1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_UTF8StringIntoPlainChar,
53   SIF_PlainStringIntoUTF8Char,
54   SIF_Other
55 };
56 
57 /// Check whether the array of type AT can be initialized by the Init
58 /// expression by means of string initialization. Returns SIF_None if so,
59 /// otherwise returns a StringInitFailureKind that describes why the
60 /// initialization would not work.
61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62                                           ASTContext &Context) {
63   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64     return SIF_Other;
65 
66   // See if this is a string literal or @encode.
67   Init = Init->IgnoreParens();
68 
69   // Handle @encode, which is a narrow string.
70   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71     return SIF_None;
72 
73   // Otherwise we can only handle string literals.
74   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75   if (!SL)
76     return SIF_Other;
77 
78   const QualType ElemTy =
79       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80 
81   switch (SL->getKind()) {
82   case StringLiteral::UTF8:
83     // char8_t array can be initialized with a UTF-8 string.
84     if (ElemTy->isChar8Type())
85       return SIF_None;
86     LLVM_FALLTHROUGH;
87   case StringLiteral::Ascii:
88     // char array can be initialized with a narrow string.
89     // Only allow char x[] = "foo";  not char x[] = L"foo";
90     if (ElemTy->isCharType())
91       return (SL->getKind() == StringLiteral::UTF8 &&
92               Context.getLangOpts().Char8)
93                  ? SIF_UTF8StringIntoPlainChar
94                  : SIF_None;
95     if (ElemTy->isChar8Type())
96       return SIF_PlainStringIntoUTF8Char;
97     if (IsWideCharCompatible(ElemTy, Context))
98       return SIF_NarrowStringIntoWideChar;
99     return SIF_Other;
100   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101   // "An array with element type compatible with a qualified or unqualified
102   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103   // string literal with the corresponding encoding prefix (L, u, or U,
104   // respectively), optionally enclosed in braces.
105   case StringLiteral::UTF16:
106     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107       return SIF_None;
108     if (ElemTy->isCharType() || ElemTy->isChar8Type())
109       return SIF_WideStringIntoChar;
110     if (IsWideCharCompatible(ElemTy, Context))
111       return SIF_IncompatWideStringIntoWideChar;
112     return SIF_Other;
113   case StringLiteral::UTF32:
114     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115       return SIF_None;
116     if (ElemTy->isCharType() || ElemTy->isChar8Type())
117       return SIF_WideStringIntoChar;
118     if (IsWideCharCompatible(ElemTy, Context))
119       return SIF_IncompatWideStringIntoWideChar;
120     return SIF_Other;
121   case StringLiteral::Wide:
122     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123       return SIF_None;
124     if (ElemTy->isCharType() || ElemTy->isChar8Type())
125       return SIF_WideStringIntoChar;
126     if (IsWideCharCompatible(ElemTy, Context))
127       return SIF_IncompatWideStringIntoWideChar;
128     return SIF_Other;
129   }
130 
131   llvm_unreachable("missed a StringLiteral kind?");
132 }
133 
134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135                                           ASTContext &Context) {
136   const ArrayType *arrayType = Context.getAsArrayType(declType);
137   if (!arrayType)
138     return SIF_Other;
139   return IsStringInit(init, arrayType, Context);
140 }
141 
142 /// Update the type of a string literal, including any surrounding parentheses,
143 /// to match the type of the object which it is initializing.
144 static void updateStringLiteralType(Expr *E, QualType Ty) {
145   while (true) {
146     E->setType(Ty);
147     E->setValueKind(VK_RValue);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
149       break;
150     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
151       E = PE->getSubExpr();
152     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
153       assert(UO->getOpcode() == UO_Extension);
154       E = UO->getSubExpr();
155     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
156       E = GSE->getResultExpr();
157     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
158       E = CE->getChosenSubExpr();
159     } else {
160       llvm_unreachable("unexpected expr in string literal init");
161     }
162   }
163 }
164 
165 /// Fix a compound literal initializing an array so it's correctly marked
166 /// as an rvalue.
167 static void updateGNUCompoundLiteralRValue(Expr *E) {
168   while (true) {
169     E->setValueKind(VK_RValue);
170     if (isa<CompoundLiteralExpr>(E)) {
171       break;
172     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
173       E = PE->getSubExpr();
174     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
175       assert(UO->getOpcode() == UO_Extension);
176       E = UO->getSubExpr();
177     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
178       E = GSE->getResultExpr();
179     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
180       E = CE->getChosenSubExpr();
181     } else {
182       llvm_unreachable("unexpected expr in array compound literal init");
183     }
184   }
185 }
186 
187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
188                             Sema &S) {
189   // Get the length of the string as parsed.
190   auto *ConstantArrayTy =
191       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
192   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
193 
194   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
195     // C99 6.7.8p14. We have an array of character type with unknown size
196     // being initialized to a string literal.
197     llvm::APInt ConstVal(32, StrLength);
198     // Return a new array type (C99 6.7.8p22).
199     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
200                                            ConstVal,
201                                            ArrayType::Normal, 0);
202     updateStringLiteralType(Str, DeclT);
203     return;
204   }
205 
206   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
207 
208   // We have an array of character type with known size.  However,
209   // the size may be smaller or larger than the string we are initializing.
210   // FIXME: Avoid truncation for 64-bit length strings.
211   if (S.getLangOpts().CPlusPlus) {
212     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
213       // For Pascal strings it's OK to strip off the terminating null character,
214       // so the example below is valid:
215       //
216       // unsigned char a[2] = "\pa";
217       if (SL->isPascal())
218         StrLength--;
219     }
220 
221     // [dcl.init.string]p2
222     if (StrLength > CAT->getSize().getZExtValue())
223       S.Diag(Str->getBeginLoc(),
224              diag::err_initializer_string_for_char_array_too_long)
225           << Str->getSourceRange();
226   } else {
227     // C99 6.7.8p14.
228     if (StrLength-1 > CAT->getSize().getZExtValue())
229       S.Diag(Str->getBeginLoc(),
230              diag::ext_initializer_string_for_char_array_too_long)
231           << Str->getSourceRange();
232   }
233 
234   // Set the type to the actual size that we are initializing.  If we have
235   // something like:
236   //   char x[1] = "foo";
237   // then this will set the string literal's type to char[1].
238   updateStringLiteralType(Str, DeclT);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 // Semantic checking for initializer lists.
243 //===----------------------------------------------------------------------===//
244 
245 namespace {
246 
247 /// Semantic checking for initializer lists.
248 ///
249 /// The InitListChecker class contains a set of routines that each
250 /// handle the initialization of a certain kind of entity, e.g.,
251 /// arrays, vectors, struct/union types, scalars, etc. The
252 /// InitListChecker itself performs a recursive walk of the subobject
253 /// structure of the type to be initialized, while stepping through
254 /// the initializer list one element at a time. The IList and Index
255 /// parameters to each of the Check* routines contain the active
256 /// (syntactic) initializer list and the index into that initializer
257 /// list that represents the current initializer. Each routine is
258 /// responsible for moving that Index forward as it consumes elements.
259 ///
260 /// Each Check* routine also has a StructuredList/StructuredIndex
261 /// arguments, which contains the current "structured" (semantic)
262 /// initializer list and the index into that initializer list where we
263 /// are copying initializers as we map them over to the semantic
264 /// list. Once we have completed our recursive walk of the subobject
265 /// structure, we will have constructed a full semantic initializer
266 /// list.
267 ///
268 /// C99 designators cause changes in the initializer list traversal,
269 /// because they make the initialization "jump" into a specific
270 /// subobject and then continue the initialization from that
271 /// point. CheckDesignatedInitializer() recursively steps into the
272 /// designated subobject and manages backing out the recursion to
273 /// initialize the subobjects after the one designated.
274 class InitListChecker {
275   Sema &SemaRef;
276   bool hadError;
277   bool VerifyOnly; // no diagnostics, no structure building
278   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
279   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
280   InitListExpr *FullyStructuredList;
281 
282   void CheckImplicitInitList(const InitializedEntity &Entity,
283                              InitListExpr *ParentIList, QualType T,
284                              unsigned &Index, InitListExpr *StructuredList,
285                              unsigned &StructuredIndex);
286   void CheckExplicitInitList(const InitializedEntity &Entity,
287                              InitListExpr *IList, QualType &T,
288                              InitListExpr *StructuredList,
289                              bool TopLevelObject = false);
290   void CheckListElementTypes(const InitializedEntity &Entity,
291                              InitListExpr *IList, QualType &DeclType,
292                              bool SubobjectIsDesignatorContext,
293                              unsigned &Index,
294                              InitListExpr *StructuredList,
295                              unsigned &StructuredIndex,
296                              bool TopLevelObject = false);
297   void CheckSubElementType(const InitializedEntity &Entity,
298                            InitListExpr *IList, QualType ElemType,
299                            unsigned &Index,
300                            InitListExpr *StructuredList,
301                            unsigned &StructuredIndex);
302   void CheckComplexType(const InitializedEntity &Entity,
303                         InitListExpr *IList, QualType DeclType,
304                         unsigned &Index,
305                         InitListExpr *StructuredList,
306                         unsigned &StructuredIndex);
307   void CheckScalarType(const InitializedEntity &Entity,
308                        InitListExpr *IList, QualType DeclType,
309                        unsigned &Index,
310                        InitListExpr *StructuredList,
311                        unsigned &StructuredIndex);
312   void CheckReferenceType(const InitializedEntity &Entity,
313                           InitListExpr *IList, QualType DeclType,
314                           unsigned &Index,
315                           InitListExpr *StructuredList,
316                           unsigned &StructuredIndex);
317   void CheckVectorType(const InitializedEntity &Entity,
318                        InitListExpr *IList, QualType DeclType, unsigned &Index,
319                        InitListExpr *StructuredList,
320                        unsigned &StructuredIndex);
321   void CheckStructUnionTypes(const InitializedEntity &Entity,
322                              InitListExpr *IList, QualType DeclType,
323                              CXXRecordDecl::base_class_range Bases,
324                              RecordDecl::field_iterator Field,
325                              bool SubobjectIsDesignatorContext, unsigned &Index,
326                              InitListExpr *StructuredList,
327                              unsigned &StructuredIndex,
328                              bool TopLevelObject = false);
329   void CheckArrayType(const InitializedEntity &Entity,
330                       InitListExpr *IList, QualType &DeclType,
331                       llvm::APSInt elementIndex,
332                       bool SubobjectIsDesignatorContext, unsigned &Index,
333                       InitListExpr *StructuredList,
334                       unsigned &StructuredIndex);
335   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
336                                   InitListExpr *IList, DesignatedInitExpr *DIE,
337                                   unsigned DesigIdx,
338                                   QualType &CurrentObjectType,
339                                   RecordDecl::field_iterator *NextField,
340                                   llvm::APSInt *NextElementIndex,
341                                   unsigned &Index,
342                                   InitListExpr *StructuredList,
343                                   unsigned &StructuredIndex,
344                                   bool FinishSubobjectInit,
345                                   bool TopLevelObject);
346   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
347                                            QualType CurrentObjectType,
348                                            InitListExpr *StructuredList,
349                                            unsigned StructuredIndex,
350                                            SourceRange InitRange,
351                                            bool IsFullyOverwritten = false);
352   void UpdateStructuredListElement(InitListExpr *StructuredList,
353                                    unsigned &StructuredIndex,
354                                    Expr *expr);
355   int numArrayElements(QualType DeclType);
356   int numStructUnionElements(QualType DeclType);
357 
358   static ExprResult PerformEmptyInit(Sema &SemaRef,
359                                      SourceLocation Loc,
360                                      const InitializedEntity &Entity,
361                                      bool VerifyOnly,
362                                      bool TreatUnavailableAsInvalid);
363 
364   // Explanation on the "FillWithNoInit" mode:
365   //
366   // Assume we have the following definitions (Case#1):
367   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
368   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
369   //
370   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
371   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
372   //
373   // But if we have (Case#2):
374   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
375   //
376   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
377   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
378   //
379   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
380   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
381   // initializers but with special "NoInitExpr" place holders, which tells the
382   // CodeGen not to generate any initializers for these parts.
383   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
384                               const InitializedEntity &ParentEntity,
385                               InitListExpr *ILE, bool &RequiresSecondPass,
386                               bool FillWithNoInit);
387   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
388                                const InitializedEntity &ParentEntity,
389                                InitListExpr *ILE, bool &RequiresSecondPass,
390                                bool FillWithNoInit = false);
391   void FillInEmptyInitializations(const InitializedEntity &Entity,
392                                   InitListExpr *ILE, bool &RequiresSecondPass,
393                                   InitListExpr *OuterILE, unsigned OuterIndex,
394                                   bool FillWithNoInit = false);
395   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
396                               Expr *InitExpr, FieldDecl *Field,
397                               bool TopLevelObject);
398   void CheckEmptyInitializable(const InitializedEntity &Entity,
399                                SourceLocation Loc);
400 
401 public:
402   InitListChecker(Sema &S, const InitializedEntity &Entity,
403                   InitListExpr *IL, QualType &T, bool VerifyOnly,
404                   bool TreatUnavailableAsInvalid);
405   bool HadError() { return hadError; }
406 
407   // Retrieves the fully-structured initializer list used for
408   // semantic analysis and code generation.
409   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
410 };
411 
412 } // end anonymous namespace
413 
414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
415                                              SourceLocation Loc,
416                                              const InitializedEntity &Entity,
417                                              bool VerifyOnly,
418                                              bool TreatUnavailableAsInvalid) {
419   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
420                                                             true);
421   MultiExprArg SubInit;
422   Expr *InitExpr;
423   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
424 
425   // C++ [dcl.init.aggr]p7:
426   //   If there are fewer initializer-clauses in the list than there are
427   //   members in the aggregate, then each member not explicitly initialized
428   //   ...
429   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
430       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
431   if (EmptyInitList) {
432     // C++1y / DR1070:
433     //   shall be initialized [...] from an empty initializer list.
434     //
435     // We apply the resolution of this DR to C++11 but not C++98, since C++98
436     // does not have useful semantics for initialization from an init list.
437     // We treat this as copy-initialization, because aggregate initialization
438     // always performs copy-initialization on its elements.
439     //
440     // Only do this if we're initializing a class type, to avoid filling in
441     // the initializer list where possible.
442     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
443                    InitListExpr(SemaRef.Context, Loc, None, Loc);
444     InitExpr->setType(SemaRef.Context.VoidTy);
445     SubInit = InitExpr;
446     Kind = InitializationKind::CreateCopy(Loc, Loc);
447   } else {
448     // C++03:
449     //   shall be value-initialized.
450   }
451 
452   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
453   // libstdc++4.6 marks the vector default constructor as explicit in
454   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
455   // stlport does so too. Look for std::__debug for libstdc++, and for
456   // std:: for stlport.  This is effectively a compiler-side implementation of
457   // LWG2193.
458   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
459           InitializationSequence::FK_ExplicitConstructor) {
460     OverloadCandidateSet::iterator Best;
461     OverloadingResult O =
462         InitSeq.getFailedCandidateSet()
463             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
464     (void)O;
465     assert(O == OR_Success && "Inconsistent overload resolution");
466     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
467     CXXRecordDecl *R = CtorDecl->getParent();
468 
469     if (CtorDecl->getMinRequiredArguments() == 0 &&
470         CtorDecl->isExplicit() && R->getDeclName() &&
471         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
472       bool IsInStd = false;
473       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
474            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
475         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
476           IsInStd = true;
477       }
478 
479       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
480               .Cases("basic_string", "deque", "forward_list", true)
481               .Cases("list", "map", "multimap", "multiset", true)
482               .Cases("priority_queue", "queue", "set", "stack", true)
483               .Cases("unordered_map", "unordered_set", "vector", true)
484               .Default(false)) {
485         InitSeq.InitializeFrom(
486             SemaRef, Entity,
487             InitializationKind::CreateValue(Loc, Loc, Loc, true),
488             MultiExprArg(), /*TopLevelOfInitList=*/false,
489             TreatUnavailableAsInvalid);
490         // Emit a warning for this.  System header warnings aren't shown
491         // by default, but people working on system headers should see it.
492         if (!VerifyOnly) {
493           SemaRef.Diag(CtorDecl->getLocation(),
494                        diag::warn_invalid_initializer_from_system_header);
495           if (Entity.getKind() == InitializedEntity::EK_Member)
496             SemaRef.Diag(Entity.getDecl()->getLocation(),
497                          diag::note_used_in_initialization_here);
498           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
499             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
500         }
501       }
502     }
503   }
504   if (!InitSeq) {
505     if (!VerifyOnly) {
506       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
507       if (Entity.getKind() == InitializedEntity::EK_Member)
508         SemaRef.Diag(Entity.getDecl()->getLocation(),
509                      diag::note_in_omitted_aggregate_initializer)
510           << /*field*/1 << Entity.getDecl();
511       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
512         bool IsTrailingArrayNewMember =
513             Entity.getParent() &&
514             Entity.getParent()->isVariableLengthArrayNew();
515         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
516           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
517           << Entity.getElementIndex();
518       }
519     }
520     return ExprError();
521   }
522 
523   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
524                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
525 }
526 
527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
528                                               SourceLocation Loc) {
529   assert(VerifyOnly &&
530          "CheckEmptyInitializable is only inteded for verification mode.");
531   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
532                        TreatUnavailableAsInvalid).isInvalid())
533     hadError = true;
534 }
535 
536 void InitListChecker::FillInEmptyInitForBase(
537     unsigned Init, const CXXBaseSpecifier &Base,
538     const InitializedEntity &ParentEntity, InitListExpr *ILE,
539     bool &RequiresSecondPass, bool FillWithNoInit) {
540   assert(Init < ILE->getNumInits() && "should have been expanded");
541 
542   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
543       SemaRef.Context, &Base, false, &ParentEntity);
544 
545   if (!ILE->getInit(Init)) {
546     ExprResult BaseInit =
547         FillWithNoInit
548             ? new (SemaRef.Context) NoInitExpr(Base.getType())
549             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
550                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
551     if (BaseInit.isInvalid()) {
552       hadError = true;
553       return;
554     }
555 
556     ILE->setInit(Init, BaseInit.getAs<Expr>());
557   } else if (InitListExpr *InnerILE =
558                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
559     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
560                                ILE, Init, FillWithNoInit);
561   } else if (DesignatedInitUpdateExpr *InnerDIUE =
562                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
563     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
564                                RequiresSecondPass, ILE, Init,
565                                /*FillWithNoInit =*/true);
566   }
567 }
568 
569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
570                                         const InitializedEntity &ParentEntity,
571                                               InitListExpr *ILE,
572                                               bool &RequiresSecondPass,
573                                               bool FillWithNoInit) {
574   SourceLocation Loc = ILE->getEndLoc();
575   unsigned NumInits = ILE->getNumInits();
576   InitializedEntity MemberEntity
577     = InitializedEntity::InitializeMember(Field, &ParentEntity);
578 
579   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
580     if (!RType->getDecl()->isUnion())
581       assert(Init < NumInits && "This ILE should have been expanded");
582 
583   if (Init >= NumInits || !ILE->getInit(Init)) {
584     if (FillWithNoInit) {
585       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
586       if (Init < NumInits)
587         ILE->setInit(Init, Filler);
588       else
589         ILE->updateInit(SemaRef.Context, Init, Filler);
590       return;
591     }
592     // C++1y [dcl.init.aggr]p7:
593     //   If there are fewer initializer-clauses in the list than there are
594     //   members in the aggregate, then each member not explicitly initialized
595     //   shall be initialized from its brace-or-equal-initializer [...]
596     if (Field->hasInClassInitializer()) {
597       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
598       if (DIE.isInvalid()) {
599         hadError = true;
600         return;
601       }
602       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
603       if (Init < NumInits)
604         ILE->setInit(Init, DIE.get());
605       else {
606         ILE->updateInit(SemaRef.Context, Init, DIE.get());
607         RequiresSecondPass = true;
608       }
609       return;
610     }
611 
612     if (Field->getType()->isReferenceType()) {
613       // C++ [dcl.init.aggr]p9:
614       //   If an incomplete or empty initializer-list leaves a
615       //   member of reference type uninitialized, the program is
616       //   ill-formed.
617       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
618         << Field->getType()
619         << ILE->getSyntacticForm()->getSourceRange();
620       SemaRef.Diag(Field->getLocation(),
621                    diag::note_uninit_reference_member);
622       hadError = true;
623       return;
624     }
625 
626     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
627                                              /*VerifyOnly*/false,
628                                              TreatUnavailableAsInvalid);
629     if (MemberInit.isInvalid()) {
630       hadError = true;
631       return;
632     }
633 
634     if (hadError) {
635       // Do nothing
636     } else if (Init < NumInits) {
637       ILE->setInit(Init, MemberInit.getAs<Expr>());
638     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
639       // Empty initialization requires a constructor call, so
640       // extend the initializer list to include the constructor
641       // call and make a note that we'll need to take another pass
642       // through the initializer list.
643       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
644       RequiresSecondPass = true;
645     }
646   } else if (InitListExpr *InnerILE
647                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
648     FillInEmptyInitializations(MemberEntity, InnerILE,
649                                RequiresSecondPass, ILE, Init, FillWithNoInit);
650   else if (DesignatedInitUpdateExpr *InnerDIUE
651                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
652     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
653                                RequiresSecondPass, ILE, Init,
654                                /*FillWithNoInit =*/true);
655 }
656 
657 /// Recursively replaces NULL values within the given initializer list
658 /// with expressions that perform value-initialization of the
659 /// appropriate type, and finish off the InitListExpr formation.
660 void
661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
662                                             InitListExpr *ILE,
663                                             bool &RequiresSecondPass,
664                                             InitListExpr *OuterILE,
665                                             unsigned OuterIndex,
666                                             bool FillWithNoInit) {
667   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
668          "Should not have void type");
669 
670   // If this is a nested initializer list, we might have changed its contents
671   // (and therefore some of its properties, such as instantiation-dependence)
672   // while filling it in. Inform the outer initializer list so that its state
673   // can be updated to match.
674   // FIXME: We should fully build the inner initializers before constructing
675   // the outer InitListExpr instead of mutating AST nodes after they have
676   // been used as subexpressions of other nodes.
677   struct UpdateOuterILEWithUpdatedInit {
678     InitListExpr *Outer;
679     unsigned OuterIndex;
680     ~UpdateOuterILEWithUpdatedInit() {
681       if (Outer)
682         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
683     }
684   } UpdateOuterRAII = {OuterILE, OuterIndex};
685 
686   // A transparent ILE is not performing aggregate initialization and should
687   // not be filled in.
688   if (ILE->isTransparent())
689     return;
690 
691   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
692     const RecordDecl *RDecl = RType->getDecl();
693     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
694       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
695                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
696     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
697              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
698       for (auto *Field : RDecl->fields()) {
699         if (Field->hasInClassInitializer()) {
700           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
701                                   FillWithNoInit);
702           break;
703         }
704       }
705     } else {
706       // The fields beyond ILE->getNumInits() are default initialized, so in
707       // order to leave them uninitialized, the ILE is expanded and the extra
708       // fields are then filled with NoInitExpr.
709       unsigned NumElems = numStructUnionElements(ILE->getType());
710       if (RDecl->hasFlexibleArrayMember())
711         ++NumElems;
712       if (ILE->getNumInits() < NumElems)
713         ILE->resizeInits(SemaRef.Context, NumElems);
714 
715       unsigned Init = 0;
716 
717       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
718         for (auto &Base : CXXRD->bases()) {
719           if (hadError)
720             return;
721 
722           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
723                                  FillWithNoInit);
724           ++Init;
725         }
726       }
727 
728       for (auto *Field : RDecl->fields()) {
729         if (Field->isUnnamedBitfield())
730           continue;
731 
732         if (hadError)
733           return;
734 
735         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
736                                 FillWithNoInit);
737         if (hadError)
738           return;
739 
740         ++Init;
741 
742         // Only look at the first initialization of a union.
743         if (RDecl->isUnion())
744           break;
745       }
746     }
747 
748     return;
749   }
750 
751   QualType ElementType;
752 
753   InitializedEntity ElementEntity = Entity;
754   unsigned NumInits = ILE->getNumInits();
755   unsigned NumElements = NumInits;
756   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
757     ElementType = AType->getElementType();
758     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
759       NumElements = CAType->getSize().getZExtValue();
760     // For an array new with an unknown bound, ask for one additional element
761     // in order to populate the array filler.
762     if (Entity.isVariableLengthArrayNew())
763       ++NumElements;
764     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
765                                                          0, Entity);
766   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
767     ElementType = VType->getElementType();
768     NumElements = VType->getNumElements();
769     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
770                                                          0, Entity);
771   } else
772     ElementType = ILE->getType();
773 
774   for (unsigned Init = 0; Init != NumElements; ++Init) {
775     if (hadError)
776       return;
777 
778     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
779         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
780       ElementEntity.setElementIndex(Init);
781 
782     if (Init >= NumInits && ILE->hasArrayFiller())
783       return;
784 
785     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
786     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
787       ILE->setInit(Init, ILE->getArrayFiller());
788     else if (!InitExpr && !ILE->hasArrayFiller()) {
789       Expr *Filler = nullptr;
790 
791       if (FillWithNoInit)
792         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
793       else {
794         ExprResult ElementInit =
795             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
796                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
797         if (ElementInit.isInvalid()) {
798           hadError = true;
799           return;
800         }
801 
802         Filler = ElementInit.getAs<Expr>();
803       }
804 
805       if (hadError) {
806         // Do nothing
807       } else if (Init < NumInits) {
808         // For arrays, just set the expression used for value-initialization
809         // of the "holes" in the array.
810         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
811           ILE->setArrayFiller(Filler);
812         else
813           ILE->setInit(Init, Filler);
814       } else {
815         // For arrays, just set the expression used for value-initialization
816         // of the rest of elements and exit.
817         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
818           ILE->setArrayFiller(Filler);
819           return;
820         }
821 
822         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
823           // Empty initialization requires a constructor call, so
824           // extend the initializer list to include the constructor
825           // call and make a note that we'll need to take another pass
826           // through the initializer list.
827           ILE->updateInit(SemaRef.Context, Init, Filler);
828           RequiresSecondPass = true;
829         }
830       }
831     } else if (InitListExpr *InnerILE
832                  = dyn_cast_or_null<InitListExpr>(InitExpr))
833       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
834                                  ILE, Init, FillWithNoInit);
835     else if (DesignatedInitUpdateExpr *InnerDIUE
836                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
837       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
838                                  RequiresSecondPass, ILE, Init,
839                                  /*FillWithNoInit =*/true);
840   }
841 }
842 
843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
844                                  InitListExpr *IL, QualType &T,
845                                  bool VerifyOnly,
846                                  bool TreatUnavailableAsInvalid)
847   : SemaRef(S), VerifyOnly(VerifyOnly),
848     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
849   // FIXME: Check that IL isn't already the semantic form of some other
850   // InitListExpr. If it is, we'd create a broken AST.
851 
852   hadError = false;
853 
854   FullyStructuredList =
855       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
856   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
857                         /*TopLevelObject=*/true);
858 
859   if (!hadError && !VerifyOnly) {
860     bool RequiresSecondPass = false;
861     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
862                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
863     if (RequiresSecondPass && !hadError)
864       FillInEmptyInitializations(Entity, FullyStructuredList,
865                                  RequiresSecondPass, nullptr, 0);
866   }
867 }
868 
869 int InitListChecker::numArrayElements(QualType DeclType) {
870   // FIXME: use a proper constant
871   int maxElements = 0x7FFFFFFF;
872   if (const ConstantArrayType *CAT =
873         SemaRef.Context.getAsConstantArrayType(DeclType)) {
874     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
875   }
876   return maxElements;
877 }
878 
879 int InitListChecker::numStructUnionElements(QualType DeclType) {
880   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
881   int InitializableMembers = 0;
882   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
883     InitializableMembers += CXXRD->getNumBases();
884   for (const auto *Field : structDecl->fields())
885     if (!Field->isUnnamedBitfield())
886       ++InitializableMembers;
887 
888   if (structDecl->isUnion())
889     return std::min(InitializableMembers, 1);
890   return InitializableMembers - structDecl->hasFlexibleArrayMember();
891 }
892 
893 /// Determine whether Entity is an entity for which it is idiomatic to elide
894 /// the braces in aggregate initialization.
895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
896   // Recursive initialization of the one and only field within an aggregate
897   // class is considered idiomatic. This case arises in particular for
898   // initialization of std::array, where the C++ standard suggests the idiom of
899   //
900   //   std::array<T, N> arr = {1, 2, 3};
901   //
902   // (where std::array is an aggregate struct containing a single array field.
903 
904   // FIXME: Should aggregate initialization of a struct with a single
905   // base class and no members also suppress the warning?
906   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
907     return false;
908 
909   auto *ParentRD =
910       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
911   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
912     if (CXXRD->getNumBases())
913       return false;
914 
915   auto FieldIt = ParentRD->field_begin();
916   assert(FieldIt != ParentRD->field_end() &&
917          "no fields but have initializer for member?");
918   return ++FieldIt == ParentRD->field_end();
919 }
920 
921 /// Check whether the range of the initializer \p ParentIList from element
922 /// \p Index onwards can be used to initialize an object of type \p T. Update
923 /// \p Index to indicate how many elements of the list were consumed.
924 ///
925 /// This also fills in \p StructuredList, from element \p StructuredIndex
926 /// onwards, with the fully-braced, desugared form of the initialization.
927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
928                                             InitListExpr *ParentIList,
929                                             QualType T, unsigned &Index,
930                                             InitListExpr *StructuredList,
931                                             unsigned &StructuredIndex) {
932   int maxElements = 0;
933 
934   if (T->isArrayType())
935     maxElements = numArrayElements(T);
936   else if (T->isRecordType())
937     maxElements = numStructUnionElements(T);
938   else if (T->isVectorType())
939     maxElements = T->getAs<VectorType>()->getNumElements();
940   else
941     llvm_unreachable("CheckImplicitInitList(): Illegal type");
942 
943   if (maxElements == 0) {
944     if (!VerifyOnly)
945       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
946                    diag::err_implicit_empty_initializer);
947     ++Index;
948     hadError = true;
949     return;
950   }
951 
952   // Build a structured initializer list corresponding to this subobject.
953   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
954       ParentIList, Index, T, StructuredList, StructuredIndex,
955       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
956                   ParentIList->getSourceRange().getEnd()));
957   unsigned StructuredSubobjectInitIndex = 0;
958 
959   // Check the element types and build the structural subobject.
960   unsigned StartIndex = Index;
961   CheckListElementTypes(Entity, ParentIList, T,
962                         /*SubobjectIsDesignatorContext=*/false, Index,
963                         StructuredSubobjectInitList,
964                         StructuredSubobjectInitIndex);
965 
966   if (!VerifyOnly) {
967     StructuredSubobjectInitList->setType(T);
968 
969     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
970     // Update the structured sub-object initializer so that it's ending
971     // range corresponds with the end of the last initializer it used.
972     if (EndIndex < ParentIList->getNumInits() &&
973         ParentIList->getInit(EndIndex)) {
974       SourceLocation EndLoc
975         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
976       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
977     }
978 
979     // Complain about missing braces.
980     if ((T->isArrayType() || T->isRecordType()) &&
981         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
982         !isIdiomaticBraceElisionEntity(Entity)) {
983       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
984                    diag::warn_missing_braces)
985           << StructuredSubobjectInitList->getSourceRange()
986           << FixItHint::CreateInsertion(
987                  StructuredSubobjectInitList->getBeginLoc(), "{")
988           << FixItHint::CreateInsertion(
989                  SemaRef.getLocForEndOfToken(
990                      StructuredSubobjectInitList->getEndLoc()),
991                  "}");
992     }
993 
994     // Warn if this type won't be an aggregate in future versions of C++.
995     auto *CXXRD = T->getAsCXXRecordDecl();
996     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
997       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
998                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
999           << StructuredSubobjectInitList->getSourceRange() << T;
1000     }
1001   }
1002 }
1003 
1004 /// Warn that \p Entity was of scalar type and was initialized by a
1005 /// single-element braced initializer list.
1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1007                                  SourceRange Braces) {
1008   // Don't warn during template instantiation. If the initialization was
1009   // non-dependent, we warned during the initial parse; otherwise, the
1010   // type might not be scalar in some uses of the template.
1011   if (S.inTemplateInstantiation())
1012     return;
1013 
1014   unsigned DiagID = 0;
1015 
1016   switch (Entity.getKind()) {
1017   case InitializedEntity::EK_VectorElement:
1018   case InitializedEntity::EK_ComplexElement:
1019   case InitializedEntity::EK_ArrayElement:
1020   case InitializedEntity::EK_Parameter:
1021   case InitializedEntity::EK_Parameter_CF_Audited:
1022   case InitializedEntity::EK_Result:
1023     // Extra braces here are suspicious.
1024     DiagID = diag::warn_braces_around_scalar_init;
1025     break;
1026 
1027   case InitializedEntity::EK_Member:
1028     // Warn on aggregate initialization but not on ctor init list or
1029     // default member initializer.
1030     if (Entity.getParent())
1031       DiagID = diag::warn_braces_around_scalar_init;
1032     break;
1033 
1034   case InitializedEntity::EK_Variable:
1035   case InitializedEntity::EK_LambdaCapture:
1036     // No warning, might be direct-list-initialization.
1037     // FIXME: Should we warn for copy-list-initialization in these cases?
1038     break;
1039 
1040   case InitializedEntity::EK_New:
1041   case InitializedEntity::EK_Temporary:
1042   case InitializedEntity::EK_CompoundLiteralInit:
1043     // No warning, braces are part of the syntax of the underlying construct.
1044     break;
1045 
1046   case InitializedEntity::EK_RelatedResult:
1047     // No warning, we already warned when initializing the result.
1048     break;
1049 
1050   case InitializedEntity::EK_Exception:
1051   case InitializedEntity::EK_Base:
1052   case InitializedEntity::EK_Delegating:
1053   case InitializedEntity::EK_BlockElement:
1054   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1055   case InitializedEntity::EK_Binding:
1056   case InitializedEntity::EK_StmtExprResult:
1057     llvm_unreachable("unexpected braced scalar init");
1058   }
1059 
1060   if (DiagID) {
1061     S.Diag(Braces.getBegin(), DiagID)
1062       << Braces
1063       << FixItHint::CreateRemoval(Braces.getBegin())
1064       << FixItHint::CreateRemoval(Braces.getEnd());
1065   }
1066 }
1067 
1068 /// Check whether the initializer \p IList (that was written with explicit
1069 /// braces) can be used to initialize an object of type \p T.
1070 ///
1071 /// This also fills in \p StructuredList with the fully-braced, desugared
1072 /// form of the initialization.
1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1074                                             InitListExpr *IList, QualType &T,
1075                                             InitListExpr *StructuredList,
1076                                             bool TopLevelObject) {
1077   if (!VerifyOnly) {
1078     SyntacticToSemantic[IList] = StructuredList;
1079     StructuredList->setSyntacticForm(IList);
1080   }
1081 
1082   unsigned Index = 0, StructuredIndex = 0;
1083   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1084                         Index, StructuredList, StructuredIndex, TopLevelObject);
1085   if (!VerifyOnly) {
1086     QualType ExprTy = T;
1087     if (!ExprTy->isArrayType())
1088       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1089     IList->setType(ExprTy);
1090     StructuredList->setType(ExprTy);
1091   }
1092   if (hadError)
1093     return;
1094 
1095   if (Index < IList->getNumInits()) {
1096     // We have leftover initializers
1097     if (VerifyOnly) {
1098       if (SemaRef.getLangOpts().CPlusPlus ||
1099           (SemaRef.getLangOpts().OpenCL &&
1100            IList->getType()->isVectorType())) {
1101         hadError = true;
1102       }
1103       return;
1104     }
1105 
1106     if (StructuredIndex == 1 &&
1107         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1108             SIF_None) {
1109       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1110       if (SemaRef.getLangOpts().CPlusPlus) {
1111         DK = diag::err_excess_initializers_in_char_array_initializer;
1112         hadError = true;
1113       }
1114       // Special-case
1115       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1116           << IList->getInit(Index)->getSourceRange();
1117     } else if (!T->isIncompleteType()) {
1118       // Don't complain for incomplete types, since we'll get an error
1119       // elsewhere
1120       QualType CurrentObjectType = StructuredList->getType();
1121       int initKind =
1122         CurrentObjectType->isArrayType()? 0 :
1123         CurrentObjectType->isVectorType()? 1 :
1124         CurrentObjectType->isScalarType()? 2 :
1125         CurrentObjectType->isUnionType()? 3 :
1126         4;
1127 
1128       unsigned DK = diag::ext_excess_initializers;
1129       if (SemaRef.getLangOpts().CPlusPlus) {
1130         DK = diag::err_excess_initializers;
1131         hadError = true;
1132       }
1133       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1134         DK = diag::err_excess_initializers;
1135         hadError = true;
1136       }
1137 
1138       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1139           << initKind << IList->getInit(Index)->getSourceRange();
1140     }
1141   }
1142 
1143   if (!VerifyOnly) {
1144     if (T->isScalarType() && IList->getNumInits() == 1 &&
1145         !isa<InitListExpr>(IList->getInit(0)))
1146       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1147 
1148     // Warn if this is a class type that won't be an aggregate in future
1149     // versions of C++.
1150     auto *CXXRD = T->getAsCXXRecordDecl();
1151     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1152       // Don't warn if there's an equivalent default constructor that would be
1153       // used instead.
1154       bool HasEquivCtor = false;
1155       if (IList->getNumInits() == 0) {
1156         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1157         HasEquivCtor = CD && !CD->isDeleted();
1158       }
1159 
1160       if (!HasEquivCtor) {
1161         SemaRef.Diag(IList->getBeginLoc(),
1162                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1163             << IList->getSourceRange() << T;
1164       }
1165     }
1166   }
1167 }
1168 
1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1170                                             InitListExpr *IList,
1171                                             QualType &DeclType,
1172                                             bool SubobjectIsDesignatorContext,
1173                                             unsigned &Index,
1174                                             InitListExpr *StructuredList,
1175                                             unsigned &StructuredIndex,
1176                                             bool TopLevelObject) {
1177   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1178     // Explicitly braced initializer for complex type can be real+imaginary
1179     // parts.
1180     CheckComplexType(Entity, IList, DeclType, Index,
1181                      StructuredList, StructuredIndex);
1182   } else if (DeclType->isScalarType()) {
1183     CheckScalarType(Entity, IList, DeclType, Index,
1184                     StructuredList, StructuredIndex);
1185   } else if (DeclType->isVectorType()) {
1186     CheckVectorType(Entity, IList, DeclType, Index,
1187                     StructuredList, StructuredIndex);
1188   } else if (DeclType->isRecordType()) {
1189     assert(DeclType->isAggregateType() &&
1190            "non-aggregate records should be handed in CheckSubElementType");
1191     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1192     auto Bases =
1193         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1194                                         CXXRecordDecl::base_class_iterator());
1195     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1196       Bases = CXXRD->bases();
1197     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1198                           SubobjectIsDesignatorContext, Index, StructuredList,
1199                           StructuredIndex, TopLevelObject);
1200   } else if (DeclType->isArrayType()) {
1201     llvm::APSInt Zero(
1202                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1203                     false);
1204     CheckArrayType(Entity, IList, DeclType, Zero,
1205                    SubobjectIsDesignatorContext, Index,
1206                    StructuredList, StructuredIndex);
1207   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1208     // This type is invalid, issue a diagnostic.
