1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54 
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63 
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66 
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70 
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (SL == 0)
74     return SIF_Other;
75 
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78 
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119 
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122 
123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130 
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148 
149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   uint64_t StrLength =
153     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154 
155 
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167 
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169 
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182 
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::warn_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195 
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206 
207 /// @brief Semantic checking for initializer lists.
208 ///
209 /// The InitListChecker class contains a set of routines that each
210 /// handle the initialization of a certain kind of entity, e.g.,
211 /// arrays, vectors, struct/union types, scalars, etc. The
212 /// InitListChecker itself performs a recursive walk of the subobject
213 /// structure of the type to be initialized, while stepping through
214 /// the initializer list one element at a time. The IList and Index
215 /// parameters to each of the Check* routines contain the active
216 /// (syntactic) initializer list and the index into that initializer
217 /// list that represents the current initializer. Each routine is
218 /// responsible for moving that Index forward as it consumes elements.
219 ///
220 /// Each Check* routine also has a StructuredList/StructuredIndex
221 /// arguments, which contains the current "structured" (semantic)
222 /// initializer list and the index into that initializer list where we
223 /// are copying initializers as we map them over to the semantic
224 /// list. Once we have completed our recursive walk of the subobject
225 /// structure, we will have constructed a full semantic initializer
226 /// list.
227 ///
228 /// C99 designators cause changes in the initializer list traversal,
229 /// because they make the initialization "jump" into a specific
230 /// subobject and then continue the initialization from that
231 /// point. CheckDesignatedInitializer() recursively steps into the
232 /// designated subobject and manages backing out the recursion to
233 /// initialize the subobjects after the one designated.
234 namespace {
235 class InitListChecker {
236   Sema &SemaRef;
237   bool hadError;
238   bool VerifyOnly; // no diagnostics, no structure building
239   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240   InitListExpr *FullyStructuredList;
241 
242   void CheckImplicitInitList(const InitializedEntity &Entity,
243                              InitListExpr *ParentIList, QualType T,
244                              unsigned &Index, InitListExpr *StructuredList,
245                              unsigned &StructuredIndex);
246   void CheckExplicitInitList(const InitializedEntity &Entity,
247                              InitListExpr *IList, QualType &T,
248                              unsigned &Index, InitListExpr *StructuredList,
249                              unsigned &StructuredIndex,
250                              bool TopLevelObject = false);
251   void CheckListElementTypes(const InitializedEntity &Entity,
252                              InitListExpr *IList, QualType &DeclType,
253                              bool SubobjectIsDesignatorContext,
254                              unsigned &Index,
255                              InitListExpr *StructuredList,
256                              unsigned &StructuredIndex,
257                              bool TopLevelObject = false);
258   void CheckSubElementType(const InitializedEntity &Entity,
259                            InitListExpr *IList, QualType ElemType,
260                            unsigned &Index,
261                            InitListExpr *StructuredList,
262                            unsigned &StructuredIndex);
263   void CheckComplexType(const InitializedEntity &Entity,
264                         InitListExpr *IList, QualType DeclType,
265                         unsigned &Index,
266                         InitListExpr *StructuredList,
267                         unsigned &StructuredIndex);
268   void CheckScalarType(const InitializedEntity &Entity,
269                        InitListExpr *IList, QualType DeclType,
270                        unsigned &Index,
271                        InitListExpr *StructuredList,
272                        unsigned &StructuredIndex);
273   void CheckReferenceType(const InitializedEntity &Entity,
274                           InitListExpr *IList, QualType DeclType,
275                           unsigned &Index,
276                           InitListExpr *StructuredList,
277                           unsigned &StructuredIndex);
278   void CheckVectorType(const InitializedEntity &Entity,
279                        InitListExpr *IList, QualType DeclType, unsigned &Index,
280                        InitListExpr *StructuredList,
281                        unsigned &StructuredIndex);
282   void CheckStructUnionTypes(const InitializedEntity &Entity,
283                              InitListExpr *IList, QualType DeclType,
284                              RecordDecl::field_iterator Field,
285                              bool SubobjectIsDesignatorContext, unsigned &Index,
286                              InitListExpr *StructuredList,
287                              unsigned &StructuredIndex,
288                              bool TopLevelObject = false);
289   void CheckArrayType(const InitializedEntity &Entity,
290                       InitListExpr *IList, QualType &DeclType,
291                       llvm::APSInt elementIndex,
292                       bool SubobjectIsDesignatorContext, unsigned &Index,
293                       InitListExpr *StructuredList,
294                       unsigned &StructuredIndex);
295   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
296                                   InitListExpr *IList, DesignatedInitExpr *DIE,
297                                   unsigned DesigIdx,
298                                   QualType &CurrentObjectType,
299                                   RecordDecl::field_iterator *NextField,
300                                   llvm::APSInt *NextElementIndex,
301                                   unsigned &Index,
302                                   InitListExpr *StructuredList,
303                                   unsigned &StructuredIndex,
304                                   bool FinishSubobjectInit,
305                                   bool TopLevelObject);
306   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
307                                            QualType CurrentObjectType,
308                                            InitListExpr *StructuredList,
309                                            unsigned StructuredIndex,
310                                            SourceRange InitRange);
311   void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                    unsigned &StructuredIndex,
313                                    Expr *expr);
314   int numArrayElements(QualType DeclType);
315   int numStructUnionElements(QualType DeclType);
316 
317   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
318                                const InitializedEntity &ParentEntity,
319                                InitListExpr *ILE, bool &RequiresSecondPass);
320   void FillInValueInitializations(const InitializedEntity &Entity,
321                                   InitListExpr *ILE, bool &RequiresSecondPass);
322   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
323                               Expr *InitExpr, FieldDecl *Field,
324                               bool TopLevelObject);
325   void CheckValueInitializable(const InitializedEntity &Entity);
326 
327 public:
328   InitListChecker(Sema &S, const InitializedEntity &Entity,
329                   InitListExpr *IL, QualType &T, bool VerifyOnly);
330   bool HadError() { return hadError; }
331 
332   // @brief Retrieves the fully-structured initializer list used for
333   // semantic analysis and code generation.
334   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
335 };
336 } // end anonymous namespace
337 
338 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
339   assert(VerifyOnly &&
340          "CheckValueInitializable is only inteded for verification mode.");
341 
342   SourceLocation Loc;
343   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
344                                                             true);
345   InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
346   if (InitSeq.Failed())
347     hadError = true;
348 }
349 
350 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
351                                         const InitializedEntity &ParentEntity,
352                                               InitListExpr *ILE,
353                                               bool &RequiresSecondPass) {
354   SourceLocation Loc = ILE->getLocStart();
355   unsigned NumInits = ILE->getNumInits();
356   InitializedEntity MemberEntity
357     = InitializedEntity::InitializeMember(Field, &ParentEntity);
358   if (Init >= NumInits || !ILE->getInit(Init)) {
359     // If there's no explicit initializer but we have a default initializer, use
360     // that. This only happens in C++1y, since classes with default
361     // initializers are not aggregates in C++11.
362     if (Field->hasInClassInitializer()) {
363       Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
364                                              ILE->getRBraceLoc(), Field);
365       if (Init < NumInits)
366         ILE->setInit(Init, DIE);
367       else {
368         ILE->updateInit(SemaRef.Context, Init, DIE);
369         RequiresSecondPass = true;
370       }
371       return;
372     }
373 
374     // FIXME: We probably don't need to handle references
375     // specially here, since value-initialization of references is
376     // handled in InitializationSequence.
377     if (Field->getType()->isReferenceType()) {
378       // C++ [dcl.init.aggr]p9:
379       //   If an incomplete or empty initializer-list leaves a
380       //   member of reference type uninitialized, the program is
381       //   ill-formed.
382       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
383         << Field->getType()
384         << ILE->getSyntacticForm()->getSourceRange();
385       SemaRef.Diag(Field->getLocation(),
386                    diag::note_uninit_reference_member);
387       hadError = true;
388       return;
389     }
390 
391     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
392                                                               true);
393     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
394     if (!InitSeq) {
395       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
396       hadError = true;
397       return;
398     }
399 
400     ExprResult MemberInit
401       = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
402     if (MemberInit.isInvalid()) {
403       hadError = true;
404       return;
405     }
406 
407     if (hadError) {
408       // Do nothing
409     } else if (Init < NumInits) {
410       ILE->setInit(Init, MemberInit.takeAs<Expr>());
411     } else if (InitSeq.isConstructorInitialization()) {
412       // Value-initialization requires a constructor call, so
413       // extend the initializer list to include the constructor
414       // call and make a note that we'll need to take another pass
415       // through the initializer list.
416       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
417       RequiresSecondPass = true;
418     }
419   } else if (InitListExpr *InnerILE
420                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
421     FillInValueInitializations(MemberEntity, InnerILE,
422                                RequiresSecondPass);
423 }
424 
425 /// Recursively replaces NULL values within the given initializer list
426 /// with expressions that perform value-initialization of the
427 /// appropriate type.
428 void
429 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
430                                             InitListExpr *ILE,
431                                             bool &RequiresSecondPass) {
432   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
433          "Should not have void type");
434   SourceLocation Loc = ILE->getLocStart();
435   if (ILE->getSyntacticForm())
436     Loc = ILE->getSyntacticForm()->getLocStart();
437 
438   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
439     const RecordDecl *RDecl = RType->getDecl();
440     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
441       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
442                               Entity, ILE, RequiresSecondPass);
443     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
444              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
445       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
446                                       FieldEnd = RDecl->field_end();
447            Field != FieldEnd; ++Field) {
448         if (Field->hasInClassInitializer()) {
449           FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
450           break;
451         }
452       }
453     } else {
454       unsigned Init = 0;
455       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
456                                       FieldEnd = RDecl->field_end();
457            Field != FieldEnd; ++Field) {
458         if (Field->isUnnamedBitfield())
459           continue;
460 
461         if (hadError)
462           return;
463 
464         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
465         if (hadError)
466           return;
467 
468         ++Init;
469 
470         // Only look at the first initialization of a union.
471         if (RDecl->isUnion())
472           break;
473       }
474     }
475 
476     return;
477   }
478 
479   QualType ElementType;
480 
481   InitializedEntity ElementEntity = Entity;
482   unsigned NumInits = ILE->getNumInits();
483   unsigned NumElements = NumInits;
484   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
485     ElementType = AType->getElementType();
486     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
487       NumElements = CAType->getSize().getZExtValue();
488     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
489                                                          0, Entity);
490   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
491     ElementType = VType->getElementType();
492     NumElements = VType->getNumElements();
493     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
494                                                          0, Entity);
495   } else
496     ElementType = ILE->getType();
497 
498 
499   for (unsigned Init = 0; Init != NumElements; ++Init) {
500     if (hadError)
501       return;
502 
503     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
504         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
505       ElementEntity.setElementIndex(Init);
506 
507     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
508     if (!InitExpr && !ILE->hasArrayFiller()) {
509       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
510                                                                 true);
511       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
512       if (!InitSeq) {
513         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
514         hadError = true;
515         return;
516       }
517 
518       ExprResult ElementInit
519         = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
520       if (ElementInit.isInvalid()) {
521         hadError = true;
522         return;
523       }
524 
525       if (hadError) {
526         // Do nothing
527       } else if (Init < NumInits) {
528         // For arrays, just set the expression used for value-initialization
529         // of the "holes" in the array.
530         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
531           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
532         else
533           ILE->setInit(Init, ElementInit.takeAs<Expr>());
534       } else {
535         // For arrays, just set the expression used for value-initialization
536         // of the rest of elements and exit.
537         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
538           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
539           return;
540         }
541 
542         if (InitSeq.isConstructorInitialization()) {
543           // Value-initialization requires a constructor call, so
544           // extend the initializer list to include the constructor
545           // call and make a note that we'll need to take another pass
546           // through the initializer list.
547           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
548           RequiresSecondPass = true;
549         }
550       }
551     } else if (InitListExpr *InnerILE
552                  = dyn_cast_or_null<InitListExpr>(InitExpr))
553       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
554   }
555 }
556 
557 
558 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
559                                  InitListExpr *IL, QualType &T,
560                                  bool VerifyOnly)
561   : SemaRef(S), VerifyOnly(VerifyOnly) {
562   hadError = false;
563 
564   unsigned newIndex = 0;
565   unsigned newStructuredIndex = 0;
566   FullyStructuredList
567     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
568   CheckExplicitInitList(Entity, IL, T, newIndex,
569                         FullyStructuredList, newStructuredIndex,
570                         /*TopLevelObject=*/true);
571 
572   if (!hadError && !VerifyOnly) {
573     bool RequiresSecondPass = false;
574     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
575     if (RequiresSecondPass && !hadError)
576       FillInValueInitializations(Entity, FullyStructuredList,
577                                  RequiresSecondPass);
578   }
579 }
580 
581 int InitListChecker::numArrayElements(QualType DeclType) {
582   // FIXME: use a proper constant
583   int maxElements = 0x7FFFFFFF;
584   if (const ConstantArrayType *CAT =
585         SemaRef.Context.getAsConstantArrayType(DeclType)) {
586     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
587   }
588   return maxElements;
589 }
590 
591 int InitListChecker::numStructUnionElements(QualType DeclType) {
592   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
593   int InitializableMembers = 0;
594   for (RecordDecl::field_iterator
595          Field = structDecl->field_begin(),
596          FieldEnd = structDecl->field_end();
597        Field != FieldEnd; ++Field) {
598     if (!Field->isUnnamedBitfield())
599       ++InitializableMembers;
600   }
601   if (structDecl->isUnion())
602     return std::min(InitializableMembers, 1);
603   return InitializableMembers - structDecl->hasFlexibleArrayMember();
604 }
605 
606 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
607                                             InitListExpr *ParentIList,
608                                             QualType T, unsigned &Index,
609                                             InitListExpr *StructuredList,
610                                             unsigned &StructuredIndex) {
611   int maxElements = 0;
612 
613   if (T->isArrayType())
614     maxElements = numArrayElements(T);
615   else if (T->isRecordType())
616     maxElements = numStructUnionElements(T);
617   else if (T->isVectorType())
618     maxElements = T->getAs<VectorType>()->getNumElements();
619   else
620     llvm_unreachable("CheckImplicitInitList(): Illegal type");
621 
622   if (maxElements == 0) {
623     if (!VerifyOnly)
624       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
625                    diag::err_implicit_empty_initializer);
626     ++Index;
627     hadError = true;
628     return;
629   }
630 
631   // Build a structured initializer list corresponding to this subobject.
632   InitListExpr *StructuredSubobjectInitList
633     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
634                                  StructuredIndex,
635           SourceRange(ParentIList->getInit(Index)->getLocStart(),
636                       ParentIList->getSourceRange().getEnd()));
637   unsigned StructuredSubobjectInitIndex = 0;
638 
639   // Check the element types and build the structural subobject.
640   unsigned StartIndex = Index;
641   CheckListElementTypes(Entity, ParentIList, T,
642                         /*SubobjectIsDesignatorContext=*/false, Index,
643                         StructuredSubobjectInitList,
644                         StructuredSubobjectInitIndex);
645 
646   if (!VerifyOnly) {
647     StructuredSubobjectInitList->setType(T);
648 
649     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
650     // Update the structured sub-object initializer so that it's ending
651     // range corresponds with the end of the last initializer it used.
652     if (EndIndex < ParentIList->getNumInits()) {
653       SourceLocation EndLoc
654         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
655       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
656     }
657 
658     // Complain about missing braces.
659     if (T->isArrayType() || T->isRecordType()) {
660       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
661                    diag::warn_missing_braces)
662         << StructuredSubobjectInitList->getSourceRange()
663         << FixItHint::CreateInsertion(
664               StructuredSubobjectInitList->getLocStart(), "{")
665         << FixItHint::CreateInsertion(
666               SemaRef.PP.getLocForEndOfToken(
667                                       StructuredSubobjectInitList->getLocEnd()),
668               "}");
669     }
670   }
671 }
672 
673 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
674                                             InitListExpr *IList, QualType &T,
675                                             unsigned &Index,
676                                             InitListExpr *StructuredList,
677                                             unsigned &StructuredIndex,
678                                             bool TopLevelObject) {
679   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
680   if (!VerifyOnly) {
681     SyntacticToSemantic[IList] = StructuredList;
682     StructuredList->setSyntacticForm(IList);
683   }
684   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
685                         Index, StructuredList, StructuredIndex, TopLevelObject);
686   if (!VerifyOnly) {
687     QualType ExprTy = T;
688     if (!ExprTy->isArrayType())
689       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
690     IList->setType(ExprTy);
691     StructuredList->setType(ExprTy);
692   }
693   if (hadError)
694     return;
695 
696   if (Index < IList->getNumInits()) {
697     // We have leftover initializers
698     if (VerifyOnly) {
699       if (SemaRef.getLangOpts().CPlusPlus ||
700           (SemaRef.getLangOpts().OpenCL &&
701            IList->getType()->isVectorType())) {
702         hadError = true;
703       }
704       return;
705     }
706 
707     if (StructuredIndex == 1 &&
708         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
709             SIF_None) {
710       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
711       if (SemaRef.getLangOpts().CPlusPlus) {
712         DK = diag::err_excess_initializers_in_char_array_initializer;
713         hadError = true;
714       }
715       // Special-case
716       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
717         << IList->getInit(Index)->getSourceRange();
718     } else if (!T->isIncompleteType()) {
719       // Don't complain for incomplete types, since we'll get an error
720       // elsewhere
721       QualType CurrentObjectType = StructuredList->getType();
722       int initKind =
723         CurrentObjectType->isArrayType()? 0 :
724         CurrentObjectType->isVectorType()? 1 :
725         CurrentObjectType->isScalarType()? 2 :
726         CurrentObjectType->isUnionType()? 3 :
727         4;
728 
729       unsigned DK = diag::warn_excess_initializers;
730       if (SemaRef.getLangOpts().CPlusPlus) {
731         DK = diag::err_excess_initializers;
732         hadError = true;
733       }
734       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
735         DK = diag::err_excess_initializers;
736         hadError = true;
737       }
738 
739       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
740         << initKind << IList->getInit(Index)->getSourceRange();
741     }
742   }
743 
744   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
745       !TopLevelObject)
746     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
747       << IList->getSourceRange()
748       << FixItHint::CreateRemoval(IList->getLocStart())
749       << FixItHint::CreateRemoval(IList->getLocEnd());
750 }
751 
752 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
753                                             InitListExpr *IList,
754                                             QualType &DeclType,
755                                             bool SubobjectIsDesignatorContext,
756                                             unsigned &Index,
757                                             InitListExpr *StructuredList,
758                                             unsigned &StructuredIndex,
759                                             bool TopLevelObject) {
760   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
761     // Explicitly braced initializer for complex type can be real+imaginary
762     // parts.
763     CheckComplexType(Entity, IList, DeclType, Index,
764                      StructuredList, StructuredIndex);
765   } else if (DeclType->isScalarType()) {
766     CheckScalarType(Entity, IList, DeclType, Index,
767                     StructuredList, StructuredIndex);
768   } else if (DeclType->isVectorType()) {
769     CheckVectorType(Entity, IList, DeclType, Index,
770                     StructuredList, StructuredIndex);
771   } else if (DeclType->isRecordType()) {
772     assert(DeclType->isAggregateType() &&
773            "non-aggregate records should be handed in CheckSubElementType");
774     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
775     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
776                           SubobjectIsDesignatorContext, Index,
777                           StructuredList, StructuredIndex,
778                           TopLevelObject);
779   } else if (DeclType->isArrayType()) {
780     llvm::APSInt Zero(
781                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
782                     false);
783     CheckArrayType(Entity, IList, DeclType, Zero,
784                    SubobjectIsDesignatorContext, Index,
785                    StructuredList, StructuredIndex);
786   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
787     // This type is invalid, issue a diagnostic.
788     ++Index;
789     if (!VerifyOnly)
790       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
791         << DeclType;
792     hadError = true;
793   } else if (DeclType->isReferenceType()) {
794     CheckReferenceType(Entity, IList, DeclType, Index,
795                        StructuredList, StructuredIndex);
796   } else if (DeclType->isObjCObjectType()) {
797     if (!VerifyOnly)
798       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
799         << DeclType;
800     hadError = true;
801   } else {
802     if (!VerifyOnly)
803       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
804         << DeclType;
805     hadError = true;
806   }
807 }
808 
809 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
810                                           InitListExpr *IList,
811                                           QualType ElemType,
812                                           unsigned &Index,
813                                           InitListExpr *StructuredList,
814                                           unsigned &StructuredIndex) {
815   Expr *expr = IList->getInit(Index);
816 
817   if (ElemType->isReferenceType())
818     return CheckReferenceType(Entity, IList, ElemType, Index,
819                               StructuredList, StructuredIndex);
820 
821   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
822     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
823       unsigned newIndex = 0;
824       unsigned newStructuredIndex = 0;
825       InitListExpr *newStructuredList
826         = getStructuredSubobjectInit(IList, Index, ElemType,
827                                      StructuredList, StructuredIndex,
828                                      SubInitList->getSourceRange());
829       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
830                             newStructuredList, newStructuredIndex);
831       ++StructuredIndex;
832       ++Index;
833       return;
834     }
835     assert(SemaRef.getLangOpts().CPlusPlus &&
836            "non-aggregate records are only possible in C++");
837     // C++ initialization is handled later.
838   }
839 
840   if (ElemType->isScalarType())
841     return CheckScalarType(Entity, IList, ElemType, Index,
842                            StructuredList, StructuredIndex);
843 
844   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
845     // arrayType can be incomplete if we're initializing a flexible
846     // array member.  There's nothing we can do with the completed
847     // type here, though.
848 
849     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
850       if (!VerifyOnly) {
851         CheckStringInit(expr, ElemType, arrayType, SemaRef);
852         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
853       }
854       ++Index;
855       return;
856     }
857 
858     // Fall through for subaggregate initialization.
859 
860   } else if (SemaRef.getLangOpts().CPlusPlus) {
861     // C++ [dcl.init.aggr]p12:
862     //   All implicit type conversions (clause 4) are considered when
863     //   initializing the aggregate member with an initializer from
864     //   an initializer-list. If the initializer can initialize a
865     //   member, the member is initialized. [...]
866 
867     // FIXME: Better EqualLoc?
868     InitializationKind Kind =
869       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
870     InitializationSequence Seq(SemaRef, Entity, Kind, expr);
871 
872     if (Seq) {
873       if (!VerifyOnly) {
874         ExprResult Result =
875           Seq.Perform(SemaRef, Entity, Kind, expr);
876         if (Result.isInvalid())
877           hadError = true;
878 
879         UpdateStructuredListElement(StructuredList, StructuredIndex,
880                                     Result.takeAs<Expr>());
881       }
882       ++Index;
883       return;
884     }
885 
886     // Fall through for subaggregate initialization
887   } else {
888     // C99 6.7.8p13:
889     //
890     //   The initializer for a structure or union object that has
891     //   automatic storage duration shall be either an initializer
892     //   list as described below, or a single expression that has
893     //   compatible structure or union type. In the latter case, the
894     //   initial value of the object, including unnamed members, is
895     //   that of the expression.
896     ExprResult ExprRes = SemaRef.Owned(expr);
897     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
898         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
899                                                  !VerifyOnly)
900           == Sema::Compatible) {
901       if (ExprRes.isInvalid())
902         hadError = true;
903       else {
904         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
905           if (ExprRes.isInvalid())
906             hadError = true;
907       }
908       UpdateStructuredListElement(StructuredList, StructuredIndex,
909                                   ExprRes.takeAs<Expr>());
910       ++Index;
911       return;
912     }
913     ExprRes.release();
914     // Fall through for subaggregate initialization
915   }
916 
917   // C++ [dcl.init.aggr]p12:
918   //
919   //   [...] Otherwise, if the member is itself a non-empty
920   //   subaggregate, brace elision is assumed and the initializer is
921   //   considered for the initialization of the first member of
922   //   the subaggregate.
923   if (!SemaRef.getLangOpts().OpenCL &&
924       (ElemType->isAggregateType() || ElemType->isVectorType())) {
925     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
926                           StructuredIndex);
927     ++StructuredIndex;
928   } else {
929     if (!VerifyOnly) {
930       // We cannot initialize this element, so let
931       // PerformCopyInitialization produce the appropriate diagnostic.
932       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
933                                         SemaRef.Owned(expr),
934                                         /*TopLevelOfInitList=*/true);
935     }
936     hadError = true;
937     ++Index;
938     ++StructuredIndex;
939   }
940 }
941 
942 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
943                                        InitListExpr *IList, QualType DeclType,
944                                        unsigned &Index,
945                                        InitListExpr *StructuredList,
946                                        unsigned &StructuredIndex) {
947   assert(Index == 0 && "Index in explicit init list must be zero");
948 
949   // As an extension, clang supports complex initializers, which initialize
950   // a complex number component-wise.  When an explicit initializer list for
951   // a complex number contains two two initializers, this extension kicks in:
952   // it exepcts the initializer list to contain two elements convertible to
953   // the element type of the complex type. The first element initializes
954   // the real part, and the second element intitializes the imaginary part.
955 
956   if (IList->getNumInits() != 2)
957     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
958                            StructuredIndex);
959 
960   // This is an extension in C.  (The builtin _Complex type does not exist
961   // in the C++ standard.)
962   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
963     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
964       << IList->getSourceRange();
965 
966   // Initialize the complex number.
967   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
968   InitializedEntity ElementEntity =
969     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
970 
971   for (unsigned i = 0; i < 2; ++i) {
972     ElementEntity.setElementIndex(Index);
973     CheckSubElementType(ElementEntity, IList, elementType, Index,
974                         StructuredList, StructuredIndex);
975   }
976 }
977 
978 
979 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
980                                       InitListExpr *IList, QualType DeclType,
981                                       unsigned &Index,
982                                       InitListExpr *StructuredList,
983                                       unsigned &StructuredIndex) {
984   if (Index >= IList->getNumInits()) {
985     if (!VerifyOnly)
986       SemaRef.Diag(IList->getLocStart(),
987                    SemaRef.getLangOpts().CPlusPlus11 ?
988                      diag::warn_cxx98_compat_empty_scalar_initializer :
989                      diag::err_empty_scalar_initializer)
990         << IList->getSourceRange();
991     hadError = !SemaRef.getLangOpts().CPlusPlus11;
992     ++Index;
993     ++StructuredIndex;
994     return;
995   }
996 
997   Expr *expr = IList->getInit(Index);
998   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
999     if (!VerifyOnly)
1000       SemaRef.Diag(SubIList->getLocStart(),
1001                    diag::warn_many_braces_around_scalar_init)
1002         << SubIList->getSourceRange();
1003 
1004     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1005                     StructuredIndex);
1006     return;
1007   } else if (isa<DesignatedInitExpr>(expr)) {
1008     if (!VerifyOnly)
1009       SemaRef.Diag(expr->getLocStart(),
1010                    diag::err_designator_for_scalar_init)
1011         << DeclType << expr->getSourceRange();
1012     hadError = true;
1013     ++Index;
1014     ++StructuredIndex;
1015     return;
1016   }
1017 
1018   if (VerifyOnly) {
1019     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1020       hadError = true;
1021     ++Index;
1022     return;
1023   }
1024 
1025   ExprResult Result =
1026     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1027                                       SemaRef.Owned(expr),
1028                                       /*TopLevelOfInitList=*/true);
1029 
1030   Expr *ResultExpr = 0;
1031 
1032   if (Result.isInvalid())
1033     hadError = true; // types weren't compatible.
1034   else {
1035     ResultExpr = Result.takeAs<Expr>();
1036 
1037     if (ResultExpr != expr) {
1038       // The type was promoted, update initializer list.
1039       IList->setInit(Index, ResultExpr);
1040     }
1041   }
1042   if (hadError)
1043     ++StructuredIndex;
1044   else
1045     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1046   ++Index;
1047 }
1048 
1049 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1050                                          InitListExpr *IList, QualType DeclType,
1051                                          unsigned &Index,
1052                                          InitListExpr *StructuredList,
1053                                          unsigned &StructuredIndex) {
1054   if (Index >= IList->getNumInits()) {
1055     // FIXME: It would be wonderful if we could point at the actual member. In
1056     // general, it would be useful to pass location information down the stack,
1057     // so that we know the location (or decl) of the "current object" being
1058     // initialized.
