4237   case InitializedEntity::EK_Base:
4238   case InitializedEntity::EK_Delegating:
4239     return Sema::AA_Initializing;
4240 
4241   case InitializedEntity::EK_Parameter:
4242     if (Entity.getDecl() &&
4243         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4244       return Sema::AA_Sending;
4245 
4246     return Sema::AA_Passing;
4247 
4248   case InitializedEntity::EK_Result:
4249     return Sema::AA_Returning;
4250 
4251   case InitializedEntity::EK_Temporary:
4252     // FIXME: Can we tell apart casting vs. converting?
4253     return Sema::AA_Casting;
4254 
4255   case InitializedEntity::EK_Member:
4256   case InitializedEntity::EK_ArrayElement:
4257   case InitializedEntity::EK_VectorElement:
4258   case InitializedEntity::EK_ComplexElement:
4259   case InitializedEntity::EK_BlockElement:
4260   case InitializedEntity::EK_LambdaCapture:
4261     return Sema::AA_Initializing;
4262   }
4263 
4264   llvm_unreachable("Invalid EntityKind!");
4265 }
4266 
4267 /// \brief Whether we should binding a created object as a temporary when
4268 /// initializing the given entity.
4269 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4270   switch (Entity.getKind()) {
4271   case InitializedEntity::EK_ArrayElement:
4272   case InitializedEntity::EK_Member:
4273   case InitializedEntity::EK_Result:
4274   case InitializedEntity::EK_New:
4275   case InitializedEntity::EK_Variable:
4276   case InitializedEntity::EK_Base:
4277   case InitializedEntity::EK_Delegating:
4278   case InitializedEntity::EK_VectorElement:
4279   case InitializedEntity::EK_ComplexElement:
4280   case InitializedEntity::EK_Exception:
4281   case InitializedEntity::EK_BlockElement:
4282   case InitializedEntity::EK_LambdaCapture:
4283     return false;
4284 
4285   case InitializedEntity::EK_Parameter:
4286   case InitializedEntity::EK_Temporary:
4287     return true;
4288   }
4289 
4290   llvm_unreachable("missed an InitializedEntity kind?");
4291 }
4292 
4293 /// \brief Whether the given entity, when initialized with an object
4294 /// created for that initialization, requires destruction.
4295 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4296   switch (Entity.getKind()) {
4297     case InitializedEntity::EK_Member:
4298     case InitializedEntity::EK_Result:
4299     case InitializedEntity::EK_New:
4300     case InitializedEntity::EK_Base:
4301     case InitializedEntity::EK_Delegating:
4302     case InitializedEntity::EK_VectorElement:
4303     case InitializedEntity::EK_ComplexElement:
4304     case InitializedEntity::EK_BlockElement:
4305     case InitializedEntity::EK_LambdaCapture:
4306       return false;
4307 
4308     case InitializedEntity::EK_Variable:
4309     case InitializedEntity::EK_Parameter:
4310     case InitializedEntity::EK_Temporary:
4311     case InitializedEntity::EK_ArrayElement:
4312     case InitializedEntity::EK_Exception:
4313       return true;
4314   }
4315 
4316   llvm_unreachable("missed an InitializedEntity kind?");
4317 }
4318 
4319 /// \brief Look for copy and move constructors and constructor templates, for
4320 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4321 static void LookupCopyAndMoveConstructors(Sema &S,
4322                                           OverloadCandidateSet &CandidateSet,
4323                                           CXXRecordDecl *Class,
4324                                           Expr *CurInitExpr) {
4325   DeclContext::lookup_iterator Con, ConEnd;
4326   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4327        Con != ConEnd; ++Con) {
4328     CXXConstructorDecl *Constructor = 0;
4329 
4330     if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4331       // Handle copy/moveconstructors, only.
4332       if (!Constructor || Constructor->isInvalidDecl() ||
4333           !Constructor->isCopyOrMoveConstructor() ||
4334           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4335         continue;
4336 
4337       DeclAccessPair FoundDecl
4338         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4339       S.AddOverloadCandidate(Constructor, FoundDecl,
4340                              CurInitExpr, CandidateSet);
4341       continue;
4342     }
4343 
4344     // Handle constructor templates.
4345     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4346     if (ConstructorTmpl->isInvalidDecl())
4347       continue;
4348 
4349     Constructor = cast<CXXConstructorDecl>(
4350                                          ConstructorTmpl->getTemplatedDecl());
4351     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4352       continue;
4353 
4354     // FIXME: Do we need to limit this to copy-constructor-like
4355     // candidates?
4356     DeclAccessPair FoundDecl
4357       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4358     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4359                                    CurInitExpr, CandidateSet, true);
4360   }
4361 }
4362 
4363 /// \brief Get the location at which initialization diagnostics should appear.
4364 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4365                                            Expr *Initializer) {
4366   switch (Entity.getKind()) {
4367   case InitializedEntity::EK_Result:
4368     return Entity.getReturnLoc();
4369 
4370   case InitializedEntity::EK_Exception:
4371     return Entity.getThrowLoc();
4372 
4373   case InitializedEntity::EK_Variable:
4374     return Entity.getDecl()->getLocation();
4375 
4376   case InitializedEntity::EK_LambdaCapture:
4377     return Entity.getCaptureLoc();
4378 
4379   case InitializedEntity::EK_ArrayElement:
4380   case InitializedEntity::EK_Member:
4381   case InitializedEntity::EK_Parameter:
4382   case InitializedEntity::EK_Temporary:
4383   case InitializedEntity::EK_New:
4384   case InitializedEntity::EK_Base:
4385   case InitializedEntity::EK_Delegating:
4386   case InitializedEntity::EK_VectorElement:
4387   case InitializedEntity::EK_ComplexElement:
4388   case InitializedEntity::EK_BlockElement:
4389     return Initializer->getLocStart();
4390   }
4391   llvm_unreachable("missed an InitializedEntity kind?");
4392 }
4393 
4394 /// \brief Make a (potentially elidable) temporary copy of the object
4395 /// provided by the given initializer by calling the appropriate copy
4396 /// constructor.
4397 ///
4398 /// \param S The Sema object used for type-checking.
4399 ///
4400 /// \param T The type of the temporary object, which must either be
4401 /// the type of the initializer expression or a superclass thereof.
4402 ///
4403 /// \param Enter The entity being initialized.
4404 ///
4405 /// \param CurInit The initializer expression.
4406 ///
4407 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4408 /// is permitted in C++03 (but not C++0x) when binding a reference to
4409 /// an rvalue.
4410 ///
4411 /// \returns An expression that copies the initializer expression into
4412 /// a temporary object, or an error expression if a copy could not be
4413 /// created.
4414 static ExprResult CopyObject(Sema &S,
4415                              QualType T,
4416                              const InitializedEntity &Entity,
4417                              ExprResult CurInit,
4418                              bool IsExtraneousCopy) {
4419   // Determine which class type we're copying to.
4420   Expr *CurInitExpr = (Expr *)CurInit.get();
4421   CXXRecordDecl *Class = 0;
4422   if (const RecordType *Record = T->getAs<RecordType>())
4423     Class = cast<CXXRecordDecl>(Record->getDecl());
4424   if (!Class)
4425     return move(CurInit);
4426 
4427   // C++0x [class.copy]p32:
4428   //   When certain criteria are met, an implementation is allowed to
4429   //   omit the copy/move construction of a class object, even if the
4430   //   copy/move constructor and/or destructor for the object have
4431   //   side effects. [...]
4432   //     - when a temporary class object that has not been bound to a
4433   //       reference (12.2) would be copied/moved to a class object
4434   //       with the same cv-unqualified type, the copy/move operation
4435   //       can be omitted by constructing the temporary object
4436   //       directly into the target of the omitted copy/move
4437   //
4438   // Note that the other three bullets are handled elsewhere. Copy
4439   // elision for return statements and throw expressions are handled as part
4440   // of constructor initialization, while copy elision for exception handlers
4441   // is handled by the run-time.
4442   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4443   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4444 
4445   // Make sure that the type we are copying is complete.
4446   if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
4447     return move(CurInit);
4448 
4449   // Perform overload resolution using the class's copy/move constructors.
4450   // Only consider constructors and constructor templates. Per
4451   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4452   // is direct-initialization.