1209     ++Index;
1210     if (!VerifyOnly)
1211       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1212           << DeclType;
1213     hadError = true;
1214   } else if (DeclType->isReferenceType()) {
1215     CheckReferenceType(Entity, IList, DeclType, Index,
1216                        StructuredList, StructuredIndex);
1217   } else if (DeclType->isObjCObjectType()) {
1218     if (!VerifyOnly)
1219       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1220     hadError = true;
1221   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1222     // Checks for scalar type are sufficient for these types too.
1223     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1224                     StructuredIndex);
1225   } else {
1226     if (!VerifyOnly)
1227       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1228           << DeclType;
1229     hadError = true;
1230   }
1231 }
1232 
1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1234                                           InitListExpr *IList,
1235                                           QualType ElemType,
1236                                           unsigned &Index,
1237                                           InitListExpr *StructuredList,
1238                                           unsigned &StructuredIndex) {
1239   Expr *expr = IList->getInit(Index);
1240 
1241   if (ElemType->isReferenceType())
1242     return CheckReferenceType(Entity, IList, ElemType, Index,
1243                               StructuredList, StructuredIndex);
1244 
1245   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1246     if (SubInitList->getNumInits() == 1 &&
1247         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1248         SIF_None) {
1249       expr = SubInitList->getInit(0);
1250     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1251       InitListExpr *InnerStructuredList
1252         = getStructuredSubobjectInit(IList, Index, ElemType,
1253                                      StructuredList, StructuredIndex,
1254                                      SubInitList->getSourceRange(), true);
1255       CheckExplicitInitList(Entity, SubInitList, ElemType,
1256                             InnerStructuredList);
1257 
1258       if (!hadError && !VerifyOnly) {
1259         bool RequiresSecondPass = false;
1260         FillInEmptyInitializations(Entity, InnerStructuredList,
1261                                    RequiresSecondPass, StructuredList,
1262                                    StructuredIndex);
1263         if (RequiresSecondPass && !hadError)
1264           FillInEmptyInitializations(Entity, InnerStructuredList,
1265                                      RequiresSecondPass, StructuredList,
1266                                      StructuredIndex);
1267       }
1268       ++StructuredIndex;
1269       ++Index;
1270       return;
1271     }
1272     // C++ initialization is handled later.
1273   } else if (isa<ImplicitValueInitExpr>(expr)) {
1274     // This happens during template instantiation when we see an InitListExpr
1275     // that we've already checked once.
1276     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1277            "found implicit initialization for the wrong type");
1278     if (!VerifyOnly)
1279       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1280     ++Index;
1281     return;
1282   }
1283 
1284   if (SemaRef.getLangOpts().CPlusPlus) {
1285     // C++ [dcl.init.aggr]p2:
1286     //   Each member is copy-initialized from the corresponding
1287     //   initializer-clause.
1288 
1289     // FIXME: Better EqualLoc?
1290     InitializationKind Kind =
1291         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1292     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1293                                /*TopLevelOfInitList*/ true);
1294 
1295     // C++14 [dcl.init.aggr]p13:
1296     //   If the assignment-expression can initialize a member, the member is
1297     //   initialized. Otherwise [...] brace elision is assumed
1298     //
1299     // Brace elision is never performed if the element is not an
1300     // assignment-expression.
1301     if (Seq || isa<InitListExpr>(expr)) {
1302       if (!VerifyOnly) {
1303         ExprResult Result =
1304           Seq.Perform(SemaRef, Entity, Kind, expr);
1305         if (Result.isInvalid())
1306           hadError = true;
1307 
1308         UpdateStructuredListElement(StructuredList, StructuredIndex,
1309                                     Result.getAs<Expr>());
1310       } else if (!Seq)
1311         hadError = true;
1312       ++Index;
1313       return;
1314     }
1315 
1316     // Fall through for subaggregate initialization
1317   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1318     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1319     return CheckScalarType(Entity, IList, ElemType, Index,
1320                            StructuredList, StructuredIndex);
1321   } else if (const ArrayType *arrayType =
1322                  SemaRef.Context.getAsArrayType(ElemType)) {
1323     // arrayType can be incomplete if we're initializing a flexible
1324     // array member.  There's nothing we can do with the completed
1325     // type here, though.
1326 
1327     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1328       if (!VerifyOnly) {
1329         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1330         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1331       }
1332       ++Index;
1333       return;
1334     }
1335 
1336     // Fall through for subaggregate initialization.
1337 
1338   } else {
1339     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1340             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1341 
1342     // C99 6.7.8p13:
1343     //
1344     //   The initializer for a structure or union object that has
1345     //   automatic storage duration shall be either an initializer
1346     //   list as described below, or a single expression that has
1347     //   compatible structure or union type. In the latter case, the
1348     //   initial value of the object, including unnamed members, is
1349     //   that of the expression.
1350     ExprResult ExprRes = expr;
1351     if (SemaRef.CheckSingleAssignmentConstraints(
1352             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1353       if (ExprRes.isInvalid())
1354         hadError = true;
1355       else {
1356         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1357           if (ExprRes.isInvalid())
1358             hadError = true;
1359       }
1360       UpdateStructuredListElement(StructuredList, StructuredIndex,
1361                                   ExprRes.getAs<Expr>());
1362       ++Index;
1363       return;
1364     }
1365     ExprRes.get();
1366     // Fall through for subaggregate initialization
1367   }
1368 
1369   // C++ [dcl.init.aggr]p12:
1370   //
1371   //   [...] Otherwise, if the member is itself a non-empty
1372   //   subaggregate, brace elision is assumed and the initializer is
1373   //   considered for the initialization of the first member of
1374   //   the subaggregate.
1375   // OpenCL vector initializer is handled elsewhere.
1376   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1377       ElemType->isAggregateType()) {
1378     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1379                           StructuredIndex);
1380     ++StructuredIndex;
1381   } else {
1382     if (!VerifyOnly) {
1383       // We cannot initialize this element, so let
1384       // PerformCopyInitialization produce the appropriate diagnostic.
1385       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1386                                         /*TopLevelOfInitList=*/true);
1387     }
1388     hadError = true;
1389     ++Index;
1390     ++StructuredIndex;
1391   }
1392 }
1393 
1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1395                                        InitListExpr *IList, QualType DeclType,
1396                                        unsigned &Index,
1397                                        InitListExpr *StructuredList,
1398                                        unsigned &StructuredIndex) {
1399   assert(Index == 0 && "Index in explicit init list must be zero");
1400 
1401   // As an extension, clang supports complex initializers, which initialize
1402   // a complex number component-wise.  When an explicit initializer list for
1403   // a complex number contains two two initializers, this extension kicks in:
1404   // it exepcts the initializer list to contain two elements convertible to
1405   // the element type of the complex type. The first element initializes
1406   // the real part, and the second element intitializes the imaginary part.
1407 
1408   if (IList->getNumInits() != 2)
1409     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1410                            StructuredIndex);
1411 
1412   // This is an extension in C.  (The builtin _Complex type does not exist
1413   // in the C++ standard.)
1414   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1415     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1416         << IList->getSourceRange();
1417 
1418   // Initialize the complex number.
1419   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1420   InitializedEntity ElementEntity =
1421     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1422 
1423   for (unsigned i = 0; i < 2; ++i) {
1424     ElementEntity.setElementIndex(Index);
1425     CheckSubElementType(ElementEntity, IList, elementType, Index,
1426                         StructuredList, StructuredIndex);
1427   }
1428 }
1429 
1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1431                                       InitListExpr *IList, QualType DeclType,
1432                                       unsigned &Index,
1433                                       InitListExpr *StructuredList,
1434                                       unsigned &StructuredIndex) {
1435   if (Index >= IList->getNumInits()) {
1436     if (!VerifyOnly)
1437       SemaRef.Diag(IList->getBeginLoc(),
1438                    SemaRef.getLangOpts().CPlusPlus11
1439                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1440                        : diag::err_empty_scalar_initializer)
1441           << IList->getSourceRange();
1442     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1443     ++Index;
1444     ++StructuredIndex;
1445     return;
1446   }
1447 
1448   Expr *expr = IList->getInit(Index);
1449   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1450     // FIXME: This is invalid, and accepting it causes overload resolution
1451     // to pick the wrong overload in some corner cases.
1452     if (!VerifyOnly)
1453       SemaRef.Diag(SubIList->getBeginLoc(),
1454                    diag::ext_many_braces_around_scalar_init)
1455           << SubIList->getSourceRange();
1456 
1457     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1458                     StructuredIndex);
1459     return;
1460   } else if (isa<DesignatedInitExpr>(expr)) {
1461     if (!VerifyOnly)
1462       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1463           << DeclType << expr->getSourceRange();
1464     hadError = true;
1465     ++Index;
1466     ++StructuredIndex;
1467     return;
1468   }
1469 
1470   if (VerifyOnly) {
1471     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1472       hadError = true;
1473     ++Index;
1474     return;
1475   }
1476 
1477   ExprResult Result =
1478       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1479                                         /*TopLevelOfInitList=*/true);
1480 
1481   Expr *ResultExpr = nullptr;
1482 
1483   if (Result.isInvalid())
1484     hadError = true; // types weren't compatible.
1485   else {
1486     ResultExpr = Result.getAs<Expr>();
1487 
1488     if (ResultExpr != expr) {
1489       // The type was promoted, update initializer list.
1490       IList->setInit(Index, ResultExpr);
1491     }
1492   }
1493   if (hadError)
1494     ++StructuredIndex;
1495   else
1496     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1497   ++Index;
1498 }
1499 
1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1501                                          InitListExpr *IList, QualType DeclType,
1502                                          unsigned &Index,
1503                                          InitListExpr *StructuredList,
1504                                          unsigned &StructuredIndex) {
1505   if (Index >= IList->getNumInits()) {
1506     // FIXME: It would be wonderful if we could point at the actual member. In
1507     // general, it would be useful to pass location information down the stack,
1508     // so that we know the location (or decl) of the "current object" being
1509     // initialized.
1510     if (!VerifyOnly)
1511       SemaRef.Diag(IList->getBeginLoc(),
1512                    diag::err_init_reference_member_uninitialized)
1513           << DeclType << IList->getSourceRange();
1514     hadError = true;
1515     ++Index;
1516     ++StructuredIndex;
1517     return;
1518   }
1519 
1520   Expr *expr = IList->getInit(Index);
1521   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1522     if (!VerifyOnly)
1523       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1524           << DeclType << IList->getSourceRange();
1525     hadError = true;
1526     ++Index;
1527     ++StructuredIndex;
1528     return;
1529   }
1530 
1531   if (VerifyOnly) {
1532     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1533       hadError = true;
1534     ++Index;
1535     return;
1536   }
1537 
1538   ExprResult Result =
1539       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1540                                         /*TopLevelOfInitList=*/true);
1541 
1542   if (Result.isInvalid())
1543     hadError = true;
1544 
1545   expr = Result.getAs<Expr>();
1546   IList->setInit(Index, expr);
1547 
1548   if (hadError)
1549     ++StructuredIndex;
1550   else
1551     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1552   ++Index;
1553 }
1554 
1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1556                                       InitListExpr *IList, QualType DeclType,
1557                                       unsigned &Index,
1558                                       InitListExpr *StructuredList,
1559                                       unsigned &StructuredIndex) {
1560   const VectorType *VT = DeclType->getAs<VectorType>();
1561   unsigned maxElements = VT->getNumElements();
1562   unsigned numEltsInit = 0;
1563   QualType elementType = VT->getElementType();
1564 
1565   if (Index >= IList->getNumInits()) {
1566     // Make sure the element type can be value-initialized.
1567     if (VerifyOnly)
1568       CheckEmptyInitializable(
1569           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1570           IList->getEndLoc());
1571     return;
1572   }
1573 
1574   if (!SemaRef.getLangOpts().OpenCL) {
1575     // If the initializing element is a vector, try to copy-initialize
1576     // instead of breaking it apart (which is doomed to failure anyway).
1577     Expr *Init = IList->getInit(Index);
1578     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1579       if (VerifyOnly) {
1580         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1581           hadError = true;
1582         ++Index;
1583         return;
1584       }
1585 
1586       ExprResult Result =
1587           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1588                                             /*TopLevelOfInitList=*/true);
1589 
1590       Expr *ResultExpr = nullptr;
1591       if (Result.isInvalid())
1592         hadError = true; // types weren't compatible.
1593       else {
1594         ResultExpr = Result.getAs<Expr>();
1595 
1596         if (ResultExpr != Init) {
1597           // The type was promoted, update initializer list.
1598           IList->setInit(Index, ResultExpr);
1599         }
1600       }
1601       if (hadError)
1602         ++StructuredIndex;
1603       else
1604         UpdateStructuredListElement(StructuredList, StructuredIndex,
1605                                     ResultExpr);
1606       ++Index;
1607       return;
1608     }
1609 
1610     InitializedEntity ElementEntity =
1611       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612 
1613     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1614       // Don't attempt to go past the end of the init list
1615       if (Index >= IList->getNumInits()) {
1616         if (VerifyOnly)
1617           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1618         break;
1619       }
1620 
1621       ElementEntity.setElementIndex(Index);
1622       CheckSubElementType(ElementEntity, IList, elementType, Index,
1623                           StructuredList, StructuredIndex);
1624     }
1625 
1626     if (VerifyOnly)
1627       return;
1628 
1629     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1630     const VectorType *T = Entity.getType()->getAs<VectorType>();
1631     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1632                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1633       // The ability to use vector initializer lists is a GNU vector extension
1634       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1635       // endian machines it works fine, however on big endian machines it
1636       // exhibits surprising behaviour:
1637       //
1638       //   uint32x2_t x = {42, 64};
1639       //   return vget_lane_u32(x, 0); // Will return 64.
1640       //
1641       // Because of this, explicitly call out that it is non-portable.
1642       //
1643       SemaRef.Diag(IList->getBeginLoc(),
1644                    diag::warn_neon_vector_initializer_non_portable);
1645 
1646       const char *typeCode;
1647       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1648 
1649       if (elementType->isFloatingType())
1650         typeCode = "f";
1651       else if (elementType->isSignedIntegerType())
1652         typeCode = "s";
1653       else if (elementType->isUnsignedIntegerType())
1654         typeCode = "u";
1655       else
1656         llvm_unreachable("Invalid element type!");
1657 
1658       SemaRef.Diag(IList->getBeginLoc(),
1659                    SemaRef.Context.getTypeSize(VT) > 64
1660                        ? diag::note_neon_vector_initializer_non_portable_q
1661                        : diag::note_neon_vector_initializer_non_portable)
1662           << typeCode << typeSize;
1663     }
1664 
1665     return;
1666   }
1667 
1668   InitializedEntity ElementEntity =
1669     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1670 
1671   // OpenCL initializers allows vectors to be constructed from vectors.
1672   for (unsigned i = 0; i < maxElements; ++i) {
1673     // Don't attempt to go past the end of the init list
1674     if (Index >= IList->getNumInits())
1675       break;
1676 
1677     ElementEntity.setElementIndex(Index);
1678 
1679     QualType IType = IList->getInit(Index)->getType();
1680     if (!IType->isVectorType()) {
1681       CheckSubElementType(ElementEntity, IList, elementType, Index,
1682                           StructuredList, StructuredIndex);
1683       ++numEltsInit;
1684     } else {
1685       QualType VecType;
1686       const VectorType *IVT = IType->getAs<VectorType>();
1687       unsigned numIElts = IVT->getNumElements();
1688 
1689       if (IType->isExtVectorType())
1690         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1691       else
1692         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1693                                                 IVT->getVectorKind());
1694       CheckSubElementType(ElementEntity, IList, VecType, Index,
1695                           StructuredList, StructuredIndex);
1696       numEltsInit += numIElts;
1697     }
1698   }
1699 
1700   // OpenCL requires all elements to be initialized.
1701   if (numEltsInit != maxElements) {
1702     if (!VerifyOnly)
1703       SemaRef.Diag(IList->getBeginLoc(),
1704                    diag::err_vector_incorrect_num_initializers)
1705           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1706     hadError = true;
1707   }
1708 }
1709 
1710 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1711                                      InitListExpr *IList, QualType &DeclType,
1712                                      llvm::APSInt elementIndex,
1713                                      bool SubobjectIsDesignatorContext,
1714                                      unsigned &Index,
1715                                      InitListExpr *StructuredList,
1716                                      unsigned &StructuredIndex) {
1717   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1718 
1719   // Check for the special-case of initializing an array with a string.
1720   if (Index < IList->getNumInits()) {
1721     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1722         SIF_None) {
1723       // We place the string literal directly into the resulting
1724       // initializer list. This is the only place where the structure
1725       // of the structured initializer list doesn't match exactly,
1726       // because doing so would involve allocating one character
1727       // constant for each string.
1728       if (!VerifyOnly) {
1729         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1730         UpdateStructuredListElement(StructuredList, StructuredIndex,
1731                                     IList->getInit(Index));
1732         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1733       }
1734       ++Index;
1735       return;
1736     }
1737   }
1738   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1739     // Check for VLAs; in standard C it would be possible to check this
1740     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1741     // them in all sorts of strange places).
1742     if (!VerifyOnly)
1743       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1744                    diag::err_variable_object_no_init)
1745           << VAT->getSizeExpr()->getSourceRange();
1746     hadError = true;
1747     ++Index;
1748     ++StructuredIndex;
1749     return;
1750   }
1751 
1752   // We might know the maximum number of elements in advance.
1753   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1754                            elementIndex.isUnsigned());
1755   bool maxElementsKnown = false;
1756   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1757     maxElements = CAT->getSize();
1758     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1759     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1760     maxElementsKnown = true;
1761   }
1762 
1763   QualType elementType = arrayType->getElementType();
1764   while (Index < IList->getNumInits()) {
1765     Expr *Init = IList->getInit(Index);
1766     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1767       // If we're not the subobject that matches up with the '{' for
1768       // the designator, we shouldn't be handling the
1769       // designator. Return immediately.
1770       if (!SubobjectIsDesignatorContext)
1771         return;
1772 
1773       // Handle this designated initializer. elementIndex will be
1774       // updated to be the next array element we'll initialize.
1775       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1776                                      DeclType, nullptr, &elementIndex, Index,
1777                                      StructuredList, StructuredIndex, true,
1778                                      false)) {
1779         hadError = true;
1780         continue;
1781       }
1782 
1783       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1784         maxElements = maxElements.extend(elementIndex.getBitWidth());
1785       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1786         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1787       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1788 
1789       // If the array is of incomplete type, keep track of the number of
1790       // elements in the initializer.
1791       if (!maxElementsKnown && elementIndex > maxElements)
1792         maxElements = elementIndex;
1793 
1794       continue;
1795     }
1796 
1797     // If we know the maximum number of elements, and we've already
1798     // hit it, stop consuming elements in the initializer list.
1799     if (maxElementsKnown && elementIndex == maxElements)
1800       break;
1801 
1802     InitializedEntity ElementEntity =
1803       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1804                                            Entity);
1805     // Check this element.
1806     CheckSubElementType(ElementEntity, IList, elementType, Index,
1807                         StructuredList, StructuredIndex);
1808     ++elementIndex;
1809 
1810     // If the array is of incomplete type, keep track of the number of
1811     // elements in the initializer.
1812     if (!maxElementsKnown && elementIndex > maxElements)
1813       maxElements = elementIndex;
1814   }
1815   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1816     // If this is an incomplete array type, the actual type needs to
1817     // be calculated here.
1818     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1819     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1820       // Sizing an array implicitly to zero is not allowed by ISO C,
1821       // but is supported by GNU.
1822       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1823     }
1824 
1825     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1826                                                      ArrayType::Normal, 0);
1827   }
1828   if (!hadError && VerifyOnly) {
1829     // If there are any members of the array that get value-initialized, check
1830     // that is possible. That happens if we know the bound and don't have
1831     // enough elements, or if we're performing an array new with an unknown
1832     // bound.
1833     // FIXME: This needs to detect holes left by designated initializers too.
1834     if ((maxElementsKnown && elementIndex < maxElements) ||
1835         Entity.isVariableLengthArrayNew())
1836       CheckEmptyInitializable(
1837           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1838           IList->getEndLoc());
1839   }
1840 }
1841 
1842 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1843                                              Expr *InitExpr,
1844                                              FieldDecl *Field,
1845                                              bool TopLevelObject) {
1846   // Handle GNU flexible array initializers.
1847   unsigned FlexArrayDiag;
1848   if (isa<InitListExpr>(InitExpr) &&
1849       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1850     // Empty flexible array init always allowed as an extension
1851     FlexArrayDiag = diag::ext_flexible_array_init;
1852   } else if (SemaRef.getLangOpts().CPlusPlus) {
1853     // Disallow flexible array init in C++; it is not required for gcc
1854     // compatibility, and it needs work to IRGen correctly in general.
1855     FlexArrayDiag = diag::err_flexible_array_init;
1856   } else if (!TopLevelObject) {
1857     // Disallow flexible array init on non-top-level object
1858     FlexArrayDiag = diag::err_flexible_array_init;
1859   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1860     // Disallow flexible array init on anything which is not a variable.
1861     FlexArrayDiag = diag::err_flexible_array_init;
1862   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1863     // Disallow flexible array init on local variables.
1864     FlexArrayDiag = diag::err_flexible_array_init;
1865   } else {
1866     // Allow other cases.
1867     FlexArrayDiag = diag::ext_flexible_array_init;
1868   }
1869 
1870   if (!VerifyOnly) {
1871     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1872         << InitExpr->getBeginLoc();
1873     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1874       << Field;
1875   }
1876 
1877   return FlexArrayDiag != diag::ext_flexible_array_init;
1878 }
1879 
1880 /// Check if the type of a class element has an accessible destructor.
1881 ///
1882 /// Aggregate initialization requires a class element's destructor be
1883 /// accessible per 11.6.1 [dcl.init.aggr]:
1884 ///
1885 /// The destructor for each element of class type is potentially invoked
1886 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1887 /// occurs.
1888 static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1889                                     Sema &SemaRef) {
1890   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1891   if (!CXXRD)
1892     return false;
1893 
1894   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1895   SemaRef.CheckDestructorAccess(Loc, Destructor,
1896                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1897                                     << ElementType);
1898   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1899   if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1900     return true;
1901   return false;
1902 }
1903 
1904 void InitListChecker::CheckStructUnionTypes(
1905     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1906     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1907     bool SubobjectIsDesignatorContext, unsigned &Index,
1908     InitListExpr *StructuredList, unsigned &StructuredIndex,
1909     bool TopLevelObject) {
1910   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1911 
1912   // If the record is invalid, some of it's members are invalid. To avoid
1913   // confusion, we forgo checking the intializer for the entire record.
1914   if (structDecl->isInvalidDecl()) {
1915     // Assume it was supposed to consume a single initializer.
1916     ++Index;
1917     hadError = true;
1918     return;
1919   }
1920 
1921   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1922     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1923 
1924     if (!VerifyOnly)
1925       for (FieldDecl *FD : RD->fields()) {
1926         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1927         if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1928           hadError = true;
1929           return;
1930         }
1931       }
1932 
1933     // If there's a default initializer, use it.
1934     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1935       if (VerifyOnly)
1936         return;
1937       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1938            Field != FieldEnd; ++Field) {
1939         if (Field->hasInClassInitializer()) {
1940           StructuredList->setInitializedFieldInUnion(*Field);
1941           // FIXME: Actually build a CXXDefaultInitExpr?
1942           return;
1943         }
1944       }
1945     }
1946 
1947     // Value-initialize the first member of the union that isn't an unnamed
1948     // bitfield.
1949     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1950          Field != FieldEnd; ++Field) {
1951       if (!Field->isUnnamedBitfield()) {
1952         if (VerifyOnly)
1953           CheckEmptyInitializable(
1954               InitializedEntity::InitializeMember(*Field, &Entity),
1955               IList->getEndLoc());
1956         else
1957           StructuredList->setInitializedFieldInUnion(*Field);
1958         break;
1959       }
1960     }
1961     return;
1962   }
1963 
1964   bool InitializedSomething = false;
1965 
1966   // If we have any base classes, they are initialized prior to the fields.
1967   for (auto &Base : Bases) {
1968     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1969 
1970     // Designated inits always initialize fields, so if we see one, all
1971     // remaining base classes have no explicit initializer.
1972     if (Init && isa<DesignatedInitExpr>(Init))
1973       Init = nullptr;
1974 
1975     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1976     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1977         SemaRef.Context, &Base, false, &Entity);
1978     if (Init) {
1979       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1980                           StructuredList, StructuredIndex);
1981       InitializedSomething = true;
1982     } else if (VerifyOnly) {
1983       CheckEmptyInitializable(BaseEntity, InitLoc);
1984     }
1985 
1986     if (!VerifyOnly)
1987       if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1988         hadError = true;
1989         return;
1990       }
1991   }
1992 
1993   // If structDecl is a forward declaration, this loop won't do
1994   // anything except look at designated initializers; That's okay,
1995   // because an error should get printed out elsewhere. It might be
1996   // worthwhile to skip over the rest of the initializer, though.
1997   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1998   RecordDecl::field_iterator FieldEnd = RD->field_end();
1999   bool CheckForMissingFields =
2000     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2001   bool HasDesignatedInit = false;
2002 
2003   while (Index < IList->getNumInits()) {
2004     Expr *Init = IList->getInit(Index);
2005     SourceLocation InitLoc = Init->getBeginLoc();
2006 
2007     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2008       // If we're not the subobject that matches up with the '{' for
2009       // the designator, we shouldn't be handling the
2010       // designator. Return immediately.
2011       if (!SubobjectIsDesignatorContext)
2012         return;
2013 
2014       HasDesignatedInit = true;
2015 
2016       // Handle this designated initializer. Field will be updated to
2017       // the next field that we'll be initializing.
2018       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2019                                      DeclType, &Field, nullptr, Index,
2020                                      StructuredList, StructuredIndex,
2021                                      true, TopLevelObject))
2022         hadError = true;
2023       else if (!VerifyOnly) {
2024         // Find the field named by the designated initializer.
2025         RecordDecl::field_iterator F = RD->field_begin();
2026         while (std::next(F) != Field)
2027           ++F;
2028         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2029         if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2030           hadError = true;
2031           return;
2032         }
2033       }
2034 
2035       InitializedSomething = true;
2036 
2037       // Disable check for missing fields when designators are used.
2038       // This matches gcc behaviour.
2039       CheckForMissingFields = false;
2040       continue;
2041     }
2042 
2043     if (Field == FieldEnd) {
2044       // We've run out of fields. We're done.
2045       break;
2046     }
2047 
2048     // We've already initialized a member of a union. We're done.
2049     if (InitializedSomething && DeclType->isUnionType())
2050       break;
2051 
2052     // If we've hit the flexible array member at the end, we're done.
2053     if (Field->getType()->isIncompleteArrayType())
2054       break;
2055 
2056     if (Field->isUnnamedBitfield()) {
2057       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2058       ++Field;
2059       continue;
2060     }
2061 
2062     // Make sure we can use this declaration.
2063     bool InvalidUse;
2064     if (VerifyOnly)
2065       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2066     else
2067       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2068           *Field, IList->getInit(Index)->getBeginLoc());
2069     if (InvalidUse) {
2070       ++Index;
2071       ++Field;
2072       hadError = true;
2073       continue;
2074     }
2075 
2076     if (!VerifyOnly) {
2077       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2078       if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2079         hadError = true;
2080         return;
2081       }
2082     }
2083 
2084     InitializedEntity MemberEntity =
2085       InitializedEntity::InitializeMember(*Field, &Entity);
2086     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2087                         StructuredList, StructuredIndex);
2088     InitializedSomething = true;
2089 
2090     if (DeclType->isUnionType() && !VerifyOnly) {
2091       // Initialize the first field within the union.
2092       StructuredList->setInitializedFieldInUnion(*Field);
2093     }
2094 
2095     ++Field;
2096   }
2097 
2098   // Emit warnings for missing struct field initializers.
2099   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2100       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2101       !DeclType->isUnionType()) {
2102     // It is possible we have one or more unnamed bitfields remaining.
2103     // Find first (if any) named field and emit warning.
2104     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2105          it != end; ++it) {
2106       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2107         SemaRef.Diag(IList->getSourceRange().getEnd(),
2108                      diag::warn_missing_field_initializers) << *it;
2109         break;
2110       }
2111     }
2112   }
2113 
2114   // Check that any remaining fields can be value-initialized.
2115   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2116       !Field->getType()->isIncompleteArrayType()) {
2117     // FIXME: Should check for holes left by designated initializers too.
2118     for (; Field != FieldEnd && !hadError; ++Field) {
2119       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2120         CheckEmptyInitializable(
2121             InitializedEntity::InitializeMember(*Field, &Entity),
2122             IList->getEndLoc());
2123     }
2124   }
2125 
2126   // Check that the types of the remaining fields have accessible destructors.
2127   if (!VerifyOnly) {
2128     // If the initializer expression has a designated initializer, check the
2129     // elements for which a designated initializer is not provided too.
2130     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2131                                                      : Field;
2132     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2133       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2134       if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2135         hadError = true;
2136         return;
2137       }
2138     }
2139   }
2140 
2141   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2142       Index >= IList->getNumInits())
2143     return;
2144 
2145   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2146                              TopLevelObject)) {
2147     hadError = true;
2148     ++Index;
2149     return;
2150   }
2151 
2152   InitializedEntity MemberEntity =
2153     InitializedEntity::InitializeMember(*Field, &Entity);
2154 
2155   if (isa<InitListExpr>(IList->getInit(Index)))
2156     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2157                         StructuredList, StructuredIndex);
2158   else
2159     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2160                           StructuredList, StructuredIndex);
2161 }
2162 
2163 /// Expand a field designator that refers to a member of an
2164 /// anonymous struct or union into a series of field designators that
2165 /// refers to the field within the appropriate subobject.
2166 ///
2167 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2168                                            DesignatedInitExpr *DIE,
2169                                            unsigned DesigIdx,
2170                                            IndirectFieldDecl *IndirectField) {
2171   typedef DesignatedInitExpr::Designator Designator;
2172 
2173   // Build the replacement designators.
2174   SmallVector<Designator, 4> Replacements;
2175   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2176        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2177     if (PI + 1 == PE)
2178       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2179                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2180                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2181     else
2182       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2183                                         SourceLocation(), SourceLocation()));
2184     assert(isa<FieldDecl>(*PI));
2185     Replacements.back().setField(cast<FieldDecl>(*PI));
2186   }
2187 
2188   // Expand the current designator into the set of replacement
2189   // designators, so we have a full subobject path down to where the
2190   // member of the anonymous struct/union is actually stored.
2191   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2192                         &Replacements[0] + Replacements.size());
2193 }
2194 
2195 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2196                                                    DesignatedInitExpr *DIE) {
2197   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2198   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2199   for (unsigned I = 0; I < NumIndexExprs; ++I)
2200     IndexExprs[I] = DIE->getSubExpr(I + 1);
2201   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2202                                     IndexExprs,
2203                                     DIE->getEqualOrColonLoc(),
2204                                     DIE->usesGNUSyntax(), DIE->getInit());
2205 }
2206 
2207 namespace {
2208 
2209 // Callback to only accept typo corrections that are for field members of
2210 // the given struct or union.
2211 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2212  public:
2213   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2214       : Record(RD) {}
2215 
2216   bool ValidateCandidate(const TypoCorrection &candidate) override {
2217     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2218     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2219   }
2220 
2221   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2222     return llvm::make_unique<FieldInitializerValidatorCCC>(*this);
2223   }
2224 
2225  private:
2226   RecordDecl *Record;
2227 };
2228 
2229 } // end anonymous namespace
2230 
2231 /// Check the well-formedness of a C99 designated initializer.
2232 ///
2233 /// Determines whether the designated initializer @p DIE, which
2234 /// resides at the given @p Index within the initializer list @p
2235 /// IList, is well-formed for a current object of type @p DeclType
2236 /// (C99 6.7.8). The actual subobject that this designator refers to
2237 /// within the current subobject is returned in either
2238 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2239 ///
2240 /// @param IList  The initializer list in which this designated
2241 /// initializer occurs.
2242 ///
2243 /// @param DIE The designated initializer expression.
2244 ///
2245 /// @param DesigIdx  The index of the current designator.
2246 ///
2247 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2248 /// into which the designation in @p DIE should refer.
2249 ///
2250 /// @param NextField  If non-NULL and the first designator in @p DIE is
2251 /// a field, this will be set to the field declaration corresponding
2252 /// to the field named by the designator.
2253 ///
2254 /// @param NextElementIndex  If non-NULL and the first designator in @p
2255 /// DIE is an array designator or GNU array-range designator, this
2256 /// will be set to the last index initialized by this designator.
2257 ///
2258 /// @param Index  Index into @p IList where the designated initializer
2259 /// @p DIE occurs.
2260 ///
2261 /// @param StructuredList  The initializer list expression that
2262 /// describes all of the subobject initializers in the order they'll
2263 /// actually be initialized.
2264 ///
2265 /// @returns true if there was an error, false otherwise.
2266 bool
2267 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2268                                             InitListExpr *IList,
2269                                             DesignatedInitExpr *DIE,
2270                                             unsigned DesigIdx,
2271                                             QualType &CurrentObjectType,
2272                                           RecordDecl::field_iterator *NextField,
2273                                             llvm::APSInt *NextElementIndex,
2274                                             unsigned &Index,
2275                                             InitListExpr *StructuredList,
2276                                             unsigned &StructuredIndex,
2277                                             bool FinishSubobjectInit,
2278                                             bool TopLevelObject) {
2279   if (DesigIdx == DIE->size()) {
2280     // Check the actual initialization for the designated object type.
2281     bool prevHadError = hadError;
2282 
2283     // Temporarily remove the designator expression from the
2284     // initializer list that the child calls see, so that we don't try
2285     // to re-process the designator.
2286     unsigned OldIndex = Index;
2287     IList->setInit(OldIndex, DIE->getInit());
2288 
2289     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2290                         StructuredList, StructuredIndex);
2291 
2292     // Restore the designated initializer expression in the syntactic
2293     // form of the initializer list.
2294     if (IList->getInit(OldIndex) != DIE->getInit())
2295       DIE->setInit(IList->getInit(OldIndex));
2296     IList->setInit(OldIndex, DIE);
2297 
2298     return hadError && !prevHadError;
2299   }
2300 
2301   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2302   bool IsFirstDesignator = (DesigIdx == 0);
2303   if (!VerifyOnly) {
2304     assert((IsFirstDesignator || StructuredList) &&
2305            "Need a non-designated initializer list to start from");
2306 
2307     // Determine the structural initializer list that corresponds to the
2308     // current subobject.
2309     if (IsFirstDesignator)
2310       StructuredList = SyntacticToSemantic.lookup(IList);
2311     else {
2312       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2313           StructuredList->getInit(StructuredIndex) : nullptr;
2314       if (!ExistingInit && StructuredList->hasArrayFiller())
2315         ExistingInit = StructuredList->getArrayFiller();
2316 
2317       if (!ExistingInit)
2318         StructuredList = getStructuredSubobjectInit(
2319             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2320             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2321       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2322         StructuredList = Result;
2323       else {
2324         if (DesignatedInitUpdateExpr *E =
2325                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2326           StructuredList = E->getUpdater();
2327         else {
2328           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2329               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2330                                        ExistingInit, DIE->getEndLoc());
2331           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2332           StructuredList = DIUE->getUpdater();
2333         }
2334 
2335         // We need to check on source range validity because the previous
2336         // initializer does not have to be an explicit initializer. e.g.,
2337         //
2338         // struct P { int a, b; };
2339         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2340         //
2341         // There is an overwrite taking place because the first braced initializer
2342         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2343         if (ExistingInit->getSourceRange().isValid()) {
2344           // We are creating an initializer list that initializes the
2345           // subobjects of the current object, but there was already an
2346           // initialization that completely initialized the current
2347           // subobject, e.g., by a compound literal:
2348           //
2349           // struct X { int a, b; };
2350           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2351           //
2352           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2353           // designated initializer re-initializes the whole
2354           // subobject [0], overwriting previous initializers.
2355           SemaRef.Diag(D->getBeginLoc(),
2356                        diag::warn_subobject_initializer_overrides)
2357               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2358 
2359           SemaRef.Diag(ExistingInit->getBeginLoc(),
2360                        diag::note_previous_initializer)
2361               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2362         }
2363       }
2364     }
2365     assert(StructuredList && "Expected a structured initializer list");
2366   }
2367 
2368   if (D->isFieldDesignator()) {
2369     // C99 6.7.8p7:
2370     //
2371     //   If a designator has the form
2372     //
2373     //      . identifier
2374     //
2375     //   then the current object (defined below) shall have
2376     //   structure or union type and the identifier shall be the
2377     //   name of a member of that type.
2378     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2379     if (!RT) {
2380       SourceLocation Loc = D->getDotLoc();
2381       if (Loc.isInvalid())
2382         Loc = D->getFieldLoc();
2383       if (!VerifyOnly)
2384         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2385           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2386       ++Index;
2387       return true;
2388     }
2389 
2390     FieldDecl *KnownField = D->getField();
2391     if (!KnownField) {
2392       IdentifierInfo *FieldName = D->getFieldName();
2393       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2394       for (NamedDecl *ND : Lookup) {
2395         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2396           KnownField = FD;
2397           break;
2398         }
2399         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2400           // In verify mode, don't modify the original.
2401           if (VerifyOnly)
2402             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2403           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2404           D = DIE->getDesignator(DesigIdx);
2405           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2406           break;
2407         }
2408       }
2409       if (!KnownField) {
2410         if (VerifyOnly) {
2411           ++Index;
2412           return true;  // No typo correction when just trying this out.
2413         }
2414 
2415         // Name lookup found something, but it wasn't a field.
2416         if (!Lookup.empty()) {
2417           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2418             << FieldName;
2419           SemaRef.Diag(Lookup.front()->getLocation(),
2420                        diag::note_field_designator_found);
2421           ++Index;
2422           return true;
2423         }
2424 
2425         // Name lookup didn't find anything.
2426         // Determine whether this was a typo for another field name.
2427         FieldInitializerValidatorCCC CCC(RT->getDecl());
2428         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2429                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2430                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2431                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2432           SemaRef.diagnoseTypo(
2433               Corrected,
2434               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2435                 << FieldName << CurrentObjectType);
2436           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2437           hadError = true;
2438         } else {
2439           // Typo correction didn't find anything.