1059     if (!VerifyOnly)
1060       SemaRef.Diag(IList->getLocStart(),
1061                     diag::err_init_reference_member_uninitialized)
1062         << DeclType
1063         << IList->getSourceRange();
1064     hadError = true;
1065     ++Index;
1066     ++StructuredIndex;
1067     return;
1068   }
1069 
1070   Expr *expr = IList->getInit(Index);
1071   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1072     if (!VerifyOnly)
1073       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1074         << DeclType << IList->getSourceRange();
1075     hadError = true;
1076     ++Index;
1077     ++StructuredIndex;
1078     return;
1079   }
1080 
1081   if (VerifyOnly) {
1082     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1083       hadError = true;
1084     ++Index;
1085     return;
1086   }
1087 
1088   ExprResult Result =
1089     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1090                                       SemaRef.Owned(expr),
1091                                       /*TopLevelOfInitList=*/true);
1092 
1093   if (Result.isInvalid())
1094     hadError = true;
1095 
1096   expr = Result.takeAs<Expr>();
1097   IList->setInit(Index, expr);
1098 
1099   if (hadError)
1100     ++StructuredIndex;
1101   else
1102     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1103   ++Index;
1104 }
1105 
1106 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1107                                       InitListExpr *IList, QualType DeclType,
1108                                       unsigned &Index,
1109                                       InitListExpr *StructuredList,
1110                                       unsigned &StructuredIndex) {
1111   const VectorType *VT = DeclType->getAs<VectorType>();
1112   unsigned maxElements = VT->getNumElements();
1113   unsigned numEltsInit = 0;
1114   QualType elementType = VT->getElementType();
1115 
1116   if (Index >= IList->getNumInits()) {
1117     // Make sure the element type can be value-initialized.
1118     if (VerifyOnly)
1119       CheckValueInitializable(
1120           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1121     return;
1122   }
1123 
1124   if (!SemaRef.getLangOpts().OpenCL) {
1125     // If the initializing element is a vector, try to copy-initialize
1126     // instead of breaking it apart (which is doomed to failure anyway).
1127     Expr *Init = IList->getInit(Index);
1128     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1129       if (VerifyOnly) {
1130         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1131           hadError = true;
1132         ++Index;
1133         return;
1134       }
1135 
1136       ExprResult Result =
1137         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1138                                           SemaRef.Owned(Init),
1139                                           /*TopLevelOfInitList=*/true);
1140 
1141       Expr *ResultExpr = 0;
1142       if (Result.isInvalid())
1143         hadError = true; // types weren't compatible.
1144       else {
1145         ResultExpr = Result.takeAs<Expr>();
1146 
1147         if (ResultExpr != Init) {
1148           // The type was promoted, update initializer list.
1149           IList->setInit(Index, ResultExpr);
1150         }
1151       }
1152       if (hadError)
1153         ++StructuredIndex;
1154       else
1155         UpdateStructuredListElement(StructuredList, StructuredIndex,
1156                                     ResultExpr);
1157       ++Index;
1158       return;
1159     }
1160 
1161     InitializedEntity ElementEntity =
1162       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1163 
1164     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1165       // Don't attempt to go past the end of the init list
1166       if (Index >= IList->getNumInits()) {
1167         if (VerifyOnly)
1168           CheckValueInitializable(ElementEntity);
1169         break;
1170       }
1171 
1172       ElementEntity.setElementIndex(Index);
1173       CheckSubElementType(ElementEntity, IList, elementType, Index,
1174                           StructuredList, StructuredIndex);
1175     }
1176     return;
1177   }
1178 
1179   InitializedEntity ElementEntity =
1180     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1181 
1182   // OpenCL initializers allows vectors to be constructed from vectors.
1183   for (unsigned i = 0; i < maxElements; ++i) {
1184     // Don't attempt to go past the end of the init list
1185     if (Index >= IList->getNumInits())
1186       break;
1187 
1188     ElementEntity.setElementIndex(Index);
1189 
1190     QualType IType = IList->getInit(Index)->getType();
1191     if (!IType->isVectorType()) {
1192       CheckSubElementType(ElementEntity, IList, elementType, Index,
1193                           StructuredList, StructuredIndex);
1194       ++numEltsInit;
1195     } else {
1196       QualType VecType;
1197       const VectorType *IVT = IType->getAs<VectorType>();
1198       unsigned numIElts = IVT->getNumElements();
1199 
1200       if (IType->isExtVectorType())
1201         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1202       else
1203         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1204                                                 IVT->getVectorKind());
1205       CheckSubElementType(ElementEntity, IList, VecType, Index,
1206                           StructuredList, StructuredIndex);
1207       numEltsInit += numIElts;
1208     }
1209   }
1210 
1211   // OpenCL requires all elements to be initialized.
1212   if (numEltsInit != maxElements) {
1213     if (!VerifyOnly)
1214       SemaRef.Diag(IList->getLocStart(),
1215                    diag::err_vector_incorrect_num_initializers)
1216         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1217     hadError = true;
1218   }
1219 }
1220 
1221 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1222                                      InitListExpr *IList, QualType &DeclType,
1223                                      llvm::APSInt elementIndex,
1224                                      bool SubobjectIsDesignatorContext,
1225                                      unsigned &Index,
1226                                      InitListExpr *StructuredList,
1227                                      unsigned &StructuredIndex) {
1228   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1229 
1230   // Check for the special-case of initializing an array with a string.
1231   if (Index < IList->getNumInits()) {
1232     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1233         SIF_None) {
1234       // We place the string literal directly into the resulting
1235       // initializer list. This is the only place where the structure
1236       // of the structured initializer list doesn't match exactly,
1237       // because doing so would involve allocating one character
1238       // constant for each string.
1239       if (!VerifyOnly) {
1240         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1241         UpdateStructuredListElement(StructuredList, StructuredIndex,
1242                                     IList->getInit(Index));
1243         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1244       }
1245       ++Index;
1246       return;
1247     }
1248   }
1249   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1250     // Check for VLAs; in standard C it would be possible to check this
1251     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1252     // them in all sorts of strange places).
1253     if (!VerifyOnly)
1254       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1255                     diag::err_variable_object_no_init)
1256         << VAT->getSizeExpr()->getSourceRange();
1257     hadError = true;
1258     ++Index;
1259     ++StructuredIndex;
1260     return;
1261   }
1262 
1263   // We might know the maximum number of elements in advance.
1264   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1265                            elementIndex.isUnsigned());
1266   bool maxElementsKnown = false;
1267   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1268     maxElements = CAT->getSize();
1269     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1270     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1271     maxElementsKnown = true;
1272   }
1273 
1274   QualType elementType = arrayType->getElementType();
1275   while (Index < IList->getNumInits()) {
1276     Expr *Init = IList->getInit(Index);
1277     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1278       // If we're not the subobject that matches up with the '{' for
1279       // the designator, we shouldn't be handling the
1280       // designator. Return immediately.
1281       if (!SubobjectIsDesignatorContext)
1282         return;
1283 
1284       // Handle this designated initializer. elementIndex will be
1285       // updated to be the next array element we'll initialize.
1286       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1287                                      DeclType, 0, &elementIndex, Index,
1288                                      StructuredList, StructuredIndex, true,
1289                                      false)) {
1290         hadError = true;
1291         continue;
1292       }
1293 
1294       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1295         maxElements = maxElements.extend(elementIndex.getBitWidth());
1296       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1297         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1298       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1299 
1300       // If the array is of incomplete type, keep track of the number of
1301       // elements in the initializer.
1302       if (!maxElementsKnown && elementIndex > maxElements)
1303         maxElements = elementIndex;
1304 
1305       continue;
1306     }
1307 
1308     // If we know the maximum number of elements, and we've already
1309     // hit it, stop consuming elements in the initializer list.
1310     if (maxElementsKnown && elementIndex == maxElements)
1311       break;
1312 
1313     InitializedEntity ElementEntity =
1314       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1315                                            Entity);
1316     // Check this element.
1317     CheckSubElementType(ElementEntity, IList, elementType, Index,
1318                         StructuredList, StructuredIndex);
1319     ++elementIndex;
1320 
1321     // If the array is of incomplete type, keep track of the number of
1322     // elements in the initializer.
1323     if (!maxElementsKnown && elementIndex > maxElements)
1324       maxElements = elementIndex;
1325   }
1326   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1327     // If this is an incomplete array type, the actual type needs to
1328     // be calculated here.
1329     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1330     if (maxElements == Zero) {
1331       // Sizing an array implicitly to zero is not allowed by ISO C,
1332       // but is supported by GNU.
1333       SemaRef.Diag(IList->getLocStart(),
1334                     diag::ext_typecheck_zero_array_size);
1335     }
1336 
1337     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1338                                                      ArrayType::Normal, 0);
1339   }
1340   if (!hadError && VerifyOnly) {
1341     // Check if there are any members of the array that get value-initialized.
1342     // If so, check if doing that is possible.
1343     // FIXME: This needs to detect holes left by designated initializers too.
1344     if (maxElementsKnown && elementIndex < maxElements)
1345       CheckValueInitializable(InitializedEntity::InitializeElement(
1346                                                   SemaRef.Context, 0, Entity));
1347   }
1348 }
1349 
1350 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1351                                              Expr *InitExpr,
1352                                              FieldDecl *Field,
1353                                              bool TopLevelObject) {
1354   // Handle GNU flexible array initializers.
1355   unsigned FlexArrayDiag;
1356   if (isa<InitListExpr>(InitExpr) &&
1357       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1358     // Empty flexible array init always allowed as an extension
1359     FlexArrayDiag = diag::ext_flexible_array_init;
1360   } else if (SemaRef.getLangOpts().CPlusPlus) {
1361     // Disallow flexible array init in C++; it is not required for gcc
1362     // compatibility, and it needs work to IRGen correctly in general.
1363     FlexArrayDiag = diag::err_flexible_array_init;
1364   } else if (!TopLevelObject) {
1365     // Disallow flexible array init on non-top-level object
1366     FlexArrayDiag = diag::err_flexible_array_init;
1367   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1368     // Disallow flexible array init on anything which is not a variable.
1369     FlexArrayDiag = diag::err_flexible_array_init;
1370   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1371     // Disallow flexible array init on local variables.
1372     FlexArrayDiag = diag::err_flexible_array_init;
1373   } else {
1374     // Allow other cases.
1375     FlexArrayDiag = diag::ext_flexible_array_init;
1376   }
1377 
1378   if (!VerifyOnly) {
1379     SemaRef.Diag(InitExpr->getLocStart(),
1380                  FlexArrayDiag)
1381       << InitExpr->getLocStart();
1382     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1383       << Field;
1384   }
1385 
1386   return FlexArrayDiag != diag::ext_flexible_array_init;
1387 }
1388 
1389 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1390                                             InitListExpr *IList,
1391                                             QualType DeclType,
1392                                             RecordDecl::field_iterator Field,
1393                                             bool SubobjectIsDesignatorContext,
1394                                             unsigned &Index,
1395                                             InitListExpr *StructuredList,
1396                                             unsigned &StructuredIndex,
1397                                             bool TopLevelObject) {
1398   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1399 
1400   // If the record is invalid, some of it's members are invalid. To avoid
1401   // confusion, we forgo checking the intializer for the entire record.
1402   if (structDecl->isInvalidDecl()) {
1403     // Assume it was supposed to consume a single initializer.
1404     ++Index;
1405     hadError = true;
1406     return;
1407   }
1408 
1409   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1410     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1411 
1412     // If there's a default initializer, use it.
1413     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1414       if (VerifyOnly)
1415         return;
1416       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1417            Field != FieldEnd; ++Field) {
1418         if (Field->hasInClassInitializer()) {
1419           StructuredList->setInitializedFieldInUnion(*Field);
1420           // FIXME: Actually build a CXXDefaultInitExpr?
1421           return;
1422         }
1423       }
1424     }
1425 
1426     // Value-initialize the first named member of the union.
1427     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1428          Field != FieldEnd; ++Field) {
1429       if (Field->getDeclName()) {
1430         if (VerifyOnly)
1431           CheckValueInitializable(
1432               InitializedEntity::InitializeMember(*Field, &Entity));
1433         else
1434           StructuredList->setInitializedFieldInUnion(*Field);
1435         break;
1436       }
1437     }
1438     return;
1439   }
1440 
1441   // If structDecl is a forward declaration, this loop won't do
1442   // anything except look at designated initializers; That's okay,
1443   // because an error should get printed out elsewhere. It might be
1444   // worthwhile to skip over the rest of the initializer, though.
1445   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1446   RecordDecl::field_iterator FieldEnd = RD->field_end();
1447   bool InitializedSomething = false;
1448   bool CheckForMissingFields = true;
1449   while (Index < IList->getNumInits()) {
1450     Expr *Init = IList->getInit(Index);
1451 
1452     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1453       // If we're not the subobject that matches up with the '{' for
1454       // the designator, we shouldn't be handling the
1455       // designator. Return immediately.
1456       if (!SubobjectIsDesignatorContext)
1457         return;
1458 
1459       // Handle this designated initializer. Field will be updated to
1460       // the next field that we'll be initializing.
1461       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1462                                      DeclType, &Field, 0, Index,
1463                                      StructuredList, StructuredIndex,
1464                                      true, TopLevelObject))
1465         hadError = true;
1466 
1467       InitializedSomething = true;
1468 
1469       // Disable check for missing fields when designators are used.
1470       // This matches gcc behaviour.
1471       CheckForMissingFields = false;
1472       continue;
1473     }
1474 
1475     if (Field == FieldEnd) {
1476       // We've run out of fields. We're done.
1477       break;
1478     }
1479 
1480     // We've already initialized a member of a union. We're done.
1481     if (InitializedSomething && DeclType->isUnionType())
1482       break;
1483 
1484     // If we've hit the flexible array member at the end, we're done.
1485     if (Field->getType()->isIncompleteArrayType())
1486       break;
1487 
1488     if (Field->isUnnamedBitfield()) {
1489       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1490       ++Field;
1491       continue;
1492     }
1493 
1494     // Make sure we can use this declaration.
1495     bool InvalidUse;
1496     if (VerifyOnly)
1497       InvalidUse = !SemaRef.CanUseDecl(*Field);
1498     else
1499       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1500                                           IList->getInit(Index)->getLocStart());
1501     if (InvalidUse) {
1502       ++Index;
1503       ++Field;
1504       hadError = true;
1505       continue;
1506     }
1507 
1508     InitializedEntity MemberEntity =
1509       InitializedEntity::InitializeMember(*Field, &Entity);
1510     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1511                         StructuredList, StructuredIndex);
1512     InitializedSomething = true;
1513 
1514     if (DeclType->isUnionType() && !VerifyOnly) {
1515       // Initialize the first field within the union.
1516       StructuredList->setInitializedFieldInUnion(*Field);
1517     }
1518 
1519     ++Field;
1520   }
1521 
1522   // Emit warnings for missing struct field initializers.
1523   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1524       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1525       !DeclType->isUnionType()) {
1526     // It is possible we have one or more unnamed bitfields remaining.
1527     // Find first (if any) named field and emit warning.
1528     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1529          it != end; ++it) {
1530       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1531         SemaRef.Diag(IList->getSourceRange().getEnd(),
1532                      diag::warn_missing_field_initializers) << it->getName();
1533         break;
1534       }
1535     }
1536   }
1537 
1538   // Check that any remaining fields can be value-initialized.
1539   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1540       !Field->getType()->isIncompleteArrayType()) {
1541     // FIXME: Should check for holes left by designated initializers too.
1542     for (; Field != FieldEnd && !hadError; ++Field) {
1543       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1544         CheckValueInitializable(
1545             InitializedEntity::InitializeMember(*Field, &Entity));
1546     }
1547   }
1548 
1549   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1550       Index >= IList->getNumInits())
1551     return;
1552 
1553   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1554                              TopLevelObject)) {
1555     hadError = true;
1556     ++Index;
1557     return;
1558   }
1559 
1560   InitializedEntity MemberEntity =
1561     InitializedEntity::InitializeMember(*Field, &Entity);
1562 
1563   if (isa<InitListExpr>(IList->getInit(Index)))
1564     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1565                         StructuredList, StructuredIndex);
1566   else
1567     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1568                           StructuredList, StructuredIndex);
1569 }
1570 
1571 /// \brief Expand a field designator that refers to a member of an
1572 /// anonymous struct or union into a series of field designators that
1573 /// refers to the field within the appropriate subobject.
1574 ///
1575 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1576                                            DesignatedInitExpr *DIE,
1577                                            unsigned DesigIdx,
1578                                            IndirectFieldDecl *IndirectField) {
1579   typedef DesignatedInitExpr::Designator Designator;
1580 
1581   // Build the replacement designators.
1582   SmallVector<Designator, 4> Replacements;
1583   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1584        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1585     if (PI + 1 == PE)
1586       Replacements.push_back(Designator((IdentifierInfo *)0,
1587                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1588                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1589     else
1590       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1591                                         SourceLocation()));
1592     assert(isa<FieldDecl>(*PI));
1593     Replacements.back().setField(cast<FieldDecl>(*PI));
1594   }
1595 
1596   // Expand the current designator into the set of replacement
1597   // designators, so we have a full subobject path down to where the
1598   // member of the anonymous struct/union is actually stored.
1599   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1600                         &Replacements[0] + Replacements.size());
1601 }
1602 
1603 /// \brief Given an implicit anonymous field, search the IndirectField that
1604 ///  corresponds to FieldName.
1605 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1606                                                  IdentifierInfo *FieldName) {
1607   if (!FieldName)
1608     return 0;
1609 
1610   assert(AnonField->isAnonymousStructOrUnion());
1611   Decl *NextDecl = AnonField->getNextDeclInContext();
1612   while (IndirectFieldDecl *IF =
1613           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1614     if (FieldName == IF->getAnonField()->getIdentifier())
1615       return IF;
1616     NextDecl = NextDecl->getNextDeclInContext();
1617   }
1618   return 0;
1619 }
1620 
1621 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1622                                                    DesignatedInitExpr *DIE) {
1623   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1624   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1625   for (unsigned I = 0; I < NumIndexExprs; ++I)
1626     IndexExprs[I] = DIE->getSubExpr(I + 1);
1627   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1628                                     DIE->size(), IndexExprs,
1629                                     DIE->getEqualOrColonLoc(),
1630                                     DIE->usesGNUSyntax(), DIE->getInit());
1631 }
1632 
1633 namespace {
1634 
1635 // Callback to only accept typo corrections that are for field members of
1636 // the given struct or union.
1637 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1638  public:
1639   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1640       : Record(RD) {}
1641 
1642   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1643     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1644     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1645   }
1646 
1647  private:
1648   RecordDecl *Record;
1649 };
1650 
1651 }
1652 
1653 /// @brief Check the well-formedness of a C99 designated initializer.
1654 ///
1655 /// Determines whether the designated initializer @p DIE, which
1656 /// resides at the given @p Index within the initializer list @p
1657 /// IList, is well-formed for a current object of type @p DeclType
1658 /// (C99 6.7.8). The actual subobject that this designator refers to
1659 /// within the current subobject is returned in either
1660 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1661 ///
1662 /// @param IList  The initializer list in which this designated
1663 /// initializer occurs.
1664 ///
1665 /// @param DIE The designated initializer expression.
1666 ///
1667 /// @param DesigIdx  The index of the current designator.
1668 ///
1669 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1670 /// into which the designation in @p DIE should refer.
1671 ///
1672 /// @param NextField  If non-NULL and the first designator in @p DIE is
1673 /// a field, this will be set to the field declaration corresponding
1674 /// to the field named by the designator.
1675 ///
1676 /// @param NextElementIndex  If non-NULL and the first designator in @p
1677 /// DIE is an array designator or GNU array-range designator, this
1678 /// will be set to the last index initialized by this designator.
1679 ///
1680 /// @param Index  Index into @p IList where the designated initializer
1681 /// @p DIE occurs.
1682 ///
1683 /// @param StructuredList  The initializer list expression that
1684 /// describes all of the subobject initializers in the order they'll
1685 /// actually be initialized.
1686 ///
1687 /// @returns true if there was an error, false otherwise.
1688 bool
1689 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1690                                             InitListExpr *IList,
1691                                             DesignatedInitExpr *DIE,
1692                                             unsigned DesigIdx,
1693                                             QualType &CurrentObjectType,
1694                                           RecordDecl::field_iterator *NextField,
1695                                             llvm::APSInt *NextElementIndex,
1696                                             unsigned &Index,
1697                                             InitListExpr *StructuredList,
1698                                             unsigned &StructuredIndex,
1699                                             bool FinishSubobjectInit,
1700                                             bool TopLevelObject) {
1701   if (DesigIdx == DIE->size()) {
1702     // Check the actual initialization for the designated object type.
1703     bool prevHadError = hadError;
1704 
1705     // Temporarily remove the designator expression from the
1706     // initializer list that the child calls see, so that we don't try
1707     // to re-process the designator.
1708     unsigned OldIndex = Index;
1709     IList->setInit(OldIndex, DIE->getInit());
1710 
1711     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1712                         StructuredList, StructuredIndex);
1713 
1714     // Restore the designated initializer expression in the syntactic
1715     // form of the initializer list.
1716     if (IList->getInit(OldIndex) != DIE->getInit())
1717       DIE->setInit(IList->getInit(OldIndex));
1718     IList->setInit(OldIndex, DIE);
1719 
1720     return hadError && !prevHadError;
1721   }
1722 
1723   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1724   bool IsFirstDesignator = (DesigIdx == 0);
1725   if (!VerifyOnly) {
1726     assert((IsFirstDesignator || StructuredList) &&
1727            "Need a non-designated initializer list to start from");
1728 
1729     // Determine the structural initializer list that corresponds to the
1730     // current subobject.
1731     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1732       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1733                                    StructuredList, StructuredIndex,
1734                                    SourceRange(D->getLocStart(),
1735                                                DIE->getLocEnd()));
1736     assert(StructuredList && "Expected a structured initializer list");
1737   }
1738 
1739   if (D->isFieldDesignator()) {
1740     // C99 6.7.8p7:
1741     //
1742     //   If a designator has the form
1743     //
1744     //      . identifier
1745     //
1746     //   then the current object (defined below) shall have
1747     //   structure or union type and the identifier shall be the
1748     //   name of a member of that type.
1749     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1750     if (!RT) {
1751       SourceLocation Loc = D->getDotLoc();
1752       if (Loc.isInvalid())
1753         Loc = D->getFieldLoc();
1754       if (!VerifyOnly)
1755         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1756           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1757       ++Index;
1758       return true;
1759     }
1760 
1761     // Note: we perform a linear search of the fields here, despite
1762     // the fact that we have a faster lookup method, because we always
1763     // need to compute the field's index.
1764     FieldDecl *KnownField = D->getField();
1765     IdentifierInfo *FieldName = D->getFieldName();
1766     unsigned FieldIndex = 0;
1767     RecordDecl::field_iterator
1768       Field = RT->getDecl()->field_begin(),
1769       FieldEnd = RT->getDecl()->field_end();
1770     for (; Field != FieldEnd; ++Field) {
1771       if (Field->isUnnamedBitfield())
1772         continue;
1773 
1774       // If we find a field representing an anonymous field, look in the
1775       // IndirectFieldDecl that follow for the designated initializer.
1776       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1777         if (IndirectFieldDecl *IF =
1778             FindIndirectFieldDesignator(*Field, FieldName)) {
1779           // In verify mode, don't modify the original.
1780           if (VerifyOnly)
1781             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1782           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1783           D = DIE->getDesignator(DesigIdx);
1784           break;
1785         }
1786       }
1787       if (KnownField && KnownField == *Field)
1788         break;
1789       if (FieldName && FieldName == Field->getIdentifier())
1790         break;
1791 
1792       ++FieldIndex;
1793     }
1794 
1795     if (Field == FieldEnd) {
1796       if (VerifyOnly) {
1797         ++Index;
1798         return true; // No typo correction when just trying this out.
1799       }
1800 
1801       // There was no normal field in the struct with the designated
1802       // name. Perform another lookup for this name, which may find
1803       // something that we can't designate (e.g., a member function),
1804       // may find nothing, or may find a member of an anonymous
1805       // struct/union.
1806       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1807       FieldDecl *ReplacementField = 0;
1808       if (Lookup.empty()) {
1809         // Name lookup didn't find anything. Determine whether this
1810         // was a typo for another field name.
1811         FieldInitializerValidatorCCC Validator(RT->getDecl());
1812         TypoCorrection Corrected = SemaRef.CorrectTypo(
1813             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1814             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1815             RT->getDecl());
1816         if (Corrected) {
1817           std::string CorrectedStr(
1818               Corrected.getAsString(SemaRef.getLangOpts()));
1819           std::string CorrectedQuotedStr(
1820               Corrected.getQuoted(SemaRef.getLangOpts()));
1821           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1822           SemaRef.Diag(D->getFieldLoc(),
1823                        diag::err_field_designator_unknown_suggest)
1824             << FieldName << CurrentObjectType << CorrectedQuotedStr
1825             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1826           SemaRef.Diag(ReplacementField->getLocation(),
1827                        diag::note_previous_decl) << CorrectedQuotedStr;
1828           hadError = true;
1829         } else {
1830           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1831             << FieldName << CurrentObjectType;
1832           ++Index;
1833           return true;
1834         }
1835       }
1836 
1837       if (!ReplacementField) {
1838         // Name lookup found something, but it wasn't a field.
1839         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1840           << FieldName;
1841         SemaRef.Diag(Lookup.front()->getLocation(),
1842                       diag::note_field_designator_found);
1843         ++Index;
1844         return true;
1845       }
1846 
1847       if (!KnownField) {
1848         // The replacement field comes from typo correction; find it
1849         // in the list of fields.
1850         FieldIndex = 0;
1851         Field = RT->getDecl()->field_begin();
1852         for (; Field != FieldEnd; ++Field) {
1853           if (Field->isUnnamedBitfield())
1854             continue;
1855 
1856           if (ReplacementField == *Field ||
1857               Field->getIdentifier() == ReplacementField->getIdentifier())
1858             break;
1859 
1860           ++FieldIndex;
1861         }
1862       }
1863     }
1864 
1865     // All of the fields of a union are located at the same place in
1866     // the initializer list.
1867     if (RT->getDecl()->isUnion()) {
1868       FieldIndex = 0;
1869       if (!VerifyOnly)
1870         StructuredList->setInitializedFieldInUnion(*Field);
1871     }
1872 
1873     // Make sure we can use this declaration.
1874     bool InvalidUse;
1875     if (VerifyOnly)
1876       InvalidUse = !SemaRef.CanUseDecl(*Field);
1877     else
1878       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1879     if (InvalidUse) {
1880       ++Index;
1881       return true;
1882     }
1883 
1884     if (!VerifyOnly) {
1885       // Update the designator with the field declaration.
1886       D->setField(*Field);
1887 
1888       // Make sure that our non-designated initializer list has space
1889       // for a subobject corresponding to this field.
1890       if (FieldIndex >= StructuredList->getNumInits())
1891         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1892     }
1893 
1894     // This designator names a flexible array member.
1895     if (Field->getType()->isIncompleteArrayType()) {
1896       bool Invalid = false;
1897       if ((DesigIdx + 1) != DIE->size()) {
1898         // We can't designate an object within the flexible array
1899         // member (because GCC doesn't allow it).
1900         if (!VerifyOnly) {
1901           DesignatedInitExpr::Designator *NextD
1902             = DIE->getDesignator(DesigIdx + 1);
1903           SemaRef.Diag(NextD->getLocStart(),
1904                         diag::err_designator_into_flexible_array_member)
1905             << SourceRange(NextD->getLocStart(),
1906                            DIE->getLocEnd());
1907           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1908             << *Field;
1909         }
1910         Invalid = true;
1911       }
1912 
1913       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1914           !isa<StringLiteral>(DIE->getInit())) {
1915         // The initializer is not an initializer list.
1916         if (!VerifyOnly) {
1917           SemaRef.Diag(DIE->getInit()->getLocStart(),
1918                         diag::err_flexible_array_init_needs_braces)
1919             << DIE->getInit()->getSourceRange();
1920           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1921             << *Field;
1922         }
1923         Invalid = true;
1924       }
1925 
1926       // Check GNU flexible array initializer.
