1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/SourceManager.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/Designator.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/SemaInternal.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace clang; 32 33 //===----------------------------------------------------------------------===// 34 // Sema Initialization Checking 35 //===----------------------------------------------------------------------===// 36 37 /// Check whether T is compatible with a wide character type (wchar_t, 38 /// char16_t or char32_t). 39 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 40 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 41 return true; 42 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 43 return Context.typesAreCompatible(Context.Char16Ty, T) || 44 Context.typesAreCompatible(Context.Char32Ty, T); 45 } 46 return false; 47 } 48 49 enum StringInitFailureKind { 50 SIF_None, 51 SIF_NarrowStringIntoWideChar, 52 SIF_WideStringIntoChar, 53 SIF_IncompatWideStringIntoWideChar, 54 SIF_UTF8StringIntoPlainChar, 55 SIF_PlainStringIntoUTF8Char, 56 SIF_Other 57 }; 58 59 /// Check whether the array of type AT can be initialized by the Init 60 /// expression by means of string initialization. Returns SIF_None if so, 61 /// otherwise returns a StringInitFailureKind that describes why the 62 /// initialization would not work. 63 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 64 ASTContext &Context) { 65 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 66 return SIF_Other; 67 68 // See if this is a string literal or @encode. 69 Init = Init->IgnoreParens(); 70 71 // Handle @encode, which is a narrow string. 72 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 73 return SIF_None; 74 75 // Otherwise we can only handle string literals. 76 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 77 if (!SL) 78 return SIF_Other; 79 80 const QualType ElemTy = 81 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 82 83 switch (SL->getKind()) { 84 case StringLiteral::UTF8: 85 // char8_t array can be initialized with a UTF-8 string. 86 if (ElemTy->isChar8Type()) 87 return SIF_None; 88 LLVM_FALLTHROUGH; 89 case StringLiteral::Ascii: 90 // char array can be initialized with a narrow string. 91 // Only allow char x[] = "foo"; not char x[] = L"foo"; 92 if (ElemTy->isCharType()) 93 return (SL->getKind() == StringLiteral::UTF8 && 94 Context.getLangOpts().Char8) 95 ? SIF_UTF8StringIntoPlainChar 96 : SIF_None; 97 if (ElemTy->isChar8Type()) 98 return SIF_PlainStringIntoUTF8Char; 99 if (IsWideCharCompatible(ElemTy, Context)) 100 return SIF_NarrowStringIntoWideChar; 101 return SIF_Other; 102 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 103 // "An array with element type compatible with a qualified or unqualified 104 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 105 // string literal with the corresponding encoding prefix (L, u, or U, 106 // respectively), optionally enclosed in braces. 107 case StringLiteral::UTF16: 108 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 109 return SIF_None; 110 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 111 return SIF_WideStringIntoChar; 112 if (IsWideCharCompatible(ElemTy, Context)) 113 return SIF_IncompatWideStringIntoWideChar; 114 return SIF_Other; 115 case StringLiteral::UTF32: 116 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 117 return SIF_None; 118 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 119 return SIF_WideStringIntoChar; 120 if (IsWideCharCompatible(ElemTy, Context)) 121 return SIF_IncompatWideStringIntoWideChar; 122 return SIF_Other; 123 case StringLiteral::Wide: 124 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 125 return SIF_None; 126 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 127 return SIF_WideStringIntoChar; 128 if (IsWideCharCompatible(ElemTy, Context)) 129 return SIF_IncompatWideStringIntoWideChar; 130 return SIF_Other; 131 } 132 133 llvm_unreachable("missed a StringLiteral kind?"); 134 } 135 136 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 137 ASTContext &Context) { 138 const ArrayType *arrayType = Context.getAsArrayType(declType); 139 if (!arrayType) 140 return SIF_Other; 141 return IsStringInit(init, arrayType, Context); 142 } 143 144 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { 145 return ::IsStringInit(Init, AT, Context) == SIF_None; 146 } 147 148 /// Update the type of a string literal, including any surrounding parentheses, 149 /// to match the type of the object which it is initializing. 150 static void updateStringLiteralType(Expr *E, QualType Ty) { 151 while (true) { 152 E->setType(Ty); 153 E->setValueKind(VK_RValue); 154 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 155 break; 156 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 157 E = PE->getSubExpr(); 158 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 159 assert(UO->getOpcode() == UO_Extension); 160 E = UO->getSubExpr(); 161 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 162 E = GSE->getResultExpr(); 163 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 164 E = CE->getChosenSubExpr(); 165 } else { 166 llvm_unreachable("unexpected expr in string literal init"); 167 } 168 } 169 } 170 171 /// Fix a compound literal initializing an array so it's correctly marked 172 /// as an rvalue. 173 static void updateGNUCompoundLiteralRValue(Expr *E) { 174 while (true) { 175 E->setValueKind(VK_RValue); 176 if (isa<CompoundLiteralExpr>(E)) { 177 break; 178 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 179 E = PE->getSubExpr(); 180 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 181 assert(UO->getOpcode() == UO_Extension); 182 E = UO->getSubExpr(); 183 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 184 E = GSE->getResultExpr(); 185 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 186 E = CE->getChosenSubExpr(); 187 } else { 188 llvm_unreachable("unexpected expr in array compound literal init"); 189 } 190 } 191 } 192 193 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 194 Sema &S) { 195 // Get the length of the string as parsed. 196 auto *ConstantArrayTy = 197 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 198 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 199 200 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 201 // C99 6.7.8p14. We have an array of character type with unknown size 202 // being initialized to a string literal. 203 llvm::APInt ConstVal(32, StrLength); 204 // Return a new array type (C99 6.7.8p22). 205 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 206 ConstVal, nullptr, 207 ArrayType::Normal, 0); 208 updateStringLiteralType(Str, DeclT); 209 return; 210 } 211 212 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 213 214 // We have an array of character type with known size. However, 215 // the size may be smaller or larger than the string we are initializing. 216 // FIXME: Avoid truncation for 64-bit length strings. 217 if (S.getLangOpts().CPlusPlus) { 218 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 219 // For Pascal strings it's OK to strip off the terminating null character, 220 // so the example below is valid: 221 // 222 // unsigned char a[2] = "\pa"; 223 if (SL->isPascal()) 224 StrLength--; 225 } 226 227 // [dcl.init.string]p2 228 if (StrLength > CAT->getSize().getZExtValue()) 229 S.Diag(Str->getBeginLoc(), 230 diag::err_initializer_string_for_char_array_too_long) 231 << Str->getSourceRange(); 232 } else { 233 // C99 6.7.8p14. 234 if (StrLength-1 > CAT->getSize().getZExtValue()) 235 S.Diag(Str->getBeginLoc(), 236 diag::ext_initializer_string_for_char_array_too_long) 237 << Str->getSourceRange(); 238 } 239 240 // Set the type to the actual size that we are initializing. If we have 241 // something like: 242 // char x[1] = "foo"; 243 // then this will set the string literal's type to char[1]. 244 updateStringLiteralType(Str, DeclT); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Semantic checking for initializer lists. 249 //===----------------------------------------------------------------------===// 250 251 namespace { 252 253 /// Semantic checking for initializer lists. 254 /// 255 /// The InitListChecker class contains a set of routines that each 256 /// handle the initialization of a certain kind of entity, e.g., 257 /// arrays, vectors, struct/union types, scalars, etc. The 258 /// InitListChecker itself performs a recursive walk of the subobject 259 /// structure of the type to be initialized, while stepping through 260 /// the initializer list one element at a time. The IList and Index 261 /// parameters to each of the Check* routines contain the active 262 /// (syntactic) initializer list and the index into that initializer 263 /// list that represents the current initializer. Each routine is 264 /// responsible for moving that Index forward as it consumes elements. 265 /// 266 /// Each Check* routine also has a StructuredList/StructuredIndex 267 /// arguments, which contains the current "structured" (semantic) 268 /// initializer list and the index into that initializer list where we 269 /// are copying initializers as we map them over to the semantic 270 /// list. Once we have completed our recursive walk of the subobject 271 /// structure, we will have constructed a full semantic initializer 272 /// list. 273 /// 274 /// C99 designators cause changes in the initializer list traversal, 275 /// because they make the initialization "jump" into a specific 276 /// subobject and then continue the initialization from that 277 /// point. CheckDesignatedInitializer() recursively steps into the 278 /// designated subobject and manages backing out the recursion to 279 /// initialize the subobjects after the one designated. 280 /// 281 /// If an initializer list contains any designators, we build a placeholder 282 /// structured list even in 'verify only' mode, so that we can track which 283 /// elements need 'empty' initializtion. 284 class InitListChecker { 285 Sema &SemaRef; 286 bool hadError = false; 287 bool VerifyOnly; // No diagnostics. 288 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 289 bool InOverloadResolution; 290 InitListExpr *FullyStructuredList = nullptr; 291 NoInitExpr *DummyExpr = nullptr; 292 293 NoInitExpr *getDummyInit() { 294 if (!DummyExpr) 295 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 296 return DummyExpr; 297 } 298 299 void CheckImplicitInitList(const InitializedEntity &Entity, 300 InitListExpr *ParentIList, QualType T, 301 unsigned &Index, InitListExpr *StructuredList, 302 unsigned &StructuredIndex); 303 void CheckExplicitInitList(const InitializedEntity &Entity, 304 InitListExpr *IList, QualType &T, 305 InitListExpr *StructuredList, 306 bool TopLevelObject = false); 307 void CheckListElementTypes(const InitializedEntity &Entity, 308 InitListExpr *IList, QualType &DeclType, 309 bool SubobjectIsDesignatorContext, 310 unsigned &Index, 311 InitListExpr *StructuredList, 312 unsigned &StructuredIndex, 313 bool TopLevelObject = false); 314 void CheckSubElementType(const InitializedEntity &Entity, 315 InitListExpr *IList, QualType ElemType, 316 unsigned &Index, 317 InitListExpr *StructuredList, 318 unsigned &StructuredIndex); 319 void CheckComplexType(const InitializedEntity &Entity, 320 InitListExpr *IList, QualType DeclType, 321 unsigned &Index, 322 InitListExpr *StructuredList, 323 unsigned &StructuredIndex); 324 void CheckScalarType(const InitializedEntity &Entity, 325 InitListExpr *IList, QualType DeclType, 326 unsigned &Index, 327 InitListExpr *StructuredList, 328 unsigned &StructuredIndex); 329 void CheckReferenceType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType DeclType, 331 unsigned &Index, 332 InitListExpr *StructuredList, 333 unsigned &StructuredIndex); 334 void CheckVectorType(const InitializedEntity &Entity, 335 InitListExpr *IList, QualType DeclType, unsigned &Index, 336 InitListExpr *StructuredList, 337 unsigned &StructuredIndex); 338 void CheckStructUnionTypes(const InitializedEntity &Entity, 339 InitListExpr *IList, QualType DeclType, 340 CXXRecordDecl::base_class_range Bases, 341 RecordDecl::field_iterator Field, 342 bool SubobjectIsDesignatorContext, unsigned &Index, 343 InitListExpr *StructuredList, 344 unsigned &StructuredIndex, 345 bool TopLevelObject = false); 346 void CheckArrayType(const InitializedEntity &Entity, 347 InitListExpr *IList, QualType &DeclType, 348 llvm::APSInt elementIndex, 349 bool SubobjectIsDesignatorContext, unsigned &Index, 350 InitListExpr *StructuredList, 351 unsigned &StructuredIndex); 352 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 353 InitListExpr *IList, DesignatedInitExpr *DIE, 354 unsigned DesigIdx, 355 QualType &CurrentObjectType, 356 RecordDecl::field_iterator *NextField, 357 llvm::APSInt *NextElementIndex, 358 unsigned &Index, 359 InitListExpr *StructuredList, 360 unsigned &StructuredIndex, 361 bool FinishSubobjectInit, 362 bool TopLevelObject); 363 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 364 QualType CurrentObjectType, 365 InitListExpr *StructuredList, 366 unsigned StructuredIndex, 367 SourceRange InitRange, 368 bool IsFullyOverwritten = false); 369 void UpdateStructuredListElement(InitListExpr *StructuredList, 370 unsigned &StructuredIndex, 371 Expr *expr); 372 InitListExpr *createInitListExpr(QualType CurrentObjectType, 373 SourceRange InitRange, 374 unsigned ExpectedNumInits); 375 int numArrayElements(QualType DeclType); 376 int numStructUnionElements(QualType DeclType); 377 378 ExprResult PerformEmptyInit(SourceLocation Loc, 379 const InitializedEntity &Entity); 380 381 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 382 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 383 bool FullyOverwritten = true) { 384 // Overriding an initializer via a designator is valid with C99 designated 385 // initializers, but ill-formed with C++20 designated initializers. 386 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 387 ? diag::ext_initializer_overrides 388 : diag::warn_initializer_overrides; 389 390 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 391 // In overload resolution, we have to strictly enforce the rules, and so 392 // don't allow any overriding of prior initializers. This matters for a 393 // case such as: 394 // 395 // union U { int a, b; }; 396 // struct S { int a, b; }; 397 // void f(U), f(S); 398 // 399 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 400 // consistency, we disallow all overriding of prior initializers in 401 // overload resolution, not only overriding of union members. 402 hadError = true; 403 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 404 // If we'll be keeping around the old initializer but overwriting part of 405 // the object it initialized, and that object is not trivially 406 // destructible, this can leak. Don't allow that, not even as an 407 // extension. 408 // 409 // FIXME: It might be reasonable to allow this in cases where the part of 410 // the initializer that we're overriding has trivial destruction. 411 DiagID = diag::err_initializer_overrides_destructed; 412 } else if (!OldInit->getSourceRange().isValid()) { 413 // We need to check on source range validity because the previous 414 // initializer does not have to be an explicit initializer. e.g., 415 // 416 // struct P { int a, b; }; 417 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 418 // 419 // There is an overwrite taking place because the first braced initializer 420 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 421 // 422 // Such overwrites are harmless, so we don't diagnose them. (Note that in 423 // C++, this cannot be reached unless we've already seen and diagnosed a 424 // different conformance issue, such as a mixture of designated and 425 // non-designated initializers or a multi-level designator.) 426 return; 427 } 428 429 if (!VerifyOnly) { 430 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 431 << NewInitRange << FullyOverwritten << OldInit->getType(); 432 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 433 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 434 << OldInit->getSourceRange(); 435 } 436 } 437 438 // Explanation on the "FillWithNoInit" mode: 439 // 440 // Assume we have the following definitions (Case#1): 441 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 442 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 443 // 444 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 445 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 446 // 447 // But if we have (Case#2): 448 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 449 // 450 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 451 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 452 // 453 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 454 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 455 // initializers but with special "NoInitExpr" place holders, which tells the 456 // CodeGen not to generate any initializers for these parts. 457 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 458 const InitializedEntity &ParentEntity, 459 InitListExpr *ILE, bool &RequiresSecondPass, 460 bool FillWithNoInit); 461 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 462 const InitializedEntity &ParentEntity, 463 InitListExpr *ILE, bool &RequiresSecondPass, 464 bool FillWithNoInit = false); 465 void FillInEmptyInitializations(const InitializedEntity &Entity, 466 InitListExpr *ILE, bool &RequiresSecondPass, 467 InitListExpr *OuterILE, unsigned OuterIndex, 468 bool FillWithNoInit = false); 469 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 470 Expr *InitExpr, FieldDecl *Field, 471 bool TopLevelObject); 472 void CheckEmptyInitializable(const InitializedEntity &Entity, 473 SourceLocation Loc); 474 475 public: 476 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 477 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 478 bool InOverloadResolution = false); 479 bool HadError() { return hadError; } 480 481 // Retrieves the fully-structured initializer list used for 482 // semantic analysis and code generation. 483 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 484 }; 485 486 } // end anonymous namespace 487 488 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 489 const InitializedEntity &Entity) { 490 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 491 true); 492 MultiExprArg SubInit; 493 Expr *InitExpr; 494 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 495 496 // C++ [dcl.init.aggr]p7: 497 // If there are fewer initializer-clauses in the list than there are 498 // members in the aggregate, then each member not explicitly initialized 499 // ... 500 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 501 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 502 if (EmptyInitList) { 503 // C++1y / DR1070: 504 // shall be initialized [...] from an empty initializer list. 505 // 506 // We apply the resolution of this DR to C++11 but not C++98, since C++98 507 // does not have useful semantics for initialization from an init list. 508 // We treat this as copy-initialization, because aggregate initialization 509 // always performs copy-initialization on its elements. 510 // 511 // Only do this if we're initializing a class type, to avoid filling in 512 // the initializer list where possible. 513 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 514 InitListExpr(SemaRef.Context, Loc, None, Loc); 515 InitExpr->setType(SemaRef.Context.VoidTy); 516 SubInit = InitExpr; 517 Kind = InitializationKind::CreateCopy(Loc, Loc); 518 } else { 519 // C++03: 520 // shall be value-initialized. 521 } 522 523 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 524 // libstdc++4.6 marks the vector default constructor as explicit in 525 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 526 // stlport does so too. Look for std::__debug for libstdc++, and for 527 // std:: for stlport. This is effectively a compiler-side implementation of 528 // LWG2193. 529 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 530 InitializationSequence::FK_ExplicitConstructor) { 531 OverloadCandidateSet::iterator Best; 532 OverloadingResult O = 533 InitSeq.getFailedCandidateSet() 534 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 535 (void)O; 536 assert(O == OR_Success && "Inconsistent overload resolution"); 537 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 538 CXXRecordDecl *R = CtorDecl->getParent(); 539 540 if (CtorDecl->getMinRequiredArguments() == 0 && 541 CtorDecl->isExplicit() && R->getDeclName() && 542 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 543 bool IsInStd = false; 544 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 545 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 546 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 547 IsInStd = true; 548 } 549 550 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 551 .Cases("basic_string", "deque", "forward_list", true) 552 .Cases("list", "map", "multimap", "multiset", true) 553 .Cases("priority_queue", "queue", "set", "stack", true) 554 .Cases("unordered_map", "unordered_set", "vector", true) 555 .Default(false)) { 556 InitSeq.InitializeFrom( 557 SemaRef, Entity, 558 InitializationKind::CreateValue(Loc, Loc, Loc, true), 559 MultiExprArg(), /*TopLevelOfInitList=*/false, 560 TreatUnavailableAsInvalid); 561 // Emit a warning for this. System header warnings aren't shown 562 // by default, but people working on system headers should see it. 563 if (!VerifyOnly) { 564 SemaRef.Diag(CtorDecl->getLocation(), 565 diag::warn_invalid_initializer_from_system_header); 566 if (Entity.getKind() == InitializedEntity::EK_Member) 567 SemaRef.Diag(Entity.getDecl()->getLocation(), 568 diag::note_used_in_initialization_here); 569 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 570 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 571 } 572 } 573 } 574 } 575 if (!InitSeq) { 576 if (!VerifyOnly) { 577 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 578 if (Entity.getKind() == InitializedEntity::EK_Member) 579 SemaRef.Diag(Entity.getDecl()->getLocation(), 580 diag::note_in_omitted_aggregate_initializer) 581 << /*field*/1 << Entity.getDecl(); 582 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 583 bool IsTrailingArrayNewMember = 584 Entity.getParent() && 585 Entity.getParent()->isVariableLengthArrayNew(); 586 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 587 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 588 << Entity.getElementIndex(); 589 } 590 } 591 hadError = true; 592 return ExprError(); 593 } 594 595 return VerifyOnly ? ExprResult() 596 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 597 } 598 599 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 600 SourceLocation Loc) { 601 // If we're building a fully-structured list, we'll check this at the end 602 // once we know which elements are actually initialized. Otherwise, we know 603 // that there are no designators so we can just check now. 604 if (FullyStructuredList) 605 return; 606 PerformEmptyInit(Loc, Entity); 607 } 608 609 void InitListChecker::FillInEmptyInitForBase( 610 unsigned Init, const CXXBaseSpecifier &Base, 611 const InitializedEntity &ParentEntity, InitListExpr *ILE, 612 bool &RequiresSecondPass, bool FillWithNoInit) { 613 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 614 SemaRef.Context, &Base, false, &ParentEntity); 615 616 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 617 ExprResult BaseInit = FillWithNoInit 618 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 619 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 620 if (BaseInit.isInvalid()) { 621 hadError = true; 622 return; 623 } 624 625 if (!VerifyOnly) { 626 assert(Init < ILE->getNumInits() && "should have been expanded"); 627 ILE->setInit(Init, BaseInit.getAs<Expr>()); 628 } 629 } else if (InitListExpr *InnerILE = 630 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 631 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 632 ILE, Init, FillWithNoInit); 633 } else if (DesignatedInitUpdateExpr *InnerDIUE = 634 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 635 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 636 RequiresSecondPass, ILE, Init, 637 /*FillWithNoInit =*/true); 638 } 639 } 640 641 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 642 const InitializedEntity &ParentEntity, 643 InitListExpr *ILE, 644 bool &RequiresSecondPass, 645 bool FillWithNoInit) { 646 SourceLocation Loc = ILE->getEndLoc(); 647 unsigned NumInits = ILE->getNumInits(); 648 InitializedEntity MemberEntity 649 = InitializedEntity::InitializeMember(Field, &ParentEntity); 650 651 if (Init >= NumInits || !ILE->getInit(Init)) { 652 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 653 if (!RType->getDecl()->isUnion()) 654 assert((Init < NumInits || VerifyOnly) && 655 "This ILE should have been expanded"); 656 657 if (FillWithNoInit) { 658 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 659 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 660 if (Init < NumInits) 661 ILE->setInit(Init, Filler); 662 else 663 ILE->updateInit(SemaRef.Context, Init, Filler); 664 return; 665 } 666 // C++1y [dcl.init.aggr]p7: 667 // If there are fewer initializer-clauses in the list than there are 668 // members in the aggregate, then each member not explicitly initialized 669 // shall be initialized from its brace-or-equal-initializer [...] 670 if (Field->hasInClassInitializer()) { 671 if (VerifyOnly) 672 return; 673 674 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 675 if (DIE.isInvalid()) { 676 hadError = true; 677 return; 678 } 679 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 680 if (Init < NumInits) 681 ILE->setInit(Init, DIE.get()); 682 else { 683 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 684 RequiresSecondPass = true; 685 } 686 return; 687 } 688 689 if (Field->getType()->isReferenceType()) { 690 if (!VerifyOnly) { 691 // C++ [dcl.init.aggr]p9: 692 // If an incomplete or empty initializer-list leaves a 693 // member of reference type uninitialized, the program is 694 // ill-formed. 695 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 696 << Field->getType() 697 << ILE->getSyntacticForm()->getSourceRange(); 698 SemaRef.Diag(Field->getLocation(), 699 diag::note_uninit_reference_member); 700 } 701 hadError = true; 702 return; 703 } 704 705 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 706 if (MemberInit.isInvalid()) { 707 hadError = true; 708 return; 709 } 710 711 if (hadError || VerifyOnly) { 712 // Do nothing 713 } else if (Init < NumInits) { 714 ILE->setInit(Init, MemberInit.getAs<Expr>()); 715 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 716 // Empty initialization requires a constructor call, so 717 // extend the initializer list to include the constructor 718 // call and make a note that we'll need to take another pass 719 // through the initializer list. 720 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 721 RequiresSecondPass = true; 722 } 723 } else if (InitListExpr *InnerILE 724 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 725 FillInEmptyInitializations(MemberEntity, InnerILE, 726 RequiresSecondPass, ILE, Init, FillWithNoInit); 727 } else if (DesignatedInitUpdateExpr *InnerDIUE = 728 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 729 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 730 RequiresSecondPass, ILE, Init, 731 /*FillWithNoInit =*/true); 732 } 733 } 734 735 /// Recursively replaces NULL values within the given initializer list 736 /// with expressions that perform value-initialization of the 737 /// appropriate type, and finish off the InitListExpr formation. 738 void 739 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 740 InitListExpr *ILE, 741 bool &RequiresSecondPass, 742 InitListExpr *OuterILE, 743 unsigned OuterIndex, 744 bool FillWithNoInit) { 745 assert((ILE->getType() != SemaRef.Context.VoidTy) && 746 "Should not have void type"); 747 748 // We don't need to do any checks when just filling NoInitExprs; that can't 749 // fail. 750 if (FillWithNoInit && VerifyOnly) 751 return; 752 753 // If this is a nested initializer list, we might have changed its contents 754 // (and therefore some of its properties, such as instantiation-dependence) 755 // while filling it in. Inform the outer initializer list so that its state 756 // can be updated to match. 757 // FIXME: We should fully build the inner initializers before constructing 758 // the outer InitListExpr instead of mutating AST nodes after they have 759 // been used as subexpressions of other nodes. 760 struct UpdateOuterILEWithUpdatedInit { 761 InitListExpr *Outer; 762 unsigned OuterIndex; 763 ~UpdateOuterILEWithUpdatedInit() { 764 if (Outer) 765 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 766 } 767 } UpdateOuterRAII = {OuterILE, OuterIndex}; 768 769 // A transparent ILE is not performing aggregate initialization and should 770 // not be filled in. 771 if (ILE->isTransparent()) 772 return; 773 774 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 775 const RecordDecl *RDecl = RType->getDecl(); 776 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 777 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 778 Entity, ILE, RequiresSecondPass, FillWithNoInit); 779 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 780 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 781 for (auto *Field : RDecl->fields()) { 782 if (Field->hasInClassInitializer()) { 783 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 784 FillWithNoInit); 785 break; 786 } 787 } 788 } else { 789 // The fields beyond ILE->getNumInits() are default initialized, so in 790 // order to leave them uninitialized, the ILE is expanded and the extra 791 // fields are then filled with NoInitExpr. 792 unsigned NumElems = numStructUnionElements(ILE->getType()); 793 if (RDecl->hasFlexibleArrayMember()) 794 ++NumElems; 795 if (!VerifyOnly && ILE->getNumInits() < NumElems) 796 ILE->resizeInits(SemaRef.Context, NumElems); 797 798 unsigned Init = 0; 799 800 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 801 for (auto &Base : CXXRD->bases()) { 802 if (hadError) 803 return; 804 805 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 806 FillWithNoInit); 807 ++Init; 808 } 809 } 810 811 for (auto *Field : RDecl->fields()) { 812 if (Field->isUnnamedBitfield()) 813 continue; 814 815 if (hadError) 816 return; 817 818 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 819 FillWithNoInit); 820 if (hadError) 821 return; 822 823 ++Init; 824 825 // Only look at the first initialization of a union. 826 if (RDecl->isUnion()) 827 break; 828 } 829 } 830 831 return; 832 } 833 834 QualType ElementType; 835 836 InitializedEntity ElementEntity = Entity; 837 unsigned NumInits = ILE->getNumInits(); 838 unsigned NumElements = NumInits; 839 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 840 ElementType = AType->getElementType(); 841 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 842 NumElements = CAType->getSize().getZExtValue(); 843 // For an array new with an unknown bound, ask for one additional element 844 // in order to populate the array filler. 