2440           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2441             << FieldName << CurrentObjectType;
2442           ++Index;
2443           return true;
2444         }
2445       }
2446     }
2447 
2448     unsigned FieldIndex = 0;
2449 
2450     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2451       FieldIndex = CXXRD->getNumBases();
2452 
2453     for (auto *FI : RT->getDecl()->fields()) {
2454       if (FI->isUnnamedBitfield())
2455         continue;
2456       if (declaresSameEntity(KnownField, FI)) {
2457         KnownField = FI;
2458         break;
2459       }
2460       ++FieldIndex;
2461     }
2462 
2463     RecordDecl::field_iterator Field =
2464         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2465 
2466     // All of the fields of a union are located at the same place in
2467     // the initializer list.
2468     if (RT->getDecl()->isUnion()) {
2469       FieldIndex = 0;
2470       if (!VerifyOnly) {
2471         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2472         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2473           assert(StructuredList->getNumInits() == 1
2474                  && "A union should never have more than one initializer!");
2475 
2476           Expr *ExistingInit = StructuredList->getInit(0);
2477           if (ExistingInit) {
2478             // We're about to throw away an initializer, emit warning.
2479             SemaRef.Diag(D->getFieldLoc(),
2480                          diag::warn_initializer_overrides)
2481               << D->getSourceRange();
2482             SemaRef.Diag(ExistingInit->getBeginLoc(),
2483                          diag::note_previous_initializer)
2484                 << /*FIXME:has side effects=*/0
2485                 << ExistingInit->getSourceRange();
2486           }
2487 
2488           // remove existing initializer
2489           StructuredList->resizeInits(SemaRef.Context, 0);
2490           StructuredList->setInitializedFieldInUnion(nullptr);
2491         }
2492 
2493         StructuredList->setInitializedFieldInUnion(*Field);
2494       }
2495     }
2496 
2497     // Make sure we can use this declaration.
2498     bool InvalidUse;
2499     if (VerifyOnly)
2500       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2501     else
2502       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2503     if (InvalidUse) {
2504       ++Index;
2505       return true;
2506     }
2507 
2508     if (!VerifyOnly) {
2509       // Update the designator with the field declaration.
2510       D->setField(*Field);
2511 
2512       // Make sure that our non-designated initializer list has space
2513       // for a subobject corresponding to this field.
2514       if (FieldIndex >= StructuredList->getNumInits())
2515         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2516     }
2517 
2518     // This designator names a flexible array member.
2519     if (Field->getType()->isIncompleteArrayType()) {
2520       bool Invalid = false;
2521       if ((DesigIdx + 1) != DIE->size()) {
2522         // We can't designate an object within the flexible array
2523         // member (because GCC doesn't allow it).
2524         if (!VerifyOnly) {
2525           DesignatedInitExpr::Designator *NextD
2526             = DIE->getDesignator(DesigIdx + 1);
2527           SemaRef.Diag(NextD->getBeginLoc(),
2528                        diag::err_designator_into_flexible_array_member)
2529               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2530           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2531             << *Field;
2532         }
2533         Invalid = true;
2534       }
2535 
2536       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2537           !isa<StringLiteral>(DIE->getInit())) {
2538         // The initializer is not an initializer list.
2539         if (!VerifyOnly) {
2540           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2541                        diag::err_flexible_array_init_needs_braces)
2542               << DIE->getInit()->getSourceRange();
2543           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2544             << *Field;
2545         }
2546         Invalid = true;
2547       }
2548 
2549       // Check GNU flexible array initializer.
2550       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2551                                              TopLevelObject))
2552         Invalid = true;
2553 
2554       if (Invalid) {
2555         ++Index;
2556         return true;
2557       }
2558 
2559       // Initialize the array.
2560       bool prevHadError = hadError;
2561       unsigned newStructuredIndex = FieldIndex;
2562       unsigned OldIndex = Index;
2563       IList->setInit(Index, DIE->getInit());
2564 
2565       InitializedEntity MemberEntity =
2566         InitializedEntity::InitializeMember(*Field, &Entity);
2567       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2568                           StructuredList, newStructuredIndex);
2569 
2570       IList->setInit(OldIndex, DIE);
2571       if (hadError && !prevHadError) {
2572         ++Field;
2573         ++FieldIndex;
2574         if (NextField)
2575           *NextField = Field;
2576         StructuredIndex = FieldIndex;
2577         return true;
2578       }
2579     } else {
2580       // Recurse to check later designated subobjects.
2581       QualType FieldType = Field->getType();
2582       unsigned newStructuredIndex = FieldIndex;
2583 
2584       InitializedEntity MemberEntity =
2585         InitializedEntity::InitializeMember(*Field, &Entity);
2586       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2587                                      FieldType, nullptr, nullptr, Index,
2588                                      StructuredList, newStructuredIndex,
2589                                      FinishSubobjectInit, false))
2590         return true;
2591     }
2592 
2593     // Find the position of the next field to be initialized in this
2594     // subobject.
2595     ++Field;
2596     ++FieldIndex;
2597 
2598     // If this the first designator, our caller will continue checking
2599     // the rest of this struct/class/union subobject.
2600     if (IsFirstDesignator) {
2601       if (NextField)
2602         *NextField = Field;
2603       StructuredIndex = FieldIndex;
2604       return false;
2605     }
2606 
2607     if (!FinishSubobjectInit)
2608       return false;
2609 
2610     // We've already initialized something in the union; we're done.
2611     if (RT->getDecl()->isUnion())
2612       return hadError;
2613 
2614     // Check the remaining fields within this class/struct/union subobject.
2615     bool prevHadError = hadError;
2616 
2617     auto NoBases =
2618         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2619                                         CXXRecordDecl::base_class_iterator());
2620     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2621                           false, Index, StructuredList, FieldIndex);
2622     return hadError && !prevHadError;
2623   }
2624 
2625   // C99 6.7.8p6:
2626   //
2627   //   If a designator has the form
2628   //
2629   //      [ constant-expression ]
2630   //
2631   //   then the current object (defined below) shall have array
2632   //   type and the expression shall be an integer constant
2633   //   expression. If the array is of unknown size, any
2634   //   nonnegative value is valid.
2635   //
2636   // Additionally, cope with the GNU extension that permits
2637   // designators of the form
2638   //
2639   //      [ constant-expression ... constant-expression ]
2640   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2641   if (!AT) {
2642     if (!VerifyOnly)
2643       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2644         << CurrentObjectType;
2645     ++Index;
2646     return true;
2647   }
2648 
2649   Expr *IndexExpr = nullptr;
2650   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2651   if (D->isArrayDesignator()) {
2652     IndexExpr = DIE->getArrayIndex(*D);
2653     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2654     DesignatedEndIndex = DesignatedStartIndex;
2655   } else {
2656     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2657 
2658     DesignatedStartIndex =
2659       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2660     DesignatedEndIndex =
2661       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2662     IndexExpr = DIE->getArrayRangeEnd(*D);
2663 
2664     // Codegen can't handle evaluating array range designators that have side
2665     // effects, because we replicate the AST value for each initialized element.
2666     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2667     // elements with something that has a side effect, so codegen can emit an
2668     // "error unsupported" error instead of miscompiling the app.
2669     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2670         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2671       FullyStructuredList->sawArrayRangeDesignator();
2672   }
2673 
2674   if (isa<ConstantArrayType>(AT)) {
2675     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2676     DesignatedStartIndex
2677       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2678     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2679     DesignatedEndIndex
2680       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2681     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2682     if (DesignatedEndIndex >= MaxElements) {
2683       if (!VerifyOnly)
2684         SemaRef.Diag(IndexExpr->getBeginLoc(),
2685                      diag::err_array_designator_too_large)
2686             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2687             << IndexExpr->getSourceRange();
2688       ++Index;
2689       return true;
2690     }
2691   } else {
2692     unsigned DesignatedIndexBitWidth =
2693       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2694     DesignatedStartIndex =
2695       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2696     DesignatedEndIndex =
2697       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2698     DesignatedStartIndex.setIsUnsigned(true);
2699     DesignatedEndIndex.setIsUnsigned(true);
2700   }
2701 
2702   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2703     // We're modifying a string literal init; we have to decompose the string
2704     // so we can modify the individual characters.
2705     ASTContext &Context = SemaRef.Context;
2706     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2707 
2708     // Compute the character type
2709     QualType CharTy = AT->getElementType();
2710 
2711     // Compute the type of the integer literals.
2712     QualType PromotedCharTy = CharTy;
2713     if (CharTy->isPromotableIntegerType())
2714       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2715     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2716 
2717     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2718       // Get the length of the string.
2719       uint64_t StrLen = SL->getLength();
2720       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2721         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2722       StructuredList->resizeInits(Context, StrLen);
2723 
2724       // Build a literal for each character in the string, and put them into
2725       // the init list.
2726       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2727         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2728         Expr *Init = new (Context) IntegerLiteral(
2729             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2730         if (CharTy != PromotedCharTy)
2731           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2732                                           Init, nullptr, VK_RValue);
2733         StructuredList->updateInit(Context, i, Init);
2734       }
2735     } else {
2736       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2737       std::string Str;
2738       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2739 
2740       // Get the length of the string.
2741       uint64_t StrLen = Str.size();
2742       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2743         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2744       StructuredList->resizeInits(Context, StrLen);
2745 
2746       // Build a literal for each character in the string, and put them into
2747       // the init list.
2748       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2749         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2750         Expr *Init = new (Context) IntegerLiteral(
2751             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2752         if (CharTy != PromotedCharTy)
2753           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2754                                           Init, nullptr, VK_RValue);
2755         StructuredList->updateInit(Context, i, Init);
2756       }
2757     }
2758   }
2759 
2760   // Make sure that our non-designated initializer list has space
2761   // for a subobject corresponding to this array element.
2762   if (!VerifyOnly &&
2763       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2764     StructuredList->resizeInits(SemaRef.Context,
2765                                 DesignatedEndIndex.getZExtValue() + 1);
2766 
2767   // Repeatedly perform subobject initializations in the range
2768   // [DesignatedStartIndex, DesignatedEndIndex].
2769 
2770   // Move to the next designator
2771   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2772   unsigned OldIndex = Index;
2773 
2774   InitializedEntity ElementEntity =
2775     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2776 
2777   while (DesignatedStartIndex <= DesignatedEndIndex) {
2778     // Recurse to check later designated subobjects.
2779     QualType ElementType = AT->getElementType();
2780     Index = OldIndex;
2781 
2782     ElementEntity.setElementIndex(ElementIndex);
2783     if (CheckDesignatedInitializer(
2784             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2785             nullptr, Index, StructuredList, ElementIndex,
2786             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2787             false))
2788       return true;
2789 
2790     // Move to the next index in the array that we'll be initializing.
2791     ++DesignatedStartIndex;
2792     ElementIndex = DesignatedStartIndex.getZExtValue();
2793   }
2794 
2795   // If this the first designator, our caller will continue checking
2796   // the rest of this array subobject.
2797   if (IsFirstDesignator) {
2798     if (NextElementIndex)
2799       *NextElementIndex = DesignatedStartIndex;
2800     StructuredIndex = ElementIndex;
2801     return false;
2802   }
2803 
2804   if (!FinishSubobjectInit)
2805     return false;
2806 
2807   // Check the remaining elements within this array subobject.
2808   bool prevHadError = hadError;
2809   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2810                  /*SubobjectIsDesignatorContext=*/false, Index,
2811                  StructuredList, ElementIndex);
2812   return hadError && !prevHadError;
2813 }
2814 
2815 // Get the structured initializer list for a subobject of type
2816 // @p CurrentObjectType.
2817 InitListExpr *
2818 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2819                                             QualType CurrentObjectType,
2820                                             InitListExpr *StructuredList,
2821                                             unsigned StructuredIndex,
2822                                             SourceRange InitRange,
2823                                             bool IsFullyOverwritten) {
2824   if (VerifyOnly)
2825     return nullptr; // No structured list in verification-only mode.
2826   Expr *ExistingInit = nullptr;
2827   if (!StructuredList)
2828     ExistingInit = SyntacticToSemantic.lookup(IList);
2829   else if (StructuredIndex < StructuredList->getNumInits())
2830     ExistingInit = StructuredList->getInit(StructuredIndex);
2831 
2832   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2833     // There might have already been initializers for subobjects of the current
2834     // object, but a subsequent initializer list will overwrite the entirety
2835     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2836     //
2837     // struct P { char x[6]; };
2838     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2839     //
2840     // The first designated initializer is ignored, and l.x is just "f".
2841     if (!IsFullyOverwritten)
2842       return Result;
2843 
2844   if (ExistingInit) {
2845     // We are creating an initializer list that initializes the
2846     // subobjects of the current object, but there was already an
2847     // initialization that completely initialized the current
2848     // subobject, e.g., by a compound literal:
2849     //
2850     // struct X { int a, b; };
2851     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2852     //
2853     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2854     // designated initializer re-initializes the whole
2855     // subobject [0], overwriting previous initializers.
2856     SemaRef.Diag(InitRange.getBegin(),
2857                  diag::warn_subobject_initializer_overrides)
2858       << InitRange;
2859     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2860         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2861   }
2862 
2863   InitListExpr *Result
2864     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2865                                          InitRange.getBegin(), None,
2866                                          InitRange.getEnd());
2867 
2868   QualType ResultType = CurrentObjectType;
2869   if (!ResultType->isArrayType())
2870     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2871   Result->setType(ResultType);
2872 
2873   // Pre-allocate storage for the structured initializer list.
2874   unsigned NumElements = 0;
2875   unsigned NumInits = 0;
2876   bool GotNumInits = false;
2877   if (!StructuredList) {
2878     NumInits = IList->getNumInits();
2879     GotNumInits = true;
2880   } else if (Index < IList->getNumInits()) {
2881     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2882       NumInits = SubList->getNumInits();
2883       GotNumInits = true;
2884     }
2885   }
2886 
2887   if (const ArrayType *AType
2888       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2889     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2890       NumElements = CAType->getSize().getZExtValue();
2891       // Simple heuristic so that we don't allocate a very large
2892       // initializer with many empty entries at the end.
2893       if (GotNumInits && NumElements > NumInits)
2894         NumElements = 0;
2895     }
2896   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2897     NumElements = VType->getNumElements();
2898   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2899     RecordDecl *RDecl = RType->getDecl();
2900     if (RDecl->isUnion())
2901       NumElements = 1;
2902     else
2903       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2904   }
2905 
2906   Result->reserveInits(SemaRef.Context, NumElements);
2907 
2908   // Link this new initializer list into the structured initializer
2909   // lists.
2910   if (StructuredList)
2911     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2912   else {
2913     Result->setSyntacticForm(IList);
2914     SyntacticToSemantic[IList] = Result;
2915   }
2916 
2917   return Result;
2918 }
2919 
2920 /// Update the initializer at index @p StructuredIndex within the
2921 /// structured initializer list to the value @p expr.
2922 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2923                                                   unsigned &StructuredIndex,
2924                                                   Expr *expr) {
2925   // No structured initializer list to update
2926   if (!StructuredList)
2927     return;
2928 
2929   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2930                                                   StructuredIndex, expr)) {
2931     // This initializer overwrites a previous initializer. Warn.
2932     // We need to check on source range validity because the previous
2933     // initializer does not have to be an explicit initializer.
2934     // struct P { int a, b; };
2935     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2936     // There is an overwrite taking place because the first braced initializer
2937     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2938     if (PrevInit->getSourceRange().isValid()) {
2939       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2940           << expr->getSourceRange();
2941 
2942       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2943           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2944     }
2945   }
2946 
2947   ++StructuredIndex;
2948 }
2949 
2950 /// Check that the given Index expression is a valid array designator
2951 /// value. This is essentially just a wrapper around
2952 /// VerifyIntegerConstantExpression that also checks for negative values
2953 /// and produces a reasonable diagnostic if there is a
2954 /// failure. Returns the index expression, possibly with an implicit cast
2955 /// added, on success.  If everything went okay, Value will receive the
2956 /// value of the constant expression.
2957 static ExprResult
2958 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2959   SourceLocation Loc = Index->getBeginLoc();
2960 
2961   // Make sure this is an integer constant expression.
2962   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2963   if (Result.isInvalid())
2964     return Result;
2965 
2966   if (Value.isSigned() && Value.isNegative())
2967     return S.Diag(Loc, diag::err_array_designator_negative)
2968       << Value.toString(10) << Index->getSourceRange();
2969 
2970   Value.setIsUnsigned(true);
2971   return Result;
2972 }
2973 
2974 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2975                                             SourceLocation Loc,
2976                                             bool GNUSyntax,
2977                                             ExprResult Init) {
2978   typedef DesignatedInitExpr::Designator ASTDesignator;
2979 
2980   bool Invalid = false;
2981   SmallVector<ASTDesignator, 32> Designators;
2982   SmallVector<Expr *, 32> InitExpressions;
2983 
2984   // Build designators and check array designator expressions.
2985   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2986     const Designator &D = Desig.getDesignator(Idx);
2987     switch (D.getKind()) {
2988     case Designator::FieldDesignator:
2989       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2990                                           D.getFieldLoc()));
2991       break;
2992 
2993     case Designator::ArrayDesignator: {
2994       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2995       llvm::APSInt IndexValue;
2996       if (!Index->isTypeDependent() && !Index->isValueDependent())
2997         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2998       if (!Index)
2999         Invalid = true;
3000       else {
3001         Designators.push_back(ASTDesignator(InitExpressions.size(),
3002                                             D.getLBracketLoc(),
3003                                             D.getRBracketLoc()));
3004         InitExpressions.push_back(Index);
3005       }
3006       break;
3007     }
3008 
3009     case Designator::ArrayRangeDesignator: {
3010       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3011       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3012       llvm::APSInt StartValue;
3013       llvm::APSInt EndValue;
3014       bool StartDependent = StartIndex->isTypeDependent() ||
3015                             StartIndex->isValueDependent();
3016       bool EndDependent = EndIndex->isTypeDependent() ||
3017                           EndIndex->isValueDependent();
3018       if (!StartDependent)
3019         StartIndex =
3020             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3021       if (!EndDependent)
3022         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3023 
3024       if (!StartIndex || !EndIndex)
3025         Invalid = true;
3026       else {
3027         // Make sure we're comparing values with the same bit width.
3028         if (StartDependent || EndDependent) {
3029           // Nothing to compute.
3030         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3031           EndValue = EndValue.extend(StartValue.getBitWidth());
3032         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3033           StartValue = StartValue.extend(EndValue.getBitWidth());
3034 
3035         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3036           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3037             << StartValue.toString(10) << EndValue.toString(10)
3038             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3039           Invalid = true;
3040         } else {
3041           Designators.push_back(ASTDesignator(InitExpressions.size(),
3042                                               D.getLBracketLoc(),
3043                                               D.getEllipsisLoc(),
3044                                               D.getRBracketLoc()));
3045           InitExpressions.push_back(StartIndex);
3046           InitExpressions.push_back(EndIndex);
3047         }
3048       }
3049       break;
3050     }
3051     }
3052   }
3053 
3054   if (Invalid || Init.isInvalid())
3055     return ExprError();
3056 
3057   // Clear out the expressions within the designation.
3058   Desig.ClearExprs(*this);
3059 
3060   DesignatedInitExpr *DIE
3061     = DesignatedInitExpr::Create(Context,
3062                                  Designators,
3063                                  InitExpressions, Loc, GNUSyntax,
3064                                  Init.getAs<Expr>());
3065 
3066   if (!getLangOpts().C99)
3067     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3068         << DIE->getSourceRange();
3069 
3070   return DIE;
3071 }
3072 
3073 //===----------------------------------------------------------------------===//
3074 // Initialization entity
3075 //===----------------------------------------------------------------------===//
3076 
3077 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3078                                      const InitializedEntity &Parent)
3079   : Parent(&Parent), Index(Index)
3080 {
3081   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3082     Kind = EK_ArrayElement;
3083     Type = AT->getElementType();
3084   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3085     Kind = EK_VectorElement;
3086     Type = VT->getElementType();
3087   } else {
3088     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3089     assert(CT && "Unexpected type");
3090     Kind = EK_ComplexElement;
3091     Type = CT->getElementType();
3092   }
3093 }
3094 
3095 InitializedEntity
3096 InitializedEntity::InitializeBase(ASTContext &Context,
3097                                   const CXXBaseSpecifier *Base,
3098                                   bool IsInheritedVirtualBase,
3099                                   const InitializedEntity *Parent) {
3100   InitializedEntity Result;
3101   Result.Kind = EK_Base;
3102   Result.Parent = Parent;
3103   Result.Base = reinterpret_cast<uintptr_t>(Base);
3104   if (IsInheritedVirtualBase)
3105     Result.Base |= 0x01;
3106 
3107   Result.Type = Base->getType();
3108   return Result;
3109 }
3110 
3111 DeclarationName InitializedEntity::getName() const {
3112   switch (getKind()) {
3113   case EK_Parameter:
3114   case EK_Parameter_CF_Audited: {
3115     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3116     return (D ? D->getDeclName() : DeclarationName());
3117   }
3118 
3119   case EK_Variable:
3120   case EK_Member:
3121   case EK_Binding:
3122     return Variable.VariableOrMember->getDeclName();
3123 
3124   case EK_LambdaCapture:
3125     return DeclarationName(Capture.VarID);
3126 
3127   case EK_Result:
3128   case EK_StmtExprResult:
3129   case EK_Exception:
3130   case EK_New:
3131   case EK_Temporary:
3132   case EK_Base:
3133   case EK_Delegating:
3134   case EK_ArrayElement:
3135   case EK_VectorElement:
3136   case EK_ComplexElement:
3137   case EK_BlockElement:
3138   case EK_LambdaToBlockConversionBlockElement:
3139   case EK_CompoundLiteralInit:
3140   case EK_RelatedResult:
3141     return DeclarationName();
3142   }
3143 
3144   llvm_unreachable("Invalid EntityKind!");
3145 }
3146 
3147 ValueDecl *InitializedEntity::getDecl() const {
3148   switch (getKind()) {
3149   case EK_Variable:
3150   case EK_Member:
3151   case EK_Binding:
3152     return Variable.VariableOrMember;
3153 
3154   case EK_Parameter:
3155   case EK_Parameter_CF_Audited:
3156     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3157 
3158   case EK_Result:
3159   case EK_StmtExprResult:
3160   case EK_Exception:
3161   case EK_New:
3162   case EK_Temporary:
3163   case EK_Base:
3164   case EK_Delegating:
3165   case EK_ArrayElement:
3166   case EK_VectorElement:
3167   case EK_ComplexElement:
3168   case EK_BlockElement:
3169   case EK_LambdaToBlockConversionBlockElement:
3170   case EK_LambdaCapture:
3171   case EK_CompoundLiteralInit:
3172   case EK_RelatedResult:
3173     return nullptr;
3174   }
3175 
3176   llvm_unreachable("Invalid EntityKind!");
3177 }
3178 
3179 bool InitializedEntity::allowsNRVO() const {
3180   switch (getKind()) {
3181   case EK_Result:
3182   case EK_Exception:
3183     return LocAndNRVO.NRVO;
3184 
3185   case EK_StmtExprResult:
3186   case EK_Variable:
3187   case EK_Parameter:
3188   case EK_Parameter_CF_Audited:
3189   case EK_Member:
3190   case EK_Binding:
3191   case EK_New:
3192   case EK_Temporary:
3193   case EK_CompoundLiteralInit:
3194   case EK_Base:
3195   case EK_Delegating:
3196   case EK_ArrayElement:
3197   case EK_VectorElement:
3198   case EK_ComplexElement:
3199   case EK_BlockElement:
3200   case EK_LambdaToBlockConversionBlockElement:
3201   case EK_LambdaCapture:
3202   case EK_RelatedResult:
3203     break;
3204   }
3205 
3206   return false;
3207 }
3208 
3209 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3210   assert(getParent() != this);
3211   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3212   for (unsigned I = 0; I != Depth; ++I)
3213     OS << "`-";
3214 
3215   switch (getKind()) {
3216   case EK_Variable: OS << "Variable"; break;
3217   case EK_Parameter: OS << "Parameter"; break;
3218   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3219     break;
3220   case EK_Result: OS << "Result"; break;
3221   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3222   case EK_Exception: OS << "Exception"; break;
3223   case EK_Member: OS << "Member"; break;
3224   case EK_Binding: OS << "Binding"; break;
3225   case EK_New: OS << "New"; break;
3226   case EK_Temporary: OS << "Temporary"; break;
3227   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3228   case EK_RelatedResult: OS << "RelatedResult"; break;
3229   case EK_Base: OS << "Base"; break;
3230   case EK_Delegating: OS << "Delegating"; break;
3231   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3232   case EK_VectorElement: OS << "VectorElement " << Index; break;
3233   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3234   case EK_BlockElement: OS << "Block"; break;
3235   case EK_LambdaToBlockConversionBlockElement:
3236     OS << "Block (lambda)";
3237     break;
3238   case EK_LambdaCapture:
3239     OS << "LambdaCapture ";
3240     OS << DeclarationName(Capture.VarID);
3241     break;
3242   }
3243 
3244   if (auto *D = getDecl()) {
3245     OS << " ";
3246     D->printQualifiedName(OS);
3247   }
3248 
3249   OS << " '" << getType().getAsString() << "'\n";
3250 
3251   return Depth + 1;
3252 }
3253 
3254 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3255   dumpImpl(llvm::errs());
3256 }
3257 
3258 //===----------------------------------------------------------------------===//
3259 // Initialization sequence
3260 //===----------------------------------------------------------------------===//
3261 
3262 void InitializationSequence::Step::Destroy() {
3263   switch (Kind) {
3264   case SK_ResolveAddressOfOverloadedFunction:
3265   case SK_CastDerivedToBaseRValue:
3266   case SK_CastDerivedToBaseXValue:
3267   case SK_CastDerivedToBaseLValue:
3268   case SK_BindReference:
3269   case SK_BindReferenceToTemporary:
3270   case SK_FinalCopy:
3271   case SK_ExtraneousCopyToTemporary:
3272   case SK_UserConversion:
3273   case SK_QualificationConversionRValue:
3274   case SK_QualificationConversionXValue:
3275   case SK_QualificationConversionLValue:
3276   case SK_AtomicConversion:
3277   case SK_LValueToRValue:
3278   case SK_ListInitialization:
3279   case SK_UnwrapInitList:
3280   case SK_RewrapInitList:
3281   case SK_ConstructorInitialization:
3282   case SK_ConstructorInitializationFromList:
3283   case SK_ZeroInitialization:
3284   case SK_CAssignment:
3285   case SK_StringInit:
3286   case SK_ObjCObjectConversion:
3287   case SK_ArrayLoopIndex:
3288   case SK_ArrayLoopInit:
3289   case SK_ArrayInit:
3290   case SK_GNUArrayInit:
3291   case SK_ParenthesizedArrayInit:
3292   case SK_PassByIndirectCopyRestore:
3293   case SK_PassByIndirectRestore:
3294   case SK_ProduceObjCObject:
3295   case SK_StdInitializerList:
3296   case SK_StdInitializerListConstructorCall:
3297   case SK_OCLSamplerInit:
3298   case SK_OCLZeroOpaqueType:
3299     break;
3300 
3301   case SK_ConversionSequence:
3302   case SK_ConversionSequenceNoNarrowing:
3303     delete ICS;
3304   }
3305 }
3306 
3307 bool InitializationSequence::isDirectReferenceBinding() const {
3308   // There can be some lvalue adjustments after the SK_BindReference step.
3309   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3310     if (I->Kind == SK_BindReference)
3311       return true;
3312     if (I->Kind == SK_BindReferenceToTemporary)
3313       return false;
3314   }
3315   return false;
3316 }
3317 
3318 bool InitializationSequence::isAmbiguous() const {
3319   if (!Failed())
3320     return false;
3321 
3322   switch (getFailureKind()) {
3323   case FK_TooManyInitsForReference:
3324   case FK_ParenthesizedListInitForReference:
3325   case FK_ArrayNeedsInitList:
3326   case FK_ArrayNeedsInitListOrStringLiteral:
3327   case FK_ArrayNeedsInitListOrWideStringLiteral:
3328   case FK_NarrowStringIntoWideCharArray:
3329   case FK_WideStringIntoCharArray:
3330   case FK_IncompatWideStringIntoWideChar:
3331   case FK_PlainStringIntoUTF8Char:
3332   case FK_UTF8StringIntoPlainChar:
3333   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3334   case FK_NonConstLValueReferenceBindingToTemporary:
3335   case FK_NonConstLValueReferenceBindingToBitfield:
3336   case FK_NonConstLValueReferenceBindingToVectorElement:
3337   case FK_NonConstLValueReferenceBindingToUnrelated:
3338   case FK_RValueReferenceBindingToLValue:
3339   case FK_ReferenceInitDropsQualifiers:
3340   case FK_ReferenceInitFailed:
3341   case FK_ConversionFailed:
3342   case FK_ConversionFromPropertyFailed:
3343   case FK_TooManyInitsForScalar:
3344   case FK_ParenthesizedListInitForScalar:
3345   case FK_ReferenceBindingToInitList:
3346   case FK_InitListBadDestinationType:
3347   case FK_DefaultInitOfConst:
3348   case FK_Incomplete:
3349   case FK_ArrayTypeMismatch:
3350   case FK_NonConstantArrayInit:
3351   case FK_ListInitializationFailed:
3352   case FK_VariableLengthArrayHasInitializer:
3353   case FK_PlaceholderType:
3354   case FK_ExplicitConstructor:
3355   case FK_AddressOfUnaddressableFunction:
3356     return false;
3357 
3358   case FK_ReferenceInitOverloadFailed:
3359   case FK_UserConversionOverloadFailed:
3360   case FK_ConstructorOverloadFailed:
3361   case FK_ListConstructorOverloadFailed:
3362     return FailedOverloadResult == OR_Ambiguous;
3363   }
3364 
3365   llvm_unreachable("Invalid EntityKind!");
3366 }
3367 
3368 bool InitializationSequence::isConstructorInitialization() const {
3369   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3370 }
3371 
3372 void
3373 InitializationSequence
3374 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3375                                    DeclAccessPair Found,
3376                                    bool HadMultipleCandidates) {
3377   Step S;
3378   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3379   S.Type = Function->getType();
3380   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3381   S.Function.Function = Function;
3382   S.Function.FoundDecl = Found;
3383   Steps.push_back(S);
3384 }
3385 
3386 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3387                                                       ExprValueKind VK) {
3388   Step S;
3389   switch (VK) {
3390   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3391   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3392   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3393   }
3394   S.Type = BaseType;
3395   Steps.push_back(S);
3396 }
3397 
3398 void InitializationSequence::AddReferenceBindingStep(QualType T,
3399                                                      bool BindingTemporary) {
3400   Step S;
3401   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3402   S.Type = T;
3403   Steps.push_back(S);
3404 }
3405 
3406 void InitializationSequence::AddFinalCopy(QualType T) {
3407   Step S;
3408   S.Kind = SK_FinalCopy;
3409   S.Type = T;
3410   Steps.push_back(S);
3411 }
3412 
3413 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3414   Step S;
3415   S.Kind = SK_ExtraneousCopyToTemporary;
3416   S.Type = T;
3417   Steps.push_back(S);
3418 }
3419 
3420 void
3421 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3422                                               DeclAccessPair FoundDecl,
3423                                               QualType T,
3424                                               bool HadMultipleCandidates) {
3425   Step S;
3426   S.Kind = SK_UserConversion;
3427   S.Type = T;
3428   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3429   S.Function.Function = Function;
3430   S.Function.FoundDecl = FoundDecl;
3431   Steps.push_back(S);
3432 }
3433 
3434 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3435                                                             ExprValueKind VK) {
3436   Step S;
3437   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3438   switch (VK) {
3439   case VK_RValue:
3440     S.Kind = SK_QualificationConversionRValue;
3441     break;
3442   case VK_XValue:
3443     S.Kind = SK_QualificationConversionXValue;
3444     break;
3445   case VK_LValue:
3446     S.Kind = SK_QualificationConversionLValue;
3447     break;
3448   }
3449   S.Type = Ty;
3450   Steps.push_back(S);
3451 }
3452 
3453 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3454   Step S;
3455   S.Kind = SK_AtomicConversion;
3456   S.Type = Ty;
3457   Steps.push_back(S);
3458 }
3459 
3460 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3461   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3462 
3463   Step S;
3464   S.Kind = SK_LValueToRValue;
3465   S.Type = Ty;
3466   Steps.push_back(S);
3467 }
3468 
3469 void InitializationSequence::AddConversionSequenceStep(
3470     const ImplicitConversionSequence &ICS, QualType T,
3471     bool TopLevelOfInitList) {
3472   Step S;
3473   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3474                               : SK_ConversionSequence;
3475   S.Type = T;
3476   S.ICS = new ImplicitConversionSequence(ICS);
3477   Steps.push_back(S);
3478 }
3479 
3480 void InitializationSequence::AddListInitializationStep(QualType T) {
3481   Step S;
3482   S.Kind = SK_ListInitialization;
3483   S.Type = T;
3484   Steps.push_back(S);
3485 }
3486 
3487 void InitializationSequence::AddConstructorInitializationStep(
3488     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3489     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3490   Step S;
3491   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3492                                      : SK_ConstructorInitializationFromList
3493                         : SK_ConstructorInitialization;
3494   S.Type = T;
3495   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3496   S.Function.Function = Constructor;
3497   S.Function.FoundDecl = FoundDecl;
3498   Steps.push_back(S);
3499 }
3500 
3501 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3502   Step S;
3503   S.Kind = SK_ZeroInitialization;
3504   S.Type = T;
3505   Steps.push_back(S);
3506 }
3507 
3508 void InitializationSequence::AddCAssignmentStep(QualType T) {
3509   Step S;
3510   S.Kind = SK_CAssignment;
3511   S.Type = T;
3512   Steps.push_back(S);
3513 }
3514 
3515 void InitializationSequence::AddStringInitStep(QualType T) {
3516   Step S;
3517   S.Kind = SK_StringInit;
3518   S.Type = T;
3519   Steps.push_back(S);
3520 }
3521 
3522 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3523   Step S;
3524   S.Kind = SK_ObjCObjectConversion;
3525   S.Type = T;
3526   Steps.push_back(S);
3527 }
3528 
3529 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3530   Step S;
3531   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3532   S.Type = T;
3533   Steps.push_back(S);
3534 }
3535 
3536 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3537   Step S;
3538   S.Kind = SK_ArrayLoopIndex;
3539   S.Type = EltT;
3540   Steps.insert(Steps.begin(), S);
3541 
3542   S.Kind = SK_ArrayLoopInit;
3543   S.Type = T;
3544   Steps.push_back(S);
3545 }
3546 
3547 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3548   Step S;
3549   S.Kind = SK_ParenthesizedArrayInit;
3550   S.Type = T;
3551   Steps.push_back(S);
3552 }
3553 
3554 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3555                                                               bool shouldCopy) {
3556   Step s;
3557   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3558                        : SK_PassByIndirectRestore);
3559   s.Type = type;
3560   Steps.push_back(s);
3561 }
3562 
3563 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3564   Step S;
3565   S.Kind = SK_ProduceObjCObject;
3566   S.Type = T;
3567   Steps.push_back(S);
3568 }
3569 
3570 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3571   Step S;
3572   S.Kind = SK_StdInitializerList;
3573   S.Type = T;
3574   Steps.push_back(S);
3575 }
3576 
3577 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3578   Step S;
3579   S.Kind = SK_OCLSamplerInit;
3580   S.Type = T;
3581   Steps.push_back(S);
3582 }
3583 
3584 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3585   Step S;
3586   S.Kind = SK_OCLZeroOpaqueType;
3587   S.Type = T;
3588   Steps.push_back(S);
3589 }
3590 
3591 void InitializationSequence::RewrapReferenceInitList(QualType T,
3592                                                      InitListExpr *Syntactic) {
3593   assert(Syntactic->getNumInits() == 1 &&
3594          "Can only rewrap trivial init lists.");
3595   Step S;
3596   S.Kind = SK_UnwrapInitList;
3597   S.Type = Syntactic->getInit(0)->getType();
3598   Steps.insert(Steps.begin(), S);
3599 
3600   S.Kind = SK_RewrapInitList;
3601   S.Type = T;
3602   S.WrappingSyntacticList = Syntactic;
3603   Steps.push_back(S);
3604 }
3605 
3606 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3607                                                 OverloadingResult Result) {
3608   setSequenceKind(FailedSequence);
3609   this->Failure = Failure;
3610   this->FailedOverloadResult = Result;
3611 }
3612 
3613 //===----------------------------------------------------------------------===//
3614 // Attempt initialization
3615 //===----------------------------------------------------------------------===//
3616 
3617 /// Tries to add a zero initializer. Returns true if that worked.
3618 static bool
3619 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3620                                    const InitializedEntity &Entity) {
3621   if (Entity.getKind() != InitializedEntity::EK_Variable)
3622     return false;
3623 
3624   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3625   if (VD->getInit() || VD->getEndLoc().isMacroID())
3626     return false;
3627 
3628   QualType VariableTy = VD->getType().getCanonicalType();
3629   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3630   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3631   if (!Init.empty()) {
3632     Sequence.AddZeroInitializationStep(Entity.getType());
3633     Sequence.SetZeroInitializationFixit(Init, Loc);
3634     return true;
3635   }
3636   return false;
3637 }
3638 
3639 static void MaybeProduceObjCObject(Sema &S,
3640                                    InitializationSequence &Sequence,
3641                                    const InitializedEntity &Entity) {
3642   if (!S.getLangOpts().ObjCAutoRefCount) return;
3643 
3644   /// When initializing a parameter, produce the value if it's marked
3645   /// __attribute__((ns_consumed)).
3646   if (Entity.isParameterKind()) {
3647     if (!Entity.isParameterConsumed())
3648       return;
3649 
3650     assert(Entity.getType()->isObjCRetainableType() &&
3651            "consuming an object of unretainable type?");
3652     Sequence.AddProduceObjCObjectStep(Entity.getType());
3653 
3654   /// When initializing a return value, if the return type is a
3655   /// retainable type, then returns need to immediately retain the
3656   /// object.  If an autorelease is required, it will be done at the
3657   /// last instant.
3658   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3659              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3660     if (!Entity.getType()->isObjCRetainableType())
3661       return;
3662 
3663     Sequence.AddProduceObjCObjectStep(Entity.getType());
3664   }
3665 }
3666 
3667 static void TryListInitialization(Sema &S,
3668                                   const InitializedEntity &Entity,
3669                                   const InitializationKind &Kind,
3670                                   InitListExpr *InitList,
3671                                   InitializationSequence &Sequence,
3672                                   bool TreatUnavailableAsInvalid);
3673 
3674 /// When initializing from init list via constructor, handle
3675 /// initialization of an object of type std::initializer_list<T>.
3676 ///
3677 /// \return true if we have handled initialization of an object of type
3678 /// std::initializer_list<T>, false otherwise.