1927       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1928                                              TopLevelObject))
1929         Invalid = true;
1930 
1931       if (Invalid) {
1932         ++Index;
1933         return true;
1934       }
1935 
1936       // Initialize the array.
1937       bool prevHadError = hadError;
1938       unsigned newStructuredIndex = FieldIndex;
1939       unsigned OldIndex = Index;
1940       IList->setInit(Index, DIE->getInit());
1941 
1942       InitializedEntity MemberEntity =
1943         InitializedEntity::InitializeMember(*Field, &Entity);
1944       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1945                           StructuredList, newStructuredIndex);
1946 
1947       IList->setInit(OldIndex, DIE);
1948       if (hadError && !prevHadError) {
1949         ++Field;
1950         ++FieldIndex;
1951         if (NextField)
1952           *NextField = Field;
1953         StructuredIndex = FieldIndex;
1954         return true;
1955       }
1956     } else {
1957       // Recurse to check later designated subobjects.
1958       QualType FieldType = Field->getType();
1959       unsigned newStructuredIndex = FieldIndex;
1960 
1961       InitializedEntity MemberEntity =
1962         InitializedEntity::InitializeMember(*Field, &Entity);
1963       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1964                                      FieldType, 0, 0, Index,
1965                                      StructuredList, newStructuredIndex,
1966                                      true, false))
1967         return true;
1968     }
1969 
1970     // Find the position of the next field to be initialized in this
1971     // subobject.
1972     ++Field;
1973     ++FieldIndex;
1974 
1975     // If this the first designator, our caller will continue checking
1976     // the rest of this struct/class/union subobject.
1977     if (IsFirstDesignator) {
1978       if (NextField)
1979         *NextField = Field;
1980       StructuredIndex = FieldIndex;
1981       return false;
1982     }
1983 
1984     if (!FinishSubobjectInit)
1985       return false;
1986 
1987     // We've already initialized something in the union; we're done.
1988     if (RT->getDecl()->isUnion())
1989       return hadError;
1990 
1991     // Check the remaining fields within this class/struct/union subobject.
1992     bool prevHadError = hadError;
1993 
1994     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1995                           StructuredList, FieldIndex);
1996     return hadError && !prevHadError;
1997   }
1998 
1999   // C99 6.7.8p6:
2000   //
2001   //   If a designator has the form
2002   //
2003   //      [ constant-expression ]
2004   //
2005   //   then the current object (defined below) shall have array
2006   //   type and the expression shall be an integer constant
2007   //   expression. If the array is of unknown size, any
2008   //   nonnegative value is valid.
2009   //
2010   // Additionally, cope with the GNU extension that permits
2011   // designators of the form
2012   //
2013   //      [ constant-expression ... constant-expression ]
2014   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2015   if (!AT) {
2016     if (!VerifyOnly)
2017       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2018         << CurrentObjectType;
2019     ++Index;
2020     return true;
2021   }
2022 
2023   Expr *IndexExpr = 0;
2024   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2025   if (D->isArrayDesignator()) {
2026     IndexExpr = DIE->getArrayIndex(*D);
2027     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2028     DesignatedEndIndex = DesignatedStartIndex;
2029   } else {
2030     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2031 
2032     DesignatedStartIndex =
2033       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2034     DesignatedEndIndex =
2035       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2036     IndexExpr = DIE->getArrayRangeEnd(*D);
2037 
2038     // Codegen can't handle evaluating array range designators that have side
2039     // effects, because we replicate the AST value for each initialized element.
2040     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2041     // elements with something that has a side effect, so codegen can emit an
2042     // "error unsupported" error instead of miscompiling the app.
2043     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2044         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2045       FullyStructuredList->sawArrayRangeDesignator();
2046   }
2047 
2048   if (isa<ConstantArrayType>(AT)) {
2049     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2050     DesignatedStartIndex
2051       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2052     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2053     DesignatedEndIndex
2054       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2055     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2056     if (DesignatedEndIndex >= MaxElements) {
2057       if (!VerifyOnly)
2058         SemaRef.Diag(IndexExpr->getLocStart(),
2059                       diag::err_array_designator_too_large)
2060           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2061           << IndexExpr->getSourceRange();
2062       ++Index;
2063       return true;
2064     }
2065   } else {
2066     // Make sure the bit-widths and signedness match.
2067     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2068       DesignatedEndIndex
2069         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2070     else if (DesignatedStartIndex.getBitWidth() <
2071              DesignatedEndIndex.getBitWidth())
2072       DesignatedStartIndex
2073         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2074     DesignatedStartIndex.setIsUnsigned(true);
2075     DesignatedEndIndex.setIsUnsigned(true);
2076   }
2077 
2078   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2079     // We're modifying a string literal init; we have to decompose the string
2080     // so we can modify the individual characters.
2081     ASTContext &Context = SemaRef.Context;
2082     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2083 
2084     // Compute the character type
2085     QualType CharTy = AT->getElementType();
2086 
2087     // Compute the type of the integer literals.
2088     QualType PromotedCharTy = CharTy;
2089     if (CharTy->isPromotableIntegerType())
2090       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2091     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2092 
2093     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2094       // Get the length of the string.
2095       uint64_t StrLen = SL->getLength();
2096       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2097         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2098       StructuredList->resizeInits(Context, StrLen);
2099 
2100       // Build a literal for each character in the string, and put them into
2101       // the init list.
2102       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2103         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2104         Expr *Init = new (Context) IntegerLiteral(
2105             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2106         if (CharTy != PromotedCharTy)
2107           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2108                                           Init, 0, VK_RValue);
2109         StructuredList->updateInit(Context, i, Init);
2110       }
2111     } else {
2112       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2113       std::string Str;
2114       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2115 
2116       // Get the length of the string.
2117       uint64_t StrLen = Str.size();
2118       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2119         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2120       StructuredList->resizeInits(Context, StrLen);
2121 
2122       // Build a literal for each character in the string, and put them into
2123       // the init list.
2124       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2125         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2126         Expr *Init = new (Context) IntegerLiteral(
2127             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2128         if (CharTy != PromotedCharTy)
2129           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2130                                           Init, 0, VK_RValue);
2131         StructuredList->updateInit(Context, i, Init);
2132       }
2133     }
2134   }
2135 
2136   // Make sure that our non-designated initializer list has space
2137   // for a subobject corresponding to this array element.
2138   if (!VerifyOnly &&
2139       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2140     StructuredList->resizeInits(SemaRef.Context,
2141                                 DesignatedEndIndex.getZExtValue() + 1);
2142 
2143   // Repeatedly perform subobject initializations in the range
2144   // [DesignatedStartIndex, DesignatedEndIndex].
2145 
2146   // Move to the next designator
2147   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2148   unsigned OldIndex = Index;
2149 
2150   InitializedEntity ElementEntity =
2151     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2152 
2153   while (DesignatedStartIndex <= DesignatedEndIndex) {
2154     // Recurse to check later designated subobjects.
2155     QualType ElementType = AT->getElementType();
2156     Index = OldIndex;
2157 
2158     ElementEntity.setElementIndex(ElementIndex);
2159     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2160                                    ElementType, 0, 0, Index,
2161                                    StructuredList, ElementIndex,
2162                                    (DesignatedStartIndex == DesignatedEndIndex),
2163                                    false))
2164       return true;
2165 
2166     // Move to the next index in the array that we'll be initializing.
2167     ++DesignatedStartIndex;
2168     ElementIndex = DesignatedStartIndex.getZExtValue();
2169   }
2170 
2171   // If this the first designator, our caller will continue checking
2172   // the rest of this array subobject.
2173   if (IsFirstDesignator) {
2174     if (NextElementIndex)
2175       *NextElementIndex = DesignatedStartIndex;
2176     StructuredIndex = ElementIndex;
2177     return false;
2178   }
2179 
2180   if (!FinishSubobjectInit)
2181     return false;
2182 
2183   // Check the remaining elements within this array subobject.
2184   bool prevHadError = hadError;
2185   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2186                  /*SubobjectIsDesignatorContext=*/false, Index,
2187                  StructuredList, ElementIndex);
2188   return hadError && !prevHadError;
2189 }
2190 
2191 // Get the structured initializer list for a subobject of type
2192 // @p CurrentObjectType.
2193 InitListExpr *
2194 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2195                                             QualType CurrentObjectType,
2196                                             InitListExpr *StructuredList,
2197                                             unsigned StructuredIndex,
2198                                             SourceRange InitRange) {
2199   if (VerifyOnly)
2200     return 0; // No structured list in verification-only mode.
2201   Expr *ExistingInit = 0;
2202   if (!StructuredList)
2203     ExistingInit = SyntacticToSemantic.lookup(IList);
2204   else if (StructuredIndex < StructuredList->getNumInits())
2205     ExistingInit = StructuredList->getInit(StructuredIndex);
2206 
2207   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2208     return Result;
2209 
2210   if (ExistingInit) {
2211     // We are creating an initializer list that initializes the
2212     // subobjects of the current object, but there was already an
2213     // initialization that completely initialized the current
2214     // subobject, e.g., by a compound literal:
2215     //
2216     // struct X { int a, b; };
2217     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2218     //
2219     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2220     // designated initializer re-initializes the whole
2221     // subobject [0], overwriting previous initializers.
2222     SemaRef.Diag(InitRange.getBegin(),
2223                  diag::warn_subobject_initializer_overrides)
2224       << InitRange;
2225     SemaRef.Diag(ExistingInit->getLocStart(),
2226                   diag::note_previous_initializer)
2227       << /*FIXME:has side effects=*/0
2228       << ExistingInit->getSourceRange();
2229   }
2230 
2231   InitListExpr *Result
2232     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2233                                          InitRange.getBegin(), None,
2234                                          InitRange.getEnd());
2235 
2236   QualType ResultType = CurrentObjectType;
2237   if (!ResultType->isArrayType())
2238     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2239   Result->setType(ResultType);
2240 
2241   // Pre-allocate storage for the structured initializer list.
2242   unsigned NumElements = 0;
2243   unsigned NumInits = 0;
2244   bool GotNumInits = false;
2245   if (!StructuredList) {
2246     NumInits = IList->getNumInits();
2247     GotNumInits = true;
2248   } else if (Index < IList->getNumInits()) {
2249     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2250       NumInits = SubList->getNumInits();
2251       GotNumInits = true;
2252     }
2253   }
2254 
2255   if (const ArrayType *AType
2256       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2257     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2258       NumElements = CAType->getSize().getZExtValue();
2259       // Simple heuristic so that we don't allocate a very large
2260       // initializer with many empty entries at the end.
2261       if (GotNumInits && NumElements > NumInits)
2262         NumElements = 0;
2263     }
2264   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2265     NumElements = VType->getNumElements();
2266   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2267     RecordDecl *RDecl = RType->getDecl();
2268     if (RDecl->isUnion())
2269       NumElements = 1;
2270     else
2271       NumElements = std::distance(RDecl->field_begin(),
2272                                   RDecl->field_end());
2273   }
2274 
2275   Result->reserveInits(SemaRef.Context, NumElements);
2276 
2277   // Link this new initializer list into the structured initializer
2278   // lists.
2279   if (StructuredList)
2280     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2281   else {
2282     Result->setSyntacticForm(IList);
2283     SyntacticToSemantic[IList] = Result;
2284   }
2285 
2286   return Result;
2287 }
2288 
2289 /// Update the initializer at index @p StructuredIndex within the
2290 /// structured initializer list to the value @p expr.
2291 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2292                                                   unsigned &StructuredIndex,
2293                                                   Expr *expr) {
2294   // No structured initializer list to update
2295   if (!StructuredList)
2296     return;
2297 
2298   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2299                                                   StructuredIndex, expr)) {
2300     // This initializer overwrites a previous initializer. Warn.
2301     SemaRef.Diag(expr->getLocStart(),
2302                   diag::warn_initializer_overrides)
2303       << expr->getSourceRange();
2304     SemaRef.Diag(PrevInit->getLocStart(),
2305                   diag::note_previous_initializer)
2306       << /*FIXME:has side effects=*/0
2307       << PrevInit->getSourceRange();
2308   }
2309 
2310   ++StructuredIndex;
2311 }
2312 
2313 /// Check that the given Index expression is a valid array designator
2314 /// value. This is essentially just a wrapper around
2315 /// VerifyIntegerConstantExpression that also checks for negative values
2316 /// and produces a reasonable diagnostic if there is a
2317 /// failure. Returns the index expression, possibly with an implicit cast
2318 /// added, on success.  If everything went okay, Value will receive the
2319 /// value of the constant expression.
2320 static ExprResult
2321 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2322   SourceLocation Loc = Index->getLocStart();
2323 
2324   // Make sure this is an integer constant expression.
2325   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2326   if (Result.isInvalid())
2327     return Result;
2328 
2329   if (Value.isSigned() && Value.isNegative())
2330     return S.Diag(Loc, diag::err_array_designator_negative)
2331       << Value.toString(10) << Index->getSourceRange();
2332 
2333   Value.setIsUnsigned(true);
2334   return Result;
2335 }
2336 
2337 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2338                                             SourceLocation Loc,
2339                                             bool GNUSyntax,
2340                                             ExprResult Init) {
2341   typedef DesignatedInitExpr::Designator ASTDesignator;
2342 
2343   bool Invalid = false;
2344   SmallVector<ASTDesignator, 32> Designators;
2345   SmallVector<Expr *, 32> InitExpressions;
2346 
2347   // Build designators and check array designator expressions.
2348   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2349     const Designator &D = Desig.getDesignator(Idx);
2350     switch (D.getKind()) {
2351     case Designator::FieldDesignator:
2352       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2353                                           D.getFieldLoc()));
2354       break;
2355 
2356     case Designator::ArrayDesignator: {
2357       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2358       llvm::APSInt IndexValue;
2359       if (!Index->isTypeDependent() && !Index->isValueDependent())
2360         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2361       if (!Index)
2362         Invalid = true;
2363       else {
2364         Designators.push_back(ASTDesignator(InitExpressions.size(),
2365                                             D.getLBracketLoc(),
2366                                             D.getRBracketLoc()));
2367         InitExpressions.push_back(Index);
2368       }
2369       break;
2370     }
2371 
2372     case Designator::ArrayRangeDesignator: {
2373       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2374       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2375       llvm::APSInt StartValue;
2376       llvm::APSInt EndValue;
2377       bool StartDependent = StartIndex->isTypeDependent() ||
2378                             StartIndex->isValueDependent();
2379       bool EndDependent = EndIndex->isTypeDependent() ||
2380                           EndIndex->isValueDependent();
2381       if (!StartDependent)
2382         StartIndex =
2383             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2384       if (!EndDependent)
2385         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2386 
2387       if (!StartIndex || !EndIndex)
2388         Invalid = true;
2389       else {
2390         // Make sure we're comparing values with the same bit width.
2391         if (StartDependent || EndDependent) {
2392           // Nothing to compute.
2393         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2394           EndValue = EndValue.extend(StartValue.getBitWidth());
2395         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2396           StartValue = StartValue.extend(EndValue.getBitWidth());
2397 
2398         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2399           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2400             << StartValue.toString(10) << EndValue.toString(10)
2401             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2402           Invalid = true;
2403         } else {
2404           Designators.push_back(ASTDesignator(InitExpressions.size(),
2405                                               D.getLBracketLoc(),
2406                                               D.getEllipsisLoc(),
2407                                               D.getRBracketLoc()));
2408           InitExpressions.push_back(StartIndex);
2409           InitExpressions.push_back(EndIndex);
2410         }
2411       }
2412       break;
2413     }
2414     }
2415   }
2416 
2417   if (Invalid || Init.isInvalid())
2418     return ExprError();
2419 
2420   // Clear out the expressions within the designation.
2421   Desig.ClearExprs(*this);
2422 
2423   DesignatedInitExpr *DIE
2424     = DesignatedInitExpr::Create(Context,
2425                                  Designators.data(), Designators.size(),
2426                                  InitExpressions, Loc, GNUSyntax,
2427                                  Init.takeAs<Expr>());
2428 
2429   if (!getLangOpts().C99)
2430     Diag(DIE->getLocStart(), diag::ext_designated_init)
2431       << DIE->getSourceRange();
2432 
2433   return Owned(DIE);
2434 }
2435 
2436 //===----------------------------------------------------------------------===//
2437 // Initialization entity
2438 //===----------------------------------------------------------------------===//
2439 
2440 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2441                                      const InitializedEntity &Parent)
2442   : Parent(&Parent), Index(Index)
2443 {
2444   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2445     Kind = EK_ArrayElement;
2446     Type = AT->getElementType();
2447   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2448     Kind = EK_VectorElement;
2449     Type = VT->getElementType();
2450   } else {
2451     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2452     assert(CT && "Unexpected type");
2453     Kind = EK_ComplexElement;
2454     Type = CT->getElementType();
2455   }
2456 }
2457 
2458 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2459                                                     CXXBaseSpecifier *Base,
2460                                                     bool IsInheritedVirtualBase)
2461 {
2462   InitializedEntity Result;
2463   Result.Kind = EK_Base;
2464   Result.Parent = 0;
2465   Result.Base = reinterpret_cast<uintptr_t>(Base);
2466   if (IsInheritedVirtualBase)
2467     Result.Base |= 0x01;
2468 
2469   Result.Type = Base->getType();
2470   return Result;
2471 }
2472 
2473 DeclarationName InitializedEntity::getName() const {
2474   switch (getKind()) {
2475   case EK_Parameter: {
2476     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2477     return (D ? D->getDeclName() : DeclarationName());
2478   }
2479 
2480   case EK_Variable:
2481   case EK_Member:
2482     return VariableOrMember->getDeclName();
2483 
2484   case EK_LambdaCapture:
2485     return Capture.Var->getDeclName();
2486 
2487   case EK_Result:
2488   case EK_Exception:
2489   case EK_New:
2490   case EK_Temporary:
2491   case EK_Base:
2492   case EK_Delegating:
2493   case EK_ArrayElement:
2494   case EK_VectorElement:
2495   case EK_ComplexElement:
2496   case EK_BlockElement:
2497   case EK_CompoundLiteralInit:
2498   case EK_RelatedResult:
2499     return DeclarationName();
2500   }
2501 
2502   llvm_unreachable("Invalid EntityKind!");
2503 }
2504 
2505 DeclaratorDecl *InitializedEntity::getDecl() const {
2506   switch (getKind()) {
2507   case EK_Variable:
2508   case EK_Member:
2509     return VariableOrMember;
2510 
2511   case EK_Parameter:
2512     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2513 
2514   case EK_Result:
2515   case EK_Exception:
2516   case EK_New:
2517   case EK_Temporary:
2518   case EK_Base:
2519   case EK_Delegating:
2520   case EK_ArrayElement:
2521   case EK_VectorElement:
2522   case EK_ComplexElement:
2523   case EK_BlockElement:
2524   case EK_LambdaCapture:
2525   case EK_CompoundLiteralInit:
2526   case EK_RelatedResult:
2527     return 0;
2528   }
2529 
2530   llvm_unreachable("Invalid EntityKind!");
2531 }
2532 
2533 bool InitializedEntity::allowsNRVO() const {
2534   switch (getKind()) {
2535   case EK_Result:
2536   case EK_Exception:
2537     return LocAndNRVO.NRVO;
2538 
2539   case EK_Variable:
2540   case EK_Parameter:
2541   case EK_Member:
2542   case EK_New:
2543   case EK_Temporary:
2544   case EK_CompoundLiteralInit:
2545   case EK_Base:
2546   case EK_Delegating:
2547   case EK_ArrayElement:
2548   case EK_VectorElement:
2549   case EK_ComplexElement:
2550   case EK_BlockElement:
2551   case EK_LambdaCapture:
2552   case EK_RelatedResult:
2553     break;
2554   }
2555 
2556   return false;
2557 }
2558 
2559 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2560   assert(getParent() != this);
2561   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2562   for (unsigned I = 0; I != Depth; ++I)
2563     OS << "`-";
2564 
2565   switch (getKind()) {
2566   case EK_Variable: OS << "Variable"; break;
2567   case EK_Parameter: OS << "Parameter"; break;
2568   case EK_Result: OS << "Result"; break;
2569   case EK_Exception: OS << "Exception"; break;
2570   case EK_Member: OS << "Member"; break;
2571   case EK_New: OS << "New"; break;
2572   case EK_Temporary: OS << "Temporary"; break;
2573   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2574   case EK_RelatedResult: OS << "RelatedResult"; break;
2575   case EK_Base: OS << "Base"; break;
2576   case EK_Delegating: OS << "Delegating"; break;
2577   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2578   case EK_VectorElement: OS << "VectorElement " << Index; break;
2579   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2580   case EK_BlockElement: OS << "Block"; break;
2581   case EK_LambdaCapture:
2582     OS << "LambdaCapture ";
2583     getCapturedVar()->printName(OS);
2584     break;
2585   }
2586 
2587   if (Decl *D = getDecl()) {
2588     OS << " ";
2589     cast<NamedDecl>(D)->printQualifiedName(OS);
2590   }
2591 
2592   OS << " '" << getType().getAsString() << "'\n";
2593 
2594   return Depth + 1;
2595 }
2596 
2597 void InitializedEntity::dump() const {
2598   dumpImpl(llvm::errs());
2599 }
2600 
2601 //===----------------------------------------------------------------------===//
2602 // Initialization sequence
2603 //===----------------------------------------------------------------------===//
2604 
2605 void InitializationSequence::Step::Destroy() {
2606   switch (Kind) {
2607   case SK_ResolveAddressOfOverloadedFunction:
2608   case SK_CastDerivedToBaseRValue:
2609   case SK_CastDerivedToBaseXValue:
2610   case SK_CastDerivedToBaseLValue:
2611   case SK_BindReference:
2612   case SK_BindReferenceToTemporary:
2613   case SK_ExtraneousCopyToTemporary:
2614   case SK_UserConversion:
2615   case SK_QualificationConversionRValue:
2616   case SK_QualificationConversionXValue:
2617   case SK_QualificationConversionLValue:
2618   case SK_LValueToRValue:
2619   case SK_ListInitialization:
2620   case SK_ListConstructorCall:
2621   case SK_UnwrapInitList:
2622   case SK_RewrapInitList:
2623   case SK_ConstructorInitialization:
2624   case SK_ZeroInitialization:
2625   case SK_CAssignment:
2626   case SK_StringInit:
2627   case SK_ObjCObjectConversion:
2628   case SK_ArrayInit:
2629   case SK_ParenthesizedArrayInit:
2630   case SK_PassByIndirectCopyRestore:
2631   case SK_PassByIndirectRestore:
2632   case SK_ProduceObjCObject:
2633   case SK_StdInitializerList:
2634   case SK_OCLSamplerInit:
2635   case SK_OCLZeroEvent:
2636     break;
2637 
2638   case SK_ConversionSequence:
2639     delete ICS;
2640   }
2641 }
2642 
2643 bool InitializationSequence::isDirectReferenceBinding() const {
2644   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2645 }
2646 
2647 bool InitializationSequence::isAmbiguous() const {
2648   if (!Failed())
2649     return false;
2650 
2651   switch (getFailureKind()) {
2652   case FK_TooManyInitsForReference:
2653   case FK_ArrayNeedsInitList:
2654   case FK_ArrayNeedsInitListOrStringLiteral:
2655   case FK_ArrayNeedsInitListOrWideStringLiteral:
2656   case FK_NarrowStringIntoWideCharArray:
2657   case FK_WideStringIntoCharArray:
2658   case FK_IncompatWideStringIntoWideChar:
2659   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2660   case FK_NonConstLValueReferenceBindingToTemporary:
2661   case FK_NonConstLValueReferenceBindingToUnrelated:
2662   case FK_RValueReferenceBindingToLValue:
2663   case FK_ReferenceInitDropsQualifiers:
2664   case FK_ReferenceInitFailed:
2665   case FK_ConversionFailed:
2666   case FK_ConversionFromPropertyFailed:
2667   case FK_TooManyInitsForScalar:
2668   case FK_ReferenceBindingToInitList:
2669   case FK_InitListBadDestinationType:
2670   case FK_DefaultInitOfConst:
2671   case FK_Incomplete:
2672   case FK_ArrayTypeMismatch:
2673   case FK_NonConstantArrayInit:
2674   case FK_ListInitializationFailed:
2675   case FK_VariableLengthArrayHasInitializer:
2676   case FK_PlaceholderType:
2677   case FK_ExplicitConstructor:
2678     return false;
2679 
2680   case FK_ReferenceInitOverloadFailed:
2681   case FK_UserConversionOverloadFailed:
2682   case FK_ConstructorOverloadFailed:
2683   case FK_ListConstructorOverloadFailed:
2684     return FailedOverloadResult == OR_Ambiguous;
2685   }
2686 
2687   llvm_unreachable("Invalid EntityKind!");
2688 }
2689 
2690 bool InitializationSequence::isConstructorInitialization() const {
2691   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2692 }
2693 
2694 void
2695 InitializationSequence
2696 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2697                                    DeclAccessPair Found,
2698                                    bool HadMultipleCandidates) {
2699   Step S;
2700   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2701   S.Type = Function->getType();
2702   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2703   S.Function.Function = Function;
2704   S.Function.FoundDecl = Found;
2705   Steps.push_back(S);
2706 }
2707 
2708 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2709                                                       ExprValueKind VK) {
2710   Step S;
2711   switch (VK) {
2712   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2713   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2714   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2715   }
2716   S.Type = BaseType;
2717   Steps.push_back(S);
2718 }
2719 
2720 void InitializationSequence::AddReferenceBindingStep(QualType T,
2721                                                      bool BindingTemporary) {
2722   Step S;
2723   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2724   S.Type = T;
2725   Steps.push_back(S);
2726 }
2727 
2728 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2729   Step S;
2730   S.Kind = SK_ExtraneousCopyToTemporary;
2731   S.Type = T;
2732   Steps.push_back(S);
2733 }
2734 
2735 void
2736 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2737                                               DeclAccessPair FoundDecl,
2738                                               QualType T,
2739                                               bool HadMultipleCandidates) {
2740   Step S;
2741   S.Kind = SK_UserConversion;
2742   S.Type = T;
2743   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2744   S.Function.Function = Function;
2745   S.Function.FoundDecl = FoundDecl;
2746   Steps.push_back(S);
2747 }
2748 
2749 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2750                                                             ExprValueKind VK) {
2751   Step S;
2752   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2753   switch (VK) {
2754   case VK_RValue:
2755     S.Kind = SK_QualificationConversionRValue;
2756     break;
2757   case VK_XValue:
2758     S.Kind = SK_QualificationConversionXValue;
2759     break;
2760   case VK_LValue:
2761     S.Kind = SK_QualificationConversionLValue;
2762     break;
2763   }
2764   S.Type = Ty;
2765   Steps.push_back(S);
2766 }
2767 
2768 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2769   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2770 
2771   Step S;
2772   S.Kind = SK_LValueToRValue;
2773   S.Type = Ty;
2774   Steps.push_back(S);
2775 }
2776 
2777 void InitializationSequence::AddConversionSequenceStep(
2778                                        const ImplicitConversionSequence &ICS,
2779                                                        QualType T) {
2780   Step S;
2781   S.Kind = SK_ConversionSequence;
2782   S.Type = T;
2783   S.ICS = new ImplicitConversionSequence(ICS);
2784   Steps.push_back(S);
2785 }
2786 
2787 void InitializationSequence::AddListInitializationStep(QualType T) {
2788   Step S;
2789   S.Kind = SK_ListInitialization;
2790   S.Type = T;
2791   Steps.push_back(S);
2792 }
2793 
2794 void
2795 InitializationSequence
2796 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2797                                    AccessSpecifier Access,
2798                                    QualType T,
2799                                    bool HadMultipleCandidates,
2800                                    bool FromInitList, bool AsInitList) {
2801   Step S;
2802   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2803                                        : SK_ConstructorInitialization;
2804   S.Type = T;
2805   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2806   S.Function.Function = Constructor;
2807   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2808   Steps.push_back(S);
2809 }
2810 
2811 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2812   Step S;
2813   S.Kind = SK_ZeroInitialization;
2814   S.Type = T;
2815   Steps.push_back(S);
2816 }
2817 
2818 void InitializationSequence::AddCAssignmentStep(QualType T) {
2819   Step S;
2820   S.Kind = SK_CAssignment;
2821   S.Type = T;
2822   Steps.push_back(S);
2823 }
2824 
2825 void InitializationSequence::AddStringInitStep(QualType T) {
2826   Step S;
2827   S.Kind = SK_StringInit;
2828   S.Type = T;
2829   Steps.push_back(S);
2830 }
2831 
2832 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2833   Step S;
2834   S.Kind = SK_ObjCObjectConversion;
2835   S.Type = T;
2836   Steps.push_back(S);
2837 }
2838 
2839 void InitializationSequence::AddArrayInitStep(QualType T) {
2840   Step S;
2841   S.Kind = SK_ArrayInit;
2842   S.Type = T;
2843   Steps.push_back(S);
2844 }
2845 
2846 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2847   Step S;
2848   S.Kind = SK_ParenthesizedArrayInit;
2849   S.Type = T;
2850   Steps.push_back(S);
2851 }
2852 
2853 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2854                                                               bool shouldCopy) {
2855   Step s;
2856   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2857                        : SK_PassByIndirectRestore);
2858   s.Type = type;
2859   Steps.push_back(s);
2860 }
2861 
2862 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2863   Step S;
2864   S.Kind = SK_ProduceObjCObject;
2865   S.Type = T;
2866   Steps.push_back(S);
2867 }
2868 
2869 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2870   Step S;
2871   S.Kind = SK_StdInitializerList;
2872   S.Type = T;
2873   Steps.push_back(S);
2874 }
2875 
2876 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2877   Step S;
2878   S.Kind = SK_OCLSamplerInit;
2879   S.Type = T;
2880   Steps.push_back(S);
2881 }
2882 
2883 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2884   Step S;
2885   S.Kind = SK_OCLZeroEvent;
2886   S.Type = T;
2887   Steps.push_back(S);
2888 }
2889 
2890 void InitializationSequence::RewrapReferenceInitList(QualType T,
2891                                                      InitListExpr *Syntactic) {
2892   assert(Syntactic->getNumInits() == 1 &&
2893          "Can only rewrap trivial init lists.");
2894   Step S;
2895   S.Kind = SK_UnwrapInitList;
2896   S.Type = Syntactic->getInit(0)->getType();
2897   Steps.insert(Steps.begin(), S);
2898 
2899   S.Kind = SK_RewrapInitList;
2900   S.Type = T;
2901   S.WrappingSyntacticList = Syntactic;
2902   Steps.push_back(S);
2903 }
2904 
2905 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2906                                                 OverloadingResult Result) {
2907   setSequenceKind(FailedSequence);
2908   this->Failure = Failure;
2909   this->FailedOverloadResult = Result;
2910 }
2911 
2912 //===----------------------------------------------------------------------===//
2913 // Attempt initialization
2914 //===----------------------------------------------------------------------===//
2915 
2916 static void MaybeProduceObjCObject(Sema &S,
2917                                    InitializationSequence &Sequence,
2918                                    const InitializedEntity &Entity) {
2919   if (!S.getLangOpts().ObjCAutoRefCount) return;
2920 
2921   /// When initializing a parameter, produce the value if it's marked
2922   /// __attribute__((ns_consumed)).