845 if (Entity.isVariableLengthArrayNew()) 846 ++NumElements; 847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 848 0, Entity); 849 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 850 ElementType = VType->getElementType(); 851 NumElements = VType->getNumElements(); 852 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 853 0, Entity); 854 } else 855 ElementType = ILE->getType(); 856 857 bool SkipEmptyInitChecks = false; 858 for (unsigned Init = 0; Init != NumElements; ++Init) { 859 if (hadError) 860 return; 861 862 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 863 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 864 ElementEntity.setElementIndex(Init); 865 866 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 867 return; 868 869 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 870 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 871 ILE->setInit(Init, ILE->getArrayFiller()); 872 else if (!InitExpr && !ILE->hasArrayFiller()) { 873 // In VerifyOnly mode, there's no point performing empty initialization 874 // more than once. 875 if (SkipEmptyInitChecks) 876 continue; 877 878 Expr *Filler = nullptr; 879 880 if (FillWithNoInit) 881 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 882 else { 883 ExprResult ElementInit = 884 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 885 if (ElementInit.isInvalid()) { 886 hadError = true; 887 return; 888 } 889 890 Filler = ElementInit.getAs<Expr>(); 891 } 892 893 if (hadError) { 894 // Do nothing 895 } else if (VerifyOnly) { 896 SkipEmptyInitChecks = true; 897 } else if (Init < NumInits) { 898 // For arrays, just set the expression used for value-initialization 899 // of the "holes" in the array. 900 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 901 ILE->setArrayFiller(Filler); 902 else 903 ILE->setInit(Init, Filler); 904 } else { 905 // For arrays, just set the expression used for value-initialization 906 // of the rest of elements and exit. 907 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 908 ILE->setArrayFiller(Filler); 909 return; 910 } 911 912 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 913 // Empty initialization requires a constructor call, so 914 // extend the initializer list to include the constructor 915 // call and make a note that we'll need to take another pass 916 // through the initializer list. 917 ILE->updateInit(SemaRef.Context, Init, Filler); 918 RequiresSecondPass = true; 919 } 920 } 921 } else if (InitListExpr *InnerILE 922 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 923 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 924 ILE, Init, FillWithNoInit); 925 } else if (DesignatedInitUpdateExpr *InnerDIUE = 926 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 927 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 928 RequiresSecondPass, ILE, Init, 929 /*FillWithNoInit =*/true); 930 } 931 } 932 } 933 934 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 935 for (const Stmt *Init : *IL) 936 if (Init && isa<DesignatedInitExpr>(Init)) 937 return true; 938 return false; 939 } 940 941 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 942 InitListExpr *IL, QualType &T, bool VerifyOnly, 943 bool TreatUnavailableAsInvalid, 944 bool InOverloadResolution) 945 : SemaRef(S), VerifyOnly(VerifyOnly), 946 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 947 InOverloadResolution(InOverloadResolution) { 948 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 949 FullyStructuredList = 950 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 951 952 // FIXME: Check that IL isn't already the semantic form of some other 953 // InitListExpr. If it is, we'd create a broken AST. 954 if (!VerifyOnly) 955 FullyStructuredList->setSyntacticForm(IL); 956 } 957 958 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 959 /*TopLevelObject=*/true); 960 961 if (!hadError && FullyStructuredList) { 962 bool RequiresSecondPass = false; 963 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 964 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 965 if (RequiresSecondPass && !hadError) 966 FillInEmptyInitializations(Entity, FullyStructuredList, 967 RequiresSecondPass, nullptr, 0); 968 } 969 if (hadError && FullyStructuredList) 970 FullyStructuredList->markError(); 971 } 972 973 int InitListChecker::numArrayElements(QualType DeclType) { 974 // FIXME: use a proper constant 975 int maxElements = 0x7FFFFFFF; 976 if (const ConstantArrayType *CAT = 977 SemaRef.Context.getAsConstantArrayType(DeclType)) { 978 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 979 } 980 return maxElements; 981 } 982 983 int InitListChecker::numStructUnionElements(QualType DeclType) { 984 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 985 int InitializableMembers = 0; 986 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 987 InitializableMembers += CXXRD->getNumBases(); 988 for (const auto *Field : structDecl->fields()) 989 if (!Field->isUnnamedBitfield()) 990 ++InitializableMembers; 991 992 if (structDecl->isUnion()) 993 return std::min(InitializableMembers, 1); 994 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 995 } 996 997 /// Determine whether Entity is an entity for which it is idiomatic to elide 998 /// the braces in aggregate initialization. 999 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 1000 // Recursive initialization of the one and only field within an aggregate 1001 // class is considered idiomatic. This case arises in particular for 1002 // initialization of std::array, where the C++ standard suggests the idiom of 1003 // 1004 // std::array<T, N> arr = {1, 2, 3}; 1005 // 1006 // (where std::array is an aggregate struct containing a single array field. 1007 1008 // FIXME: Should aggregate initialization of a struct with a single 1009 // base class and no members also suppress the warning? 1010 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1011 return false; 1012 1013 auto *ParentRD = 1014 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1015 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1016 if (CXXRD->getNumBases()) 1017 return false; 1018 1019 auto FieldIt = ParentRD->field_begin(); 1020 assert(FieldIt != ParentRD->field_end() && 1021 "no fields but have initializer for member?"); 1022 return ++FieldIt == ParentRD->field_end(); 1023 } 1024 1025 /// Check whether the range of the initializer \p ParentIList from element 1026 /// \p Index onwards can be used to initialize an object of type \p T. Update 1027 /// \p Index to indicate how many elements of the list were consumed. 1028 /// 1029 /// This also fills in \p StructuredList, from element \p StructuredIndex 1030 /// onwards, with the fully-braced, desugared form of the initialization. 1031 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1032 InitListExpr *ParentIList, 1033 QualType T, unsigned &Index, 1034 InitListExpr *StructuredList, 1035 unsigned &StructuredIndex) { 1036 int maxElements = 0; 1037 1038 if (T->isArrayType()) 1039 maxElements = numArrayElements(T); 1040 else if (T->isRecordType()) 1041 maxElements = numStructUnionElements(T); 1042 else if (T->isVectorType()) 1043 maxElements = T->castAs<VectorType>()->getNumElements(); 1044 else 1045 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1046 1047 if (maxElements == 0) { 1048 if (!VerifyOnly) 1049 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1050 diag::err_implicit_empty_initializer); 1051 ++Index; 1052 hadError = true; 1053 return; 1054 } 1055 1056 // Build a structured initializer list corresponding to this subobject. 1057 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1058 ParentIList, Index, T, StructuredList, StructuredIndex, 1059 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1060 ParentIList->getSourceRange().getEnd())); 1061 unsigned StructuredSubobjectInitIndex = 0; 1062 1063 // Check the element types and build the structural subobject. 1064 unsigned StartIndex = Index; 1065 CheckListElementTypes(Entity, ParentIList, T, 1066 /*SubobjectIsDesignatorContext=*/false, Index, 1067 StructuredSubobjectInitList, 1068 StructuredSubobjectInitIndex); 1069 1070 if (StructuredSubobjectInitList) { 1071 StructuredSubobjectInitList->setType(T); 1072 1073 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1074 // Update the structured sub-object initializer so that it's ending 1075 // range corresponds with the end of the last initializer it used. 1076 if (EndIndex < ParentIList->getNumInits() && 1077 ParentIList->getInit(EndIndex)) { 1078 SourceLocation EndLoc 1079 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1080 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1081 } 1082 1083 // Complain about missing braces. 1084 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1085 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1086 !isIdiomaticBraceElisionEntity(Entity)) { 1087 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1088 diag::warn_missing_braces) 1089 << StructuredSubobjectInitList->getSourceRange() 1090 << FixItHint::CreateInsertion( 1091 StructuredSubobjectInitList->getBeginLoc(), "{") 1092 << FixItHint::CreateInsertion( 1093 SemaRef.getLocForEndOfToken( 1094 StructuredSubobjectInitList->getEndLoc()), 1095 "}"); 1096 } 1097 1098 // Warn if this type won't be an aggregate in future versions of C++. 1099 auto *CXXRD = T->getAsCXXRecordDecl(); 1100 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1102 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1103 << StructuredSubobjectInitList->getSourceRange() << T; 1104 } 1105 } 1106 } 1107 1108 /// Warn that \p Entity was of scalar type and was initialized by a 1109 /// single-element braced initializer list. 1110 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1111 SourceRange Braces) { 1112 // Don't warn during template instantiation. If the initialization was 1113 // non-dependent, we warned during the initial parse; otherwise, the 1114 // type might not be scalar in some uses of the template. 1115 if (S.inTemplateInstantiation()) 1116 return; 1117 1118 unsigned DiagID = 0; 1119 1120 switch (Entity.getKind()) { 1121 case InitializedEntity::EK_VectorElement: 1122 case InitializedEntity::EK_ComplexElement: 1123 case InitializedEntity::EK_ArrayElement: 1124 case InitializedEntity::EK_Parameter: 1125 case InitializedEntity::EK_Parameter_CF_Audited: 1126 case InitializedEntity::EK_TemplateParameter: 1127 case InitializedEntity::EK_Result: 1128 // Extra braces here are suspicious. 1129 DiagID = diag::warn_braces_around_init; 1130 break; 1131 1132 case InitializedEntity::EK_Member: 1133 // Warn on aggregate initialization but not on ctor init list or 1134 // default member initializer. 1135 if (Entity.getParent()) 1136 DiagID = diag::warn_braces_around_init; 1137 break; 1138 1139 case InitializedEntity::EK_Variable: 1140 case InitializedEntity::EK_LambdaCapture: 1141 // No warning, might be direct-list-initialization. 1142 // FIXME: Should we warn for copy-list-initialization in these cases? 1143 break; 1144 1145 case InitializedEntity::EK_New: 1146 case InitializedEntity::EK_Temporary: 1147 case InitializedEntity::EK_CompoundLiteralInit: 1148 // No warning, braces are part of the syntax of the underlying construct. 1149 break; 1150 1151 case InitializedEntity::EK_RelatedResult: 1152 // No warning, we already warned when initializing the result. 1153 break; 1154 1155 case InitializedEntity::EK_Exception: 1156 case InitializedEntity::EK_Base: 1157 case InitializedEntity::EK_Delegating: 1158 case InitializedEntity::EK_BlockElement: 1159 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1160 case InitializedEntity::EK_Binding: 1161 case InitializedEntity::EK_StmtExprResult: 1162 llvm_unreachable("unexpected braced scalar init"); 1163 } 1164 1165 if (DiagID) { 1166 S.Diag(Braces.getBegin(), DiagID) 1167 << Entity.getType()->isSizelessBuiltinType() << Braces 1168 << FixItHint::CreateRemoval(Braces.getBegin()) 1169 << FixItHint::CreateRemoval(Braces.getEnd()); 1170 } 1171 } 1172 1173 /// Check whether the initializer \p IList (that was written with explicit 1174 /// braces) can be used to initialize an object of type \p T. 1175 /// 1176 /// This also fills in \p StructuredList with the fully-braced, desugared 1177 /// form of the initialization. 1178 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1179 InitListExpr *IList, QualType &T, 1180 InitListExpr *StructuredList, 1181 bool TopLevelObject) { 1182 unsigned Index = 0, StructuredIndex = 0; 1183 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1184 Index, StructuredList, StructuredIndex, TopLevelObject); 1185 if (StructuredList) { 1186 QualType ExprTy = T; 1187 if (!ExprTy->isArrayType()) 1188 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1189 if (!VerifyOnly) 1190 IList->setType(ExprTy); 1191 StructuredList->setType(ExprTy); 1192 } 1193 if (hadError) 1194 return; 1195 1196 // Don't complain for incomplete types, since we'll get an error elsewhere. 1197 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1198 // We have leftover initializers 1199 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1200 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1201 hadError = ExtraInitsIsError; 1202 if (VerifyOnly) { 1203 return; 1204 } else if (StructuredIndex == 1 && 1205 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1206 SIF_None) { 1207 unsigned DK = 1208 ExtraInitsIsError 1209 ? diag::err_excess_initializers_in_char_array_initializer 1210 : diag::ext_excess_initializers_in_char_array_initializer; 1211 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1212 << IList->getInit(Index)->getSourceRange(); 1213 } else if (T->isSizelessBuiltinType()) { 1214 unsigned DK = ExtraInitsIsError 1215 ? diag::err_excess_initializers_for_sizeless_type 1216 : diag::ext_excess_initializers_for_sizeless_type; 1217 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1218 << T << IList->getInit(Index)->getSourceRange(); 1219 } else { 1220 int initKind = T->isArrayType() ? 0 : 1221 T->isVectorType() ? 1 : 1222 T->isScalarType() ? 2 : 1223 T->isUnionType() ? 3 : 1224 4; 1225 1226 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1227 : diag::ext_excess_initializers; 1228 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1229 << initKind << IList->getInit(Index)->getSourceRange(); 1230 } 1231 } 1232 1233 if (!VerifyOnly) { 1234 if (T->isScalarType() && IList->getNumInits() == 1 && 1235 !isa<InitListExpr>(IList->getInit(0))) 1236 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1237 1238 // Warn if this is a class type that won't be an aggregate in future 1239 // versions of C++. 1240 auto *CXXRD = T->getAsCXXRecordDecl(); 1241 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1242 // Don't warn if there's an equivalent default constructor that would be 1243 // used instead. 1244 bool HasEquivCtor = false; 1245 if (IList->getNumInits() == 0) { 1246 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1247 HasEquivCtor = CD && !CD->isDeleted(); 1248 } 1249 1250 if (!HasEquivCtor) { 1251 SemaRef.Diag(IList->getBeginLoc(), 1252 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1253 << IList->getSourceRange() << T; 1254 } 1255 } 1256 } 1257 } 1258 1259 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1260 InitListExpr *IList, 1261 QualType &DeclType, 1262 bool SubobjectIsDesignatorContext, 1263 unsigned &Index, 1264 InitListExpr *StructuredList, 1265 unsigned &StructuredIndex, 1266 bool TopLevelObject) { 1267 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1268 // Explicitly braced initializer for complex type can be real+imaginary 1269 // parts. 1270 CheckComplexType(Entity, IList, DeclType, Index, 1271 StructuredList, StructuredIndex); 1272 } else if (DeclType->isScalarType()) { 1273 CheckScalarType(Entity, IList, DeclType, Index, 1274 StructuredList, StructuredIndex); 1275 } else if (DeclType->isVectorType()) { 1276 CheckVectorType(Entity, IList, DeclType, Index, 1277 StructuredList, StructuredIndex); 1278 } else if (DeclType->isRecordType()) { 1279 assert(DeclType->isAggregateType() && 1280 "non-aggregate records should be handed in CheckSubElementType"); 1281 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1282 auto Bases = 1283 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1284 CXXRecordDecl::base_class_iterator()); 1285 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1286 Bases = CXXRD->bases(); 1287 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1288 SubobjectIsDesignatorContext, Index, StructuredList, 1289 StructuredIndex, TopLevelObject); 1290 } else if (DeclType->isArrayType()) { 1291 llvm::APSInt Zero( 1292 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1293 false); 1294 CheckArrayType(Entity, IList, DeclType, Zero, 1295 SubobjectIsDesignatorContext, Index, 1296 StructuredList, StructuredIndex); 1297 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1298 // This type is invalid, issue a diagnostic. 1299 ++Index; 1300 if (!VerifyOnly) 1301 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1302 << DeclType; 1303 hadError = true; 1304 } else if (DeclType->isReferenceType()) { 1305 CheckReferenceType(Entity, IList, DeclType, Index, 1306 StructuredList, StructuredIndex); 1307 } else if (DeclType->isObjCObjectType()) { 1308 if (!VerifyOnly) 1309 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1310 hadError = true; 1311 } else if (DeclType->isOCLIntelSubgroupAVCType() || 1312 DeclType->isSizelessBuiltinType()) { 1313 // Checks for scalar type are sufficient for these types too. 1314 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1315 StructuredIndex); 1316 } else { 1317 if (!VerifyOnly) 1318 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1319 << DeclType; 1320 hadError = true; 1321 } 1322 } 1323 1324 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1325 InitListExpr *IList, 1326 QualType ElemType, 1327 unsigned &Index, 1328 InitListExpr *StructuredList, 1329 unsigned &StructuredIndex) { 1330 Expr *expr = IList->getInit(Index); 1331 1332 if (ElemType->isReferenceType()) 1333 return CheckReferenceType(Entity, IList, ElemType, Index, 1334 StructuredList, StructuredIndex); 1335 1336 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1337 if (SubInitList->getNumInits() == 1 && 1338 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1339 SIF_None) { 1340 // FIXME: It would be more faithful and no less correct to include an 1341 // InitListExpr in the semantic form of the initializer list in this case. 1342 expr = SubInitList->getInit(0); 1343 } 1344 // Nested aggregate initialization and C++ initialization are handled later. 1345 } else if (isa<ImplicitValueInitExpr>(expr)) { 1346 // This happens during template instantiation when we see an InitListExpr 1347 // that we've already checked once. 1348 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1349 "found implicit initialization for the wrong type"); 1350 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1351 ++Index; 1352 return; 1353 } 1354 1355 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1356 // C++ [dcl.init.aggr]p2: 1357 // Each member is copy-initialized from the corresponding 1358 // initializer-clause. 1359 1360 // FIXME: Better EqualLoc? 1361 InitializationKind Kind = 1362 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1363 1364 // Vector elements can be initialized from other vectors in which case 1365 // we need initialization entity with a type of a vector (and not a vector 1366 // element!) initializing multiple vector elements. 1367 auto TmpEntity = 1368 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1369 ? InitializedEntity::InitializeTemporary(ElemType) 1370 : Entity; 1371 1372 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1373 /*TopLevelOfInitList*/ true); 1374 1375 // C++14 [dcl.init.aggr]p13: 1376 // If the assignment-expression can initialize a member, the member is 1377 // initialized. Otherwise [...] brace elision is assumed 1378 // 1379 // Brace elision is never performed if the element is not an 1380 // assignment-expression. 1381 if (Seq || isa<InitListExpr>(expr)) { 1382 if (!VerifyOnly) { 1383 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1384 if (Result.isInvalid()) 1385 hadError = true; 1386 1387 UpdateStructuredListElement(StructuredList, StructuredIndex, 1388 Result.getAs<Expr>()); 1389 } else if (!Seq) { 1390 hadError = true; 1391 } else if (StructuredList) { 1392 UpdateStructuredListElement(StructuredList, StructuredIndex, 1393 getDummyInit()); 1394 } 1395 ++Index; 1396 return; 1397 } 1398 1399 // Fall through for subaggregate initialization 1400 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1401 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1402 return CheckScalarType(Entity, IList, ElemType, Index, 1403 StructuredList, StructuredIndex); 1404 } else if (const ArrayType *arrayType = 1405 SemaRef.Context.getAsArrayType(ElemType)) { 1406 // arrayType can be incomplete if we're initializing a flexible 1407 // array member. There's nothing we can do with the completed 1408 // type here, though. 1409 1410 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1411 // FIXME: Should we do this checking in verify-only mode? 1412 if (!VerifyOnly) 1413 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1414 if (StructuredList) 1415 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1416 ++Index; 1417 return; 1418 } 1419 1420 // Fall through for subaggregate initialization. 1421 1422 } else { 1423 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1424 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1425 1426 // C99 6.7.8p13: 1427 // 1428 // The initializer for a structure or union object that has 1429 // automatic storage duration shall be either an initializer 1430 // list as described below, or a single expression that has 1431 // compatible structure or union type. In the latter case, the 1432 // initial value of the object, including unnamed members, is 1433 // that of the expression. 1434 ExprResult ExprRes = expr; 1435 if (SemaRef.CheckSingleAssignmentConstraints( 1436 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1437 if (ExprRes.isInvalid()) 1438 hadError = true; 1439 else { 1440 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1441 if (ExprRes.isInvalid()) 1442 hadError = true; 1443 } 1444 UpdateStructuredListElement(StructuredList, StructuredIndex, 1445 ExprRes.getAs<Expr>()); 1446 ++Index; 1447 return; 1448 } 1449 ExprRes.get(); 1450 // Fall through for subaggregate initialization 1451 } 1452 1453 // C++ [dcl.init.aggr]p12: 1454 // 1455 // [...] Otherwise, if the member is itself a non-empty 1456 // subaggregate, brace elision is assumed and the initializer is 1457 // considered for the initialization of the first member of 1458 // the subaggregate. 1459 // OpenCL vector initializer is handled elsewhere. 1460 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1461 ElemType->isAggregateType()) { 1462 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1463 StructuredIndex); 1464 ++StructuredIndex; 1465 } else { 1466 if (!VerifyOnly) { 1467 // We cannot initialize this element, so let PerformCopyInitialization 1468 // produce the appropriate diagnostic. We already checked that this 1469 // initialization will fail. 1470 ExprResult Copy = 1471 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1472 /*TopLevelOfInitList=*/true); 1473 (void)Copy; 1474 assert(Copy.isInvalid() && 1475 "expected non-aggregate initialization to fail"); 1476 } 1477 hadError = true; 1478 ++Index; 1479 ++StructuredIndex; 1480 } 1481 } 1482 1483 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1484 InitListExpr *IList, QualType DeclType, 1485 unsigned &Index, 1486 InitListExpr *StructuredList, 1487 unsigned &StructuredIndex) { 1488 assert(Index == 0 && "Index in explicit init list must be zero"); 1489 1490 // As an extension, clang supports complex initializers, which initialize 1491 // a complex number component-wise. When an explicit initializer list for 1492 // a complex number contains two two initializers, this extension kicks in: 1493 // it exepcts the initializer list to contain two elements convertible to 1494 // the element type of the complex type. The first element initializes 1495 // the real part, and the second element intitializes the imaginary part. 1496 1497 if (IList->getNumInits() != 2) 1498 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1499 StructuredIndex); 1500 1501 // This is an extension in C. (The builtin _Complex type does not exist 1502 // in the C++ standard.) 1503 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1504 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1505 << IList->getSourceRange(); 1506 1507 // Initialize the complex number. 1508 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1509 InitializedEntity ElementEntity = 1510 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1511 1512 for (unsigned i = 0; i < 2; ++i) { 1513 ElementEntity.setElementIndex(Index); 1514 CheckSubElementType(ElementEntity, IList, elementType, Index, 1515 StructuredList, StructuredIndex); 1516 } 1517 } 1518 1519 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1520 InitListExpr *IList, QualType DeclType, 1521 unsigned &Index, 1522 InitListExpr *StructuredList, 1523 unsigned &StructuredIndex) { 1524 if (Index >= IList->getNumInits()) { 1525 if (!VerifyOnly) { 1526 if (DeclType->isSizelessBuiltinType()) 1527 SemaRef.Diag(IList->getBeginLoc(), 1528 SemaRef.getLangOpts().CPlusPlus11 1529 ? diag::warn_cxx98_compat_empty_sizeless_initializer 1530 : diag::err_empty_sizeless_initializer) 1531 << DeclType << IList->getSourceRange(); 1532 else 1533 SemaRef.Diag(IList->getBeginLoc(), 1534 SemaRef.getLangOpts().CPlusPlus11 1535 ? diag::warn_cxx98_compat_empty_scalar_initializer 1536 : diag::err_empty_scalar_initializer) 1537 << IList->getSourceRange(); 1538 } 1539 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1540 ++Index; 1541 ++StructuredIndex; 1542 return; 1543 } 1544 1545 Expr *expr = IList->getInit(Index); 1546 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1547 // FIXME: This is invalid, and accepting it causes overload resolution 1548 // to pick the wrong overload in some corner cases. 1549 if (!VerifyOnly) 1550 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) 1551 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); 1552 1553 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1554 StructuredIndex); 1555 return; 1556 } else if (isa<DesignatedInitExpr>(expr)) { 1557 if (!VerifyOnly) 1558 SemaRef.Diag(expr->getBeginLoc(), 1559 diag::err_designator_for_scalar_or_sizeless_init) 1560 << DeclType->isSizelessBuiltinType() << DeclType 1561 << expr->getSourceRange(); 1562 hadError = true; 1563 ++Index; 1564 ++StructuredIndex; 1565 return; 1566 } 1567 1568 ExprResult Result; 1569 if (VerifyOnly) { 1570 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1571 Result = getDummyInit(); 1572 else 1573 Result = ExprError(); 1574 } else { 1575 Result = 1576 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1577 /*TopLevelOfInitList=*/true); 1578 } 1579 1580 Expr *ResultExpr = nullptr; 1581 1582 if (Result.isInvalid()) 1583 hadError = true; // types weren't compatible. 1584 else { 1585 ResultExpr = Result.getAs<Expr>(); 1586 1587 if (ResultExpr != expr && !VerifyOnly) { 1588 // The type was promoted, update initializer list. 1589 // FIXME: Why are we updating the syntactic init list? 1590 IList->setInit(Index, ResultExpr); 1591 } 1592 } 1593 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1594 ++Index; 1595 } 1596 1597 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1598 InitListExpr *IList, QualType DeclType, 1599 unsigned &Index, 1600 InitListExpr *StructuredList, 1601 unsigned &StructuredIndex) { 1602 if (Index >= IList->getNumInits()) { 1603 // FIXME: It would be wonderful if we could point at the actual member. In 1604 // general, it would be useful to pass location information down the stack, 1605 // so that we know the location (or decl) of the "current object" being 1606 // initialized. 1607 if (!VerifyOnly) 1608 SemaRef.Diag(IList->getBeginLoc(), 1609 diag::err_init_reference_member_uninitialized) 1610 << DeclType << IList->getSourceRange(); 1611 hadError = true; 1612 ++Index; 1613 ++StructuredIndex; 1614 return; 1615 } 1616 1617 Expr *expr = IList->getInit(Index); 1618 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1619 if (!VerifyOnly) 1620 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1621 << DeclType << IList->getSourceRange(); 1622 hadError = true; 1623 ++Index; 1624 ++StructuredIndex; 1625 return; 1626 } 1627 1628 ExprResult Result; 1629 if (VerifyOnly) { 1630 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1631 Result = getDummyInit(); 1632 else 1633 Result = ExprError(); 1634 } else { 1635 Result = 1636 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1637 /*TopLevelOfInitList=*/true); 1638 } 1639 1640 if (Result.isInvalid()) 1641 hadError = true; 1642 1643 expr = Result.getAs<Expr>(); 1644 // FIXME: Why are we updating the syntactic init list? 1645 if (!VerifyOnly && expr) 1646 IList->setInit(Index, expr); 1647 1648 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1649 ++Index; 1650 } 1651 1652 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1653 InitListExpr *IList, QualType DeclType, 1654 unsigned &Index, 1655 InitListExpr *StructuredList, 1656 unsigned &StructuredIndex) { 1657 const VectorType *VT = DeclType->castAs<VectorType>(); 1658 unsigned maxElements = VT->getNumElements(); 1659 unsigned numEltsInit = 0; 1660 QualType elementType = VT->getElementType(); 1661 1662 if (Index >= IList->getNumInits()) { 1663 // Make sure the element type can be value-initialized. 1664 CheckEmptyInitializable( 1665 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1666 IList->getEndLoc()); 1667 return; 1668 } 1669 1670 if (!SemaRef.getLangOpts().OpenCL) { 1671 // If the initializing element is a vector, try to copy-initialize 1672 // instead of breaking it apart (which is doomed to failure anyway). 1673 Expr *Init = IList->getInit(Index); 1674 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1675 ExprResult Result; 1676 if (VerifyOnly) { 1677 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1678 Result = getDummyInit(); 1679 else 1680 Result = ExprError(); 1681 } else { 1682 Result = 1683 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1684 /*TopLevelOfInitList=*/true); 1685 } 1686 1687 Expr *ResultExpr = nullptr; 1688 if (Result.isInvalid()) 1689 hadError = true; // types weren't compatible. 