4453   OverloadCandidateSet CandidateSet(Loc);
4454   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4455 
4456   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4457 
4458   OverloadCandidateSet::iterator Best;
4459   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4460   case OR_Success:
4461     break;
4462 
4463   case OR_No_Viable_Function:
4464     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4465            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4466            : diag::err_temp_copy_no_viable)
4467       << (int)Entity.getKind() << CurInitExpr->getType()
4468       << CurInitExpr->getSourceRange();
4469     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4470     if (!IsExtraneousCopy || S.isSFINAEContext())
4471       return ExprError();
4472     return move(CurInit);
4473 
4474   case OR_Ambiguous:
4475     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4476       << (int)Entity.getKind() << CurInitExpr->getType()
4477       << CurInitExpr->getSourceRange();
4478     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4479     return ExprError();
4480 
4481   case OR_Deleted:
4482     S.Diag(Loc, diag::err_temp_copy_deleted)
4483       << (int)Entity.getKind() << CurInitExpr->getType()
4484       << CurInitExpr->getSourceRange();
4485     S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4486       << 1 << Best->Function->isDeleted();
4487     return ExprError();
4488   }
4489 
4490   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4491   ASTOwningVector<Expr*> ConstructorArgs(S);
4492   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4493 
4494   S.CheckConstructorAccess(Loc, Constructor, Entity,
4495                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4496 
4497   if (IsExtraneousCopy) {
4498     // If this is a totally extraneous copy for C++03 reference
4499     // binding purposes, just return the original initialization
4500     // expression. We don't generate an (elided) copy operation here
4501     // because doing so would require us to pass down a flag to avoid
4502     // infinite recursion, where each step adds another extraneous,
4503     // elidable copy.
4504 
4505     // Instantiate the default arguments of any extra parameters in
4506     // the selected copy constructor, as if we were going to create a
4507     // proper call to the copy constructor.
4508     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4509       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4510       if (S.RequireCompleteType(Loc, Parm->getType(),
4511                                 S.PDiag(diag::err_call_incomplete_argument)))
4512         break;
4513 
4514       // Build the default argument expression; we don't actually care
4515       // if this succeeds or not, because this routine will complain
4516       // if there was a problem.
4517       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4518     }
4519 
4520     return S.Owned(CurInitExpr);
4521   }
4522 
4523   S.MarkFunctionReferenced(Loc, Constructor);
4524 
4525   // Determine the arguments required to actually perform the
4526   // constructor call (we might have derived-to-base conversions, or
4527   // the copy constructor may have default arguments).
4528   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4529                                 Loc, ConstructorArgs))
4530     return ExprError();
4531 
4532   // Actually perform the constructor call.
4533   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4534                                     move_arg(ConstructorArgs),
4535                                     HadMultipleCandidates,
4536                                     /*ZeroInit*/ false,
4537                                     CXXConstructExpr::CK_Complete,
4538                                     SourceRange());
4539 
4540   // If we're supposed to bind temporaries, do so.
4541   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4542     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4543   return move(CurInit);
4544 }
4545 
4546 /// \brief Check whether elidable copy construction for binding a reference to
4547 /// a temporary would have succeeded if we were building in C++98 mode, for
4548 /// -Wc++98-compat.
4549 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4550                                            const InitializedEntity &Entity,
4551                                            Expr *CurInitExpr) {
4552   assert(S.getLangOptions().CPlusPlus0x);
4553 
4554   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4555   if (!Record)
4556     return;
4557 
4558   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4559   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4560         == DiagnosticsEngine::Ignored)
4561     return;
4562 
4563   // Find constructors which would have been considered.
4564   OverloadCandidateSet CandidateSet(Loc);
4565   LookupCopyAndMoveConstructors(
4566       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4567 
4568   // Perform overload resolution.
4569   OverloadCandidateSet::iterator Best;
4570   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4571 
4572   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4573     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4574     << CurInitExpr->getSourceRange();
4575 
4576   switch (OR) {
4577   case OR_Success:
4578     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4579                              Best->FoundDecl.getAccess(), Diag);
4580     // FIXME: Check default arguments as far as that's possible.
4581     break;
4582 
4583   case OR_No_Viable_Function:
4584     S.Diag(Loc, Diag);
4585     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4586     break;
4587 
4588   case OR_Ambiguous:
4589     S.Diag(Loc, Diag);
4590     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4591     break;
4592 
4593   case OR_Deleted:
4594     S.Diag(Loc, Diag);
4595     S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4596       << 1 << Best->Function->isDeleted();
4597     break;
4598   }
4599 }
4600 
4601 void InitializationSequence::PrintInitLocationNote(Sema &S,
4602                                               const InitializedEntity &Entity) {
4603   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4604     if (Entity.getDecl()->getLocation().isInvalid())
4605       return;
4606 
4607     if (Entity.getDecl()->getDeclName())
4608       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4609         << Entity.getDecl()->getDeclName();
4610     else
4611       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4612   }
4613 }
4614 
4615 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4616   return s.Kind == InitializationSequence::SK_BindReference ||
4617          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4618 }
4619 
4620 static ExprResult
4621 PerformConstructorInitialization(Sema &S,
4622                                  const InitializedEntity &Entity,
4623                                  const InitializationKind &Kind,
4624                                  MultiExprArg Args,
4625                                  const InitializationSequence::Step& Step,
4626                                  bool &ConstructorInitRequiresZeroInit) {
4627   unsigned NumArgs = Args.size();
4628   CXXConstructorDecl *Constructor
4629     = cast<CXXConstructorDecl>(Step.Function.Function);
4630   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4631 
4632   // Build a call to the selected constructor.
4633   ASTOwningVector<Expr*> ConstructorArgs(S);
4634   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4635                          ? Kind.getEqualLoc()
4636                          : Kind.getLocation();
4637 
4638   if (Kind.getKind() == InitializationKind::IK_Default) {
4639     // Force even a trivial, implicit default constructor to be
4640     // semantically checked. We do this explicitly because we don't build
4641     // the definition for completely trivial constructors.
4642     assert(Constructor->getParent() && "No parent class for constructor.");
4643     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4644         Constructor->isTrivial() && !Constructor->isUsed(false))
4645       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4646   }
4647 
4648   ExprResult CurInit = S.Owned((Expr *)0);
4649 
4650   // C++ [over.match.copy]p1:
4651   //   - When initializing a temporary to be bound to the first parameter
4652   //     of a constructor that takes a reference to possibly cv-qualified
4653   //     T as its first argument, called with a single argument in the
4654   //     context of direct-initialization, explicit conversion functions
4655   //     are also considered.
4656   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4657                            Args.size() == 1 &&
4658                            Constructor->isCopyOrMoveConstructor();
4659 
4660   // Determine the arguments required to actually perform the constructor
4661   // call.
4662   if (S.CompleteConstructorCall(Constructor, move(Args),
4663                                 Loc, ConstructorArgs,
4664                                 AllowExplicitConv))
4665     return ExprError();
4666 
4667 
4668   if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4669       (Kind.getKind() == InitializationKind::IK_DirectList ||
4670        (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4671         (Kind.getKind() == InitializationKind::IK_Direct ||
4672          Kind.getKind() == InitializationKind::IK_Value)))) {
4673     // An explicitly-constructed temporary, e.g., X(1, 2).
4674     unsigned NumExprs = ConstructorArgs.size();
4675     Expr **Exprs = (Expr **)ConstructorArgs.take();
4676     S.MarkFunctionReferenced(Loc, Constructor);
4677     S.DiagnoseUseOfDecl(Constructor, Loc);
4678 
4679     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4680     if (!TSInfo)
4681       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4682     SourceRange ParenRange;
4683     if (Kind.getKind() != InitializationKind::IK_DirectList)
4684       ParenRange = Kind.getParenRange();
4685 
4686     CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4687                                                              Constructor,
4688                                                              TSInfo,
4689                                                              Exprs,
4690                                                              NumExprs,
4691                                                              ParenRange,
4692                                                      HadMultipleCandidates,
4693                                          ConstructorInitRequiresZeroInit));
4694   } else {
4695     CXXConstructExpr::ConstructionKind ConstructKind =
4696       CXXConstructExpr::CK_Complete;
4697 
4698     if (Entity.getKind() == InitializedEntity::EK_Base) {
4699       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4700         CXXConstructExpr::CK_VirtualBase :
4701         CXXConstructExpr::CK_NonVirtualBase;
4702     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4703       ConstructKind = CXXConstructExpr::CK_Delegating;
4704     }
4705 
4706     // Only get the parenthesis range if it is a direct construction.