2923   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2924     if (!Entity.isParameterConsumed())
2925       return;
2926 
2927     assert(Entity.getType()->isObjCRetainableType() &&
2928            "consuming an object of unretainable type?");
2929     Sequence.AddProduceObjCObjectStep(Entity.getType());
2930 
2931   /// When initializing a return value, if the return type is a
2932   /// retainable type, then returns need to immediately retain the
2933   /// object.  If an autorelease is required, it will be done at the
2934   /// last instant.
2935   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2936     if (!Entity.getType()->isObjCRetainableType())
2937       return;
2938 
2939     Sequence.AddProduceObjCObjectStep(Entity.getType());
2940   }
2941 }
2942 
2943 static void TryListInitialization(Sema &S,
2944                                   const InitializedEntity &Entity,
2945                                   const InitializationKind &Kind,
2946                                   InitListExpr *InitList,
2947                                   InitializationSequence &Sequence);
2948 
2949 /// \brief When initializing from init list via constructor, handle
2950 /// initialization of an object of type std::initializer_list<T>.
2951 ///
2952 /// \return true if we have handled initialization of an object of type
2953 /// std::initializer_list<T>, false otherwise.
2954 static bool TryInitializerListConstruction(Sema &S,
2955                                            InitListExpr *List,
2956                                            QualType DestType,
2957                                            InitializationSequence &Sequence) {
2958   QualType E;
2959   if (!S.isStdInitializerList(DestType, &E))
2960     return false;
2961 
2962   if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2963     Sequence.setIncompleteTypeFailure(E);
2964     return true;
2965   }
2966 
2967   // Try initializing a temporary array from the init list.
2968   QualType ArrayType = S.Context.getConstantArrayType(
2969       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2970                                  List->getNumInits()),
2971       clang::ArrayType::Normal, 0);
2972   InitializedEntity HiddenArray =
2973       InitializedEntity::InitializeTemporary(ArrayType);
2974   InitializationKind Kind =
2975       InitializationKind::CreateDirectList(List->getExprLoc());
2976   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
2977   if (Sequence)
2978     Sequence.AddStdInitializerListConstructionStep(DestType);
2979   return true;
2980 }
2981 
2982 static OverloadingResult
2983 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2984                            MultiExprArg Args,
2985                            OverloadCandidateSet &CandidateSet,
2986                            ArrayRef<NamedDecl *> Ctors,
2987                            OverloadCandidateSet::iterator &Best,
2988                            bool CopyInitializing, bool AllowExplicit,
2989                            bool OnlyListConstructors, bool InitListSyntax) {
2990   CandidateSet.clear();
2991 
2992   for (ArrayRef<NamedDecl *>::iterator
2993          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2994     NamedDecl *D = *Con;
2995     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2996     bool SuppressUserConversions = false;
2997 
2998     // Find the constructor (which may be a template).
2999     CXXConstructorDecl *Constructor = 0;
3000     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3001     if (ConstructorTmpl)
3002       Constructor = cast<CXXConstructorDecl>(
3003                                            ConstructorTmpl->getTemplatedDecl());
3004     else {
3005       Constructor = cast<CXXConstructorDecl>(D);
3006 
3007       // If we're performing copy initialization using a copy constructor, we
3008       // suppress user-defined conversions on the arguments. We do the same for
3009       // move constructors.
3010       if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3011           Constructor->isCopyOrMoveConstructor())
3012         SuppressUserConversions = true;
3013     }
3014 
3015     if (!Constructor->isInvalidDecl() &&
3016         (AllowExplicit || !Constructor->isExplicit()) &&
3017         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3018       if (ConstructorTmpl)
3019         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3020                                        /*ExplicitArgs*/ 0, Args,
3021                                        CandidateSet, SuppressUserConversions);
3022       else {
3023         // C++ [over.match.copy]p1:
3024         //   - When initializing a temporary to be bound to the first parameter
3025         //     of a constructor that takes a reference to possibly cv-qualified
3026         //     T as its first argument, called with a single argument in the
3027         //     context of direct-initialization, explicit conversion functions
3028         //     are also considered.
3029         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3030                                  Args.size() == 1 &&
3031                                  Constructor->isCopyOrMoveConstructor();
3032         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3033                                SuppressUserConversions,
3034                                /*PartialOverloading=*/false,
3035                                /*AllowExplicit=*/AllowExplicitConv);
3036       }
3037     }
3038   }
3039 
3040   // Perform overload resolution and return the result.
3041   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3042 }
3043 
3044 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3045 /// enumerates the constructors of the initialized entity and performs overload
3046 /// resolution to select the best.
3047 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
3048 /// class type.
3049 static void TryConstructorInitialization(Sema &S,
3050                                          const InitializedEntity &Entity,
3051                                          const InitializationKind &Kind,
3052                                          MultiExprArg Args, QualType DestType,
3053                                          InitializationSequence &Sequence,
3054                                          bool InitListSyntax = false) {
3055   assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3056          "InitListSyntax must come with a single initializer list argument.");
3057 
3058   // The type we're constructing needs to be complete.
3059   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3060     Sequence.setIncompleteTypeFailure(DestType);
3061     return;
3062   }
3063 
3064   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3065   assert(DestRecordType && "Constructor initialization requires record type");
3066   CXXRecordDecl *DestRecordDecl
3067     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3068 
3069   // Build the candidate set directly in the initialization sequence
3070   // structure, so that it will persist if we fail.
3071   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3072 
3073   // Determine whether we are allowed to call explicit constructors or
3074   // explicit conversion operators.
3075   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3076   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3077 
3078   //   - Otherwise, if T is a class type, constructors are considered. The
3079   //     applicable constructors are enumerated, and the best one is chosen
3080   //     through overload resolution.
3081   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3082   // The container holding the constructors can under certain conditions
3083   // be changed while iterating (e.g. because of deserialization).
3084   // To be safe we copy the lookup results to a new container.
3085   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3086 
3087   OverloadingResult Result = OR_No_Viable_Function;
3088   OverloadCandidateSet::iterator Best;
3089   bool AsInitializerList = false;
3090 
3091   // C++11 [over.match.list]p1:
3092   //   When objects of non-aggregate type T are list-initialized, overload
3093   //   resolution selects the constructor in two phases:
3094   //   - Initially, the candidate functions are the initializer-list
3095   //     constructors of the class T and the argument list consists of the
3096   //     initializer list as a single argument.
3097   if (InitListSyntax) {
3098     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3099     AsInitializerList = true;
3100 
3101     // If the initializer list has no elements and T has a default constructor,
3102     // the first phase is omitted.
3103     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3104       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3105                                           CandidateSet, Ctors, Best,
3106                                           CopyInitialization, AllowExplicit,
3107                                           /*OnlyListConstructor=*/true,
3108                                           InitListSyntax);
3109 
3110     // Time to unwrap the init list.
3111     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3112   }
3113 
3114   // C++11 [over.match.list]p1:
3115   //   - If no viable initializer-list constructor is found, overload resolution
3116   //     is performed again, where the candidate functions are all the
3117   //     constructors of the class T and the argument list consists of the
3118   //     elements of the initializer list.
3119   if (Result == OR_No_Viable_Function) {
3120     AsInitializerList = false;
3121     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3122                                         CandidateSet, Ctors, Best,
3123                                         CopyInitialization, AllowExplicit,
3124                                         /*OnlyListConstructors=*/false,
3125                                         InitListSyntax);
3126   }
3127   if (Result) {
3128     Sequence.SetOverloadFailure(InitListSyntax ?
3129                       InitializationSequence::FK_ListConstructorOverloadFailed :
3130                       InitializationSequence::FK_ConstructorOverloadFailed,
3131                                 Result);
3132     return;
3133   }
3134 
3135   // C++11 [dcl.init]p6:
3136   //   If a program calls for the default initialization of an object
3137   //   of a const-qualified type T, T shall be a class type with a
3138   //   user-provided default constructor.
3139   if (Kind.getKind() == InitializationKind::IK_Default &&
3140       Entity.getType().isConstQualified() &&
3141       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3142     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3143     return;
3144   }
3145 
3146   // C++11 [over.match.list]p1:
3147   //   In copy-list-initialization, if an explicit constructor is chosen, the
3148   //   initializer is ill-formed.
3149   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3150   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3151     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3152     return;
3153   }
3154 
3155   // Add the constructor initialization step. Any cv-qualification conversion is
3156   // subsumed by the initialization.
3157   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3158   Sequence.AddConstructorInitializationStep(CtorDecl,
3159                                             Best->FoundDecl.getAccess(),
3160                                             DestType, HadMultipleCandidates,
3161                                             InitListSyntax, AsInitializerList);
3162 }
3163 
3164 static bool
3165 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3166                                              Expr *Initializer,
3167                                              QualType &SourceType,
3168                                              QualType &UnqualifiedSourceType,
3169                                              QualType UnqualifiedTargetType,
3170                                              InitializationSequence &Sequence) {
3171   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3172         S.Context.OverloadTy) {
3173     DeclAccessPair Found;
3174     bool HadMultipleCandidates = false;
3175     if (FunctionDecl *Fn
3176         = S.ResolveAddressOfOverloadedFunction(Initializer,
3177                                                UnqualifiedTargetType,
3178                                                false, Found,
3179                                                &HadMultipleCandidates)) {
3180       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3181                                                 HadMultipleCandidates);
3182       SourceType = Fn->getType();
3183       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3184     } else if (!UnqualifiedTargetType->isRecordType()) {
3185       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3186       return true;
3187     }
3188   }
3189   return false;
3190 }
3191 
3192 static void TryReferenceInitializationCore(Sema &S,
3193                                            const InitializedEntity &Entity,
3194                                            const InitializationKind &Kind,
3195                                            Expr *Initializer,
3196                                            QualType cv1T1, QualType T1,
3197                                            Qualifiers T1Quals,
3198                                            QualType cv2T2, QualType T2,
3199                                            Qualifiers T2Quals,
3200                                            InitializationSequence &Sequence);
3201 
3202 static void TryValueInitialization(Sema &S,
3203                                    const InitializedEntity &Entity,
3204                                    const InitializationKind &Kind,
3205                                    InitializationSequence &Sequence,
3206                                    InitListExpr *InitList = 0);
3207 
3208 /// \brief Attempt list initialization of a reference.
3209 static void TryReferenceListInitialization(Sema &S,
3210                                            const InitializedEntity &Entity,
3211                                            const InitializationKind &Kind,
3212                                            InitListExpr *InitList,
3213                                            InitializationSequence &Sequence) {
3214   // First, catch C++03 where this isn't possible.
3215   if (!S.getLangOpts().CPlusPlus11) {
3216     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3217     return;
3218   }
3219 
3220   QualType DestType = Entity.getType();
3221   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3222   Qualifiers T1Quals;
3223   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3224 
3225   // Reference initialization via an initializer list works thus:
3226   // If the initializer list consists of a single element that is
3227   // reference-related to the referenced type, bind directly to that element
3228   // (possibly creating temporaries).
3229   // Otherwise, initialize a temporary with the initializer list and
3230   // bind to that.
3231   if (InitList->getNumInits() == 1) {
3232     Expr *Initializer = InitList->getInit(0);
3233     QualType cv2T2 = Initializer->getType();
3234     Qualifiers T2Quals;
3235     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3236 
3237     // If this fails, creating a temporary wouldn't work either.
3238     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3239                                                      T1, Sequence))
3240       return;
3241 
3242     SourceLocation DeclLoc = Initializer->getLocStart();
3243     bool dummy1, dummy2, dummy3;
3244     Sema::ReferenceCompareResult RefRelationship
3245       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3246                                        dummy2, dummy3);
3247     if (RefRelationship >= Sema::Ref_Related) {
3248       // Try to bind the reference here.
3249       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3250                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3251       if (Sequence)
3252         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3253       return;
3254     }
3255 
3256     // Update the initializer if we've resolved an overloaded function.
3257     if (Sequence.step_begin() != Sequence.step_end())
3258       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3259   }
3260 
3261   // Not reference-related. Create a temporary and bind to that.
3262   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3263 
3264   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3265   if (Sequence) {
3266     if (DestType->isRValueReferenceType() ||
3267         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3268       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3269     else
3270       Sequence.SetFailed(
3271           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3272   }
3273 }
3274 
3275 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3276 static void TryListInitialization(Sema &S,
3277                                   const InitializedEntity &Entity,
3278                                   const InitializationKind &Kind,
3279                                   InitListExpr *InitList,
3280                                   InitializationSequence &Sequence) {
3281   QualType DestType = Entity.getType();
3282 
3283   // C++ doesn't allow scalar initialization with more than one argument.
3284   // But C99 complex numbers are scalars and it makes sense there.
3285   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3286       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3287     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3288     return;
3289   }
3290   if (DestType->isReferenceType()) {
3291     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3292     return;
3293   }
3294   if (DestType->isRecordType()) {
3295     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3296       Sequence.setIncompleteTypeFailure(DestType);
3297       return;
3298     }
3299 
3300     // C++11 [dcl.init.list]p3:
3301     //   - If T is an aggregate, aggregate initialization is performed.
3302     if (!DestType->isAggregateType()) {
3303       if (S.getLangOpts().CPlusPlus11) {
3304         //   - Otherwise, if the initializer list has no elements and T is a
3305         //     class type with a default constructor, the object is
3306         //     value-initialized.
3307         if (InitList->getNumInits() == 0) {
3308           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3309           if (RD->hasDefaultConstructor()) {
3310             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3311             return;
3312           }
3313         }
3314 
3315         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3316         //     an initializer_list object constructed [...]
3317         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3318           return;
3319 
3320         //   - Otherwise, if T is a class type, constructors are considered.
3321         Expr *InitListAsExpr = InitList;
3322         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3323                                      Sequence, /*InitListSyntax*/true);
3324       } else
3325         Sequence.SetFailed(
3326             InitializationSequence::FK_InitListBadDestinationType);
3327       return;
3328     }
3329   }
3330 
3331   InitListChecker CheckInitList(S, Entity, InitList,
3332           DestType, /*VerifyOnly=*/true);
3333   if (CheckInitList.HadError()) {
3334     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3335     return;
3336   }
3337 
3338   // Add the list initialization step with the built init list.
3339   Sequence.AddListInitializationStep(DestType);
3340 }
3341 
3342 /// \brief Try a reference initialization that involves calling a conversion
3343 /// function.
3344 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3345                                              const InitializedEntity &Entity,
3346                                              const InitializationKind &Kind,
3347                                              Expr *Initializer,
3348                                              bool AllowRValues,
3349                                              InitializationSequence &Sequence) {
3350   QualType DestType = Entity.getType();
3351   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3352   QualType T1 = cv1T1.getUnqualifiedType();
3353   QualType cv2T2 = Initializer->getType();
3354   QualType T2 = cv2T2.getUnqualifiedType();
3355 
3356   bool DerivedToBase;
3357   bool ObjCConversion;
3358   bool ObjCLifetimeConversion;
3359   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3360                                          T1, T2, DerivedToBase,
3361                                          ObjCConversion,
3362                                          ObjCLifetimeConversion) &&
3363          "Must have incompatible references when binding via conversion");
3364   (void)DerivedToBase;
3365   (void)ObjCConversion;
3366   (void)ObjCLifetimeConversion;
3367 
3368   // Build the candidate set directly in the initialization sequence
3369   // structure, so that it will persist if we fail.
3370   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3371   CandidateSet.clear();
3372 
3373   // Determine whether we are allowed to call explicit constructors or
3374   // explicit conversion operators.
3375   bool AllowExplicit = Kind.AllowExplicit();
3376   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3377 
3378   const RecordType *T1RecordType = 0;
3379   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3380       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3381     // The type we're converting to is a class type. Enumerate its constructors
3382     // to see if there is a suitable conversion.
3383     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3384 
3385     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3386     // The container holding the constructors can under certain conditions
3387     // be changed while iterating (e.g. because of deserialization).
3388     // To be safe we copy the lookup results to a new container.
3389     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3390     for (SmallVectorImpl<NamedDecl *>::iterator
3391            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3392       NamedDecl *D = *CI;
3393       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3394 
3395       // Find the constructor (which may be a template).
3396       CXXConstructorDecl *Constructor = 0;
3397       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3398       if (ConstructorTmpl)
3399         Constructor = cast<CXXConstructorDecl>(
3400                                          ConstructorTmpl->getTemplatedDecl());
3401       else
3402         Constructor = cast<CXXConstructorDecl>(D);
3403 
3404       if (!Constructor->isInvalidDecl() &&
3405           Constructor->isConvertingConstructor(AllowExplicit)) {
3406         if (ConstructorTmpl)
3407           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3408                                          /*ExplicitArgs*/ 0,
3409                                          Initializer, CandidateSet,
3410                                          /*SuppressUserConversions=*/true);
3411         else
3412           S.AddOverloadCandidate(Constructor, FoundDecl,
3413                                  Initializer, CandidateSet,
3414                                  /*SuppressUserConversions=*/true);
3415       }
3416     }
3417   }
3418   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3419     return OR_No_Viable_Function;
3420 
3421   const RecordType *T2RecordType = 0;
3422   if ((T2RecordType = T2->getAs<RecordType>()) &&
3423       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3424     // The type we're converting from is a class type, enumerate its conversion
3425     // functions.
3426     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3427 
3428     std::pair<CXXRecordDecl::conversion_iterator,
3429               CXXRecordDecl::conversion_iterator>
3430       Conversions = T2RecordDecl->getVisibleConversionFunctions();
3431     for (CXXRecordDecl::conversion_iterator
3432            I = Conversions.first, E = Conversions.second; I != E; ++I) {
3433       NamedDecl *D = *I;
3434       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3435       if (isa<UsingShadowDecl>(D))
3436         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3437 
3438       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3439       CXXConversionDecl *Conv;
3440       if (ConvTemplate)
3441         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3442       else
3443         Conv = cast<CXXConversionDecl>(D);
3444 
3445       // If the conversion function doesn't return a reference type,
3446       // it can't be considered for this conversion unless we're allowed to
3447       // consider rvalues.
3448       // FIXME: Do we need to make sure that we only consider conversion
3449       // candidates with reference-compatible results? That might be needed to
3450       // break recursion.
3451       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3452           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3453         if (ConvTemplate)
3454           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3455                                            ActingDC, Initializer,
3456                                            DestType, CandidateSet);
3457         else
3458           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3459                                    Initializer, DestType, CandidateSet);
3460       }
3461     }
3462   }
3463   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3464     return OR_No_Viable_Function;
3465 
3466   SourceLocation DeclLoc = Initializer->getLocStart();
3467 
3468   // Perform overload resolution. If it fails, return the failed result.
3469   OverloadCandidateSet::iterator Best;
3470   if (OverloadingResult Result
3471         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3472     return Result;
3473 
3474   FunctionDecl *Function = Best->Function;
3475   // This is the overload that will be used for this initialization step if we
3476   // use this initialization. Mark it as referenced.
3477   Function->setReferenced();
3478 
3479   // Compute the returned type of the conversion.
3480   if (isa<CXXConversionDecl>(Function))
3481     T2 = Function->getResultType();
3482   else
3483     T2 = cv1T1;
3484 
3485   // Add the user-defined conversion step.
3486   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3487   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3488                                  T2.getNonLValueExprType(S.Context),
3489                                  HadMultipleCandidates);
3490 
3491   // Determine whether we need to perform derived-to-base or
3492   // cv-qualification adjustments.
3493   ExprValueKind VK = VK_RValue;
3494   if (T2->isLValueReferenceType())
3495     VK = VK_LValue;
3496   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3497     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3498 
3499   bool NewDerivedToBase = false;
3500   bool NewObjCConversion = false;
3501   bool NewObjCLifetimeConversion = false;
3502   Sema::ReferenceCompareResult NewRefRelationship
3503     = S.CompareReferenceRelationship(DeclLoc, T1,
3504                                      T2.getNonLValueExprType(S.Context),
3505                                      NewDerivedToBase, NewObjCConversion,
3506                                      NewObjCLifetimeConversion);
3507   if (NewRefRelationship == Sema::Ref_Incompatible) {
3508     // If the type we've converted to is not reference-related to the
3509     // type we're looking for, then there is another conversion step
3510     // we need to perform to produce a temporary of the right type
3511     // that we'll be binding to.
3512     ImplicitConversionSequence ICS;
3513     ICS.setStandard();
3514     ICS.Standard = Best->FinalConversion;
3515     T2 = ICS.Standard.getToType(2);
3516     Sequence.AddConversionSequenceStep(ICS, T2);
3517   } else if (NewDerivedToBase)
3518     Sequence.AddDerivedToBaseCastStep(
3519                                 S.Context.getQualifiedType(T1,
3520                                   T2.getNonReferenceType().getQualifiers()),
3521                                       VK);
3522   else if (NewObjCConversion)
3523     Sequence.AddObjCObjectConversionStep(
3524                                 S.Context.getQualifiedType(T1,
3525                                   T2.getNonReferenceType().getQualifiers()));
3526 
3527   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3528     Sequence.AddQualificationConversionStep(cv1T1, VK);
3529 
3530   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3531   return OR_Success;
3532 }
3533 
3534 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3535                                            const InitializedEntity &Entity,
3536                                            Expr *CurInitExpr);
3537 
3538 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3539 static void TryReferenceInitialization(Sema &S,
3540                                        const InitializedEntity &Entity,
3541                                        const InitializationKind &Kind,
3542                                        Expr *Initializer,
3543                                        InitializationSequence &Sequence) {
3544   QualType DestType = Entity.getType();
3545   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3546   Qualifiers T1Quals;
3547   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3548   QualType cv2T2 = Initializer->getType();
3549   Qualifiers T2Quals;
3550   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3551 
3552   // If the initializer is the address of an overloaded function, try
3553   // to resolve the overloaded function. If all goes well, T2 is the
3554   // type of the resulting function.
3555   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3556                                                    T1, Sequence))
3557     return;
3558 
3559   // Delegate everything else to a subfunction.
3560   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3561                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3562 }
3563 
3564 /// Converts the target of reference initialization so that it has the
3565 /// appropriate qualifiers and value kind.
3566 ///
3567 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3568 /// \code
3569 ///   int x;
3570 ///   const int &r = x;
3571 /// \endcode
3572 ///
3573 /// In this case the reference is binding to a bitfield lvalue, which isn't
3574 /// valid. Perform a load to create a lifetime-extended temporary instead.
3575 /// \code
3576 ///   const int &r = someStruct.bitfield;
3577 /// \endcode
3578 static ExprValueKind
3579 convertQualifiersAndValueKindIfNecessary(Sema &S,
3580                                          InitializationSequence &Sequence,
3581                                          Expr *Initializer,
3582                                          QualType cv1T1,
3583                                          Qualifiers T1Quals,
3584                                          Qualifiers T2Quals,
3585                                          bool IsLValueRef) {
3586   bool IsNonAddressableType = Initializer->refersToBitField() ||
3587                               Initializer->refersToVectorElement();
3588 
3589   if (IsNonAddressableType) {
3590     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3591     // lvalue reference to a non-volatile const type, or the reference shall be
3592     // an rvalue reference.
3593     //
3594     // If not, we can't make a temporary and bind to that. Give up and allow the
3595     // error to be diagnosed later.
3596     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3597       assert(Initializer->isGLValue());
3598       return Initializer->getValueKind();
3599     }
3600 
3601     // Force a load so we can materialize a temporary.
3602     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3603     return VK_RValue;
3604   }
3605 
3606   if (T1Quals != T2Quals) {
3607     Sequence.AddQualificationConversionStep(cv1T1,
3608                                             Initializer->getValueKind());
3609   }
3610 
3611   return Initializer->getValueKind();
3612 }
3613 
3614 
3615 /// \brief Reference initialization without resolving overloaded functions.
3616 static void TryReferenceInitializationCore(Sema &S,
3617                                            const InitializedEntity &Entity,
3618                                            const InitializationKind &Kind,
3619                                            Expr *Initializer,
3620                                            QualType cv1T1, QualType T1,
3621                                            Qualifiers T1Quals,
3622                                            QualType cv2T2, QualType T2,
3623                                            Qualifiers T2Quals,
3624                                            InitializationSequence &Sequence) {
3625   QualType DestType = Entity.getType();
3626   SourceLocation DeclLoc = Initializer->getLocStart();
3627   // Compute some basic properties of the types and the initializer.
3628   bool isLValueRef = DestType->isLValueReferenceType();
3629   bool isRValueRef = !isLValueRef;
3630   bool DerivedToBase = false;
3631   bool ObjCConversion = false;
3632   bool ObjCLifetimeConversion = false;
3633   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3634   Sema::ReferenceCompareResult RefRelationship
3635     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3636                                      ObjCConversion, ObjCLifetimeConversion);
3637 
3638   // C++0x [dcl.init.ref]p5:
3639   //   A reference to type "cv1 T1" is initialized by an expression of type
3640   //   "cv2 T2" as follows:
3641   //
3642   //     - If the reference is an lvalue reference and the initializer
3643   //       expression
3644   // Note the analogous bullet points for rvlaue refs to functions. Because
3645   // there are no function rvalues in C++, rvalue refs to functions are treated
3646   // like lvalue refs.