1690 else { 1691 ResultExpr = Result.getAs<Expr>(); 1692 1693 if (ResultExpr != Init && !VerifyOnly) { 1694 // The type was promoted, update initializer list. 1695 // FIXME: Why are we updating the syntactic init list? 1696 IList->setInit(Index, ResultExpr); 1697 } 1698 } 1699 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1700 ++Index; 1701 return; 1702 } 1703 1704 InitializedEntity ElementEntity = 1705 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1706 1707 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1708 // Don't attempt to go past the end of the init list 1709 if (Index >= IList->getNumInits()) { 1710 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1711 break; 1712 } 1713 1714 ElementEntity.setElementIndex(Index); 1715 CheckSubElementType(ElementEntity, IList, elementType, Index, 1716 StructuredList, StructuredIndex); 1717 } 1718 1719 if (VerifyOnly) 1720 return; 1721 1722 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1723 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1724 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1725 T->getVectorKind() == VectorType::NeonPolyVector)) { 1726 // The ability to use vector initializer lists is a GNU vector extension 1727 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1728 // endian machines it works fine, however on big endian machines it 1729 // exhibits surprising behaviour: 1730 // 1731 // uint32x2_t x = {42, 64}; 1732 // return vget_lane_u32(x, 0); // Will return 64. 1733 // 1734 // Because of this, explicitly call out that it is non-portable. 1735 // 1736 SemaRef.Diag(IList->getBeginLoc(), 1737 diag::warn_neon_vector_initializer_non_portable); 1738 1739 const char *typeCode; 1740 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1741 1742 if (elementType->isFloatingType()) 1743 typeCode = "f"; 1744 else if (elementType->isSignedIntegerType()) 1745 typeCode = "s"; 1746 else if (elementType->isUnsignedIntegerType()) 1747 typeCode = "u"; 1748 else 1749 llvm_unreachable("Invalid element type!"); 1750 1751 SemaRef.Diag(IList->getBeginLoc(), 1752 SemaRef.Context.getTypeSize(VT) > 64 1753 ? diag::note_neon_vector_initializer_non_portable_q 1754 : diag::note_neon_vector_initializer_non_portable) 1755 << typeCode << typeSize; 1756 } 1757 1758 return; 1759 } 1760 1761 InitializedEntity ElementEntity = 1762 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1763 1764 // OpenCL initializers allows vectors to be constructed from vectors. 1765 for (unsigned i = 0; i < maxElements; ++i) { 1766 // Don't attempt to go past the end of the init list 1767 if (Index >= IList->getNumInits()) 1768 break; 1769 1770 ElementEntity.setElementIndex(Index); 1771 1772 QualType IType = IList->getInit(Index)->getType(); 1773 if (!IType->isVectorType()) { 1774 CheckSubElementType(ElementEntity, IList, elementType, Index, 1775 StructuredList, StructuredIndex); 1776 ++numEltsInit; 1777 } else { 1778 QualType VecType; 1779 const VectorType *IVT = IType->castAs<VectorType>(); 1780 unsigned numIElts = IVT->getNumElements(); 1781 1782 if (IType->isExtVectorType()) 1783 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1784 else 1785 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1786 IVT->getVectorKind()); 1787 CheckSubElementType(ElementEntity, IList, VecType, Index, 1788 StructuredList, StructuredIndex); 1789 numEltsInit += numIElts; 1790 } 1791 } 1792 1793 // OpenCL requires all elements to be initialized. 1794 if (numEltsInit != maxElements) { 1795 if (!VerifyOnly) 1796 SemaRef.Diag(IList->getBeginLoc(), 1797 diag::err_vector_incorrect_num_initializers) 1798 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1799 hadError = true; 1800 } 1801 } 1802 1803 /// Check if the type of a class element has an accessible destructor, and marks 1804 /// it referenced. Returns true if we shouldn't form a reference to the 1805 /// destructor. 1806 /// 1807 /// Aggregate initialization requires a class element's destructor be 1808 /// accessible per 11.6.1 [dcl.init.aggr]: 1809 /// 1810 /// The destructor for each element of class type is potentially invoked 1811 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1812 /// occurs. 1813 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1814 Sema &SemaRef) { 1815 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1816 if (!CXXRD) 1817 return false; 1818 1819 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1820 SemaRef.CheckDestructorAccess(Loc, Destructor, 1821 SemaRef.PDiag(diag::err_access_dtor_temp) 1822 << ElementType); 1823 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1824 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1825 } 1826 1827 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1828 InitListExpr *IList, QualType &DeclType, 1829 llvm::APSInt elementIndex, 1830 bool SubobjectIsDesignatorContext, 1831 unsigned &Index, 1832 InitListExpr *StructuredList, 1833 unsigned &StructuredIndex) { 1834 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1835 1836 if (!VerifyOnly) { 1837 if (checkDestructorReference(arrayType->getElementType(), 1838 IList->getEndLoc(), SemaRef)) { 1839 hadError = true; 1840 return; 1841 } 1842 } 1843 1844 // Check for the special-case of initializing an array with a string. 1845 if (Index < IList->getNumInits()) { 1846 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1847 SIF_None) { 1848 // We place the string literal directly into the resulting 1849 // initializer list. This is the only place where the structure 1850 // of the structured initializer list doesn't match exactly, 1851 // because doing so would involve allocating one character 1852 // constant for each string. 1853 // FIXME: Should we do these checks in verify-only mode too? 1854 if (!VerifyOnly) 1855 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1856 if (StructuredList) { 1857 UpdateStructuredListElement(StructuredList, StructuredIndex, 1858 IList->getInit(Index)); 1859 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1860 } 1861 ++Index; 1862 return; 1863 } 1864 } 1865 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1866 // Check for VLAs; in standard C it would be possible to check this 1867 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1868 // them in all sorts of strange places). 1869 if (!VerifyOnly) 1870 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1871 diag::err_variable_object_no_init) 1872 << VAT->getSizeExpr()->getSourceRange(); 1873 hadError = true; 1874 ++Index; 1875 ++StructuredIndex; 1876 return; 1877 } 1878 1879 // We might know the maximum number of elements in advance. 1880 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1881 elementIndex.isUnsigned()); 1882 bool maxElementsKnown = false; 1883 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1884 maxElements = CAT->getSize(); 1885 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1886 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1887 maxElementsKnown = true; 1888 } 1889 1890 QualType elementType = arrayType->getElementType(); 1891 while (Index < IList->getNumInits()) { 1892 Expr *Init = IList->getInit(Index); 1893 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1894 // If we're not the subobject that matches up with the '{' for 1895 // the designator, we shouldn't be handling the 1896 // designator. Return immediately. 1897 if (!SubobjectIsDesignatorContext) 1898 return; 1899 1900 // Handle this designated initializer. elementIndex will be 1901 // updated to be the next array element we'll initialize. 1902 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1903 DeclType, nullptr, &elementIndex, Index, 1904 StructuredList, StructuredIndex, true, 1905 false)) { 1906 hadError = true; 1907 continue; 1908 } 1909 1910 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1911 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1912 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1913 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1914 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1915 1916 // If the array is of incomplete type, keep track of the number of 1917 // elements in the initializer. 1918 if (!maxElementsKnown && elementIndex > maxElements) 1919 maxElements = elementIndex; 1920 1921 continue; 1922 } 1923 1924 // If we know the maximum number of elements, and we've already 1925 // hit it, stop consuming elements in the initializer list. 1926 if (maxElementsKnown && elementIndex == maxElements) 1927 break; 1928 1929 InitializedEntity ElementEntity = 1930 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1931 Entity); 1932 // Check this element. 1933 CheckSubElementType(ElementEntity, IList, elementType, Index, 1934 StructuredList, StructuredIndex); 1935 ++elementIndex; 1936 1937 // If the array is of incomplete type, keep track of the number of 1938 // elements in the initializer. 1939 if (!maxElementsKnown && elementIndex > maxElements) 1940 maxElements = elementIndex; 1941 } 1942 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1943 // If this is an incomplete array type, the actual type needs to 1944 // be calculated here. 1945 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1946 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1947 // Sizing an array implicitly to zero is not allowed by ISO C, 1948 // but is supported by GNU. 1949 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1950 } 1951 1952 DeclType = SemaRef.Context.getConstantArrayType( 1953 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1954 } 1955 if (!hadError) { 1956 // If there are any members of the array that get value-initialized, check 1957 // that is possible. That happens if we know the bound and don't have 1958 // enough elements, or if we're performing an array new with an unknown 1959 // bound. 1960 if ((maxElementsKnown && elementIndex < maxElements) || 1961 Entity.isVariableLengthArrayNew()) 1962 CheckEmptyInitializable( 1963 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1964 IList->getEndLoc()); 1965 } 1966 } 1967 1968 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1969 Expr *InitExpr, 1970 FieldDecl *Field, 1971 bool TopLevelObject) { 1972 // Handle GNU flexible array initializers. 1973 unsigned FlexArrayDiag; 1974 if (isa<InitListExpr>(InitExpr) && 1975 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1976 // Empty flexible array init always allowed as an extension 1977 FlexArrayDiag = diag::ext_flexible_array_init; 1978 } else if (SemaRef.getLangOpts().CPlusPlus) { 1979 // Disallow flexible array init in C++; it is not required for gcc 1980 // compatibility, and it needs work to IRGen correctly in general. 1981 FlexArrayDiag = diag::err_flexible_array_init; 1982 } else if (!TopLevelObject) { 1983 // Disallow flexible array init on non-top-level object 1984 FlexArrayDiag = diag::err_flexible_array_init; 1985 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1986 // Disallow flexible array init on anything which is not a variable. 1987 FlexArrayDiag = diag::err_flexible_array_init; 1988 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1989 // Disallow flexible array init on local variables. 1990 FlexArrayDiag = diag::err_flexible_array_init; 1991 } else { 1992 // Allow other cases. 1993 FlexArrayDiag = diag::ext_flexible_array_init; 1994 } 1995 1996 if (!VerifyOnly) { 1997 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1998 << InitExpr->getBeginLoc(); 1999 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2000 << Field; 2001 } 2002 2003 return FlexArrayDiag != diag::ext_flexible_array_init; 2004 } 2005 2006 void InitListChecker::CheckStructUnionTypes( 2007 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 2008 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 2009 bool SubobjectIsDesignatorContext, unsigned &Index, 2010 InitListExpr *StructuredList, unsigned &StructuredIndex, 2011 bool TopLevelObject) { 2012 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 2013 2014 // If the record is invalid, some of it's members are invalid. To avoid 2015 // confusion, we forgo checking the intializer for the entire record. 2016 if (structDecl->isInvalidDecl()) { 2017 // Assume it was supposed to consume a single initializer. 2018 ++Index; 2019 hadError = true; 2020 return; 2021 } 2022 2023 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2024 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2025 2026 if (!VerifyOnly) 2027 for (FieldDecl *FD : RD->fields()) { 2028 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2029 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2030 hadError = true; 2031 return; 2032 } 2033 } 2034 2035 // If there's a default initializer, use it. 2036 if (isa<CXXRecordDecl>(RD) && 2037 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2038 if (!StructuredList) 2039 return; 2040 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2041 Field != FieldEnd; ++Field) { 2042 if (Field->hasInClassInitializer()) { 2043 StructuredList->setInitializedFieldInUnion(*Field); 2044 // FIXME: Actually build a CXXDefaultInitExpr? 2045 return; 2046 } 2047 } 2048 } 2049 2050 // Value-initialize the first member of the union that isn't an unnamed 2051 // bitfield. 2052 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2053 Field != FieldEnd; ++Field) { 2054 if (!Field->isUnnamedBitfield()) { 2055 CheckEmptyInitializable( 2056 InitializedEntity::InitializeMember(*Field, &Entity), 2057 IList->getEndLoc()); 2058 if (StructuredList) 2059 StructuredList->setInitializedFieldInUnion(*Field); 2060 break; 2061 } 2062 } 2063 return; 2064 } 2065 2066 bool InitializedSomething = false; 2067 2068 // If we have any base classes, they are initialized prior to the fields. 2069 for (auto &Base : Bases) { 2070 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2071 2072 // Designated inits always initialize fields, so if we see one, all 2073 // remaining base classes have no explicit initializer. 2074 if (Init && isa<DesignatedInitExpr>(Init)) 2075 Init = nullptr; 2076 2077 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2078 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2079 SemaRef.Context, &Base, false, &Entity); 2080 if (Init) { 2081 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2082 StructuredList, StructuredIndex); 2083 InitializedSomething = true; 2084 } else { 2085 CheckEmptyInitializable(BaseEntity, InitLoc); 2086 } 2087 2088 if (!VerifyOnly) 2089 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2090 hadError = true; 2091 return; 2092 } 2093 } 2094 2095 // If structDecl is a forward declaration, this loop won't do 2096 // anything except look at designated initializers; That's okay, 2097 // because an error should get printed out elsewhere. It might be 2098 // worthwhile to skip over the rest of the initializer, though. 2099 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2100 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2101 bool CheckForMissingFields = 2102 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2103 bool HasDesignatedInit = false; 2104 2105 while (Index < IList->getNumInits()) { 2106 Expr *Init = IList->getInit(Index); 2107 SourceLocation InitLoc = Init->getBeginLoc(); 2108 2109 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2110 // If we're not the subobject that matches up with the '{' for 2111 // the designator, we shouldn't be handling the 2112 // designator. Return immediately. 2113 if (!SubobjectIsDesignatorContext) 2114 return; 2115 2116 HasDesignatedInit = true; 2117 2118 // Handle this designated initializer. Field will be updated to 2119 // the next field that we'll be initializing. 2120 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2121 DeclType, &Field, nullptr, Index, 2122 StructuredList, StructuredIndex, 2123 true, TopLevelObject)) 2124 hadError = true; 2125 else if (!VerifyOnly) { 2126 // Find the field named by the designated initializer. 2127 RecordDecl::field_iterator F = RD->field_begin(); 2128 while (std::next(F) != Field) 2129 ++F; 2130 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2131 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2132 hadError = true; 2133 return; 2134 } 2135 } 2136 2137 InitializedSomething = true; 2138 2139 // Disable check for missing fields when designators are used. 2140 // This matches gcc behaviour. 2141 CheckForMissingFields = false; 2142 continue; 2143 } 2144 2145 if (Field == FieldEnd) { 2146 // We've run out of fields. We're done. 2147 break; 2148 } 2149 2150 // We've already initialized a member of a union. We're done. 2151 if (InitializedSomething && DeclType->isUnionType()) 2152 break; 2153 2154 // If we've hit the flexible array member at the end, we're done. 2155 if (Field->getType()->isIncompleteArrayType()) 2156 break; 2157 2158 if (Field->isUnnamedBitfield()) { 2159 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2160 ++Field; 2161 continue; 2162 } 2163 2164 // Make sure we can use this declaration. 2165 bool InvalidUse; 2166 if (VerifyOnly) 2167 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2168 else 2169 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2170 *Field, IList->getInit(Index)->getBeginLoc()); 2171 if (InvalidUse) { 2172 ++Index; 2173 ++Field; 2174 hadError = true; 2175 continue; 2176 } 2177 2178 if (!VerifyOnly) { 2179 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2180 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2181 hadError = true; 2182 return; 2183 } 2184 } 2185 2186 InitializedEntity MemberEntity = 2187 InitializedEntity::InitializeMember(*Field, &Entity); 2188 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2189 StructuredList, StructuredIndex); 2190 InitializedSomething = true; 2191 2192 if (DeclType->isUnionType() && StructuredList) { 2193 // Initialize the first field within the union. 2194 StructuredList->setInitializedFieldInUnion(*Field); 2195 } 2196 2197 ++Field; 2198 } 2199 2200 // Emit warnings for missing struct field initializers. 2201 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2202 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2203 !DeclType->isUnionType()) { 2204 // It is possible we have one or more unnamed bitfields remaining. 2205 // Find first (if any) named field and emit warning. 2206 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2207 it != end; ++it) { 2208 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2209 SemaRef.Diag(IList->getSourceRange().getEnd(), 2210 diag::warn_missing_field_initializers) << *it; 2211 break; 2212 } 2213 } 2214 } 2215 2216 // Check that any remaining fields can be value-initialized if we're not 2217 // building a structured list. (If we are, we'll check this later.) 2218 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2219 !Field->getType()->isIncompleteArrayType()) { 2220 for (; Field != FieldEnd && !hadError; ++Field) { 2221 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2222 CheckEmptyInitializable( 2223 InitializedEntity::InitializeMember(*Field, &Entity), 2224 IList->getEndLoc()); 2225 } 2226 } 2227 2228 // Check that the types of the remaining fields have accessible destructors. 2229 if (!VerifyOnly) { 2230 // If the initializer expression has a designated initializer, check the 2231 // elements for which a designated initializer is not provided too. 2232 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2233 : Field; 2234 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2235 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2236 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2237 hadError = true; 2238 return; 2239 } 2240 } 2241 } 2242 2243 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2244 Index >= IList->getNumInits()) 2245 return; 2246 2247 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2248 TopLevelObject)) { 2249 hadError = true; 2250 ++Index; 2251 return; 2252 } 2253 2254 InitializedEntity MemberEntity = 2255 InitializedEntity::InitializeMember(*Field, &Entity); 2256 2257 if (isa<InitListExpr>(IList->getInit(Index))) 2258 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2259 StructuredList, StructuredIndex); 2260 else 2261 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2262 StructuredList, StructuredIndex); 2263 } 2264 2265 /// Expand a field designator that refers to a member of an 2266 /// anonymous struct or union into a series of field designators that 2267 /// refers to the field within the appropriate subobject. 2268 /// 2269 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2270 DesignatedInitExpr *DIE, 2271 unsigned DesigIdx, 2272 IndirectFieldDecl *IndirectField) { 2273 typedef DesignatedInitExpr::Designator Designator; 2274 2275 // Build the replacement designators. 2276 SmallVector<Designator, 4> Replacements; 2277 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2278 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2279 if (PI + 1 == PE) 2280 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2281 DIE->getDesignator(DesigIdx)->getDotLoc(), 2282 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2283 else 2284 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2285 SourceLocation(), SourceLocation())); 2286 assert(isa<FieldDecl>(*PI)); 2287 Replacements.back().setField(cast<FieldDecl>(*PI)); 2288 } 2289 2290 // Expand the current designator into the set of replacement 2291 // designators, so we have a full subobject path down to where the 2292 // member of the anonymous struct/union is actually stored. 2293 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2294 &Replacements[0] + Replacements.size()); 2295 } 2296 2297 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2298 DesignatedInitExpr *DIE) { 2299 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2300 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2301 for (unsigned I = 0; I < NumIndexExprs; ++I) 2302 IndexExprs[I] = DIE->getSubExpr(I + 1); 2303 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2304 IndexExprs, 2305 DIE->getEqualOrColonLoc(), 2306 DIE->usesGNUSyntax(), DIE->getInit()); 2307 } 2308 2309 namespace { 2310 2311 // Callback to only accept typo corrections that are for field members of 2312 // the given struct or union. 2313 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2314 public: 2315 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2316 : Record(RD) {} 2317 2318 bool ValidateCandidate(const TypoCorrection &candidate) override { 2319 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2320 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2321 } 2322 2323 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2324 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2325 } 2326 2327 private: 2328 RecordDecl *Record; 2329 }; 2330 2331 } // end anonymous namespace 2332 2333 /// Check the well-formedness of a C99 designated initializer. 2334 /// 2335 /// Determines whether the designated initializer @p DIE, which 2336 /// resides at the given @p Index within the initializer list @p 2337 /// IList, is well-formed for a current object of type @p DeclType 2338 /// (C99 6.7.8). The actual subobject that this designator refers to 2339 /// within the current subobject is returned in either 2340 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2341 /// 2342 /// @param IList The initializer list in which this designated 2343 /// initializer occurs. 2344 /// 2345 /// @param DIE The designated initializer expression. 2346 /// 2347 /// @param DesigIdx The index of the current designator. 2348 /// 2349 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2350 /// into which the designation in @p DIE should refer. 2351 /// 2352 /// @param NextField If non-NULL and the first designator in @p DIE is 2353 /// a field, this will be set to the field declaration corresponding 2354 /// to the field named by the designator. On input, this is expected to be 2355 /// the next field that would be initialized in the absence of designation, 2356 /// if the complete object being initialized is a struct. 2357 /// 2358 /// @param NextElementIndex If non-NULL and the first designator in @p 2359 /// DIE is an array designator or GNU array-range designator, this 2360 /// will be set to the last index initialized by this designator. 2361 /// 2362 /// @param Index Index into @p IList where the designated initializer 2363 /// @p DIE occurs. 2364 /// 2365 /// @param StructuredList The initializer list expression that 2366 /// describes all of the subobject initializers in the order they'll 2367 /// actually be initialized. 2368 /// 2369 /// @returns true if there was an error, false otherwise. 2370 bool 2371 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2372 InitListExpr *IList, 2373 DesignatedInitExpr *DIE, 2374 unsigned DesigIdx, 2375 QualType &CurrentObjectType, 2376 RecordDecl::field_iterator *NextField, 2377 llvm::APSInt *NextElementIndex, 2378 unsigned &Index, 2379 InitListExpr *StructuredList, 2380 unsigned &StructuredIndex, 2381 bool FinishSubobjectInit, 2382 bool TopLevelObject) { 2383 if (DesigIdx == DIE->size()) { 2384 // C++20 designated initialization can result in direct-list-initialization 2385 // of the designated subobject. This is the only way that we can end up 2386 // performing direct initialization as part of aggregate initialization, so 2387 // it needs special handling. 2388 if (DIE->isDirectInit()) { 2389 Expr *Init = DIE->getInit(); 2390 assert(isa<InitListExpr>(Init) && 2391 "designator result in direct non-list initialization?"); 2392 InitializationKind Kind = InitializationKind::CreateDirectList( 2393 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2394 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2395 /*TopLevelOfInitList*/ true); 2396 if (StructuredList) { 2397 ExprResult Result = VerifyOnly 2398 ? getDummyInit() 2399 : Seq.Perform(SemaRef, Entity, Kind, Init); 2400 UpdateStructuredListElement(StructuredList, StructuredIndex, 2401 Result.get()); 2402 } 2403 ++Index; 2404 return !Seq; 2405 } 2406 2407 // Check the actual initialization for the designated object type. 2408 bool prevHadError = hadError; 2409 2410 // Temporarily remove the designator expression from the 2411 // initializer list that the child calls see, so that we don't try 2412 // to re-process the designator. 2413 unsigned OldIndex = Index; 2414 IList->setInit(OldIndex, DIE->getInit()); 2415 2416 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2417 StructuredList, StructuredIndex); 2418 2419 // Restore the designated initializer expression in the syntactic 2420 // form of the initializer list. 2421 if (IList->getInit(OldIndex) != DIE->getInit()) 2422 DIE->setInit(IList->getInit(OldIndex)); 2423 IList->setInit(OldIndex, DIE); 2424 2425 return hadError && !prevHadError; 2426 } 2427 2428 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2429 bool IsFirstDesignator = (DesigIdx == 0); 2430 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2431 // Determine the structural initializer list that corresponds to the 2432 // current subobject. 2433 if (IsFirstDesignator) 2434 StructuredList = FullyStructuredList; 2435 else { 2436 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2437 StructuredList->getInit(StructuredIndex) : nullptr; 2438 if (!ExistingInit && StructuredList->hasArrayFiller()) 2439 ExistingInit = StructuredList->getArrayFiller(); 2440 2441 if (!ExistingInit) 2442 StructuredList = getStructuredSubobjectInit( 2443 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2444 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2445 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2446 StructuredList = Result; 2447 else { 2448 // We are creating an initializer list that initializes the 2449 // subobjects of the current object, but there was already an 2450 // initialization that completely initialized the current 2451 // subobject, e.g., by a compound literal: 2452 // 2453 // struct X { int a, b; }; 2454 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2455 // 2456 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2457 // designated initializer re-initializes only its current object 2458 // subobject [0].b. 2459 diagnoseInitOverride(ExistingInit, 2460 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2461 /*FullyOverwritten=*/false); 2462 2463 if (!VerifyOnly) { 2464 if (DesignatedInitUpdateExpr *E = 2465 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2466 StructuredList = E->getUpdater(); 2467 else { 2468 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2469 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2470 ExistingInit, DIE->getEndLoc()); 2471 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2472 StructuredList = DIUE->getUpdater(); 2473 } 2474 } else { 2475 // We don't need to track the structured representation of a 2476 // designated init update of an already-fully-initialized object in 2477 // verify-only mode. The only reason we would need the structure is 2478 // to determine where the uninitialized "holes" are, and in this 2479 // case, we know there aren't any and we can't introduce any. 2480 StructuredList = nullptr; 2481 } 2482 } 2483 } 2484 } 2485 2486 if (D->isFieldDesignator()) { 2487 // C99 6.7.8p7: 2488 // 2489 // If a designator has the form 2490 // 2491 // . identifier 2492 // 2493 // then the current object (defined below) shall have 2494 // structure or union type and the identifier shall be the 2495 // name of a member of that type. 2496 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2497 if (!RT) { 2498 SourceLocation Loc = D->getDotLoc(); 2499 if (Loc.isInvalid()) 2500 Loc = D->getFieldLoc(); 2501 if (!VerifyOnly) 2502 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2503 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2504 ++Index; 2505 return true; 2506 } 2507 2508 FieldDecl *KnownField = D->getField(); 2509 if (!KnownField) { 2510 IdentifierInfo *FieldName = D->getFieldName(); 2511 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2512 for (NamedDecl *ND : Lookup) { 2513 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2514 KnownField = FD; 2515 break; 2516 } 2517 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2518 // In verify mode, don't modify the original. 2519 if (VerifyOnly) 2520 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2521 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2522 D = DIE->getDesignator(DesigIdx); 2523 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2524 break; 2525 } 2526 } 2527 if (!KnownField) { 2528 if (VerifyOnly) { 2529 ++Index; 2530 return true; // No typo correction when just trying this out. 2531 } 2532 2533 // Name lookup found something, but it wasn't a field. 2534 if (!Lookup.empty()) { 2535 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2536 << FieldName; 2537 SemaRef.Diag(Lookup.front()->getLocation(), 2538 diag::note_field_designator_found); 2539 ++Index; 2540 return true; 2541 } 2542 2543 // Name lookup didn't find anything. 