3679 static bool TryInitializerListConstruction(Sema &S,
3680                                            InitListExpr *List,
3681                                            QualType DestType,
3682                                            InitializationSequence &Sequence,
3683                                            bool TreatUnavailableAsInvalid) {
3684   QualType E;
3685   if (!S.isStdInitializerList(DestType, &E))
3686     return false;
3687 
3688   if (!S.isCompleteType(List->getExprLoc(), E)) {
3689     Sequence.setIncompleteTypeFailure(E);
3690     return true;
3691   }
3692 
3693   // Try initializing a temporary array from the init list.
3694   QualType ArrayType = S.Context.getConstantArrayType(
3695       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3696                                  List->getNumInits()),
3697       clang::ArrayType::Normal, 0);
3698   InitializedEntity HiddenArray =
3699       InitializedEntity::InitializeTemporary(ArrayType);
3700   InitializationKind Kind = InitializationKind::CreateDirectList(
3701       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3702   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3703                         TreatUnavailableAsInvalid);
3704   if (Sequence)
3705     Sequence.AddStdInitializerListConstructionStep(DestType);
3706   return true;
3707 }
3708 
3709 /// Determine if the constructor has the signature of a copy or move
3710 /// constructor for the type T of the class in which it was found. That is,
3711 /// determine if its first parameter is of type T or reference to (possibly
3712 /// cv-qualified) T.
3713 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3714                                    const ConstructorInfo &Info) {
3715   if (Info.Constructor->getNumParams() == 0)
3716     return false;
3717 
3718   QualType ParmT =
3719       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3720   QualType ClassT =
3721       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3722 
3723   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3724 }
3725 
3726 static OverloadingResult
3727 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3728                            MultiExprArg Args,
3729                            OverloadCandidateSet &CandidateSet,
3730                            QualType DestType,
3731                            DeclContext::lookup_result Ctors,
3732                            OverloadCandidateSet::iterator &Best,
3733                            bool CopyInitializing, bool AllowExplicit,
3734                            bool OnlyListConstructors, bool IsListInit,
3735                            bool SecondStepOfCopyInit = false) {
3736   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3737 
3738   for (NamedDecl *D : Ctors) {
3739     auto Info = getConstructorInfo(D);
3740     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3741       continue;
3742 
3743     if (!AllowExplicit && Info.Constructor->isExplicit())
3744       continue;
3745 
3746     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3747       continue;
3748 
3749     // C++11 [over.best.ics]p4:
3750     //   ... and the constructor or user-defined conversion function is a
3751     //   candidate by
3752     //   - 13.3.1.3, when the argument is the temporary in the second step
3753     //     of a class copy-initialization, or
3754     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3755     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3756     //     one element that is itself an initializer list, and the target is
3757     //     the first parameter of a constructor of class X, and the conversion
3758     //     is to X or reference to (possibly cv-qualified X),
3759     //   user-defined conversion sequences are not considered.
3760     bool SuppressUserConversions =
3761         SecondStepOfCopyInit ||
3762         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3763          hasCopyOrMoveCtorParam(S.Context, Info));
3764 
3765     if (Info.ConstructorTmpl)
3766       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3767                                      /*ExplicitArgs*/ nullptr, Args,
3768                                      CandidateSet, SuppressUserConversions);
3769     else {
3770       // C++ [over.match.copy]p1:
3771       //   - When initializing a temporary to be bound to the first parameter
3772       //     of a constructor [for type T] that takes a reference to possibly
3773       //     cv-qualified T as its first argument, called with a single
3774       //     argument in the context of direct-initialization, explicit
3775       //     conversion functions are also considered.
3776       // FIXME: What if a constructor template instantiates to such a signature?
3777       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3778                                Args.size() == 1 &&
3779                                hasCopyOrMoveCtorParam(S.Context, Info);
3780       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3781                              CandidateSet, SuppressUserConversions,
3782                              /*PartialOverloading=*/false,
3783                              /*AllowExplicit=*/AllowExplicitConv);
3784     }
3785   }
3786 
3787   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3788   //
3789   // When initializing an object of class type T by constructor
3790   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3791   // from a single expression of class type U, conversion functions of
3792   // U that convert to the non-reference type cv T are candidates.
3793   // Explicit conversion functions are only candidates during
3794   // direct-initialization.
3795   //
3796   // Note: SecondStepOfCopyInit is only ever true in this case when
3797   // evaluating whether to produce a C++98 compatibility warning.
3798   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3799       !SecondStepOfCopyInit) {
3800     Expr *Initializer = Args[0];
3801     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3802     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3803       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3804       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3805         NamedDecl *D = *I;
3806         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3807         D = D->getUnderlyingDecl();
3808 
3809         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3810         CXXConversionDecl *Conv;
3811         if (ConvTemplate)
3812           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3813         else
3814           Conv = cast<CXXConversionDecl>(D);
3815 
3816         if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3817           if (ConvTemplate)
3818             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3819                                              ActingDC, Initializer, DestType,
3820                                              CandidateSet, AllowExplicit,
3821                                              /*AllowResultConversion*/false);
3822           else
3823             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3824                                      DestType, CandidateSet, AllowExplicit,
3825                                      /*AllowResultConversion*/false);
3826         }
3827       }
3828     }
3829   }
3830 
3831   // Perform overload resolution and return the result.
3832   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3833 }
3834 
3835 /// Attempt initialization by constructor (C++ [dcl.init]), which
3836 /// enumerates the constructors of the initialized entity and performs overload
3837 /// resolution to select the best.
3838 /// \param DestType       The destination class type.
3839 /// \param DestArrayType  The destination type, which is either DestType or
3840 ///                       a (possibly multidimensional) array of DestType.
3841 /// \param IsListInit     Is this list-initialization?
3842 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3843 ///                       list-initialization from {x} where x is the same
3844 ///                       type as the entity?
3845 static void TryConstructorInitialization(Sema &S,
3846                                          const InitializedEntity &Entity,
3847                                          const InitializationKind &Kind,
3848                                          MultiExprArg Args, QualType DestType,
3849                                          QualType DestArrayType,
3850                                          InitializationSequence &Sequence,
3851                                          bool IsListInit = false,
3852                                          bool IsInitListCopy = false) {
3853   assert(((!IsListInit && !IsInitListCopy) ||
3854           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3855          "IsListInit/IsInitListCopy must come with a single initializer list "
3856          "argument.");
3857   InitListExpr *ILE =
3858       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3859   MultiExprArg UnwrappedArgs =
3860       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3861 
3862   // The type we're constructing needs to be complete.
3863   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3864     Sequence.setIncompleteTypeFailure(DestType);
3865     return;
3866   }
3867 
3868   // C++17 [dcl.init]p17:
3869   //     - If the initializer expression is a prvalue and the cv-unqualified
3870   //       version of the source type is the same class as the class of the
3871   //       destination, the initializer expression is used to initialize the
3872   //       destination object.
3873   // Per DR (no number yet), this does not apply when initializing a base
3874   // class or delegating to another constructor from a mem-initializer.
3875   // ObjC++: Lambda captured by the block in the lambda to block conversion
3876   // should avoid copy elision.
3877   if (S.getLangOpts().CPlusPlus17 &&
3878       Entity.getKind() != InitializedEntity::EK_Base &&
3879       Entity.getKind() != InitializedEntity::EK_Delegating &&
3880       Entity.getKind() !=
3881           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3882       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3883       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3884     // Convert qualifications if necessary.
3885     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3886     if (ILE)
3887       Sequence.RewrapReferenceInitList(DestType, ILE);
3888     return;
3889   }
3890 
3891   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3892   assert(DestRecordType && "Constructor initialization requires record type");
3893   CXXRecordDecl *DestRecordDecl
3894     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3895 
3896   // Build the candidate set directly in the initialization sequence
3897   // structure, so that it will persist if we fail.
3898   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3899 
3900   // Determine whether we are allowed to call explicit constructors or
3901   // explicit conversion operators.
3902   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3903   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3904 
3905   //   - Otherwise, if T is a class type, constructors are considered. The
3906   //     applicable constructors are enumerated, and the best one is chosen
3907   //     through overload resolution.
3908   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3909 
3910   OverloadingResult Result = OR_No_Viable_Function;
3911   OverloadCandidateSet::iterator Best;
3912   bool AsInitializerList = false;
3913 
3914   // C++11 [over.match.list]p1, per DR1467:
3915   //   When objects of non-aggregate type T are list-initialized, such that
3916   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3917   //   according to the rules in this section, overload resolution selects
3918   //   the constructor in two phases:
3919   //
3920   //   - Initially, the candidate functions are the initializer-list
3921   //     constructors of the class T and the argument list consists of the
3922   //     initializer list as a single argument.
3923   if (IsListInit) {
3924     AsInitializerList = true;
3925 
3926     // If the initializer list has no elements and T has a default constructor,
3927     // the first phase is omitted.
3928     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3929       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3930                                           CandidateSet, DestType, Ctors, Best,
3931                                           CopyInitialization, AllowExplicit,
3932                                           /*OnlyListConstructor=*/true,
3933                                           IsListInit);
3934   }
3935 
3936   // C++11 [over.match.list]p1:
3937   //   - If no viable initializer-list constructor is found, overload resolution
3938   //     is performed again, where the candidate functions are all the
3939   //     constructors of the class T and the argument list consists of the
3940   //     elements of the initializer list.
3941   if (Result == OR_No_Viable_Function) {
3942     AsInitializerList = false;
3943     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3944                                         CandidateSet, DestType, Ctors, Best,
3945                                         CopyInitialization, AllowExplicit,
3946                                         /*OnlyListConstructors=*/false,
3947                                         IsListInit);
3948   }
3949   if (Result) {
3950     Sequence.SetOverloadFailure(IsListInit ?
3951                       InitializationSequence::FK_ListConstructorOverloadFailed :
3952                       InitializationSequence::FK_ConstructorOverloadFailed,
3953                                 Result);
3954     return;
3955   }
3956 
3957   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3958 
3959   // In C++17, ResolveConstructorOverload can select a conversion function
3960   // instead of a constructor.
3961   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3962     // Add the user-defined conversion step that calls the conversion function.
3963     QualType ConvType = CD->getConversionType();
3964     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3965            "should not have selected this conversion function");
3966     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3967                                    HadMultipleCandidates);
3968     if (!S.Context.hasSameType(ConvType, DestType))
3969       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3970     if (IsListInit)
3971       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3972     return;
3973   }
3974 
3975   // C++11 [dcl.init]p6:
3976   //   If a program calls for the default initialization of an object
3977   //   of a const-qualified type T, T shall be a class type with a
3978   //   user-provided default constructor.
3979   // C++ core issue 253 proposal:
3980   //   If the implicit default constructor initializes all subobjects, no
3981   //   initializer should be required.
3982   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3983   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3984   if (Kind.getKind() == InitializationKind::IK_Default &&
3985       Entity.getType().isConstQualified()) {
3986     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3987       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3988         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3989       return;
3990     }
3991   }
3992 
3993   // C++11 [over.match.list]p1:
3994   //   In copy-list-initialization, if an explicit constructor is chosen, the
3995   //   initializer is ill-formed.
3996   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3997     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3998     return;
3999   }
4000 
4001   // Add the constructor initialization step. Any cv-qualification conversion is
4002   // subsumed by the initialization.
4003   Sequence.AddConstructorInitializationStep(
4004       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4005       IsListInit | IsInitListCopy, AsInitializerList);
4006 }
4007 
4008 static bool
4009 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4010                                              Expr *Initializer,
4011                                              QualType &SourceType,
4012                                              QualType &UnqualifiedSourceType,
4013                                              QualType UnqualifiedTargetType,
4014                                              InitializationSequence &Sequence) {
4015   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4016         S.Context.OverloadTy) {
4017     DeclAccessPair Found;
4018     bool HadMultipleCandidates = false;
4019     if (FunctionDecl *Fn
4020         = S.ResolveAddressOfOverloadedFunction(Initializer,
4021                                                UnqualifiedTargetType,
4022                                                false, Found,
4023                                                &HadMultipleCandidates)) {
4024       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4025                                                 HadMultipleCandidates);
4026       SourceType = Fn->getType();
4027       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4028     } else if (!UnqualifiedTargetType->isRecordType()) {
4029       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4030       return true;
4031     }
4032   }
4033   return false;
4034 }
4035 
4036 static void TryReferenceInitializationCore(Sema &S,
4037                                            const InitializedEntity &Entity,
4038                                            const InitializationKind &Kind,
4039                                            Expr *Initializer,
4040                                            QualType cv1T1, QualType T1,
4041                                            Qualifiers T1Quals,
4042                                            QualType cv2T2, QualType T2,
4043                                            Qualifiers T2Quals,
4044                                            InitializationSequence &Sequence);
4045 
4046 static void TryValueInitialization(Sema &S,
4047                                    const InitializedEntity &Entity,
4048                                    const InitializationKind &Kind,
4049                                    InitializationSequence &Sequence,
4050                                    InitListExpr *InitList = nullptr);
4051 
4052 /// Attempt list initialization of a reference.
4053 static void TryReferenceListInitialization(Sema &S,
4054                                            const InitializedEntity &Entity,
4055                                            const InitializationKind &Kind,
4056                                            InitListExpr *InitList,
4057                                            InitializationSequence &Sequence,
4058                                            bool TreatUnavailableAsInvalid) {
4059   // First, catch C++03 where this isn't possible.
4060   if (!S.getLangOpts().CPlusPlus11) {
4061     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4062     return;
4063   }
4064   // Can't reference initialize a compound literal.
4065   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4066     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4067     return;
4068   }
4069 
4070   QualType DestType = Entity.getType();
4071   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4072   Qualifiers T1Quals;
4073   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4074 
4075   // Reference initialization via an initializer list works thus:
4076   // If the initializer list consists of a single element that is
4077   // reference-related to the referenced type, bind directly to that element
4078   // (possibly creating temporaries).
4079   // Otherwise, initialize a temporary with the initializer list and
4080   // bind to that.
4081   if (InitList->getNumInits() == 1) {
4082     Expr *Initializer = InitList->getInit(0);
4083     QualType cv2T2 = Initializer->getType();
4084     Qualifiers T2Quals;
4085     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4086 
4087     // If this fails, creating a temporary wouldn't work either.
4088     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4089                                                      T1, Sequence))
4090       return;
4091 
4092     SourceLocation DeclLoc = Initializer->getBeginLoc();
4093     bool dummy1, dummy2, dummy3;
4094     Sema::ReferenceCompareResult RefRelationship
4095       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4096                                        dummy2, dummy3);
4097     if (RefRelationship >= Sema::Ref_Related) {
4098       // Try to bind the reference here.
4099       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4100                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4101       if (Sequence)
4102         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4103       return;
4104     }
4105 
4106     // Update the initializer if we've resolved an overloaded function.
4107     if (Sequence.step_begin() != Sequence.step_end())
4108       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4109   }
4110 
4111   // Not reference-related. Create a temporary and bind to that.
4112   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4113 
4114   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4115                         TreatUnavailableAsInvalid);
4116   if (Sequence) {
4117     if (DestType->isRValueReferenceType() ||
4118         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4119       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4120     else
4121       Sequence.SetFailed(
4122           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4123   }
4124 }
4125 
4126 /// Attempt list initialization (C++0x [dcl.init.list])
4127 static void TryListInitialization(Sema &S,
4128                                   const InitializedEntity &Entity,
4129                                   const InitializationKind &Kind,
4130                                   InitListExpr *InitList,
4131                                   InitializationSequence &Sequence,
4132                                   bool TreatUnavailableAsInvalid) {
4133   QualType DestType = Entity.getType();
4134 
4135   // C++ doesn't allow scalar initialization with more than one argument.
4136   // But C99 complex numbers are scalars and it makes sense there.
4137   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4138       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4139     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4140     return;
4141   }
4142   if (DestType->isReferenceType()) {
4143     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4144                                    TreatUnavailableAsInvalid);
4145     return;
4146   }
4147 
4148   if (DestType->isRecordType() &&
4149       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4150     Sequence.setIncompleteTypeFailure(DestType);
4151     return;
4152   }
4153 
4154   // C++11 [dcl.init.list]p3, per DR1467:
4155   // - If T is a class type and the initializer list has a single element of
4156   //   type cv U, where U is T or a class derived from T, the object is
4157   //   initialized from that element (by copy-initialization for
4158   //   copy-list-initialization, or by direct-initialization for
4159   //   direct-list-initialization).
4160   // - Otherwise, if T is a character array and the initializer list has a
4161   //   single element that is an appropriately-typed string literal
4162   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4163   //   in that section.
4164   // - Otherwise, if T is an aggregate, [...] (continue below).
4165   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4166     if (DestType->isRecordType()) {
4167       QualType InitType = InitList->getInit(0)->getType();
4168       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4169           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4170         Expr *InitListAsExpr = InitList;
4171         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4172                                      DestType, Sequence,
4173                                      /*InitListSyntax*/false,
4174                                      /*IsInitListCopy*/true);
4175         return;
4176       }
4177     }
4178     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4179       Expr *SubInit[1] = {InitList->getInit(0)};
4180       if (!isa<VariableArrayType>(DestAT) &&
4181           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4182         InitializationKind SubKind =
4183             Kind.getKind() == InitializationKind::IK_DirectList
4184                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4185                                                    InitList->getLBraceLoc(),
4186                                                    InitList->getRBraceLoc())
4187                 : Kind;
4188         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4189                                 /*TopLevelOfInitList*/ true,
4190                                 TreatUnavailableAsInvalid);
4191 
4192         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4193         // the element is not an appropriately-typed string literal, in which
4194         // case we should proceed as in C++11 (below).
4195         if (Sequence) {
4196           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4197           return;
4198         }
4199       }
4200     }
4201   }
4202 
4203   // C++11 [dcl.init.list]p3:
4204   //   - If T is an aggregate, aggregate initialization is performed.
4205   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4206       (S.getLangOpts().CPlusPlus11 &&
4207        S.isStdInitializerList(DestType, nullptr))) {
4208     if (S.getLangOpts().CPlusPlus11) {
4209       //   - Otherwise, if the initializer list has no elements and T is a
4210       //     class type with a default constructor, the object is
4211       //     value-initialized.
4212       if (InitList->getNumInits() == 0) {
4213         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4214         if (RD->hasDefaultConstructor()) {
4215           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4216           return;
4217         }
4218       }
4219 
4220       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4221       //     an initializer_list object constructed [...]
4222       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4223                                          TreatUnavailableAsInvalid))
4224         return;
4225 
4226       //   - Otherwise, if T is a class type, constructors are considered.
4227       Expr *InitListAsExpr = InitList;
4228       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4229                                    DestType, Sequence, /*InitListSyntax*/true);
4230     } else
4231       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4232     return;
4233   }
4234 
4235   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4236       InitList->getNumInits() == 1) {
4237     Expr *E = InitList->getInit(0);
4238 
4239     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4240     //     the initializer-list has a single element v, and the initialization
4241     //     is direct-list-initialization, the object is initialized with the
4242     //     value T(v); if a narrowing conversion is required to convert v to
4243     //     the underlying type of T, the program is ill-formed.
4244     auto *ET = DestType->getAs<EnumType>();
4245     if (S.getLangOpts().CPlusPlus17 &&
4246         Kind.getKind() == InitializationKind::IK_DirectList &&
4247         ET && ET->getDecl()->isFixed() &&
4248         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4249         (E->getType()->isIntegralOrEnumerationType() ||
4250          E->getType()->isFloatingType())) {
4251       // There are two ways that T(v) can work when T is an enumeration type.
4252       // If there is either an implicit conversion sequence from v to T or
4253       // a conversion function that can convert from v to T, then we use that.
4254       // Otherwise, if v is of integral, enumeration, or floating-point type,
4255       // it is converted to the enumeration type via its underlying type.
4256       // There is no overlap possible between these two cases (except when the
4257       // source value is already of the destination type), and the first
4258       // case is handled by the general case for single-element lists below.
4259       ImplicitConversionSequence ICS;
4260       ICS.setStandard();
4261       ICS.Standard.setAsIdentityConversion();
4262       if (!E->isRValue())
4263         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4264       // If E is of a floating-point type, then the conversion is ill-formed
4265       // due to narrowing, but go through the motions in order to produce the
4266       // right diagnostic.
4267       ICS.Standard.Second = E->getType()->isFloatingType()
4268                                 ? ICK_Floating_Integral
4269                                 : ICK_Integral_Conversion;
4270       ICS.Standard.setFromType(E->getType());
4271       ICS.Standard.setToType(0, E->getType());
4272       ICS.Standard.setToType(1, DestType);
4273       ICS.Standard.setToType(2, DestType);
4274       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4275                                          /*TopLevelOfInitList*/true);
4276       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4277       return;
4278     }
4279 
4280     //   - Otherwise, if the initializer list has a single element of type E
4281     //     [...references are handled above...], the object or reference is
4282     //     initialized from that element (by copy-initialization for
4283     //     copy-list-initialization, or by direct-initialization for
4284     //     direct-list-initialization); if a narrowing conversion is required
4285     //     to convert the element to T, the program is ill-formed.
4286     //
4287     // Per core-24034, this is direct-initialization if we were performing
4288     // direct-list-initialization and copy-initialization otherwise.
4289     // We can't use InitListChecker for this, because it always performs
4290     // copy-initialization. This only matters if we might use an 'explicit'
4291     // conversion operator, so we only need to handle the cases where the source
4292     // is of record type.
4293     if (InitList->getInit(0)->getType()->isRecordType()) {
4294       InitializationKind SubKind =
4295           Kind.getKind() == InitializationKind::IK_DirectList
4296               ? InitializationKind::CreateDirect(Kind.getLocation(),
4297                                                  InitList->getLBraceLoc(),
4298                                                  InitList->getRBraceLoc())
4299               : Kind;
4300       Expr *SubInit[1] = { InitList->getInit(0) };
4301       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4302                               /*TopLevelOfInitList*/true,
4303                               TreatUnavailableAsInvalid);
4304       if (Sequence)
4305         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4306       return;
4307     }
4308   }
4309 
4310   InitListChecker CheckInitList(S, Entity, InitList,
4311           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4312   if (CheckInitList.HadError()) {
4313     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4314     return;
4315   }
4316 
4317   // Add the list initialization step with the built init list.
4318   Sequence.AddListInitializationStep(DestType);
4319 }
4320 
4321 /// Try a reference initialization that involves calling a conversion
4322 /// function.
4323 static OverloadingResult TryRefInitWithConversionFunction(
4324     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4325     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4326     InitializationSequence &Sequence) {
4327   QualType DestType = Entity.getType();
4328   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4329   QualType T1 = cv1T1.getUnqualifiedType();
4330   QualType cv2T2 = Initializer->getType();
4331   QualType T2 = cv2T2.getUnqualifiedType();
4332 
4333   bool DerivedToBase;
4334   bool ObjCConversion;
4335   bool ObjCLifetimeConversion;
4336   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4337                                          DerivedToBase, ObjCConversion,
4338                                          ObjCLifetimeConversion) &&
4339          "Must have incompatible references when binding via conversion");
4340   (void)DerivedToBase;
4341   (void)ObjCConversion;
4342   (void)ObjCLifetimeConversion;
4343 
4344   // Build the candidate set directly in the initialization sequence
4345   // structure, so that it will persist if we fail.
4346   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4347   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4348 
4349   // Determine whether we are allowed to call explicit conversion operators.
4350   // Note that none of [over.match.copy], [over.match.conv], nor
4351   // [over.match.ref] permit an explicit constructor to be chosen when
4352   // initializing a reference, not even for direct-initialization.
4353   bool AllowExplicitCtors = false;
4354   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4355 
4356   const RecordType *T1RecordType = nullptr;
4357   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4358       S.isCompleteType(Kind.getLocation(), T1)) {
4359     // The type we're converting to is a class type. Enumerate its constructors
4360     // to see if there is a suitable conversion.
4361     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4362 
4363     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4364       auto Info = getConstructorInfo(D);
4365       if (!Info.Constructor)
4366         continue;
4367 
4368       if (!Info.Constructor->isInvalidDecl() &&
4369           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4370         if (Info.ConstructorTmpl)
4371           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4372                                          /*ExplicitArgs*/ nullptr,
4373                                          Initializer, CandidateSet,
4374                                          /*SuppressUserConversions=*/true);
4375         else
4376           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4377                                  Initializer, CandidateSet,
4378                                  /*SuppressUserConversions=*/true);
4379       }
4380     }
4381   }
4382   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4383     return OR_No_Viable_Function;
4384 
4385   const RecordType *T2RecordType = nullptr;
4386   if ((T2RecordType = T2->getAs<RecordType>()) &&
4387       S.isCompleteType(Kind.getLocation(), T2)) {
4388     // The type we're converting from is a class type, enumerate its conversion
4389     // functions.
4390     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4391 
4392     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4393     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4394       NamedDecl *D = *I;
4395       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4396       if (isa<UsingShadowDecl>(D))
4397         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4398 
4399       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4400       CXXConversionDecl *Conv;
4401       if (ConvTemplate)
4402         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4403       else
4404         Conv = cast<CXXConversionDecl>(D);
4405 
4406       // If the conversion function doesn't return a reference type,
4407       // it can't be considered for this conversion unless we're allowed to
4408       // consider rvalues.
4409       // FIXME: Do we need to make sure that we only consider conversion
4410       // candidates with reference-compatible results? That might be needed to
4411       // break recursion.
4412       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4413           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4414         if (ConvTemplate)
4415           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4416                                            ActingDC, Initializer,
4417                                            DestType, CandidateSet,
4418                                            /*AllowObjCConversionOnExplicit=*/
4419                                              false);
4420         else
4421           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4422                                    Initializer, DestType, CandidateSet,
4423                                    /*AllowObjCConversionOnExplicit=*/false);
4424       }
4425     }
4426   }
4427   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4428     return OR_No_Viable_Function;
4429 
4430   SourceLocation DeclLoc = Initializer->getBeginLoc();
4431 
4432   // Perform overload resolution. If it fails, return the failed result.
4433   OverloadCandidateSet::iterator Best;
4434   if (OverloadingResult Result
4435         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4436     return Result;
4437 
4438   FunctionDecl *Function = Best->Function;
4439   // This is the overload that will be used for this initialization step if we
4440   // use this initialization. Mark it as referenced.
4441   Function->setReferenced();
4442 
4443   // Compute the returned type and value kind of the conversion.
4444   QualType cv3T3;
4445   if (isa<CXXConversionDecl>(Function))
4446     cv3T3 = Function->getReturnType();
4447   else
4448     cv3T3 = T1;
4449 
4450   ExprValueKind VK = VK_RValue;
4451   if (cv3T3->isLValueReferenceType())
4452     VK = VK_LValue;
4453   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4454     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4455   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4456 
4457   // Add the user-defined conversion step.
4458   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4459   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4460                                  HadMultipleCandidates);
4461 
4462   // Determine whether we'll need to perform derived-to-base adjustments or
4463   // other conversions.
4464   bool NewDerivedToBase = false;
4465   bool NewObjCConversion = false;
4466   bool NewObjCLifetimeConversion = false;
4467   Sema::ReferenceCompareResult NewRefRelationship
4468     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4469                                      NewDerivedToBase, NewObjCConversion,
4470                                      NewObjCLifetimeConversion);
4471 
4472   // Add the final conversion sequence, if necessary.
4473   if (NewRefRelationship == Sema::Ref_Incompatible) {
4474     assert(!isa<CXXConstructorDecl>(Function) &&
4475            "should not have conversion after constructor");
4476 
4477     ImplicitConversionSequence ICS;
4478     ICS.setStandard();
4479     ICS.Standard = Best->FinalConversion;
4480     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4481 
4482     // Every implicit conversion results in a prvalue, except for a glvalue
4483     // derived-to-base conversion, which we handle below.
4484     cv3T3 = ICS.Standard.getToType(2);
4485     VK = VK_RValue;
4486   }
4487 
4488   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4489   //   type "cv1 T4" and the temporary materialization conversion is applied.
4490   //
4491   // We adjust the cv-qualifications to match the reference regardless of
4492   // whether we have a prvalue so that the AST records the change. In this
4493   // case, T4 is "cv3 T3".
4494   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4495   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4496     Sequence.AddQualificationConversionStep(cv1T4, VK);
4497   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4498   VK = IsLValueRef ? VK_LValue : VK_XValue;
4499 
4500   if (NewDerivedToBase)
4501     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4502   else if (NewObjCConversion)
4503     Sequence.AddObjCObjectConversionStep(cv1T1);
4504 
4505   return OR_Success;
4506 }
4507 
4508 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4509                                            const InitializedEntity &Entity,
4510                                            Expr *CurInitExpr);
4511 
4512 /// Attempt reference initialization (C++0x [dcl.init.ref])
4513 static void TryReferenceInitialization(Sema &S,
4514                                        const InitializedEntity &Entity,
4515                                        const InitializationKind &Kind,
4516                                        Expr *Initializer,
4517                                        InitializationSequence &Sequence) {
4518   QualType DestType = Entity.getType();
4519   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4520   Qualifiers T1Quals;
4521   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4522   QualType cv2T2 = Initializer->getType();
4523   Qualifiers T2Quals;
4524   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4525 
4526   // If the initializer is the address of an overloaded function, try
4527   // to resolve the overloaded function. If all goes well, T2 is the
4528   // type of the resulting function.
4529   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4530                                                    T1, Sequence))
4531     return;
4532 
4533   // Delegate everything else to a subfunction.
4534   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4535                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4536 }
4537 
4538 /// Determine whether an expression is a non-referenceable glvalue (one to
4539 /// which a reference can never bind). Attempting to bind a reference to
4540 /// such a glvalue will always create a temporary.
4541 static bool isNonReferenceableGLValue(Expr *E) {
4542   return E->refersToBitField() || E->refersToVectorElement();
4543 }
4544 
4545 /// Reference initialization without resolving overloaded functions.
4546 static void TryReferenceInitializationCore(Sema &S,
4547                                            const InitializedEntity &Entity,
4548                                            const InitializationKind &Kind,
4549                                            Expr *Initializer,
4550                                            QualType cv1T1, QualType T1,
4551                                            Qualifiers T1Quals,
4552                                            QualType cv2T2, QualType T2,
4553                                            Qualifiers T2Quals,
4554                                            InitializationSequence &Sequence) {
4555   QualType DestType = Entity.getType();
4556   SourceLocation DeclLoc = Initializer->getBeginLoc();
4557   // Compute some basic properties of the types and the initializer.
4558   bool isLValueRef = DestType->isLValueReferenceType();
4559   bool isRValueRef = !isLValueRef;
4560   bool DerivedToBase = false;
4561   bool ObjCConversion = false;
4562   bool ObjCLifetimeConversion = false;
4563   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4564   Sema::ReferenceCompareResult RefRelationship
4565     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4566                                      ObjCConversion, ObjCLifetimeConversion);
4567 
4568   // C++0x [dcl.init.ref]p5:
4569   //   A reference to type "cv1 T1" is initialized by an expression of type
4570   //   "cv2 T2" as follows:
4571   //
4572   //     - If the reference is an lvalue reference and the initializer
4573   //       expression
4574   // Note the analogous bullet points for rvalue refs to functions. Because
4575   // there are no function rvalues in C++, rvalue refs to functions are treated
4576   // like lvalue refs.
4577   OverloadingResult ConvOvlResult = OR_Success;
4578   bool T1Function = T1->isFunctionType();
4579   if (isLValueRef || T1Function) {
4580     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4581         (RefRelationship == Sema::Ref_Compatible ||
4582          (Kind.isCStyleOrFunctionalCast() &&
4583           RefRelationship == Sema::Ref_Related))) {
4584       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4585       //     reference-compatible with "cv2 T2," or
4586       if (T1Quals != T2Quals)
4587         // Convert to cv1 T2. This should only add qualifiers unless this is a
4588         // c-style cast. The removal of qualifiers in that case notionally
4589         // happens after the reference binding, but that doesn't matter.
4590         Sequence.AddQualificationConversionStep(
4591             S.Context.getQualifiedType(T2, T1Quals),
4592             Initializer->getValueKind());
4593       if (DerivedToBase)
4594         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4595       else if (ObjCConversion)
4596         Sequence.AddObjCObjectConversionStep(cv1T1);
4597 
4598       // We only create a temporary here when binding a reference to a
4599       // bit-field or vector element. Those cases are't supposed to be
4600       // handled by this bullet, but the outcome is the same either way.
4601       Sequence.AddReferenceBindingStep(cv1T1, false);
4602       return;
4603     }
4604 
4605     //     - has a class type (i.e., T2 is a class type), where T1 is not
4606     //       reference-related to T2, and can be implicitly converted to an
4607     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4608     //       with "cv3 T3" (this conversion is selected by enumerating the
4609     //       applicable conversion functions (13.3.1.6) and choosing the best
4610     //       one through overload resolution (13.3)),
4611     // If we have an rvalue ref to function type here, the rhs must be
4612     // an rvalue. DR1287 removed the "implicitly" here.
4613     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4614         (isLValueRef || InitCategory.isRValue())) {
4615       ConvOvlResult = TryRefInitWithConversionFunction(
4616           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4617           /*IsLValueRef*/ isLValueRef, Sequence);
4618       if (ConvOvlResult == OR_Success)
4619         return;
4620       if (ConvOvlResult != OR_No_Viable_Function)
4621         Sequence.SetOverloadFailure(
4622             InitializationSequence::FK_ReferenceInitOverloadFailed,
4623             ConvOvlResult);
4624     }
4625   }
4626 
4627   //     - Otherwise, the reference shall be an lvalue reference to a
4628   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4629   //       shall be an rvalue reference.
4630   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4631     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4632       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4633     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4634       Sequence.SetOverloadFailure(
4635                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4636                                   ConvOvlResult);
4637     else if (!InitCategory.isLValue())
4638       Sequence.SetFailed(
4639           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4640     else {
4641       InitializationSequence::FailureKind FK;
4642       switch (RefRelationship) {
4643       case Sema::Ref_Compatible:
4644         if (Initializer->refersToBitField())
4645           FK = InitializationSequence::
4646               FK_NonConstLValueReferenceBindingToBitfield;
4647         else if (Initializer->refersToVectorElement())
4648           FK = InitializationSequence::
4649               FK_NonConstLValueReferenceBindingToVectorElement;
4650         else
4651           llvm_unreachable("unexpected kind of compatible initializer");
4652         break;
4653       case Sema::Ref_Related:
4654         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4655         break;
4656       case Sema::Ref_Incompatible:
4657         FK = InitializationSequence::
4658             FK_NonConstLValueReferenceBindingToUnrelated;
4659         break;
4660       }
4661       Sequence.SetFailed(FK);
4662     }
4663     return;
4664   }
4665 
4666   //    - If the initializer expression
4667   //      - is an
4668   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4669   // [1z]   rvalue (but not a bit-field) or
4670   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4671   //
4672   // Note: functions are handled above and below rather than here...
4673   if (!T1Function &&
4674       (RefRelationship == Sema::Ref_Compatible ||
4675        (Kind.isCStyleOrFunctionalCast() &&
4676         RefRelationship == Sema::Ref_Related)) &&
4677       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4678        (InitCategory.isPRValue() &&
4679         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4680          T2->isArrayType())))) {
4681     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4682     if (InitCategory.isPRValue() && T2->isRecordType()) {
4683       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4684       // compiler the freedom to perform a copy here or bind to the
4685       // object, while C++0x requires that we bind directly to the
4686       // object. Hence, we always bind to the object without making an
4687       // extra copy. However, in C++03 requires that we check for the
4688       // presence of a suitable copy constructor:
4689       //
4690       //   The constructor that would be used to make the copy shall
4691       //   be callable whether or not the copy is actually done.
4692       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4693         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4694       else if (S.getLangOpts().CPlusPlus11)
4695         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4696     }
4697 
4698     // C++1z [dcl.init.ref]/5.2.1.2:
4699     //   If the converted initializer is a prvalue, its type T4 is adjusted
4700     //   to type "cv1 T4" and the temporary materialization conversion is
4701     //   applied.
4702     // Postpone address space conversions to after the temporary materialization
4703     // conversion to allow creating temporaries in the alloca address space.
4704     auto T1QualsIgnoreAS = T1Quals;
4705     auto T2QualsIgnoreAS = T2Quals;
4706     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4707       T1QualsIgnoreAS.removeAddressSpace();
4708       T2QualsIgnoreAS.removeAddressSpace();
4709     }
4710     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4711     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4712       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4713     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4714     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4715     // Add addr space conversion if required.
4716     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4717       auto T4Quals = cv1T4.getQualifiers();
4718       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4719       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4720       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4721     }
4722 
4723     //   In any case, the reference is bound to the resulting glvalue (or to
4724     //   an appropriate base class subobject).
4725     if (DerivedToBase)
4726       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4727     else if (ObjCConversion)
4728       Sequence.AddObjCObjectConversionStep(cv1T1);
4729     return;
4730   }
4731 
4732   //       - has a class type (i.e., T2 is a class type), where T1 is not
4733   //         reference-related to T2, and can be implicitly converted to an
4734   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4735   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4736   //
4737   // DR1287 removes the "implicitly" here.
4738   if (T2->isRecordType()) {
4739     if (RefRelationship == Sema::Ref_Incompatible) {
4740       ConvOvlResult = TryRefInitWithConversionFunction(
4741           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4742           /*IsLValueRef*/ isLValueRef, Sequence);
4743       if (ConvOvlResult)
4744         Sequence.SetOverloadFailure(
4745             InitializationSequence::FK_ReferenceInitOverloadFailed,
4746             ConvOvlResult);
4747 
4748       return;
4749     }
4750 
4751     if (RefRelationship == Sema::Ref_Compatible &&
4752         isRValueRef && InitCategory.isLValue()) {
4753       Sequence.SetFailed(
4754         InitializationSequence::FK_RValueReferenceBindingToLValue);
4755       return;
4756     }
4757 
4758     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4759     return;
4760   }
4761 
4762   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4763   //        from the initializer expression using the rules for a non-reference
4764   //        copy-initialization (8.5). The reference is then bound to the
4765   //        temporary. [...]
4766 
4767   // Ignore address space of reference type at this point and perform address
4768   // space conversion after the reference binding step.
4769   QualType cv1T1IgnoreAS =
4770       T1Quals.hasAddressSpace()
4771           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4772           : cv1T1;
4773 
4774   InitializedEntity TempEntity =
4775       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4776 
4777   // FIXME: Why do we use an implicit conversion here rather than trying
4778   // copy-initialization?
4779   ImplicitConversionSequence ICS
4780     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4781                               /*SuppressUserConversions=*/false,
4782                               /*AllowExplicit=*/false,
4783                               /*FIXME:InOverloadResolution=*/false,
4784                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4785                               /*AllowObjCWritebackConversion=*/false);
4786 
4787   if (ICS.isBad()) {
4788     // FIXME: Use the conversion function set stored in ICS to turn
4789     // this into an overloading ambiguity diagnostic. However, we need
4790     // to keep that set as an OverloadCandidateSet rather than as some
4791     // other kind of set.