4707     SourceRange parenRange =
4708         Kind.getKind() == InitializationKind::IK_Direct ?
4709         Kind.getParenRange() : SourceRange();
4710 
4711     // If the entity allows NRVO, mark the construction as elidable
4712     // unconditionally.
4713     if (Entity.allowsNRVO())
4714       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4715                                         Constructor, /*Elidable=*/true,
4716                                         move_arg(ConstructorArgs),
4717                                         HadMultipleCandidates,
4718                                         ConstructorInitRequiresZeroInit,
4719                                         ConstructKind,
4720                                         parenRange);
4721     else
4722       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4723                                         Constructor,
4724                                         move_arg(ConstructorArgs),
4725                                         HadMultipleCandidates,
4726                                         ConstructorInitRequiresZeroInit,
4727                                         ConstructKind,
4728                                         parenRange);
4729   }
4730   if (CurInit.isInvalid())
4731     return ExprError();
4732 
4733   // Only check access if all of that succeeded.
4734   S.CheckConstructorAccess(Loc, Constructor, Entity,
4735                            Step.Function.FoundDecl.getAccess());
4736   S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4737 
4738   if (shouldBindAsTemporary(Entity))
4739     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4740 
4741   return move(CurInit);
4742 }
4743 
4744 ExprResult
4745 InitializationSequence::Perform(Sema &S,
4746                                 const InitializedEntity &Entity,
4747                                 const InitializationKind &Kind,
4748                                 MultiExprArg Args,
4749                                 QualType *ResultType) {
4750   if (Failed()) {
4751     unsigned NumArgs = Args.size();
4752     Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
4753     return ExprError();
4754   }
4755 
4756   if (getKind() == DependentSequence) {
4757     // If the declaration is a non-dependent, incomplete array type
4758     // that has an initializer, then its type will be completed once
4759     // the initializer is instantiated.
4760     if (ResultType && !Entity.getType()->isDependentType() &&
4761         Args.size() == 1) {
4762       QualType DeclType = Entity.getType();
4763       if (const IncompleteArrayType *ArrayT
4764                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4765         // FIXME: We don't currently have the ability to accurately
4766         // compute the length of an initializer list without
4767         // performing full type-checking of the initializer list
4768         // (since we have to determine where braces are implicitly
4769         // introduced and such).  So, we fall back to making the array
4770         // type a dependently-sized array type with no specified
4771         // bound.
4772         if (isa<InitListExpr>((Expr *)Args.get()[0])) {
4773           SourceRange Brackets;
4774 
4775           // Scavange the location of the brackets from the entity, if we can.
4776           if (DeclaratorDecl *DD = Entity.getDecl()) {
4777             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4778               TypeLoc TL = TInfo->getTypeLoc();
4779               if (IncompleteArrayTypeLoc *ArrayLoc
4780                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4781               Brackets = ArrayLoc->getBracketsRange();
4782             }
4783           }
4784 
4785           *ResultType
4786             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4787                                                    /*NumElts=*/0,
4788                                                    ArrayT->getSizeModifier(),
4789                                        ArrayT->getIndexTypeCVRQualifiers(),
4790                                                    Brackets);
4791         }
4792 
4793       }
4794     }
4795     if (Kind.getKind() == InitializationKind::IK_Direct &&
4796         !Kind.isExplicitCast()) {
4797       // Rebuild the ParenListExpr.
4798       SourceRange ParenRange = Kind.getParenRange();
4799       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4800                                   move(Args));
4801     }
4802     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4803            Kind.isExplicitCast());
4804     return ExprResult(Args.release()[0]);
4805   }
4806 
4807   // No steps means no initialization.
4808   if (Steps.empty())
4809     return S.Owned((Expr *)0);
4810 
4811   QualType DestType = Entity.getType().getNonReferenceType();
4812   // FIXME: Ugly hack around the fact that Entity.getType() is not
4813   // the same as Entity.getDecl()->getType() in cases involving type merging,
4814   //  and we want latter when it makes sense.
4815   if (ResultType)
4816     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4817                                      Entity.getType();
4818 
4819   ExprResult CurInit = S.Owned((Expr *)0);
4820 
4821   // For initialization steps that start with a single initializer,
4822   // grab the only argument out the Args and place it into the "current"
4823   // initializer.
4824   switch (Steps.front().Kind) {
4825   case SK_ResolveAddressOfOverloadedFunction:
4826   case SK_CastDerivedToBaseRValue:
4827   case SK_CastDerivedToBaseXValue:
4828   case SK_CastDerivedToBaseLValue:
4829   case SK_BindReference:
4830   case SK_BindReferenceToTemporary:
4831   case SK_ExtraneousCopyToTemporary:
4832   case SK_UserConversion:
4833   case SK_QualificationConversionLValue:
4834   case SK_QualificationConversionXValue:
4835   case SK_QualificationConversionRValue:
4836   case SK_ConversionSequence:
4837   case SK_ListConstructorCall:
4838   case SK_ListInitialization:
4839   case SK_UnwrapInitList:
4840   case SK_RewrapInitList:
4841   case SK_CAssignment:
4842   case SK_StringInit:
4843   case SK_ObjCObjectConversion:
4844   case SK_ArrayInit:
4845   case SK_ParenthesizedArrayInit:
4846   case SK_PassByIndirectCopyRestore:
4847   case SK_PassByIndirectRestore:
4848   case SK_ProduceObjCObject:
4849   case SK_StdInitializerList: {
4850     assert(Args.size() == 1);
4851     CurInit = Args.get()[0];
4852     if (!CurInit.get()) return ExprError();
4853     break;
4854   }
4855 
4856   case SK_ConstructorInitialization:
4857   case SK_ZeroInitialization:
4858     break;
4859   }
4860 
4861   // Walk through the computed steps for the initialization sequence,
4862   // performing the specified conversions along the way.
4863   bool ConstructorInitRequiresZeroInit = false;
4864   for (step_iterator Step = step_begin(), StepEnd = step_end();
4865        Step != StepEnd; ++Step) {
4866     if (CurInit.isInvalid())
4867       return ExprError();
4868 
4869     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4870 
4871     switch (Step->Kind) {
4872     case SK_ResolveAddressOfOverloadedFunction:
4873       // Overload resolution determined which function invoke; update the
4874       // initializer to reflect that choice.
4875       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4876       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4877       CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4878                                                  Step->Function.FoundDecl,
4879                                                  Step->Function.Function);
4880       break;
4881 
4882     case SK_CastDerivedToBaseRValue:
4883     case SK_CastDerivedToBaseXValue:
4884     case SK_CastDerivedToBaseLValue: {
4885       // We have a derived-to-base cast that produces either an rvalue or an
4886       // lvalue. Perform that cast.
4887 
4888       CXXCastPath BasePath;
4889 
4890       // Casts to inaccessible base classes are allowed with C-style casts.
4891       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4892       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4893                                          CurInit.get()->getLocStart(),
4894                                          CurInit.get()->getSourceRange(),
4895                                          &BasePath, IgnoreBaseAccess))
4896         return ExprError();
4897 
4898       if (S.BasePathInvolvesVirtualBase(BasePath)) {
4899         QualType T = SourceType;
4900         if (const PointerType *Pointer = T->getAs<PointerType>())
4901           T = Pointer->getPointeeType();
4902         if (const RecordType *RecordTy = T->getAs<RecordType>())
4903           S.MarkVTableUsed(CurInit.get()->getLocStart(),
4904                            cast<CXXRecordDecl>(RecordTy->getDecl()));
4905       }
4906 
4907       ExprValueKind VK =
4908           Step->Kind == SK_CastDerivedToBaseLValue ?
4909               VK_LValue :
4910               (Step->Kind == SK_CastDerivedToBaseXValue ?