2544 // Determine whether this was a typo for another field name. 2545 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2546 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2547 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2548 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2549 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2550 SemaRef.diagnoseTypo( 2551 Corrected, 2552 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2553 << FieldName << CurrentObjectType); 2554 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2555 hadError = true; 2556 } else { 2557 // Typo correction didn't find anything. 2558 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2559 << FieldName << CurrentObjectType; 2560 ++Index; 2561 return true; 2562 } 2563 } 2564 } 2565 2566 unsigned NumBases = 0; 2567 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2568 NumBases = CXXRD->getNumBases(); 2569 2570 unsigned FieldIndex = NumBases; 2571 2572 for (auto *FI : RT->getDecl()->fields()) { 2573 if (FI->isUnnamedBitfield()) 2574 continue; 2575 if (declaresSameEntity(KnownField, FI)) { 2576 KnownField = FI; 2577 break; 2578 } 2579 ++FieldIndex; 2580 } 2581 2582 RecordDecl::field_iterator Field = 2583 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2584 2585 // All of the fields of a union are located at the same place in 2586 // the initializer list. 2587 if (RT->getDecl()->isUnion()) { 2588 FieldIndex = 0; 2589 if (StructuredList) { 2590 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2591 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2592 assert(StructuredList->getNumInits() == 1 2593 && "A union should never have more than one initializer!"); 2594 2595 Expr *ExistingInit = StructuredList->getInit(0); 2596 if (ExistingInit) { 2597 // We're about to throw away an initializer, emit warning. 2598 diagnoseInitOverride( 2599 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2600 } 2601 2602 // remove existing initializer 2603 StructuredList->resizeInits(SemaRef.Context, 0); 2604 StructuredList->setInitializedFieldInUnion(nullptr); 2605 } 2606 2607 StructuredList->setInitializedFieldInUnion(*Field); 2608 } 2609 } 2610 2611 // Make sure we can use this declaration. 2612 bool InvalidUse; 2613 if (VerifyOnly) 2614 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2615 else 2616 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2617 if (InvalidUse) { 2618 ++Index; 2619 return true; 2620 } 2621 2622 // C++20 [dcl.init.list]p3: 2623 // The ordered identifiers in the designators of the designated- 2624 // initializer-list shall form a subsequence of the ordered identifiers 2625 // in the direct non-static data members of T. 2626 // 2627 // Note that this is not a condition on forming the aggregate 2628 // initialization, only on actually performing initialization, 2629 // so it is not checked in VerifyOnly mode. 2630 // 2631 // FIXME: This is the only reordering diagnostic we produce, and it only 2632 // catches cases where we have a top-level field designator that jumps 2633 // backwards. This is the only such case that is reachable in an 2634 // otherwise-valid C++20 program, so is the only case that's required for 2635 // conformance, but for consistency, we should diagnose all the other 2636 // cases where a designator takes us backwards too. 2637 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2638 NextField && 2639 (*NextField == RT->getDecl()->field_end() || 2640 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2641 // Find the field that we just initialized. 2642 FieldDecl *PrevField = nullptr; 2643 for (auto FI = RT->getDecl()->field_begin(); 2644 FI != RT->getDecl()->field_end(); ++FI) { 2645 if (FI->isUnnamedBitfield()) 2646 continue; 2647 if (*NextField != RT->getDecl()->field_end() && 2648 declaresSameEntity(*FI, **NextField)) 2649 break; 2650 PrevField = *FI; 2651 } 2652 2653 if (PrevField && 2654 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2655 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2656 << KnownField << PrevField << DIE->getSourceRange(); 2657 2658 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2659 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2660 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2661 SemaRef.Diag(PrevInit->getBeginLoc(), 2662 diag::note_previous_field_init) 2663 << PrevField << PrevInit->getSourceRange(); 2664 } 2665 } 2666 } 2667 } 2668 2669 2670 // Update the designator with the field declaration. 2671 if (!VerifyOnly) 2672 D->setField(*Field); 2673 2674 // Make sure that our non-designated initializer list has space 2675 // for a subobject corresponding to this field. 2676 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2677 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2678 2679 // This designator names a flexible array member. 2680 if (Field->getType()->isIncompleteArrayType()) { 2681 bool Invalid = false; 2682 if ((DesigIdx + 1) != DIE->size()) { 2683 // We can't designate an object within the flexible array 2684 // member (because GCC doesn't allow it). 2685 if (!VerifyOnly) { 2686 DesignatedInitExpr::Designator *NextD 2687 = DIE->getDesignator(DesigIdx + 1); 2688 SemaRef.Diag(NextD->getBeginLoc(), 2689 diag::err_designator_into_flexible_array_member) 2690 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2691 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2692 << *Field; 2693 } 2694 Invalid = true; 2695 } 2696 2697 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2698 !isa<StringLiteral>(DIE->getInit())) { 2699 // The initializer is not an initializer list. 2700 if (!VerifyOnly) { 2701 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2702 diag::err_flexible_array_init_needs_braces) 2703 << DIE->getInit()->getSourceRange(); 2704 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2705 << *Field; 2706 } 2707 Invalid = true; 2708 } 2709 2710 // Check GNU flexible array initializer. 2711 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2712 TopLevelObject)) 2713 Invalid = true; 2714 2715 if (Invalid) { 2716 ++Index; 2717 return true; 2718 } 2719 2720 // Initialize the array. 2721 bool prevHadError = hadError; 2722 unsigned newStructuredIndex = FieldIndex; 2723 unsigned OldIndex = Index; 2724 IList->setInit(Index, DIE->getInit()); 2725 2726 InitializedEntity MemberEntity = 2727 InitializedEntity::InitializeMember(*Field, &Entity); 2728 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2729 StructuredList, newStructuredIndex); 2730 2731 IList->setInit(OldIndex, DIE); 2732 if (hadError && !prevHadError) { 2733 ++Field; 2734 ++FieldIndex; 2735 if (NextField) 2736 *NextField = Field; 2737 StructuredIndex = FieldIndex; 2738 return true; 2739 } 2740 } else { 2741 // Recurse to check later designated subobjects. 2742 QualType FieldType = Field->getType(); 2743 unsigned newStructuredIndex = FieldIndex; 2744 2745 InitializedEntity MemberEntity = 2746 InitializedEntity::InitializeMember(*Field, &Entity); 2747 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2748 FieldType, nullptr, nullptr, Index, 2749 StructuredList, newStructuredIndex, 2750 FinishSubobjectInit, false)) 2751 return true; 2752 } 2753 2754 // Find the position of the next field to be initialized in this 2755 // subobject. 2756 ++Field; 2757 ++FieldIndex; 2758 2759 // If this the first designator, our caller will continue checking 2760 // the rest of this struct/class/union subobject. 2761 if (IsFirstDesignator) { 2762 if (NextField) 2763 *NextField = Field; 2764 StructuredIndex = FieldIndex; 2765 return false; 2766 } 2767 2768 if (!FinishSubobjectInit) 2769 return false; 2770 2771 // We've already initialized something in the union; we're done. 2772 if (RT->getDecl()->isUnion()) 2773 return hadError; 2774 2775 // Check the remaining fields within this class/struct/union subobject. 2776 bool prevHadError = hadError; 2777 2778 auto NoBases = 2779 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2780 CXXRecordDecl::base_class_iterator()); 2781 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2782 false, Index, StructuredList, FieldIndex); 2783 return hadError && !prevHadError; 2784 } 2785 2786 // C99 6.7.8p6: 2787 // 2788 // If a designator has the form 2789 // 2790 // [ constant-expression ] 2791 // 2792 // then the current object (defined below) shall have array 2793 // type and the expression shall be an integer constant 2794 // expression. If the array is of unknown size, any 2795 // nonnegative value is valid. 2796 // 2797 // Additionally, cope with the GNU extension that permits 2798 // designators of the form 2799 // 2800 // [ constant-expression ... constant-expression ] 2801 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2802 if (!AT) { 2803 if (!VerifyOnly) 2804 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2805 << CurrentObjectType; 2806 ++Index; 2807 return true; 2808 } 2809 2810 Expr *IndexExpr = nullptr; 2811 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2812 if (D->isArrayDesignator()) { 2813 IndexExpr = DIE->getArrayIndex(*D); 2814 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2815 DesignatedEndIndex = DesignatedStartIndex; 2816 } else { 2817 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2818 2819 DesignatedStartIndex = 2820 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2821 DesignatedEndIndex = 2822 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2823 IndexExpr = DIE->getArrayRangeEnd(*D); 2824 2825 // Codegen can't handle evaluating array range designators that have side 2826 // effects, because we replicate the AST value for each initialized element. 2827 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2828 // elements with something that has a side effect, so codegen can emit an 2829 // "error unsupported" error instead of miscompiling the app. 2830 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2831 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2832 FullyStructuredList->sawArrayRangeDesignator(); 2833 } 2834 2835 if (isa<ConstantArrayType>(AT)) { 2836 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2837 DesignatedStartIndex 2838 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2839 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2840 DesignatedEndIndex 2841 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2842 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2843 if (DesignatedEndIndex >= MaxElements) { 2844 if (!VerifyOnly) 2845 SemaRef.Diag(IndexExpr->getBeginLoc(), 2846 diag::err_array_designator_too_large) 2847 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2848 << IndexExpr->getSourceRange(); 2849 ++Index; 2850 return true; 2851 } 2852 } else { 2853 unsigned DesignatedIndexBitWidth = 2854 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2855 DesignatedStartIndex = 2856 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2857 DesignatedEndIndex = 2858 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2859 DesignatedStartIndex.setIsUnsigned(true); 2860 DesignatedEndIndex.setIsUnsigned(true); 2861 } 2862 2863 bool IsStringLiteralInitUpdate = 2864 StructuredList && StructuredList->isStringLiteralInit(); 2865 if (IsStringLiteralInitUpdate && VerifyOnly) { 2866 // We're just verifying an update to a string literal init. We don't need 2867 // to split the string up into individual characters to do that. 2868 StructuredList = nullptr; 2869 } else if (IsStringLiteralInitUpdate) { 2870 // We're modifying a string literal init; we have to decompose the string 2871 // so we can modify the individual characters. 2872 ASTContext &Context = SemaRef.Context; 2873 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2874 2875 // Compute the character type 2876 QualType CharTy = AT->getElementType(); 2877 2878 // Compute the type of the integer literals. 2879 QualType PromotedCharTy = CharTy; 2880 if (CharTy->isPromotableIntegerType()) 2881 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2882 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2883 2884 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2885 // Get the length of the string. 2886 uint64_t StrLen = SL->getLength(); 2887 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2888 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2889 StructuredList->resizeInits(Context, StrLen); 2890 2891 // Build a literal for each character in the string, and put them into 2892 // the init list. 2893 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2894 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2895 Expr *Init = new (Context) IntegerLiteral( 2896 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2897 if (CharTy != PromotedCharTy) 2898 Init = 2899 ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, 2900 nullptr, VK_RValue, FPOptionsOverride()); 2901 StructuredList->updateInit(Context, i, Init); 2902 } 2903 } else { 2904 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2905 std::string Str; 2906 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2907 2908 // Get the length of the string. 2909 uint64_t StrLen = Str.size(); 2910 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2911 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2912 StructuredList->resizeInits(Context, StrLen); 2913 2914 // Build a literal for each character in the string, and put them into 2915 // the init list. 2916 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2917 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2918 Expr *Init = new (Context) IntegerLiteral( 2919 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2920 if (CharTy != PromotedCharTy) 2921 Init = 2922 ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, 2923 nullptr, VK_RValue, FPOptionsOverride()); 2924 StructuredList->updateInit(Context, i, Init); 2925 } 2926 } 2927 } 2928 2929 // Make sure that our non-designated initializer list has space 2930 // for a subobject corresponding to this array element. 2931 if (StructuredList && 2932 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2933 StructuredList->resizeInits(SemaRef.Context, 2934 DesignatedEndIndex.getZExtValue() + 1); 2935 2936 // Repeatedly perform subobject initializations in the range 2937 // [DesignatedStartIndex, DesignatedEndIndex]. 2938 2939 // Move to the next designator 2940 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2941 unsigned OldIndex = Index; 2942 2943 InitializedEntity ElementEntity = 2944 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2945 2946 while (DesignatedStartIndex <= DesignatedEndIndex) { 2947 // Recurse to check later designated subobjects. 2948 QualType ElementType = AT->getElementType(); 2949 Index = OldIndex; 2950 2951 ElementEntity.setElementIndex(ElementIndex); 2952 if (CheckDesignatedInitializer( 2953 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2954 nullptr, Index, StructuredList, ElementIndex, 2955 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2956 false)) 2957 return true; 2958 2959 // Move to the next index in the array that we'll be initializing. 2960 ++DesignatedStartIndex; 2961 ElementIndex = DesignatedStartIndex.getZExtValue(); 2962 } 2963 2964 // If this the first designator, our caller will continue checking 2965 // the rest of this array subobject. 2966 if (IsFirstDesignator) { 2967 if (NextElementIndex) 2968 *NextElementIndex = DesignatedStartIndex; 2969 StructuredIndex = ElementIndex; 2970 return false; 2971 } 2972 2973 if (!FinishSubobjectInit) 2974 return false; 2975 2976 // Check the remaining elements within this array subobject. 2977 bool prevHadError = hadError; 2978 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2979 /*SubobjectIsDesignatorContext=*/false, Index, 2980 StructuredList, ElementIndex); 2981 return hadError && !prevHadError; 2982 } 2983 2984 // Get the structured initializer list for a subobject of type 2985 // @p CurrentObjectType. 2986 InitListExpr * 2987 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2988 QualType CurrentObjectType, 2989 InitListExpr *StructuredList, 2990 unsigned StructuredIndex, 2991 SourceRange InitRange, 2992 bool IsFullyOverwritten) { 2993 if (!StructuredList) 2994 return nullptr; 2995 2996 Expr *ExistingInit = nullptr; 2997 if (StructuredIndex < StructuredList->getNumInits()) 2998 ExistingInit = StructuredList->getInit(StructuredIndex); 2999 3000 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 3001 // There might have already been initializers for subobjects of the current 3002 // object, but a subsequent initializer list will overwrite the entirety 3003 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 3004 // 3005 // struct P { char x[6]; }; 3006 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 3007 // 3008 // The first designated initializer is ignored, and l.x is just "f". 3009 if (!IsFullyOverwritten) 3010 return Result; 3011 3012 if (ExistingInit) { 3013 // We are creating an initializer list that initializes the 3014 // subobjects of the current object, but there was already an 3015 // initialization that completely initialized the current 3016 // subobject: 3017 // 3018 // struct X { int a, b; }; 3019 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3020 // 3021 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3022 // designated initializer overwrites the [0].b initializer 3023 // from the prior initialization. 3024 // 3025 // When the existing initializer is an expression rather than an 3026 // initializer list, we cannot decompose and update it in this way. 3027 // For example: 3028 // 3029 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3030 // 3031 // This case is handled by CheckDesignatedInitializer. 3032 diagnoseInitOverride(ExistingInit, InitRange); 3033 } 3034 3035 unsigned ExpectedNumInits = 0; 3036 if (Index < IList->getNumInits()) { 3037 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3038 ExpectedNumInits = Init->getNumInits(); 3039 else 3040 ExpectedNumInits = IList->getNumInits() - Index; 3041 } 3042 3043 InitListExpr *Result = 3044 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3045 3046 // Link this new initializer list into the structured initializer 3047 // lists. 3048 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3049 return Result; 3050 } 3051 3052 InitListExpr * 3053 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3054 SourceRange InitRange, 3055 unsigned ExpectedNumInits) { 3056 InitListExpr *Result 3057 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3058 InitRange.getBegin(), None, 3059 InitRange.getEnd()); 3060 3061 QualType ResultType = CurrentObjectType; 3062 if (!ResultType->isArrayType()) 3063 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3064 Result->setType(ResultType); 3065 3066 // Pre-allocate storage for the structured initializer list. 3067 unsigned NumElements = 0; 3068 3069 if (const ArrayType *AType 3070 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3071 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3072 NumElements = CAType->getSize().getZExtValue(); 3073 // Simple heuristic so that we don't allocate a very large 3074 // initializer with many empty entries at the end. 3075 if (NumElements > ExpectedNumInits) 3076 NumElements = 0; 3077 } 3078 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3079 NumElements = VType->getNumElements(); 3080 } else if (CurrentObjectType->isRecordType()) { 3081 NumElements = numStructUnionElements(CurrentObjectType); 3082 } 3083 3084 Result->reserveInits(SemaRef.Context, NumElements); 3085 3086 return Result; 3087 } 3088 3089 /// Update the initializer at index @p StructuredIndex within the 3090 /// structured initializer list to the value @p expr. 3091 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3092 unsigned &StructuredIndex, 3093 Expr *expr) { 3094 // No structured initializer list to update 3095 if (!StructuredList) 3096 return; 3097 3098 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3099 StructuredIndex, expr)) { 3100 // This initializer overwrites a previous initializer. 3101 // No need to diagnose when `expr` is nullptr because a more relevant 3102 // diagnostic has already been issued and this diagnostic is potentially 3103 // noise. 3104 if (expr) 3105 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3106 } 3107 3108 ++StructuredIndex; 3109 } 3110 3111 /// Determine whether we can perform aggregate initialization for the purposes 3112 /// of overload resolution. 3113 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3114 const InitializedEntity &Entity, InitListExpr *From) { 3115 QualType Type = Entity.getType(); 3116 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3117 /*TreatUnavailableAsInvalid=*/false, 3118 /*InOverloadResolution=*/true); 3119 return !Check.HadError(); 3120 } 3121 3122 /// Check that the given Index expression is a valid array designator 3123 /// value. This is essentially just a wrapper around 3124 /// VerifyIntegerConstantExpression that also checks for negative values 3125 /// and produces a reasonable diagnostic if there is a 3126 /// failure. Returns the index expression, possibly with an implicit cast 3127 /// added, on success. If everything went okay, Value will receive the 3128 /// value of the constant expression. 3129 static ExprResult 3130 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3131 SourceLocation Loc = Index->getBeginLoc(); 3132 3133 // Make sure this is an integer constant expression. 3134 ExprResult Result = 3135 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); 3136 if (Result.isInvalid()) 3137 return Result; 3138 3139 if (Value.isSigned() && Value.isNegative()) 3140 return S.Diag(Loc, diag::err_array_designator_negative) 3141 << Value.toString(10) << Index->getSourceRange(); 3142 3143 Value.setIsUnsigned(true); 3144 return Result; 3145 } 3146 3147 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3148 SourceLocation EqualOrColonLoc, 3149 bool GNUSyntax, 3150 ExprResult Init) { 3151 typedef DesignatedInitExpr::Designator ASTDesignator; 3152 3153 bool Invalid = false; 3154 SmallVector<ASTDesignator, 32> Designators; 3155 SmallVector<Expr *, 32> InitExpressions; 3156 3157 // Build designators and check array designator expressions. 3158 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3159 const Designator &D = Desig.getDesignator(Idx); 3160 switch (D.getKind()) { 3161 case Designator::FieldDesignator: 3162 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3163 D.getFieldLoc())); 3164 break; 3165 3166 case Designator::ArrayDesignator: { 3167 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3168 llvm::APSInt IndexValue; 3169 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3170 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3171 if (!Index) 3172 Invalid = true; 3173 else { 3174 Designators.push_back(ASTDesignator(InitExpressions.size(), 3175 D.getLBracketLoc(), 3176 D.getRBracketLoc())); 3177 InitExpressions.push_back(Index); 3178 } 3179 break; 3180 } 3181 3182 case Designator::ArrayRangeDesignator: { 3183 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3184 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3185 llvm::APSInt StartValue; 3186 llvm::APSInt EndValue; 3187 bool StartDependent = StartIndex->isTypeDependent() || 3188 StartIndex->isValueDependent(); 3189 bool EndDependent = EndIndex->isTypeDependent() || 3190 EndIndex->isValueDependent(); 3191 if (!StartDependent) 3192 StartIndex = 3193 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3194 if (!EndDependent) 3195 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3196 3197 if (!StartIndex || !EndIndex) 3198 Invalid = true; 3199 else { 3200 // Make sure we're comparing values with the same bit width. 3201 if (StartDependent || EndDependent) { 3202 // Nothing to compute. 3203 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3204 EndValue = EndValue.extend(StartValue.getBitWidth()); 3205 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3206 StartValue = StartValue.extend(EndValue.getBitWidth()); 3207 3208 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3209 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3210 << StartValue.toString(10) << EndValue.toString(10) 3211 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3212 Invalid = true; 3213 } else { 3214 Designators.push_back(ASTDesignator(InitExpressions.size(), 3215 D.getLBracketLoc(), 3216 D.getEllipsisLoc(), 3217 D.getRBracketLoc())); 3218 InitExpressions.push_back(StartIndex); 3219 InitExpressions.push_back(EndIndex); 3220 } 3221 } 3222 break; 3223 } 3224 } 3225 } 3226 3227 if (Invalid || Init.isInvalid()) 3228 return ExprError(); 3229 3230 // Clear out the expressions within the designation. 3231 Desig.ClearExprs(*this); 3232 3233 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3234 EqualOrColonLoc, GNUSyntax, 3235 Init.getAs<Expr>()); 3236 } 3237 3238 //===----------------------------------------------------------------------===// 3239 // Initialization entity 3240 //===----------------------------------------------------------------------===// 3241 3242 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3243 const InitializedEntity &Parent) 3244 : Parent(&Parent), Index(Index) 3245 { 3246 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3247 Kind = EK_ArrayElement; 3248 Type = AT->getElementType(); 3249 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3250 Kind = EK_VectorElement; 3251 Type = VT->getElementType(); 3252 } else { 3253 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3254 assert(CT && "Unexpected type"); 3255 Kind = EK_ComplexElement; 3256 Type = CT->getElementType(); 3257 } 3258 } 3259 3260 InitializedEntity 3261 InitializedEntity::InitializeBase(ASTContext &Context, 3262 const CXXBaseSpecifier *Base, 3263 bool IsInheritedVirtualBase, 3264 const InitializedEntity *Parent) { 3265 InitializedEntity Result; 3266 Result.Kind = EK_Base; 3267 Result.Parent = Parent; 3268 Result.Base = reinterpret_cast<uintptr_t>(Base); 3269 if (IsInheritedVirtualBase) 3270 Result.Base |= 0x01; 3271 3272 Result.Type = Base->getType(); 3273 return Result; 3274 } 3275 3276 DeclarationName InitializedEntity::getName() const { 3277 switch (getKind()) { 3278 case EK_Parameter: 3279 case EK_Parameter_CF_Audited: { 3280 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3281 return (D ? D->getDeclName() : DeclarationName()); 3282 } 3283 3284 case EK_Variable: 3285 case EK_Member: 3286 case EK_Binding: 3287 case EK_TemplateParameter: 3288 return Variable.VariableOrMember->getDeclName(); 3289 3290 case EK_LambdaCapture: 3291 return DeclarationName(Capture.VarID); 3292 3293 case EK_Result: 3294 case EK_StmtExprResult: 3295 case EK_Exception: 3296 case EK_New: 3297 case EK_Temporary: 3298 case EK_Base: 3299 case EK_Delegating: 3300 case EK_ArrayElement: 3301 case EK_VectorElement: 3302 case EK_ComplexElement: 3303 case EK_BlockElement: 3304 case EK_LambdaToBlockConversionBlockElement: 3305 case EK_CompoundLiteralInit: 3306 case EK_RelatedResult: 3307 return DeclarationName(); 3308 } 3309 3310 llvm_unreachable("Invalid EntityKind!"); 3311 } 3312 3313 ValueDecl *InitializedEntity::getDecl() const { 3314 switch (getKind()) { 3315 case EK_Variable: 3316 case EK_Member: 3317 case EK_Binding: 3318 case EK_TemplateParameter: 3319 return Variable.VariableOrMember; 3320 3321 case EK_Parameter: 3322 case EK_Parameter_CF_Audited: 3323 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3324 3325 case EK_Result: 3326 case EK_StmtExprResult: 3327 case EK_Exception: 3328 case EK_New: 3329 case EK_Temporary: 3330 case EK_Base: 3331 case EK_Delegating: 3332 case EK_ArrayElement: 3333 case EK_VectorElement: 3334 case EK_ComplexElement: 3335 case EK_BlockElement: 3336 case EK_LambdaToBlockConversionBlockElement: 3337 case EK_LambdaCapture: 3338 case EK_CompoundLiteralInit: 3339 case EK_RelatedResult: 3340 return nullptr; 3341 } 3342 3343 llvm_unreachable("Invalid EntityKind!"); 3344 } 3345 3346 bool InitializedEntity::allowsNRVO() const { 3347 switch (getKind()) { 3348 case EK_Result: 3349 case EK_Exception: 3350 return LocAndNRVO.NRVO; 3351 3352 case EK_StmtExprResult: 3353 case EK_Variable: 3354 case EK_Parameter: 3355 case EK_Parameter_CF_Audited: 3356 case EK_TemplateParameter: 3357 case EK_Member: 3358 case EK_Binding: 3359 case EK_New: 3360 case EK_Temporary: 3361 case EK_CompoundLiteralInit: 3362 case EK_Base: 3363 case EK_Delegating: 3364 case EK_ArrayElement: 3365 case EK_VectorElement: 3366 case EK_ComplexElement: 3367 case EK_BlockElement: 3368 case EK_LambdaToBlockConversionBlockElement: 3369 case EK_LambdaCapture: 3370 case EK_RelatedResult: 3371 break; 3372 } 3373 3374 return false; 3375 } 3376 3377 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3378 assert(getParent() != this); 3379 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3380 for (unsigned I = 0; I != Depth; ++I) 3381 OS << "`-"; 3382 3383 switch (getKind()) { 3384 case EK_Variable: OS << "Variable"; break; 3385 case EK_Parameter: OS << "Parameter"; break; 3386 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3387 break; 3388 case EK_TemplateParameter: OS << "TemplateParameter"; break; 3389 case EK_Result: OS << "Result"; break; 3390 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3391 case EK_Exception: OS << "Exception"; break; 3392 case EK_Member: OS << "Member"; break; 3393 case EK_Binding: OS << "Binding"; break; 3394 case EK_New: OS << "New"; break; 3395 case EK_Temporary: OS << "Temporary"; break; 3396 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3397 case EK_RelatedResult: OS << "RelatedResult"; break; 3398 case EK_Base: OS << "Base"; break; 3399 case EK_Delegating: OS << "Delegating"; break; 3400 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3401 case EK_VectorElement: OS << "VectorElement " << Index; break; 3402 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3403 case EK_BlockElement: OS << "Block"; break; 3404 case EK_LambdaToBlockConversionBlockElement: 3405 OS << "Block (lambda)"; 3406 break; 3407 case EK_LambdaCapture: 3408 OS << "LambdaCapture "; 3409 OS << DeclarationName(Capture.VarID); 3410 break; 3411 } 3412 3413 if (auto *D = getDecl()) { 3414 OS << " "; 3415 D->printQualifiedName(OS); 3416 } 3417 3418 OS << " '" << getType().getAsString() << "'\n"; 3419 3420 return Depth + 1; 3421 } 3422 3423 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3424 dumpImpl(llvm::errs()); 3425 } 3426 3427 //===----------------------------------------------------------------------===// 3428 // Initialization sequence 3429 //===----------------------------------------------------------------------===// 3430 3431 void InitializationSequence::Step::Destroy() { 3432 switch (Kind) { 3433 case SK_ResolveAddressOfOverloadedFunction: 3434 case SK_CastDerivedToBaseRValue: 3435 case SK_CastDerivedToBaseXValue: 3436 case SK_CastDerivedToBaseLValue: 3437 case SK_BindReference: 3438 case SK_BindReferenceToTemporary: 3439 case SK_FinalCopy: 3440 case SK_ExtraneousCopyToTemporary: 3441 case SK_UserConversion: 3442 case SK_QualificationConversionRValue: 3443 case SK_QualificationConversionXValue: 3444 case SK_QualificationConversionLValue: 