3647   OverloadingResult ConvOvlResult = OR_Success;
3648   bool T1Function = T1->isFunctionType();
3649   if (isLValueRef || T1Function) {
3650     if (InitCategory.isLValue() &&
3651         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3652          (Kind.isCStyleOrFunctionalCast() &&
3653           RefRelationship == Sema::Ref_Related))) {
3654       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3655       //     reference-compatible with "cv2 T2," or
3656       //
3657       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3658       // bit-field when we're determining whether the reference initialization
3659       // can occur. However, we do pay attention to whether it is a bit-field
3660       // to decide whether we're actually binding to a temporary created from
3661       // the bit-field.
3662       if (DerivedToBase)
3663         Sequence.AddDerivedToBaseCastStep(
3664                          S.Context.getQualifiedType(T1, T2Quals),
3665                          VK_LValue);
3666       else if (ObjCConversion)
3667         Sequence.AddObjCObjectConversionStep(
3668                                      S.Context.getQualifiedType(T1, T2Quals));
3669 
3670       ExprValueKind ValueKind =
3671         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3672                                                  cv1T1, T1Quals, T2Quals,
3673                                                  isLValueRef);
3674       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3675       return;
3676     }
3677 
3678     //     - has a class type (i.e., T2 is a class type), where T1 is not
3679     //       reference-related to T2, and can be implicitly converted to an
3680     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3681     //       with "cv3 T3" (this conversion is selected by enumerating the
3682     //       applicable conversion functions (13.3.1.6) and choosing the best
3683     //       one through overload resolution (13.3)),
3684     // If we have an rvalue ref to function type here, the rhs must be
3685     // an rvalue.
3686     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3687         (isLValueRef || InitCategory.isRValue())) {
3688       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3689                                                        Initializer,
3690                                                    /*AllowRValues=*/isRValueRef,
3691                                                        Sequence);
3692       if (ConvOvlResult == OR_Success)
3693         return;
3694       if (ConvOvlResult != OR_No_Viable_Function) {
3695         Sequence.SetOverloadFailure(
3696                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3697                                     ConvOvlResult);
3698       }
3699     }
3700   }
3701 
3702   //     - Otherwise, the reference shall be an lvalue reference to a
3703   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3704   //       shall be an rvalue reference.
3705   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3706     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3707       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3708     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3709       Sequence.SetOverloadFailure(
3710                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3711                                   ConvOvlResult);
3712     else
3713       Sequence.SetFailed(InitCategory.isLValue()
3714         ? (RefRelationship == Sema::Ref_Related
3715              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3716              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3717         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3718 
3719     return;
3720   }
3721 
3722   //    - If the initializer expression
3723   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3724   //        "cv1 T1" is reference-compatible with "cv2 T2"
3725   // Note: functions are handled below.
3726   if (!T1Function &&
3727       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3728        (Kind.isCStyleOrFunctionalCast() &&
3729         RefRelationship == Sema::Ref_Related)) &&
3730       (InitCategory.isXValue() ||
3731        (InitCategory.isPRValue() && T2->isRecordType()) ||
3732        (InitCategory.isPRValue() && T2->isArrayType()))) {
3733     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3734     if (InitCategory.isPRValue() && T2->isRecordType()) {
3735       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3736       // compiler the freedom to perform a copy here or bind to the
3737       // object, while C++0x requires that we bind directly to the
3738       // object. Hence, we always bind to the object without making an
3739       // extra copy. However, in C++03 requires that we check for the
3740       // presence of a suitable copy constructor:
3741       //
3742       //   The constructor that would be used to make the copy shall
3743       //   be callable whether or not the copy is actually done.
3744       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3745         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3746       else if (S.getLangOpts().CPlusPlus11)
3747         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3748     }
3749 
3750     if (DerivedToBase)
3751       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3752                                         ValueKind);
3753     else if (ObjCConversion)
3754       Sequence.AddObjCObjectConversionStep(
3755                                        S.Context.getQualifiedType(T1, T2Quals));
3756 
3757     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3758                                                          Initializer, cv1T1,
3759                                                          T1Quals, T2Quals,
3760                                                          isLValueRef);
3761 
3762     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3763     return;
3764   }
3765 
3766   //       - has a class type (i.e., T2 is a class type), where T1 is not
3767   //         reference-related to T2, and can be implicitly converted to an
3768   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3769   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3770   if (T2->isRecordType()) {
3771     if (RefRelationship == Sema::Ref_Incompatible) {
3772       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3773                                                        Kind, Initializer,
3774                                                        /*AllowRValues=*/true,
3775                                                        Sequence);
3776       if (ConvOvlResult)
3777         Sequence.SetOverloadFailure(
3778                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3779                                     ConvOvlResult);
3780 
3781       return;
3782     }
3783 
3784     if ((RefRelationship == Sema::Ref_Compatible ||
3785          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3786         isRValueRef && InitCategory.isLValue()) {
3787       Sequence.SetFailed(
3788         InitializationSequence::FK_RValueReferenceBindingToLValue);
3789       return;
3790     }
3791 
3792     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3793     return;
3794   }
3795 
3796   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3797   //        from the initializer expression using the rules for a non-reference
3798   //        copy-initialization (8.5). The reference is then bound to the
3799   //        temporary. [...]
3800 
3801   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3802 
3803   // FIXME: Why do we use an implicit conversion here rather than trying
3804   // copy-initialization?
3805   ImplicitConversionSequence ICS
3806     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3807                               /*SuppressUserConversions=*/false,
3808                               /*AllowExplicit=*/false,
3809                               /*FIXME:InOverloadResolution=*/false,
3810                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3811                               /*AllowObjCWritebackConversion=*/false);
3812 
3813   if (ICS.isBad()) {
3814     // FIXME: Use the conversion function set stored in ICS to turn
3815     // this into an overloading ambiguity diagnostic. However, we need
3816     // to keep that set as an OverloadCandidateSet rather than as some
3817     // other kind of set.
3818     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3819       Sequence.SetOverloadFailure(
3820                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3821                                   ConvOvlResult);
3822     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3823       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3824     else
3825       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3826     return;
3827   } else {
3828     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3829   }
3830 
3831   //        [...] If T1 is reference-related to T2, cv1 must be the
3832   //        same cv-qualification as, or greater cv-qualification
3833   //        than, cv2; otherwise, the program is ill-formed.
3834   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3835   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3836   if (RefRelationship == Sema::Ref_Related &&
3837       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3838     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3839     return;
3840   }
3841 
3842   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3843   //   reference, the initializer expression shall not be an lvalue.
3844   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3845       InitCategory.isLValue()) {
3846     Sequence.SetFailed(
3847                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3848     return;
3849   }
3850 
3851   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3852   return;
3853 }
3854 
3855 /// \brief Attempt character array initialization from a string literal
3856 /// (C++ [dcl.init.string], C99 6.7.8).
3857 static void TryStringLiteralInitialization(Sema &S,
3858                                            const InitializedEntity &Entity,
3859                                            const InitializationKind &Kind,
3860                                            Expr *Initializer,
3861                                        InitializationSequence &Sequence) {
3862   Sequence.AddStringInitStep(Entity.getType());
3863 }
3864 
3865 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3866 static void TryValueInitialization(Sema &S,
3867                                    const InitializedEntity &Entity,
3868                                    const InitializationKind &Kind,
3869                                    InitializationSequence &Sequence,
3870                                    InitListExpr *InitList) {
3871   assert((!InitList || InitList->getNumInits() == 0) &&
3872          "Shouldn't use value-init for non-empty init lists");
3873 
3874   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3875   //
3876   //   To value-initialize an object of type T means:
3877   QualType T = Entity.getType();
3878 
3879   //     -- if T is an array type, then each element is value-initialized;
3880   T = S.Context.getBaseElementType(T);
3881 
3882   if (const RecordType *RT = T->getAs<RecordType>()) {
3883     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3884       bool NeedZeroInitialization = true;
3885       if (!S.getLangOpts().CPlusPlus11) {
3886         // C++98:
3887         // -- if T is a class type (clause 9) with a user-declared constructor
3888         //    (12.1), then the default constructor for T is called (and the
3889         //    initialization is ill-formed if T has no accessible default
3890         //    constructor);
3891         if (ClassDecl->hasUserDeclaredConstructor())
3892           NeedZeroInitialization = false;
3893       } else {
3894         // C++11:
3895         // -- if T is a class type (clause 9) with either no default constructor
3896         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3897         //    or deleted, then the object is default-initialized;
3898         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3899         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3900           NeedZeroInitialization = false;
3901       }
3902 
3903       // -- if T is a (possibly cv-qualified) non-union class type without a
3904       //    user-provided or deleted default constructor, then the object is
3905       //    zero-initialized and, if T has a non-trivial default constructor,
3906       //    default-initialized;
3907       // The 'non-union' here was removed by DR1502. The 'non-trivial default
3908       // constructor' part was removed by DR1507.
3909       if (NeedZeroInitialization)
3910         Sequence.AddZeroInitializationStep(Entity.getType());
3911 
3912       // C++03:
3913       // -- if T is a non-union class type without a user-declared constructor,
3914       //    then every non-static data member and base class component of T is
3915       //    value-initialized;
3916       // [...] A program that calls for [...] value-initialization of an
3917       // entity of reference type is ill-formed.
3918       //
3919       // C++11 doesn't need this handling, because value-initialization does not
3920       // occur recursively there, and the implicit default constructor is
3921       // defined as deleted in the problematic cases.
3922       if (!S.getLangOpts().CPlusPlus11 &&
3923           ClassDecl->hasUninitializedReferenceMember()) {
3924         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3925         return;
3926       }
3927 
3928       // If this is list-value-initialization, pass the empty init list on when
3929       // building the constructor call. This affects the semantics of a few
3930       // things (such as whether an explicit default constructor can be called).
3931       Expr *InitListAsExpr = InitList;
3932       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3933       bool InitListSyntax = InitList;
3934 
3935       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3936                                           InitListSyntax);
3937     }
3938   }
3939 
3940   Sequence.AddZeroInitializationStep(Entity.getType());
3941 }
3942 
3943 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3944 static void TryDefaultInitialization(Sema &S,
3945                                      const InitializedEntity &Entity,
3946                                      const InitializationKind &Kind,
3947                                      InitializationSequence &Sequence) {
3948   assert(Kind.getKind() == InitializationKind::IK_Default);
3949 
3950   // C++ [dcl.init]p6:
3951   //   To default-initialize an object of type T means:
3952   //     - if T is an array type, each element is default-initialized;
3953   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3954 
3955   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3956   //       constructor for T is called (and the initialization is ill-formed if
3957   //       T has no accessible default constructor);
3958   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3959     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
3960     return;
3961   }
3962 
3963   //     - otherwise, no initialization is performed.
3964 
3965   //   If a program calls for the default initialization of an object of
3966   //   a const-qualified type T, T shall be a class type with a user-provided
3967   //   default constructor.
3968   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3969     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3970     return;
3971   }
3972 
3973   // If the destination type has a lifetime property, zero-initialize it.
3974   if (DestType.getQualifiers().hasObjCLifetime()) {
3975     Sequence.AddZeroInitializationStep(Entity.getType());
3976     return;
3977   }
3978 }
3979 
3980 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3981 /// which enumerates all conversion functions and performs overload resolution
3982 /// to select the best.
3983 static void TryUserDefinedConversion(Sema &S,
3984                                      const InitializedEntity &Entity,
3985                                      const InitializationKind &Kind,
3986                                      Expr *Initializer,
3987                                      InitializationSequence &Sequence) {
3988   QualType DestType = Entity.getType();
3989   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3990   QualType SourceType = Initializer->getType();
3991   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3992          "Must have a class type to perform a user-defined conversion");
3993 
3994   // Build the candidate set directly in the initialization sequence
3995   // structure, so that it will persist if we fail.
3996   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3997   CandidateSet.clear();
3998 
3999   // Determine whether we are allowed to call explicit constructors or
4000   // explicit conversion operators.
4001   bool AllowExplicit = Kind.AllowExplicit();
4002 
4003   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4004     // The type we're converting to is a class type. Enumerate its constructors
4005     // to see if there is a suitable conversion.
4006     CXXRecordDecl *DestRecordDecl
4007       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4008 
4009     // Try to complete the type we're converting to.
4010     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4011       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4012       // The container holding the constructors can under certain conditions
4013       // be changed while iterating. To be safe we copy the lookup results
4014       // to a new container.
4015       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4016       for (SmallVectorImpl<NamedDecl *>::iterator
4017              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4018            Con != ConEnd; ++Con) {
4019         NamedDecl *D = *Con;
4020         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4021 
4022         // Find the constructor (which may be a template).
4023         CXXConstructorDecl *Constructor = 0;
4024         FunctionTemplateDecl *ConstructorTmpl
4025           = dyn_cast<FunctionTemplateDecl>(D);
4026         if (ConstructorTmpl)
4027           Constructor = cast<CXXConstructorDecl>(
4028                                            ConstructorTmpl->getTemplatedDecl());
4029         else
4030           Constructor = cast<CXXConstructorDecl>(D);
4031 
4032         if (!Constructor->isInvalidDecl() &&
4033             Constructor->isConvertingConstructor(AllowExplicit)) {
4034           if (ConstructorTmpl)
4035             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4036                                            /*ExplicitArgs*/ 0,
4037                                            Initializer, CandidateSet,
4038                                            /*SuppressUserConversions=*/true);
4039           else
4040             S.AddOverloadCandidate(Constructor, FoundDecl,
4041                                    Initializer, CandidateSet,
4042                                    /*SuppressUserConversions=*/true);
4043         }
4044       }
4045     }
4046   }
4047 
4048   SourceLocation DeclLoc = Initializer->getLocStart();
4049 
4050   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4051     // The type we're converting from is a class type, enumerate its conversion
4052     // functions.
4053 
4054     // We can only enumerate the conversion functions for a complete type; if
4055     // the type isn't complete, simply skip this step.
4056     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4057       CXXRecordDecl *SourceRecordDecl
4058         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4059 
4060       std::pair<CXXRecordDecl::conversion_iterator,
4061                 CXXRecordDecl::conversion_iterator>
4062         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4063       for (CXXRecordDecl::conversion_iterator
4064              I = Conversions.first, E = Conversions.second; I != E; ++I) {
4065         NamedDecl *D = *I;
4066         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4067         if (isa<UsingShadowDecl>(D))
4068           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4069 
4070         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4071         CXXConversionDecl *Conv;
4072         if (ConvTemplate)
4073           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4074         else
4075           Conv = cast<CXXConversionDecl>(D);
4076 
4077         if (AllowExplicit || !Conv->isExplicit()) {
4078           if (ConvTemplate)
4079             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4080                                              ActingDC, Initializer, DestType,
4081                                              CandidateSet);
4082           else
4083             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4084                                      Initializer, DestType, CandidateSet);
4085         }
4086       }
4087     }
4088   }
4089 
4090   // Perform overload resolution. If it fails, return the failed result.
4091   OverloadCandidateSet::iterator Best;
4092   if (OverloadingResult Result
4093         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4094     Sequence.SetOverloadFailure(
4095                         InitializationSequence::FK_UserConversionOverloadFailed,
4096                                 Result);
4097     return;
4098   }
4099 
4100   FunctionDecl *Function = Best->Function;
4101   Function->setReferenced();
4102   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4103 
4104   if (isa<CXXConstructorDecl>(Function)) {
4105     // Add the user-defined conversion step. Any cv-qualification conversion is
4106     // subsumed by the initialization. Per DR5, the created temporary is of the
4107     // cv-unqualified type of the destination.
4108     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4109                                    DestType.getUnqualifiedType(),
4110                                    HadMultipleCandidates);
4111     return;
4112   }
4113 
4114   // Add the user-defined conversion step that calls the conversion function.
4115   QualType ConvType = Function->getCallResultType();
4116   if (ConvType->getAs<RecordType>()) {
4117     // If we're converting to a class type, there may be an copy of
4118     // the resulting temporary object (possible to create an object of
4119     // a base class type). That copy is not a separate conversion, so
4120     // we just make a note of the actual destination type (possibly a
4121     // base class of the type returned by the conversion function) and
4122     // let the user-defined conversion step handle the conversion.
4123     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4124                                    HadMultipleCandidates);
4125     return;
4126   }
4127 
4128   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4129                                  HadMultipleCandidates);
4130 
4131   // If the conversion following the call to the conversion function
4132   // is interesting, add it as a separate step.
4133   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4134       Best->FinalConversion.Third) {
4135     ImplicitConversionSequence ICS;
4136     ICS.setStandard();
4137     ICS.Standard = Best->FinalConversion;
4138     Sequence.AddConversionSequenceStep(ICS, DestType);
4139   }
4140 }
4141 
4142 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4143 /// a function with a pointer return type contains a 'return false;' statement.
4144 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4145 /// code using that header.
4146 ///
4147 /// Work around this by treating 'return false;' as zero-initializing the result
4148 /// if it's used in a pointer-returning function in a system header.
4149 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4150                                               const InitializedEntity &Entity,
4151                                               const Expr *Init) {
4152   return S.getLangOpts().CPlusPlus11 &&
4153          Entity.getKind() == InitializedEntity::EK_Result &&
4154          Entity.getType()->isPointerType() &&
4155          isa<CXXBoolLiteralExpr>(Init) &&
4156          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4157          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4158 }
4159 
4160 /// The non-zero enum values here are indexes into diagnostic alternatives.
4161 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4162 
4163 /// Determines whether this expression is an acceptable ICR source.
4164 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4165                                          bool isAddressOf, bool &isWeakAccess) {
4166   // Skip parens.
4167   e = e->IgnoreParens();
4168 
4169   // Skip address-of nodes.
4170   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4171     if (op->getOpcode() == UO_AddrOf)
4172       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4173                                 isWeakAccess);
4174 
4175   // Skip certain casts.
4176   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4177     switch (ce->getCastKind()) {
4178     case CK_Dependent:
4179     case CK_BitCast:
4180     case CK_LValueBitCast:
4181     case CK_NoOp:
4182       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4183 
4184     case CK_ArrayToPointerDecay:
4185       return IIK_nonscalar;
4186 
4187     case CK_NullToPointer:
4188       return IIK_okay;
4189 
4190     default:
4191       break;
4192     }
4193 
4194   // If we have a declaration reference, it had better be a local variable.
4195   } else if (isa<DeclRefExpr>(e)) {
4196     // set isWeakAccess to true, to mean that there will be an implicit
4197     // load which requires a cleanup.
4198     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4199       isWeakAccess = true;
4200 
4201     if (!isAddressOf) return IIK_nonlocal;
4202 
4203     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4204     if (!var) return IIK_nonlocal;
4205 
4206     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4207 
4208   // If we have a conditional operator, check both sides.
4209   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4210     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4211                                                 isWeakAccess))
4212       return iik;
4213 
4214     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4215 
4216   // These are never scalar.
4217   } else if (isa<ArraySubscriptExpr>(e)) {
4218     return IIK_nonscalar;
4219 
4220   // Otherwise, it needs to be a null pointer constant.
4221   } else {
4222     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4223             ? IIK_okay : IIK_nonlocal);
4224   }
4225 
4226   return IIK_nonlocal;
4227 }
4228 
4229 /// Check whether the given expression is a valid operand for an
4230 /// indirect copy/restore.
4231 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4232   assert(src->isRValue());
4233   bool isWeakAccess = false;
4234   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4235   // If isWeakAccess to true, there will be an implicit
4236   // load which requires a cleanup.
4237   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4238     S.ExprNeedsCleanups = true;
4239 
4240   if (iik == IIK_okay) return;
4241 
4242   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4243     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4244     << src->getSourceRange();
4245 }
4246 
4247 /// \brief Determine whether we have compatible array types for the
4248 /// purposes of GNU by-copy array initialization.
4249 static bool hasCompatibleArrayTypes(ASTContext &Context,
4250                                     const ArrayType *Dest,
4251                                     const ArrayType *Source) {
4252   // If the source and destination array types are equivalent, we're
4253   // done.
4254   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4255     return true;
4256 
4257   // Make sure that the element types are the same.
4258   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4259     return false;
4260 
4261   // The only mismatch we allow is when the destination is an
4262   // incomplete array type and the source is a constant array type.
4263   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4264 }
4265 
4266 static bool tryObjCWritebackConversion(Sema &S,
4267                                        InitializationSequence &Sequence,
4268                                        const InitializedEntity &Entity,
4269                                        Expr *Initializer) {
4270   bool ArrayDecay = false;
4271   QualType ArgType = Initializer->getType();
4272   QualType ArgPointee;
4273   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4274     ArrayDecay = true;
4275     ArgPointee = ArgArrayType->getElementType();
4276     ArgType = S.Context.getPointerType(ArgPointee);
4277   }
4278 
4279   // Handle write-back conversion.
4280   QualType ConvertedArgType;
4281   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4282                                    ConvertedArgType))
4283     return false;
4284 
4285   // We should copy unless we're passing to an argument explicitly
4286   // marked 'out'.
4287   bool ShouldCopy = true;
4288   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4289     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4290 
4291   // Do we need an lvalue conversion?
4292   if (ArrayDecay || Initializer->isGLValue()) {
4293     ImplicitConversionSequence ICS;
4294     ICS.setStandard();
4295     ICS.Standard.setAsIdentityConversion();
4296 
4297     QualType ResultType;
4298     if (ArrayDecay) {
4299       ICS.Standard.First = ICK_Array_To_Pointer;
4300       ResultType = S.Context.getPointerType(ArgPointee);
4301     } else {
4302       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4303       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4304     }
4305 
4306     Sequence.AddConversionSequenceStep(ICS, ResultType);
4307   }
4308 
4309   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4310   return true;
4311 }
4312 
4313 static bool TryOCLSamplerInitialization(Sema &S,
4314                                         InitializationSequence &Sequence,
4315                                         QualType DestType,
4316                                         Expr *Initializer) {
4317   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4318     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4319     return false;
4320 
4321   Sequence.AddOCLSamplerInitStep(DestType);
4322   return true;
4323 }
4324 
4325 //
4326 // OpenCL 1.2 spec, s6.12.10
4327 //
4328 // The event argument can also be used to associate the
4329 // async_work_group_copy with a previous async copy allowing
4330 // an event to be shared by multiple async copies; otherwise
4331 // event should be zero.
4332 //
4333 static bool TryOCLZeroEventInitialization(Sema &S,
4334                                           InitializationSequence &Sequence,
4335                                           QualType DestType,
4336                                           Expr *Initializer) {
4337   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4338       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4339       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4340     return false;
4341 
4342   Sequence.AddOCLZeroEventStep(DestType);
4343   return true;
4344 }
4345 
4346 InitializationSequence::InitializationSequence(Sema &S,
4347                                                const InitializedEntity &Entity,
4348                                                const InitializationKind &Kind,
4349                                                MultiExprArg Args)
4350     : FailedCandidateSet(Kind.getLocation()) {
4351   ASTContext &Context = S.Context;
4352 
4353   // Eliminate non-overload placeholder types in the arguments.  We
4354   // need to do this before checking whether types are dependent
4355   // because lowering a pseudo-object expression might well give us
4356   // something of dependent type.
4357   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4358     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4359       // FIXME: should we be doing this here?
4360       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4361       if (result.isInvalid()) {
4362         SetFailed(FK_PlaceholderType);
4363         return;
4364       }
4365       Args[I] = result.take();
4366     }
4367 
4368   // C++0x [dcl.init]p16:
4369   //   The semantics of initializers are as follows. The destination type is
4370   //   the type of the object or reference being initialized and the source
4371   //   type is the type of the initializer expression. The source type is not
4372   //   defined when the initializer is a braced-init-list or when it is a
4373   //   parenthesized list of expressions.
4374   QualType DestType = Entity.getType();
4375 
4376   if (DestType->isDependentType() ||
4377       Expr::hasAnyTypeDependentArguments(Args)) {
4378     SequenceKind = DependentSequence;
4379     return;
4380   }
4381 
4382   // Almost everything is a normal sequence.
4383   setSequenceKind(NormalSequence);
4384 
4385   QualType SourceType;
4386   Expr *Initializer = 0;
4387   if (Args.size() == 1) {
4388     Initializer = Args[0];
4389     if (!isa<InitListExpr>(Initializer))
4390       SourceType = Initializer->getType();
4391   }
4392 
4393   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4394   //       object is list-initialized (8.5.4).
4395   if (Kind.getKind() != InitializationKind::IK_Direct) {
4396     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4397       TryListInitialization(S, Entity, Kind, InitList, *this);
4398       return;
4399     }
4400   }
4401 
4402   //     - If the destination type is a reference type, see 8.5.3.
4403   if (DestType->isReferenceType()) {
4404     // C++0x [dcl.init.ref]p1:
4405     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4406     //   (8.3.2), shall be initialized by an object, or function, of type T or
4407     //   by an object that can be converted into a T.
4408     // (Therefore, multiple arguments are not permitted.)
4409     if (Args.size() != 1)
4410       SetFailed(FK_TooManyInitsForReference);
4411     else
4412       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4413     return;
4414   }
4415 
4416   //     - If the initializer is (), the object is value-initialized.
4417   if (Kind.getKind() == InitializationKind::IK_Value ||
4418       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4419     TryValueInitialization(S, Entity, Kind, *this);
4420     return;
4421   }
4422 
4423   // Handle default initialization.
4424   if (Kind.getKind() == InitializationKind::IK_Default) {
4425     TryDefaultInitialization(S, Entity, Kind, *this);
4426     return;
4427   }
4428 
4429   //     - If the destination type is an array of characters, an array of
4430   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4431   //       initializer is a string literal, see 8.5.2.
4432   //     - Otherwise, if the destination type is an array, the program is
4433   //       ill-formed.
4434   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4435     if (Initializer && isa<VariableArrayType>(DestAT)) {
4436       SetFailed(FK_VariableLengthArrayHasInitializer);
4437       return;
4438     }
4439 
4440     if (Initializer) {
4441       switch (IsStringInit(Initializer, DestAT, Context)) {
4442       case SIF_None:
4443         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4444         return;
4445       case SIF_NarrowStringIntoWideChar:
4446         SetFailed(FK_NarrowStringIntoWideCharArray);
4447         return;
4448       case SIF_WideStringIntoChar:
4449         SetFailed(FK_WideStringIntoCharArray);
4450         return;
4451       case SIF_IncompatWideStringIntoWideChar:
4452         SetFailed(FK_IncompatWideStringIntoWideChar);
4453         return;
4454       case SIF_Other:
4455         break;
4456       }
4457     }
4458 
4459     // Note: as an GNU C extension, we allow initialization of an
4460     // array from a compound literal that creates an array of the same
4461     // type, so long as the initializer has no side effects.
4462     if (!S.getLangOpts().CPlusPlus && Initializer &&
4463         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4464         Initializer->getType()->isArrayType()) {
4465       const ArrayType *SourceAT
4466         = Context.getAsArrayType(Initializer->getType());
4467       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4468         SetFailed(FK_ArrayTypeMismatch);
4469       else if (Initializer->HasSideEffects(S.Context))
4470         SetFailed(FK_NonConstantArrayInit);
4471       else {
4472         AddArrayInitStep(DestType);
4473       }
4474     }
4475     // Note: as a GNU C++ extension, we allow list-initialization of a
4476     // class member of array type from a parenthesized initializer list.
4477     else if (S.getLangOpts().CPlusPlus &&
4478              Entity.getKind() == InitializedEntity::EK_Member &&
4479              Initializer && isa<InitListExpr>(Initializer)) {
4480       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4481                             *this);
4482       AddParenthesizedArrayInitStep(DestType);
4483     } else if (DestAT->getElementType()->isCharType())
4484       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4485     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4486       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4487     else
4488       SetFailed(FK_ArrayNeedsInitList);
4489 
4490     return;
4491   }
4492 
4493   // Determine whether we should consider writeback conversions for
4494   // Objective-C ARC.
4495   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4496     Entity.getKind() == InitializedEntity::EK_Parameter;
4497 
4498   // We're at the end of the line for C: it's either a write-back conversion
4499   // or it's a C assignment. There's no need to check anything else.