4911                    VK_XValue :
4912                    VK_RValue);
4913       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4914                                                  Step->Type,
4915                                                  CK_DerivedToBase,
4916                                                  CurInit.get(),
4917                                                  &BasePath, VK));
4918       break;
4919     }
4920 
4921     case SK_BindReference:
4922       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4923         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4924         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4925           << Entity.getType().isVolatileQualified()
4926           << BitField->getDeclName()
4927           << CurInit.get()->getSourceRange();
4928         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4929         return ExprError();
4930       }
4931 
4932       if (CurInit.get()->refersToVectorElement()) {
4933         // References cannot bind to vector elements.
4934         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4935           << Entity.getType().isVolatileQualified()
4936           << CurInit.get()->getSourceRange();
4937         PrintInitLocationNote(S, Entity);
4938         return ExprError();
4939       }
4940 
4941       // Reference binding does not have any corresponding ASTs.
4942 
4943       // Check exception specifications
4944       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4945         return ExprError();
4946 
4947       break;
4948 
4949     case SK_BindReferenceToTemporary:
4950       // Check exception specifications
4951       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4952         return ExprError();
4953 
4954       // Materialize the temporary into memory.
4955       CurInit = new (S.Context) MaterializeTemporaryExpr(
4956                                          Entity.getType().getNonReferenceType(),
4957                                                          CurInit.get(),
4958                                      Entity.getType()->isLValueReferenceType());
4959 
4960       // If we're binding to an Objective-C object that has lifetime, we
4961       // need cleanups.
4962       if (S.getLangOptions().ObjCAutoRefCount &&
4963           CurInit.get()->getType()->isObjCLifetimeType())
4964         S.ExprNeedsCleanups = true;
4965 
4966       break;
4967 
4968     case SK_ExtraneousCopyToTemporary:
4969       CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4970                            /*IsExtraneousCopy=*/true);
4971       break;
4972 
4973     case SK_UserConversion: {
4974       // We have a user-defined conversion that invokes either a constructor
4975       // or a conversion function.
4976       CastKind CastKind;
4977       bool IsCopy = false;
4978       FunctionDecl *Fn = Step->Function.Function;
4979       DeclAccessPair FoundFn = Step->Function.FoundDecl;
4980       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
4981       bool CreatedObject = false;
4982       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4983         // Build a call to the selected constructor.
4984         ASTOwningVector<Expr*> ConstructorArgs(S);
4985         SourceLocation Loc = CurInit.get()->getLocStart();
4986         CurInit.release(); // Ownership transferred into MultiExprArg, below.
4987 
4988         // Determine the arguments required to actually perform the constructor
4989         // call.
4990         Expr *Arg = CurInit.get();
4991         if (S.CompleteConstructorCall(Constructor,
4992                                       MultiExprArg(&Arg, 1),
4993                                       Loc, ConstructorArgs))
4994           return ExprError();
4995 
4996         // Build an expression that constructs a temporary.
4997         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
4998                                           move_arg(ConstructorArgs),
4999                                           HadMultipleCandidates,
5000                                           /*ZeroInit*/ false,
5001                                           CXXConstructExpr::CK_Complete,
5002                                           SourceRange());
5003         if (CurInit.isInvalid())
5004           return ExprError();
5005 
5006         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5007                                  FoundFn.getAccess());
5008         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5009 
5010         CastKind = CK_ConstructorConversion;
5011         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5012         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5013             S.IsDerivedFrom(SourceType, Class))
5014           IsCopy = true;
5015 
5016         CreatedObject = true;
5017       } else {
5018         // Build a call to the conversion function.
5019         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5020         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5021                                     FoundFn);
5022         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5023 
5024         // FIXME: Should we move this initialization into a separate
5025         // derived-to-base conversion? I believe the answer is "no", because
5026         // we don't want to turn off access control here for c-style casts.
5027         ExprResult CurInitExprRes =
5028           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5029                                                 FoundFn, Conversion);
5030         if(CurInitExprRes.isInvalid())
5031           return ExprError();
5032         CurInit = move(CurInitExprRes);
5033 
5034         // Build the actual call to the conversion function.
5035         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5036                                            HadMultipleCandidates);
5037         if (CurInit.isInvalid() || !CurInit.get())
5038           return ExprError();
5039 
5040         CastKind = CK_UserDefinedConversion;
5041 
5042         CreatedObject = Conversion->getResultType()->isRecordType();
5043       }
5044 
5045       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5046       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5047 
5048       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5049         QualType T = CurInit.get()->getType();
5050         if (const RecordType *Record = T->getAs<RecordType>()) {
5051           CXXDestructorDecl *Destructor
5052             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5053           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5054                                   S.PDiag(diag::err_access_dtor_temp) << T);
5055           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5056           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5057         }
5058       }
5059 
5060       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5061                                                  CurInit.get()->getType(),
5062                                                  CastKind, CurInit.get(), 0,
5063                                                 CurInit.get()->getValueKind()));
5064       if (MaybeBindToTemp)
5065         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5066       if (RequiresCopy)
5067         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5068                              move(CurInit), /*IsExtraneousCopy=*/false);
5069       break;
5070     }
5071 
5072     case SK_QualificationConversionLValue:
5073     case SK_QualificationConversionXValue:
5074     case SK_QualificationConversionRValue: {
5075       // Perform a qualification conversion; these can never go wrong.
5076       ExprValueKind VK =
5077           Step->Kind == SK_QualificationConversionLValue ?
5078               VK_LValue :
5079               (Step->Kind == SK_QualificationConversionXValue ?
5080                    VK_XValue :
5081                    VK_RValue);
5082       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5083       break;
5084     }
5085 
5086     case SK_ConversionSequence: {
5087       Sema::CheckedConversionKind CCK
5088         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5089         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5090         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5091         : Sema::CCK_ImplicitConversion;
5092       ExprResult CurInitExprRes =
5093         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5094                                     getAssignmentAction(Entity), CCK);
5095       if (CurInitExprRes.isInvalid())
5096         return ExprError();
5097       CurInit = move(CurInitExprRes);
5098       break;
5099     }
5100 
5101     case SK_ListInitialization: {
5102       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5103       // Hack: We must pass *ResultType if available in order to set the type
5104       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5105       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5106       // temporary, not a reference, so we should pass Ty.
5107       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5108       // Since this step is never used for a reference directly, we explicitly
5109       // unwrap references here and rewrap them afterwards.
5110       // We also need to create a InitializeTemporary entity for this.
5111       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5112       bool IsTemporary = Entity.getType()->isReferenceType();
5113       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5114       InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5115           InitList, Ty, /*VerifyOnly=*/false,
5116           Kind.getKind() != InitializationKind::IK_DirectList ||
5117             !S.getLangOptions().CPlusPlus0x);
5118       if (PerformInitList.HadError())
5119         return ExprError();
5120 
5121       if (ResultType) {
5122         if ((*ResultType)->isRValueReferenceType())
5123           Ty = S.Context.getRValueReferenceType(Ty);
5124         else if ((*ResultType)->isLValueReferenceType())
5125           Ty = S.Context.getLValueReferenceType(Ty,
5126             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5127         *ResultType = Ty;
5128       }
5129 
5130       InitListExpr *StructuredInitList =
5131           PerformInitList.getFullyStructuredList();
5132       CurInit.release();
5133       CurInit = S.Owned(StructuredInitList);
5134       break;
5135     }
5136 
5137     case SK_ListConstructorCall: {
5138       // When an initializer list is passed for a parameter of type "reference
5139       // to object", we don't get an EK_Temporary entity, but instead an
5140       // EK_Parameter entity with reference type.
5141       // FIXME: This is a hack. What we really should do is create a user
5142       // conversion step for this case, but this makes it considerably more
5143       // complicated. For now, this will do.
5144       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5145                                         Entity.getType().getNonReferenceType());
5146       bool UseTemporary = Entity.getType()->isReferenceType();
5147       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5148       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5149       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5150                                                                    Entity,
5151                                                  Kind, move(Arg), *Step,
5152                                                ConstructorInitRequiresZeroInit);
5153       break;
5154     }
5155 
5156     case SK_UnwrapInitList:
5157       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5158       break;
5159 
5160     case SK_RewrapInitList: {
5161       Expr *E = CurInit.take();
5162       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5163       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5164           Syntactic->getLBraceLoc(), &E, 1, Syntactic->getRBraceLoc());
5165       ILE->setSyntacticForm(Syntactic);
5166       ILE->setType(E->getType());
5167       ILE->setValueKind(E->getValueKind());
5168       CurInit = S.Owned(ILE);
5169       break;
5170     }
5171 
5172     case SK_ConstructorInitialization: {
5173       // When an initializer list is passed for a parameter of type "reference
5174       // to object", we don't get an EK_Temporary entity, but instead an
5175       // EK_Parameter entity with reference type.