3445 case SK_AtomicConversion: 3446 case SK_ListInitialization: 3447 case SK_UnwrapInitList: 3448 case SK_RewrapInitList: 3449 case SK_ConstructorInitialization: 3450 case SK_ConstructorInitializationFromList: 3451 case SK_ZeroInitialization: 3452 case SK_CAssignment: 3453 case SK_StringInit: 3454 case SK_ObjCObjectConversion: 3455 case SK_ArrayLoopIndex: 3456 case SK_ArrayLoopInit: 3457 case SK_ArrayInit: 3458 case SK_GNUArrayInit: 3459 case SK_ParenthesizedArrayInit: 3460 case SK_PassByIndirectCopyRestore: 3461 case SK_PassByIndirectRestore: 3462 case SK_ProduceObjCObject: 3463 case SK_StdInitializerList: 3464 case SK_StdInitializerListConstructorCall: 3465 case SK_OCLSamplerInit: 3466 case SK_OCLZeroOpaqueType: 3467 break; 3468 3469 case SK_ConversionSequence: 3470 case SK_ConversionSequenceNoNarrowing: 3471 delete ICS; 3472 } 3473 } 3474 3475 bool InitializationSequence::isDirectReferenceBinding() const { 3476 // There can be some lvalue adjustments after the SK_BindReference step. 3477 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3478 if (I->Kind == SK_BindReference) 3479 return true; 3480 if (I->Kind == SK_BindReferenceToTemporary) 3481 return false; 3482 } 3483 return false; 3484 } 3485 3486 bool InitializationSequence::isAmbiguous() const { 3487 if (!Failed()) 3488 return false; 3489 3490 switch (getFailureKind()) { 3491 case FK_TooManyInitsForReference: 3492 case FK_ParenthesizedListInitForReference: 3493 case FK_ArrayNeedsInitList: 3494 case FK_ArrayNeedsInitListOrStringLiteral: 3495 case FK_ArrayNeedsInitListOrWideStringLiteral: 3496 case FK_NarrowStringIntoWideCharArray: 3497 case FK_WideStringIntoCharArray: 3498 case FK_IncompatWideStringIntoWideChar: 3499 case FK_PlainStringIntoUTF8Char: 3500 case FK_UTF8StringIntoPlainChar: 3501 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3502 case FK_NonConstLValueReferenceBindingToTemporary: 3503 case FK_NonConstLValueReferenceBindingToBitfield: 3504 case FK_NonConstLValueReferenceBindingToVectorElement: 3505 case FK_NonConstLValueReferenceBindingToMatrixElement: 3506 case FK_NonConstLValueReferenceBindingToUnrelated: 3507 case FK_RValueReferenceBindingToLValue: 3508 case FK_ReferenceAddrspaceMismatchTemporary: 3509 case FK_ReferenceInitDropsQualifiers: 3510 case FK_ReferenceInitFailed: 3511 case FK_ConversionFailed: 3512 case FK_ConversionFromPropertyFailed: 3513 case FK_TooManyInitsForScalar: 3514 case FK_ParenthesizedListInitForScalar: 3515 case FK_ReferenceBindingToInitList: 3516 case FK_InitListBadDestinationType: 3517 case FK_DefaultInitOfConst: 3518 case FK_Incomplete: 3519 case FK_ArrayTypeMismatch: 3520 case FK_NonConstantArrayInit: 3521 case FK_ListInitializationFailed: 3522 case FK_VariableLengthArrayHasInitializer: 3523 case FK_PlaceholderType: 3524 case FK_ExplicitConstructor: 3525 case FK_AddressOfUnaddressableFunction: 3526 return false; 3527 3528 case FK_ReferenceInitOverloadFailed: 3529 case FK_UserConversionOverloadFailed: 3530 case FK_ConstructorOverloadFailed: 3531 case FK_ListConstructorOverloadFailed: 3532 return FailedOverloadResult == OR_Ambiguous; 3533 } 3534 3535 llvm_unreachable("Invalid EntityKind!"); 3536 } 3537 3538 bool InitializationSequence::isConstructorInitialization() const { 3539 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3540 } 3541 3542 void 3543 InitializationSequence 3544 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3545 DeclAccessPair Found, 3546 bool HadMultipleCandidates) { 3547 Step S; 3548 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3549 S.Type = Function->getType(); 3550 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3551 S.Function.Function = Function; 3552 S.Function.FoundDecl = Found; 3553 Steps.push_back(S); 3554 } 3555 3556 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3557 ExprValueKind VK) { 3558 Step S; 3559 switch (VK) { 3560 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3561 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3562 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3563 } 3564 S.Type = BaseType; 3565 Steps.push_back(S); 3566 } 3567 3568 void InitializationSequence::AddReferenceBindingStep(QualType T, 3569 bool BindingTemporary) { 3570 Step S; 3571 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3572 S.Type = T; 3573 Steps.push_back(S); 3574 } 3575 3576 void InitializationSequence::AddFinalCopy(QualType T) { 3577 Step S; 3578 S.Kind = SK_FinalCopy; 3579 S.Type = T; 3580 Steps.push_back(S); 3581 } 3582 3583 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3584 Step S; 3585 S.Kind = SK_ExtraneousCopyToTemporary; 3586 S.Type = T; 3587 Steps.push_back(S); 3588 } 3589 3590 void 3591 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3592 DeclAccessPair FoundDecl, 3593 QualType T, 3594 bool HadMultipleCandidates) { 3595 Step S; 3596 S.Kind = SK_UserConversion; 3597 S.Type = T; 3598 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3599 S.Function.Function = Function; 3600 S.Function.FoundDecl = FoundDecl; 3601 Steps.push_back(S); 3602 } 3603 3604 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3605 ExprValueKind VK) { 3606 Step S; 3607 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3608 switch (VK) { 3609 case VK_RValue: 3610 S.Kind = SK_QualificationConversionRValue; 3611 break; 3612 case VK_XValue: 3613 S.Kind = SK_QualificationConversionXValue; 3614 break; 3615 case VK_LValue: 3616 S.Kind = SK_QualificationConversionLValue; 3617 break; 3618 } 3619 S.Type = Ty; 3620 Steps.push_back(S); 3621 } 3622 3623 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3624 Step S; 3625 S.Kind = SK_AtomicConversion; 3626 S.Type = Ty; 3627 Steps.push_back(S); 3628 } 3629 3630 void InitializationSequence::AddConversionSequenceStep( 3631 const ImplicitConversionSequence &ICS, QualType T, 3632 bool TopLevelOfInitList) { 3633 Step S; 3634 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3635 : SK_ConversionSequence; 3636 S.Type = T; 3637 S.ICS = new ImplicitConversionSequence(ICS); 3638 Steps.push_back(S); 3639 } 3640 3641 void InitializationSequence::AddListInitializationStep(QualType T) { 3642 Step S; 3643 S.Kind = SK_ListInitialization; 3644 S.Type = T; 3645 Steps.push_back(S); 3646 } 3647 3648 void InitializationSequence::AddConstructorInitializationStep( 3649 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3650 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3651 Step S; 3652 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3653 : SK_ConstructorInitializationFromList 3654 : SK_ConstructorInitialization; 3655 S.Type = T; 3656 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3657 S.Function.Function = Constructor; 3658 S.Function.FoundDecl = FoundDecl; 3659 Steps.push_back(S); 3660 } 3661 3662 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3663 Step S; 3664 S.Kind = SK_ZeroInitialization; 3665 S.Type = T; 3666 Steps.push_back(S); 3667 } 3668 3669 void InitializationSequence::AddCAssignmentStep(QualType T) { 3670 Step S; 3671 S.Kind = SK_CAssignment; 3672 S.Type = T; 3673 Steps.push_back(S); 3674 } 3675 3676 void InitializationSequence::AddStringInitStep(QualType T) { 3677 Step S; 3678 S.Kind = SK_StringInit; 3679 S.Type = T; 3680 Steps.push_back(S); 3681 } 3682 3683 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3684 Step S; 3685 S.Kind = SK_ObjCObjectConversion; 3686 S.Type = T; 3687 Steps.push_back(S); 3688 } 3689 3690 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3691 Step S; 3692 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3693 S.Type = T; 3694 Steps.push_back(S); 3695 } 3696 3697 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3698 Step S; 3699 S.Kind = SK_ArrayLoopIndex; 3700 S.Type = EltT; 3701 Steps.insert(Steps.begin(), S); 3702 3703 S.Kind = SK_ArrayLoopInit; 3704 S.Type = T; 3705 Steps.push_back(S); 3706 } 3707 3708 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3709 Step S; 3710 S.Kind = SK_ParenthesizedArrayInit; 3711 S.Type = T; 3712 Steps.push_back(S); 3713 } 3714 3715 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3716 bool shouldCopy) { 3717 Step s; 3718 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3719 : SK_PassByIndirectRestore); 3720 s.Type = type; 3721 Steps.push_back(s); 3722 } 3723 3724 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3725 Step S; 3726 S.Kind = SK_ProduceObjCObject; 3727 S.Type = T; 3728 Steps.push_back(S); 3729 } 3730 3731 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3732 Step S; 3733 S.Kind = SK_StdInitializerList; 3734 S.Type = T; 3735 Steps.push_back(S); 3736 } 3737 3738 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3739 Step S; 3740 S.Kind = SK_OCLSamplerInit; 3741 S.Type = T; 3742 Steps.push_back(S); 3743 } 3744 3745 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3746 Step S; 3747 S.Kind = SK_OCLZeroOpaqueType; 3748 S.Type = T; 3749 Steps.push_back(S); 3750 } 3751 3752 void InitializationSequence::RewrapReferenceInitList(QualType T, 3753 InitListExpr *Syntactic) { 3754 assert(Syntactic->getNumInits() == 1 && 3755 "Can only rewrap trivial init lists."); 3756 Step S; 3757 S.Kind = SK_UnwrapInitList; 3758 S.Type = Syntactic->getInit(0)->getType(); 3759 Steps.insert(Steps.begin(), S); 3760 3761 S.Kind = SK_RewrapInitList; 3762 S.Type = T; 3763 S.WrappingSyntacticList = Syntactic; 3764 Steps.push_back(S); 3765 } 3766 3767 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3768 OverloadingResult Result) { 3769 setSequenceKind(FailedSequence); 3770 this->Failure = Failure; 3771 this->FailedOverloadResult = Result; 3772 } 3773 3774 //===----------------------------------------------------------------------===// 3775 // Attempt initialization 3776 //===----------------------------------------------------------------------===// 3777 3778 /// Tries to add a zero initializer. Returns true if that worked. 3779 static bool 3780 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3781 const InitializedEntity &Entity) { 3782 if (Entity.getKind() != InitializedEntity::EK_Variable) 3783 return false; 3784 3785 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3786 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3787 return false; 3788 3789 QualType VariableTy = VD->getType().getCanonicalType(); 3790 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3791 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3792 if (!Init.empty()) { 3793 Sequence.AddZeroInitializationStep(Entity.getType()); 3794 Sequence.SetZeroInitializationFixit(Init, Loc); 3795 return true; 3796 } 3797 return false; 3798 } 3799 3800 static void MaybeProduceObjCObject(Sema &S, 3801 InitializationSequence &Sequence, 3802 const InitializedEntity &Entity) { 3803 if (!S.getLangOpts().ObjCAutoRefCount) return; 3804 3805 /// When initializing a parameter, produce the value if it's marked 3806 /// __attribute__((ns_consumed)). 3807 if (Entity.isParameterKind()) { 3808 if (!Entity.isParameterConsumed()) 3809 return; 3810 3811 assert(Entity.getType()->isObjCRetainableType() && 3812 "consuming an object of unretainable type?"); 3813 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3814 3815 /// When initializing a return value, if the return type is a 3816 /// retainable type, then returns need to immediately retain the 3817 /// object. If an autorelease is required, it will be done at the 3818 /// last instant. 3819 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3820 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3821 if (!Entity.getType()->isObjCRetainableType()) 3822 return; 3823 3824 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3825 } 3826 } 3827 3828 static void TryListInitialization(Sema &S, 3829 const InitializedEntity &Entity, 3830 const InitializationKind &Kind, 3831 InitListExpr *InitList, 3832 InitializationSequence &Sequence, 3833 bool TreatUnavailableAsInvalid); 3834 3835 /// When initializing from init list via constructor, handle 3836 /// initialization of an object of type std::initializer_list<T>. 3837 /// 3838 /// \return true if we have handled initialization of an object of type 3839 /// std::initializer_list<T>, false otherwise. 3840 static bool TryInitializerListConstruction(Sema &S, 3841 InitListExpr *List, 3842 QualType DestType, 3843 InitializationSequence &Sequence, 3844 bool TreatUnavailableAsInvalid) { 3845 QualType E; 3846 if (!S.isStdInitializerList(DestType, &E)) 3847 return false; 3848 3849 if (!S.isCompleteType(List->getExprLoc(), E)) { 3850 Sequence.setIncompleteTypeFailure(E); 3851 return true; 3852 } 3853 3854 // Try initializing a temporary array from the init list. 3855 QualType ArrayType = S.Context.getConstantArrayType( 3856 E.withConst(), 3857 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3858 List->getNumInits()), 3859 nullptr, clang::ArrayType::Normal, 0); 3860 InitializedEntity HiddenArray = 3861 InitializedEntity::InitializeTemporary(ArrayType); 3862 InitializationKind Kind = InitializationKind::CreateDirectList( 3863 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3864 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3865 TreatUnavailableAsInvalid); 3866 if (Sequence) 3867 Sequence.AddStdInitializerListConstructionStep(DestType); 3868 return true; 3869 } 3870 3871 /// Determine if the constructor has the signature of a copy or move 3872 /// constructor for the type T of the class in which it was found. That is, 3873 /// determine if its first parameter is of type T or reference to (possibly 3874 /// cv-qualified) T. 3875 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3876 const ConstructorInfo &Info) { 3877 if (Info.Constructor->getNumParams() == 0) 3878 return false; 3879 3880 QualType ParmT = 3881 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3882 QualType ClassT = 3883 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3884 3885 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3886 } 3887 3888 static OverloadingResult 3889 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3890 MultiExprArg Args, 3891 OverloadCandidateSet &CandidateSet, 3892 QualType DestType, 3893 DeclContext::lookup_result Ctors, 3894 OverloadCandidateSet::iterator &Best, 3895 bool CopyInitializing, bool AllowExplicit, 3896 bool OnlyListConstructors, bool IsListInit, 3897 bool SecondStepOfCopyInit = false) { 3898 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3899 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3900 3901 for (NamedDecl *D : Ctors) { 3902 auto Info = getConstructorInfo(D); 3903 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3904 continue; 3905 3906 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3907 continue; 3908 3909 // C++11 [over.best.ics]p4: 3910 // ... and the constructor or user-defined conversion function is a 3911 // candidate by 3912 // - 13.3.1.3, when the argument is the temporary in the second step 3913 // of a class copy-initialization, or 3914 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3915 // - the second phase of 13.3.1.7 when the initializer list has exactly 3916 // one element that is itself an initializer list, and the target is 3917 // the first parameter of a constructor of class X, and the conversion 3918 // is to X or reference to (possibly cv-qualified X), 3919 // user-defined conversion sequences are not considered. 3920 bool SuppressUserConversions = 3921 SecondStepOfCopyInit || 3922 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3923 hasCopyOrMoveCtorParam(S.Context, Info)); 3924 3925 if (Info.ConstructorTmpl) 3926 S.AddTemplateOverloadCandidate( 3927 Info.ConstructorTmpl, Info.FoundDecl, 3928 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3929 /*PartialOverloading=*/false, AllowExplicit); 3930 else { 3931 // C++ [over.match.copy]p1: 3932 // - When initializing a temporary to be bound to the first parameter 3933 // of a constructor [for type T] that takes a reference to possibly 3934 // cv-qualified T as its first argument, called with a single 3935 // argument in the context of direct-initialization, explicit 3936 // conversion functions are also considered. 3937 // FIXME: What if a constructor template instantiates to such a signature? 3938 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3939 Args.size() == 1 && 3940 hasCopyOrMoveCtorParam(S.Context, Info); 3941 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3942 CandidateSet, SuppressUserConversions, 3943 /*PartialOverloading=*/false, AllowExplicit, 3944 AllowExplicitConv); 3945 } 3946 } 3947 3948 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3949 // 3950 // When initializing an object of class type T by constructor 3951 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3952 // from a single expression of class type U, conversion functions of 3953 // U that convert to the non-reference type cv T are candidates. 3954 // Explicit conversion functions are only candidates during 3955 // direct-initialization. 3956 // 3957 // Note: SecondStepOfCopyInit is only ever true in this case when 3958 // evaluating whether to produce a C++98 compatibility warning. 3959 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3960 !SecondStepOfCopyInit) { 3961 Expr *Initializer = Args[0]; 3962 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3963 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3964 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3965 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3966 NamedDecl *D = *I; 3967 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3968 D = D->getUnderlyingDecl(); 3969 3970 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3971 CXXConversionDecl *Conv; 3972 if (ConvTemplate) 3973 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3974 else 3975 Conv = cast<CXXConversionDecl>(D); 3976 3977 if (ConvTemplate) 3978 S.AddTemplateConversionCandidate( 3979 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3980 CandidateSet, AllowExplicit, AllowExplicit, 3981 /*AllowResultConversion*/ false); 3982 else 3983 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3984 DestType, CandidateSet, AllowExplicit, 3985 AllowExplicit, 3986 /*AllowResultConversion*/ false); 3987 } 3988 } 3989 } 3990 3991 // Perform overload resolution and return the result. 3992 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3993 } 3994 3995 /// Attempt initialization by constructor (C++ [dcl.init]), which 3996 /// enumerates the constructors of the initialized entity and performs overload 3997 /// resolution to select the best. 3998 /// \param DestType The destination class type. 3999 /// \param DestArrayType The destination type, which is either DestType or 4000 /// a (possibly multidimensional) array of DestType. 4001 /// \param IsListInit Is this list-initialization? 4002 /// \param IsInitListCopy Is this non-list-initialization resulting from a 4003 /// list-initialization from {x} where x is the same 4004 /// type as the entity? 4005 static void TryConstructorInitialization(Sema &S, 4006 const InitializedEntity &Entity, 4007 const InitializationKind &Kind, 4008 MultiExprArg Args, QualType DestType, 4009 QualType DestArrayType, 4010 InitializationSequence &Sequence, 4011 bool IsListInit = false, 4012 bool IsInitListCopy = false) { 4013 assert(((!IsListInit && !IsInitListCopy) || 4014 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 4015 "IsListInit/IsInitListCopy must come with a single initializer list " 4016 "argument."); 4017 InitListExpr *ILE = 4018 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 4019 MultiExprArg UnwrappedArgs = 4020 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4021 4022 // The type we're constructing needs to be complete. 4023 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4024 Sequence.setIncompleteTypeFailure(DestType); 4025 return; 4026 } 4027 4028 // C++17 [dcl.init]p17: 4029 // - If the initializer expression is a prvalue and the cv-unqualified 4030 // version of the source type is the same class as the class of the 4031 // destination, the initializer expression is used to initialize the 4032 // destination object. 4033 // Per DR (no number yet), this does not apply when initializing a base 4034 // class or delegating to another constructor from a mem-initializer. 4035 // ObjC++: Lambda captured by the block in the lambda to block conversion 4036 // should avoid copy elision. 4037 if (S.getLangOpts().CPlusPlus17 && 4038 Entity.getKind() != InitializedEntity::EK_Base && 4039 Entity.getKind() != InitializedEntity::EK_Delegating && 4040 Entity.getKind() != 4041 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4042 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4043 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4044 // Convert qualifications if necessary. 4045 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4046 if (ILE) 4047 Sequence.RewrapReferenceInitList(DestType, ILE); 4048 return; 4049 } 4050 4051 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4052 assert(DestRecordType && "Constructor initialization requires record type"); 4053 CXXRecordDecl *DestRecordDecl 4054 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4055 4056 // Build the candidate set directly in the initialization sequence 4057 // structure, so that it will persist if we fail. 4058 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4059 4060 // Determine whether we are allowed to call explicit constructors or 4061 // explicit conversion operators. 4062 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4063 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4064 4065 // - Otherwise, if T is a class type, constructors are considered. The 4066 // applicable constructors are enumerated, and the best one is chosen 4067 // through overload resolution. 4068 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4069 4070 OverloadingResult Result = OR_No_Viable_Function; 4071 OverloadCandidateSet::iterator Best; 4072 bool AsInitializerList = false; 4073 4074 // C++11 [over.match.list]p1, per DR1467: 4075 // When objects of non-aggregate type T are list-initialized, such that 4076 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4077 // according to the rules in this section, overload resolution selects 4078 // the constructor in two phases: 4079 // 4080 // - Initially, the candidate functions are the initializer-list 4081 // constructors of the class T and the argument list consists of the 4082 // initializer list as a single argument. 4083 if (IsListInit) { 4084 AsInitializerList = true; 4085 4086 // If the initializer list has no elements and T has a default constructor, 4087 // the first phase is omitted. 4088 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4089 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4090 CandidateSet, DestType, Ctors, Best, 4091 CopyInitialization, AllowExplicit, 4092 /*OnlyListConstructors=*/true, 4093 IsListInit); 4094 } 4095 4096 // C++11 [over.match.list]p1: 4097 // - If no viable initializer-list constructor is found, overload resolution 4098 // is performed again, where the candidate functions are all the 4099 // constructors of the class T and the argument list consists of the 4100 // elements of the initializer list. 4101 if (Result == OR_No_Viable_Function) { 4102 AsInitializerList = false; 4103 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4104 CandidateSet, DestType, Ctors, Best, 4105 CopyInitialization, AllowExplicit, 4106 /*OnlyListConstructors=*/false, 4107 IsListInit); 4108 } 4109 if (Result) { 4110 Sequence.SetOverloadFailure(IsListInit ? 4111 InitializationSequence::FK_ListConstructorOverloadFailed : 4112 InitializationSequence::FK_ConstructorOverloadFailed, 4113 Result); 4114 return; 4115 } 4116 4117 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4118 4119 // In C++17, ResolveConstructorOverload can select a conversion function 4120 // instead of a constructor. 4121 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4122 // Add the user-defined conversion step that calls the conversion function. 4123 QualType ConvType = CD->getConversionType(); 4124 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4125 "should not have selected this conversion function"); 4126 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4127 HadMultipleCandidates); 4128 if (!S.Context.hasSameType(ConvType, DestType)) 4129 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4130 if (IsListInit) 4131 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4132 return; 4133 } 4134 4135 // C++11 [dcl.init]p6: 4136 // If a program calls for the default initialization of an object 4137 // of a const-qualified type T, T shall be a class type with a 4138 // user-provided default constructor. 4139 // C++ core issue 253 proposal: 4140 // If the implicit default constructor initializes all subobjects, no 4141 // initializer should be required. 4142 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4143 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4144 if (Kind.getKind() == InitializationKind::IK_Default && 4145 Entity.getType().isConstQualified()) { 4146 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4147 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4148 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4149 return; 4150 } 4151 } 4152 4153 // C++11 [over.match.list]p1: 4154 // In copy-list-initialization, if an explicit constructor is chosen, the 4155 // initializer is ill-formed. 4156 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4157 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4158 return; 4159 } 4160 4161 // Add the constructor initialization step. Any cv-qualification conversion is 4162 // subsumed by the initialization. 4163 Sequence.AddConstructorInitializationStep( 4164 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4165 IsListInit | IsInitListCopy, AsInitializerList); 4166 } 4167 4168 static bool 4169 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4170 Expr *Initializer, 4171 QualType &SourceType, 4172 QualType &UnqualifiedSourceType, 4173 QualType UnqualifiedTargetType, 4174 InitializationSequence &Sequence) { 4175 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4176 S.Context.OverloadTy) { 4177 DeclAccessPair Found; 4178 bool HadMultipleCandidates = false; 4179 if (FunctionDecl *Fn 4180 = S.ResolveAddressOfOverloadedFunction(Initializer, 4181 UnqualifiedTargetType, 4182 false, Found, 4183 &HadMultipleCandidates)) { 4184 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4185 HadMultipleCandidates); 4186 SourceType = Fn->getType(); 4187 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4188 } else if (!UnqualifiedTargetType->isRecordType()) { 4189 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4190 return true; 4191 } 4192 } 4193 return false; 4194 } 4195 4196 static void TryReferenceInitializationCore(Sema &S, 4197 const InitializedEntity &Entity, 4198 const InitializationKind &Kind, 4199 Expr *Initializer, 4200 QualType cv1T1, QualType T1, 4201 Qualifiers T1Quals, 4202 QualType cv2T2, QualType T2, 4203 Qualifiers T2Quals, 4204 InitializationSequence &Sequence); 4205 4206 static void TryValueInitialization(Sema &S, 4207 const InitializedEntity &Entity, 4208 const InitializationKind &Kind, 4209 InitializationSequence &Sequence, 4210 InitListExpr *InitList = nullptr); 4211 4212 /// Attempt list initialization of a reference. 4213 static void TryReferenceListInitialization(Sema &S, 4214 const InitializedEntity &Entity, 4215 const InitializationKind &Kind, 4216 InitListExpr *InitList, 4217 InitializationSequence &Sequence, 4218 bool TreatUnavailableAsInvalid) { 4219 // First, catch C++03 where this isn't possible. 4220 if (!S.getLangOpts().CPlusPlus11) { 4221 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4222 return; 4223 } 4224 // Can't reference initialize a compound literal. 4225 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4226 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4227 return; 4228 } 4229 4230 QualType DestType = Entity.getType(); 4231 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4232 Qualifiers T1Quals; 4233 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4234 4235 // Reference initialization via an initializer list works thus: 4236 // If the initializer list consists of a single element that is 4237 // reference-related to the referenced type, bind directly to that element 4238 // (possibly creating temporaries). 4239 // Otherwise, initialize a temporary with the initializer list and 4240 // bind to that. 4241 if (InitList->getNumInits() == 1) { 4242 Expr *Initializer = InitList->getInit(0); 4243 QualType cv2T2 = Initializer->getType(); 4244 Qualifiers T2Quals; 4245 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4246 4247 // If this fails, creating a temporary wouldn't work either. 4248 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4249 T1, Sequence)) 4250 return; 4251 4252 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4253 Sema::ReferenceCompareResult RefRelationship 4254 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4255 if (RefRelationship >= Sema::Ref_Related) { 4256 // Try to bind the reference here. 4257 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4258 T1Quals, cv2T2, T2, T2Quals, Sequence); 4259 if (Sequence) 4260 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4261 return; 4262 } 4263 4264 // Update the initializer if we've resolved an overloaded function. 4265 if (Sequence.step_begin() != Sequence.step_end()) 4266 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4267 } 4268 4269 // Not reference-related. Create a temporary and bind to that. 4270 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4271 4272 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4273 TreatUnavailableAsInvalid); 4274 if (Sequence) { 4275 if (DestType->isRValueReferenceType() || 4276 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4277 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4278 else 4279 Sequence.SetFailed( 4280 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4281 } 4282 } 4283 4284 /// Attempt list initialization (C++0x [dcl.init.list]) 4285 static void TryListInitialization(Sema &S, 4286 const InitializedEntity &Entity, 4287 const InitializationKind &Kind, 4288 InitListExpr *InitList, 4289 InitializationSequence &Sequence, 4290 bool TreatUnavailableAsInvalid) { 4291 QualType DestType = Entity.getType(); 4292 4293 // C++ doesn't allow scalar initialization with more than one argument. 4294 // But C99 complex numbers are scalars and it makes sense there. 4295 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4296 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4297 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4298 return; 4299 } 4300 if (DestType->isReferenceType()) { 4301 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4302 TreatUnavailableAsInvalid); 4303 return; 4304 } 4305 4306 if (DestType->isRecordType() && 4307 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4308 Sequence.setIncompleteTypeFailure(DestType); 4309 return; 4310 } 4311 4312 // C++11 [dcl.init.list]p3, per DR1467: 4313 // - If T is a class type and the initializer list has a single element of 4314 // type cv U, where U is T or a class derived from T, the object is 4315 // initialized from that element (by copy-initialization for 4316 // copy-list-initialization, or by direct-initialization for 4317 // direct-list-initialization). 