4792     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4793       Sequence.SetOverloadFailure(
4794                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4795                                   ConvOvlResult);
4796     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4797       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4798     else
4799       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4800     return;
4801   } else {
4802     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4803   }
4804 
4805   //        [...] If T1 is reference-related to T2, cv1 must be the
4806   //        same cv-qualification as, or greater cv-qualification
4807   //        than, cv2; otherwise, the program is ill-formed.
4808   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4809   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4810   if ((RefRelationship == Sema::Ref_Related &&
4811        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4812       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4813     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4814     return;
4815   }
4816 
4817   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4818   //   reference, the initializer expression shall not be an lvalue.
4819   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4820       InitCategory.isLValue()) {
4821     Sequence.SetFailed(
4822                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4823     return;
4824   }
4825 
4826   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true);
4827 
4828   if (T1Quals.hasAddressSpace())
4829     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4830                                                                : VK_XValue);
4831 }
4832 
4833 /// Attempt character array initialization from a string literal
4834 /// (C++ [dcl.init.string], C99 6.7.8).
4835 static void TryStringLiteralInitialization(Sema &S,
4836                                            const InitializedEntity &Entity,
4837                                            const InitializationKind &Kind,
4838                                            Expr *Initializer,
4839                                        InitializationSequence &Sequence) {
4840   Sequence.AddStringInitStep(Entity.getType());
4841 }
4842 
4843 /// Attempt value initialization (C++ [dcl.init]p7).
4844 static void TryValueInitialization(Sema &S,
4845                                    const InitializedEntity &Entity,
4846                                    const InitializationKind &Kind,
4847                                    InitializationSequence &Sequence,
4848                                    InitListExpr *InitList) {
4849   assert((!InitList || InitList->getNumInits() == 0) &&
4850          "Shouldn't use value-init for non-empty init lists");
4851 
4852   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4853   //
4854   //   To value-initialize an object of type T means:
4855   QualType T = Entity.getType();
4856 
4857   //     -- if T is an array type, then each element is value-initialized;
4858   T = S.Context.getBaseElementType(T);
4859 
4860   if (const RecordType *RT = T->getAs<RecordType>()) {
4861     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4862       bool NeedZeroInitialization = true;
4863       // C++98:
4864       // -- if T is a class type (clause 9) with a user-declared constructor
4865       //    (12.1), then the default constructor for T is called (and the
4866       //    initialization is ill-formed if T has no accessible default
4867       //    constructor);
4868       // C++11:
4869       // -- if T is a class type (clause 9) with either no default constructor
4870       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4871       //    or deleted, then the object is default-initialized;
4872       //
4873       // Note that the C++11 rule is the same as the C++98 rule if there are no
4874       // defaulted or deleted constructors, so we just use it unconditionally.
4875       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4876       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4877         NeedZeroInitialization = false;
4878 
4879       // -- if T is a (possibly cv-qualified) non-union class type without a
4880       //    user-provided or deleted default constructor, then the object is
4881       //    zero-initialized and, if T has a non-trivial default constructor,
4882       //    default-initialized;
4883       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4884       // constructor' part was removed by DR1507.
4885       if (NeedZeroInitialization)
4886         Sequence.AddZeroInitializationStep(Entity.getType());
4887 
4888       // C++03:
4889       // -- if T is a non-union class type without a user-declared constructor,
4890       //    then every non-static data member and base class component of T is
4891       //    value-initialized;
4892       // [...] A program that calls for [...] value-initialization of an
4893       // entity of reference type is ill-formed.
4894       //
4895       // C++11 doesn't need this handling, because value-initialization does not
4896       // occur recursively there, and the implicit default constructor is
4897       // defined as deleted in the problematic cases.
4898       if (!S.getLangOpts().CPlusPlus11 &&
4899           ClassDecl->hasUninitializedReferenceMember()) {
4900         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4901         return;
4902       }
4903 
4904       // If this is list-value-initialization, pass the empty init list on when
4905       // building the constructor call. This affects the semantics of a few
4906       // things (such as whether an explicit default constructor can be called).
4907       Expr *InitListAsExpr = InitList;
4908       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4909       bool InitListSyntax = InitList;
4910 
4911       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4912       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4913       return TryConstructorInitialization(
4914           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4915     }
4916   }
4917 
4918   Sequence.AddZeroInitializationStep(Entity.getType());
4919 }
4920 
4921 /// Attempt default initialization (C++ [dcl.init]p6).
4922 static void TryDefaultInitialization(Sema &S,
4923                                      const InitializedEntity &Entity,
4924                                      const InitializationKind &Kind,
4925                                      InitializationSequence &Sequence) {
4926   assert(Kind.getKind() == InitializationKind::IK_Default);
4927 
4928   // C++ [dcl.init]p6:
4929   //   To default-initialize an object of type T means:
4930   //     - if T is an array type, each element is default-initialized;
4931   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4932 
4933   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4934   //       constructor for T is called (and the initialization is ill-formed if
4935   //       T has no accessible default constructor);
4936   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4937     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4938                                  Entity.getType(), Sequence);
4939     return;
4940   }
4941 
4942   //     - otherwise, no initialization is performed.
4943 
4944   //   If a program calls for the default initialization of an object of
4945   //   a const-qualified type T, T shall be a class type with a user-provided
4946   //   default constructor.
4947   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4948     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4949       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4950     return;
4951   }
4952 
4953   // If the destination type has a lifetime property, zero-initialize it.
4954   if (DestType.getQualifiers().hasObjCLifetime()) {
4955     Sequence.AddZeroInitializationStep(Entity.getType());
4956     return;
4957   }
4958 }
4959 
4960 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4961 /// which enumerates all conversion functions and performs overload resolution
4962 /// to select the best.
4963 static void TryUserDefinedConversion(Sema &S,
4964                                      QualType DestType,
4965                                      const InitializationKind &Kind,
4966                                      Expr *Initializer,
4967                                      InitializationSequence &Sequence,
4968                                      bool TopLevelOfInitList) {
4969   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4970   QualType SourceType = Initializer->getType();
4971   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4972          "Must have a class type to perform a user-defined conversion");
4973 
4974   // Build the candidate set directly in the initialization sequence
4975   // structure, so that it will persist if we fail.
4976   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4977   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4978 
4979   // Determine whether we are allowed to call explicit constructors or
4980   // explicit conversion operators.
4981   bool AllowExplicit = Kind.AllowExplicit();
4982 
4983   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4984     // The type we're converting to is a class type. Enumerate its constructors
4985     // to see if there is a suitable conversion.
4986     CXXRecordDecl *DestRecordDecl
4987       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4988 
4989     // Try to complete the type we're converting to.
4990     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4991       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4992         auto Info = getConstructorInfo(D);
4993         if (!Info.Constructor)
4994           continue;
4995 
4996         if (!Info.Constructor->isInvalidDecl() &&
4997             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4998           if (Info.ConstructorTmpl)
4999             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
5000                                            /*ExplicitArgs*/ nullptr,
5001                                            Initializer, CandidateSet,
5002                                            /*SuppressUserConversions=*/true);
5003           else
5004             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5005                                    Initializer, CandidateSet,
5006                                    /*SuppressUserConversions=*/true);
5007         }
5008       }
5009     }
5010   }
5011 
5012   SourceLocation DeclLoc = Initializer->getBeginLoc();
5013 
5014   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5015     // The type we're converting from is a class type, enumerate its conversion
5016     // functions.
5017 
5018     // We can only enumerate the conversion functions for a complete type; if
5019     // the type isn't complete, simply skip this step.
5020     if (S.isCompleteType(DeclLoc, SourceType)) {
5021       CXXRecordDecl *SourceRecordDecl
5022         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5023 
5024       const auto &Conversions =
5025           SourceRecordDecl->getVisibleConversionFunctions();
5026       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5027         NamedDecl *D = *I;
5028         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5029         if (isa<UsingShadowDecl>(D))
5030           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5031 
5032         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5033         CXXConversionDecl *Conv;
5034         if (ConvTemplate)
5035           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5036         else
5037           Conv = cast<CXXConversionDecl>(D);
5038 
5039         if (AllowExplicit || !Conv->isExplicit()) {
5040           if (ConvTemplate)
5041             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
5042                                              ActingDC, Initializer, DestType,
5043                                              CandidateSet, AllowExplicit);
5044           else
5045             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
5046                                      Initializer, DestType, CandidateSet,
5047                                      AllowExplicit);
5048         }
5049       }
5050     }
5051   }
5052 
5053   // Perform overload resolution. If it fails, return the failed result.
5054   OverloadCandidateSet::iterator Best;
5055   if (OverloadingResult Result
5056         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5057     Sequence.SetOverloadFailure(
5058                         InitializationSequence::FK_UserConversionOverloadFailed,
5059                                 Result);
5060     return;
5061   }
5062 
5063   FunctionDecl *Function = Best->Function;
5064   Function->setReferenced();
5065   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5066 
5067   if (isa<CXXConstructorDecl>(Function)) {
5068     // Add the user-defined conversion step. Any cv-qualification conversion is
5069     // subsumed by the initialization. Per DR5, the created temporary is of the
5070     // cv-unqualified type of the destination.
5071     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5072                                    DestType.getUnqualifiedType(),
5073                                    HadMultipleCandidates);
5074 
5075     // C++14 and before:
5076     //   - if the function is a constructor, the call initializes a temporary
5077     //     of the cv-unqualified version of the destination type. The [...]
5078     //     temporary [...] is then used to direct-initialize, according to the
5079     //     rules above, the object that is the destination of the
5080     //     copy-initialization.
5081     // Note that this just performs a simple object copy from the temporary.
5082     //
5083     // C++17:
5084     //   - if the function is a constructor, the call is a prvalue of the
5085     //     cv-unqualified version of the destination type whose return object
5086     //     is initialized by the constructor. The call is used to
5087     //     direct-initialize, according to the rules above, the object that
5088     //     is the destination of the copy-initialization.
5089     // Therefore we need to do nothing further.
5090     //
5091     // FIXME: Mark this copy as extraneous.
5092     if (!S.getLangOpts().CPlusPlus17)
5093       Sequence.AddFinalCopy(DestType);
5094     else if (DestType.hasQualifiers())
5095       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5096     return;
5097   }
5098 
5099   // Add the user-defined conversion step that calls the conversion function.
5100   QualType ConvType = Function->getCallResultType();
5101   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5102                                  HadMultipleCandidates);
5103 
5104   if (ConvType->getAs<RecordType>()) {
5105     //   The call is used to direct-initialize [...] the object that is the
5106     //   destination of the copy-initialization.
5107     //
5108     // In C++17, this does not call a constructor if we enter /17.6.1:
5109     //   - If the initializer expression is a prvalue and the cv-unqualified
5110     //     version of the source type is the same as the class of the
5111     //     destination [... do not make an extra copy]
5112     //
5113     // FIXME: Mark this copy as extraneous.
5114     if (!S.getLangOpts().CPlusPlus17 ||
5115         Function->getReturnType()->isReferenceType() ||
5116         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5117       Sequence.AddFinalCopy(DestType);
5118     else if (!S.Context.hasSameType(ConvType, DestType))
5119       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5120     return;
5121   }
5122 
5123   // If the conversion following the call to the conversion function
5124   // is interesting, add it as a separate step.
5125   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5126       Best->FinalConversion.Third) {
5127     ImplicitConversionSequence ICS;
5128     ICS.setStandard();
5129     ICS.Standard = Best->FinalConversion;
5130     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5131   }
5132 }
5133 
5134 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5135 /// a function with a pointer return type contains a 'return false;' statement.
5136 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5137 /// code using that header.
5138 ///
5139 /// Work around this by treating 'return false;' as zero-initializing the result
5140 /// if it's used in a pointer-returning function in a system header.
5141 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5142                                               const InitializedEntity &Entity,
5143                                               const Expr *Init) {
5144   return S.getLangOpts().CPlusPlus11 &&
5145          Entity.getKind() == InitializedEntity::EK_Result &&
5146          Entity.getType()->isPointerType() &&
5147          isa<CXXBoolLiteralExpr>(Init) &&
5148          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5149          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5150 }
5151 
5152 /// The non-zero enum values here are indexes into diagnostic alternatives.
5153 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5154 
5155 /// Determines whether this expression is an acceptable ICR source.
5156 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5157                                          bool isAddressOf, bool &isWeakAccess) {
5158   // Skip parens.
5159   e = e->IgnoreParens();
5160 
5161   // Skip address-of nodes.
5162   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5163     if (op->getOpcode() == UO_AddrOf)
5164       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5165                                 isWeakAccess);
5166 
5167   // Skip certain casts.
5168   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5169     switch (ce->getCastKind()) {
5170     case CK_Dependent:
5171     case CK_BitCast:
5172     case CK_LValueBitCast:
5173     case CK_NoOp:
5174       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5175 
5176     case CK_ArrayToPointerDecay:
5177       return IIK_nonscalar;
5178 
5179     case CK_NullToPointer:
5180       return IIK_okay;
5181 
5182     default:
5183       break;
5184     }
5185 
5186   // If we have a declaration reference, it had better be a local variable.
5187   } else if (isa<DeclRefExpr>(e)) {
5188     // set isWeakAccess to true, to mean that there will be an implicit
5189     // load which requires a cleanup.
5190     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5191       isWeakAccess = true;
5192 
5193     if (!isAddressOf) return IIK_nonlocal;
5194 
5195     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5196     if (!var) return IIK_nonlocal;
5197 
5198     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5199 
5200   // If we have a conditional operator, check both sides.
5201   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5202     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5203                                                 isWeakAccess))
5204       return iik;
5205 
5206     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5207 
5208   // These are never scalar.
5209   } else if (isa<ArraySubscriptExpr>(e)) {
5210     return IIK_nonscalar;
5211 
5212   // Otherwise, it needs to be a null pointer constant.
5213   } else {
5214     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5215             ? IIK_okay : IIK_nonlocal);
5216   }
5217 
5218   return IIK_nonlocal;
5219 }
5220 
5221 /// Check whether the given expression is a valid operand for an
5222 /// indirect copy/restore.
5223 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5224   assert(src->isRValue());
5225   bool isWeakAccess = false;
5226   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5227   // If isWeakAccess to true, there will be an implicit
5228   // load which requires a cleanup.
5229   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5230     S.Cleanup.setExprNeedsCleanups(true);
5231 
5232   if (iik == IIK_okay) return;
5233 
5234   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5235     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5236     << src->getSourceRange();
5237 }
5238 
5239 /// Determine whether we have compatible array types for the
5240 /// purposes of GNU by-copy array initialization.
5241 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5242                                     const ArrayType *Source) {
5243   // If the source and destination array types are equivalent, we're
5244   // done.
5245   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5246     return true;
5247 
5248   // Make sure that the element types are the same.
5249   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5250     return false;
5251 
5252   // The only mismatch we allow is when the destination is an
5253   // incomplete array type and the source is a constant array type.
5254   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5255 }
5256 
5257 static bool tryObjCWritebackConversion(Sema &S,
5258                                        InitializationSequence &Sequence,
5259                                        const InitializedEntity &Entity,
5260                                        Expr *Initializer) {
5261   bool ArrayDecay = false;
5262   QualType ArgType = Initializer->getType();
5263   QualType ArgPointee;
5264   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5265     ArrayDecay = true;
5266     ArgPointee = ArgArrayType->getElementType();
5267     ArgType = S.Context.getPointerType(ArgPointee);
5268   }
5269 
5270   // Handle write-back conversion.
5271   QualType ConvertedArgType;
5272   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5273                                    ConvertedArgType))
5274     return false;
5275 
5276   // We should copy unless we're passing to an argument explicitly
5277   // marked 'out'.
5278   bool ShouldCopy = true;
5279   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5280     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5281 
5282   // Do we need an lvalue conversion?
5283   if (ArrayDecay || Initializer->isGLValue()) {
5284     ImplicitConversionSequence ICS;
5285     ICS.setStandard();
5286     ICS.Standard.setAsIdentityConversion();
5287 
5288     QualType ResultType;
5289     if (ArrayDecay) {
5290       ICS.Standard.First = ICK_Array_To_Pointer;
5291       ResultType = S.Context.getPointerType(ArgPointee);
5292     } else {
5293       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5294       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5295     }
5296 
5297     Sequence.AddConversionSequenceStep(ICS, ResultType);
5298   }
5299 
5300   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5301   return true;
5302 }
5303 
5304 static bool TryOCLSamplerInitialization(Sema &S,
5305                                         InitializationSequence &Sequence,
5306                                         QualType DestType,
5307                                         Expr *Initializer) {
5308   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5309       (!Initializer->isIntegerConstantExpr(S.Context) &&
5310       !Initializer->getType()->isSamplerT()))
5311     return false;
5312 
5313   Sequence.AddOCLSamplerInitStep(DestType);
5314   return true;
5315 }
5316 
5317 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5318   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5319     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5320 }
5321 
5322 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5323                                                InitializationSequence &Sequence,
5324                                                QualType DestType,
5325                                                Expr *Initializer) {
5326   if (!S.getLangOpts().OpenCL)
5327     return false;
5328 
5329   //
5330   // OpenCL 1.2 spec, s6.12.10
5331   //
5332   // The event argument can also be used to associate the
5333   // async_work_group_copy with a previous async copy allowing
5334   // an event to be shared by multiple async copies; otherwise
5335   // event should be zero.
5336   //
5337   if (DestType->isEventT() || DestType->isQueueT()) {
5338     if (!IsZeroInitializer(Initializer, S))
5339       return false;
5340 
5341     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5342     return true;
5343   }
5344 
5345   // We should allow zero initialization for all types defined in the
5346   // cl_intel_device_side_avc_motion_estimation extension, except
5347   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5348   if (S.getOpenCLOptions().isEnabled(
5349           "cl_intel_device_side_avc_motion_estimation") &&
5350       DestType->isOCLIntelSubgroupAVCType()) {
5351     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5352         DestType->isOCLIntelSubgroupAVCMceResultType())
5353       return false;
5354     if (!IsZeroInitializer(Initializer, S))
5355       return false;
5356 
5357     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5358     return true;
5359   }
5360 
5361   return false;
5362 }
5363 
5364 InitializationSequence::InitializationSequence(Sema &S,
5365                                                const InitializedEntity &Entity,
5366                                                const InitializationKind &Kind,
5367                                                MultiExprArg Args,
5368                                                bool TopLevelOfInitList,
5369                                                bool TreatUnavailableAsInvalid)
5370     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5371   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5372                  TreatUnavailableAsInvalid);
5373 }
5374 
5375 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5376 /// address of that function, this returns true. Otherwise, it returns false.
5377 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5378   auto *DRE = dyn_cast<DeclRefExpr>(E);
5379   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5380     return false;
5381 
5382   return !S.checkAddressOfFunctionIsAvailable(
5383       cast<FunctionDecl>(DRE->getDecl()));
5384 }
5385 
5386 /// Determine whether we can perform an elementwise array copy for this kind
5387 /// of entity.
5388 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5389   switch (Entity.getKind()) {
5390   case InitializedEntity::EK_LambdaCapture:
5391     // C++ [expr.prim.lambda]p24:
5392     //   For array members, the array elements are direct-initialized in
5393     //   increasing subscript order.
5394     return true;
5395 
5396   case InitializedEntity::EK_Variable:
5397     // C++ [dcl.decomp]p1:
5398     //   [...] each element is copy-initialized or direct-initialized from the
5399     //   corresponding element of the assignment-expression [...]
5400     return isa<DecompositionDecl>(Entity.getDecl());
5401 
5402   case InitializedEntity::EK_Member:
5403     // C++ [class.copy.ctor]p14:
5404     //   - if the member is an array, each element is direct-initialized with
5405     //     the corresponding subobject of x
5406     return Entity.isImplicitMemberInitializer();
5407 
5408   case InitializedEntity::EK_ArrayElement:
5409     // All the above cases are intended to apply recursively, even though none
5410     // of them actually say that.
5411     if (auto *E = Entity.getParent())
5412       return canPerformArrayCopy(*E);
5413     break;
5414 
5415   default:
5416     break;
5417   }
5418 
5419   return false;
5420 }
5421 
5422 void InitializationSequence::InitializeFrom(Sema &S,
5423                                             const InitializedEntity &Entity,
5424                                             const InitializationKind &Kind,
5425                                             MultiExprArg Args,
5426                                             bool TopLevelOfInitList,
5427                                             bool TreatUnavailableAsInvalid) {
5428   ASTContext &Context = S.Context;
5429 
5430   // Eliminate non-overload placeholder types in the arguments.  We
5431   // need to do this before checking whether types are dependent
5432   // because lowering a pseudo-object expression might well give us
5433   // something of dependent type.
5434   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5435     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5436       // FIXME: should we be doing this here?
5437       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5438       if (result.isInvalid()) {
5439         SetFailed(FK_PlaceholderType);
5440         return;
5441       }
5442       Args[I] = result.get();
5443     }
5444 
5445   // C++0x [dcl.init]p16:
5446   //   The semantics of initializers are as follows. The destination type is
5447   //   the type of the object or reference being initialized and the source
5448   //   type is the type of the initializer expression. The source type is not
5449   //   defined when the initializer is a braced-init-list or when it is a
5450   //   parenthesized list of expressions.
5451   QualType DestType = Entity.getType();
5452 
5453   if (DestType->isDependentType() ||
5454       Expr::hasAnyTypeDependentArguments(Args)) {
5455     SequenceKind = DependentSequence;
5456     return;
5457   }
5458 
5459   // Almost everything is a normal sequence.
5460   setSequenceKind(NormalSequence);
5461 
5462   QualType SourceType;
5463   Expr *Initializer = nullptr;
5464   if (Args.size() == 1) {
5465     Initializer = Args[0];
5466     if (S.getLangOpts().ObjC) {
5467       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5468                                               DestType, Initializer->getType(),
5469                                               Initializer) ||
5470           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5471         Args[0] = Initializer;
5472     }
5473     if (!isa<InitListExpr>(Initializer))
5474       SourceType = Initializer->getType();
5475   }
5476 
5477   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5478   //       object is list-initialized (8.5.4).
5479   if (Kind.getKind() != InitializationKind::IK_Direct) {
5480     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5481       TryListInitialization(S, Entity, Kind, InitList, *this,
5482                             TreatUnavailableAsInvalid);
5483       return;
5484     }
5485   }
5486 
5487   //     - If the destination type is a reference type, see 8.5.3.
5488   if (DestType->isReferenceType()) {
5489     // C++0x [dcl.init.ref]p1:
5490     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5491     //   (8.3.2), shall be initialized by an object, or function, of type T or
5492     //   by an object that can be converted into a T.
5493     // (Therefore, multiple arguments are not permitted.)
5494     if (Args.size() != 1)
5495       SetFailed(FK_TooManyInitsForReference);
5496     // C++17 [dcl.init.ref]p5:
5497     //   A reference [...] is initialized by an expression [...] as follows:
5498     // If the initializer is not an expression, presumably we should reject,
5499     // but the standard fails to actually say so.
5500     else if (isa<InitListExpr>(Args[0]))
5501       SetFailed(FK_ParenthesizedListInitForReference);
5502     else
5503       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5504     return;
5505   }
5506 
5507   //     - If the initializer is (), the object is value-initialized.
5508   if (Kind.getKind() == InitializationKind::IK_Value ||
5509       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5510     TryValueInitialization(S, Entity, Kind, *this);
5511     return;
5512   }
5513 
5514   // Handle default initialization.
5515   if (Kind.getKind() == InitializationKind::IK_Default) {
5516     TryDefaultInitialization(S, Entity, Kind, *this);
5517     return;
5518   }
5519 
5520   //     - If the destination type is an array of characters, an array of
5521   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5522   //       initializer is a string literal, see 8.5.2.
5523   //     - Otherwise, if the destination type is an array, the program is
5524   //       ill-formed.
5525   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5526     if (Initializer && isa<VariableArrayType>(DestAT)) {
5527       SetFailed(FK_VariableLengthArrayHasInitializer);
5528       return;
5529     }
5530 
5531     if (Initializer) {
5532       switch (IsStringInit(Initializer, DestAT, Context)) {
5533       case SIF_None:
5534         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5535         return;
5536       case SIF_NarrowStringIntoWideChar:
5537         SetFailed(FK_NarrowStringIntoWideCharArray);
5538         return;
5539       case SIF_WideStringIntoChar:
5540         SetFailed(FK_WideStringIntoCharArray);
5541         return;
5542       case SIF_IncompatWideStringIntoWideChar:
5543         SetFailed(FK_IncompatWideStringIntoWideChar);
5544         return;
5545       case SIF_PlainStringIntoUTF8Char:
5546         SetFailed(FK_PlainStringIntoUTF8Char);
5547         return;
5548       case SIF_UTF8StringIntoPlainChar:
5549         SetFailed(FK_UTF8StringIntoPlainChar);
5550         return;
5551       case SIF_Other:
5552         break;
5553       }
5554     }
5555 
5556     // Some kinds of initialization permit an array to be initialized from
5557     // another array of the same type, and perform elementwise initialization.
5558     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5559         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5560                                          Entity.getType()) &&
5561         canPerformArrayCopy(Entity)) {
5562       // If source is a prvalue, use it directly.
5563       if (Initializer->getValueKind() == VK_RValue) {
5564         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5565         return;
5566       }
5567 
5568       // Emit element-at-a-time copy loop.
5569       InitializedEntity Element =
5570           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5571       QualType InitEltT =
5572           Context.getAsArrayType(Initializer->getType())->getElementType();
5573       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5574                           Initializer->getValueKind(),
5575                           Initializer->getObjectKind());
5576       Expr *OVEAsExpr = &OVE;
5577       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5578                      TreatUnavailableAsInvalid);
5579       if (!Failed())
5580         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5581       return;
5582     }
5583 
5584     // Note: as an GNU C extension, we allow initialization of an
5585     // array from a compound literal that creates an array of the same
5586     // type, so long as the initializer has no side effects.
5587     if (!S.getLangOpts().CPlusPlus && Initializer &&
5588         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5589         Initializer->getType()->isArrayType()) {
5590       const ArrayType *SourceAT
5591         = Context.getAsArrayType(Initializer->getType());
5592       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5593         SetFailed(FK_ArrayTypeMismatch);
5594       else if (Initializer->HasSideEffects(S.Context))
5595         SetFailed(FK_NonConstantArrayInit);
5596       else {
5597         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5598       }
5599     }
5600     // Note: as a GNU C++ extension, we allow list-initialization of a
5601     // class member of array type from a parenthesized initializer list.
5602     else if (S.getLangOpts().CPlusPlus &&
5603              Entity.getKind() == InitializedEntity::EK_Member &&
5604              Initializer && isa<InitListExpr>(Initializer)) {
5605       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5606                             *this, TreatUnavailableAsInvalid);
5607       AddParenthesizedArrayInitStep(DestType);
5608     } else if (DestAT->getElementType()->isCharType())
5609       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5610     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5611       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5612     else
5613       SetFailed(FK_ArrayNeedsInitList);
5614 
5615     return;
5616   }
5617 
5618   // Determine whether we should consider writeback conversions for
5619   // Objective-C ARC.
5620   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5621          Entity.isParameterKind();
5622 
5623   // We're at the end of the line for C: it's either a write-back conversion
5624   // or it's a C assignment. There's no need to check anything else.
5625   if (!S.getLangOpts().CPlusPlus) {
5626     // If allowed, check whether this is an Objective-C writeback conversion.
5627     if (allowObjCWritebackConversion &&
5628         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5629       return;
5630     }
5631 
5632     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5633       return;
5634 
5635     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5636       return;
5637 
5638     // Handle initialization in C
5639     AddCAssignmentStep(DestType);
5640     MaybeProduceObjCObject(S, *this, Entity);
5641     return;
5642   }
5643 
5644   assert(S.getLangOpts().CPlusPlus);
5645 
5646   //     - If the destination type is a (possibly cv-qualified) class type:
5647   if (DestType->isRecordType()) {
5648     //     - If the initialization is direct-initialization, or if it is
5649     //       copy-initialization where the cv-unqualified version of the
5650     //       source type is the same class as, or a derived class of, the
5651     //       class of the destination, constructors are considered. [...]
5652     if (Kind.getKind() == InitializationKind::IK_Direct ||
5653         (Kind.getKind() == InitializationKind::IK_Copy &&
5654          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5655           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5656       TryConstructorInitialization(S, Entity, Kind, Args,
5657                                    DestType, DestType, *this);
5658     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5659     //       user-defined conversion sequences that can convert from the source
5660     //       type to the destination type or (when a conversion function is
5661     //       used) to a derived class thereof are enumerated as described in
5662     //       13.3.1.4, and the best one is chosen through overload resolution
5663     //       (13.3).
5664     else
5665       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5666                                TopLevelOfInitList);
5667     return;
5668   }
5669 
5670   assert(Args.size() >= 1 && "Zero-argument case handled above");
5671 
5672   // The remaining cases all need a source type.
5673   if (Args.size() > 1) {
5674     SetFailed(FK_TooManyInitsForScalar);
5675     return;
5676   } else if (isa<InitListExpr>(Args[0])) {
5677     SetFailed(FK_ParenthesizedListInitForScalar);
5678     return;
5679   }
5680 
5681   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5682   //      type, conversion functions are considered.
5683   if (!SourceType.isNull() && SourceType->isRecordType()) {
5684     // For a conversion to _Atomic(T) from either T or a class type derived
5685     // from T, initialize the T object then convert to _Atomic type.
5686     bool NeedAtomicConversion = false;
5687     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5688       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5689           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5690                           Atomic->getValueType())) {
5691         DestType = Atomic->getValueType();
5692         NeedAtomicConversion = true;
5693       }
5694     }
5695 
5696     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5697                              TopLevelOfInitList);
5698     MaybeProduceObjCObject(S, *this, Entity);
5699     if (!Failed() && NeedAtomicConversion)
5700       AddAtomicConversionStep(Entity.getType());
5701     return;
5702   }
5703 
5704   //    - Otherwise, the initial value of the object being initialized is the
5705   //      (possibly converted) value of the initializer expression. Standard
5706   //      conversions (Clause 4) will be used, if necessary, to convert the
5707   //      initializer expression to the cv-unqualified version of the
5708   //      destination type; no user-defined conversions are considered.
5709 
5710   ImplicitConversionSequence ICS
5711     = S.TryImplicitConversion(Initializer, DestType,
5712                               /*SuppressUserConversions*/true,
5713                               /*AllowExplicitConversions*/ false,
5714                               /*InOverloadResolution*/ false,
5715                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5716                               allowObjCWritebackConversion);
5717 
5718   if (ICS.isStandard() &&
5719       ICS.Standard.Second == ICK_Writeback_Conversion) {
5720     // Objective-C ARC writeback conversion.
5721 
5722     // We should copy unless we're passing to an argument explicitly
5723     // marked 'out'.
5724     bool ShouldCopy = true;
5725     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5726       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5727 
5728     // If there was an lvalue adjustment, add it as a separate conversion.
5729     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5730         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5731       ImplicitConversionSequence LvalueICS;
5732       LvalueICS.setStandard();
5733       LvalueICS.Standard.setAsIdentityConversion();
5734       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5735       LvalueICS.Standard.First = ICS.Standard.First;
5736       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5737     }
5738 
5739     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5740   } else if (ICS.isBad()) {
5741     DeclAccessPair dap;
5742     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5743       AddZeroInitializationStep(Entity.getType());
5744     } else if (Initializer->getType() == Context.OverloadTy &&
5745                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5746                                                      false, dap))
5747       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5748     else if (Initializer->getType()->isFunctionType() &&
5749              isExprAnUnaddressableFunction(S, Initializer))
5750       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5751     else
5752       SetFailed(InitializationSequence::FK_ConversionFailed);
5753   } else {
5754     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5755 
5756     MaybeProduceObjCObject(S, *this, Entity);
5757   }
5758 }
5759 
5760 InitializationSequence::~InitializationSequence() {
5761   for (auto &S : Steps)
5762     S.Destroy();
5763 }
5764 
5765 //===----------------------------------------------------------------------===//
5766 // Perform initialization
5767 //===----------------------------------------------------------------------===//
5768 static Sema::AssignmentAction
5769 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5770   switch(Entity.getKind()) {
5771   case InitializedEntity::EK_Variable:
5772   case InitializedEntity::EK_New:
5773   case InitializedEntity::EK_Exception:
5774   case InitializedEntity::EK_Base:
5775   case InitializedEntity::EK_Delegating:
5776     return Sema::AA_Initializing;
5777 
5778   case InitializedEntity::EK_Parameter:
5779     if (Entity.getDecl() &&
5780         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5781       return Sema::AA_Sending;
5782 
5783     return Sema::AA_Passing;
5784 
5785   case InitializedEntity::EK_Parameter_CF_Audited:
5786     if (Entity.getDecl() &&
5787       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5788       return Sema::AA_Sending;
5789 
5790     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5791 
5792   case InitializedEntity::EK_Result:
5793   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5794     return Sema::AA_Returning;
5795 
5796   case InitializedEntity::EK_Temporary:
5797   case InitializedEntity::EK_RelatedResult:
5798     // FIXME: Can we tell apart casting vs. converting?
5799     return Sema::AA_Casting;
5800 
5801   case InitializedEntity::EK_Member:
5802   case InitializedEntity::EK_Binding:
5803   case InitializedEntity::EK_ArrayElement:
5804   case InitializedEntity::EK_VectorElement:
5805   case InitializedEntity::EK_ComplexElement:
5806   case InitializedEntity::EK_BlockElement:
5807   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5808   case InitializedEntity::EK_LambdaCapture:
5809   case InitializedEntity::EK_CompoundLiteralInit:
5810     return Sema::AA_Initializing;
5811   }
5812 
5813   llvm_unreachable("Invalid EntityKind!");
5814 }
5815 
5816 /// Whether we should bind a created object as a temporary when
5817 /// initializing the given entity.
5818 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5819   switch (Entity.getKind()) {
5820   case InitializedEntity::EK_ArrayElement:
5821   case InitializedEntity::EK_Member:
5822   case InitializedEntity::EK_Result:
5823   case InitializedEntity::EK_StmtExprResult:
5824   case InitializedEntity::EK_New:
5825   case InitializedEntity::EK_Variable:
5826   case InitializedEntity::EK_Base:
5827   case InitializedEntity::EK_Delegating:
5828   case InitializedEntity::EK_VectorElement:
5829   case InitializedEntity::EK_ComplexElement:
5830   case InitializedEntity::EK_Exception:
5831   case InitializedEntity::EK_BlockElement:
5832   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5833   case InitializedEntity::EK_LambdaCapture:
5834   case InitializedEntity::EK_CompoundLiteralInit:
5835     return false;
5836 
5837   case InitializedEntity::EK_Parameter:
5838   case InitializedEntity::EK_Parameter_CF_Audited:
5839   case InitializedEntity::EK_Temporary:
5840   case InitializedEntity::EK_RelatedResult:
5841   case InitializedEntity::EK_Binding:
5842     return true;
5843   }
5844 
5845   llvm_unreachable("missed an InitializedEntity kind?");
5846 }
5847 
5848 /// Whether the given entity, when initialized with an object
5849 /// created for that initialization, requires destruction.
5850 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5851   switch (Entity.getKind()) {
5852     case InitializedEntity::EK_Result:
5853     case InitializedEntity::EK_StmtExprResult:
5854     case InitializedEntity::EK_New:
5855     case InitializedEntity::EK_Base:
5856     case InitializedEntity::EK_Delegating:
5857     case InitializedEntity::EK_VectorElement:
5858     case InitializedEntity::EK_ComplexElement:
5859     case InitializedEntity::EK_BlockElement:
5860     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5861     case InitializedEntity::EK_LambdaCapture:
5862       return false;
5863 
5864     case InitializedEntity::EK_Member:
5865     case InitializedEntity::EK_Binding:
5866     case InitializedEntity::EK_Variable:
5867     case InitializedEntity::EK_Parameter:
5868     case InitializedEntity::EK_Parameter_CF_Audited:
5869     case InitializedEntity::EK_Temporary:
5870     case InitializedEntity::EK_ArrayElement:
5871     case InitializedEntity::EK_Exception:
5872     case InitializedEntity::EK_CompoundLiteralInit:
5873     case InitializedEntity::EK_RelatedResult:
5874       return true;
5875   }
5876 
5877   llvm_unreachable("missed an InitializedEntity kind?");
5878 }
5879 
5880 /// Get the location at which initialization diagnostics should appear.
5881 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5882                                            Expr *Initializer) {
5883   switch (Entity.getKind()) {
5884   case InitializedEntity::EK_Result:
5885   case InitializedEntity::EK_StmtExprResult:
5886     return Entity.getReturnLoc();
5887 
5888   case InitializedEntity::EK_Exception:
5889     return Entity.getThrowLoc();
5890 
5891   case InitializedEntity::EK_Variable:
5892   case InitializedEntity::EK_Binding:
5893     return Entity.getDecl()->getLocation();
5894 
5895   case InitializedEntity::EK_LambdaCapture:
5896     return Entity.getCaptureLoc();
5897 
5898   case InitializedEntity::EK_ArrayElement:
5899   case InitializedEntity::EK_Member:
5900   case InitializedEntity::EK_Parameter:
5901   case InitializedEntity::EK_Parameter_CF_Audited:
5902   case InitializedEntity::EK_Temporary:
5903   case InitializedEntity::EK_New:
5904   case InitializedEntity::EK_Base:
5905   case InitializedEntity::EK_Delegating:
5906   case InitializedEntity::EK_VectorElement:
5907   case InitializedEntity::EK_ComplexElement:
5908   case InitializedEntity::EK_BlockElement:
5909   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5910   case InitializedEntity::EK_CompoundLiteralInit:
5911   case InitializedEntity::EK_RelatedResult:
5912     return Initializer->getBeginLoc();
5913   }
5914   llvm_unreachable("missed an InitializedEntity kind?");
5915 }
5916 
5917 /// Make a (potentially elidable) temporary copy of the object
5918 /// provided by the given initializer by calling the appropriate copy
5919 /// constructor.
5920 ///
5921 /// \param S The Sema object used for type-checking.
5922 ///
5923 /// \param T The type of the temporary object, which must either be
5924 /// the type of the initializer expression or a superclass thereof.
5925 ///
5926 /// \param Entity The entity being initialized.
5927 ///
5928 /// \param CurInit The initializer expression.
5929 ///
5930 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5931 /// is permitted in C++03 (but not C++0x) when binding a reference to
5932 /// an rvalue.
5933 ///
5934 /// \returns An expression that copies the initializer expression into
5935 /// a temporary object, or an error expression if a copy could not be
5936 /// created.
5937 static ExprResult CopyObject(Sema &S,
5938                              QualType T,
5939                              const InitializedEntity &Entity,
5940                              ExprResult CurInit,
5941                              bool IsExtraneousCopy) {
5942   if (CurInit.isInvalid())
5943     return CurInit;
5944   // Determine which class type we're copying to.