5176       // FIXME: This is a hack. What we really should do is create a user
5177       // conversion step for this case, but this makes it considerably more
5178       // complicated. For now, this will do.
5179       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5180                                         Entity.getType().getNonReferenceType());
5181       bool UseTemporary = Entity.getType()->isReferenceType();
5182       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5183                                                                  : Entity,
5184                                                  Kind, move(Args), *Step,
5185                                                ConstructorInitRequiresZeroInit);
5186       break;
5187     }
5188 
5189     case SK_ZeroInitialization: {
5190       step_iterator NextStep = Step;
5191       ++NextStep;
5192       if (NextStep != StepEnd &&
5193           NextStep->Kind == SK_ConstructorInitialization) {
5194         // The need for zero-initialization is recorded directly into
5195         // the call to the object's constructor within the next step.
5196         ConstructorInitRequiresZeroInit = true;
5197       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5198                  S.getLangOptions().CPlusPlus &&
5199                  !Kind.isImplicitValueInit()) {
5200         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5201         if (!TSInfo)
5202           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5203                                                     Kind.getRange().getBegin());
5204 
5205         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5206                               TSInfo->getType().getNonLValueExprType(S.Context),
5207                                                                  TSInfo,
5208                                                     Kind.getRange().getEnd()));
5209       } else {
5210         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5211       }
5212       break;
5213     }
5214 
5215     case SK_CAssignment: {
5216       QualType SourceType = CurInit.get()->getType();
5217       ExprResult Result = move(CurInit);
5218       Sema::AssignConvertType ConvTy =
5219         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5220       if (Result.isInvalid())
5221         return ExprError();
5222       CurInit = move(Result);
5223 
5224       // If this is a call, allow conversion to a transparent union.
5225       ExprResult CurInitExprRes = move(CurInit);
5226       if (ConvTy != Sema::Compatible &&
5227           Entity.getKind() == InitializedEntity::EK_Parameter &&
5228           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5229             == Sema::Compatible)
5230         ConvTy = Sema::Compatible;
5231       if (CurInitExprRes.isInvalid())
5232         return ExprError();
5233       CurInit = move(CurInitExprRes);
5234 
5235       bool Complained;
5236       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5237                                      Step->Type, SourceType,
5238                                      CurInit.get(),
5239                                      getAssignmentAction(Entity),
5240                                      &Complained)) {
5241         PrintInitLocationNote(S, Entity);
5242         return ExprError();
5243       } else if (Complained)
5244         PrintInitLocationNote(S, Entity);
5245       break;
5246     }
5247 
5248     case SK_StringInit: {
5249       QualType Ty = Step->Type;
5250       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5251                       S.Context.getAsArrayType(Ty), S);
5252       break;
5253     }
5254 
5255     case SK_ObjCObjectConversion:
5256       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5257                           CK_ObjCObjectLValueCast,
5258                           CurInit.get()->getValueKind());
5259       break;
5260 
5261     case SK_ArrayInit:
5262       // Okay: we checked everything before creating this step. Note that
5263       // this is a GNU extension.
5264       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5265         << Step->Type << CurInit.get()->getType()
5266         << CurInit.get()->getSourceRange();
5267 
5268       // If the destination type is an incomplete array type, update the
5269       // type accordingly.
5270       if (ResultType) {
5271         if (const IncompleteArrayType *IncompleteDest
5272                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5273           if (const ConstantArrayType *ConstantSource
5274                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5275             *ResultType = S.Context.getConstantArrayType(
5276                                              IncompleteDest->getElementType(),
5277                                              ConstantSource->getSize(),
5278                                              ArrayType::Normal, 0);
5279           }
5280         }
5281       }
5282       break;
5283 
5284     case SK_ParenthesizedArrayInit:
5285       // Okay: we checked everything before creating this step. Note that
5286       // this is a GNU extension.
5287       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5288         << CurInit.get()->getSourceRange();
5289       break;
5290 
5291     case SK_PassByIndirectCopyRestore:
5292     case SK_PassByIndirectRestore:
5293       checkIndirectCopyRestoreSource(S, CurInit.get());
5294       CurInit = S.Owned(new (S.Context)
5295                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5296                                 Step->Kind == SK_PassByIndirectCopyRestore));
5297       break;
5298 
5299     case SK_ProduceObjCObject:
5300       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5301                                                  CK_ARCProduceObject,
5302                                                  CurInit.take(), 0, VK_RValue));
5303       break;
5304 
5305     case SK_StdInitializerList: {
5306       QualType Dest = Step->Type;
5307       QualType E;
5308       bool Success = S.isStdInitializerList(Dest, &E);
5309       (void)Success;
5310       assert(Success && "Destination type changed?");
5311 
5312       // If the element type has a destructor, check it.
5313       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5314         if (!RD->hasIrrelevantDestructor()) {
5315           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5316             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5317             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5318                                     S.PDiag(diag::err_access_dtor_temp) << E);
5319             S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5320           }
5321         }
5322       }
5323 
5324       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5325       unsigned NumInits = ILE->getNumInits();
5326       SmallVector<Expr*, 16> Converted(NumInits);
5327       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5328           S.Context.getConstantArrayType(E,
5329               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5330                           NumInits),
5331               ArrayType::Normal, 0));
5332       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5333           0, HiddenArray);
5334       for (unsigned i = 0; i < NumInits; ++i) {
5335         Element.setElementIndex(i);
5336         ExprResult Init = S.Owned(ILE->getInit(i));
5337         ExprResult Res = S.PerformCopyInitialization(Element,
5338                                                      Init.get()->getExprLoc(),
5339                                                      Init);
5340         assert(!Res.isInvalid() && "Result changed since try phase.");
5341         Converted[i] = Res.take();
5342       }
5343       InitListExpr *Semantic = new (S.Context)
5344           InitListExpr(S.Context, ILE->getLBraceLoc(),
5345                        Converted.data(), NumInits, ILE->getRBraceLoc());
5346       Semantic->setSyntacticForm(ILE);
5347       Semantic->setType(Dest);
5348       Semantic->setInitializesStdInitializerList();
5349       CurInit = S.Owned(Semantic);
5350       break;
5351     }
5352     }
5353   }
5354 
5355   // Diagnose non-fatal problems with the completed initialization.
5356   if (Entity.getKind() == InitializedEntity::EK_Member &&
5357       cast<FieldDecl>(Entity.getDecl())->isBitField())
5358     S.CheckBitFieldInitialization(Kind.getLocation(),
5359                                   cast<FieldDecl>(Entity.getDecl()),
5360                                   CurInit.get());
5361 
5362   return move(CurInit);
5363 }
5364 
5365 /// \brief Provide some notes that detail why a function was implicitly
5366 /// deleted.
5367 static void diagnoseImplicitlyDeletedFunction(Sema &S, CXXMethodDecl *Method) {
5368   // FIXME: This is a work in progress. It should dig deeper to figure out
5369   // why the function was deleted (e.g., because one of its members doesn't
5370   // have a copy constructor, for the copy-constructor case).
5371   if (!Method->isImplicit()) {
5372     S.Diag(Method->getLocation(), diag::note_callee_decl)
5373       << Method->getDeclName();
5374   }
5375 
5376   if (Method->getParent()->isLambda()) {
5377     S.Diag(Method->getParent()->getLocation(), diag::note_lambda_decl);
5378     return;
5379   }
5380 
5381   S.Diag(Method->getParent()->getLocation(), diag::note_defined_here)
5382     << Method->getParent();
5383 }
5384 
5385 //===----------------------------------------------------------------------===//
5386 // Diagnose initialization failures
5387 //===----------------------------------------------------------------------===//
5388 bool InitializationSequence::Diagnose(Sema &S,
5389                                       const InitializedEntity &Entity,
5390                                       const InitializationKind &Kind,
5391                                       Expr **Args, unsigned NumArgs) {
5392   if (!Failed())
5393     return false;
5394 
5395   QualType DestType = Entity.getType();
5396   switch (Failure) {
5397   case FK_TooManyInitsForReference:
5398     // FIXME: Customize for the initialized entity?