4318 // - Otherwise, if T is a character array and the initializer list has a 4319 // single element that is an appropriately-typed string literal 4320 // (8.5.2 [dcl.init.string]), initialization is performed as described 4321 // in that section. 4322 // - Otherwise, if T is an aggregate, [...] (continue below). 4323 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4324 if (DestType->isRecordType()) { 4325 QualType InitType = InitList->getInit(0)->getType(); 4326 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4327 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4328 Expr *InitListAsExpr = InitList; 4329 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4330 DestType, Sequence, 4331 /*InitListSyntax*/false, 4332 /*IsInitListCopy*/true); 4333 return; 4334 } 4335 } 4336 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4337 Expr *SubInit[1] = {InitList->getInit(0)}; 4338 if (!isa<VariableArrayType>(DestAT) && 4339 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4340 InitializationKind SubKind = 4341 Kind.getKind() == InitializationKind::IK_DirectList 4342 ? InitializationKind::CreateDirect(Kind.getLocation(), 4343 InitList->getLBraceLoc(), 4344 InitList->getRBraceLoc()) 4345 : Kind; 4346 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4347 /*TopLevelOfInitList*/ true, 4348 TreatUnavailableAsInvalid); 4349 4350 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4351 // the element is not an appropriately-typed string literal, in which 4352 // case we should proceed as in C++11 (below). 4353 if (Sequence) { 4354 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4355 return; 4356 } 4357 } 4358 } 4359 } 4360 4361 // C++11 [dcl.init.list]p3: 4362 // - If T is an aggregate, aggregate initialization is performed. 4363 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4364 (S.getLangOpts().CPlusPlus11 && 4365 S.isStdInitializerList(DestType, nullptr))) { 4366 if (S.getLangOpts().CPlusPlus11) { 4367 // - Otherwise, if the initializer list has no elements and T is a 4368 // class type with a default constructor, the object is 4369 // value-initialized. 4370 if (InitList->getNumInits() == 0) { 4371 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4372 if (S.LookupDefaultConstructor(RD)) { 4373 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4374 return; 4375 } 4376 } 4377 4378 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4379 // an initializer_list object constructed [...] 4380 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4381 TreatUnavailableAsInvalid)) 4382 return; 4383 4384 // - Otherwise, if T is a class type, constructors are considered. 4385 Expr *InitListAsExpr = InitList; 4386 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4387 DestType, Sequence, /*InitListSyntax*/true); 4388 } else 4389 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4390 return; 4391 } 4392 4393 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4394 InitList->getNumInits() == 1) { 4395 Expr *E = InitList->getInit(0); 4396 4397 // - Otherwise, if T is an enumeration with a fixed underlying type, 4398 // the initializer-list has a single element v, and the initialization 4399 // is direct-list-initialization, the object is initialized with the 4400 // value T(v); if a narrowing conversion is required to convert v to 4401 // the underlying type of T, the program is ill-formed. 4402 auto *ET = DestType->getAs<EnumType>(); 4403 if (S.getLangOpts().CPlusPlus17 && 4404 Kind.getKind() == InitializationKind::IK_DirectList && 4405 ET && ET->getDecl()->isFixed() && 4406 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4407 (E->getType()->isIntegralOrEnumerationType() || 4408 E->getType()->isFloatingType())) { 4409 // There are two ways that T(v) can work when T is an enumeration type. 4410 // If there is either an implicit conversion sequence from v to T or 4411 // a conversion function that can convert from v to T, then we use that. 4412 // Otherwise, if v is of integral, enumeration, or floating-point type, 4413 // it is converted to the enumeration type via its underlying type. 4414 // There is no overlap possible between these two cases (except when the 4415 // source value is already of the destination type), and the first 4416 // case is handled by the general case for single-element lists below. 4417 ImplicitConversionSequence ICS; 4418 ICS.setStandard(); 4419 ICS.Standard.setAsIdentityConversion(); 4420 if (!E->isRValue()) 4421 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4422 // If E is of a floating-point type, then the conversion is ill-formed 4423 // due to narrowing, but go through the motions in order to produce the 4424 // right diagnostic. 4425 ICS.Standard.Second = E->getType()->isFloatingType() 4426 ? ICK_Floating_Integral 4427 : ICK_Integral_Conversion; 4428 ICS.Standard.setFromType(E->getType()); 4429 ICS.Standard.setToType(0, E->getType()); 4430 ICS.Standard.setToType(1, DestType); 4431 ICS.Standard.setToType(2, DestType); 4432 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4433 /*TopLevelOfInitList*/true); 4434 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4435 return; 4436 } 4437 4438 // - Otherwise, if the initializer list has a single element of type E 4439 // [...references are handled above...], the object or reference is 4440 // initialized from that element (by copy-initialization for 4441 // copy-list-initialization, or by direct-initialization for 4442 // direct-list-initialization); if a narrowing conversion is required 4443 // to convert the element to T, the program is ill-formed. 4444 // 4445 // Per core-24034, this is direct-initialization if we were performing 4446 // direct-list-initialization and copy-initialization otherwise. 4447 // We can't use InitListChecker for this, because it always performs 4448 // copy-initialization. This only matters if we might use an 'explicit' 4449 // conversion operator, or for the special case conversion of nullptr_t to 4450 // bool, so we only need to handle those cases. 4451 // 4452 // FIXME: Why not do this in all cases? 4453 Expr *Init = InitList->getInit(0); 4454 if (Init->getType()->isRecordType() || 4455 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4456 InitializationKind SubKind = 4457 Kind.getKind() == InitializationKind::IK_DirectList 4458 ? InitializationKind::CreateDirect(Kind.getLocation(), 4459 InitList->getLBraceLoc(), 4460 InitList->getRBraceLoc()) 4461 : Kind; 4462 Expr *SubInit[1] = { Init }; 4463 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4464 /*TopLevelOfInitList*/true, 4465 TreatUnavailableAsInvalid); 4466 if (Sequence) 4467 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4468 return; 4469 } 4470 } 4471 4472 InitListChecker CheckInitList(S, Entity, InitList, 4473 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4474 if (CheckInitList.HadError()) { 4475 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4476 return; 4477 } 4478 4479 // Add the list initialization step with the built init list. 4480 Sequence.AddListInitializationStep(DestType); 4481 } 4482 4483 /// Try a reference initialization that involves calling a conversion 4484 /// function. 4485 static OverloadingResult TryRefInitWithConversionFunction( 4486 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4487 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4488 InitializationSequence &Sequence) { 4489 QualType DestType = Entity.getType(); 4490 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4491 QualType T1 = cv1T1.getUnqualifiedType(); 4492 QualType cv2T2 = Initializer->getType(); 4493 QualType T2 = cv2T2.getUnqualifiedType(); 4494 4495 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4496 "Must have incompatible references when binding via conversion"); 4497 4498 // Build the candidate set directly in the initialization sequence 4499 // structure, so that it will persist if we fail. 4500 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4501 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4502 4503 // Determine whether we are allowed to call explicit conversion operators. 4504 // Note that none of [over.match.copy], [over.match.conv], nor 4505 // [over.match.ref] permit an explicit constructor to be chosen when 4506 // initializing a reference, not even for direct-initialization. 4507 bool AllowExplicitCtors = false; 4508 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4509 4510 const RecordType *T1RecordType = nullptr; 4511 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4512 S.isCompleteType(Kind.getLocation(), T1)) { 4513 // The type we're converting to is a class type. Enumerate its constructors 4514 // to see if there is a suitable conversion. 4515 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4516 4517 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4518 auto Info = getConstructorInfo(D); 4519 if (!Info.Constructor) 4520 continue; 4521 4522 if (!Info.Constructor->isInvalidDecl() && 4523 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4524 if (Info.ConstructorTmpl) 4525 S.AddTemplateOverloadCandidate( 4526 Info.ConstructorTmpl, Info.FoundDecl, 4527 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4528 /*SuppressUserConversions=*/true, 4529 /*PartialOverloading*/ false, AllowExplicitCtors); 4530 else 4531 S.AddOverloadCandidate( 4532 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4533 /*SuppressUserConversions=*/true, 4534 /*PartialOverloading*/ false, AllowExplicitCtors); 4535 } 4536 } 4537 } 4538 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4539 return OR_No_Viable_Function; 4540 4541 const RecordType *T2RecordType = nullptr; 4542 if ((T2RecordType = T2->getAs<RecordType>()) && 4543 S.isCompleteType(Kind.getLocation(), T2)) { 4544 // The type we're converting from is a class type, enumerate its conversion 4545 // functions. 4546 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4547 4548 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4549 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4550 NamedDecl *D = *I; 4551 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4552 if (isa<UsingShadowDecl>(D)) 4553 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4554 4555 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4556 CXXConversionDecl *Conv; 4557 if (ConvTemplate) 4558 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4559 else 4560 Conv = cast<CXXConversionDecl>(D); 4561 4562 // If the conversion function doesn't return a reference type, 4563 // it can't be considered for this conversion unless we're allowed to 4564 // consider rvalues. 4565 // FIXME: Do we need to make sure that we only consider conversion 4566 // candidates with reference-compatible results? That might be needed to 4567 // break recursion. 4568 if ((AllowRValues || 4569 Conv->getConversionType()->isLValueReferenceType())) { 4570 if (ConvTemplate) 4571 S.AddTemplateConversionCandidate( 4572 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4573 CandidateSet, 4574 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4575 else 4576 S.AddConversionCandidate( 4577 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4578 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4579 } 4580 } 4581 } 4582 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4583 return OR_No_Viable_Function; 4584 4585 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4586 4587 // Perform overload resolution. If it fails, return the failed result. 4588 OverloadCandidateSet::iterator Best; 4589 if (OverloadingResult Result 4590 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4591 return Result; 4592 4593 FunctionDecl *Function = Best->Function; 4594 // This is the overload that will be used for this initialization step if we 4595 // use this initialization. Mark it as referenced. 4596 Function->setReferenced(); 4597 4598 // Compute the returned type and value kind of the conversion. 4599 QualType cv3T3; 4600 if (isa<CXXConversionDecl>(Function)) 4601 cv3T3 = Function->getReturnType(); 4602 else 4603 cv3T3 = T1; 4604 4605 ExprValueKind VK = VK_RValue; 4606 if (cv3T3->isLValueReferenceType()) 4607 VK = VK_LValue; 4608 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4609 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4610 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4611 4612 // Add the user-defined conversion step. 4613 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4614 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4615 HadMultipleCandidates); 4616 4617 // Determine whether we'll need to perform derived-to-base adjustments or 4618 // other conversions. 4619 Sema::ReferenceConversions RefConv; 4620 Sema::ReferenceCompareResult NewRefRelationship = 4621 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4622 4623 // Add the final conversion sequence, if necessary. 4624 if (NewRefRelationship == Sema::Ref_Incompatible) { 4625 assert(!isa<CXXConstructorDecl>(Function) && 4626 "should not have conversion after constructor"); 4627 4628 ImplicitConversionSequence ICS; 4629 ICS.setStandard(); 4630 ICS.Standard = Best->FinalConversion; 4631 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4632 4633 // Every implicit conversion results in a prvalue, except for a glvalue 4634 // derived-to-base conversion, which we handle below. 4635 cv3T3 = ICS.Standard.getToType(2); 4636 VK = VK_RValue; 4637 } 4638 4639 // If the converted initializer is a prvalue, its type T4 is adjusted to 4640 // type "cv1 T4" and the temporary materialization conversion is applied. 4641 // 4642 // We adjust the cv-qualifications to match the reference regardless of 4643 // whether we have a prvalue so that the AST records the change. In this 4644 // case, T4 is "cv3 T3". 4645 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4646 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4647 Sequence.AddQualificationConversionStep(cv1T4, VK); 4648 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4649 VK = IsLValueRef ? VK_LValue : VK_XValue; 4650 4651 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4652 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4653 else if (RefConv & Sema::ReferenceConversions::ObjC) 4654 Sequence.AddObjCObjectConversionStep(cv1T1); 4655 else if (RefConv & Sema::ReferenceConversions::Function) 4656 Sequence.AddQualificationConversionStep(cv1T1, VK); 4657 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4658 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4659 Sequence.AddQualificationConversionStep(cv1T1, VK); 4660 } 4661 4662 return OR_Success; 4663 } 4664 4665 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4666 const InitializedEntity &Entity, 4667 Expr *CurInitExpr); 4668 4669 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4670 static void TryReferenceInitialization(Sema &S, 4671 const InitializedEntity &Entity, 4672 const InitializationKind &Kind, 4673 Expr *Initializer, 4674 InitializationSequence &Sequence) { 4675 QualType DestType = Entity.getType(); 4676 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4677 Qualifiers T1Quals; 4678 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4679 QualType cv2T2 = Initializer->getType(); 4680 Qualifiers T2Quals; 4681 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4682 4683 // If the initializer is the address of an overloaded function, try 4684 // to resolve the overloaded function. If all goes well, T2 is the 4685 // type of the resulting function. 4686 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4687 T1, Sequence)) 4688 return; 4689 4690 // Delegate everything else to a subfunction. 4691 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4692 T1Quals, cv2T2, T2, T2Quals, Sequence); 4693 } 4694 4695 /// Determine whether an expression is a non-referenceable glvalue (one to 4696 /// which a reference can never bind). Attempting to bind a reference to 4697 /// such a glvalue will always create a temporary. 4698 static bool isNonReferenceableGLValue(Expr *E) { 4699 return E->refersToBitField() || E->refersToVectorElement() || 4700 E->refersToMatrixElement(); 4701 } 4702 4703 /// Reference initialization without resolving overloaded functions. 4704 /// 4705 /// We also can get here in C if we call a builtin which is declared as 4706 /// a function with a parameter of reference type (such as __builtin_va_end()). 4707 static void TryReferenceInitializationCore(Sema &S, 4708 const InitializedEntity &Entity, 4709 const InitializationKind &Kind, 4710 Expr *Initializer, 4711 QualType cv1T1, QualType T1, 4712 Qualifiers T1Quals, 4713 QualType cv2T2, QualType T2, 4714 Qualifiers T2Quals, 4715 InitializationSequence &Sequence) { 4716 QualType DestType = Entity.getType(); 4717 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4718 4719 // Compute some basic properties of the types and the initializer. 4720 bool isLValueRef = DestType->isLValueReferenceType(); 4721 bool isRValueRef = !isLValueRef; 4722 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4723 4724 Sema::ReferenceConversions RefConv; 4725 Sema::ReferenceCompareResult RefRelationship = 4726 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4727 4728 // C++0x [dcl.init.ref]p5: 4729 // A reference to type "cv1 T1" is initialized by an expression of type 4730 // "cv2 T2" as follows: 4731 // 4732 // - If the reference is an lvalue reference and the initializer 4733 // expression 4734 // Note the analogous bullet points for rvalue refs to functions. Because 4735 // there are no function rvalues in C++, rvalue refs to functions are treated 4736 // like lvalue refs. 4737 OverloadingResult ConvOvlResult = OR_Success; 4738 bool T1Function = T1->isFunctionType(); 4739 if (isLValueRef || T1Function) { 4740 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4741 (RefRelationship == Sema::Ref_Compatible || 4742 (Kind.isCStyleOrFunctionalCast() && 4743 RefRelationship == Sema::Ref_Related))) { 4744 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4745 // reference-compatible with "cv2 T2," or 4746 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4747 Sema::ReferenceConversions::ObjC)) { 4748 // If we're converting the pointee, add any qualifiers first; 4749 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4750 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4751 Sequence.AddQualificationConversionStep( 4752 S.Context.getQualifiedType(T2, T1Quals), 4753 Initializer->getValueKind()); 4754 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4755 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4756 else 4757 Sequence.AddObjCObjectConversionStep(cv1T1); 4758 } else if (RefConv & (Sema::ReferenceConversions::Qualification | 4759 Sema::ReferenceConversions::Function)) { 4760 // Perform a (possibly multi-level) qualification conversion. 4761 // FIXME: Should we use a different step kind for function conversions? 4762 Sequence.AddQualificationConversionStep(cv1T1, 4763 Initializer->getValueKind()); 4764 } 4765 4766 // We only create a temporary here when binding a reference to a 4767 // bit-field or vector element. Those cases are't supposed to be 4768 // handled by this bullet, but the outcome is the same either way. 4769 Sequence.AddReferenceBindingStep(cv1T1, false); 4770 return; 4771 } 4772 4773 // - has a class type (i.e., T2 is a class type), where T1 is not 4774 // reference-related to T2, and can be implicitly converted to an 4775 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4776 // with "cv3 T3" (this conversion is selected by enumerating the 4777 // applicable conversion functions (13.3.1.6) and choosing the best 4778 // one through overload resolution (13.3)), 4779 // If we have an rvalue ref to function type here, the rhs must be 4780 // an rvalue. DR1287 removed the "implicitly" here. 4781 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4782 (isLValueRef || InitCategory.isRValue())) { 4783 if (S.getLangOpts().CPlusPlus) { 4784 // Try conversion functions only for C++. 4785 ConvOvlResult = TryRefInitWithConversionFunction( 4786 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4787 /*IsLValueRef*/ isLValueRef, Sequence); 4788 if (ConvOvlResult == OR_Success) 4789 return; 4790 if (ConvOvlResult != OR_No_Viable_Function) 4791 Sequence.SetOverloadFailure( 4792 InitializationSequence::FK_ReferenceInitOverloadFailed, 4793 ConvOvlResult); 4794 } else { 4795 ConvOvlResult = OR_No_Viable_Function; 4796 } 4797 } 4798 } 4799 4800 // - Otherwise, the reference shall be an lvalue reference to a 4801 // non-volatile const type (i.e., cv1 shall be const), or the reference 4802 // shall be an rvalue reference. 4803 // For address spaces, we interpret this to mean that an addr space 4804 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4805 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4806 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4807 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4808 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4809 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4810 Sequence.SetOverloadFailure( 4811 InitializationSequence::FK_ReferenceInitOverloadFailed, 4812 ConvOvlResult); 4813 else if (!InitCategory.isLValue()) 4814 Sequence.SetFailed( 4815 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4816 ? InitializationSequence:: 4817 FK_NonConstLValueReferenceBindingToTemporary 4818 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4819 else { 4820 InitializationSequence::FailureKind FK; 4821 switch (RefRelationship) { 4822 case Sema::Ref_Compatible: 4823 if (Initializer->refersToBitField()) 4824 FK = InitializationSequence:: 4825 FK_NonConstLValueReferenceBindingToBitfield; 4826 else if (Initializer->refersToVectorElement()) 4827 FK = InitializationSequence:: 4828 FK_NonConstLValueReferenceBindingToVectorElement; 4829 else if (Initializer->refersToMatrixElement()) 4830 FK = InitializationSequence:: 4831 FK_NonConstLValueReferenceBindingToMatrixElement; 4832 else 4833 llvm_unreachable("unexpected kind of compatible initializer"); 4834 break; 4835 case Sema::Ref_Related: 4836 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4837 break; 4838 case Sema::Ref_Incompatible: 4839 FK = InitializationSequence:: 4840 FK_NonConstLValueReferenceBindingToUnrelated; 4841 break; 4842 } 4843 Sequence.SetFailed(FK); 4844 } 4845 return; 4846 } 4847 4848 // - If the initializer expression 4849 // - is an 4850 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4851 // [1z] rvalue (but not a bit-field) or 4852 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4853 // 4854 // Note: functions are handled above and below rather than here... 4855 if (!T1Function && 4856 (RefRelationship == Sema::Ref_Compatible || 4857 (Kind.isCStyleOrFunctionalCast() && 4858 RefRelationship == Sema::Ref_Related)) && 4859 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4860 (InitCategory.isPRValue() && 4861 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4862 T2->isArrayType())))) { 4863 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4864 if (InitCategory.isPRValue() && T2->isRecordType()) { 4865 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4866 // compiler the freedom to perform a copy here or bind to the 4867 // object, while C++0x requires that we bind directly to the 4868 // object. Hence, we always bind to the object without making an 4869 // extra copy. However, in C++03 requires that we check for the 4870 // presence of a suitable copy constructor: 4871 // 4872 // The constructor that would be used to make the copy shall 4873 // be callable whether or not the copy is actually done. 4874 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4875 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4876 else if (S.getLangOpts().CPlusPlus11) 4877 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4878 } 4879 4880 // C++1z [dcl.init.ref]/5.2.1.2: 4881 // If the converted initializer is a prvalue, its type T4 is adjusted 4882 // to type "cv1 T4" and the temporary materialization conversion is 4883 // applied. 4884 // Postpone address space conversions to after the temporary materialization 4885 // conversion to allow creating temporaries in the alloca address space. 4886 auto T1QualsIgnoreAS = T1Quals; 4887 auto T2QualsIgnoreAS = T2Quals; 4888 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4889 T1QualsIgnoreAS.removeAddressSpace(); 4890 T2QualsIgnoreAS.removeAddressSpace(); 4891 } 4892 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4893 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4894 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4895 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4896 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4897 // Add addr space conversion if required. 4898 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4899 auto T4Quals = cv1T4.getQualifiers(); 4900 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4901 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4902 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4903 cv1T4 = cv1T4WithAS; 4904 } 4905 4906 // In any case, the reference is bound to the resulting glvalue (or to 4907 // an appropriate base class subobject). 4908 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4909 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4910 else if (RefConv & Sema::ReferenceConversions::ObjC) 4911 Sequence.AddObjCObjectConversionStep(cv1T1); 4912 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4913 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4914 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 4915 } 4916 return; 4917 } 4918 4919 // - has a class type (i.e., T2 is a class type), where T1 is not 4920 // reference-related to T2, and can be implicitly converted to an 4921 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4922 // where "cv1 T1" is reference-compatible with "cv3 T3", 4923 // 4924 // DR1287 removes the "implicitly" here. 4925 if (T2->isRecordType()) { 4926 if (RefRelationship == Sema::Ref_Incompatible) { 4927 ConvOvlResult = TryRefInitWithConversionFunction( 4928 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4929 /*IsLValueRef*/ isLValueRef, Sequence); 4930 if (ConvOvlResult) 4931 Sequence.SetOverloadFailure( 4932 InitializationSequence::FK_ReferenceInitOverloadFailed, 4933 ConvOvlResult); 4934 4935 return; 4936 } 4937 4938 if (RefRelationship == Sema::Ref_Compatible && 4939 isRValueRef && InitCategory.isLValue()) { 4940 Sequence.SetFailed( 4941 InitializationSequence::FK_RValueReferenceBindingToLValue); 4942 return; 4943 } 4944 4945 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4946 return; 4947 } 4948 4949 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4950 // from the initializer expression using the rules for a non-reference 4951 // copy-initialization (8.5). The reference is then bound to the 4952 // temporary. [...] 4953 4954 // Ignore address space of reference type at this point and perform address 4955 // space conversion after the reference binding step. 4956 QualType cv1T1IgnoreAS = 4957 T1Quals.hasAddressSpace() 4958 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4959 : cv1T1; 4960 4961 InitializedEntity TempEntity = 4962 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4963 4964 // FIXME: Why do we use an implicit conversion here rather than trying 4965 // copy-initialization? 4966 ImplicitConversionSequence ICS 4967 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4968 /*SuppressUserConversions=*/false, 4969 Sema::AllowedExplicit::None, 4970 /*FIXME:InOverloadResolution=*/false, 4971 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4972 /*AllowObjCWritebackConversion=*/false); 4973 4974 if (ICS.isBad()) { 4975 // FIXME: Use the conversion function set stored in ICS to turn 4976 // this into an overloading ambiguity diagnostic. However, we need 4977 // to keep that set as an OverloadCandidateSet rather than as some 4978 // other kind of set. 4979 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4980 Sequence.SetOverloadFailure( 4981 InitializationSequence::FK_ReferenceInitOverloadFailed, 4982 ConvOvlResult); 4983 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4984 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4985 else 4986 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4987 return; 4988 } else { 4989 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4990 } 4991 4992 // [...] If T1 is reference-related to T2, cv1 must be the 4993 // same cv-qualification as, or greater cv-qualification 4994 // than, cv2; otherwise, the program is ill-formed. 4995 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4996 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4997 if ((RefRelationship == Sema::Ref_Related && 4998 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4999 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 5000 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5001 return; 5002 } 5003 5004 // [...] If T1 is reference-related to T2 and the reference is an rvalue 5005 // reference, the initializer expression shall not be an lvalue. 5006 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 5007 InitCategory.isLValue()) { 5008 Sequence.SetFailed( 5009 InitializationSequence::FK_RValueReferenceBindingToLValue); 5010 return; 5011 } 5012 5013 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 5014 5015 if (T1Quals.hasAddressSpace()) { 5016 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 5017 LangAS::Default)) { 5018 Sequence.SetFailed( 5019 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 5020 return; 5021 } 5022 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 5023 : VK_XValue); 5024 } 5025 } 5026 5027 /// Attempt character array initialization from a string literal 5028 /// (C++ [dcl.init.string], C99 6.7.8). 5029 static void TryStringLiteralInitialization(Sema &S, 5030 const InitializedEntity &Entity, 5031 const InitializationKind &Kind, 5032 Expr *Initializer, 5033 InitializationSequence &Sequence) { 5034 Sequence.AddStringInitStep(Entity.getType()); 5035 } 5036 5037 /// Attempt value initialization (C++ [dcl.init]p7). 