5945   Expr *CurInitExpr = (Expr *)CurInit.get();
5946   CXXRecordDecl *Class = nullptr;
5947   if (const RecordType *Record = T->getAs<RecordType>())
5948     Class = cast<CXXRecordDecl>(Record->getDecl());
5949   if (!Class)
5950     return CurInit;
5951 
5952   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5953 
5954   // Make sure that the type we are copying is complete.
5955   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5956     return CurInit;
5957 
5958   // Perform overload resolution using the class's constructors. Per
5959   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5960   // is direct-initialization.
5961   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5962   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5963 
5964   OverloadCandidateSet::iterator Best;
5965   switch (ResolveConstructorOverload(
5966       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5967       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5968       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5969       /*SecondStepOfCopyInit=*/true)) {
5970   case OR_Success:
5971     break;
5972 
5973   case OR_No_Viable_Function:
5974     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5975            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5976            : diag::err_temp_copy_no_viable)
5977       << (int)Entity.getKind() << CurInitExpr->getType()
5978       << CurInitExpr->getSourceRange();
5979     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5980     if (!IsExtraneousCopy || S.isSFINAEContext())
5981       return ExprError();
5982     return CurInit;
5983 
5984   case OR_Ambiguous:
5985     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5986       << (int)Entity.getKind() << CurInitExpr->getType()
5987       << CurInitExpr->getSourceRange();
5988     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5989     return ExprError();
5990 
5991   case OR_Deleted:
5992     S.Diag(Loc, diag::err_temp_copy_deleted)
5993       << (int)Entity.getKind() << CurInitExpr->getType()
5994       << CurInitExpr->getSourceRange();
5995     S.NoteDeletedFunction(Best->Function);
5996     return ExprError();
5997   }
5998 
5999   bool HadMultipleCandidates = CandidateSet.size() > 1;
6000 
6001   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6002   SmallVector<Expr*, 8> ConstructorArgs;
6003   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6004 
6005   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6006                            IsExtraneousCopy);
6007 
6008   if (IsExtraneousCopy) {
6009     // If this is a totally extraneous copy for C++03 reference
6010     // binding purposes, just return the original initialization
6011     // expression. We don't generate an (elided) copy operation here
6012     // because doing so would require us to pass down a flag to avoid
6013     // infinite recursion, where each step adds another extraneous,
6014     // elidable copy.
6015 
6016     // Instantiate the default arguments of any extra parameters in
6017     // the selected copy constructor, as if we were going to create a
6018     // proper call to the copy constructor.
6019     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6020       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6021       if (S.RequireCompleteType(Loc, Parm->getType(),
6022                                 diag::err_call_incomplete_argument))
6023         break;
6024 
6025       // Build the default argument expression; we don't actually care
6026       // if this succeeds or not, because this routine will complain
6027       // if there was a problem.
6028       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6029     }
6030 
6031     return CurInitExpr;
6032   }
6033 
6034   // Determine the arguments required to actually perform the
6035   // constructor call (we might have derived-to-base conversions, or
6036   // the copy constructor may have default arguments).
6037   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6038     return ExprError();
6039 
6040   // C++0x [class.copy]p32:
6041   //   When certain criteria are met, an implementation is allowed to
6042   //   omit the copy/move construction of a class object, even if the
6043   //   copy/move constructor and/or destructor for the object have
6044   //   side effects. [...]
6045   //     - when a temporary class object that has not been bound to a
6046   //       reference (12.2) would be copied/moved to a class object
6047   //       with the same cv-unqualified type, the copy/move operation
6048   //       can be omitted by constructing the temporary object
6049   //       directly into the target of the omitted copy/move
6050   //
6051   // Note that the other three bullets are handled elsewhere. Copy
6052   // elision for return statements and throw expressions are handled as part
6053   // of constructor initialization, while copy elision for exception handlers
6054   // is handled by the run-time.
6055   //
6056   // FIXME: If the function parameter is not the same type as the temporary, we
6057   // should still be able to elide the copy, but we don't have a way to
6058   // represent in the AST how much should be elided in this case.
6059   bool Elidable =
6060       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6061       S.Context.hasSameUnqualifiedType(
6062           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6063           CurInitExpr->getType());
6064 
6065   // Actually perform the constructor call.
6066   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6067                                     Elidable,
6068                                     ConstructorArgs,
6069                                     HadMultipleCandidates,
6070                                     /*ListInit*/ false,
6071                                     /*StdInitListInit*/ false,
6072                                     /*ZeroInit*/ false,
6073                                     CXXConstructExpr::CK_Complete,
6074                                     SourceRange());
6075 
6076   // If we're supposed to bind temporaries, do so.
6077   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6078     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6079   return CurInit;
6080 }
6081 
6082 /// Check whether elidable copy construction for binding a reference to
6083 /// a temporary would have succeeded if we were building in C++98 mode, for
6084 /// -Wc++98-compat.
6085 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6086                                            const InitializedEntity &Entity,
6087                                            Expr *CurInitExpr) {
6088   assert(S.getLangOpts().CPlusPlus11);
6089 
6090   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6091   if (!Record)
6092     return;
6093 
6094   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6095   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6096     return;
6097 
6098   // Find constructors which would have been considered.
6099   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6100   DeclContext::lookup_result Ctors =
6101       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6102 
6103   // Perform overload resolution.
6104   OverloadCandidateSet::iterator Best;
6105   OverloadingResult OR = ResolveConstructorOverload(
6106       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6107       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6108       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6109       /*SecondStepOfCopyInit=*/true);
6110 
6111   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6112     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6113     << CurInitExpr->getSourceRange();
6114 
6115   switch (OR) {
6116   case OR_Success:
6117     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6118                              Best->FoundDecl, Entity, Diag);
6119     // FIXME: Check default arguments as far as that's possible.
6120     break;
6121 
6122   case OR_No_Viable_Function:
6123     S.Diag(Loc, Diag);
6124     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
6125     break;
6126 
6127   case OR_Ambiguous:
6128     S.Diag(Loc, Diag);
6129     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
6130     break;
6131 
6132   case OR_Deleted:
6133     S.Diag(Loc, Diag);
6134     S.NoteDeletedFunction(Best->Function);
6135     break;
6136   }
6137 }
6138 
6139 void InitializationSequence::PrintInitLocationNote(Sema &S,
6140                                               const InitializedEntity &Entity) {
6141   if (Entity.isParameterKind() && Entity.getDecl()) {
6142     if (Entity.getDecl()->getLocation().isInvalid())
6143       return;
6144 
6145     if (Entity.getDecl()->getDeclName())
6146       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6147         << Entity.getDecl()->getDeclName();
6148     else
6149       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6150   }
6151   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6152            Entity.getMethodDecl())
6153     S.Diag(Entity.getMethodDecl()->getLocation(),
6154            diag::note_method_return_type_change)
6155       << Entity.getMethodDecl()->getDeclName();
6156 }
6157 
6158 /// Returns true if the parameters describe a constructor initialization of
6159 /// an explicit temporary object, e.g. "Point(x, y)".
6160 static bool isExplicitTemporary(const InitializedEntity &Entity,
6161                                 const InitializationKind &Kind,
6162                                 unsigned NumArgs) {
6163   switch (Entity.getKind()) {
6164   case InitializedEntity::EK_Temporary:
6165   case InitializedEntity::EK_CompoundLiteralInit:
6166   case InitializedEntity::EK_RelatedResult:
6167     break;
6168   default:
6169     return false;
6170   }
6171 
6172   switch (Kind.getKind()) {
6173   case InitializationKind::IK_DirectList:
6174     return true;
6175   // FIXME: Hack to work around cast weirdness.
6176   case InitializationKind::IK_Direct:
6177   case InitializationKind::IK_Value:
6178     return NumArgs != 1;
6179   default:
6180     return false;
6181   }
6182 }
6183 
6184 static ExprResult
6185 PerformConstructorInitialization(Sema &S,
6186                                  const InitializedEntity &Entity,
6187                                  const InitializationKind &Kind,
6188                                  MultiExprArg Args,
6189                                  const InitializationSequence::Step& Step,
6190                                  bool &ConstructorInitRequiresZeroInit,
6191                                  bool IsListInitialization,
6192                                  bool IsStdInitListInitialization,
6193                                  SourceLocation LBraceLoc,
6194                                  SourceLocation RBraceLoc) {
6195   unsigned NumArgs = Args.size();
6196   CXXConstructorDecl *Constructor
6197     = cast<CXXConstructorDecl>(Step.Function.Function);
6198   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6199 
6200   // Build a call to the selected constructor.
6201   SmallVector<Expr*, 8> ConstructorArgs;
6202   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6203                          ? Kind.getEqualLoc()
6204                          : Kind.getLocation();
6205 
6206   if (Kind.getKind() == InitializationKind::IK_Default) {
6207     // Force even a trivial, implicit default constructor to be
6208     // semantically checked. We do this explicitly because we don't build
6209     // the definition for completely trivial constructors.
6210     assert(Constructor->getParent() && "No parent class for constructor.");
6211     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6212         Constructor->isTrivial() && !Constructor->isUsed(false))
6213       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6214   }
6215 
6216   ExprResult CurInit((Expr *)nullptr);
6217 
6218   // C++ [over.match.copy]p1:
6219   //   - When initializing a temporary to be bound to the first parameter
6220   //     of a constructor that takes a reference to possibly cv-qualified
6221   //     T as its first argument, called with a single argument in the
6222   //     context of direct-initialization, explicit conversion functions
6223   //     are also considered.
6224   bool AllowExplicitConv =
6225       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6226       hasCopyOrMoveCtorParam(S.Context,
6227                              getConstructorInfo(Step.Function.FoundDecl));
6228 
6229   // Determine the arguments required to actually perform the constructor
6230   // call.
6231   if (S.CompleteConstructorCall(Constructor, Args,
6232                                 Loc, ConstructorArgs,
6233                                 AllowExplicitConv,
6234                                 IsListInitialization))
6235     return ExprError();
6236 
6237 
6238   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6239     // An explicitly-constructed temporary, e.g., X(1, 2).
6240     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6241       return ExprError();
6242 
6243     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6244     if (!TSInfo)
6245       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6246     SourceRange ParenOrBraceRange =
6247         (Kind.getKind() == InitializationKind::IK_DirectList)
6248         ? SourceRange(LBraceLoc, RBraceLoc)
6249         : Kind.getParenOrBraceRange();
6250 
6251     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6252             Step.Function.FoundDecl.getDecl())) {
6253       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6254       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6255         return ExprError();
6256     }
6257     S.MarkFunctionReferenced(Loc, Constructor);
6258 
6259     CurInit = CXXTemporaryObjectExpr::Create(
6260         S.Context, Constructor,
6261         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6262         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6263         IsListInitialization, IsStdInitListInitialization,
6264         ConstructorInitRequiresZeroInit);
6265   } else {
6266     CXXConstructExpr::ConstructionKind ConstructKind =
6267       CXXConstructExpr::CK_Complete;
6268 
6269     if (Entity.getKind() == InitializedEntity::EK_Base) {
6270       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6271         CXXConstructExpr::CK_VirtualBase :
6272         CXXConstructExpr::CK_NonVirtualBase;
6273     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6274       ConstructKind = CXXConstructExpr::CK_Delegating;
6275     }
6276 
6277     // Only get the parenthesis or brace range if it is a list initialization or
6278     // direct construction.
6279     SourceRange ParenOrBraceRange;
6280     if (IsListInitialization)
6281       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6282     else if (Kind.getKind() == InitializationKind::IK_Direct)
6283       ParenOrBraceRange = Kind.getParenOrBraceRange();
6284 
6285     // If the entity allows NRVO, mark the construction as elidable
6286     // unconditionally.
6287     if (Entity.allowsNRVO())
6288       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6289                                         Step.Function.FoundDecl,
6290                                         Constructor, /*Elidable=*/true,
6291                                         ConstructorArgs,
6292                                         HadMultipleCandidates,
6293                                         IsListInitialization,
6294                                         IsStdInitListInitialization,
6295                                         ConstructorInitRequiresZeroInit,
6296                                         ConstructKind,
6297                                         ParenOrBraceRange);
6298     else
6299       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6300                                         Step.Function.FoundDecl,
6301                                         Constructor,
6302                                         ConstructorArgs,
6303                                         HadMultipleCandidates,
6304                                         IsListInitialization,
6305                                         IsStdInitListInitialization,
6306                                         ConstructorInitRequiresZeroInit,
6307                                         ConstructKind,
6308                                         ParenOrBraceRange);
6309   }
6310   if (CurInit.isInvalid())
6311     return ExprError();
6312 
6313   // Only check access if all of that succeeded.
6314   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6315   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6316     return ExprError();
6317 
6318   if (shouldBindAsTemporary(Entity))
6319     CurInit = S.MaybeBindToTemporary(CurInit.get());
6320 
6321   return CurInit;
6322 }
6323 
6324 namespace {
6325 enum LifetimeKind {
6326   /// The lifetime of a temporary bound to this entity ends at the end of the
6327   /// full-expression, and that's (probably) fine.
6328   LK_FullExpression,
6329 
6330   /// The lifetime of a temporary bound to this entity is extended to the
6331   /// lifeitme of the entity itself.
6332   LK_Extended,
6333 
6334   /// The lifetime of a temporary bound to this entity probably ends too soon,
6335   /// because the entity is allocated in a new-expression.
6336   LK_New,
6337 
6338   /// The lifetime of a temporary bound to this entity ends too soon, because
6339   /// the entity is a return object.
6340   LK_Return,
6341 
6342   /// The lifetime of a temporary bound to this entity ends too soon, because
6343   /// the entity is the result of a statement expression.
6344   LK_StmtExprResult,
6345 
6346   /// This is a mem-initializer: if it would extend a temporary (other than via
6347   /// a default member initializer), the program is ill-formed.
6348   LK_MemInitializer,
6349 };
6350 using LifetimeResult =
6351     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6352 }
6353 
6354 /// Determine the declaration which an initialized entity ultimately refers to,
6355 /// for the purpose of lifetime-extending a temporary bound to a reference in
6356 /// the initialization of \p Entity.
6357 static LifetimeResult getEntityLifetime(
6358     const InitializedEntity *Entity,
6359     const InitializedEntity *InitField = nullptr) {
6360   // C++11 [class.temporary]p5:
6361   switch (Entity->getKind()) {
6362   case InitializedEntity::EK_Variable:
6363     //   The temporary [...] persists for the lifetime of the reference
6364     return {Entity, LK_Extended};
6365 
6366   case InitializedEntity::EK_Member:
6367     // For subobjects, we look at the complete object.
6368     if (Entity->getParent())
6369       return getEntityLifetime(Entity->getParent(), Entity);
6370 
6371     //   except:
6372     // C++17 [class.base.init]p8:
6373     //   A temporary expression bound to a reference member in a
6374     //   mem-initializer is ill-formed.
6375     // C++17 [class.base.init]p11:
6376     //   A temporary expression bound to a reference member from a
6377     //   default member initializer is ill-formed.
6378     //
6379     // The context of p11 and its example suggest that it's only the use of a
6380     // default member initializer from a constructor that makes the program
6381     // ill-formed, not its mere existence, and that it can even be used by
6382     // aggregate initialization.
6383     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6384                                                          : LK_MemInitializer};
6385 
6386   case InitializedEntity::EK_Binding:
6387     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6388     // type.
6389     return {Entity, LK_Extended};
6390 
6391   case InitializedEntity::EK_Parameter:
6392   case InitializedEntity::EK_Parameter_CF_Audited:
6393     //   -- A temporary bound to a reference parameter in a function call
6394     //      persists until the completion of the full-expression containing
6395     //      the call.
6396     return {nullptr, LK_FullExpression};
6397 
6398   case InitializedEntity::EK_Result:
6399     //   -- The lifetime of a temporary bound to the returned value in a
6400     //      function return statement is not extended; the temporary is
6401     //      destroyed at the end of the full-expression in the return statement.
6402     return {nullptr, LK_Return};
6403 
6404   case InitializedEntity::EK_StmtExprResult:
6405     // FIXME: Should we lifetime-extend through the result of a statement
6406     // expression?
6407     return {nullptr, LK_StmtExprResult};
6408 
6409   case InitializedEntity::EK_New:
6410     //   -- A temporary bound to a reference in a new-initializer persists
6411     //      until the completion of the full-expression containing the
6412     //      new-initializer.
6413     return {nullptr, LK_New};
6414 
6415   case InitializedEntity::EK_Temporary:
6416   case InitializedEntity::EK_CompoundLiteralInit:
6417   case InitializedEntity::EK_RelatedResult:
6418     // We don't yet know the storage duration of the surrounding temporary.
6419     // Assume it's got full-expression duration for now, it will patch up our
6420     // storage duration if that's not correct.
6421     return {nullptr, LK_FullExpression};
6422 
6423   case InitializedEntity::EK_ArrayElement:
6424     // For subobjects, we look at the complete object.
6425     return getEntityLifetime(Entity->getParent(), InitField);
6426 
6427   case InitializedEntity::EK_Base:
6428     // For subobjects, we look at the complete object.
6429     if (Entity->getParent())
6430       return getEntityLifetime(Entity->getParent(), InitField);
6431     return {InitField, LK_MemInitializer};
6432 
6433   case InitializedEntity::EK_Delegating:
6434     // We can reach this case for aggregate initialization in a constructor:
6435     //   struct A { int &&r; };
6436     //   struct B : A { B() : A{0} {} };
6437     // In this case, use the outermost field decl as the context.
6438     return {InitField, LK_MemInitializer};
6439 
6440   case InitializedEntity::EK_BlockElement:
6441   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6442   case InitializedEntity::EK_LambdaCapture:
6443   case InitializedEntity::EK_VectorElement:
6444   case InitializedEntity::EK_ComplexElement:
6445     return {nullptr, LK_FullExpression};
6446 
6447   case InitializedEntity::EK_Exception:
6448     // FIXME: Can we diagnose lifetime problems with exceptions?
6449     return {nullptr, LK_FullExpression};
6450   }
6451   llvm_unreachable("unknown entity kind");
6452 }
6453 
6454 namespace {
6455 enum ReferenceKind {
6456   /// Lifetime would be extended by a reference binding to a temporary.
6457   RK_ReferenceBinding,
6458   /// Lifetime would be extended by a std::initializer_list object binding to
6459   /// its backing array.
6460   RK_StdInitializerList,
6461 };
6462 
6463 /// A temporary or local variable. This will be one of:
6464 ///  * A MaterializeTemporaryExpr.
6465 ///  * A DeclRefExpr whose declaration is a local.
6466 ///  * An AddrLabelExpr.
6467 ///  * A BlockExpr for a block with captures.
6468 using Local = Expr*;
6469 
6470 /// Expressions we stepped over when looking for the local state. Any steps
6471 /// that would inhibit lifetime extension or take us out of subexpressions of
6472 /// the initializer are included.
6473 struct IndirectLocalPathEntry {
6474   enum EntryKind {
6475     DefaultInit,
6476     AddressOf,
6477     VarInit,
6478     LValToRVal,
6479     LifetimeBoundCall,
6480   } Kind;
6481   Expr *E;
6482   const Decl *D = nullptr;
6483   IndirectLocalPathEntry() {}
6484   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6485   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6486       : Kind(K), E(E), D(D) {}
6487 };
6488 
6489 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6490 
6491 struct RevertToOldSizeRAII {
6492   IndirectLocalPath &Path;
6493   unsigned OldSize = Path.size();
6494   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6495   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6496 };
6497 
6498 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6499                                              ReferenceKind RK)>;
6500 }
6501 
6502 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6503   for (auto E : Path)
6504     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6505       return true;
6506   return false;
6507 }
6508 
6509 static bool pathContainsInit(IndirectLocalPath &Path) {
6510   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6511     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6512            E.Kind == IndirectLocalPathEntry::VarInit;
6513   });
6514 }
6515 
6516 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6517                                              Expr *Init, LocalVisitor Visit,
6518                                              bool RevisitSubinits);
6519 
6520 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6521                                                   Expr *Init, ReferenceKind RK,
6522                                                   LocalVisitor Visit);
6523 
6524 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6525   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6526   if (!TSI)
6527     return false;
6528   // Don't declare this variable in the second operand of the for-statement;
6529   // GCC miscompiles that by ending its lifetime before evaluating the
6530   // third operand. See gcc.gnu.org/PR86769.
6531   AttributedTypeLoc ATL;
6532   for (TypeLoc TL = TSI->getTypeLoc();
6533        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6534        TL = ATL.getModifiedLoc()) {
6535     if (ATL.getAttrAs<LifetimeBoundAttr>())
6536       return true;
6537   }
6538   return false;
6539 }
6540 
6541 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6542                                         LocalVisitor Visit) {
6543   const FunctionDecl *Callee;
6544   ArrayRef<Expr*> Args;
6545 
6546   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6547     Callee = CE->getDirectCallee();
6548     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6549   } else {
6550     auto *CCE = cast<CXXConstructExpr>(Call);
6551     Callee = CCE->getConstructor();
6552     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6553   }
6554   if (!Callee)
6555     return;
6556 
6557   Expr *ObjectArg = nullptr;
6558   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6559     ObjectArg = Args[0];
6560     Args = Args.slice(1);
6561   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6562     ObjectArg = MCE->getImplicitObjectArgument();
6563   }
6564 
6565   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6566     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6567     if (Arg->isGLValue())
6568       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6569                                             Visit);
6570     else
6571       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6572     Path.pop_back();
6573   };
6574 
6575   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6576     VisitLifetimeBoundArg(Callee, ObjectArg);
6577 
6578   for (unsigned I = 0,
6579                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6580        I != N; ++I) {
6581     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6582       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6583   }
6584 }
6585 
6586 /// Visit the locals that would be reachable through a reference bound to the
6587 /// glvalue expression \c Init.
6588 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6589                                                   Expr *Init, ReferenceKind RK,
6590                                                   LocalVisitor Visit) {
6591   RevertToOldSizeRAII RAII(Path);
6592 
6593   // Walk past any constructs which we can lifetime-extend across.
6594   Expr *Old;
6595   do {
6596     Old = Init;
6597 
6598     if (auto *FE = dyn_cast<FullExpr>(Init))
6599       Init = FE->getSubExpr();
6600 
6601     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6602       // If this is just redundant braces around an initializer, step over it.
6603       if (ILE->isTransparent())
6604         Init = ILE->getInit(0);
6605     }
6606 
6607     // Step over any subobject adjustments; we may have a materialized
6608     // temporary inside them.
6609     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6610 
6611     // Per current approach for DR1376, look through casts to reference type
6612     // when performing lifetime extension.
6613     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6614       if (CE->getSubExpr()->isGLValue())
6615         Init = CE->getSubExpr();
6616 
6617     // Per the current approach for DR1299, look through array element access
6618     // on array glvalues when performing lifetime extension.
6619     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6620       Init = ASE->getBase();
6621       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6622       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6623         Init = ICE->getSubExpr();
6624       else
6625         // We can't lifetime extend through this but we might still find some
6626         // retained temporaries.
6627         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6628     }
6629 
6630     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6631     // constructor inherits one as an implicit mem-initializer.
6632     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6633       Path.push_back(
6634           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6635       Init = DIE->getExpr();
6636     }
6637   } while (Init != Old);
6638 
6639   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6640     if (Visit(Path, Local(MTE), RK))
6641       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6642                                        true);
6643   }
6644 
6645   if (isa<CallExpr>(Init))
6646     return visitLifetimeBoundArguments(Path, Init, Visit);
6647 
6648   switch (Init->getStmtClass()) {
6649   case Stmt::DeclRefExprClass: {
6650     // If we find the name of a local non-reference parameter, we could have a
6651     // lifetime problem.
6652     auto *DRE = cast<DeclRefExpr>(Init);
6653     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6654     if (VD && VD->hasLocalStorage() &&
6655         !DRE->refersToEnclosingVariableOrCapture()) {
6656       if (!VD->getType()->isReferenceType()) {
6657         Visit(Path, Local(DRE), RK);
6658       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6659         // The lifetime of a reference parameter is unknown; assume it's OK
6660         // for now.
6661         break;
6662       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6663         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6664         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6665                                               RK_ReferenceBinding, Visit);
6666       }
6667     }
6668     break;
6669   }
6670 
6671   case Stmt::UnaryOperatorClass: {
6672     // The only unary operator that make sense to handle here
6673     // is Deref.  All others don't resolve to a "name."  This includes
6674     // handling all sorts of rvalues passed to a unary operator.
6675     const UnaryOperator *U = cast<UnaryOperator>(Init);
6676     if (U->getOpcode() == UO_Deref)
6677       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6678     break;
6679   }
6680 
6681   case Stmt::OMPArraySectionExprClass: {
6682     visitLocalsRetainedByInitializer(
6683         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6684     break;
6685   }
6686 
6687   case Stmt::ConditionalOperatorClass:
6688   case Stmt::BinaryConditionalOperatorClass: {
6689     auto *C = cast<AbstractConditionalOperator>(Init);
6690     if (!C->getTrueExpr()->getType()->isVoidType())
6691       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6692     if (!C->getFalseExpr()->getType()->isVoidType())
6693       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6694     break;
6695   }
6696 
6697   // FIXME: Visit the left-hand side of an -> or ->*.
6698 
6699   default:
6700     break;
6701   }
6702 }
6703 
6704 /// Visit the locals that would be reachable through an object initialized by
6705 /// the prvalue expression \c Init.
6706 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6707                                              Expr *Init, LocalVisitor Visit,
6708                                              bool RevisitSubinits) {
6709   RevertToOldSizeRAII RAII(Path);
6710 
6711   Expr *Old;
6712   do {
6713     Old = Init;
6714 
6715     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6716     // constructor inherits one as an implicit mem-initializer.
6717     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6718       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6719       Init = DIE->getExpr();
6720     }
6721 
6722     if (auto *FE = dyn_cast<FullExpr>(Init))
6723       Init = FE->getSubExpr();
6724 
6725     // Dig out the expression which constructs the extended temporary.
6726     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6727 
6728     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6729       Init = BTE->getSubExpr();
6730 
6731     Init = Init->IgnoreParens();
6732 
6733     // Step over value-preserving rvalue casts.
6734     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6735       switch (CE->getCastKind()) {
6736       case CK_LValueToRValue:
6737         // If we can match the lvalue to a const object, we can look at its
6738         // initializer.
6739         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6740         return visitLocalsRetainedByReferenceBinding(
6741             Path, Init, RK_ReferenceBinding,
6742             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6743           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6744             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6745             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6746                 !isVarOnPath(Path, VD)) {
6747               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6748               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6749             }
6750           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6751             if (MTE->getType().isConstQualified())
6752               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6753                                                Visit, true);
6754           }
6755           return false;
6756         });
6757 
6758         // We assume that objects can be retained by pointers cast to integers,
6759         // but not if the integer is cast to floating-point type or to _Complex.
6760         // We assume that casts to 'bool' do not preserve enough information to
6761         // retain a local object.
6762       case CK_NoOp:
6763       case CK_BitCast:
6764       case CK_BaseToDerived:
6765       case CK_DerivedToBase:
6766       case CK_UncheckedDerivedToBase:
6767       case CK_Dynamic:
6768       case CK_ToUnion:
6769       case CK_UserDefinedConversion:
6770       case CK_ConstructorConversion:
6771       case CK_IntegralToPointer:
6772       case CK_PointerToIntegral:
6773       case CK_VectorSplat:
6774       case CK_IntegralCast:
6775       case CK_CPointerToObjCPointerCast:
6776       case CK_BlockPointerToObjCPointerCast:
6777       case CK_AnyPointerToBlockPointerCast:
6778       case CK_AddressSpaceConversion:
6779         break;
6780 
6781       case CK_ArrayToPointerDecay:
6782         // Model array-to-pointer decay as taking the address of the array
6783         // lvalue.
6784         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6785         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6786                                                      RK_ReferenceBinding, Visit);
6787 
6788       default:
6789         return;
6790       }
6791 
6792       Init = CE->getSubExpr();
6793     }
6794   } while (Old != Init);
6795 
6796   // C++17 [dcl.init.list]p6:
6797   //   initializing an initializer_list object from the array extends the
6798   //   lifetime of the array exactly like binding a reference to a temporary.
6799   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6800     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6801                                                  RK_StdInitializerList, Visit);
6802 
6803   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6804     // We already visited the elements of this initializer list while
6805     // performing the initialization. Don't visit them again unless we've
6806     // changed the lifetime of the initialized entity.
6807     if (!RevisitSubinits)
6808       return;
6809 
6810     if (ILE->isTransparent())
6811       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6812                                               RevisitSubinits);
6813 
6814     if (ILE->getType()->isArrayType()) {
6815       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6816         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6817                                          RevisitSubinits);
6818       return;
6819     }
6820 
6821     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6822       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6823 
6824       // If we lifetime-extend a braced initializer which is initializing an
6825       // aggregate, and that aggregate contains reference members which are
6826       // bound to temporaries, those temporaries are also lifetime-extended.
6827       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6828           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6829         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6830                                               RK_ReferenceBinding, Visit);
6831       else {
6832         unsigned Index = 0;
6833         for (const auto *I : RD->fields()) {
6834           if (Index >= ILE->getNumInits())
6835             break;
6836           if (I->isUnnamedBitfield())
6837             continue;
6838           Expr *SubInit = ILE->getInit(Index);
6839           if (I->getType()->isReferenceType())
6840             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6841                                                   RK_ReferenceBinding, Visit);
6842           else
6843             // This might be either aggregate-initialization of a member or
6844             // initialization of a std::initializer_list object. Regardless,
6845             // we should recursively lifetime-extend that initializer.
6846             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6847                                              RevisitSubinits);
6848           ++Index;
6849         }
6850       }
6851     }
6852     return;
6853   }
6854 
6855   // The lifetime of an init-capture is that of the closure object constructed
6856   // by a lambda-expression.
6857   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6858     for (Expr *E : LE->capture_inits()) {
6859       if (!E)
6860         continue;
6861       if (E->isGLValue())
6862         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6863                                               Visit);
6864       else
6865         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6866     }
6867   }
6868 
6869   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6870     return visitLifetimeBoundArguments(Path, Init, Visit);
6871 
6872   switch (Init->getStmtClass()) {
6873   case Stmt::UnaryOperatorClass: {
6874     auto *UO = cast<UnaryOperator>(Init);
6875     // If the initializer is the address of a local, we could have a lifetime
6876     // problem.
6877     if (UO->getOpcode() == UO_AddrOf) {
6878       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6879       // it. Don't produce a redundant warning about the lifetime of the
6880       // temporary.
6881       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6882         return;
6883 
6884       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6885       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6886                                             RK_ReferenceBinding, Visit);
6887     }
6888     break;
6889   }
6890 
6891   case Stmt::BinaryOperatorClass: {
6892     // Handle pointer arithmetic.
6893     auto *BO = cast<BinaryOperator>(Init);
6894     BinaryOperatorKind BOK = BO->getOpcode();
6895     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6896       break;
6897 
6898     if (BO->getLHS()->getType()->isPointerType())
6899       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6900     else if (BO->getRHS()->getType()->isPointerType())
6901       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6902     break;
6903   }
6904 
6905   case Stmt::ConditionalOperatorClass:
6906   case Stmt::BinaryConditionalOperatorClass: {
6907     auto *C = cast<AbstractConditionalOperator>(Init);
6908     // In C++, we can have a throw-expression operand, which has 'void' type
6909     // and isn't interesting from a lifetime perspective.
6910     if (!C->getTrueExpr()->getType()->isVoidType())
6911       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6912     if (!C->getFalseExpr()->getType()->isVoidType())
6913       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6914     break;
6915   }
6916 
6917   case Stmt::BlockExprClass:
6918     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6919       // This is a local block, whose lifetime is that of the function.
6920       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6921     }
6922     break;
6923 
6924   case Stmt::AddrLabelExprClass:
6925     // We want to warn if the address of a label would escape the function.
6926     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6927     break;
6928 
6929   default:
6930     break;
6931   }
6932 }
6933 
6934 /// Determine whether this is an indirect path to a temporary that we are
6935 /// supposed to lifetime-extend along (but don't).
6936 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6937   for (auto Elem : Path) {
6938     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6939       return false;
6940   }
6941   return true;
6942 }
6943 
6944 /// Find the range for the first interesting entry in the path at or after I.
6945 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6946                                       Expr *E) {
6947   for (unsigned N = Path.size(); I != N; ++I) {
6948     switch (Path[I].Kind) {
6949     case IndirectLocalPathEntry::AddressOf:
6950     case IndirectLocalPathEntry::LValToRVal:
6951     case IndirectLocalPathEntry::LifetimeBoundCall:
6952       // These exist primarily to mark the path as not permitting or
6953       // supporting lifetime extension.
6954       break;
6955 
6956     case IndirectLocalPathEntry::DefaultInit:
6957     case IndirectLocalPathEntry::VarInit:
6958       return Path[I].E->getSourceRange();
6959     }
6960   }
6961   return E->getSourceRange();
6962 }
6963 
6964 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6965                                     Expr *Init) {
6966   LifetimeResult LR = getEntityLifetime(&Entity);
6967   LifetimeKind LK = LR.getInt();
6968   const InitializedEntity *ExtendingEntity = LR.getPointer();
6969 
6970   // If this entity doesn't have an interesting lifetime, don't bother looking
6971   // for temporaries within its initializer.
6972   if (LK == LK_FullExpression)
6973     return;
6974 
6975   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6976                               ReferenceKind RK) -> bool {
6977     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6978     SourceLocation DiagLoc = DiagRange.getBegin();
6979 
6980     switch (LK) {
6981     case LK_FullExpression:
6982       llvm_unreachable("already handled this");
6983 
6984     case LK_Extended: {
6985       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6986       if (!MTE) {
6987         // The initialized entity has lifetime beyond the full-expression,
6988         // and the local entity does too, so don't warn.
6989         //
6990         // FIXME: We should consider warning if a static / thread storage
6991         // duration variable retains an automatic storage duration local.
6992         return false;
6993       }
6994 
6995       // Lifetime-extend the temporary.
6996       if (Path.empty()) {
6997         // Update the storage duration of the materialized temporary.
6998         // FIXME: Rebuild the expression instead of mutating it.
6999         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7000                               ExtendingEntity->allocateManglingNumber());
7001         // Also visit the temporaries lifetime-extended by this initializer.
7002         return true;
7003       }
7004 
7005       if (shouldLifetimeExtendThroughPath(Path)) {
7006         // We're supposed to lifetime-extend the temporary along this path (per
7007         // the resolution of DR1815), but we don't support that yet.
7008         //
7009         // FIXME: Properly handle this situation. Perhaps the easiest approach
7010         // would be to clone the initializer expression on each use that would
7011         // lifetime extend its temporaries.
7012         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7013             << RK << DiagRange;
7014       } else {
7015         // If the path goes through the initialization of a variable or field,
7016         // it can't possibly reach a temporary created in this full-expression.
7017         // We will have already diagnosed any problems with the initializer.
7018         if (pathContainsInit(Path))
7019           return false;
7020 
7021         Diag(DiagLoc, diag::warn_dangling_variable)
7022             << RK << !Entity.getParent()
7023             << ExtendingEntity->getDecl()->isImplicit()
7024             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7025       }
7026       break;
7027     }
7028 
7029     case LK_MemInitializer: {
7030       if (isa<MaterializeTemporaryExpr>(L)) {
7031         // Under C++ DR1696, if a mem-initializer (or a default member
7032         // initializer used by the absence of one) would lifetime-extend a
7033         // temporary, the program is ill-formed.
7034         if (auto *ExtendingDecl =
7035                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7036           bool IsSubobjectMember = ExtendingEntity != &Entity;
7037           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7038                             ? diag::err_dangling_member
7039                             : diag::warn_dangling_member)
7040               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7041           // Don't bother adding a note pointing to the field if we're inside
7042           // its default member initializer; our primary diagnostic points to
7043           // the same place in that case.
7044           if (Path.empty() ||
7045               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7046             Diag(ExtendingDecl->getLocation(),
7047                  diag::note_lifetime_extending_member_declared_here)
7048                 << RK << IsSubobjectMember;
7049           }
7050         } else {
7051           // We have a mem-initializer but no particular field within it; this
7052           // is either a base class or a delegating initializer directly
7053           // initializing the base-class from something that doesn't live long
7054           // enough.
7055           //
7056           // FIXME: Warn on this.
7057           return false;
7058         }
7059       } else {
7060         // Paths via a default initializer can only occur during error recovery
7061         // (there's no other way that a default initializer can refer to a
7062         // local). Don't produce a bogus warning on those cases.
7063         if (pathContainsInit(Path))
7064           return false;
7065 
7066         auto *DRE = dyn_cast<DeclRefExpr>(L);
7067         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7068         if (!VD) {
7069           // A member was initialized to a local block.
7070           // FIXME: Warn on this.
7071           return false;
7072         }
7073 
7074         if (auto *Member =
7075                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7076           bool IsPointer = Member->getType()->isAnyPointerType();
7077           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7078                                   : diag::warn_bind_ref_member_to_parameter)
7079               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7080           Diag(Member->getLocation(),
7081                diag::note_ref_or_ptr_member_declared_here)
7082               << (unsigned)IsPointer;
7083         }
7084       }
7085       break;
7086     }
7087 
7088     case LK_New:
7089       if (isa<MaterializeTemporaryExpr>(L)) {
7090         Diag(DiagLoc, RK == RK_ReferenceBinding
7091                           ? diag::warn_new_dangling_reference
7092                           : diag::warn_new_dangling_initializer_list)
7093             << !Entity.getParent() << DiagRange;
7094       } else {
7095         // We can't determine if the allocation outlives the local declaration.
7096         return false;
7097       }
7098       break;
7099 
7100     case LK_Return:
7101     case LK_StmtExprResult:
7102       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7103         // We can't determine if the local variable outlives the statement
7104         // expression.
7105         if (LK == LK_StmtExprResult)
7106           return false;
7107         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7108             << Entity.getType()->isReferenceType() << DRE->getDecl()
7109             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7110       } else if (isa<BlockExpr>(L)) {
7111         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7112       } else if (isa<AddrLabelExpr>(L)) {
7113         // Don't warn when returning a label from a statement expression.
7114         // Leaving the scope doesn't end its lifetime.
7115         if (LK == LK_StmtExprResult)
7116           return false;
7117         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7118       } else {
7119         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7120          << Entity.getType()->isReferenceType() << DiagRange;
7121       }
7122       break;
7123     }
7124 
7125     for (unsigned I = 0; I != Path.size(); ++I) {
7126       auto Elem = Path[I];
7127 
7128       switch (Elem.Kind) {
7129       case IndirectLocalPathEntry::AddressOf:
7130       case IndirectLocalPathEntry::LValToRVal:
7131         // These exist primarily to mark the path as not permitting or
7132         // supporting lifetime extension.
7133         break;
7134 
7135       case IndirectLocalPathEntry::LifetimeBoundCall:
7136         // FIXME: Consider adding a note for this.