5399     if (NumArgs == 0)
5400       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5401         << DestType.getNonReferenceType();
5402     else  // FIXME: diagnostic below could be better!
5403       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5404         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5405     break;
5406 
5407   case FK_ArrayNeedsInitList:
5408   case FK_ArrayNeedsInitListOrStringLiteral:
5409     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5410       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5411     break;
5412 
5413   case FK_ArrayTypeMismatch:
5414   case FK_NonConstantArrayInit:
5415     S.Diag(Kind.getLocation(),
5416            (Failure == FK_ArrayTypeMismatch
5417               ? diag::err_array_init_different_type
5418               : diag::err_array_init_non_constant_array))
5419       << DestType.getNonReferenceType()
5420       << Args[0]->getType()
5421       << Args[0]->getSourceRange();
5422     break;
5423 
5424   case FK_VariableLengthArrayHasInitializer:
5425     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5426       << Args[0]->getSourceRange();
5427     break;
5428 
5429   case FK_AddressOfOverloadFailed: {
5430     DeclAccessPair Found;
5431     S.ResolveAddressOfOverloadedFunction(Args[0],
5432                                          DestType.getNonReferenceType(),
5433                                          true,
5434                                          Found);
5435     break;
5436   }
5437 
5438   case FK_ReferenceInitOverloadFailed:
5439   case FK_UserConversionOverloadFailed:
5440     switch (FailedOverloadResult) {
5441     case OR_Ambiguous:
5442       if (Failure == FK_UserConversionOverloadFailed)
5443         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5444           << Args[0]->getType() << DestType
5445           << Args[0]->getSourceRange();
5446       else
5447         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5448           << DestType << Args[0]->getType()
5449           << Args[0]->getSourceRange();
5450 
5451       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5452                                         llvm::makeArrayRef(Args, NumArgs));
5453       break;
5454 
5455     case OR_No_Viable_Function:
5456       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5457         << Args[0]->getType() << DestType.getNonReferenceType()
5458         << Args[0]->getSourceRange();
5459       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5460                                         llvm::makeArrayRef(Args, NumArgs));
5461       break;
5462 
5463     case OR_Deleted: {
5464       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5465         << Args[0]->getType() << DestType.getNonReferenceType()
5466         << Args[0]->getSourceRange();
5467       OverloadCandidateSet::iterator Best;
5468       OverloadingResult Ovl
5469         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5470                                                 true);
5471       if (Ovl == OR_Deleted) {
5472         S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
5473           << 1 << Best->Function->isDeleted();
5474       } else {
5475         llvm_unreachable("Inconsistent overload resolution?");
5476       }
5477       break;
5478     }
5479 
5480     case OR_Success:
5481       llvm_unreachable("Conversion did not fail!");
5482     }
5483     break;
5484 
5485   case FK_NonConstLValueReferenceBindingToTemporary:
5486     if (isa<InitListExpr>(Args[0])) {
5487       S.Diag(Kind.getLocation(),
5488              diag::err_lvalue_reference_bind_to_initlist)
5489       << DestType.getNonReferenceType().isVolatileQualified()
5490       << DestType.getNonReferenceType()
5491       << Args[0]->getSourceRange();
5492       break;
5493     }
5494     // Intentional fallthrough
5495 
5496   case FK_NonConstLValueReferenceBindingToUnrelated:
5497     S.Diag(Kind.getLocation(),
5498            Failure == FK_NonConstLValueReferenceBindingToTemporary
5499              ? diag::err_lvalue_reference_bind_to_temporary
5500              : diag::err_lvalue_reference_bind_to_unrelated)
5501       << DestType.getNonReferenceType().isVolatileQualified()
5502       << DestType.getNonReferenceType()
5503       << Args[0]->getType()
5504       << Args[0]->getSourceRange();
5505     break;
5506 
5507   case FK_RValueReferenceBindingToLValue:
5508     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5509       << DestType.getNonReferenceType() << Args[0]->getType()
5510       << Args[0]->getSourceRange();
5511     break;
5512 
5513   case FK_ReferenceInitDropsQualifiers:
5514     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5515       << DestType.getNonReferenceType()
5516       << Args[0]->getType()
5517       << Args[0]->getSourceRange();
5518     break;
5519 
5520   case FK_ReferenceInitFailed:
5521     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5522       << DestType.getNonReferenceType()
5523       << Args[0]->isLValue()
5524       << Args[0]->getType()
5525       << Args[0]->getSourceRange();
5526     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5527         Args[0]->getType()->isObjCObjectPointerType())
5528       S.EmitRelatedResultTypeNote(Args[0]);
5529     break;
5530 
5531   case FK_ConversionFailed: {
5532     QualType FromType = Args[0]->getType();
5533     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5534       << (int)Entity.getKind()
5535       << DestType
5536       << Args[0]->isLValue()
5537       << FromType
5538       << Args[0]->getSourceRange();
5539     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5540     S.Diag(Kind.getLocation(), PDiag);
5541     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5542         Args[0]->getType()->isObjCObjectPointerType())
5543       S.EmitRelatedResultTypeNote(Args[0]);
5544     break;
5545   }
5546 
5547   case FK_ConversionFromPropertyFailed:
5548     // No-op. This error has already been reported.
5549     break;
5550 
5551   case FK_TooManyInitsForScalar: {
5552     SourceRange R;
5553 
5554     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5555       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5556                       InitList->getLocEnd());
5557     else
5558       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5559 
5560     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5561     if (Kind.isCStyleOrFunctionalCast())
5562       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5563         << R;
5564     else
5565       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5566         << /*scalar=*/2 << R;
5567     break;
5568   }
5569 
5570   case FK_ReferenceBindingToInitList:
5571     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5572       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5573     break;
5574 
5575   case FK_InitListBadDestinationType:
5576     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5577       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5578     break;
5579 
5580   case FK_ListConstructorOverloadFailed:
5581   case FK_ConstructorOverloadFailed: {
5582     SourceRange ArgsRange;
5583     if (NumArgs)
5584       ArgsRange = SourceRange(Args[0]->getLocStart(),
5585                               Args[NumArgs - 1]->getLocEnd());
5586 
5587     if (Failure == FK_ListConstructorOverloadFailed) {
5588       assert(NumArgs == 1 && "List construction from other than 1 argument.");
5589       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5590       Args = InitList->getInits();
5591       NumArgs = InitList->getNumInits();
5592     }
5593 
5594     // FIXME: Using "DestType" for the entity we're printing is probably
5595     // bad.
5596     switch (FailedOverloadResult) {
5597       case OR_Ambiguous:
5598         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5599           << DestType << ArgsRange;
5600         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5601                                           llvm::makeArrayRef(Args, NumArgs));
5602         break;
5603 
5604       case OR_No_Viable_Function:
5605         if (Kind.getKind() == InitializationKind::IK_Default &&
5606             (Entity.getKind() == InitializedEntity::EK_Base ||
5607              Entity.getKind() == InitializedEntity::EK_Member) &&
5608             isa<CXXConstructorDecl>(S.CurContext)) {
5609           // This is implicit default initialization of a member or
5610           // base within a constructor. If no viable function was
5611           // found, notify the user that she needs to explicitly
5612           // initialize this base/member.
5613           CXXConstructorDecl *Constructor
5614             = cast<CXXConstructorDecl>(S.CurContext);
5615           if (Entity.getKind() == InitializedEntity::EK_Base) {
5616             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5617               << Constructor->isImplicit()
5618               << S.Context.getTypeDeclType(Constructor->getParent())
5619               << /*base=*/0
5620               << Entity.getType();
5621 
5622             RecordDecl *BaseDecl
5623               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5624                                                                   ->getDecl();
5625             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5626               << S.Context.getTagDeclType(BaseDecl);
5627           } else {
5628             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5629               << Constructor->isImplicit()
5630               << S.Context.getTypeDeclType(Constructor->getParent())
5631               << /*member=*/1
5632               << Entity.getName();
5633             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5634 
5635             if (const RecordType *Record
5636                                  = Entity.getType()->getAs<RecordType>())
5637               S.Diag(Record->getDecl()->getLocation(),
5638                      diag::note_previous_decl)
5639                 << S.Context.getTagDeclType(Record->getDecl());
5640           }
5641           break;
5642         }
5643 
5644         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5645           << DestType << ArgsRange;
5646         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5647                                           llvm::makeArrayRef(Args, NumArgs));
5648         break;
5649 
5650       case OR_Deleted: {
5651         OverloadCandidateSet::iterator Best;
5652         OverloadingResult Ovl
5653           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5654         if (Ovl != OR_Deleted) {
5655           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5656             << true << DestType << ArgsRange;
5657           llvm_unreachable("Inconsistent overload resolution?");
5658           break;
5659         }
5660 
5661         // If this is a defaulted or implicitly-declared function, then
5662         // it was implicitly deleted. Make it clear that the deletion was
5663         // implicit.