5038 static void TryValueInitialization(Sema &S, 5039 const InitializedEntity &Entity, 5040 const InitializationKind &Kind, 5041 InitializationSequence &Sequence, 5042 InitListExpr *InitList) { 5043 assert((!InitList || InitList->getNumInits() == 0) && 5044 "Shouldn't use value-init for non-empty init lists"); 5045 5046 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5047 // 5048 // To value-initialize an object of type T means: 5049 QualType T = Entity.getType(); 5050 5051 // -- if T is an array type, then each element is value-initialized; 5052 T = S.Context.getBaseElementType(T); 5053 5054 if (const RecordType *RT = T->getAs<RecordType>()) { 5055 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5056 bool NeedZeroInitialization = true; 5057 // C++98: 5058 // -- if T is a class type (clause 9) with a user-declared constructor 5059 // (12.1), then the default constructor for T is called (and the 5060 // initialization is ill-formed if T has no accessible default 5061 // constructor); 5062 // C++11: 5063 // -- if T is a class type (clause 9) with either no default constructor 5064 // (12.1 [class.ctor]) or a default constructor that is user-provided 5065 // or deleted, then the object is default-initialized; 5066 // 5067 // Note that the C++11 rule is the same as the C++98 rule if there are no 5068 // defaulted or deleted constructors, so we just use it unconditionally. 5069 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5070 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5071 NeedZeroInitialization = false; 5072 5073 // -- if T is a (possibly cv-qualified) non-union class type without a 5074 // user-provided or deleted default constructor, then the object is 5075 // zero-initialized and, if T has a non-trivial default constructor, 5076 // default-initialized; 5077 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5078 // constructor' part was removed by DR1507. 5079 if (NeedZeroInitialization) 5080 Sequence.AddZeroInitializationStep(Entity.getType()); 5081 5082 // C++03: 5083 // -- if T is a non-union class type without a user-declared constructor, 5084 // then every non-static data member and base class component of T is 5085 // value-initialized; 5086 // [...] A program that calls for [...] value-initialization of an 5087 // entity of reference type is ill-formed. 5088 // 5089 // C++11 doesn't need this handling, because value-initialization does not 5090 // occur recursively there, and the implicit default constructor is 5091 // defined as deleted in the problematic cases. 5092 if (!S.getLangOpts().CPlusPlus11 && 5093 ClassDecl->hasUninitializedReferenceMember()) { 5094 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5095 return; 5096 } 5097 5098 // If this is list-value-initialization, pass the empty init list on when 5099 // building the constructor call. This affects the semantics of a few 5100 // things (such as whether an explicit default constructor can be called). 5101 Expr *InitListAsExpr = InitList; 5102 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5103 bool InitListSyntax = InitList; 5104 5105 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5106 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5107 return TryConstructorInitialization( 5108 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5109 } 5110 } 5111 5112 Sequence.AddZeroInitializationStep(Entity.getType()); 5113 } 5114 5115 /// Attempt default initialization (C++ [dcl.init]p6). 5116 static void TryDefaultInitialization(Sema &S, 5117 const InitializedEntity &Entity, 5118 const InitializationKind &Kind, 5119 InitializationSequence &Sequence) { 5120 assert(Kind.getKind() == InitializationKind::IK_Default); 5121 5122 // C++ [dcl.init]p6: 5123 // To default-initialize an object of type T means: 5124 // - if T is an array type, each element is default-initialized; 5125 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5126 5127 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5128 // constructor for T is called (and the initialization is ill-formed if 5129 // T has no accessible default constructor); 5130 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5131 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5132 Entity.getType(), Sequence); 5133 return; 5134 } 5135 5136 // - otherwise, no initialization is performed. 5137 5138 // If a program calls for the default initialization of an object of 5139 // a const-qualified type T, T shall be a class type with a user-provided 5140 // default constructor. 5141 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5142 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5143 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5144 return; 5145 } 5146 5147 // If the destination type has a lifetime property, zero-initialize it. 5148 if (DestType.getQualifiers().hasObjCLifetime()) { 5149 Sequence.AddZeroInitializationStep(Entity.getType()); 5150 return; 5151 } 5152 } 5153 5154 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5155 /// which enumerates all conversion functions and performs overload resolution 5156 /// to select the best. 5157 static void TryUserDefinedConversion(Sema &S, 5158 QualType DestType, 5159 const InitializationKind &Kind, 5160 Expr *Initializer, 5161 InitializationSequence &Sequence, 5162 bool TopLevelOfInitList) { 5163 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5164 QualType SourceType = Initializer->getType(); 5165 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5166 "Must have a class type to perform a user-defined conversion"); 5167 5168 // Build the candidate set directly in the initialization sequence 5169 // structure, so that it will persist if we fail. 5170 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5171 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5172 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5173 5174 // Determine whether we are allowed to call explicit constructors or 5175 // explicit conversion operators. 5176 bool AllowExplicit = Kind.AllowExplicit(); 5177 5178 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5179 // The type we're converting to is a class type. Enumerate its constructors 5180 // to see if there is a suitable conversion. 5181 CXXRecordDecl *DestRecordDecl 5182 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5183 5184 // Try to complete the type we're converting to. 5185 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5186 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5187 auto Info = getConstructorInfo(D); 5188 if (!Info.Constructor) 5189 continue; 5190 5191 if (!Info.Constructor->isInvalidDecl() && 5192 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5193 if (Info.ConstructorTmpl) 5194 S.AddTemplateOverloadCandidate( 5195 Info.ConstructorTmpl, Info.FoundDecl, 5196 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5197 /*SuppressUserConversions=*/true, 5198 /*PartialOverloading*/ false, AllowExplicit); 5199 else 5200 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5201 Initializer, CandidateSet, 5202 /*SuppressUserConversions=*/true, 5203 /*PartialOverloading*/ false, AllowExplicit); 5204 } 5205 } 5206 } 5207 } 5208 5209 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5210 5211 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5212 // The type we're converting from is a class type, enumerate its conversion 5213 // functions. 5214 5215 // We can only enumerate the conversion functions for a complete type; if 5216 // the type isn't complete, simply skip this step. 5217 if (S.isCompleteType(DeclLoc, SourceType)) { 5218 CXXRecordDecl *SourceRecordDecl 5219 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5220 5221 const auto &Conversions = 5222 SourceRecordDecl->getVisibleConversionFunctions(); 5223 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5224 NamedDecl *D = *I; 5225 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5226 if (isa<UsingShadowDecl>(D)) 5227 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5228 5229 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5230 CXXConversionDecl *Conv; 5231 if (ConvTemplate) 5232 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5233 else 5234 Conv = cast<CXXConversionDecl>(D); 5235 5236 if (ConvTemplate) 5237 S.AddTemplateConversionCandidate( 5238 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5239 CandidateSet, AllowExplicit, AllowExplicit); 5240 else 5241 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5242 DestType, CandidateSet, AllowExplicit, 5243 AllowExplicit); 5244 } 5245 } 5246 } 5247 5248 // Perform overload resolution. If it fails, return the failed result. 5249 OverloadCandidateSet::iterator Best; 5250 if (OverloadingResult Result 5251 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5252 Sequence.SetOverloadFailure( 5253 InitializationSequence::FK_UserConversionOverloadFailed, 5254 Result); 5255 return; 5256 } 5257 5258 FunctionDecl *Function = Best->Function; 5259 Function->setReferenced(); 5260 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5261 5262 if (isa<CXXConstructorDecl>(Function)) { 5263 // Add the user-defined conversion step. Any cv-qualification conversion is 5264 // subsumed by the initialization. Per DR5, the created temporary is of the 5265 // cv-unqualified type of the destination. 5266 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5267 DestType.getUnqualifiedType(), 5268 HadMultipleCandidates); 5269 5270 // C++14 and before: 5271 // - if the function is a constructor, the call initializes a temporary 5272 // of the cv-unqualified version of the destination type. The [...] 5273 // temporary [...] is then used to direct-initialize, according to the 5274 // rules above, the object that is the destination of the 5275 // copy-initialization. 5276 // Note that this just performs a simple object copy from the temporary. 5277 // 5278 // C++17: 5279 // - if the function is a constructor, the call is a prvalue of the 5280 // cv-unqualified version of the destination type whose return object 5281 // is initialized by the constructor. The call is used to 5282 // direct-initialize, according to the rules above, the object that 5283 // is the destination of the copy-initialization. 5284 // Therefore we need to do nothing further. 5285 // 5286 // FIXME: Mark this copy as extraneous. 5287 if (!S.getLangOpts().CPlusPlus17) 5288 Sequence.AddFinalCopy(DestType); 5289 else if (DestType.hasQualifiers()) 5290 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5291 return; 5292 } 5293 5294 // Add the user-defined conversion step that calls the conversion function. 5295 QualType ConvType = Function->getCallResultType(); 5296 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5297 HadMultipleCandidates); 5298 5299 if (ConvType->getAs<RecordType>()) { 5300 // The call is used to direct-initialize [...] the object that is the 5301 // destination of the copy-initialization. 5302 // 5303 // In C++17, this does not call a constructor if we enter /17.6.1: 5304 // - If the initializer expression is a prvalue and the cv-unqualified 5305 // version of the source type is the same as the class of the 5306 // destination [... do not make an extra copy] 5307 // 5308 // FIXME: Mark this copy as extraneous. 5309 if (!S.getLangOpts().CPlusPlus17 || 5310 Function->getReturnType()->isReferenceType() || 5311 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5312 Sequence.AddFinalCopy(DestType); 5313 else if (!S.Context.hasSameType(ConvType, DestType)) 5314 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5315 return; 5316 } 5317 5318 // If the conversion following the call to the conversion function 5319 // is interesting, add it as a separate step. 5320 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5321 Best->FinalConversion.Third) { 5322 ImplicitConversionSequence ICS; 5323 ICS.setStandard(); 5324 ICS.Standard = Best->FinalConversion; 5325 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5326 } 5327 } 5328 5329 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5330 /// a function with a pointer return type contains a 'return false;' statement. 5331 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5332 /// code using that header. 5333 /// 5334 /// Work around this by treating 'return false;' as zero-initializing the result 5335 /// if it's used in a pointer-returning function in a system header. 5336 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5337 const InitializedEntity &Entity, 5338 const Expr *Init) { 5339 return S.getLangOpts().CPlusPlus11 && 5340 Entity.getKind() == InitializedEntity::EK_Result && 5341 Entity.getType()->isPointerType() && 5342 isa<CXXBoolLiteralExpr>(Init) && 5343 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5344 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5345 } 5346 5347 /// The non-zero enum values here are indexes into diagnostic alternatives. 5348 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5349 5350 /// Determines whether this expression is an acceptable ICR source. 5351 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5352 bool isAddressOf, bool &isWeakAccess) { 5353 // Skip parens. 5354 e = e->IgnoreParens(); 5355 5356 // Skip address-of nodes. 5357 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5358 if (op->getOpcode() == UO_AddrOf) 5359 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5360 isWeakAccess); 5361 5362 // Skip certain casts. 5363 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5364 switch (ce->getCastKind()) { 5365 case CK_Dependent: 5366 case CK_BitCast: 5367 case CK_LValueBitCast: 5368 case CK_NoOp: 5369 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5370 5371 case CK_ArrayToPointerDecay: 5372 return IIK_nonscalar; 5373 5374 case CK_NullToPointer: 5375 return IIK_okay; 5376 5377 default: 5378 break; 5379 } 5380 5381 // If we have a declaration reference, it had better be a local variable. 5382 } else if (isa<DeclRefExpr>(e)) { 5383 // set isWeakAccess to true, to mean that there will be an implicit 5384 // load which requires a cleanup. 5385 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5386 isWeakAccess = true; 5387 5388 if (!isAddressOf) return IIK_nonlocal; 5389 5390 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5391 if (!var) return IIK_nonlocal; 5392 5393 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5394 5395 // If we have a conditional operator, check both sides. 5396 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5397 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5398 isWeakAccess)) 5399 return iik; 5400 5401 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5402 5403 // These are never scalar. 5404 } else if (isa<ArraySubscriptExpr>(e)) { 5405 return IIK_nonscalar; 5406 5407 // Otherwise, it needs to be a null pointer constant. 5408 } else { 5409 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5410 ? IIK_okay : IIK_nonlocal); 5411 } 5412 5413 return IIK_nonlocal; 5414 } 5415 5416 /// Check whether the given expression is a valid operand for an 5417 /// indirect copy/restore. 5418 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5419 assert(src->isRValue()); 5420 bool isWeakAccess = false; 5421 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5422 // If isWeakAccess to true, there will be an implicit 5423 // load which requires a cleanup. 5424 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5425 S.Cleanup.setExprNeedsCleanups(true); 5426 5427 if (iik == IIK_okay) return; 5428 5429 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5430 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5431 << src->getSourceRange(); 5432 } 5433 5434 /// Determine whether we have compatible array types for the 5435 /// purposes of GNU by-copy array initialization. 5436 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5437 const ArrayType *Source) { 5438 // If the source and destination array types are equivalent, we're 5439 // done. 5440 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5441 return true; 5442 5443 // Make sure that the element types are the same. 5444 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5445 return false; 5446 5447 // The only mismatch we allow is when the destination is an 5448 // incomplete array type and the source is a constant array type. 5449 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5450 } 5451 5452 static bool tryObjCWritebackConversion(Sema &S, 5453 InitializationSequence &Sequence, 5454 const InitializedEntity &Entity, 5455 Expr *Initializer) { 5456 bool ArrayDecay = false; 5457 QualType ArgType = Initializer->getType(); 5458 QualType ArgPointee; 5459 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5460 ArrayDecay = true; 5461 ArgPointee = ArgArrayType->getElementType(); 5462 ArgType = S.Context.getPointerType(ArgPointee); 5463 } 5464 5465 // Handle write-back conversion. 5466 QualType ConvertedArgType; 5467 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5468 ConvertedArgType)) 5469 return false; 5470 5471 // We should copy unless we're passing to an argument explicitly 5472 // marked 'out'. 5473 bool ShouldCopy = true; 5474 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5475 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5476 5477 // Do we need an lvalue conversion? 5478 if (ArrayDecay || Initializer->isGLValue()) { 5479 ImplicitConversionSequence ICS; 5480 ICS.setStandard(); 5481 ICS.Standard.setAsIdentityConversion(); 5482 5483 QualType ResultType; 5484 if (ArrayDecay) { 5485 ICS.Standard.First = ICK_Array_To_Pointer; 5486 ResultType = S.Context.getPointerType(ArgPointee); 5487 } else { 5488 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5489 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5490 } 5491 5492 Sequence.AddConversionSequenceStep(ICS, ResultType); 5493 } 5494 5495 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5496 return true; 5497 } 5498 5499 static bool TryOCLSamplerInitialization(Sema &S, 5500 InitializationSequence &Sequence, 5501 QualType DestType, 5502 Expr *Initializer) { 5503 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5504 (!Initializer->isIntegerConstantExpr(S.Context) && 5505 !Initializer->getType()->isSamplerT())) 5506 return false; 5507 5508 Sequence.AddOCLSamplerInitStep(DestType); 5509 return true; 5510 } 5511 5512 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5513 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5514 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5515 } 5516 5517 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5518 InitializationSequence &Sequence, 5519 QualType DestType, 5520 Expr *Initializer) { 5521 if (!S.getLangOpts().OpenCL) 5522 return false; 5523 5524 // 5525 // OpenCL 1.2 spec, s6.12.10 5526 // 5527 // The event argument can also be used to associate the 5528 // async_work_group_copy with a previous async copy allowing 5529 // an event to be shared by multiple async copies; otherwise 5530 // event should be zero. 5531 // 5532 if (DestType->isEventT() || DestType->isQueueT()) { 5533 if (!IsZeroInitializer(Initializer, S)) 5534 return false; 5535 5536 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5537 return true; 5538 } 5539 5540 // We should allow zero initialization for all types defined in the 5541 // cl_intel_device_side_avc_motion_estimation extension, except 5542 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5543 if (S.getOpenCLOptions().isEnabled( 5544 "cl_intel_device_side_avc_motion_estimation") && 5545 DestType->isOCLIntelSubgroupAVCType()) { 5546 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5547 DestType->isOCLIntelSubgroupAVCMceResultType()) 5548 return false; 5549 if (!IsZeroInitializer(Initializer, S)) 5550 return false; 5551 5552 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5553 return true; 5554 } 5555 5556 return false; 5557 } 5558 5559 InitializationSequence::InitializationSequence(Sema &S, 5560 const InitializedEntity &Entity, 5561 const InitializationKind &Kind, 5562 MultiExprArg Args, 5563 bool TopLevelOfInitList, 5564 bool TreatUnavailableAsInvalid) 5565 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5566 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5567 TreatUnavailableAsInvalid); 5568 } 5569 5570 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5571 /// address of that function, this returns true. Otherwise, it returns false. 5572 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5573 auto *DRE = dyn_cast<DeclRefExpr>(E); 5574 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5575 return false; 5576 5577 return !S.checkAddressOfFunctionIsAvailable( 5578 cast<FunctionDecl>(DRE->getDecl())); 5579 } 5580 5581 /// Determine whether we can perform an elementwise array copy for this kind 5582 /// of entity. 5583 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5584 switch (Entity.getKind()) { 5585 case InitializedEntity::EK_LambdaCapture: 5586 // C++ [expr.prim.lambda]p24: 5587 // For array members, the array elements are direct-initialized in 5588 // increasing subscript order. 5589 return true; 5590 5591 case InitializedEntity::EK_Variable: 5592 // C++ [dcl.decomp]p1: 5593 // [...] each element is copy-initialized or direct-initialized from the 5594 // corresponding element of the assignment-expression [...] 5595 return isa<DecompositionDecl>(Entity.getDecl()); 5596 5597 case InitializedEntity::EK_Member: 5598 // C++ [class.copy.ctor]p14: 5599 // - if the member is an array, each element is direct-initialized with 5600 // the corresponding subobject of x 5601 return Entity.isImplicitMemberInitializer(); 5602 5603 case InitializedEntity::EK_ArrayElement: 5604 // All the above cases are intended to apply recursively, even though none 5605 // of them actually say that. 5606 if (auto *E = Entity.getParent()) 5607 return canPerformArrayCopy(*E); 5608 break; 5609 5610 default: 5611 break; 5612 } 5613 5614 return false; 5615 } 5616 5617 void InitializationSequence::InitializeFrom(Sema &S, 5618 const InitializedEntity &Entity, 5619 const InitializationKind &Kind, 5620 MultiExprArg Args, 5621 bool TopLevelOfInitList, 5622 bool TreatUnavailableAsInvalid) { 5623 ASTContext &Context = S.Context; 5624 5625 // Eliminate non-overload placeholder types in the arguments. We 5626 // need to do this before checking whether types are dependent 5627 // because lowering a pseudo-object expression might well give us 5628 // something of dependent type. 5629 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5630 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5631 // FIXME: should we be doing this here? 5632 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5633 if (result.isInvalid()) { 5634 SetFailed(FK_PlaceholderType); 5635 return; 5636 } 5637 Args[I] = result.get(); 5638 } 5639 5640 // C++0x [dcl.init]p16: 5641 // The semantics of initializers are as follows. The destination type is 5642 // the type of the object or reference being initialized and the source 5643 // type is the type of the initializer expression. The source type is not 5644 // defined when the initializer is a braced-init-list or when it is a 5645 // parenthesized list of expressions. 5646 QualType DestType = Entity.getType(); 5647 5648 if (DestType->isDependentType() || 5649 Expr::hasAnyTypeDependentArguments(Args)) { 5650 SequenceKind = DependentSequence; 5651 return; 5652 } 5653 5654 // Almost everything is a normal sequence. 5655 setSequenceKind(NormalSequence); 5656 5657 QualType SourceType; 5658 Expr *Initializer = nullptr; 5659 if (Args.size() == 1) { 5660 Initializer = Args[0]; 5661 if (S.getLangOpts().ObjC) { 5662 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5663 DestType, Initializer->getType(), 5664 Initializer) || 5665 S.CheckConversionToObjCLiteral(DestType, Initializer)) 5666 Args[0] = Initializer; 5667 } 5668 if (!isa<InitListExpr>(Initializer)) 5669 SourceType = Initializer->getType(); 5670 } 5671 5672 // - If the initializer is a (non-parenthesized) braced-init-list, the 5673 // object is list-initialized (8.5.4). 5674 if (Kind.getKind() != InitializationKind::IK_Direct) { 5675 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5676 TryListInitialization(S, Entity, Kind, InitList, *this, 5677 TreatUnavailableAsInvalid); 5678 return; 5679 } 5680 } 5681 5682 // - If the destination type is a reference type, see 8.5.3. 5683 if (DestType->isReferenceType()) { 5684 // C++0x [dcl.init.ref]p1: 5685 // A variable declared to be a T& or T&&, that is, "reference to type T" 5686 // (8.3.2), shall be initialized by an object, or function, of type T or 5687 // by an object that can be converted into a T. 5688 // (Therefore, multiple arguments are not permitted.) 5689 if (Args.size() != 1) 5690 SetFailed(FK_TooManyInitsForReference); 5691 // C++17 [dcl.init.ref]p5: 5692 // A reference [...] is initialized by an expression [...] as follows: 5693 // If the initializer is not an expression, presumably we should reject, 5694 // but the standard fails to actually say so. 5695 else if (isa<InitListExpr>(Args[0])) 5696 SetFailed(FK_ParenthesizedListInitForReference); 5697 else 5698 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5699 return; 5700 } 5701 5702 // - If the initializer is (), the object is value-initialized. 5703 if (Kind.getKind() == InitializationKind::IK_Value || 5704 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5705 TryValueInitialization(S, Entity, Kind, *this); 5706 return; 5707 } 5708 5709 // Handle default initialization. 5710 if (Kind.getKind() == InitializationKind::IK_Default) { 5711 TryDefaultInitialization(S, Entity, Kind, *this); 5712 return; 5713 } 5714 5715 // - If the destination type is an array of characters, an array of 5716 // char16_t, an array of char32_t, or an array of wchar_t, and the 5717 // initializer is a string literal, see 8.5.2. 5718 // - Otherwise, if the destination type is an array, the program is 5719 // ill-formed. 5720 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5721 if (Initializer && isa<VariableArrayType>(DestAT)) { 5722 SetFailed(FK_VariableLengthArrayHasInitializer); 5723 return; 5724 } 5725 5726 if (Initializer) { 5727 switch (IsStringInit(Initializer, DestAT, Context)) { 5728 case SIF_None: 5729 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5730 return; 5731 case SIF_NarrowStringIntoWideChar: 5732 SetFailed(FK_NarrowStringIntoWideCharArray); 5733 return; 5734 case SIF_WideStringIntoChar: 5735 SetFailed(FK_WideStringIntoCharArray); 5736 return; 5737 case SIF_IncompatWideStringIntoWideChar: 5738 SetFailed(FK_IncompatWideStringIntoWideChar); 5739 return; 5740 case SIF_PlainStringIntoUTF8Char: 5741 SetFailed(FK_PlainStringIntoUTF8Char); 5742 return; 5743 case SIF_UTF8StringIntoPlainChar: 5744 SetFailed(FK_UTF8StringIntoPlainChar); 5745 return; 5746 case SIF_Other: 5747 break; 5748 } 5749 } 5750 5751 // Some kinds of initialization permit an array to be initialized from 5752 // another array of the same type, and perform elementwise initialization. 5753 if (Initializer && isa<ConstantArrayType>(DestAT) && 5754 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5755 Entity.getType()) && 5756 canPerformArrayCopy(Entity)) { 5757 // If source is a prvalue, use it directly. 5758 if (Initializer->getValueKind() == VK_RValue) { 5759 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5760 return; 5761 } 5762 5763 // Emit element-at-a-time copy loop. 5764 InitializedEntity Element = 5765 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5766 QualType InitEltT = 5767 Context.getAsArrayType(Initializer->getType())->getElementType(); 5768 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5769 Initializer->getValueKind(), 5770 Initializer->getObjectKind()); 5771 Expr *OVEAsExpr = &OVE; 5772 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5773 TreatUnavailableAsInvalid); 5774 if (!Failed()) 5775 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5776 return; 5777 } 5778 5779 // Note: as an GNU C extension, we allow initialization of an 5780 // array from a compound literal that creates an array of the same 5781 // type, so long as the initializer has no side effects. 5782 if (!S.getLangOpts().CPlusPlus && Initializer && 5783 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5784 Initializer->getType()->isArrayType()) { 5785 const ArrayType *SourceAT 5786 = Context.getAsArrayType(Initializer->getType()); 5787 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5788 SetFailed(FK_ArrayTypeMismatch); 5789 else if (Initializer->HasSideEffects(S.Context)) 5790 SetFailed(FK_NonConstantArrayInit); 5791 else { 5792 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5793 } 5794 } 5795 // Note: as a GNU C++ extension, we allow list-initialization of a 5796 // class member of array type from a parenthesized initializer list. 5797 else if (S.getLangOpts().CPlusPlus && 5798 Entity.getKind() == InitializedEntity::EK_Member && 5799 Initializer && isa<InitListExpr>(Initializer)) { 5800 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5801 *this, TreatUnavailableAsInvalid); 5802 AddParenthesizedArrayInitStep(DestType); 5803 } else if (DestAT->getElementType()->isCharType()) 5804 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5805 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5806 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5807 else 5808 SetFailed(FK_ArrayNeedsInitList); 5809 5810 return; 5811 } 5812 5813 // Determine whether we should consider writeback conversions for 5814 // Objective-C ARC. 5815 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5816 Entity.isParameterKind(); 5817 5818 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5819 return; 5820 5821 // We're at the end of the line for C: it's either a write-back conversion 5822 // or it's a C assignment. There's no need to check anything else. 5823 if (!S.getLangOpts().CPlusPlus) { 5824 // If allowed, check whether this is an Objective-C writeback conversion. 5825 if (allowObjCWritebackConversion && 5826 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5827 return; 5828 } 5829 5830 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5831 return; 5832 5833 // Handle initialization in C 5834 AddCAssignmentStep(DestType); 5835 MaybeProduceObjCObject(S, *this, Entity); 5836 return; 5837 } 5838 5839 assert(S.getLangOpts().CPlusPlus); 5840 5841 // - If the destination type is a (possibly cv-qualified) class type: 5842 if (DestType->isRecordType()) { 5843 // - If the initialization is direct-initialization, or if it is 5844 // copy-initialization where the cv-unqualified version of the 5845 // source type is the same class as, or a derived class of, the 5846 // class of the destination, constructors are considered. [...] 5847 if (Kind.getKind() == InitializationKind::IK_Direct || 5848 (Kind.getKind() == InitializationKind::IK_Copy && 5849 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5850 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5851 TryConstructorInitialization(S, Entity, Kind, Args, 5852 DestType, DestType, *this); 5853 // - Otherwise (i.e., for the remaining copy-initialization cases), 5854 // user-defined conversion sequences that can convert from the source 5855 // type to the destination type or (when a conversion function is 5856 // used) to a derived class thereof are enumerated as described in 5857 // 13.3.1.4, and the best one is chosen through overload resolution 5858 // (13.3). 