7137         break;
7138 
7139       case IndirectLocalPathEntry::DefaultInit: {
7140         auto *FD = cast<FieldDecl>(Elem.D);
7141         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7142             << FD << nextPathEntryRange(Path, I + 1, L);
7143         break;
7144       }
7145 
7146       case IndirectLocalPathEntry::VarInit:
7147         const VarDecl *VD = cast<VarDecl>(Elem.D);
7148         Diag(VD->getLocation(), diag::note_local_var_initializer)
7149             << VD->getType()->isReferenceType()
7150             << VD->isImplicit() << VD->getDeclName()
7151             << nextPathEntryRange(Path, I + 1, L);
7152         break;
7153       }
7154     }
7155 
7156     // We didn't lifetime-extend, so don't go any further; we don't need more
7157     // warnings or errors on inner temporaries within this one's initializer.
7158     return false;
7159   };
7160 
7161   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7162   if (Init->isGLValue())
7163     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7164                                           TemporaryVisitor);
7165   else
7166     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7167 }
7168 
7169 static void DiagnoseNarrowingInInitList(Sema &S,
7170                                         const ImplicitConversionSequence &ICS,
7171                                         QualType PreNarrowingType,
7172                                         QualType EntityType,
7173                                         const Expr *PostInit);
7174 
7175 /// Provide warnings when std::move is used on construction.
7176 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7177                                     bool IsReturnStmt) {
7178   if (!InitExpr)
7179     return;
7180 
7181   if (S.inTemplateInstantiation())
7182     return;
7183 
7184   QualType DestType = InitExpr->getType();
7185   if (!DestType->isRecordType())
7186     return;
7187 
7188   unsigned DiagID = 0;
7189   if (IsReturnStmt) {
7190     const CXXConstructExpr *CCE =
7191         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7192     if (!CCE || CCE->getNumArgs() != 1)
7193       return;
7194 
7195     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7196       return;
7197 
7198     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7199   }
7200 
7201   // Find the std::move call and get the argument.
7202   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7203   if (!CE || !CE->isCallToStdMove())
7204     return;
7205 
7206   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7207 
7208   if (IsReturnStmt) {
7209     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7210     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7211       return;
7212 
7213     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7214     if (!VD || !VD->hasLocalStorage())
7215       return;
7216 
7217     // __block variables are not moved implicitly.
7218     if (VD->hasAttr<BlocksAttr>())
7219       return;
7220 
7221     QualType SourceType = VD->getType();
7222     if (!SourceType->isRecordType())
7223       return;
7224 
7225     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7226       return;
7227     }
7228 
7229     // If we're returning a function parameter, copy elision
7230     // is not possible.
7231     if (isa<ParmVarDecl>(VD))
7232       DiagID = diag::warn_redundant_move_on_return;
7233     else
7234       DiagID = diag::warn_pessimizing_move_on_return;
7235   } else {
7236     DiagID = diag::warn_pessimizing_move_on_initialization;
7237     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7238     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7239       return;
7240   }
7241 
7242   S.Diag(CE->getBeginLoc(), DiagID);
7243 
7244   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7245   // is within a macro.
7246   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7247   if (CallBegin.isMacroID())
7248     return;
7249   SourceLocation RParen = CE->getRParenLoc();
7250   if (RParen.isMacroID())
7251     return;
7252   SourceLocation LParen;
7253   SourceLocation ArgLoc = Arg->getBeginLoc();
7254 
7255   // Special testing for the argument location.  Since the fix-it needs the
7256   // location right before the argument, the argument location can be in a
7257   // macro only if it is at the beginning of the macro.
7258   while (ArgLoc.isMacroID() &&
7259          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7260     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7261   }
7262 
7263   if (LParen.isMacroID())
7264     return;
7265 
7266   LParen = ArgLoc.getLocWithOffset(-1);
7267 
7268   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7269       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7270       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7271 }
7272 
7273 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7274   // Check to see if we are dereferencing a null pointer.  If so, this is
7275   // undefined behavior, so warn about it.  This only handles the pattern
7276   // "*null", which is a very syntactic check.
7277   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7278     if (UO->getOpcode() == UO_Deref &&
7279         UO->getSubExpr()->IgnoreParenCasts()->
7280         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7281     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7282                           S.PDiag(diag::warn_binding_null_to_reference)
7283                             << UO->getSubExpr()->getSourceRange());
7284   }
7285 }
7286 
7287 MaterializeTemporaryExpr *
7288 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7289                                      bool BoundToLvalueReference) {
7290   auto MTE = new (Context)
7291       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7292 
7293   // Order an ExprWithCleanups for lifetime marks.
7294   //
7295   // TODO: It'll be good to have a single place to check the access of the
7296   // destructor and generate ExprWithCleanups for various uses. Currently these
7297   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7298   // but there may be a chance to merge them.
7299   Cleanup.setExprNeedsCleanups(false);
7300   return MTE;
7301 }
7302 
7303 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7304   // In C++98, we don't want to implicitly create an xvalue.
7305   // FIXME: This means that AST consumers need to deal with "prvalues" that
7306   // denote materialized temporaries. Maybe we should add another ValueKind
7307   // for "xvalue pretending to be a prvalue" for C++98 support.
7308   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7309     return E;
7310 
7311   // C++1z [conv.rval]/1: T shall be a complete type.
7312   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7313   // If so, we should check for a non-abstract class type here too.
7314   QualType T = E->getType();
7315   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7316     return ExprError();
7317 
7318   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7319 }
7320 
7321 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7322                                                 ExprValueKind VK,
7323                                                 CheckedConversionKind CCK) {
7324 
7325   CastKind CK = CK_NoOp;
7326 
7327   if (VK == VK_RValue) {
7328     auto PointeeTy = Ty->getPointeeType();
7329     auto ExprPointeeTy = E->getType()->getPointeeType();
7330     if (!PointeeTy.isNull() &&
7331         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7332       CK = CK_AddressSpaceConversion;
7333   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7334     CK = CK_AddressSpaceConversion;
7335   }
7336 
7337   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7338 }
7339 
7340 ExprResult InitializationSequence::Perform(Sema &S,
7341                                            const InitializedEntity &Entity,
7342                                            const InitializationKind &Kind,
7343                                            MultiExprArg Args,
7344                                            QualType *ResultType) {
7345   if (Failed()) {
7346     Diagnose(S, Entity, Kind, Args);
7347     return ExprError();
7348   }
7349   if (!ZeroInitializationFixit.empty()) {
7350     unsigned DiagID = diag::err_default_init_const;
7351     if (Decl *D = Entity.getDecl())
7352       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7353         DiagID = diag::ext_default_init_const;
7354 
7355     // The initialization would have succeeded with this fixit. Since the fixit
7356     // is on the error, we need to build a valid AST in this case, so this isn't
7357     // handled in the Failed() branch above.
7358     QualType DestType = Entity.getType();
7359     S.Diag(Kind.getLocation(), DiagID)
7360         << DestType << (bool)DestType->getAs<RecordType>()
7361         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7362                                       ZeroInitializationFixit);
7363   }
7364 
7365   if (getKind() == DependentSequence) {
7366     // If the declaration is a non-dependent, incomplete array type
7367     // that has an initializer, then its type will be completed once
7368     // the initializer is instantiated.
7369     if (ResultType && !Entity.getType()->isDependentType() &&
7370         Args.size() == 1) {
7371       QualType DeclType = Entity.getType();
7372       if (const IncompleteArrayType *ArrayT
7373                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7374         // FIXME: We don't currently have the ability to accurately
7375         // compute the length of an initializer list without
7376         // performing full type-checking of the initializer list
7377         // (since we have to determine where braces are implicitly
7378         // introduced and such).  So, we fall back to making the array
7379         // type a dependently-sized array type with no specified
7380         // bound.
7381         if (isa<InitListExpr>((Expr *)Args[0])) {
7382           SourceRange Brackets;
7383 
7384           // Scavange the location of the brackets from the entity, if we can.
7385           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7386             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7387               TypeLoc TL = TInfo->getTypeLoc();
7388               if (IncompleteArrayTypeLoc ArrayLoc =
7389                       TL.getAs<IncompleteArrayTypeLoc>())
7390                 Brackets = ArrayLoc.getBracketsRange();
7391             }
7392           }
7393 
7394           *ResultType
7395             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7396                                                    /*NumElts=*/nullptr,
7397                                                    ArrayT->getSizeModifier(),
7398                                        ArrayT->getIndexTypeCVRQualifiers(),
7399                                                    Brackets);
7400         }
7401 
7402       }
7403     }
7404     if (Kind.getKind() == InitializationKind::IK_Direct &&
7405         !Kind.isExplicitCast()) {
7406       // Rebuild the ParenListExpr.
7407       SourceRange ParenRange = Kind.getParenOrBraceRange();
7408       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7409                                   Args);
7410     }
7411     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7412            Kind.isExplicitCast() ||
7413            Kind.getKind() == InitializationKind::IK_DirectList);
7414     return ExprResult(Args[0]);
7415   }
7416 
7417   // No steps means no initialization.
7418   if (Steps.empty())
7419     return ExprResult((Expr *)nullptr);
7420 
7421   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7422       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7423       !Entity.isParameterKind()) {
7424     // Produce a C++98 compatibility warning if we are initializing a reference
7425     // from an initializer list. For parameters, we produce a better warning
7426     // elsewhere.
7427     Expr *Init = Args[0];
7428     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7429         << Init->getSourceRange();
7430   }
7431 
7432   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7433   QualType ETy = Entity.getType();
7434   Qualifiers TyQualifiers = ETy.getQualifiers();
7435   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7436                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7437 
7438   if (S.getLangOpts().OpenCLVersion >= 200 &&
7439       ETy->isAtomicType() && !HasGlobalAS &&
7440       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7441     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7442         << 1
7443         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7444     return ExprError();
7445   }
7446 
7447   QualType DestType = Entity.getType().getNonReferenceType();
7448   // FIXME: Ugly hack around the fact that Entity.getType() is not
7449   // the same as Entity.getDecl()->getType() in cases involving type merging,
7450   //  and we want latter when it makes sense.
7451   if (ResultType)
7452     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7453                                      Entity.getType();
7454 
7455   ExprResult CurInit((Expr *)nullptr);
7456   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7457 
7458   // For initialization steps that start with a single initializer,
7459   // grab the only argument out the Args and place it into the "current"
7460   // initializer.
7461   switch (Steps.front().Kind) {
7462   case SK_ResolveAddressOfOverloadedFunction:
7463   case SK_CastDerivedToBaseRValue:
7464   case SK_CastDerivedToBaseXValue:
7465   case SK_CastDerivedToBaseLValue:
7466   case SK_BindReference:
7467   case SK_BindReferenceToTemporary:
7468   case SK_FinalCopy:
7469   case SK_ExtraneousCopyToTemporary:
7470   case SK_UserConversion:
7471   case SK_QualificationConversionLValue:
7472   case SK_QualificationConversionXValue:
7473   case SK_QualificationConversionRValue:
7474   case SK_AtomicConversion:
7475   case SK_LValueToRValue:
7476   case SK_ConversionSequence:
7477   case SK_ConversionSequenceNoNarrowing:
7478   case SK_ListInitialization:
7479   case SK_UnwrapInitList:
7480   case SK_RewrapInitList:
7481   case SK_CAssignment:
7482   case SK_StringInit:
7483   case SK_ObjCObjectConversion:
7484   case SK_ArrayLoopIndex:
7485   case SK_ArrayLoopInit:
7486   case SK_ArrayInit:
7487   case SK_GNUArrayInit:
7488   case SK_ParenthesizedArrayInit:
7489   case SK_PassByIndirectCopyRestore:
7490   case SK_PassByIndirectRestore:
7491   case SK_ProduceObjCObject:
7492   case SK_StdInitializerList:
7493   case SK_OCLSamplerInit:
7494   case SK_OCLZeroOpaqueType: {
7495     assert(Args.size() == 1);
7496     CurInit = Args[0];
7497     if (!CurInit.get()) return ExprError();
7498     break;
7499   }
7500 
7501   case SK_ConstructorInitialization:
7502   case SK_ConstructorInitializationFromList:
7503   case SK_StdInitializerListConstructorCall:
7504   case SK_ZeroInitialization:
7505     break;
7506   }
7507 
7508   // Promote from an unevaluated context to an unevaluated list context in
7509   // C++11 list-initialization; we need to instantiate entities usable in
7510   // constant expressions here in order to perform narrowing checks =(
7511   EnterExpressionEvaluationContext Evaluated(
7512       S, EnterExpressionEvaluationContext::InitList,
7513       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7514 
7515   // C++ [class.abstract]p2:
7516   //   no objects of an abstract class can be created except as subobjects
7517   //   of a class derived from it
7518   auto checkAbstractType = [&](QualType T) -> bool {
7519     if (Entity.getKind() == InitializedEntity::EK_Base ||
7520         Entity.getKind() == InitializedEntity::EK_Delegating)
7521       return false;
7522     return S.RequireNonAbstractType(Kind.getLocation(), T,
7523                                     diag::err_allocation_of_abstract_type);
7524   };
7525 
7526   // Walk through the computed steps for the initialization sequence,
7527   // performing the specified conversions along the way.
7528   bool ConstructorInitRequiresZeroInit = false;
7529   for (step_iterator Step = step_begin(), StepEnd = step_end();
7530        Step != StepEnd; ++Step) {
7531     if (CurInit.isInvalid())
7532       return ExprError();
7533 
7534     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7535 
7536     switch (Step->Kind) {
7537     case SK_ResolveAddressOfOverloadedFunction:
7538       // Overload resolution determined which function invoke; update the
7539       // initializer to reflect that choice.
7540       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7541       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7542         return ExprError();
7543       CurInit = S.FixOverloadedFunctionReference(CurInit,
7544                                                  Step->Function.FoundDecl,
7545                                                  Step->Function.Function);
7546       break;
7547 
7548     case SK_CastDerivedToBaseRValue:
7549     case SK_CastDerivedToBaseXValue:
7550     case SK_CastDerivedToBaseLValue: {
7551       // We have a derived-to-base cast that produces either an rvalue or an
7552       // lvalue. Perform that cast.
7553 
7554       CXXCastPath BasePath;
7555 
7556       // Casts to inaccessible base classes are allowed with C-style casts.
7557       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7558       if (S.CheckDerivedToBaseConversion(
7559               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7560               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7561         return ExprError();
7562 
7563       ExprValueKind VK =
7564           Step->Kind == SK_CastDerivedToBaseLValue ?
7565               VK_LValue :
7566               (Step->Kind == SK_CastDerivedToBaseXValue ?
7567                    VK_XValue :
7568                    VK_RValue);
7569       CurInit =
7570           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7571                                    CurInit.get(), &BasePath, VK);
7572       break;
7573     }
7574 
7575     case SK_BindReference:
7576       // Reference binding does not have any corresponding ASTs.
7577 
7578       // Check exception specifications
7579       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7580         return ExprError();
7581 
7582       // We don't check for e.g. function pointers here, since address
7583       // availability checks should only occur when the function first decays
7584       // into a pointer or reference.
7585       if (CurInit.get()->getType()->isFunctionProtoType()) {
7586         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7587           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7588             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7589                                                      DRE->getBeginLoc()))
7590               return ExprError();
7591           }
7592         }
7593       }
7594 
7595       CheckForNullPointerDereference(S, CurInit.get());
7596       break;
7597 
7598     case SK_BindReferenceToTemporary: {
7599       // Make sure the "temporary" is actually an rvalue.
7600       assert(CurInit.get()->isRValue() && "not a temporary");
7601 
7602       // Check exception specifications
7603       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7604         return ExprError();
7605 
7606       // Materialize the temporary into memory.
7607       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7608           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7609       CurInit = MTE;
7610 
7611       // If we're extending this temporary to automatic storage duration -- we
7612       // need to register its cleanup during the full-expression's cleanups.
7613       if (MTE->getStorageDuration() == SD_Automatic &&
7614           MTE->getType().isDestructedType())
7615         S.Cleanup.setExprNeedsCleanups(true);
7616       break;
7617     }
7618 
7619     case SK_FinalCopy:
7620       if (checkAbstractType(Step->Type))
7621         return ExprError();
7622 
7623       // If the overall initialization is initializing a temporary, we already
7624       // bound our argument if it was necessary to do so. If not (if we're
7625       // ultimately initializing a non-temporary), our argument needs to be
7626       // bound since it's initializing a function parameter.
7627       // FIXME: This is a mess. Rationalize temporary destruction.
7628       if (!shouldBindAsTemporary(Entity))
7629         CurInit = S.MaybeBindToTemporary(CurInit.get());
7630       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7631                            /*IsExtraneousCopy=*/false);
7632       break;
7633 
7634     case SK_ExtraneousCopyToTemporary:
7635       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7636                            /*IsExtraneousCopy=*/true);
7637       break;
7638 
7639     case SK_UserConversion: {
7640       // We have a user-defined conversion that invokes either a constructor
7641       // or a conversion function.
7642       CastKind CastKind;
7643       FunctionDecl *Fn = Step->Function.Function;
7644       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7645       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7646       bool CreatedObject = false;
7647       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7648         // Build a call to the selected constructor.
7649         SmallVector<Expr*, 8> ConstructorArgs;
7650         SourceLocation Loc = CurInit.get()->getBeginLoc();
7651 
7652         // Determine the arguments required to actually perform the constructor
7653         // call.
7654         Expr *Arg = CurInit.get();
7655         if (S.CompleteConstructorCall(Constructor,
7656                                       MultiExprArg(&Arg, 1),
7657                                       Loc, ConstructorArgs))
7658           return ExprError();
7659 
7660         // Build an expression that constructs a temporary.
7661         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7662                                           FoundFn, Constructor,
7663                                           ConstructorArgs,
7664                                           HadMultipleCandidates,
7665                                           /*ListInit*/ false,
7666                                           /*StdInitListInit*/ false,
7667                                           /*ZeroInit*/ false,
7668                                           CXXConstructExpr::CK_Complete,
7669                                           SourceRange());
7670         if (CurInit.isInvalid())
7671           return ExprError();
7672 
7673         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7674                                  Entity);
7675         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7676           return ExprError();
7677 
7678         CastKind = CK_ConstructorConversion;
7679         CreatedObject = true;
7680       } else {
7681         // Build a call to the conversion function.
7682         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7683         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7684                                     FoundFn);
7685         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7686           return ExprError();
7687 
7688         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7689                                            HadMultipleCandidates);
7690         if (CurInit.isInvalid())
7691           return ExprError();
7692 
7693         CastKind = CK_UserDefinedConversion;
7694         CreatedObject = Conversion->getReturnType()->isRecordType();
7695       }
7696 
7697       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7698         return ExprError();
7699 
7700       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7701                                          CastKind, CurInit.get(), nullptr,
7702                                          CurInit.get()->getValueKind());
7703 
7704       if (shouldBindAsTemporary(Entity))
7705         // The overall entity is temporary, so this expression should be
7706         // destroyed at the end of its full-expression.
7707         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7708       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7709         // The object outlasts the full-expression, but we need to prepare for
7710         // a destructor being run on it.
7711         // FIXME: It makes no sense to do this here. This should happen
7712         // regardless of how we initialized the entity.
7713         QualType T = CurInit.get()->getType();
7714         if (const RecordType *Record = T->getAs<RecordType>()) {
7715           CXXDestructorDecl *Destructor
7716             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7717           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7718                                   S.PDiag(diag::err_access_dtor_temp) << T);
7719           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7720           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7721             return ExprError();
7722         }
7723       }
7724       break;
7725     }
7726 
7727     case SK_QualificationConversionLValue:
7728     case SK_QualificationConversionXValue:
7729     case SK_QualificationConversionRValue: {
7730       // Perform a qualification conversion; these can never go wrong.
7731       ExprValueKind VK =
7732           Step->Kind == SK_QualificationConversionLValue
7733               ? VK_LValue
7734               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7735                                                                 : VK_RValue);
7736       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7737       break;
7738     }
7739 
7740     case SK_AtomicConversion: {
7741       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7742       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7743                                     CK_NonAtomicToAtomic, VK_RValue);
7744       break;
7745     }
7746 
7747     case SK_LValueToRValue: {
7748       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7749       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7750                                          CK_LValueToRValue, CurInit.get(),
7751                                          /*BasePath=*/nullptr, VK_RValue);
7752       break;
7753     }
7754 
7755     case SK_ConversionSequence:
7756     case SK_ConversionSequenceNoNarrowing: {
7757       if (const auto *FromPtrType =
7758               CurInit.get()->getType()->getAs<PointerType>()) {
7759         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7760           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7761               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7762             S.Diag(CurInit.get()->getExprLoc(),
7763                    diag::warn_noderef_to_dereferenceable_pointer)
7764                 << CurInit.get()->getSourceRange();
7765           }
7766         }
7767       }
7768 
7769       Sema::CheckedConversionKind CCK
7770         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7771         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7772         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7773         : Sema::CCK_ImplicitConversion;
7774       ExprResult CurInitExprRes =
7775         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7776                                     getAssignmentAction(Entity), CCK);
7777       if (CurInitExprRes.isInvalid())
7778         return ExprError();
7779 
7780       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7781 
7782       CurInit = CurInitExprRes;
7783 
7784       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7785           S.getLangOpts().CPlusPlus)
7786         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7787                                     CurInit.get());
7788 
7789       break;
7790     }
7791 
7792     case SK_ListInitialization: {
7793       if (checkAbstractType(Step->Type))
7794         return ExprError();
7795 
7796       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7797       // If we're not initializing the top-level entity, we need to create an
7798       // InitializeTemporary entity for our target type.
7799       QualType Ty = Step->Type;
7800       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7801       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7802       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7803       InitListChecker PerformInitList(S, InitEntity,
7804           InitList, Ty, /*VerifyOnly=*/false,
7805           /*TreatUnavailableAsInvalid=*/false);
7806       if (PerformInitList.HadError())
7807         return ExprError();
7808 
7809       // Hack: We must update *ResultType if available in order to set the
7810       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7811       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7812       if (ResultType &&
7813           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7814         if ((*ResultType)->isRValueReferenceType())
7815           Ty = S.Context.getRValueReferenceType(Ty);
7816         else if ((*ResultType)->isLValueReferenceType())
7817           Ty = S.Context.getLValueReferenceType(Ty,
7818             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7819         *ResultType = Ty;
7820       }
7821 
7822       InitListExpr *StructuredInitList =
7823           PerformInitList.getFullyStructuredList();
7824       CurInit.get();
7825       CurInit = shouldBindAsTemporary(InitEntity)
7826           ? S.MaybeBindToTemporary(StructuredInitList)
7827           : StructuredInitList;
7828       break;
7829     }
7830 
7831     case SK_ConstructorInitializationFromList: {
7832       if (checkAbstractType(Step->Type))
7833         return ExprError();
7834 
7835       // When an initializer list is passed for a parameter of type "reference
7836       // to object", we don't get an EK_Temporary entity, but instead an
7837       // EK_Parameter entity with reference type.
7838       // FIXME: This is a hack. What we really should do is create a user
7839       // conversion step for this case, but this makes it considerably more
7840       // complicated. For now, this will do.
7841       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7842                                         Entity.getType().getNonReferenceType());
7843       bool UseTemporary = Entity.getType()->isReferenceType();
7844       assert(Args.size() == 1 && "expected a single argument for list init");
7845       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7846       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7847         << InitList->getSourceRange();
7848       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7849       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7850                                                                    Entity,
7851                                                  Kind, Arg, *Step,
7852                                                ConstructorInitRequiresZeroInit,
7853                                                /*IsListInitialization*/true,
7854                                                /*IsStdInitListInit*/false,
7855                                                InitList->getLBraceLoc(),
7856                                                InitList->getRBraceLoc());
7857       break;
7858     }
7859 
7860     case SK_UnwrapInitList:
7861       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7862       break;
7863 
7864     case SK_RewrapInitList: {
7865       Expr *E = CurInit.get();
7866       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7867       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7868           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7869       ILE->setSyntacticForm(Syntactic);
7870       ILE->setType(E->getType());
7871       ILE->setValueKind(E->getValueKind());
7872       CurInit = ILE;
7873       break;
7874     }
7875 
7876     case SK_ConstructorInitialization:
7877     case SK_StdInitializerListConstructorCall: {
7878       if (checkAbstractType(Step->Type))
7879         return ExprError();
7880 
7881       // When an initializer list is passed for a parameter of type "reference
7882       // to object", we don't get an EK_Temporary entity, but instead an
7883       // EK_Parameter entity with reference type.
7884       // FIXME: This is a hack. What we really should do is create a user
7885       // conversion step for this case, but this makes it considerably more
7886       // complicated. For now, this will do.
7887       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7888                                         Entity.getType().getNonReferenceType());
7889       bool UseTemporary = Entity.getType()->isReferenceType();
7890       bool IsStdInitListInit =
7891           Step->Kind == SK_StdInitializerListConstructorCall;
7892       Expr *Source = CurInit.get();
7893       SourceRange Range = Kind.hasParenOrBraceRange()
7894                               ? Kind.getParenOrBraceRange()
7895                               : SourceRange();
7896       CurInit = PerformConstructorInitialization(
7897           S, UseTemporary ? TempEntity : Entity, Kind,
7898           Source ? MultiExprArg(Source) : Args, *Step,
7899           ConstructorInitRequiresZeroInit,
7900           /*IsListInitialization*/ IsStdInitListInit,
7901           /*IsStdInitListInitialization*/ IsStdInitListInit,
7902           /*LBraceLoc*/ Range.getBegin(),
7903           /*RBraceLoc*/ Range.getEnd());
7904       break;
7905     }
7906 
7907     case SK_ZeroInitialization: {
7908       step_iterator NextStep = Step;
7909       ++NextStep;
7910       if (NextStep != StepEnd &&
7911           (NextStep->Kind == SK_ConstructorInitialization ||
7912            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7913         // The need for zero-initialization is recorded directly into
7914         // the call to the object's constructor within the next step.
7915         ConstructorInitRequiresZeroInit = true;
7916       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7917                  S.getLangOpts().CPlusPlus &&
7918                  !Kind.isImplicitValueInit()) {
7919         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7920         if (!TSInfo)
7921           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7922                                                     Kind.getRange().getBegin());
7923 
7924         CurInit = new (S.Context) CXXScalarValueInitExpr(
7925             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7926             Kind.getRange().getEnd());
7927       } else {
7928         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7929       }
7930       break;
7931     }
7932 
7933     case SK_CAssignment: {
7934       QualType SourceType = CurInit.get()->getType();
7935 
7936       // Save off the initial CurInit in case we need to emit a diagnostic
7937       ExprResult InitialCurInit = CurInit;
7938       ExprResult Result = CurInit;
7939       Sema::AssignConvertType ConvTy =
7940         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7941             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7942       if (Result.isInvalid())
7943         return ExprError();
7944       CurInit = Result;
7945 
7946       // If this is a call, allow conversion to a transparent union.
7947       ExprResult CurInitExprRes = CurInit;
7948       if (ConvTy != Sema::Compatible &&
7949           Entity.isParameterKind() &&
7950           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7951             == Sema::Compatible)
7952         ConvTy = Sema::Compatible;
7953       if (CurInitExprRes.isInvalid())
7954         return ExprError();
7955       CurInit = CurInitExprRes;
7956 
7957       bool Complained;
7958       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7959                                      Step->Type, SourceType,
7960                                      InitialCurInit.get(),
7961                                      getAssignmentAction(Entity, true),
7962                                      &Complained)) {
7963         PrintInitLocationNote(S, Entity);
7964         return ExprError();
7965       } else if (Complained)
7966         PrintInitLocationNote(S, Entity);
7967       break;
7968     }
7969 
7970     case SK_StringInit: {
7971       QualType Ty = Step->Type;
7972       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7973                       S.Context.getAsArrayType(Ty), S);
7974       break;
7975     }
7976 
7977     case SK_ObjCObjectConversion:
7978       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7979                           CK_ObjCObjectLValueCast,
7980                           CurInit.get()->getValueKind());
7981       break;
7982 
7983     case SK_ArrayLoopIndex: {
7984       Expr *Cur = CurInit.get();
7985       Expr *BaseExpr = new (S.Context)
7986           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7987                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7988       Expr *IndexExpr =
7989           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7990       CurInit = S.CreateBuiltinArraySubscriptExpr(
7991           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7992       ArrayLoopCommonExprs.push_back(BaseExpr);
7993       break;
7994     }
7995 
7996     case SK_ArrayLoopInit: {
7997       assert(!ArrayLoopCommonExprs.empty() &&
7998              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7999       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8000       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8001                                                   CurInit.get());
8002       break;
8003     }
8004 
8005     case SK_GNUArrayInit:
8006       // Okay: we checked everything before creating this step. Note that
8007       // this is a GNU extension.
8008       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8009         << Step->Type << CurInit.get()->getType()
8010         << CurInit.get()->getSourceRange();
8011       updateGNUCompoundLiteralRValue(CurInit.get());
8012       LLVM_FALLTHROUGH;
8013     case SK_ArrayInit:
8014       // If the destination type is an incomplete array type, update the
8015       // type accordingly.
8016       if (ResultType) {
8017         if (const IncompleteArrayType *IncompleteDest
8018                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8019           if (const ConstantArrayType *ConstantSource
8020                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8021             *ResultType = S.Context.getConstantArrayType(
8022                                              IncompleteDest->getElementType(),
8023                                              ConstantSource->getSize(),
8024                                              ArrayType::Normal, 0);
8025           }
8026         }
8027       }
8028       break;
8029 
8030     case SK_ParenthesizedArrayInit:
8031       // Okay: we checked everything before creating this step. Note that
8032       // this is a GNU extension.
8033       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8034         << CurInit.get()->getSourceRange();
8035       break;
8036 
8037     case SK_PassByIndirectCopyRestore:
8038     case SK_PassByIndirectRestore:
8039       checkIndirectCopyRestoreSource(S, CurInit.get());
8040       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8041           CurInit.get(), Step->Type,
8042           Step->Kind == SK_PassByIndirectCopyRestore);
8043       break;
8044 
8045     case SK_ProduceObjCObject:
8046       CurInit =
8047           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8048                                    CurInit.get(), nullptr, VK_RValue);
8049       break;
8050 
8051     case SK_StdInitializerList: {
8052       S.Diag(CurInit.get()->getExprLoc(),
8053              diag::warn_cxx98_compat_initializer_list_init)
8054         << CurInit.get()->getSourceRange();
8055 
8056       // Materialize the temporary into memory.
8057       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8058           CurInit.get()->getType(), CurInit.get(),
8059           /*BoundToLvalueReference=*/false);
8060 
8061       // Wrap it in a construction of a std::initializer_list<T>.
8062       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8063 
8064       // Bind the result, in case the library has given initializer_list a
8065       // non-trivial destructor.
8066       if (shouldBindAsTemporary(Entity))
8067         CurInit = S.MaybeBindToTemporary(CurInit.get());
8068       break;
8069     }
8070 
8071     case SK_OCLSamplerInit: {
8072       // Sampler initialization have 5 cases:
8073       //   1. function argument passing
8074       //      1a. argument is a file-scope variable
8075       //      1b. argument is a function-scope variable
8076       //      1c. argument is one of caller function's parameters
8077       //   2. variable initialization
8078       //      2a. initializing a file-scope variable
8079       //      2b. initializing a function-scope variable
8080       //
8081       // For file-scope variables, since they cannot be initialized by function
8082       // call of __translate_sampler_initializer in LLVM IR, their references
8083       // need to be replaced by a cast from their literal initializers to
8084       // sampler type. Since sampler variables can only be used in function
8085       // calls as arguments, we only need to replace them when handling the
8086       // argument passing.
8087       assert(Step->Type->isSamplerT() &&
8088              "Sampler initialization on non-sampler type.");
8089       Expr *Init = CurInit.get();
8090       QualType SourceType = Init->getType();
8091       // Case 1
8092       if (Entity.isParameterKind()) {
8093         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8094           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8095             << SourceType;
8096           break;
8097         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8098           auto Var = cast<VarDecl>(DRE->getDecl());
8099           // Case 1b and 1c
8100           // No cast from integer to sampler is needed.
8101           if (!Var->hasGlobalStorage()) {
8102             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8103                                                CK_LValueToRValue, Init,
8104                                                /*BasePath=*/nullptr, VK_RValue);
8105             break;
8106           }
8107           // Case 1a
8108           // For function call with a file-scope sampler variable as argument,
8109           // get the integer literal.
8110           // Do not diagnose if the file-scope variable does not have initializer
8111           // since this has already been diagnosed when parsing the variable
8112           // declaration.
8113           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8114             break;
8115           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8116             Var->getInit()))->getSubExpr();
8117           SourceType = Init->getType();
8118         }
8119       } else {
8120         // Case 2
8121         // Check initializer is 32 bit integer constant.
8122         // If the initializer is taken from global variable, do not diagnose since
8123         // this has already been done when parsing the variable declaration.
8124         if (!Init->isConstantInitializer(S.Context, false))
8125           break;
8126 
8127         if (!SourceType->isIntegerType() ||
8128             32 != S.Context.getIntWidth(SourceType)) {
8129           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8130             << SourceType;
8131           break;
8132         }
8133 
8134         Expr::EvalResult EVResult;
8135         Init->EvaluateAsInt(EVResult, S.Context);
8136         llvm::APSInt Result = EVResult.Val.getInt();
8137         const uint64_t SamplerValue = Result.getLimitedValue();
8138         // 32-bit value of sampler's initializer is interpreted as
8139         // bit-field with the following structure:
8140         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8141         // |31        6|5    4|3             1|                 0|
8142         // This structure corresponds to enum values of sampler properties
8143         // defined in SPIR spec v1.2 and also opencl-c.h
8144         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8145         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8146         if (FilterMode != 1 && FilterMode != 2 &&
8147             !S.getOpenCLOptions().isEnabled(
8148                 "cl_intel_device_side_avc_motion_estimation"))
8149           S.Diag(Kind.getLocation(),
8150                  diag::warn_sampler_initializer_invalid_bits)
8151                  << "Filter Mode";
8152         if (AddressingMode > 4)
8153           S.Diag(Kind.getLocation(),
8154                  diag::warn_sampler_initializer_invalid_bits)
8155                  << "Addressing Mode";
8156       }
8157 
8158       // Cases 1a, 2a and 2b
8159       // Insert cast from integer to sampler.
8160       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8161                                       CK_IntToOCLSampler);
8162       break;
8163     }
8164     case SK_OCLZeroOpaqueType: {
8165       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8166               Step->Type->isOCLIntelSubgroupAVCType()) &&
8167              "Wrong type for initialization of OpenCL opaque type.");
8168 
8169       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8170                                     CK_ZeroToOCLOpaqueType,
8171                                     CurInit.get()->getValueKind());
8172       break;
8173     }
8174     }
8175   }
8176 
8177   // Check whether the initializer has a shorter lifetime than the initialized
8178   // entity, and if not, either lifetime-extend or warn as appropriate.
8179   if (auto *Init = CurInit.get())
8180     S.checkInitializerLifetime(Entity, Init);
8181 
8182   // Diagnose non-fatal problems with the completed initialization.
8183   if (Entity.getKind() == InitializedEntity::EK_Member &&
8184       cast<FieldDecl>(Entity.getDecl())->isBitField())
8185     S.CheckBitFieldInitialization(Kind.getLocation(),
8186                                   cast<FieldDecl>(Entity.getDecl()),
8187                                   CurInit.get());
8188 
8189   // Check for std::move on construction.
8190   if (const Expr *E = CurInit.get()) {
8191     CheckMoveOnConstruction(S, E,
8192                             Entity.getKind() == InitializedEntity::EK_Result);
8193   }
8194 
8195   return CurInit;
8196 }
8197 
8198 /// Somewhere within T there is an uninitialized reference subobject.
8199 /// Dig it out and diagnose it.
8200 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8201                                            QualType T) {
8202   if (T->isReferenceType()) {
8203     S.Diag(Loc, diag::err_reference_without_init)
8204       << T.getNonReferenceType();
8205     return true;
8206   }
8207 
8208   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8209   if (!RD || !RD->hasUninitializedReferenceMember())
8210     return false;
8211 
8212   for (const auto *FI : RD->fields()) {
8213     if (FI->isUnnamedBitfield())
8214       continue;
8215 
8216     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8217       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8218       return true;
8219     }
8220   }
8221 
8222   for (const auto &BI : RD->bases()) {
8223     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8224       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8225       return true;
8226     }
8227   }
8228 
8229   return false;
8230 }
8231 
8232 
8233 //===----------------------------------------------------------------------===//
8234 // Diagnose initialization failures
8235 //===----------------------------------------------------------------------===//
8236 
8237 /// Emit notes associated with an initialization that failed due to a
8238 /// "simple" conversion failure.
8239 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8240                                    Expr *op) {
8241   QualType destType = entity.getType();
8242   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8243       op->getType()->isObjCObjectPointerType()) {
8244 
8245     // Emit a possible note about the conversion failing because the
8246     // operand is a message send with a related result type.
8247     S.EmitRelatedResultTypeNote(op);
8248 
8249     // Emit a possible note about a return failing because we're
8250     // expecting a related result type.
8251     if (entity.getKind() == InitializedEntity::EK_Result)
8252       S.EmitRelatedResultTypeNoteForReturn(destType);
8253   }
8254 }
8255 
8256 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8257                              InitListExpr *InitList) {
8258   QualType DestType = Entity.getType();
8259 
8260   QualType E;
8261   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8262     QualType ArrayType = S.Context.getConstantArrayType(
8263         E.withConst(),
8264         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8265                     InitList->getNumInits()),
8266         clang::ArrayType::Normal, 0);
8267     InitializedEntity HiddenArray =
8268         InitializedEntity::InitializeTemporary(ArrayType);
8269     return diagnoseListInit(S, HiddenArray, InitList);
8270   }
8271 
8272   if (DestType->isReferenceType()) {
8273     // A list-initialization failure for a reference means that we tried to
8274     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8275     // inner initialization failed.
8276     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8277     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8278     SourceLocation Loc = InitList->getBeginLoc();
8279     if (auto *D = Entity.getDecl())
8280       Loc = D->getLocation();
8281     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8282     return;
8283   }
8284 
8285   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8286                                    /*VerifyOnly=*/false,
8287                                    /*TreatUnavailableAsInvalid=*/false);
8288   assert(DiagnoseInitList.HadError() &&
8289          "Inconsistent init list check result.");
8290 }
8291 
8292 bool InitializationSequence::Diagnose(Sema &S,
8293                                       const InitializedEntity &Entity,
8294                                       const InitializationKind &Kind,
8295                                       ArrayRef<Expr *> Args) {
8296   if (!Failed())
8297     return false;
8298 
8299   // When we want to diagnose only one element of a braced-init-list,
8300   // we need to factor it out.
8301   Expr *OnlyArg;
8302   if (Args.size() == 1) {
8303     auto *List = dyn_cast<InitListExpr>(Args[0]);
8304     if (List && List->getNumInits() == 1)
8305       OnlyArg = List->getInit(0);
8306     else
8307       OnlyArg = Args[0];
8308   }
8309   else
8310     OnlyArg = nullptr;
8311 
8312   QualType DestType = Entity.getType();
8313   switch (Failure) {
8314   case FK_TooManyInitsForReference:
8315     // FIXME: Customize for the initialized entity?