5664         if (S.isImplicitlyDeleted(Best->Function)) {
5665           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5666             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5667             << DestType << ArgsRange;
5668 
5669           diagnoseImplicitlyDeletedFunction(S,
5670             cast<CXXMethodDecl>(Best->Function));
5671           break;
5672         }
5673 
5674         S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5675           << true << DestType << ArgsRange;
5676         S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
5677           << 1 << Best->Function->isDeleted();
5678         break;
5679       }
5680 
5681       case OR_Success:
5682         llvm_unreachable("Conversion did not fail!");
5683     }
5684   }
5685   break;
5686 
5687   case FK_DefaultInitOfConst:
5688     if (Entity.getKind() == InitializedEntity::EK_Member &&
5689         isa<CXXConstructorDecl>(S.CurContext)) {
5690       // This is implicit default-initialization of a const member in
5691       // a constructor. Complain that it needs to be explicitly
5692       // initialized.
5693       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5694       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5695         << Constructor->isImplicit()
5696         << S.Context.getTypeDeclType(Constructor->getParent())
5697         << /*const=*/1
5698         << Entity.getName();
5699       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5700         << Entity.getName();
5701     } else {
5702       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5703         << DestType << (bool)DestType->getAs<RecordType>();
5704     }
5705     break;
5706 
5707   case FK_Incomplete:
5708     S.RequireCompleteType(Kind.getLocation(), DestType,
5709                           diag::err_init_incomplete_type);
5710     break;
5711 
5712   case FK_ListInitializationFailed: {
5713     // Run the init list checker again to emit diagnostics.
5714     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5715     QualType DestType = Entity.getType();
5716     InitListChecker DiagnoseInitList(S, Entity, InitList,
5717             DestType, /*VerifyOnly=*/false,
5718             Kind.getKind() != InitializationKind::IK_DirectList ||
5719               !S.getLangOptions().CPlusPlus0x);
5720     assert(DiagnoseInitList.HadError() &&
5721            "Inconsistent init list check result.");
5722     break;
5723   }
5724 
5725   case FK_PlaceholderType: {
5726     // FIXME: Already diagnosed!
5727     break;
5728   }
5729 
5730   case FK_InitListElementCopyFailure: {
5731     // Try to perform all copies again.
5732     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5733     unsigned NumInits = InitList->getNumInits();
5734     QualType DestType = Entity.getType();
5735     QualType E;
5736     bool Success = S.isStdInitializerList(DestType, &E);
5737     (void)Success;
5738     assert(Success && "Where did the std::initializer_list go?");
5739     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5740         S.Context.getConstantArrayType(E,
5741             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5742                         NumInits),
5743             ArrayType::Normal, 0));
5744     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5745         0, HiddenArray);
5746     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5747     // where the init list type is wrong, e.g.
5748     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5749     // FIXME: Emit a note if we hit the limit?
5750     int ErrorCount = 0;
5751     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5752       Element.setElementIndex(i);
5753       ExprResult Init = S.Owned(InitList->getInit(i));
5754       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5755            .isInvalid())
5756         ++ErrorCount;
5757     }
5758     break;
5759   }
5760   }
5761 
5762   PrintInitLocationNote(S, Entity);
5763   return true;
5764 }
5765 
5766 void InitializationSequence::dump(raw_ostream &OS) const {
5767   switch (SequenceKind) {
5768   case FailedSequence: {
5769     OS << "Failed sequence: ";
5770     switch (Failure) {
5771     case FK_TooManyInitsForReference:
5772       OS << "too many initializers for reference";
5773       break;
5774 
5775     case FK_ArrayNeedsInitList:
5776       OS << "array requires initializer list";
5777       break;
5778 
5779     case FK_ArrayNeedsInitListOrStringLiteral:
5780       OS << "array requires initializer list or string literal";
5781       break;
5782 
5783     case FK_ArrayTypeMismatch:
5784       OS << "array type mismatch";
5785       break;
5786 
5787     case FK_NonConstantArrayInit:
5788       OS << "non-constant array initializer";
5789       break;
5790 
5791     case FK_AddressOfOverloadFailed:
5792       OS << "address of overloaded function failed";
5793       break;
5794 
5795     case FK_ReferenceInitOverloadFailed:
5796       OS << "overload resolution for reference initialization failed";
5797       break;
5798 
5799     case FK_NonConstLValueReferenceBindingToTemporary:
5800       OS << "non-const lvalue reference bound to temporary";
5801       break;
5802 
5803     case FK_NonConstLValueReferenceBindingToUnrelated:
5804       OS << "non-const lvalue reference bound to unrelated type";
5805       break;
5806 
5807     case FK_RValueReferenceBindingToLValue:
5808       OS << "rvalue reference bound to an lvalue";
5809       break;
5810 
5811     case FK_ReferenceInitDropsQualifiers:
5812       OS << "reference initialization drops qualifiers";
5813       break;
5814 
5815     case FK_ReferenceInitFailed:
5816       OS << "reference initialization failed";
5817       break;
5818 
5819     case FK_ConversionFailed:
5820       OS << "conversion failed";
5821       break;
5822 
5823     case FK_ConversionFromPropertyFailed:
5824       OS << "conversion from property failed";
5825       break;
5826 
5827     case FK_TooManyInitsForScalar:
5828       OS << "too many initializers for scalar";
5829       break;
5830 
5831     case FK_ReferenceBindingToInitList:
5832       OS << "referencing binding to initializer list";
5833       break;
5834 
5835     case FK_InitListBadDestinationType:
5836       OS << "initializer list for non-aggregate, non-scalar type";
5837       break;
5838 
5839     case FK_UserConversionOverloadFailed:
5840       OS << "overloading failed for user-defined conversion";
5841       break;
5842 
5843     case FK_ConstructorOverloadFailed:
5844       OS << "constructor overloading failed";
5845       break;
5846 
5847     case FK_DefaultInitOfConst:
5848       OS << "default initialization of a const variable";
5849       break;
5850 
5851     case FK_Incomplete:
5852       OS << "initialization of incomplete type";
5853       break;
5854 
5855     case FK_ListInitializationFailed:
5856       OS << "list initialization checker failure";
5857       break;
5858 
5859     case FK_VariableLengthArrayHasInitializer:
5860       OS << "variable length array has an initializer";
5861       break;
5862 
5863     case FK_PlaceholderType:
5864       OS << "initializer expression isn't contextually valid";
5865       break;
5866 
5867     case FK_ListConstructorOverloadFailed:
5868       OS << "list constructor overloading failed";
5869       break;
5870 
5871     case FK_InitListElementCopyFailure:
5872       OS << "copy construction of initializer list element failed";
5873       break;
5874     }
5875     OS << '\n';
5876     return;
5877   }
5878 
5879   case DependentSequence:
5880     OS << "Dependent sequence\n";
5881     return;
5882 
5883   case NormalSequence:
5884     OS << "Normal sequence: ";
5885     break;
5886   }
5887 
5888   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5889     if (S != step_begin()) {
5890       OS << " -> ";
5891     }
5892 
5893     switch (S->Kind) {
5894     case SK_ResolveAddressOfOverloadedFunction:
5895       OS << "resolve address of overloaded function";
5896       break;
5897 
5898     case SK_CastDerivedToBaseRValue:
5899       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5900       break;
5901 
5902     case SK_CastDerivedToBaseXValue:
5903       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5904       break;
5905 
5906     case SK_CastDerivedToBaseLValue:
5907       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5908       break;
5909 
5910     case SK_BindReference:
5911       OS << "bind reference to lvalue";
5912       break;
5913 
5914     case SK_BindReferenceToTemporary:
5915       OS << "bind reference to a temporary";
5916       break;
5917 
5918     case SK_ExtraneousCopyToTemporary:
5919       OS << "extraneous C++03 copy to temporary";
5920       break;
5921 
5922     case SK_UserConversion:
5923       OS << "user-defined conversion via " << *S->Function.Function;
5924       break;
5925 
5926     case SK_QualificationConversionRValue:
5927       OS << "qualification conversion (rvalue)";
5928       break;
5929 
5930     case SK_QualificationConversionXValue:
5931       OS << "qualification conversion (xvalue)";
5932       break;
5933 
5934     case SK_QualificationConversionLValue:
5935       OS << "qualification conversion (lvalue)";
5936       break;
5937 
5938     case SK_ConversionSequence:
5939       OS << "implicit conversion sequence (";
5940       S->ICS->DebugPrint(); // FIXME: use OS
5941       OS << ")";
5942       break;
5943 
5944     case SK_ListInitialization:
5945       OS << "list aggregate initialization";
5946       break;
5947 
5948     case SK_ListConstructorCall:
5949       OS << "list initialization via constructor";
5950       break;
5951 
5952     case SK_UnwrapInitList:
5953       OS << "unwrap reference initializer list";
5954       break;
5955 
5956     case SK_RewrapInitList:
5957       OS << "rewrap reference initializer list";
5958       break;
5959 
5960     case SK_ConstructorInitialization:
5961       OS << "constructor initialization";
5962       break;
5963 
5964     case SK_ZeroInitialization:
5965       OS << "zero initialization";
5966       break;
5967 
5968     case SK_CAssignment:
5969       OS << "C assignment";
5970       break;
5971 
5972     case SK_StringInit:
5973       OS << "string initialization";
5974       break;
5975 
5976     case SK_ObjCObjectConversion:
5977       OS << "Objective-C object conversion";
5978       break;
5979 
5980     case SK_ArrayInit:
5981       OS << "array initialization";
5982       break;
5983 
5984     case SK_ParenthesizedArrayInit:
5985       OS << "parenthesized array initialization";
5986       break;
5987 
5988     case SK_PassByIndirectCopyRestore:
5989       OS << "pass by indirect copy and restore";
5990       break;
5991 
5992     case SK_PassByIndirectRestore:
5993       OS << "pass by indirect restore";
5994       break;
5995 
5996     case SK_ProduceObjCObject:
5997       OS << "Objective-C object retension";
5998       break;
5999 
6000     case SK_StdInitializerList:
6001       OS << "std::initializer_list from initializer list";
6002       break;
6003     }
6004   }
6005 }
6006 
6007 void InitializationSequence::dump() const {
6008   dump(llvm::errs());
6009 }
6010 
6011 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6012                                         QualType EntityType,
6013                                         const Expr *PreInit,
6014                                         const Expr *PostInit) {
6015   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6016     return;
6017 
6018   // A narrowing conversion can only appear as the final implicit conversion in
6019   // an initialization sequence.
6020   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6021   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6022     return;
6023 
6024   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6025   const StandardConversionSequence *SCS = 0;
6026   switch (ICS.getKind()) {
6027   case ImplicitConversionSequence::StandardConversion:
6028     SCS = &ICS.Standard;
6029     break;
6030   case ImplicitConversionSequence::UserDefinedConversion:
6031     SCS = &ICS.UserDefined.After;
6032     break;
6033   case ImplicitConversionSequence::AmbiguousConversion:
6034   case ImplicitConversionSequence::EllipsisConversion:
6035   case ImplicitConversionSequence::BadConversion:
6036     return;
6037   }
6038 
6039   // Determine the type prior to the narrowing conversion. If a conversion
6040   // operator was used, this may be different from both the type of the entity
6041   // and of the pre-initialization expression.
6042   QualType PreNarrowingType = PreInit->getType();
6043   if (Seq.step_begin() + 1 != Seq.step_end())
6044     PreNarrowingType = Seq.step_end()[-2].Type;
6045 
6046   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6047   APValue ConstantValue;
6048   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue)) {
6049   case NK_Not_Narrowing:
6050     // No narrowing occurred.
6051     return;
6052 
6053   case NK_Type_Narrowing:
6054     // This was a floating-to-integer conversion, which is always considered a
6055     // narrowing conversion even if the value is a constant and can be
6056     // represented exactly as an integer.
6057     S.Diag(PostInit->getLocStart(),
6058            S.getLangOptions().MicrosoftExt || !S.getLangOptions().CPlusPlus0x?
6059              diag::warn_init_list_type_narrowing
6060            : S.isSFINAEContext()?
6061              diag::err_init_list_type_narrowing_sfinae
6062            : diag::err_init_list_type_narrowing)
6063       << PostInit->getSourceRange()
6064       << PreNarrowingType.getLocalUnqualifiedType()
6065       << EntityType.getLocalUnqualifiedType();
6066     break;
6067 
6068   case NK_Constant_Narrowing:
6069     // A constant value was narrowed.
6070     S.Diag(PostInit->getLocStart(),
6071            S.getLangOptions().MicrosoftExt || !S.getLangOptions().CPlusPlus0x?
6072              diag::warn_init_list_constant_narrowing
6073            : S.isSFINAEContext()?
6074              diag::err_init_list_constant_narrowing_sfinae
6075            : diag::err_init_list_constant_narrowing)
6076       << PostInit->getSourceRange()
6077       << ConstantValue.getAsString(S.getASTContext(), EntityType)
6078       << EntityType.getLocalUnqualifiedType();
6079     break;
6080 
6081   case NK_Variable_Narrowing:
6082     // A variable's value may have been narrowed.
6083     S.Diag(PostInit->getLocStart(),
6084            S.getLangOptions().MicrosoftExt || !S.getLangOptions().CPlusPlus0x?
6085              diag::warn_init_list_variable_narrowing
6086            : S.isSFINAEContext()?
6087              diag::err_init_list_variable_narrowing_sfinae
6088            : diag::err_init_list_variable_narrowing)
6089       << PostInit->getSourceRange()
6090       << PreNarrowingType.getLocalUnqualifiedType()
6091       << EntityType.getLocalUnqualifiedType();
6092     break;
6093   }
6094 
6095   SmallString<128> StaticCast;
6096   llvm::raw_svector_ostream OS(StaticCast);
6097   OS << "static_cast<";
6098   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6099     // It's important to use the typedef's name if there is one so that the
6100     // fixit doesn't break code using types like int64_t.
6101     //
6102     // FIXME: This will break if the typedef requires qualification.  But
6103     // getQualifiedNameAsString() includes non-machine-parsable components.
6104     OS << *TT->getDecl();
6105   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6106     OS << BT->getName(S.getLangOptions());
6107   else {
6108     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6109     // with a broken cast.
6110     return;
6111   }
6112   OS << ">(";
6113   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6114     << PostInit->getSourceRange()
6115     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6116     << FixItHint::CreateInsertion(
6117       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6118 }
6119 
6120 //===----------------------------------------------------------------------===//
6121 // Initialization helper functions
6122 //===----------------------------------------------------------------------===//
6123 bool
6124 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6125                                    ExprResult Init) {
6126   if (Init.isInvalid())
6127     return false;
6128 
6129   Expr *InitE = Init.get();
6130   assert(InitE && "No initialization expression");
6131 
6132   InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
6133                                                            SourceLocation());
6134   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6135   return !Seq.Failed();
6136 }
6137 
6138 ExprResult
6139 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6140                                 SourceLocation EqualLoc,
6141                                 ExprResult Init,
6142                                 bool TopLevelOfInitList,
6143                                 bool AllowExplicit) {
6144   if (Init.isInvalid())
6145     return ExprError();
6146 
6147   Expr *InitE = Init.get();
6148   assert(InitE && "No initialization expression?");
6149 
6150   if (EqualLoc.isInvalid())
6151     EqualLoc = InitE->getLocStart();
6152 
6153   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6154                                                            EqualLoc,
6155                                                            AllowExplicit);
6156   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6157   Init.release();
6158 
6159   ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6160 
6161   if (!Result.isInvalid() && TopLevelOfInitList)
6162     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6163                                 InitE, Result.get());
6164 
6165   return Result;
6166 }
6167