4500   if (!S.getLangOpts().CPlusPlus) {
4501     // If allowed, check whether this is an Objective-C writeback conversion.
4502     if (allowObjCWritebackConversion &&
4503         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4504       return;
4505     }
4506 
4507     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4508       return;
4509 
4510     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4511       return;
4512 
4513     // Handle initialization in C
4514     AddCAssignmentStep(DestType);
4515     MaybeProduceObjCObject(S, *this, Entity);
4516     return;
4517   }
4518 
4519   assert(S.getLangOpts().CPlusPlus);
4520 
4521   //     - If the destination type is a (possibly cv-qualified) class type:
4522   if (DestType->isRecordType()) {
4523     //     - If the initialization is direct-initialization, or if it is
4524     //       copy-initialization where the cv-unqualified version of the
4525     //       source type is the same class as, or a derived class of, the
4526     //       class of the destination, constructors are considered. [...]
4527     if (Kind.getKind() == InitializationKind::IK_Direct ||
4528         (Kind.getKind() == InitializationKind::IK_Copy &&
4529          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4530           S.IsDerivedFrom(SourceType, DestType))))
4531       TryConstructorInitialization(S, Entity, Kind, Args,
4532                                    Entity.getType(), *this);
4533     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4534     //       user-defined conversion sequences that can convert from the source
4535     //       type to the destination type or (when a conversion function is
4536     //       used) to a derived class thereof are enumerated as described in
4537     //       13.3.1.4, and the best one is chosen through overload resolution
4538     //       (13.3).
4539     else
4540       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4541     return;
4542   }
4543 
4544   if (Args.size() > 1) {
4545     SetFailed(FK_TooManyInitsForScalar);
4546     return;
4547   }
4548   assert(Args.size() == 1 && "Zero-argument case handled above");
4549 
4550   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4551   //      type, conversion functions are considered.
4552   if (!SourceType.isNull() && SourceType->isRecordType()) {
4553     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4554     MaybeProduceObjCObject(S, *this, Entity);
4555     return;
4556   }
4557 
4558   //    - Otherwise, the initial value of the object being initialized is the
4559   //      (possibly converted) value of the initializer expression. Standard
4560   //      conversions (Clause 4) will be used, if necessary, to convert the
4561   //      initializer expression to the cv-unqualified version of the
4562   //      destination type; no user-defined conversions are considered.
4563 
4564   ImplicitConversionSequence ICS
4565     = S.TryImplicitConversion(Initializer, Entity.getType(),
4566                               /*SuppressUserConversions*/true,
4567                               /*AllowExplicitConversions*/ false,
4568                               /*InOverloadResolution*/ false,
4569                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4570                               allowObjCWritebackConversion);
4571 
4572   if (ICS.isStandard() &&
4573       ICS.Standard.Second == ICK_Writeback_Conversion) {
4574     // Objective-C ARC writeback conversion.
4575 
4576     // We should copy unless we're passing to an argument explicitly
4577     // marked 'out'.
4578     bool ShouldCopy = true;
4579     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4580       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4581 
4582     // If there was an lvalue adjustment, add it as a separate conversion.
4583     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4584         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4585       ImplicitConversionSequence LvalueICS;
4586       LvalueICS.setStandard();
4587       LvalueICS.Standard.setAsIdentityConversion();
4588       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4589       LvalueICS.Standard.First = ICS.Standard.First;
4590       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4591     }
4592 
4593     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4594   } else if (ICS.isBad()) {
4595     DeclAccessPair dap;
4596     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4597       AddZeroInitializationStep(Entity.getType());
4598     } else if (Initializer->getType() == Context.OverloadTy &&
4599                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4600                                                      false, dap))
4601       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4602     else
4603       SetFailed(InitializationSequence::FK_ConversionFailed);
4604   } else {
4605     AddConversionSequenceStep(ICS, Entity.getType());
4606 
4607     MaybeProduceObjCObject(S, *this, Entity);
4608   }
4609 }
4610 
4611 InitializationSequence::~InitializationSequence() {
4612   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4613                                           StepEnd = Steps.end();
4614        Step != StepEnd; ++Step)
4615     Step->Destroy();
4616 }
4617 
4618 //===----------------------------------------------------------------------===//
4619 // Perform initialization
4620 //===----------------------------------------------------------------------===//
4621 static Sema::AssignmentAction
4622 getAssignmentAction(const InitializedEntity &Entity) {
4623   switch(Entity.getKind()) {
4624   case InitializedEntity::EK_Variable:
4625   case InitializedEntity::EK_New:
4626   case InitializedEntity::EK_Exception:
4627   case InitializedEntity::EK_Base:
4628   case InitializedEntity::EK_Delegating:
4629     return Sema::AA_Initializing;
4630 
4631   case InitializedEntity::EK_Parameter:
4632     if (Entity.getDecl() &&
4633         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4634       return Sema::AA_Sending;
4635 
4636     return Sema::AA_Passing;
4637 
4638   case InitializedEntity::EK_Result:
4639     return Sema::AA_Returning;
4640 
4641   case InitializedEntity::EK_Temporary:
4642   case InitializedEntity::EK_RelatedResult:
4643     // FIXME: Can we tell apart casting vs. converting?
4644     return Sema::AA_Casting;
4645 
4646   case InitializedEntity::EK_Member:
4647   case InitializedEntity::EK_ArrayElement:
4648   case InitializedEntity::EK_VectorElement:
4649   case InitializedEntity::EK_ComplexElement:
4650   case InitializedEntity::EK_BlockElement:
4651   case InitializedEntity::EK_LambdaCapture:
4652   case InitializedEntity::EK_CompoundLiteralInit:
4653     return Sema::AA_Initializing;
4654   }
4655 
4656   llvm_unreachable("Invalid EntityKind!");
4657 }
4658 
4659 /// \brief Whether we should bind a created object as a temporary when
4660 /// initializing the given entity.
4661 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4662   switch (Entity.getKind()) {
4663   case InitializedEntity::EK_ArrayElement:
4664   case InitializedEntity::EK_Member:
4665   case InitializedEntity::EK_Result:
4666   case InitializedEntity::EK_New:
4667   case InitializedEntity::EK_Variable:
4668   case InitializedEntity::EK_Base:
4669   case InitializedEntity::EK_Delegating:
4670   case InitializedEntity::EK_VectorElement:
4671   case InitializedEntity::EK_ComplexElement:
4672   case InitializedEntity::EK_Exception:
4673   case InitializedEntity::EK_BlockElement:
4674   case InitializedEntity::EK_LambdaCapture:
4675   case InitializedEntity::EK_CompoundLiteralInit:
4676     return false;
4677 
4678   case InitializedEntity::EK_Parameter:
4679   case InitializedEntity::EK_Temporary:
4680   case InitializedEntity::EK_RelatedResult:
4681     return true;
4682   }
4683 
4684   llvm_unreachable("missed an InitializedEntity kind?");
4685 }
4686 
4687 /// \brief Whether the given entity, when initialized with an object
4688 /// created for that initialization, requires destruction.
4689 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4690   switch (Entity.getKind()) {
4691     case InitializedEntity::EK_Result:
4692     case InitializedEntity::EK_New:
4693     case InitializedEntity::EK_Base:
4694     case InitializedEntity::EK_Delegating:
4695     case InitializedEntity::EK_VectorElement:
4696     case InitializedEntity::EK_ComplexElement:
4697     case InitializedEntity::EK_BlockElement:
4698     case InitializedEntity::EK_LambdaCapture:
4699       return false;
4700 
4701     case InitializedEntity::EK_Member:
4702     case InitializedEntity::EK_Variable:
4703     case InitializedEntity::EK_Parameter:
4704     case InitializedEntity::EK_Temporary:
4705     case InitializedEntity::EK_ArrayElement:
4706     case InitializedEntity::EK_Exception:
4707     case InitializedEntity::EK_CompoundLiteralInit:
4708     case InitializedEntity::EK_RelatedResult:
4709       return true;
4710   }
4711 
4712   llvm_unreachable("missed an InitializedEntity kind?");
4713 }
4714 
4715 /// \brief Look for copy and move constructors and constructor templates, for
4716 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4717 static void LookupCopyAndMoveConstructors(Sema &S,
4718                                           OverloadCandidateSet &CandidateSet,
4719                                           CXXRecordDecl *Class,
4720                                           Expr *CurInitExpr) {
4721   DeclContext::lookup_result R = S.LookupConstructors(Class);
4722   // The container holding the constructors can under certain conditions
4723   // be changed while iterating (e.g. because of deserialization).
4724   // To be safe we copy the lookup results to a new container.
4725   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4726   for (SmallVectorImpl<NamedDecl *>::iterator
4727          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4728     NamedDecl *D = *CI;
4729     CXXConstructorDecl *Constructor = 0;
4730 
4731     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4732       // Handle copy/moveconstructors, only.
4733       if (!Constructor || Constructor->isInvalidDecl() ||
4734           !Constructor->isCopyOrMoveConstructor() ||
4735           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4736         continue;
4737 
4738       DeclAccessPair FoundDecl
4739         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4740       S.AddOverloadCandidate(Constructor, FoundDecl,
4741                              CurInitExpr, CandidateSet);
4742       continue;
4743     }
4744 
4745     // Handle constructor templates.
4746     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4747     if (ConstructorTmpl->isInvalidDecl())
4748       continue;
4749 
4750     Constructor = cast<CXXConstructorDecl>(
4751                                          ConstructorTmpl->getTemplatedDecl());
4752     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4753       continue;
4754 
4755     // FIXME: Do we need to limit this to copy-constructor-like
4756     // candidates?
4757     DeclAccessPair FoundDecl
4758       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4759     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4760                                    CurInitExpr, CandidateSet, true);
4761   }
4762 }
4763 
4764 /// \brief Get the location at which initialization diagnostics should appear.
4765 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4766                                            Expr *Initializer) {
4767   switch (Entity.getKind()) {
4768   case InitializedEntity::EK_Result:
4769     return Entity.getReturnLoc();
4770 
4771   case InitializedEntity::EK_Exception:
4772     return Entity.getThrowLoc();
4773 
4774   case InitializedEntity::EK_Variable:
4775     return Entity.getDecl()->getLocation();
4776 
4777   case InitializedEntity::EK_LambdaCapture:
4778     return Entity.getCaptureLoc();
4779 
4780   case InitializedEntity::EK_ArrayElement:
4781   case InitializedEntity::EK_Member:
4782   case InitializedEntity::EK_Parameter:
4783   case InitializedEntity::EK_Temporary:
4784   case InitializedEntity::EK_New:
4785   case InitializedEntity::EK_Base:
4786   case InitializedEntity::EK_Delegating:
4787   case InitializedEntity::EK_VectorElement:
4788   case InitializedEntity::EK_ComplexElement:
4789   case InitializedEntity::EK_BlockElement:
4790   case InitializedEntity::EK_CompoundLiteralInit:
4791   case InitializedEntity::EK_RelatedResult:
4792     return Initializer->getLocStart();
4793   }
4794   llvm_unreachable("missed an InitializedEntity kind?");
4795 }
4796 
4797 /// \brief Make a (potentially elidable) temporary copy of the object
4798 /// provided by the given initializer by calling the appropriate copy
4799 /// constructor.
4800 ///
4801 /// \param S The Sema object used for type-checking.
4802 ///
4803 /// \param T The type of the temporary object, which must either be
4804 /// the type of the initializer expression or a superclass thereof.
4805 ///
4806 /// \param Entity The entity being initialized.
4807 ///
4808 /// \param CurInit The initializer expression.
4809 ///
4810 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4811 /// is permitted in C++03 (but not C++0x) when binding a reference to
4812 /// an rvalue.
4813 ///
4814 /// \returns An expression that copies the initializer expression into
4815 /// a temporary object, or an error expression if a copy could not be
4816 /// created.
4817 static ExprResult CopyObject(Sema &S,
4818                              QualType T,
4819                              const InitializedEntity &Entity,
4820                              ExprResult CurInit,
4821                              bool IsExtraneousCopy) {
4822   // Determine which class type we're copying to.
4823   Expr *CurInitExpr = (Expr *)CurInit.get();
4824   CXXRecordDecl *Class = 0;
4825   if (const RecordType *Record = T->getAs<RecordType>())
4826     Class = cast<CXXRecordDecl>(Record->getDecl());
4827   if (!Class)
4828     return CurInit;
4829 
4830   // C++0x [class.copy]p32:
4831   //   When certain criteria are met, an implementation is allowed to
4832   //   omit the copy/move construction of a class object, even if the
4833   //   copy/move constructor and/or destructor for the object have
4834   //   side effects. [...]
4835   //     - when a temporary class object that has not been bound to a
4836   //       reference (12.2) would be copied/moved to a class object
4837   //       with the same cv-unqualified type, the copy/move operation
4838   //       can be omitted by constructing the temporary object
4839   //       directly into the target of the omitted copy/move
4840   //
4841   // Note that the other three bullets are handled elsewhere. Copy
4842   // elision for return statements and throw expressions are handled as part
4843   // of constructor initialization, while copy elision for exception handlers
4844   // is handled by the run-time.
4845   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4846   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4847 
4848   // Make sure that the type we are copying is complete.
4849   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4850     return CurInit;
4851 
4852   // Perform overload resolution using the class's copy/move constructors.
4853   // Only consider constructors and constructor templates. Per
4854   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4855   // is direct-initialization.
4856   OverloadCandidateSet CandidateSet(Loc);
4857   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4858 
4859   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4860 
4861   OverloadCandidateSet::iterator Best;
4862   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4863   case OR_Success:
4864     break;
4865 
4866   case OR_No_Viable_Function:
4867     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4868            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4869            : diag::err_temp_copy_no_viable)
4870       << (int)Entity.getKind() << CurInitExpr->getType()
4871       << CurInitExpr->getSourceRange();
4872     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4873     if (!IsExtraneousCopy || S.isSFINAEContext())
4874       return ExprError();
4875     return CurInit;
4876 
4877   case OR_Ambiguous:
4878     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4879       << (int)Entity.getKind() << CurInitExpr->getType()
4880       << CurInitExpr->getSourceRange();
4881     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4882     return ExprError();
4883 
4884   case OR_Deleted:
4885     S.Diag(Loc, diag::err_temp_copy_deleted)
4886       << (int)Entity.getKind() << CurInitExpr->getType()
4887       << CurInitExpr->getSourceRange();
4888     S.NoteDeletedFunction(Best->Function);
4889     return ExprError();
4890   }
4891 
4892   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4893   SmallVector<Expr*, 8> ConstructorArgs;
4894   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4895 
4896   S.CheckConstructorAccess(Loc, Constructor, Entity,
4897                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4898 
4899   if (IsExtraneousCopy) {
4900     // If this is a totally extraneous copy for C++03 reference
4901     // binding purposes, just return the original initialization
4902     // expression. We don't generate an (elided) copy operation here
4903     // because doing so would require us to pass down a flag to avoid
4904     // infinite recursion, where each step adds another extraneous,
4905     // elidable copy.
4906 
4907     // Instantiate the default arguments of any extra parameters in
4908     // the selected copy constructor, as if we were going to create a
4909     // proper call to the copy constructor.
4910     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4911       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4912       if (S.RequireCompleteType(Loc, Parm->getType(),
4913                                 diag::err_call_incomplete_argument))
4914         break;
4915 
4916       // Build the default argument expression; we don't actually care
4917       // if this succeeds or not, because this routine will complain
4918       // if there was a problem.
4919       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4920     }
4921 
4922     return S.Owned(CurInitExpr);
4923   }
4924 
4925   // Determine the arguments required to actually perform the
4926   // constructor call (we might have derived-to-base conversions, or
4927   // the copy constructor may have default arguments).
4928   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4929     return ExprError();
4930 
4931   // Actually perform the constructor call.
4932   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4933                                     ConstructorArgs,
4934                                     HadMultipleCandidates,
4935                                     /*ListInit*/ false,
4936                                     /*ZeroInit*/ false,
4937                                     CXXConstructExpr::CK_Complete,
4938                                     SourceRange());
4939 
4940   // If we're supposed to bind temporaries, do so.
4941   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4942     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4943   return CurInit;
4944 }
4945 
4946 /// \brief Check whether elidable copy construction for binding a reference to
4947 /// a temporary would have succeeded if we were building in C++98 mode, for
4948 /// -Wc++98-compat.
4949 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4950                                            const InitializedEntity &Entity,
4951                                            Expr *CurInitExpr) {
4952   assert(S.getLangOpts().CPlusPlus11);
4953 
4954   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4955   if (!Record)
4956     return;
4957 
4958   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4959   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4960         == DiagnosticsEngine::Ignored)
4961     return;
4962 
4963   // Find constructors which would have been considered.
4964   OverloadCandidateSet CandidateSet(Loc);
4965   LookupCopyAndMoveConstructors(
4966       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4967 
4968   // Perform overload resolution.
4969   OverloadCandidateSet::iterator Best;
4970   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4971 
4972   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4973     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4974     << CurInitExpr->getSourceRange();
4975 
4976   switch (OR) {
4977   case OR_Success:
4978     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4979                              Entity, Best->FoundDecl.getAccess(), Diag);
4980     // FIXME: Check default arguments as far as that's possible.
4981     break;
4982 
4983   case OR_No_Viable_Function:
4984     S.Diag(Loc, Diag);
4985     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4986     break;
4987 
4988   case OR_Ambiguous:
4989     S.Diag(Loc, Diag);
4990     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4991     break;
4992 
4993   case OR_Deleted:
4994     S.Diag(Loc, Diag);
4995     S.NoteDeletedFunction(Best->Function);
4996     break;
4997   }
4998 }
4999 
5000 void InitializationSequence::PrintInitLocationNote(Sema &S,
5001                                               const InitializedEntity &Entity) {
5002   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
5003     if (Entity.getDecl()->getLocation().isInvalid())
5004       return;
5005 
5006     if (Entity.getDecl()->getDeclName())
5007       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5008         << Entity.getDecl()->getDeclName();
5009     else
5010       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5011   }
5012   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5013            Entity.getMethodDecl())
5014     S.Diag(Entity.getMethodDecl()->getLocation(),
5015            diag::note_method_return_type_change)
5016       << Entity.getMethodDecl()->getDeclName();
5017 }
5018 
5019 static bool isReferenceBinding(const InitializationSequence::Step &s) {
5020   return s.Kind == InitializationSequence::SK_BindReference ||
5021          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5022 }
5023 
5024 /// Returns true if the parameters describe a constructor initialization of
5025 /// an explicit temporary object, e.g. "Point(x, y)".
5026 static bool isExplicitTemporary(const InitializedEntity &Entity,
5027                                 const InitializationKind &Kind,
5028                                 unsigned NumArgs) {
5029   switch (Entity.getKind()) {
5030   case InitializedEntity::EK_Temporary:
5031   case InitializedEntity::EK_CompoundLiteralInit:
5032   case InitializedEntity::EK_RelatedResult:
5033     break;
5034   default:
5035     return false;
5036   }
5037 
5038   switch (Kind.getKind()) {
5039   case InitializationKind::IK_DirectList:
5040     return true;
5041   // FIXME: Hack to work around cast weirdness.
5042   case InitializationKind::IK_Direct:
5043   case InitializationKind::IK_Value:
5044     return NumArgs != 1;
5045   default:
5046     return false;
5047   }
5048 }
5049 
5050 static ExprResult
5051 PerformConstructorInitialization(Sema &S,
5052                                  const InitializedEntity &Entity,
5053                                  const InitializationKind &Kind,
5054                                  MultiExprArg Args,
5055                                  const InitializationSequence::Step& Step,
5056                                  bool &ConstructorInitRequiresZeroInit,
5057                                  bool IsListInitialization) {
5058   unsigned NumArgs = Args.size();
5059   CXXConstructorDecl *Constructor
5060     = cast<CXXConstructorDecl>(Step.Function.Function);
5061   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5062 
5063   // Build a call to the selected constructor.
5064   SmallVector<Expr*, 8> ConstructorArgs;
5065   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5066                          ? Kind.getEqualLoc()
5067                          : Kind.getLocation();
5068 
5069   if (Kind.getKind() == InitializationKind::IK_Default) {
5070     // Force even a trivial, implicit default constructor to be
5071     // semantically checked. We do this explicitly because we don't build
5072     // the definition for completely trivial constructors.
5073     assert(Constructor->getParent() && "No parent class for constructor.");
5074     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5075         Constructor->isTrivial() && !Constructor->isUsed(false))
5076       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5077   }
5078 
5079   ExprResult CurInit = S.Owned((Expr *)0);
5080 
5081   // C++ [over.match.copy]p1:
5082   //   - When initializing a temporary to be bound to the first parameter
5083   //     of a constructor that takes a reference to possibly cv-qualified
5084   //     T as its first argument, called with a single argument in the
5085   //     context of direct-initialization, explicit conversion functions
5086   //     are also considered.
5087   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5088                            Args.size() == 1 &&
5089                            Constructor->isCopyOrMoveConstructor();
5090 
5091   // Determine the arguments required to actually perform the constructor
5092   // call.
5093   if (S.CompleteConstructorCall(Constructor, Args,
5094                                 Loc, ConstructorArgs,
5095                                 AllowExplicitConv,
5096                                 IsListInitialization))
5097     return ExprError();
5098 
5099 
5100   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5101     // An explicitly-constructed temporary, e.g., X(1, 2).
5102     S.MarkFunctionReferenced(Loc, Constructor);
5103     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5104       return ExprError();
5105 
5106     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5107     if (!TSInfo)
5108       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5109     SourceRange ParenRange;
5110     if (Kind.getKind() != InitializationKind::IK_DirectList)
5111       ParenRange = Kind.getParenRange();
5112 
5113     CurInit = S.Owned(
5114       new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5115                                              TSInfo, ConstructorArgs,
5116                                              ParenRange, IsListInitialization,
5117                                              HadMultipleCandidates,
5118                                              ConstructorInitRequiresZeroInit));
5119   } else {
5120     CXXConstructExpr::ConstructionKind ConstructKind =
5121       CXXConstructExpr::CK_Complete;
5122 
5123     if (Entity.getKind() == InitializedEntity::EK_Base) {
5124       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5125         CXXConstructExpr::CK_VirtualBase :
5126         CXXConstructExpr::CK_NonVirtualBase;
5127     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5128       ConstructKind = CXXConstructExpr::CK_Delegating;
5129     }
5130 
5131     // Only get the parenthesis range if it is a direct construction.
5132     SourceRange parenRange =
5133         Kind.getKind() == InitializationKind::IK_Direct ?
5134         Kind.getParenRange() : SourceRange();
5135 
5136     // If the entity allows NRVO, mark the construction as elidable
5137     // unconditionally.
5138     if (Entity.allowsNRVO())
5139       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5140                                         Constructor, /*Elidable=*/true,
5141                                         ConstructorArgs,
5142                                         HadMultipleCandidates,
5143                                         IsListInitialization,
5144                                         ConstructorInitRequiresZeroInit,
5145                                         ConstructKind,
5146                                         parenRange);
5147     else
5148       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5149                                         Constructor,
5150                                         ConstructorArgs,
5151                                         HadMultipleCandidates,
5152                                         IsListInitialization,
5153                                         ConstructorInitRequiresZeroInit,
5154                                         ConstructKind,
5155                                         parenRange);
5156   }
5157   if (CurInit.isInvalid())
5158     return ExprError();
5159 
5160   // Only check access if all of that succeeded.
5161   S.CheckConstructorAccess(Loc, Constructor, Entity,
5162                            Step.Function.FoundDecl.getAccess());
5163   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5164     return ExprError();
5165 
5166   if (shouldBindAsTemporary(Entity))
5167     CurInit = S.MaybeBindToTemporary(CurInit.take());
5168 
5169   return CurInit;
5170 }
5171 
5172 /// Determine whether the specified InitializedEntity definitely has a lifetime
5173 /// longer than the current full-expression. Conservatively returns false if
5174 /// it's unclear.
5175 static bool
5176 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5177   const InitializedEntity *Top = &Entity;
5178   while (Top->getParent())
5179     Top = Top->getParent();
5180 
5181   switch (Top->getKind()) {
5182   case InitializedEntity::EK_Variable:
5183   case InitializedEntity::EK_Result:
5184   case InitializedEntity::EK_Exception:
5185   case InitializedEntity::EK_Member:
5186   case InitializedEntity::EK_New:
5187   case InitializedEntity::EK_Base:
5188   case InitializedEntity::EK_Delegating:
5189     return true;
5190 
5191   case InitializedEntity::EK_ArrayElement:
5192   case InitializedEntity::EK_VectorElement:
5193   case InitializedEntity::EK_BlockElement:
5194   case InitializedEntity::EK_ComplexElement:
5195     // Could not determine what the full initialization is. Assume it might not
5196     // outlive the full-expression.
5197     return false;
5198 
5199   case InitializedEntity::EK_Parameter:
5200   case InitializedEntity::EK_Temporary:
5201   case InitializedEntity::EK_LambdaCapture:
5202   case InitializedEntity::EK_CompoundLiteralInit:
5203   case InitializedEntity::EK_RelatedResult:
5204     // The entity being initialized might not outlive the full-expression.
5205     return false;
5206   }
5207 
5208   llvm_unreachable("unknown entity kind");
5209 }
5210 
5211 /// Determine the declaration which an initialized entity ultimately refers to,
5212 /// for the purpose of lifetime-extending a temporary bound to a reference in
5213 /// the initialization of \p Entity.
5214 static const ValueDecl *
5215 getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5216                                      const ValueDecl *FallbackDecl = 0) {
5217   // C++11 [class.temporary]p5:
5218   switch (Entity.getKind()) {
5219   case InitializedEntity::EK_Variable:
5220     //   The temporary [...] persists for the lifetime of the reference
5221     return Entity.getDecl();
5222 
5223   case InitializedEntity::EK_Member:
5224     // For subobjects, we look at the complete object.
5225     if (Entity.getParent())
5226       return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5227                                                   Entity.getDecl());
5228 
5229     //   except:
5230     //   -- A temporary bound to a reference member in a constructor's
5231     //      ctor-initializer persists until the constructor exits.
5232     return Entity.getDecl();
5233 
5234   case InitializedEntity::EK_Parameter:
5235     //   -- A temporary bound to a reference parameter in a function call
5236     //      persists until the completion of the full-expression containing
5237     //      the call.
5238   case InitializedEntity::EK_Result:
5239     //   -- The lifetime of a temporary bound to the returned value in a
5240     //      function return statement is not extended; the temporary is
5241     //      destroyed at the end of the full-expression in the return statement.
5242   case InitializedEntity::EK_New:
5243     //   -- A temporary bound to a reference in a new-initializer persists
5244     //      until the completion of the full-expression containing the
5245     //      new-initializer.
5246     return 0;
5247 
5248   case InitializedEntity::EK_Temporary:
5249   case InitializedEntity::EK_CompoundLiteralInit:
5250   case InitializedEntity::EK_RelatedResult:
5251     // We don't yet know the storage duration of the surrounding temporary.
5252     // Assume it's got full-expression duration for now, it will patch up our
5253     // storage duration if that's not correct.
5254     return 0;
5255 
5256   case InitializedEntity::EK_ArrayElement:
5257     // For subobjects, we look at the complete object.
5258     return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5259                                                 FallbackDecl);
5260 
5261   case InitializedEntity::EK_Base:
5262   case InitializedEntity::EK_Delegating:
5263     // We can reach this case for aggregate initialization in a constructor:
5264     //   struct A { int &&r; };
5265     //   struct B : A { B() : A{0} {} };
5266     // In this case, use the innermost field decl as the context.
5267     return FallbackDecl;
5268 
5269   case InitializedEntity::EK_BlockElement:
5270   case InitializedEntity::EK_LambdaCapture:
5271   case InitializedEntity::EK_Exception:
5272   case InitializedEntity::EK_VectorElement:
5273   case InitializedEntity::EK_ComplexElement:
5274     return 0;
5275   }
5276   llvm_unreachable("unknown entity kind");
5277 }
5278 
5279 static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5280 
5281 /// Update a glvalue expression that is used as the initializer of a reference
5282 /// to note that its lifetime is extended.