8316     if (Args.empty()) {
8317       // Dig out the reference subobject which is uninitialized and diagnose it.
8318       // If this is value-initialization, this could be nested some way within
8319       // the target type.
8320       assert(Kind.getKind() == InitializationKind::IK_Value ||
8321              DestType->isReferenceType());
8322       bool Diagnosed =
8323         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8324       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8325       (void)Diagnosed;
8326     } else  // FIXME: diagnostic below could be better!
8327       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8328           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8329     break;
8330   case FK_ParenthesizedListInitForReference:
8331     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8332       << 1 << Entity.getType() << Args[0]->getSourceRange();
8333     break;
8334 
8335   case FK_ArrayNeedsInitList:
8336     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8337     break;
8338   case FK_ArrayNeedsInitListOrStringLiteral:
8339     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8340     break;
8341   case FK_ArrayNeedsInitListOrWideStringLiteral:
8342     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8343     break;
8344   case FK_NarrowStringIntoWideCharArray:
8345     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8346     break;
8347   case FK_WideStringIntoCharArray:
8348     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8349     break;
8350   case FK_IncompatWideStringIntoWideChar:
8351     S.Diag(Kind.getLocation(),
8352            diag::err_array_init_incompat_wide_string_into_wchar);
8353     break;
8354   case FK_PlainStringIntoUTF8Char:
8355     S.Diag(Kind.getLocation(),
8356            diag::err_array_init_plain_string_into_char8_t);
8357     S.Diag(Args.front()->getBeginLoc(),
8358            diag::note_array_init_plain_string_into_char8_t)
8359         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8360     break;
8361   case FK_UTF8StringIntoPlainChar:
8362     S.Diag(Kind.getLocation(),
8363            diag::err_array_init_utf8_string_into_char)
8364       << S.getLangOpts().CPlusPlus2a;
8365     break;
8366   case FK_ArrayTypeMismatch:
8367   case FK_NonConstantArrayInit:
8368     S.Diag(Kind.getLocation(),
8369            (Failure == FK_ArrayTypeMismatch
8370               ? diag::err_array_init_different_type
8371               : diag::err_array_init_non_constant_array))
8372       << DestType.getNonReferenceType()
8373       << OnlyArg->getType()
8374       << Args[0]->getSourceRange();
8375     break;
8376 
8377   case FK_VariableLengthArrayHasInitializer:
8378     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8379       << Args[0]->getSourceRange();
8380     break;
8381 
8382   case FK_AddressOfOverloadFailed: {
8383     DeclAccessPair Found;
8384     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8385                                          DestType.getNonReferenceType(),
8386                                          true,
8387                                          Found);
8388     break;
8389   }
8390 
8391   case FK_AddressOfUnaddressableFunction: {
8392     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8393     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8394                                         OnlyArg->getBeginLoc());
8395     break;
8396   }
8397 
8398   case FK_ReferenceInitOverloadFailed:
8399   case FK_UserConversionOverloadFailed:
8400     switch (FailedOverloadResult) {
8401     case OR_Ambiguous:
8402       if (Failure == FK_UserConversionOverloadFailed)
8403         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8404           << OnlyArg->getType() << DestType
8405           << Args[0]->getSourceRange();
8406       else
8407         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8408           << DestType << OnlyArg->getType()
8409           << Args[0]->getSourceRange();
8410 
8411       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8412       break;
8413 
8414     case OR_No_Viable_Function:
8415       if (!S.RequireCompleteType(Kind.getLocation(),
8416                                  DestType.getNonReferenceType(),
8417                           diag::err_typecheck_nonviable_condition_incomplete,
8418                                OnlyArg->getType(), Args[0]->getSourceRange()))
8419         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8420           << (Entity.getKind() == InitializedEntity::EK_Result)
8421           << OnlyArg->getType() << Args[0]->getSourceRange()
8422           << DestType.getNonReferenceType();
8423 
8424       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8425       break;
8426 
8427     case OR_Deleted: {
8428       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8429         << OnlyArg->getType() << DestType.getNonReferenceType()
8430         << Args[0]->getSourceRange();
8431       OverloadCandidateSet::iterator Best;
8432       OverloadingResult Ovl
8433         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8434       if (Ovl == OR_Deleted) {
8435         S.NoteDeletedFunction(Best->Function);
8436       } else {
8437         llvm_unreachable("Inconsistent overload resolution?");
8438       }
8439       break;
8440     }
8441 
8442     case OR_Success:
8443       llvm_unreachable("Conversion did not fail!");
8444     }
8445     break;
8446 
8447   case FK_NonConstLValueReferenceBindingToTemporary:
8448     if (isa<InitListExpr>(Args[0])) {
8449       S.Diag(Kind.getLocation(),
8450              diag::err_lvalue_reference_bind_to_initlist)
8451       << DestType.getNonReferenceType().isVolatileQualified()
8452       << DestType.getNonReferenceType()
8453       << Args[0]->getSourceRange();
8454       break;
8455     }
8456     LLVM_FALLTHROUGH;
8457 
8458   case FK_NonConstLValueReferenceBindingToUnrelated:
8459     S.Diag(Kind.getLocation(),
8460            Failure == FK_NonConstLValueReferenceBindingToTemporary
8461              ? diag::err_lvalue_reference_bind_to_temporary
8462              : diag::err_lvalue_reference_bind_to_unrelated)
8463       << DestType.getNonReferenceType().isVolatileQualified()
8464       << DestType.getNonReferenceType()
8465       << OnlyArg->getType()
8466       << Args[0]->getSourceRange();
8467     break;
8468 
8469   case FK_NonConstLValueReferenceBindingToBitfield: {
8470     // We don't necessarily have an unambiguous source bit-field.
8471     FieldDecl *BitField = Args[0]->getSourceBitField();
8472     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8473       << DestType.isVolatileQualified()
8474       << (BitField ? BitField->getDeclName() : DeclarationName())
8475       << (BitField != nullptr)
8476       << Args[0]->getSourceRange();
8477     if (BitField)
8478       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8479     break;
8480   }
8481 
8482   case FK_NonConstLValueReferenceBindingToVectorElement:
8483     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8484       << DestType.isVolatileQualified()
8485       << Args[0]->getSourceRange();
8486     break;
8487 
8488   case FK_RValueReferenceBindingToLValue:
8489     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8490       << DestType.getNonReferenceType() << OnlyArg->getType()
8491       << Args[0]->getSourceRange();
8492     break;
8493 
8494   case FK_ReferenceInitDropsQualifiers: {
8495     QualType SourceType = OnlyArg->getType();
8496     QualType NonRefType = DestType.getNonReferenceType();
8497     Qualifiers DroppedQualifiers =
8498         SourceType.getQualifiers() - NonRefType.getQualifiers();
8499 
8500     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8501       << SourceType
8502       << NonRefType
8503       << DroppedQualifiers.getCVRQualifiers()
8504       << Args[0]->getSourceRange();
8505     break;
8506   }
8507 
8508   case FK_ReferenceInitFailed:
8509     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8510       << DestType.getNonReferenceType()
8511       << DestType.getNonReferenceType()->isIncompleteType()
8512       << OnlyArg->isLValue()
8513       << OnlyArg->getType()
8514       << Args[0]->getSourceRange();
8515     emitBadConversionNotes(S, Entity, Args[0]);
8516     break;
8517 
8518   case FK_ConversionFailed: {
8519     QualType FromType = OnlyArg->getType();
8520     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8521       << (int)Entity.getKind()
8522       << DestType
8523       << OnlyArg->isLValue()
8524       << FromType
8525       << Args[0]->getSourceRange();
8526     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8527     S.Diag(Kind.getLocation(), PDiag);
8528     emitBadConversionNotes(S, Entity, Args[0]);
8529     break;
8530   }
8531 
8532   case FK_ConversionFromPropertyFailed:
8533     // No-op. This error has already been reported.
8534     break;
8535 
8536   case FK_TooManyInitsForScalar: {
8537     SourceRange R;
8538 
8539     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8540     if (InitList && InitList->getNumInits() >= 1) {
8541       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8542     } else {
8543       assert(Args.size() > 1 && "Expected multiple initializers!");
8544       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8545     }
8546 
8547     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8548     if (Kind.isCStyleOrFunctionalCast())
8549       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8550         << R;
8551     else
8552       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8553         << /*scalar=*/2 << R;
8554     break;
8555   }
8556 
8557   case FK_ParenthesizedListInitForScalar:
8558     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8559       << 0 << Entity.getType() << Args[0]->getSourceRange();
8560     break;
8561 
8562   case FK_ReferenceBindingToInitList:
8563     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8564       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8565     break;
8566 
8567   case FK_InitListBadDestinationType:
8568     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8569       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8570     break;
8571 
8572   case FK_ListConstructorOverloadFailed:
8573   case FK_ConstructorOverloadFailed: {
8574     SourceRange ArgsRange;
8575     if (Args.size())
8576       ArgsRange =
8577           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8578 
8579     if (Failure == FK_ListConstructorOverloadFailed) {
8580       assert(Args.size() == 1 &&
8581              "List construction from other than 1 argument.");
8582       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8583       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8584     }
8585 
8586     // FIXME: Using "DestType" for the entity we're printing is probably
8587     // bad.
8588     switch (FailedOverloadResult) {
8589       case OR_Ambiguous:
8590         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8591           << DestType << ArgsRange;
8592         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8593         break;
8594 
8595       case OR_No_Viable_Function:
8596         if (Kind.getKind() == InitializationKind::IK_Default &&
8597             (Entity.getKind() == InitializedEntity::EK_Base ||
8598              Entity.getKind() == InitializedEntity::EK_Member) &&
8599             isa<CXXConstructorDecl>(S.CurContext)) {
8600           // This is implicit default initialization of a member or
8601           // base within a constructor. If no viable function was
8602           // found, notify the user that they need to explicitly
8603           // initialize this base/member.
8604           CXXConstructorDecl *Constructor
8605             = cast<CXXConstructorDecl>(S.CurContext);
8606           const CXXRecordDecl *InheritedFrom = nullptr;
8607           if (auto Inherited = Constructor->getInheritedConstructor())
8608             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8609           if (Entity.getKind() == InitializedEntity::EK_Base) {
8610             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8611               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8612               << S.Context.getTypeDeclType(Constructor->getParent())
8613               << /*base=*/0
8614               << Entity.getType()
8615               << InheritedFrom;
8616 
8617             RecordDecl *BaseDecl
8618               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8619                                                                   ->getDecl();
8620             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8621               << S.Context.getTagDeclType(BaseDecl);
8622           } else {
8623             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8624               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8625               << S.Context.getTypeDeclType(Constructor->getParent())
8626               << /*member=*/1
8627               << Entity.getName()
8628               << InheritedFrom;
8629             S.Diag(Entity.getDecl()->getLocation(),
8630                    diag::note_member_declared_at);
8631 
8632             if (const RecordType *Record
8633                                  = Entity.getType()->getAs<RecordType>())
8634               S.Diag(Record->getDecl()->getLocation(),
8635                      diag::note_previous_decl)
8636                 << S.Context.getTagDeclType(Record->getDecl());
8637           }
8638           break;
8639         }
8640 
8641         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8642           << DestType << ArgsRange;
8643         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8644         break;
8645 
8646       case OR_Deleted: {
8647         OverloadCandidateSet::iterator Best;
8648         OverloadingResult Ovl
8649           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8650         if (Ovl != OR_Deleted) {
8651           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8652               << DestType << ArgsRange;
8653           llvm_unreachable("Inconsistent overload resolution?");
8654           break;
8655         }
8656 
8657         // If this is a defaulted or implicitly-declared function, then
8658         // it was implicitly deleted. Make it clear that the deletion was
8659         // implicit.
8660         if (S.isImplicitlyDeleted(Best->Function))
8661           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8662             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8663             << DestType << ArgsRange;
8664         else
8665           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8666               << DestType << ArgsRange;
8667 
8668         S.NoteDeletedFunction(Best->Function);
8669         break;
8670       }
8671 
8672       case OR_Success:
8673         llvm_unreachable("Conversion did not fail!");
8674     }
8675   }
8676   break;
8677 
8678   case FK_DefaultInitOfConst:
8679     if (Entity.getKind() == InitializedEntity::EK_Member &&
8680         isa<CXXConstructorDecl>(S.CurContext)) {
8681       // This is implicit default-initialization of a const member in
8682       // a constructor. Complain that it needs to be explicitly
8683       // initialized.
8684       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8685       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8686         << (Constructor->getInheritedConstructor() ? 2 :
8687             Constructor->isImplicit() ? 1 : 0)
8688         << S.Context.getTypeDeclType(Constructor->getParent())
8689         << /*const=*/1
8690         << Entity.getName();
8691       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8692         << Entity.getName();
8693     } else {
8694       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8695           << DestType << (bool)DestType->getAs<RecordType>();
8696     }
8697     break;
8698 
8699   case FK_Incomplete:
8700     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8701                           diag::err_init_incomplete_type);
8702     break;
8703 
8704   case FK_ListInitializationFailed: {
8705     // Run the init list checker again to emit diagnostics.
8706     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8707     diagnoseListInit(S, Entity, InitList);
8708     break;
8709   }
8710 
8711   case FK_PlaceholderType: {
8712     // FIXME: Already diagnosed!
8713     break;
8714   }
8715 
8716   case FK_ExplicitConstructor: {
8717     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8718       << Args[0]->getSourceRange();
8719     OverloadCandidateSet::iterator Best;
8720     OverloadingResult Ovl
8721       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8722     (void)Ovl;
8723     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8724     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8725     S.Diag(CtorDecl->getLocation(),
8726            diag::note_explicit_ctor_deduction_guide_here) << false;
8727     break;
8728   }
8729   }
8730 
8731   PrintInitLocationNote(S, Entity);
8732   return true;
8733 }
8734 
8735 void InitializationSequence::dump(raw_ostream &OS) const {
8736   switch (SequenceKind) {
8737   case FailedSequence: {
8738     OS << "Failed sequence: ";
8739     switch (Failure) {
8740     case FK_TooManyInitsForReference:
8741       OS << "too many initializers for reference";
8742       break;
8743 
8744     case FK_ParenthesizedListInitForReference:
8745       OS << "parenthesized list init for reference";
8746       break;
8747 
8748     case FK_ArrayNeedsInitList:
8749       OS << "array requires initializer list";
8750       break;
8751 
8752     case FK_AddressOfUnaddressableFunction:
8753       OS << "address of unaddressable function was taken";
8754       break;
8755 
8756     case FK_ArrayNeedsInitListOrStringLiteral:
8757       OS << "array requires initializer list or string literal";
8758       break;
8759 
8760     case FK_ArrayNeedsInitListOrWideStringLiteral:
8761       OS << "array requires initializer list or wide string literal";
8762       break;
8763 
8764     case FK_NarrowStringIntoWideCharArray:
8765       OS << "narrow string into wide char array";
8766       break;
8767 
8768     case FK_WideStringIntoCharArray:
8769       OS << "wide string into char array";
8770       break;
8771 
8772     case FK_IncompatWideStringIntoWideChar:
8773       OS << "incompatible wide string into wide char array";
8774       break;
8775 
8776     case FK_PlainStringIntoUTF8Char:
8777       OS << "plain string literal into char8_t array";
8778       break;
8779 
8780     case FK_UTF8StringIntoPlainChar:
8781       OS << "u8 string literal into char array";
8782       break;
8783 
8784     case FK_ArrayTypeMismatch:
8785       OS << "array type mismatch";
8786       break;
8787 
8788     case FK_NonConstantArrayInit:
8789       OS << "non-constant array initializer";
8790       break;
8791 
8792     case FK_AddressOfOverloadFailed:
8793       OS << "address of overloaded function failed";
8794       break;
8795 
8796     case FK_ReferenceInitOverloadFailed:
8797       OS << "overload resolution for reference initialization failed";
8798       break;
8799 
8800     case FK_NonConstLValueReferenceBindingToTemporary:
8801       OS << "non-const lvalue reference bound to temporary";
8802       break;
8803 
8804     case FK_NonConstLValueReferenceBindingToBitfield:
8805       OS << "non-const lvalue reference bound to bit-field";
8806       break;
8807 
8808     case FK_NonConstLValueReferenceBindingToVectorElement:
8809       OS << "non-const lvalue reference bound to vector element";
8810       break;
8811 
8812     case FK_NonConstLValueReferenceBindingToUnrelated:
8813       OS << "non-const lvalue reference bound to unrelated type";
8814       break;
8815 
8816     case FK_RValueReferenceBindingToLValue:
8817       OS << "rvalue reference bound to an lvalue";
8818       break;
8819 
8820     case FK_ReferenceInitDropsQualifiers:
8821       OS << "reference initialization drops qualifiers";
8822       break;
8823 
8824     case FK_ReferenceInitFailed:
8825       OS << "reference initialization failed";
8826       break;
8827 
8828     case FK_ConversionFailed:
8829       OS << "conversion failed";
8830       break;
8831 
8832     case FK_ConversionFromPropertyFailed:
8833       OS << "conversion from property failed";
8834       break;
8835 
8836     case FK_TooManyInitsForScalar:
8837       OS << "too many initializers for scalar";
8838       break;
8839 
8840     case FK_ParenthesizedListInitForScalar:
8841       OS << "parenthesized list init for reference";
8842       break;
8843 
8844     case FK_ReferenceBindingToInitList:
8845       OS << "referencing binding to initializer list";
8846       break;
8847 
8848     case FK_InitListBadDestinationType:
8849       OS << "initializer list for non-aggregate, non-scalar type";
8850       break;
8851 
8852     case FK_UserConversionOverloadFailed:
8853       OS << "overloading failed for user-defined conversion";
8854       break;
8855 
8856     case FK_ConstructorOverloadFailed:
8857       OS << "constructor overloading failed";
8858       break;
8859 
8860     case FK_DefaultInitOfConst:
8861       OS << "default initialization of a const variable";
8862       break;
8863 
8864     case FK_Incomplete:
8865       OS << "initialization of incomplete type";
8866       break;
8867 
8868     case FK_ListInitializationFailed:
8869       OS << "list initialization checker failure";
8870       break;
8871 
8872     case FK_VariableLengthArrayHasInitializer:
8873       OS << "variable length array has an initializer";
8874       break;
8875 
8876     case FK_PlaceholderType:
8877       OS << "initializer expression isn't contextually valid";
8878       break;
8879 
8880     case FK_ListConstructorOverloadFailed:
8881       OS << "list constructor overloading failed";
8882       break;
8883 
8884     case FK_ExplicitConstructor:
8885       OS << "list copy initialization chose explicit constructor";
8886       break;
8887     }
8888     OS << '\n';
8889     return;
8890   }
8891 
8892   case DependentSequence:
8893     OS << "Dependent sequence\n";
8894     return;
8895 
8896   case NormalSequence:
8897     OS << "Normal sequence: ";
8898     break;
8899   }
8900 
8901   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8902     if (S != step_begin()) {
8903       OS << " -> ";
8904     }
8905 
8906     switch (S->Kind) {
8907     case SK_ResolveAddressOfOverloadedFunction:
8908       OS << "resolve address of overloaded function";
8909       break;
8910 
8911     case SK_CastDerivedToBaseRValue:
8912       OS << "derived-to-base (rvalue)";
8913       break;
8914 
8915     case SK_CastDerivedToBaseXValue:
8916       OS << "derived-to-base (xvalue)";
8917       break;
8918 
8919     case SK_CastDerivedToBaseLValue:
8920       OS << "derived-to-base (lvalue)";
8921       break;
8922 
8923     case SK_BindReference:
8924       OS << "bind reference to lvalue";
8925       break;
8926 
8927     case SK_BindReferenceToTemporary:
8928       OS << "bind reference to a temporary";
8929       break;
8930 
8931     case SK_FinalCopy:
8932       OS << "final copy in class direct-initialization";
8933       break;
8934 
8935     case SK_ExtraneousCopyToTemporary:
8936       OS << "extraneous C++03 copy to temporary";
8937       break;
8938 
8939     case SK_UserConversion:
8940       OS << "user-defined conversion via " << *S->Function.Function;
8941       break;
8942 
8943     case SK_QualificationConversionRValue:
8944       OS << "qualification conversion (rvalue)";
8945       break;
8946 
8947     case SK_QualificationConversionXValue:
8948       OS << "qualification conversion (xvalue)";
8949       break;
8950 
8951     case SK_QualificationConversionLValue:
8952       OS << "qualification conversion (lvalue)";
8953       break;
8954 
8955     case SK_AtomicConversion:
8956       OS << "non-atomic-to-atomic conversion";
8957       break;
8958 
8959     case SK_LValueToRValue:
8960       OS << "load (lvalue to rvalue)";
8961       break;
8962 
8963     case SK_ConversionSequence:
8964       OS << "implicit conversion sequence (";
8965       S->ICS->dump(); // FIXME: use OS
8966       OS << ")";
8967       break;
8968 
8969     case SK_ConversionSequenceNoNarrowing:
8970       OS << "implicit conversion sequence with narrowing prohibited (";
8971       S->ICS->dump(); // FIXME: use OS
8972       OS << ")";
8973       break;
8974 
8975     case SK_ListInitialization:
8976       OS << "list aggregate initialization";
8977       break;
8978 
8979     case SK_UnwrapInitList:
8980       OS << "unwrap reference initializer list";
8981       break;
8982 
8983     case SK_RewrapInitList:
8984       OS << "rewrap reference initializer list";
8985       break;
8986 
8987     case SK_ConstructorInitialization:
8988       OS << "constructor initialization";
8989       break;
8990 
8991     case SK_ConstructorInitializationFromList:
8992       OS << "list initialization via constructor";
8993       break;
8994 
8995     case SK_ZeroInitialization:
8996       OS << "zero initialization";
8997       break;
8998 
8999     case SK_CAssignment:
9000       OS << "C assignment";
9001       break;
9002 
9003     case SK_StringInit:
9004       OS << "string initialization";
9005       break;
9006 
9007     case SK_ObjCObjectConversion:
9008       OS << "Objective-C object conversion";
9009       break;
9010 
9011     case SK_ArrayLoopIndex:
9012       OS << "indexing for array initialization loop";
9013       break;
9014 
9015     case SK_ArrayLoopInit:
9016       OS << "array initialization loop";
9017       break;
9018 
9019     case SK_ArrayInit:
9020       OS << "array initialization";
9021       break;
9022 
9023     case SK_GNUArrayInit:
9024       OS << "array initialization (GNU extension)";
9025       break;
9026 
9027     case SK_ParenthesizedArrayInit:
9028       OS << "parenthesized array initialization";
9029       break;
9030 
9031     case SK_PassByIndirectCopyRestore:
9032       OS << "pass by indirect copy and restore";
9033       break;
9034 
9035     case SK_PassByIndirectRestore:
9036       OS << "pass by indirect restore";
9037       break;
9038 
9039     case SK_ProduceObjCObject:
9040       OS << "Objective-C object retension";
9041       break;
9042 
9043     case SK_StdInitializerList:
9044       OS << "std::initializer_list from initializer list";
9045       break;
9046 
9047     case SK_StdInitializerListConstructorCall:
9048       OS << "list initialization from std::initializer_list";
9049       break;
9050 
9051     case SK_OCLSamplerInit:
9052       OS << "OpenCL sampler_t from integer constant";
9053       break;
9054 
9055     case SK_OCLZeroOpaqueType:
9056       OS << "OpenCL opaque type from zero";
9057       break;
9058     }
9059 
9060     OS << " [" << S->Type.getAsString() << ']';
9061   }
9062 
9063   OS << '\n';
9064 }
9065 
9066 void InitializationSequence::dump() const {
9067   dump(llvm::errs());
9068 }
9069 
9070 static bool NarrowingErrs(const LangOptions &L) {
9071   return L.CPlusPlus11 &&
9072          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9073 }
9074 
9075 static void DiagnoseNarrowingInInitList(Sema &S,
9076                                         const ImplicitConversionSequence &ICS,
9077                                         QualType PreNarrowingType,
9078                                         QualType EntityType,
9079                                         const Expr *PostInit) {
9080   const StandardConversionSequence *SCS = nullptr;
9081   switch (ICS.getKind()) {
9082   case ImplicitConversionSequence::StandardConversion:
9083     SCS = &ICS.Standard;
9084     break;
9085   case ImplicitConversionSequence::UserDefinedConversion:
9086     SCS = &ICS.UserDefined.After;
9087     break;
9088   case ImplicitConversionSequence::AmbiguousConversion:
9089   case ImplicitConversionSequence::EllipsisConversion:
9090   case ImplicitConversionSequence::BadConversion:
9091     return;
9092   }
9093 
9094   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9095   APValue ConstantValue;
9096   QualType ConstantType;
9097   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9098                                 ConstantType)) {
9099   case NK_Not_Narrowing:
9100   case NK_Dependent_Narrowing:
9101     // No narrowing occurred.
9102     return;
9103 
9104   case NK_Type_Narrowing:
9105     // This was a floating-to-integer conversion, which is always considered a
9106     // narrowing conversion even if the value is a constant and can be
9107     // represented exactly as an integer.
9108     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9109                                         ? diag::ext_init_list_type_narrowing
9110                                         : diag::warn_init_list_type_narrowing)
9111         << PostInit->getSourceRange()
9112         << PreNarrowingType.getLocalUnqualifiedType()
9113         << EntityType.getLocalUnqualifiedType();
9114     break;
9115 
9116   case NK_Constant_Narrowing:
9117     // A constant value was narrowed.
9118     S.Diag(PostInit->getBeginLoc(),
9119            NarrowingErrs(S.getLangOpts())
9120                ? diag::ext_init_list_constant_narrowing
9121                : diag::warn_init_list_constant_narrowing)
9122         << PostInit->getSourceRange()
9123         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9124         << EntityType.getLocalUnqualifiedType();
9125     break;
9126 
9127   case NK_Variable_Narrowing:
9128     // A variable's value may have been narrowed.
9129     S.Diag(PostInit->getBeginLoc(),
9130            NarrowingErrs(S.getLangOpts())
9131                ? diag::ext_init_list_variable_narrowing
9132                : diag::warn_init_list_variable_narrowing)
9133         << PostInit->getSourceRange()
9134         << PreNarrowingType.getLocalUnqualifiedType()
9135         << EntityType.getLocalUnqualifiedType();
9136     break;
9137   }
9138 
9139   SmallString<128> StaticCast;
9140   llvm::raw_svector_ostream OS(StaticCast);
9141   OS << "static_cast<";
9142   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9143     // It's important to use the typedef's name if there is one so that the
9144     // fixit doesn't break code using types like int64_t.
9145     //
9146     // FIXME: This will break if the typedef requires qualification.  But
9147     // getQualifiedNameAsString() includes non-machine-parsable components.
9148     OS << *TT->getDecl();
9149   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9150     OS << BT->getName(S.getLangOpts());
9151   else {
9152     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9153     // with a broken cast.
9154     return;
9155   }
9156   OS << ">(";
9157   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9158       << PostInit->getSourceRange()
9159       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9160       << FixItHint::CreateInsertion(
9161              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9162 }
9163 
9164 //===----------------------------------------------------------------------===//
9165 // Initialization helper functions
9166 //===----------------------------------------------------------------------===//
9167 bool
9168 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9169                                    ExprResult Init) {
9170   if (Init.isInvalid())
9171     return false;
9172 
9173   Expr *InitE = Init.get();
9174   assert(InitE && "No initialization expression");
9175 
9176   InitializationKind Kind =
9177       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9178   InitializationSequence Seq(*this, Entity, Kind, InitE);
9179   return !Seq.Failed();
9180 }
9181 
9182 ExprResult
9183 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9184                                 SourceLocation EqualLoc,
9185                                 ExprResult Init,
9186                                 bool TopLevelOfInitList,
9187                                 bool AllowExplicit) {
9188   if (Init.isInvalid())
9189     return ExprError();
9190 
9191   Expr *InitE = Init.get();
9192   assert(InitE && "No initialization expression?");
9193 
9194   if (EqualLoc.isInvalid())
9195     EqualLoc = InitE->getBeginLoc();
9196 
9197   InitializationKind Kind = InitializationKind::CreateCopy(
9198       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9199   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9200 
9201   // Prevent infinite recursion when performing parameter copy-initialization.
9202   const bool ShouldTrackCopy =
9203       Entity.isParameterKind() && Seq.isConstructorInitialization();
9204   if (ShouldTrackCopy) {
9205     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9206         CurrentParameterCopyTypes.end()) {
9207       Seq.SetOverloadFailure(
9208           InitializationSequence::FK_ConstructorOverloadFailed,
9209           OR_No_Viable_Function);
9210 
9211       // Try to give a meaningful diagnostic note for the problematic
9212       // constructor.
9213       const auto LastStep = Seq.step_end() - 1;
9214       assert(LastStep->Kind ==
9215              InitializationSequence::SK_ConstructorInitialization);
9216       const FunctionDecl *Function = LastStep->Function.Function;
9217       auto Candidate =
9218           llvm::find_if(Seq.getFailedCandidateSet(),
9219                         [Function](const OverloadCandidate &Candidate) -> bool {
9220                           return Candidate.Viable &&
9221                                  Candidate.Function == Function &&
9222                                  Candidate.Conversions.size() > 0;
9223                         });
9224       if (Candidate != Seq.getFailedCandidateSet().end() &&
9225           Function->getNumParams() > 0) {
9226         Candidate->Viable = false;
9227         Candidate->FailureKind = ovl_fail_bad_conversion;
9228         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9229                                          InitE,
9230                                          Function->getParamDecl(0)->getType());
9231       }
9232     }
9233     CurrentParameterCopyTypes.push_back(Entity.getType());
9234   }
9235 
9236   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9237 
9238   if (ShouldTrackCopy)
9239     CurrentParameterCopyTypes.pop_back();
9240 
9241   return Result;
9242 }
9243 
9244 /// Determine whether RD is, or is derived from, a specialization of CTD.
9245 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9246                                               ClassTemplateDecl *CTD) {
9247   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9248     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9249     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9250   };
9251   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9252 }
9253 
9254 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9255     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9256     const InitializationKind &Kind, MultiExprArg Inits) {
9257   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9258       TSInfo->getType()->getContainedDeducedType());
9259   assert(DeducedTST && "not a deduced template specialization type");
9260 
9261   auto TemplateName = DeducedTST->getTemplateName();
9262   if (TemplateName.isDependent())
9263     return Context.DependentTy;
9264 
9265   // We can only perform deduction for class templates.
9266   auto *Template =
9267       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9268   if (!Template) {
9269     Diag(Kind.getLocation(),
9270          diag::err_deduced_non_class_template_specialization_type)
9271       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9272     if (auto *TD = TemplateName.getAsTemplateDecl())
9273       Diag(TD->getLocation(), diag::note_template_decl_here);
9274     return QualType();
9275   }
9276 
9277   // Can't deduce from dependent arguments.
9278   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9279     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9280          diag::warn_cxx14_compat_class_template_argument_deduction)
9281         << TSInfo->getTypeLoc().getSourceRange() << 0;
9282     return Context.DependentTy;
9283   }
9284 
9285   // FIXME: Perform "exact type" matching first, per CWG discussion?
9286   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9287 
9288   // FIXME: Do we need/want a std::initializer_list<T> special case?
9289 
9290   // Look up deduction guides, including those synthesized from constructors.
9291   //
9292   // C++1z [over.match.class.deduct]p1:
9293   //   A set of functions and function templates is formed comprising:
9294   //   - For each constructor of the class template designated by the
9295   //     template-name, a function template [...]
9296   //  - For each deduction-guide, a function or function template [...]
9297   DeclarationNameInfo NameInfo(
9298       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9299       TSInfo->getTypeLoc().getEndLoc());
9300   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9301   LookupQualifiedName(Guides, Template->getDeclContext());
9302 
9303   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9304   // clear on this, but they're not found by name so access does not apply.
9305   Guides.suppressDiagnostics();
9306 
9307   // Figure out if this is list-initialization.
9308   InitListExpr *ListInit =
9309       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9310           ? dyn_cast<InitListExpr>(Inits[0])
9311           : nullptr;
9312 
9313   // C++1z [over.match.class.deduct]p1:
9314   //   Initialization and overload resolution are performed as described in
9315   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9316   //   (as appropriate for the type of initialization performed) for an object
9317   //   of a hypothetical class type, where the selected functions and function
9318   //   templates are considered to be the constructors of that class type
9319   //
9320   // Since we know we're initializing a class type of a type unrelated to that
9321   // of the initializer, this reduces to something fairly reasonable.
9322   OverloadCandidateSet Candidates(Kind.getLocation(),
9323                                   OverloadCandidateSet::CSK_Normal);
9324   OverloadCandidateSet::iterator Best;
9325 
9326   bool HasAnyDeductionGuide = false;
9327 
9328   auto tryToResolveOverload =
9329       [&](bool OnlyListConstructors) -> OverloadingResult {
9330     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9331     HasAnyDeductionGuide = false;
9332 
9333     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9334       NamedDecl *D = (*I)->getUnderlyingDecl();
9335       if (D->isInvalidDecl())
9336         continue;
9337 
9338       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9339       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9340           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9341       if (!GD)
9342         continue;
9343 
9344       if (!GD->isImplicit())
9345         HasAnyDeductionGuide = true;
9346 
9347       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9348       //   For copy-initialization, the candidate functions are all the
9349       //   converting constructors (12.3.1) of that class.
9350       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9351       //   The converting constructors of T are candidate functions.
9352       if (Kind.isCopyInit() && !ListInit) {
9353         // Only consider converting constructors.
9354         if (GD->isExplicit())
9355           continue;
9356 
9357         // When looking for a converting constructor, deduction guides that
9358         // could never be called with one argument are not interesting to
9359         // check or note.
9360         if (GD->getMinRequiredArguments() > 1 ||
9361             (GD->getNumParams() == 0 && !GD->isVariadic()))
9362           continue;
9363       }
9364 
9365       // C++ [over.match.list]p1.1: (first phase list initialization)
9366       //   Initially, the candidate functions are the initializer-list
9367       //   constructors of the class T
9368       if (OnlyListConstructors && !isInitListConstructor(GD))
9369         continue;
9370 
9371       // C++ [over.match.list]p1.2: (second phase list initialization)
9372       //   the candidate functions are all the constructors of the class T
9373       // C++ [over.match.ctor]p1: (all other cases)
9374       //   the candidate functions are all the constructors of the class of
9375       //   the object being initialized
9376 
9377       // C++ [over.best.ics]p4:
9378       //   When [...] the constructor [...] is a candidate by
9379       //    - [over.match.copy] (in all cases)
9380       // FIXME: The "second phase of [over.match.list] case can also
9381       // theoretically happen here, but it's not clear whether we can
9382       // ever have a parameter of the right type.
9383       bool SuppressUserConversions = Kind.isCopyInit();
9384 
9385       if (TD)
9386         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9387                                      Inits, Candidates,
9388                                      SuppressUserConversions);
9389       else
9390         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9391                              SuppressUserConversions);
9392     }
9393     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9394   };
9395 
9396   OverloadingResult Result = OR_No_Viable_Function;
9397 
9398   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9399   // try initializer-list constructors.
9400   if (ListInit) {
9401     bool TryListConstructors = true;
9402 
9403     // Try list constructors unless the list is empty and the class has one or
9404     // more default constructors, in which case those constructors win.
9405     if (!ListInit->getNumInits()) {
9406       for (NamedDecl *D : Guides) {
9407         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9408         if (FD && FD->getMinRequiredArguments() == 0) {
9409           TryListConstructors = false;
9410           break;
9411         }
9412       }
9413     } else if (ListInit->getNumInits() == 1) {
9414       // C++ [over.match.class.deduct]:
9415       //   As an exception, the first phase in [over.match.list] (considering
9416       //   initializer-list constructors) is omitted if the initializer list
9417       //   consists of a single expression of type cv U, where U is a
9418       //   specialization of C or a class derived from a specialization of C.
9419       Expr *E = ListInit->getInit(0);
9420       auto *RD = E->getType()->getAsCXXRecordDecl();
9421       if (!isa<InitListExpr>(E) && RD &&
9422           isCompleteType(Kind.getLocation(), E->getType()) &&
9423           isOrIsDerivedFromSpecializationOf(RD, Template))
9424         TryListConstructors = false;
9425     }
9426 
9427     if (TryListConstructors)
9428       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9429     // Then unwrap the initializer list and try again considering all
9430     // constructors.
9431     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9432   }
9433 
9434   // If list-initialization fails, or if we're doing any other kind of
9435   // initialization, we (eventually) consider constructors.
9436   if (Result == OR_No_Viable_Function)
9437     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9438 
9439   switch (Result) {
9440   case OR_Ambiguous:
9441     Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9442       << TemplateName;
9443     // FIXME: For list-initialization candidates, it'd usually be better to
9444     // list why they were not viable when given the initializer list itself as
9445     // an argument.
9446     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9447     return QualType();
9448 
9449   case OR_No_Viable_Function: {
9450     CXXRecordDecl *Primary =
9451         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9452     bool Complete =
9453         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9454     Diag(Kind.getLocation(),
9455          Complete ? diag::err_deduced_class_template_ctor_no_viable
9456                   : diag::err_deduced_class_template_incomplete)
9457       << TemplateName << !Guides.empty();
9458     Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9459     return QualType();
9460   }
9461 
9462   case OR_Deleted: {
9463     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9464       << TemplateName;
9465     NoteDeletedFunction(Best->Function);
9466     return QualType();
9467   }
9468 
9469   case OR_Success:
9470     // C++ [over.match.list]p1:
9471     //   In copy-list-initialization, if an explicit constructor is chosen, the
9472     //   initialization is ill-formed.
9473     if (Kind.isCopyInit() && ListInit &&
9474         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9475       bool IsDeductionGuide = !Best->Function->isImplicit();
9476       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9477           << TemplateName << IsDeductionGuide;
9478       Diag(Best->Function->getLocation(),
9479            diag::note_explicit_ctor_deduction_guide_here)
9480           << IsDeductionGuide;
9481       return QualType();
9482     }
9483 
9484     // Make sure we didn't select an unusable deduction guide, and mark it
9485     // as referenced.
9486     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9487     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9488     break;
9489   }
9490 
9491   // C++ [dcl.type.class.deduct]p1:
9492   //  The placeholder is replaced by the return type of the function selected
9493   //  by overload resolution for class template deduction.
9494   QualType DeducedType =
9495       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9496   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9497        diag::warn_cxx14_compat_class_template_argument_deduction)
9498       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9499 
9500   // Warn if CTAD was used on a type that does not have any user-defined
9501   // deduction guides.
9502   if (!HasAnyDeductionGuide) {
9503     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9504          diag::warn_ctad_maybe_unsupported)
9505         << TemplateName;
9506     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9507   }
9508 
9509   return DeducedType;
9510 }
9511