5283 /// \return \c true if any temporary had its lifetime extended.
5284 static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5285   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5286     if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5287       // This is just redundant braces around an initializer. Step over it.
5288       Init = ILE->getInit(0);
5289     }
5290   }
5291 
5292   // Walk past any constructs which we can lifetime-extend across.
5293   Expr *Old;
5294   do {
5295     Old = Init;
5296 
5297     // Step over any subobject adjustments; we may have a materialized
5298     // temporary inside them.
5299     SmallVector<const Expr *, 2> CommaLHSs;
5300     SmallVector<SubobjectAdjustment, 2> Adjustments;
5301     Init = const_cast<Expr *>(
5302         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5303 
5304     // Per current approach for DR1376, look through casts to reference type
5305     // when performing lifetime extension.
5306     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5307       if (CE->getSubExpr()->isGLValue())
5308         Init = CE->getSubExpr();
5309 
5310     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5311     // It's unclear if binding a reference to that xvalue extends the array
5312     // temporary.
5313   } while (Init != Old);
5314 
5315   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5316     // Update the storage duration of the materialized temporary.
5317     // FIXME: Rebuild the expression instead of mutating it.
5318     ME->setExtendingDecl(ExtendingD);
5319     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5320     return true;
5321   }
5322 
5323   return false;
5324 }
5325 
5326 /// Update a prvalue expression that is going to be materialized as a
5327 /// lifetime-extended temporary.
5328 static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5329   // Dig out the expression which constructs the extended temporary.
5330   SmallVector<const Expr *, 2> CommaLHSs;
5331   SmallVector<SubobjectAdjustment, 2> Adjustments;
5332   Init = const_cast<Expr *>(
5333       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5334 
5335   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5336     Init = BTE->getSubExpr();
5337 
5338   if (CXXStdInitializerListExpr *ILE =
5339           dyn_cast<CXXStdInitializerListExpr>(Init)) {
5340     performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5341     return;
5342   }
5343 
5344   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5345     if (ILE->getType()->isArrayType()) {
5346       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5347         performLifetimeExtension(ILE->getInit(I), ExtendingD);
5348       return;
5349     }
5350 
5351     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5352       assert(RD->isAggregate() && "aggregate init on non-aggregate");
5353 
5354       // If we lifetime-extend a braced initializer which is initializing an
5355       // aggregate, and that aggregate contains reference members which are
5356       // bound to temporaries, those temporaries are also lifetime-extended.
5357       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5358           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5359         performReferenceExtension(ILE->getInit(0), ExtendingD);
5360       else {
5361         unsigned Index = 0;
5362         for (RecordDecl::field_iterator I = RD->field_begin(),
5363                                         E = RD->field_end();
5364              I != E; ++I) {
5365           if (Index >= ILE->getNumInits())
5366             break;
5367           if (I->isUnnamedBitfield())
5368             continue;
5369           Expr *SubInit = ILE->getInit(Index);
5370           if (I->getType()->isReferenceType())
5371             performReferenceExtension(SubInit, ExtendingD);
5372           else if (isa<InitListExpr>(SubInit) ||
5373                    isa<CXXStdInitializerListExpr>(SubInit))
5374             // This may be either aggregate-initialization of a member or
5375             // initialization of a std::initializer_list object. Either way,
5376             // we should recursively lifetime-extend that initializer.
5377             performLifetimeExtension(SubInit, ExtendingD);
5378           ++Index;
5379         }
5380       }
5381     }
5382   }
5383 }
5384 
5385 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5386                                     const Expr *Init, bool IsInitializerList,
5387                                     const ValueDecl *ExtendingDecl) {
5388   // Warn if a field lifetime-extends a temporary.
5389   if (isa<FieldDecl>(ExtendingDecl)) {
5390     if (IsInitializerList) {
5391       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5392         << /*at end of constructor*/true;
5393       return;
5394     }
5395 
5396     bool IsSubobjectMember = false;
5397     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5398          Ent = Ent->getParent()) {
5399       if (Ent->getKind() != InitializedEntity::EK_Base) {
5400         IsSubobjectMember = true;
5401         break;
5402       }
5403     }
5404     S.Diag(Init->getExprLoc(),
5405            diag::warn_bind_ref_member_to_temporary)
5406       << ExtendingDecl << Init->getSourceRange()
5407       << IsSubobjectMember << IsInitializerList;
5408     if (IsSubobjectMember)
5409       S.Diag(ExtendingDecl->getLocation(),
5410              diag::note_ref_subobject_of_member_declared_here);
5411     else
5412       S.Diag(ExtendingDecl->getLocation(),
5413              diag::note_ref_or_ptr_member_declared_here)
5414         << /*is pointer*/false;
5415   }
5416 }
5417 
5418 ExprResult
5419 InitializationSequence::Perform(Sema &S,
5420                                 const InitializedEntity &Entity,
5421                                 const InitializationKind &Kind,
5422                                 MultiExprArg Args,
5423                                 QualType *ResultType) {
5424   if (Failed()) {
5425     Diagnose(S, Entity, Kind, Args);
5426     return ExprError();
5427   }
5428 
5429   if (getKind() == DependentSequence) {
5430     // If the declaration is a non-dependent, incomplete array type
5431     // that has an initializer, then its type will be completed once
5432     // the initializer is instantiated.
5433     if (ResultType && !Entity.getType()->isDependentType() &&
5434         Args.size() == 1) {
5435       QualType DeclType = Entity.getType();
5436       if (const IncompleteArrayType *ArrayT
5437                            = S.Context.getAsIncompleteArrayType(DeclType)) {
5438         // FIXME: We don't currently have the ability to accurately
5439         // compute the length of an initializer list without
5440         // performing full type-checking of the initializer list
5441         // (since we have to determine where braces are implicitly
5442         // introduced and such).  So, we fall back to making the array
5443         // type a dependently-sized array type with no specified
5444         // bound.
5445         if (isa<InitListExpr>((Expr *)Args[0])) {
5446           SourceRange Brackets;
5447 
5448           // Scavange the location of the brackets from the entity, if we can.
5449           if (DeclaratorDecl *DD = Entity.getDecl()) {
5450             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5451               TypeLoc TL = TInfo->getTypeLoc();
5452               if (IncompleteArrayTypeLoc ArrayLoc =
5453                       TL.getAs<IncompleteArrayTypeLoc>())
5454                 Brackets = ArrayLoc.getBracketsRange();
5455             }
5456           }
5457 
5458           *ResultType
5459             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5460                                                    /*NumElts=*/0,
5461                                                    ArrayT->getSizeModifier(),
5462                                        ArrayT->getIndexTypeCVRQualifiers(),
5463                                                    Brackets);
5464         }
5465 
5466       }
5467     }
5468     if (Kind.getKind() == InitializationKind::IK_Direct &&
5469         !Kind.isExplicitCast()) {
5470       // Rebuild the ParenListExpr.
5471       SourceRange ParenRange = Kind.getParenRange();
5472       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5473                                   Args);
5474     }
5475     assert(Kind.getKind() == InitializationKind::IK_Copy ||
5476            Kind.isExplicitCast() ||
5477            Kind.getKind() == InitializationKind::IK_DirectList);
5478     return ExprResult(Args[0]);
5479   }
5480 
5481   // No steps means no initialization.
5482   if (Steps.empty())
5483     return S.Owned((Expr *)0);
5484 
5485   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5486       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5487       Entity.getKind() != InitializedEntity::EK_Parameter) {
5488     // Produce a C++98 compatibility warning if we are initializing a reference
5489     // from an initializer list. For parameters, we produce a better warning
5490     // elsewhere.
5491     Expr *Init = Args[0];
5492     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5493       << Init->getSourceRange();
5494   }
5495 
5496   // Diagnose cases where we initialize a pointer to an array temporary, and the
5497   // pointer obviously outlives the temporary.
5498   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5499       Entity.getType()->isPointerType() &&
5500       InitializedEntityOutlivesFullExpression(Entity)) {
5501     Expr *Init = Args[0];
5502     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5503     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5504       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5505         << Init->getSourceRange();
5506   }
5507 
5508   QualType DestType = Entity.getType().getNonReferenceType();
5509   // FIXME: Ugly hack around the fact that Entity.getType() is not
5510   // the same as Entity.getDecl()->getType() in cases involving type merging,
5511   //  and we want latter when it makes sense.
5512   if (ResultType)
5513     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5514                                      Entity.getType();
5515 
5516   ExprResult CurInit = S.Owned((Expr *)0);
5517 
5518   // For initialization steps that start with a single initializer,
5519   // grab the only argument out the Args and place it into the "current"
5520   // initializer.
5521   switch (Steps.front().Kind) {
5522   case SK_ResolveAddressOfOverloadedFunction:
5523   case SK_CastDerivedToBaseRValue:
5524   case SK_CastDerivedToBaseXValue:
5525   case SK_CastDerivedToBaseLValue:
5526   case SK_BindReference:
5527   case SK_BindReferenceToTemporary:
5528   case SK_ExtraneousCopyToTemporary:
5529   case SK_UserConversion:
5530   case SK_QualificationConversionLValue:
5531   case SK_QualificationConversionXValue:
5532   case SK_QualificationConversionRValue:
5533   case SK_LValueToRValue:
5534   case SK_ConversionSequence:
5535   case SK_ListInitialization:
5536   case SK_UnwrapInitList:
5537   case SK_RewrapInitList:
5538   case SK_CAssignment:
5539   case SK_StringInit:
5540   case SK_ObjCObjectConversion:
5541   case SK_ArrayInit:
5542   case SK_ParenthesizedArrayInit:
5543   case SK_PassByIndirectCopyRestore:
5544   case SK_PassByIndirectRestore:
5545   case SK_ProduceObjCObject:
5546   case SK_StdInitializerList:
5547   case SK_OCLSamplerInit:
5548   case SK_OCLZeroEvent: {
5549     assert(Args.size() == 1);
5550     CurInit = Args[0];
5551     if (!CurInit.get()) return ExprError();
5552     break;
5553   }
5554 
5555   case SK_ConstructorInitialization:
5556   case SK_ListConstructorCall:
5557   case SK_ZeroInitialization:
5558     break;
5559   }
5560 
5561   // Walk through the computed steps for the initialization sequence,
5562   // performing the specified conversions along the way.
5563   bool ConstructorInitRequiresZeroInit = false;
5564   for (step_iterator Step = step_begin(), StepEnd = step_end();
5565        Step != StepEnd; ++Step) {
5566     if (CurInit.isInvalid())
5567       return ExprError();
5568 
5569     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5570 
5571     switch (Step->Kind) {
5572     case SK_ResolveAddressOfOverloadedFunction:
5573       // Overload resolution determined which function invoke; update the
5574       // initializer to reflect that choice.
5575       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5576       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5577         return ExprError();
5578       CurInit = S.FixOverloadedFunctionReference(CurInit,
5579                                                  Step->Function.FoundDecl,
5580                                                  Step->Function.Function);
5581       break;
5582 
5583     case SK_CastDerivedToBaseRValue:
5584     case SK_CastDerivedToBaseXValue:
5585     case SK_CastDerivedToBaseLValue: {
5586       // We have a derived-to-base cast that produces either an rvalue or an
5587       // lvalue. Perform that cast.
5588 
5589       CXXCastPath BasePath;
5590 
5591       // Casts to inaccessible base classes are allowed with C-style casts.
5592       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5593       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5594                                          CurInit.get()->getLocStart(),
5595                                          CurInit.get()->getSourceRange(),
5596                                          &BasePath, IgnoreBaseAccess))
5597         return ExprError();
5598 
5599       if (S.BasePathInvolvesVirtualBase(BasePath)) {
5600         QualType T = SourceType;
5601         if (const PointerType *Pointer = T->getAs<PointerType>())
5602           T = Pointer->getPointeeType();
5603         if (const RecordType *RecordTy = T->getAs<RecordType>())
5604           S.MarkVTableUsed(CurInit.get()->getLocStart(),
5605                            cast<CXXRecordDecl>(RecordTy->getDecl()));
5606       }
5607 
5608       ExprValueKind VK =
5609           Step->Kind == SK_CastDerivedToBaseLValue ?
5610               VK_LValue :
5611               (Step->Kind == SK_CastDerivedToBaseXValue ?
5612                    VK_XValue :
5613                    VK_RValue);
5614       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5615                                                  Step->Type,
5616                                                  CK_DerivedToBase,
5617                                                  CurInit.get(),
5618                                                  &BasePath, VK));
5619       break;
5620     }
5621 
5622     case SK_BindReference:
5623       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5624       if (CurInit.get()->refersToBitField()) {
5625         // We don't necessarily have an unambiguous source bit-field.
5626         FieldDecl *BitField = CurInit.get()->getSourceBitField();
5627         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5628           << Entity.getType().isVolatileQualified()
5629           << (BitField ? BitField->getDeclName() : DeclarationName())
5630           << (BitField != NULL)
5631           << CurInit.get()->getSourceRange();
5632         if (BitField)
5633           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5634 
5635         return ExprError();
5636       }
5637 
5638       if (CurInit.get()->refersToVectorElement()) {
5639         // References cannot bind to vector elements.
5640         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5641           << Entity.getType().isVolatileQualified()
5642           << CurInit.get()->getSourceRange();
5643         PrintInitLocationNote(S, Entity);
5644         return ExprError();
5645       }
5646 
5647       // Reference binding does not have any corresponding ASTs.
5648 
5649       // Check exception specifications
5650       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5651         return ExprError();
5652 
5653       // Even though we didn't materialize a temporary, the binding may still
5654       // extend the lifetime of a temporary. This happens if we bind a reference
5655       // to the result of a cast to reference type.
5656       if (const ValueDecl *ExtendingDecl =
5657               getDeclForTemporaryLifetimeExtension(Entity)) {
5658         if (performReferenceExtension(CurInit.get(), ExtendingDecl))
5659           warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
5660                                   ExtendingDecl);
5661       }
5662 
5663       break;
5664 
5665     case SK_BindReferenceToTemporary: {
5666       // Make sure the "temporary" is actually an rvalue.
5667       assert(CurInit.get()->isRValue() && "not a temporary");
5668 
5669       // Check exception specifications
5670       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5671         return ExprError();
5672 
5673       // Maybe lifetime-extend the temporary's subobjects to match the
5674       // entity's lifetime.
5675       const ValueDecl *ExtendingDecl =
5676           getDeclForTemporaryLifetimeExtension(Entity);
5677       if (ExtendingDecl) {
5678         performLifetimeExtension(CurInit.get(), ExtendingDecl);
5679         warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5680       }
5681 
5682       // Materialize the temporary into memory.
5683       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5684           Entity.getType().getNonReferenceType(), CurInit.get(),
5685           Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5686 
5687       // If we're binding to an Objective-C object that has lifetime, we
5688       // need cleanups. Likewise if we're extending this temporary to automatic
5689       // storage duration -- we need to register its cleanup during the
5690       // full-expression's cleanups.
5691       if ((S.getLangOpts().ObjCAutoRefCount &&
5692            MTE->getType()->isObjCLifetimeType()) ||
5693           (MTE->getStorageDuration() == SD_Automatic &&
5694            MTE->getType().isDestructedType()))
5695         S.ExprNeedsCleanups = true;
5696 
5697       CurInit = S.Owned(MTE);
5698       break;
5699     }
5700 
5701     case SK_ExtraneousCopyToTemporary:
5702       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5703                            /*IsExtraneousCopy=*/true);
5704       break;
5705 
5706     case SK_UserConversion: {
5707       // We have a user-defined conversion that invokes either a constructor
5708       // or a conversion function.
5709       CastKind CastKind;
5710       bool IsCopy = false;
5711       FunctionDecl *Fn = Step->Function.Function;
5712       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5713       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5714       bool CreatedObject = false;
5715       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5716         // Build a call to the selected constructor.
5717         SmallVector<Expr*, 8> ConstructorArgs;
5718         SourceLocation Loc = CurInit.get()->getLocStart();
5719         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5720 
5721         // Determine the arguments required to actually perform the constructor
5722         // call.
5723         Expr *Arg = CurInit.get();
5724         if (S.CompleteConstructorCall(Constructor,
5725                                       MultiExprArg(&Arg, 1),
5726                                       Loc, ConstructorArgs))
5727           return ExprError();
5728 
5729         // Build an expression that constructs a temporary.
5730         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5731                                           ConstructorArgs,
5732                                           HadMultipleCandidates,
5733                                           /*ListInit*/ false,
5734                                           /*ZeroInit*/ false,
5735                                           CXXConstructExpr::CK_Complete,
5736                                           SourceRange());
5737         if (CurInit.isInvalid())
5738           return ExprError();
5739 
5740         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5741                                  FoundFn.getAccess());
5742         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5743           return ExprError();
5744 
5745         CastKind = CK_ConstructorConversion;
5746         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5747         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5748             S.IsDerivedFrom(SourceType, Class))
5749           IsCopy = true;
5750 
5751         CreatedObject = true;
5752       } else {
5753         // Build a call to the conversion function.
5754         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5755         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5756                                     FoundFn);
5757         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5758           return ExprError();
5759 
5760         // FIXME: Should we move this initialization into a separate
5761         // derived-to-base conversion? I believe the answer is "no", because
5762         // we don't want to turn off access control here for c-style casts.
5763         ExprResult CurInitExprRes =
5764           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5765                                                 FoundFn, Conversion);
5766         if(CurInitExprRes.isInvalid())
5767           return ExprError();
5768         CurInit = CurInitExprRes;
5769 
5770         // Build the actual call to the conversion function.
5771         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5772                                            HadMultipleCandidates);
5773         if (CurInit.isInvalid() || !CurInit.get())
5774           return ExprError();
5775 
5776         CastKind = CK_UserDefinedConversion;
5777 
5778         CreatedObject = Conversion->getResultType()->isRecordType();
5779       }
5780 
5781       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5782       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5783 
5784       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5785         QualType T = CurInit.get()->getType();
5786         if (const RecordType *Record = T->getAs<RecordType>()) {
5787           CXXDestructorDecl *Destructor
5788             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5789           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5790                                   S.PDiag(diag::err_access_dtor_temp) << T);
5791           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5792           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5793             return ExprError();
5794         }
5795       }
5796 
5797       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5798                                                  CurInit.get()->getType(),
5799                                                  CastKind, CurInit.get(), 0,
5800                                                 CurInit.get()->getValueKind()));
5801       if (MaybeBindToTemp)
5802         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5803       if (RequiresCopy)
5804         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5805                              CurInit, /*IsExtraneousCopy=*/false);
5806       break;
5807     }
5808 
5809     case SK_QualificationConversionLValue:
5810     case SK_QualificationConversionXValue:
5811     case SK_QualificationConversionRValue: {
5812       // Perform a qualification conversion; these can never go wrong.
5813       ExprValueKind VK =
5814           Step->Kind == SK_QualificationConversionLValue ?
5815               VK_LValue :
5816               (Step->Kind == SK_QualificationConversionXValue ?
5817                    VK_XValue :
5818                    VK_RValue);
5819       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5820       break;
5821     }
5822 
5823     case SK_LValueToRValue: {
5824       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5825       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5826                                                  CK_LValueToRValue,
5827                                                  CurInit.take(),
5828                                                  /*BasePath=*/0,
5829                                                  VK_RValue));
5830       break;
5831     }
5832 
5833     case SK_ConversionSequence: {
5834       Sema::CheckedConversionKind CCK
5835         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5836         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5837         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5838         : Sema::CCK_ImplicitConversion;
5839       ExprResult CurInitExprRes =
5840         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5841                                     getAssignmentAction(Entity), CCK);
5842       if (CurInitExprRes.isInvalid())
5843         return ExprError();
5844       CurInit = CurInitExprRes;
5845       break;
5846     }
5847 
5848     case SK_ListInitialization: {
5849       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5850       // If we're not initializing the top-level entity, we need to create an
5851       // InitializeTemporary entity for our target type.
5852       QualType Ty = Step->Type;
5853       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5854       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5855       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5856       InitListChecker PerformInitList(S, InitEntity,
5857           InitList, Ty, /*VerifyOnly=*/false);
5858       if (PerformInitList.HadError())
5859         return ExprError();
5860 
5861       // Hack: We must update *ResultType if available in order to set the
5862       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5863       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5864       if (ResultType &&
5865           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5866         if ((*ResultType)->isRValueReferenceType())
5867           Ty = S.Context.getRValueReferenceType(Ty);
5868         else if ((*ResultType)->isLValueReferenceType())
5869           Ty = S.Context.getLValueReferenceType(Ty,
5870             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5871         *ResultType = Ty;
5872       }
5873 
5874       InitListExpr *StructuredInitList =
5875           PerformInitList.getFullyStructuredList();
5876       CurInit.release();
5877       CurInit = shouldBindAsTemporary(InitEntity)
5878           ? S.MaybeBindToTemporary(StructuredInitList)
5879           : S.Owned(StructuredInitList);
5880       break;
5881     }
5882 
5883     case SK_ListConstructorCall: {
5884       // When an initializer list is passed for a parameter of type "reference
5885       // to object", we don't get an EK_Temporary entity, but instead an
5886       // EK_Parameter entity with reference type.
5887       // FIXME: This is a hack. What we really should do is create a user
5888       // conversion step for this case, but this makes it considerably more
5889       // complicated. For now, this will do.
5890       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5891                                         Entity.getType().getNonReferenceType());
5892       bool UseTemporary = Entity.getType()->isReferenceType();
5893       assert(Args.size() == 1 && "expected a single argument for list init");
5894       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5895       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5896         << InitList->getSourceRange();
5897       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5898       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5899                                                                    Entity,
5900                                                  Kind, Arg, *Step,
5901                                                ConstructorInitRequiresZeroInit,
5902                                                /*IsListInitialization*/ true);
5903       break;
5904     }
5905 
5906     case SK_UnwrapInitList:
5907       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5908       break;
5909 
5910     case SK_RewrapInitList: {
5911       Expr *E = CurInit.take();
5912       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5913       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5914           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5915       ILE->setSyntacticForm(Syntactic);
5916       ILE->setType(E->getType());
5917       ILE->setValueKind(E->getValueKind());
5918       CurInit = S.Owned(ILE);
5919       break;
5920     }
5921 
5922     case SK_ConstructorInitialization: {
5923       // When an initializer list is passed for a parameter of type "reference
5924       // to object", we don't get an EK_Temporary entity, but instead an
5925       // EK_Parameter entity with reference type.
5926       // FIXME: This is a hack. What we really should do is create a user
5927       // conversion step for this case, but this makes it considerably more
5928       // complicated. For now, this will do.
5929       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5930                                         Entity.getType().getNonReferenceType());
5931       bool UseTemporary = Entity.getType()->isReferenceType();
5932       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5933                                                                  : Entity,
5934                                                  Kind, Args, *Step,
5935                                                ConstructorInitRequiresZeroInit,
5936                                                /*IsListInitialization*/ false);
5937       break;
5938     }
5939 
5940     case SK_ZeroInitialization: {
5941       step_iterator NextStep = Step;
5942       ++NextStep;
5943       if (NextStep != StepEnd &&
5944           (NextStep->Kind == SK_ConstructorInitialization ||
5945            NextStep->Kind == SK_ListConstructorCall)) {
5946         // The need for zero-initialization is recorded directly into
5947         // the call to the object's constructor within the next step.
5948         ConstructorInitRequiresZeroInit = true;
5949       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5950                  S.getLangOpts().CPlusPlus &&
5951                  !Kind.isImplicitValueInit()) {
5952         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5953         if (!TSInfo)
5954           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5955                                                     Kind.getRange().getBegin());
5956 
5957         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5958                               TSInfo->getType().getNonLValueExprType(S.Context),
5959                                                                  TSInfo,
5960                                                     Kind.getRange().getEnd()));
5961       } else {
5962         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5963       }
5964       break;
5965     }
5966 
5967     case SK_CAssignment: {
5968       QualType SourceType = CurInit.get()->getType();
5969       ExprResult Result = CurInit;
5970       Sema::AssignConvertType ConvTy =
5971         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5972       if (Result.isInvalid())
5973         return ExprError();
5974       CurInit = Result;
5975 
5976       // If this is a call, allow conversion to a transparent union.
5977       ExprResult CurInitExprRes = CurInit;
5978       if (ConvTy != Sema::Compatible &&
5979           Entity.getKind() == InitializedEntity::EK_Parameter &&
5980           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5981             == Sema::Compatible)
5982         ConvTy = Sema::Compatible;
5983       if (CurInitExprRes.isInvalid())
5984         return ExprError();
5985       CurInit = CurInitExprRes;
5986 
5987       bool Complained;
5988       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5989                                      Step->Type, SourceType,
5990                                      CurInit.get(),
5991                                      getAssignmentAction(Entity),
5992                                      &Complained)) {
5993         PrintInitLocationNote(S, Entity);
5994         return ExprError();
5995       } else if (Complained)
5996         PrintInitLocationNote(S, Entity);
5997       break;
5998     }
5999 
6000     case SK_StringInit: {
6001       QualType Ty = Step->Type;
6002       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6003                       S.Context.getAsArrayType(Ty), S);
6004       break;
6005     }
6006 
6007     case SK_ObjCObjectConversion:
6008       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6009                           CK_ObjCObjectLValueCast,
6010                           CurInit.get()->getValueKind());
6011       break;
6012 
6013     case SK_ArrayInit:
6014       // Okay: we checked everything before creating this step. Note that
6015       // this is a GNU extension.
6016       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6017         << Step->Type << CurInit.get()->getType()
6018         << CurInit.get()->getSourceRange();
6019 
6020       // If the destination type is an incomplete array type, update the
6021       // type accordingly.
6022       if (ResultType) {
6023         if (const IncompleteArrayType *IncompleteDest
6024                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
6025           if (const ConstantArrayType *ConstantSource
6026                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6027             *ResultType = S.Context.getConstantArrayType(
6028                                              IncompleteDest->getElementType(),
6029                                              ConstantSource->getSize(),
6030                                              ArrayType::Normal, 0);
6031           }
6032         }
6033       }
6034       break;
6035 
6036     case SK_ParenthesizedArrayInit:
6037       // Okay: we checked everything before creating this step. Note that
6038       // this is a GNU extension.
6039       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6040         << CurInit.get()->getSourceRange();
6041       break;
6042 
6043     case SK_PassByIndirectCopyRestore:
6044     case SK_PassByIndirectRestore:
6045       checkIndirectCopyRestoreSource(S, CurInit.get());
6046       CurInit = S.Owned(new (S.Context)
6047                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
6048                                 Step->Kind == SK_PassByIndirectCopyRestore));
6049       break;
6050 
6051     case SK_ProduceObjCObject:
6052       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
6053                                                  CK_ARCProduceObject,
6054                                                  CurInit.take(), 0, VK_RValue));
6055       break;
6056 
6057     case SK_StdInitializerList: {
6058       S.Diag(CurInit.get()->getExprLoc(),
6059              diag::warn_cxx98_compat_initializer_list_init)
6060         << CurInit.get()->getSourceRange();
6061 
6062       // Maybe lifetime-extend the array temporary's subobjects to match the
6063       // entity's lifetime.
6064       const ValueDecl *ExtendingDecl =
6065           getDeclForTemporaryLifetimeExtension(Entity);
6066       if (ExtendingDecl) {
6067         performLifetimeExtension(CurInit.get(), ExtendingDecl);
6068         warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
6069       }
6070 
6071       // Materialize the temporary into memory.
6072       MaterializeTemporaryExpr *MTE = new (S.Context)
6073           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6074                                    /*lvalue reference*/ false, ExtendingDecl);
6075 
6076       // Wrap it in a construction of a std::initializer_list<T>.
6077       CurInit = S.Owned(
6078           new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6079 
6080       // Bind the result, in case the library has given initializer_list a
6081       // non-trivial destructor.
6082       if (shouldBindAsTemporary(Entity))
6083         CurInit = S.MaybeBindToTemporary(CurInit.take());
6084       break;
6085     }
6086 
6087     case SK_OCLSamplerInit: {
6088       assert(Step->Type->isSamplerT() &&
6089              "Sampler initialization on non sampler type.");
6090 
6091       QualType SourceType = CurInit.get()->getType();
6092       InitializedEntity::EntityKind EntityKind = Entity.getKind();
6093 
6094       if (EntityKind == InitializedEntity::EK_Parameter) {
6095         if (!SourceType->isSamplerT())
6096           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6097             << SourceType;
6098       } else if (EntityKind != InitializedEntity::EK_Variable) {
6099         llvm_unreachable("Invalid EntityKind!");
6100       }
6101 
6102       break;
6103     }
6104     case SK_OCLZeroEvent: {
6105       assert(Step->Type->isEventT() &&
6106              "Event initialization on non event type.");
6107 
6108       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6109                                     CK_ZeroToOCLEvent,
6110                                     CurInit.get()->getValueKind());
6111       break;
6112     }
6113     }
6114   }
6115 
6116   // Diagnose non-fatal problems with the completed initialization.
6117   if (Entity.getKind() == InitializedEntity::EK_Member &&
6118       cast<FieldDecl>(Entity.getDecl())->isBitField())
6119     S.CheckBitFieldInitialization(Kind.getLocation(),
6120                                   cast<FieldDecl>(Entity.getDecl()),
6121                                   CurInit.get());
6122 
6123   return CurInit;
6124 }
6125 
6126 /// Somewhere within T there is an uninitialized reference subobject.
6127 /// Dig it out and diagnose it.
6128 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6129                                            QualType T) {
6130   if (T->isReferenceType()) {
6131     S.Diag(Loc, diag::err_reference_without_init)
6132       << T.getNonReferenceType();
6133     return true;
6134   }
6135 
6136   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6137   if (!RD || !RD->hasUninitializedReferenceMember())
6138     return false;
6139 
6140   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
6141                                      FE = RD->field_end(); FI != FE; ++FI) {
6142     if (FI->isUnnamedBitfield())
6143       continue;
6144 
6145     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6146       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6147       return true;
6148     }
6149   }
6150 
6151   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
6152                                           BE = RD->bases_end();
6153        BI != BE; ++BI) {
6154     if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
6155       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6156       return true;
6157     }
6158   }
6159 
6160   return false;
6161 }
6162 
6163 
6164 //===----------------------------------------------------------------------===//
6165 // Diagnose initialization failures
6166 //===----------------------------------------------------------------------===//
6167 
6168 /// Emit notes associated with an initialization that failed due to a
6169 /// "simple" conversion failure.
6170 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6171                                    Expr *op) {
6172   QualType destType = entity.getType();
6173   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6174       op->getType()->isObjCObjectPointerType()) {
6175 
6176     // Emit a possible note about the conversion failing because the
6177     // operand is a message send with a related result type.
6178     S.EmitRelatedResultTypeNote(op);
6179 
6180     // Emit a possible note about a return failing because we're
6181     // expecting a related result type.
6182     if (entity.getKind() == InitializedEntity::EK_Result)
6183       S.EmitRelatedResultTypeNoteForReturn(destType);
6184   }
6185 }
6186 
6187 bool InitializationSequence::Diagnose(Sema &S,
6188                                       const InitializedEntity &Entity,
6189                                       const InitializationKind &Kind,
6190                                       ArrayRef<Expr *> Args) {
6191   if (!Failed())
6192     return false;
6193 
6194   QualType DestType = Entity.getType();
6195   switch (Failure) {
6196   case FK_TooManyInitsForReference:
6197     // FIXME: Customize for the initialized entity?
6198     if (Args.empty()) {
6199       // Dig out the reference subobject which is uninitialized and diagnose it.
6200       // If this is value-initialization, this could be nested some way within
6201       // the target type.
6202       assert(Kind.getKind() == InitializationKind::IK_Value ||
6203              DestType->isReferenceType());
6204       bool Diagnosed =
6205         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6206       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6207       (void)Diagnosed;
6208     } else  // FIXME: diagnostic below could be better!
6209       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6210         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6211     break;
6212 
6213   case FK_ArrayNeedsInitList:
6214     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6215     break;
6216   case FK_ArrayNeedsInitListOrStringLiteral:
6217     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6218     break;
6219   case FK_ArrayNeedsInitListOrWideStringLiteral:
6220     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6221     break;
6222   case FK_NarrowStringIntoWideCharArray:
6223     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6224     break;
6225   case FK_WideStringIntoCharArray:
6226     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6227     break;
6228   case FK_IncompatWideStringIntoWideChar:
6229     S.Diag(Kind.getLocation(),
6230            diag::err_array_init_incompat_wide_string_into_wchar);
6231     break;
6232   case FK_ArrayTypeMismatch:
6233   case FK_NonConstantArrayInit:
6234     S.Diag(Kind.getLocation(),
6235            (Failure == FK_ArrayTypeMismatch
6236               ? diag::err_array_init_different_type
6237               : diag::err_array_init_non_constant_array))
6238       << DestType.getNonReferenceType()
6239       << Args[0]->getType()
6240       << Args[0]->getSourceRange();
6241     break;
6242 
6243   case FK_VariableLengthArrayHasInitializer:
6244     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6245       << Args[0]->getSourceRange();
6246     break;
6247 
6248   case FK_AddressOfOverloadFailed: {
6249     DeclAccessPair Found;
6250     S.ResolveAddressOfOverloadedFunction(Args[0],
6251                                          DestType.getNonReferenceType(),
6252                                          true,
6253                                          Found);
6254     break;
6255   }
6256 
6257   case FK_ReferenceInitOverloadFailed:
6258   case FK_UserConversionOverloadFailed:
6259     switch (FailedOverloadResult) {
6260     case OR_Ambiguous:
6261       if (Failure == FK_UserConversionOverloadFailed)
6262         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6263           << Args[0]->getType() << DestType
6264           << Args[0]->getSourceRange();
6265       else
6266         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6267           << DestType << Args[0]->getType()
6268           << Args[0]->getSourceRange();
6269 
6270       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6271       break;
6272 
6273     case OR_No_Viable_Function:
6274       if (!S.RequireCompleteType(Kind.getLocation(),
6275                                  DestType.getNonReferenceType(),
6276                           diag::err_typecheck_nonviable_condition_incomplete,
6277                                Args[0]->getType(), Args[0]->getSourceRange()))
6278         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6279           << Args[0]->getType() << Args[0]->getSourceRange()
6280           << DestType.getNonReferenceType();
6281 
6282       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6283       break;
6284 
6285     case OR_Deleted: {
6286       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6287         << Args[0]->getType() << DestType.getNonReferenceType()
6288         << Args[0]->getSourceRange();
6289       OverloadCandidateSet::iterator Best;
6290       OverloadingResult Ovl
6291         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6292                                                 true);
6293       if (Ovl == OR_Deleted) {
6294         S.NoteDeletedFunction(Best->Function);
6295       } else {
6296         llvm_unreachable("Inconsistent overload resolution?");
6297       }
6298       break;
6299     }
6300 
6301     case OR_Success:
6302       llvm_unreachable("Conversion did not fail!");
6303     }
6304     break;
6305 
6306   case FK_NonConstLValueReferenceBindingToTemporary:
6307     if (isa<InitListExpr>(Args[0])) {
6308       S.Diag(Kind.getLocation(),
6309              diag::err_lvalue_reference_bind_to_initlist)
6310       << DestType.getNonReferenceType().isVolatileQualified()
6311       << DestType.getNonReferenceType()
6312       << Args[0]->getSourceRange();
6313       break;
6314     }
6315     // Intentional fallthrough
6316 
6317   case FK_NonConstLValueReferenceBindingToUnrelated:
6318     S.Diag(Kind.getLocation(),
6319            Failure == FK_NonConstLValueReferenceBindingToTemporary
6320              ? diag::err_lvalue_reference_bind_to_temporary
6321              : diag::err_lvalue_reference_bind_to_unrelated)
6322       << DestType.getNonReferenceType().isVolatileQualified()
6323       << DestType.getNonReferenceType()
6324       << Args[0]->getType()
6325       << Args[0]->getSourceRange();
6326     break;
6327 
6328   case FK_RValueReferenceBindingToLValue:
6329     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6330       << DestType.getNonReferenceType() << Args[0]->getType()
6331       << Args[0]->getSourceRange();
6332     break;
6333 
6334   case FK_ReferenceInitDropsQualifiers:
6335     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6336       << DestType.getNonReferenceType()
6337       << Args[0]->getType()
6338       << Args[0]->getSourceRange();
6339     break;
6340 
6341   case FK_ReferenceInitFailed:
6342     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6343       << DestType.getNonReferenceType()
6344       << Args[0]->isLValue()
6345       << Args[0]->getType()
6346       << Args[0]->getSourceRange();
6347     emitBadConversionNotes(S, Entity, Args[0]);
6348     break;
6349 
6350   case FK_ConversionFailed: {
6351     QualType FromType = Args[0]->getType();
6352     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6353       << (int)Entity.getKind()
6354       << DestType
6355       << Args[0]->isLValue()
6356       << FromType
6357       << Args[0]->getSourceRange();
6358     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6359     S.Diag(Kind.getLocation(), PDiag);
6360     emitBadConversionNotes(S, Entity, Args[0]);
6361     break;
6362   }
6363 
6364   case FK_ConversionFromPropertyFailed:
6365     // No-op. This error has already been reported.
6366     break;
6367 
6368   case FK_TooManyInitsForScalar: {
6369     SourceRange R;
6370 
6371     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6372       R = SourceRange(InitList->getInit(0)->getLocEnd(),
6373                       InitList->getLocEnd());
6374     else
6375       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6376 
6377     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6378     if (Kind.isCStyleOrFunctionalCast())
6379       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6380         << R;
6381     else
6382       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6383         << /*scalar=*/2 << R;
6384     break;
6385   }
6386 
6387   case FK_ReferenceBindingToInitList:
6388     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6389       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6390     break;
6391 
6392   case FK_InitListBadDestinationType:
6393     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6394       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6395     break;
6396 
6397   case FK_ListConstructorOverloadFailed:
6398   case FK_ConstructorOverloadFailed: {
6399     SourceRange ArgsRange;
6400     if (Args.size())
6401       ArgsRange = SourceRange(Args.front()->getLocStart(),
6402                               Args.back()->getLocEnd());
6403 
6404     if (Failure == FK_ListConstructorOverloadFailed) {
6405       assert(Args.size() == 1 && "List construction from other than 1 argument.");
6406       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6407       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6408     }
6409 
6410     // FIXME: Using "DestType" for the entity we're printing is probably
6411     // bad.
6412     switch (FailedOverloadResult) {
6413       case OR_Ambiguous:
6414         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6415           << DestType << ArgsRange;
6416         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6417         break;
6418 
6419       case OR_No_Viable_Function:
6420         if (Kind.getKind() == InitializationKind::IK_Default &&
6421             (Entity.getKind() == InitializedEntity::EK_Base ||
6422              Entity.getKind() == InitializedEntity::EK_Member) &&
6423             isa<CXXConstructorDecl>(S.CurContext)) {
6424           // This is implicit default initialization of a member or
6425           // base within a constructor. If no viable function was
6426           // found, notify the user that she needs to explicitly
6427           // initialize this base/member.
6428           CXXConstructorDecl *Constructor
6429             = cast<CXXConstructorDecl>(S.CurContext);
6430           if (Entity.getKind() == InitializedEntity::EK_Base) {
6431             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6432               << (Constructor->getInheritedConstructor() ? 2 :
6433                   Constructor->isImplicit() ? 1 : 0)
6434               << S.Context.getTypeDeclType(Constructor->getParent())
6435               << /*base=*/0
6436               << Entity.getType();
6437 
6438             RecordDecl *BaseDecl
6439               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6440                                                                   ->getDecl();
6441             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6442               << S.Context.getTagDeclType(BaseDecl);
6443           } else {
6444             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6445               << (Constructor->getInheritedConstructor() ? 2 :
6446                   Constructor->isImplicit() ? 1 : 0)
6447               << S.Context.getTypeDeclType(Constructor->getParent())
6448               << /*member=*/1
6449               << Entity.getName();
6450             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6451 
6452             if (const RecordType *Record
6453                                  = Entity.getType()->getAs<RecordType>())
6454               S.Diag(Record->getDecl()->getLocation(),
6455                      diag::note_previous_decl)
6456                 << S.Context.getTagDeclType(Record->getDecl());
6457           }
6458           break;
6459         }
6460 
6461         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6462           << DestType << ArgsRange;
6463         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6464         break;
6465 
6466       case OR_Deleted: {
6467         OverloadCandidateSet::iterator Best;
6468         OverloadingResult Ovl
6469           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6470         if (Ovl != OR_Deleted) {
6471           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6472             << true << DestType << ArgsRange;
6473           llvm_unreachable("Inconsistent overload resolution?");
6474           break;
6475         }
6476 
6477         // If this is a defaulted or implicitly-declared function, then
6478         // it was implicitly deleted. Make it clear that the deletion was
6479         // implicit.
6480         if (S.isImplicitlyDeleted(Best->Function))
6481           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6482             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6483             << DestType << ArgsRange;
6484         else
6485           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6486             << true << DestType << ArgsRange;
6487 
6488         S.NoteDeletedFunction(Best->Function);
6489         break;
6490       }
6491 
6492       case OR_Success:
6493         llvm_unreachable("Conversion did not fail!");
6494     }
6495   }
6496   break;
6497 
6498   case FK_DefaultInitOfConst:
6499     if (Entity.getKind() == InitializedEntity::EK_Member &&
6500         isa<CXXConstructorDecl>(S.CurContext)) {
6501       // This is implicit default-initialization of a const member in
6502       // a constructor. Complain that it needs to be explicitly
6503       // initialized.
6504       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6505       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6506         << (Constructor->getInheritedConstructor() ? 2 :
6507             Constructor->isImplicit() ? 1 : 0)
6508         << S.Context.getTypeDeclType(Constructor->getParent())
6509         << /*const=*/1
6510         << Entity.getName();
6511       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6512         << Entity.getName();
6513     } else {
6514       S.Diag(Kind.getLocation(), diag::err_default_init_const)
6515         << DestType << (bool)DestType->getAs<RecordType>();
6516     }
6517     break;
6518 
6519   case FK_Incomplete:
6520     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6521                           diag::err_init_incomplete_type);
6522     break;
6523 
6524   case FK_ListInitializationFailed: {
6525     // Run the init list checker again to emit diagnostics.
6526     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6527     QualType DestType = Entity.getType();
6528     InitListChecker DiagnoseInitList(S, Entity, InitList,
6529             DestType, /*VerifyOnly=*/false);
6530     assert(DiagnoseInitList.HadError() &&
6531            "Inconsistent init list check result.");
6532     break;
6533   }
6534 
6535   case FK_PlaceholderType: {
6536     // FIXME: Already diagnosed!
6537     break;
6538   }
6539 
6540   case FK_ExplicitConstructor: {
6541     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6542       << Args[0]->getSourceRange();
6543     OverloadCandidateSet::iterator Best;
6544     OverloadingResult Ovl
6545       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6546     (void)Ovl;
6547     assert(Ovl == OR_Success && "Inconsistent overload resolution");
6548     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6549     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6550     break;
6551   }
6552   }
6553 
6554   PrintInitLocationNote(S, Entity);
6555   return true;
6556 }
6557 
6558 void InitializationSequence::dump(raw_ostream &OS) const {
6559   switch (SequenceKind) {
6560   case FailedSequence: {
6561     OS << "Failed sequence: ";
6562     switch (Failure) {
6563     case FK_TooManyInitsForReference:
6564       OS << "too many initializers for reference";
6565       break;
6566 
6567     case FK_ArrayNeedsInitList:
6568       OS << "array requires initializer list";
6569       break;
6570 
6571     case FK_ArrayNeedsInitListOrStringLiteral:
6572       OS << "array requires initializer list or string literal";
6573       break;
6574 
6575     case FK_ArrayNeedsInitListOrWideStringLiteral:
6576       OS << "array requires initializer list or wide string literal";
6577       break;
6578 
6579     case FK_NarrowStringIntoWideCharArray:
6580       OS << "narrow string into wide char array";
6581       break;
6582 
6583     case FK_WideStringIntoCharArray:
6584       OS << "wide string into char array";
6585       break;
6586 
6587     case FK_IncompatWideStringIntoWideChar:
6588       OS << "incompatible wide string into wide char array";
6589       break;
6590 
6591     case FK_ArrayTypeMismatch:
6592       OS << "array type mismatch";
6593       break;
6594 
6595     case FK_NonConstantArrayInit:
6596       OS << "non-constant array initializer";
6597       break;
6598 
6599     case FK_AddressOfOverloadFailed:
6600       OS << "address of overloaded function failed";
6601       break;
6602 
6603     case FK_ReferenceInitOverloadFailed:
6604       OS << "overload resolution for reference initialization failed";
6605       break;
6606 
6607     case FK_NonConstLValueReferenceBindingToTemporary:
6608       OS << "non-const lvalue reference bound to temporary";
6609       break;
6610 
6611     case FK_NonConstLValueReferenceBindingToUnrelated:
6612       OS << "non-const lvalue reference bound to unrelated type";
6613       break;
6614 
6615     case FK_RValueReferenceBindingToLValue:
6616       OS << "rvalue reference bound to an lvalue";
6617       break;
6618 
6619     case FK_ReferenceInitDropsQualifiers:
6620       OS << "reference initialization drops qualifiers";
6621       break;
6622 
6623     case FK_ReferenceInitFailed:
6624       OS << "reference initialization failed";
6625       break;
6626 
6627     case FK_ConversionFailed:
6628       OS << "conversion failed";
6629       break;
6630 
6631     case FK_ConversionFromPropertyFailed:
6632       OS << "conversion from property failed";
6633       break;
6634 
6635     case FK_TooManyInitsForScalar:
6636       OS << "too many initializers for scalar";
6637       break;
6638 
6639     case FK_ReferenceBindingToInitList:
6640       OS << "referencing binding to initializer list";
6641       break;
6642 
6643     case FK_InitListBadDestinationType:
6644       OS << "initializer list for non-aggregate, non-scalar type";
6645       break;
6646 
6647     case FK_UserConversionOverloadFailed:
6648       OS << "overloading failed for user-defined conversion";
6649       break;
6650 
6651     case FK_ConstructorOverloadFailed:
6652       OS << "constructor overloading failed";
6653       break;
6654 
6655     case FK_DefaultInitOfConst:
6656       OS << "default initialization of a const variable";
6657       break;
6658 
6659     case FK_Incomplete:
6660       OS << "initialization of incomplete type";
6661       break;
6662 
6663     case FK_ListInitializationFailed:
6664       OS << "list initialization checker failure";
6665       break;
6666 
6667     case FK_VariableLengthArrayHasInitializer:
6668       OS << "variable length array has an initializer";
6669       break;
6670 
6671     case FK_PlaceholderType:
6672       OS << "initializer expression isn't contextually valid";
6673       break;
6674 
6675     case FK_ListConstructorOverloadFailed:
6676       OS << "list constructor overloading failed";
6677       break;
6678 
6679     case FK_ExplicitConstructor:
6680       OS << "list copy initialization chose explicit constructor";
6681       break;
6682     }
6683     OS << '\n';
6684     return;
6685   }
6686 
6687   case DependentSequence:
6688     OS << "Dependent sequence\n";
6689     return;
6690 
6691   case NormalSequence:
6692     OS << "Normal sequence: ";
6693     break;
6694   }
6695 
6696   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6697     if (S != step_begin()) {
6698       OS << " -> ";
6699     }
6700 
6701     switch (S->Kind) {
6702     case SK_ResolveAddressOfOverloadedFunction:
6703       OS << "resolve address of overloaded function";
6704       break;
6705 
6706     case SK_CastDerivedToBaseRValue:
6707       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6708       break;
6709 
6710     case SK_CastDerivedToBaseXValue:
6711       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6712       break;
6713 
6714     case SK_CastDerivedToBaseLValue:
6715       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6716       break;
6717 
6718     case SK_BindReference:
6719       OS << "bind reference to lvalue";
6720       break;
6721 
6722     case SK_BindReferenceToTemporary:
6723       OS << "bind reference to a temporary";
6724       break;
6725 
6726     case SK_ExtraneousCopyToTemporary:
6727       OS << "extraneous C++03 copy to temporary";
6728       break;
6729 
6730     case SK_UserConversion:
6731       OS << "user-defined conversion via " << *S->Function.Function;
6732       break;
6733 
6734     case SK_QualificationConversionRValue:
6735       OS << "qualification conversion (rvalue)";
6736       break;
6737 
6738     case SK_QualificationConversionXValue:
6739       OS << "qualification conversion (xvalue)";
6740       break;
6741 
6742     case SK_QualificationConversionLValue:
6743       OS << "qualification conversion (lvalue)";
6744       break;
6745 
6746     case SK_LValueToRValue:
6747       OS << "load (lvalue to rvalue)";
6748       break;
6749 
6750     case SK_ConversionSequence:
6751       OS << "implicit conversion sequence (";
6752       S->ICS->DebugPrint(); // FIXME: use OS
6753       OS << ")";
6754       break;
6755 
6756     case SK_ListInitialization:
6757       OS << "list aggregate initialization";
6758       break;
6759 
6760     case SK_ListConstructorCall:
6761       OS << "list initialization via constructor";
6762       break;
6763 
6764     case SK_UnwrapInitList:
6765       OS << "unwrap reference initializer list";
6766       break;
6767 
6768     case SK_RewrapInitList:
6769       OS << "rewrap reference initializer list";
6770       break;
6771 
6772     case SK_ConstructorInitialization:
6773       OS << "constructor initialization";
6774       break;
6775 
6776     case SK_ZeroInitialization:
6777       OS << "zero initialization";
6778       break;
6779 
6780     case SK_CAssignment:
6781       OS << "C assignment";
6782       break;
6783 
6784     case SK_StringInit:
6785       OS << "string initialization";
6786       break;
6787 
6788     case SK_ObjCObjectConversion:
6789       OS << "Objective-C object conversion";
6790       break;
6791 
6792     case SK_ArrayInit:
6793       OS << "array initialization";
6794       break;
6795 
6796     case SK_ParenthesizedArrayInit:
6797       OS << "parenthesized array initialization";
6798       break;
6799 
6800     case SK_PassByIndirectCopyRestore:
6801       OS << "pass by indirect copy and restore";
6802       break;
6803 
6804     case SK_PassByIndirectRestore:
6805       OS << "pass by indirect restore";
6806       break;
6807 
6808     case SK_ProduceObjCObject:
6809       OS << "Objective-C object retension";
6810       break;
6811 
6812     case SK_StdInitializerList:
6813       OS << "std::initializer_list from initializer list";
6814       break;
6815 
6816     case SK_OCLSamplerInit:
6817       OS << "OpenCL sampler_t from integer constant";
6818       break;
6819 
6820     case SK_OCLZeroEvent:
6821       OS << "OpenCL event_t from zero";
6822       break;
6823     }
6824 
6825     OS << " [" << S->Type.getAsString() << ']';
6826   }
6827 
6828   OS << '\n';
6829 }
6830 
6831 void InitializationSequence::dump() const {
6832   dump(llvm::errs());
6833 }
6834 
6835 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6836                                         QualType EntityType,
6837                                         const Expr *PreInit,
6838                                         const Expr *PostInit) {
6839   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6840     return;
6841 
6842   // A narrowing conversion can only appear as the final implicit conversion in
6843   // an initialization sequence.
6844   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6845   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6846     return;
6847 
6848   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6849   const StandardConversionSequence *SCS = 0;
6850   switch (ICS.getKind()) {
6851   case ImplicitConversionSequence::StandardConversion:
6852     SCS = &ICS.Standard;
6853     break;
6854   case ImplicitConversionSequence::UserDefinedConversion:
6855     SCS = &ICS.UserDefined.After;
6856     break;
6857   case ImplicitConversionSequence::AmbiguousConversion:
6858   case ImplicitConversionSequence::EllipsisConversion:
6859   case ImplicitConversionSequence::BadConversion:
6860     return;
6861   }
6862 
6863   // Determine the type prior to the narrowing conversion. If a conversion
6864   // operator was used, this may be different from both the type of the entity
6865   // and of the pre-initialization expression.
6866   QualType PreNarrowingType = PreInit->getType();
6867   if (Seq.step_begin() + 1 != Seq.step_end())
6868     PreNarrowingType = Seq.step_end()[-2].Type;
6869 
6870   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6871   APValue ConstantValue;
6872   QualType ConstantType;
6873   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6874                                 ConstantType)) {
6875   case NK_Not_Narrowing:
6876     // No narrowing occurred.
6877     return;
6878 
6879   case NK_Type_Narrowing:
6880     // This was a floating-to-integer conversion, which is always considered a
6881     // narrowing conversion even if the value is a constant and can be
6882     // represented exactly as an integer.
6883     S.Diag(PostInit->getLocStart(),
6884            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6885              diag::warn_init_list_type_narrowing
6886            : S.isSFINAEContext()?
6887              diag::err_init_list_type_narrowing_sfinae
6888            : diag::err_init_list_type_narrowing)
6889       << PostInit->getSourceRange()
6890       << PreNarrowingType.getLocalUnqualifiedType()
6891       << EntityType.getLocalUnqualifiedType();
6892     break;
6893 
6894   case NK_Constant_Narrowing:
6895     // A constant value was narrowed.
6896     S.Diag(PostInit->getLocStart(),
6897            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6898              diag::warn_init_list_constant_narrowing
6899            : S.isSFINAEContext()?
6900              diag::err_init_list_constant_narrowing_sfinae
6901            : diag::err_init_list_constant_narrowing)
6902       << PostInit->getSourceRange()
6903       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6904       << EntityType.getLocalUnqualifiedType();
6905     break;
6906 
6907   case NK_Variable_Narrowing:
6908     // A variable's value may have been narrowed.
6909     S.Diag(PostInit->getLocStart(),
6910            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6911              diag::warn_init_list_variable_narrowing
6912            : S.isSFINAEContext()?
6913              diag::err_init_list_variable_narrowing_sfinae
6914            : diag::err_init_list_variable_narrowing)
6915       << PostInit->getSourceRange()
6916       << PreNarrowingType.getLocalUnqualifiedType()
6917       << EntityType.getLocalUnqualifiedType();
6918     break;
6919   }
6920 
6921   SmallString<128> StaticCast;
6922   llvm::raw_svector_ostream OS(StaticCast);
6923   OS << "static_cast<";
6924   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6925     // It's important to use the typedef's name if there is one so that the
6926     // fixit doesn't break code using types like int64_t.
6927     //
6928     // FIXME: This will break if the typedef requires qualification.  But
6929     // getQualifiedNameAsString() includes non-machine-parsable components.
6930     OS << *TT->getDecl();
6931   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6932     OS << BT->getName(S.getLangOpts());
6933   else {
6934     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6935     // with a broken cast.
6936     return;
6937   }
6938   OS << ">(";
6939   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6940     << PostInit->getSourceRange()
6941     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6942     << FixItHint::CreateInsertion(
6943       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6944 }
6945 
6946 //===----------------------------------------------------------------------===//
6947 // Initialization helper functions
6948 //===----------------------------------------------------------------------===//
6949 bool
6950 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6951                                    ExprResult Init) {
6952   if (Init.isInvalid())
6953     return false;
6954 
6955   Expr *InitE = Init.get();
6956   assert(InitE && "No initialization expression");
6957 
6958   InitializationKind Kind
6959     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6960   InitializationSequence Seq(*this, Entity, Kind, InitE);
6961   return !Seq.Failed();
6962 }
6963 
6964 ExprResult
6965 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6966                                 SourceLocation EqualLoc,
6967                                 ExprResult Init,
6968                                 bool TopLevelOfInitList,
6969                                 bool AllowExplicit) {
6970   if (Init.isInvalid())
6971     return ExprError();
6972 
6973   Expr *InitE = Init.get();
6974   assert(InitE && "No initialization expression?");
6975 
6976   if (EqualLoc.isInvalid())
6977     EqualLoc = InitE->getLocStart();
6978 
6979   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6980                                                            EqualLoc,
6981                                                            AllowExplicit);
6982   InitializationSequence Seq(*this, Entity, Kind, InitE);
6983   Init.release();
6984 
6985   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
6986 
6987   if (!Result.isInvalid() && TopLevelOfInitList)
6988     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6989                                 InitE, Result.get());
6990 
6991   return Result;
6992 }
6993