5859 else 5860 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5861 TopLevelOfInitList); 5862 return; 5863 } 5864 5865 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5866 5867 // The remaining cases all need a source type. 5868 if (Args.size() > 1) { 5869 SetFailed(FK_TooManyInitsForScalar); 5870 return; 5871 } else if (isa<InitListExpr>(Args[0])) { 5872 SetFailed(FK_ParenthesizedListInitForScalar); 5873 return; 5874 } 5875 5876 // - Otherwise, if the source type is a (possibly cv-qualified) class 5877 // type, conversion functions are considered. 5878 if (!SourceType.isNull() && SourceType->isRecordType()) { 5879 // For a conversion to _Atomic(T) from either T or a class type derived 5880 // from T, initialize the T object then convert to _Atomic type. 5881 bool NeedAtomicConversion = false; 5882 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5883 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5884 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5885 Atomic->getValueType())) { 5886 DestType = Atomic->getValueType(); 5887 NeedAtomicConversion = true; 5888 } 5889 } 5890 5891 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5892 TopLevelOfInitList); 5893 MaybeProduceObjCObject(S, *this, Entity); 5894 if (!Failed() && NeedAtomicConversion) 5895 AddAtomicConversionStep(Entity.getType()); 5896 return; 5897 } 5898 5899 // - Otherwise, if the initialization is direct-initialization, the source 5900 // type is std::nullptr_t, and the destination type is bool, the initial 5901 // value of the object being initialized is false. 5902 if (!SourceType.isNull() && SourceType->isNullPtrType() && 5903 DestType->isBooleanType() && 5904 Kind.getKind() == InitializationKind::IK_Direct) { 5905 AddConversionSequenceStep( 5906 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 5907 Initializer->isGLValue()), 5908 DestType); 5909 return; 5910 } 5911 5912 // - Otherwise, the initial value of the object being initialized is the 5913 // (possibly converted) value of the initializer expression. Standard 5914 // conversions (Clause 4) will be used, if necessary, to convert the 5915 // initializer expression to the cv-unqualified version of the 5916 // destination type; no user-defined conversions are considered. 5917 5918 ImplicitConversionSequence ICS 5919 = S.TryImplicitConversion(Initializer, DestType, 5920 /*SuppressUserConversions*/true, 5921 Sema::AllowedExplicit::None, 5922 /*InOverloadResolution*/ false, 5923 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5924 allowObjCWritebackConversion); 5925 5926 if (ICS.isStandard() && 5927 ICS.Standard.Second == ICK_Writeback_Conversion) { 5928 // Objective-C ARC writeback conversion. 5929 5930 // We should copy unless we're passing to an argument explicitly 5931 // marked 'out'. 5932 bool ShouldCopy = true; 5933 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5934 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5935 5936 // If there was an lvalue adjustment, add it as a separate conversion. 5937 if (ICS.Standard.First == ICK_Array_To_Pointer || 5938 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5939 ImplicitConversionSequence LvalueICS; 5940 LvalueICS.setStandard(); 5941 LvalueICS.Standard.setAsIdentityConversion(); 5942 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5943 LvalueICS.Standard.First = ICS.Standard.First; 5944 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5945 } 5946 5947 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5948 } else if (ICS.isBad()) { 5949 DeclAccessPair dap; 5950 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5951 AddZeroInitializationStep(Entity.getType()); 5952 } else if (Initializer->getType() == Context.OverloadTy && 5953 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5954 false, dap)) 5955 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5956 else if (Initializer->getType()->isFunctionType() && 5957 isExprAnUnaddressableFunction(S, Initializer)) 5958 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5959 else 5960 SetFailed(InitializationSequence::FK_ConversionFailed); 5961 } else { 5962 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5963 5964 MaybeProduceObjCObject(S, *this, Entity); 5965 } 5966 } 5967 5968 InitializationSequence::~InitializationSequence() { 5969 for (auto &S : Steps) 5970 S.Destroy(); 5971 } 5972 5973 //===----------------------------------------------------------------------===// 5974 // Perform initialization 5975 //===----------------------------------------------------------------------===// 5976 static Sema::AssignmentAction 5977 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5978 switch(Entity.getKind()) { 5979 case InitializedEntity::EK_Variable: 5980 case InitializedEntity::EK_New: 5981 case InitializedEntity::EK_Exception: 5982 case InitializedEntity::EK_Base: 5983 case InitializedEntity::EK_Delegating: 5984 return Sema::AA_Initializing; 5985 5986 case InitializedEntity::EK_Parameter: 5987 if (Entity.getDecl() && 5988 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5989 return Sema::AA_Sending; 5990 5991 return Sema::AA_Passing; 5992 5993 case InitializedEntity::EK_Parameter_CF_Audited: 5994 if (Entity.getDecl() && 5995 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5996 return Sema::AA_Sending; 5997 5998 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5999 6000 case InitializedEntity::EK_Result: 6001 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 6002 return Sema::AA_Returning; 6003 6004 case InitializedEntity::EK_Temporary: 6005 case InitializedEntity::EK_RelatedResult: 6006 // FIXME: Can we tell apart casting vs. converting? 6007 return Sema::AA_Casting; 6008 6009 case InitializedEntity::EK_TemplateParameter: 6010 // This is really initialization, but refer to it as conversion for 6011 // consistency with CheckConvertedConstantExpression. 6012 return Sema::AA_Converting; 6013 6014 case InitializedEntity::EK_Member: 6015 case InitializedEntity::EK_Binding: 6016 case InitializedEntity::EK_ArrayElement: 6017 case InitializedEntity::EK_VectorElement: 6018 case InitializedEntity::EK_ComplexElement: 6019 case InitializedEntity::EK_BlockElement: 6020 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6021 case InitializedEntity::EK_LambdaCapture: 6022 case InitializedEntity::EK_CompoundLiteralInit: 6023 return Sema::AA_Initializing; 6024 } 6025 6026 llvm_unreachable("Invalid EntityKind!"); 6027 } 6028 6029 /// Whether we should bind a created object as a temporary when 6030 /// initializing the given entity. 6031 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 6032 switch (Entity.getKind()) { 6033 case InitializedEntity::EK_ArrayElement: 6034 case InitializedEntity::EK_Member: 6035 case InitializedEntity::EK_Result: 6036 case InitializedEntity::EK_StmtExprResult: 6037 case InitializedEntity::EK_New: 6038 case InitializedEntity::EK_Variable: 6039 case InitializedEntity::EK_Base: 6040 case InitializedEntity::EK_Delegating: 6041 case InitializedEntity::EK_VectorElement: 6042 case InitializedEntity::EK_ComplexElement: 6043 case InitializedEntity::EK_Exception: 6044 case InitializedEntity::EK_BlockElement: 6045 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6046 case InitializedEntity::EK_LambdaCapture: 6047 case InitializedEntity::EK_CompoundLiteralInit: 6048 case InitializedEntity::EK_TemplateParameter: 6049 return false; 6050 6051 case InitializedEntity::EK_Parameter: 6052 case InitializedEntity::EK_Parameter_CF_Audited: 6053 case InitializedEntity::EK_Temporary: 6054 case InitializedEntity::EK_RelatedResult: 6055 case InitializedEntity::EK_Binding: 6056 return true; 6057 } 6058 6059 llvm_unreachable("missed an InitializedEntity kind?"); 6060 } 6061 6062 /// Whether the given entity, when initialized with an object 6063 /// created for that initialization, requires destruction. 6064 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6065 switch (Entity.getKind()) { 6066 case InitializedEntity::EK_Result: 6067 case InitializedEntity::EK_StmtExprResult: 6068 case InitializedEntity::EK_New: 6069 case InitializedEntity::EK_Base: 6070 case InitializedEntity::EK_Delegating: 6071 case InitializedEntity::EK_VectorElement: 6072 case InitializedEntity::EK_ComplexElement: 6073 case InitializedEntity::EK_BlockElement: 6074 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6075 case InitializedEntity::EK_LambdaCapture: 6076 return false; 6077 6078 case InitializedEntity::EK_Member: 6079 case InitializedEntity::EK_Binding: 6080 case InitializedEntity::EK_Variable: 6081 case InitializedEntity::EK_Parameter: 6082 case InitializedEntity::EK_Parameter_CF_Audited: 6083 case InitializedEntity::EK_TemplateParameter: 6084 case InitializedEntity::EK_Temporary: 6085 case InitializedEntity::EK_ArrayElement: 6086 case InitializedEntity::EK_Exception: 6087 case InitializedEntity::EK_CompoundLiteralInit: 6088 case InitializedEntity::EK_RelatedResult: 6089 return true; 6090 } 6091 6092 llvm_unreachable("missed an InitializedEntity kind?"); 6093 } 6094 6095 /// Get the location at which initialization diagnostics should appear. 6096 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6097 Expr *Initializer) { 6098 switch (Entity.getKind()) { 6099 case InitializedEntity::EK_Result: 6100 case InitializedEntity::EK_StmtExprResult: 6101 return Entity.getReturnLoc(); 6102 6103 case InitializedEntity::EK_Exception: 6104 return Entity.getThrowLoc(); 6105 6106 case InitializedEntity::EK_Variable: 6107 case InitializedEntity::EK_Binding: 6108 return Entity.getDecl()->getLocation(); 6109 6110 case InitializedEntity::EK_LambdaCapture: 6111 return Entity.getCaptureLoc(); 6112 6113 case InitializedEntity::EK_ArrayElement: 6114 case InitializedEntity::EK_Member: 6115 case InitializedEntity::EK_Parameter: 6116 case InitializedEntity::EK_Parameter_CF_Audited: 6117 case InitializedEntity::EK_TemplateParameter: 6118 case InitializedEntity::EK_Temporary: 6119 case InitializedEntity::EK_New: 6120 case InitializedEntity::EK_Base: 6121 case InitializedEntity::EK_Delegating: 6122 case InitializedEntity::EK_VectorElement: 6123 case InitializedEntity::EK_ComplexElement: 6124 case InitializedEntity::EK_BlockElement: 6125 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6126 case InitializedEntity::EK_CompoundLiteralInit: 6127 case InitializedEntity::EK_RelatedResult: 6128 return Initializer->getBeginLoc(); 6129 } 6130 llvm_unreachable("missed an InitializedEntity kind?"); 6131 } 6132 6133 /// Make a (potentially elidable) temporary copy of the object 6134 /// provided by the given initializer by calling the appropriate copy 6135 /// constructor. 6136 /// 6137 /// \param S The Sema object used for type-checking. 6138 /// 6139 /// \param T The type of the temporary object, which must either be 6140 /// the type of the initializer expression or a superclass thereof. 6141 /// 6142 /// \param Entity The entity being initialized. 6143 /// 6144 /// \param CurInit The initializer expression. 6145 /// 6146 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6147 /// is permitted in C++03 (but not C++0x) when binding a reference to 6148 /// an rvalue. 6149 /// 6150 /// \returns An expression that copies the initializer expression into 6151 /// a temporary object, or an error expression if a copy could not be 6152 /// created. 6153 static ExprResult CopyObject(Sema &S, 6154 QualType T, 6155 const InitializedEntity &Entity, 6156 ExprResult CurInit, 6157 bool IsExtraneousCopy) { 6158 if (CurInit.isInvalid()) 6159 return CurInit; 6160 // Determine which class type we're copying to. 6161 Expr *CurInitExpr = (Expr *)CurInit.get(); 6162 CXXRecordDecl *Class = nullptr; 6163 if (const RecordType *Record = T->getAs<RecordType>()) 6164 Class = cast<CXXRecordDecl>(Record->getDecl()); 6165 if (!Class) 6166 return CurInit; 6167 6168 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6169 6170 // Make sure that the type we are copying is complete. 6171 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6172 return CurInit; 6173 6174 // Perform overload resolution using the class's constructors. Per 6175 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6176 // is direct-initialization. 6177 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6178 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6179 6180 OverloadCandidateSet::iterator Best; 6181 switch (ResolveConstructorOverload( 6182 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6183 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6184 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6185 /*SecondStepOfCopyInit=*/true)) { 6186 case OR_Success: 6187 break; 6188 6189 case OR_No_Viable_Function: 6190 CandidateSet.NoteCandidates( 6191 PartialDiagnosticAt( 6192 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6193 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6194 : diag::err_temp_copy_no_viable) 6195 << (int)Entity.getKind() << CurInitExpr->getType() 6196 << CurInitExpr->getSourceRange()), 6197 S, OCD_AllCandidates, CurInitExpr); 6198 if (!IsExtraneousCopy || S.isSFINAEContext()) 6199 return ExprError(); 6200 return CurInit; 6201 6202 case OR_Ambiguous: 6203 CandidateSet.NoteCandidates( 6204 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6205 << (int)Entity.getKind() 6206 << CurInitExpr->getType() 6207 << CurInitExpr->getSourceRange()), 6208 S, OCD_AmbiguousCandidates, CurInitExpr); 6209 return ExprError(); 6210 6211 case OR_Deleted: 6212 S.Diag(Loc, diag::err_temp_copy_deleted) 6213 << (int)Entity.getKind() << CurInitExpr->getType() 6214 << CurInitExpr->getSourceRange(); 6215 S.NoteDeletedFunction(Best->Function); 6216 return ExprError(); 6217 } 6218 6219 bool HadMultipleCandidates = CandidateSet.size() > 1; 6220 6221 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6222 SmallVector<Expr*, 8> ConstructorArgs; 6223 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6224 6225 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6226 IsExtraneousCopy); 6227 6228 if (IsExtraneousCopy) { 6229 // If this is a totally extraneous copy for C++03 reference 6230 // binding purposes, just return the original initialization 6231 // expression. We don't generate an (elided) copy operation here 6232 // because doing so would require us to pass down a flag to avoid 6233 // infinite recursion, where each step adds another extraneous, 6234 // elidable copy. 6235 6236 // Instantiate the default arguments of any extra parameters in 6237 // the selected copy constructor, as if we were going to create a 6238 // proper call to the copy constructor. 6239 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6240 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6241 if (S.RequireCompleteType(Loc, Parm->getType(), 6242 diag::err_call_incomplete_argument)) 6243 break; 6244 6245 // Build the default argument expression; we don't actually care 6246 // if this succeeds or not, because this routine will complain 6247 // if there was a problem. 6248 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6249 } 6250 6251 return CurInitExpr; 6252 } 6253 6254 // Determine the arguments required to actually perform the 6255 // constructor call (we might have derived-to-base conversions, or 6256 // the copy constructor may have default arguments). 6257 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6258 return ExprError(); 6259 6260 // C++0x [class.copy]p32: 6261 // When certain criteria are met, an implementation is allowed to 6262 // omit the copy/move construction of a class object, even if the 6263 // copy/move constructor and/or destructor for the object have 6264 // side effects. [...] 6265 // - when a temporary class object that has not been bound to a 6266 // reference (12.2) would be copied/moved to a class object 6267 // with the same cv-unqualified type, the copy/move operation 6268 // can be omitted by constructing the temporary object 6269 // directly into the target of the omitted copy/move 6270 // 6271 // Note that the other three bullets are handled elsewhere. Copy 6272 // elision for return statements and throw expressions are handled as part 6273 // of constructor initialization, while copy elision for exception handlers 6274 // is handled by the run-time. 6275 // 6276 // FIXME: If the function parameter is not the same type as the temporary, we 6277 // should still be able to elide the copy, but we don't have a way to 6278 // represent in the AST how much should be elided in this case. 6279 bool Elidable = 6280 CurInitExpr->isTemporaryObject(S.Context, Class) && 6281 S.Context.hasSameUnqualifiedType( 6282 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6283 CurInitExpr->getType()); 6284 6285 // Actually perform the constructor call. 6286 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6287 Elidable, 6288 ConstructorArgs, 6289 HadMultipleCandidates, 6290 /*ListInit*/ false, 6291 /*StdInitListInit*/ false, 6292 /*ZeroInit*/ false, 6293 CXXConstructExpr::CK_Complete, 6294 SourceRange()); 6295 6296 // If we're supposed to bind temporaries, do so. 6297 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6298 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6299 return CurInit; 6300 } 6301 6302 /// Check whether elidable copy construction for binding a reference to 6303 /// a temporary would have succeeded if we were building in C++98 mode, for 6304 /// -Wc++98-compat. 6305 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6306 const InitializedEntity &Entity, 6307 Expr *CurInitExpr) { 6308 assert(S.getLangOpts().CPlusPlus11); 6309 6310 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6311 if (!Record) 6312 return; 6313 6314 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6315 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6316 return; 6317 6318 // Find constructors which would have been considered. 6319 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6320 DeclContext::lookup_result Ctors = 6321 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6322 6323 // Perform overload resolution. 6324 OverloadCandidateSet::iterator Best; 6325 OverloadingResult OR = ResolveConstructorOverload( 6326 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6327 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6328 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6329 /*SecondStepOfCopyInit=*/true); 6330 6331 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6332 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6333 << CurInitExpr->getSourceRange(); 6334 6335 switch (OR) { 6336 case OR_Success: 6337 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6338 Best->FoundDecl, Entity, Diag); 6339 // FIXME: Check default arguments as far as that's possible. 6340 break; 6341 6342 case OR_No_Viable_Function: 6343 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6344 OCD_AllCandidates, CurInitExpr); 6345 break; 6346 6347 case OR_Ambiguous: 6348 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6349 OCD_AmbiguousCandidates, CurInitExpr); 6350 break; 6351 6352 case OR_Deleted: 6353 S.Diag(Loc, Diag); 6354 S.NoteDeletedFunction(Best->Function); 6355 break; 6356 } 6357 } 6358 6359 void InitializationSequence::PrintInitLocationNote(Sema &S, 6360 const InitializedEntity &Entity) { 6361 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { 6362 if (Entity.getDecl()->getLocation().isInvalid()) 6363 return; 6364 6365 if (Entity.getDecl()->getDeclName()) 6366 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6367 << Entity.getDecl()->getDeclName(); 6368 else 6369 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6370 } 6371 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6372 Entity.getMethodDecl()) 6373 S.Diag(Entity.getMethodDecl()->getLocation(), 6374 diag::note_method_return_type_change) 6375 << Entity.getMethodDecl()->getDeclName(); 6376 } 6377 6378 /// Returns true if the parameters describe a constructor initialization of 6379 /// an explicit temporary object, e.g. "Point(x, y)". 6380 static bool isExplicitTemporary(const InitializedEntity &Entity, 6381 const InitializationKind &Kind, 6382 unsigned NumArgs) { 6383 switch (Entity.getKind()) { 6384 case InitializedEntity::EK_Temporary: 6385 case InitializedEntity::EK_CompoundLiteralInit: 6386 case InitializedEntity::EK_RelatedResult: 6387 break; 6388 default: 6389 return false; 6390 } 6391 6392 switch (Kind.getKind()) { 6393 case InitializationKind::IK_DirectList: 6394 return true; 6395 // FIXME: Hack to work around cast weirdness. 6396 case InitializationKind::IK_Direct: 6397 case InitializationKind::IK_Value: 6398 return NumArgs != 1; 6399 default: 6400 return false; 6401 } 6402 } 6403 6404 static ExprResult 6405 PerformConstructorInitialization(Sema &S, 6406 const InitializedEntity &Entity, 6407 const InitializationKind &Kind, 6408 MultiExprArg Args, 6409 const InitializationSequence::Step& Step, 6410 bool &ConstructorInitRequiresZeroInit, 6411 bool IsListInitialization, 6412 bool IsStdInitListInitialization, 6413 SourceLocation LBraceLoc, 6414 SourceLocation RBraceLoc) { 6415 unsigned NumArgs = Args.size(); 6416 CXXConstructorDecl *Constructor 6417 = cast<CXXConstructorDecl>(Step.Function.Function); 6418 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6419 6420 // Build a call to the selected constructor. 6421 SmallVector<Expr*, 8> ConstructorArgs; 6422 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6423 ? Kind.getEqualLoc() 6424 : Kind.getLocation(); 6425 6426 if (Kind.getKind() == InitializationKind::IK_Default) { 6427 // Force even a trivial, implicit default constructor to be 6428 // semantically checked. We do this explicitly because we don't build 6429 // the definition for completely trivial constructors. 6430 assert(Constructor->getParent() && "No parent class for constructor."); 6431 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6432 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6433 S.runWithSufficientStackSpace(Loc, [&] { 6434 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6435 }); 6436 } 6437 } 6438 6439 ExprResult CurInit((Expr *)nullptr); 6440 6441 // C++ [over.match.copy]p1: 6442 // - When initializing a temporary to be bound to the first parameter 6443 // of a constructor that takes a reference to possibly cv-qualified 6444 // T as its first argument, called with a single argument in the 6445 // context of direct-initialization, explicit conversion functions 6446 // are also considered. 6447 bool AllowExplicitConv = 6448 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6449 hasCopyOrMoveCtorParam(S.Context, 6450 getConstructorInfo(Step.Function.FoundDecl)); 6451 6452 // Determine the arguments required to actually perform the constructor 6453 // call. 6454 if (S.CompleteConstructorCall(Constructor, Args, 6455 Loc, ConstructorArgs, 6456 AllowExplicitConv, 6457 IsListInitialization)) 6458 return ExprError(); 6459 6460 6461 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6462 // An explicitly-constructed temporary, e.g., X(1, 2). 6463 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6464 return ExprError(); 6465 6466 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6467 if (!TSInfo) 6468 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6469 SourceRange ParenOrBraceRange = 6470 (Kind.getKind() == InitializationKind::IK_DirectList) 6471 ? SourceRange(LBraceLoc, RBraceLoc) 6472 : Kind.getParenOrBraceRange(); 6473 6474 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6475 Step.Function.FoundDecl.getDecl())) { 6476 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6477 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6478 return ExprError(); 6479 } 6480 S.MarkFunctionReferenced(Loc, Constructor); 6481 6482 CurInit = S.CheckForImmediateInvocation( 6483 CXXTemporaryObjectExpr::Create( 6484 S.Context, Constructor, 6485 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6486 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6487 IsListInitialization, IsStdInitListInitialization, 6488 ConstructorInitRequiresZeroInit), 6489 Constructor); 6490 } else { 6491 CXXConstructExpr::ConstructionKind ConstructKind = 6492 CXXConstructExpr::CK_Complete; 6493 6494 if (Entity.getKind() == InitializedEntity::EK_Base) { 6495 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6496 CXXConstructExpr::CK_VirtualBase : 6497 CXXConstructExpr::CK_NonVirtualBase; 6498 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6499 ConstructKind = CXXConstructExpr::CK_Delegating; 6500 } 6501 6502 // Only get the parenthesis or brace range if it is a list initialization or 6503 // direct construction. 6504 SourceRange ParenOrBraceRange; 6505 if (IsListInitialization) 6506 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6507 else if (Kind.getKind() == InitializationKind::IK_Direct) 6508 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6509 6510 // If the entity allows NRVO, mark the construction as elidable 6511 // unconditionally. 6512 if (Entity.allowsNRVO()) 6513 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6514 Step.Function.FoundDecl, 6515 Constructor, /*Elidable=*/true, 6516 ConstructorArgs, 6517 HadMultipleCandidates, 6518 IsListInitialization, 6519 IsStdInitListInitialization, 6520 ConstructorInitRequiresZeroInit, 6521 ConstructKind, 6522 ParenOrBraceRange); 6523 else 6524 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6525 Step.Function.FoundDecl, 6526 Constructor, 6527 ConstructorArgs, 6528 HadMultipleCandidates, 6529 IsListInitialization, 6530 IsStdInitListInitialization, 6531 ConstructorInitRequiresZeroInit, 6532 ConstructKind, 6533 ParenOrBraceRange); 6534 } 6535 if (CurInit.isInvalid()) 6536 return ExprError(); 6537 6538 // Only check access if all of that succeeded. 6539 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6540 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6541 return ExprError(); 6542 6543 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6544 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6545 return ExprError(); 6546 6547 if (shouldBindAsTemporary(Entity)) 6548 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6549 6550 return CurInit; 6551 } 6552 6553 namespace { 6554 enum LifetimeKind { 6555 /// The lifetime of a temporary bound to this entity ends at the end of the 6556 /// full-expression, and that's (probably) fine. 6557 LK_FullExpression, 6558 6559 /// The lifetime of a temporary bound to this entity is extended to the 6560 /// lifeitme of the entity itself. 6561 LK_Extended, 6562 6563 /// The lifetime of a temporary bound to this entity probably ends too soon, 6564 /// because the entity is allocated in a new-expression. 6565 LK_New, 6566 6567 /// The lifetime of a temporary bound to this entity ends too soon, because 6568 /// the entity is a return object. 6569 LK_Return, 6570 6571 /// The lifetime of a temporary bound to this entity ends too soon, because 6572 /// the entity is the result of a statement expression. 6573 LK_StmtExprResult, 6574 6575 /// This is a mem-initializer: if it would extend a temporary (other than via 6576 /// a default member initializer), the program is ill-formed. 6577 LK_MemInitializer, 6578 }; 6579 using LifetimeResult = 6580 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6581 } 6582 6583 /// Determine the declaration which an initialized entity ultimately refers to, 6584 /// for the purpose of lifetime-extending a temporary bound to a reference in 6585 /// the initialization of \p Entity. 6586 static LifetimeResult getEntityLifetime( 6587 const InitializedEntity *Entity, 6588 const InitializedEntity *InitField = nullptr) { 6589 // C++11 [class.temporary]p5: 6590 switch (Entity->getKind()) { 6591 case InitializedEntity::EK_Variable: 6592 // The temporary [...] persists for the lifetime of the reference 6593 return {Entity, LK_Extended}; 6594 6595 case InitializedEntity::EK_Member: 6596 // For subobjects, we look at the complete object. 6597 if (Entity->getParent()) 6598 return getEntityLifetime(Entity->getParent(), Entity); 6599 6600 // except: 6601 // C++17 [class.base.init]p8: 6602 // A temporary expression bound to a reference member in a 6603 // mem-initializer is ill-formed. 6604 // C++17 [class.base.init]p11: 6605 // A temporary expression bound to a reference member from a 6606 // default member initializer is ill-formed. 6607 // 6608 // The context of p11 and its example suggest that it's only the use of a 6609 // default member initializer from a constructor that makes the program 6610 // ill-formed, not its mere existence, and that it can even be used by 6611 // aggregate initialization. 6612 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6613 : LK_MemInitializer}; 6614 6615 case InitializedEntity::EK_Binding: 6616 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6617 // type. 6618 return {Entity, LK_Extended}; 6619 6620 case InitializedEntity::EK_Parameter: 6621 case InitializedEntity::EK_Parameter_CF_Audited: 6622 // -- A temporary bound to a reference parameter in a function call 6623 // persists until the completion of the full-expression containing 6624 // the call. 6625 return {nullptr, LK_FullExpression}; 6626 6627 case InitializedEntity::EK_TemplateParameter: 6628 // FIXME: This will always be ill-formed; should we eagerly diagnose it here? 6629 return {nullptr, LK_FullExpression}; 6630 6631 case InitializedEntity::EK_Result: 6632 // -- The lifetime of a temporary bound to the returned value in a 6633 // function return statement is not extended; the temporary is 6634 // destroyed at the end of the full-expression in the return statement. 6635 return {nullptr, LK_Return}; 6636 6637 case InitializedEntity::EK_StmtExprResult: 6638 // FIXME: Should we lifetime-extend through the result of a statement 6639 // expression? 6640 return {nullptr, LK_StmtExprResult}; 6641 6642 case InitializedEntity::EK_New: 6643 // -- A temporary bound to a reference in a new-initializer persists 6644 // until the completion of the full-expression containing the 6645 // new-initializer. 6646 return {nullptr, LK_New}; 6647 6648 case InitializedEntity::EK_Temporary: 6649 case InitializedEntity::EK_CompoundLiteralInit: 6650 case InitializedEntity::EK_RelatedResult: 6651 // We don't yet know the storage duration of the surrounding temporary. 6652 // Assume it's got full-expression duration for now, it will patch up our 6653 // storage duration if that's not correct. 6654 return {nullptr, LK_FullExpression}; 6655 6656 case InitializedEntity::EK_ArrayElement: 6657 // For subobjects, we look at the complete object. 6658 return getEntityLifetime(Entity->getParent(), InitField); 6659 6660 case InitializedEntity::EK_Base: 6661 // For subobjects, we look at the complete object. 6662 if (Entity->getParent()) 6663 return getEntityLifetime(Entity->getParent(), InitField); 6664 return {InitField, LK_MemInitializer}; 6665 6666 case InitializedEntity::EK_Delegating: 6667 // We can reach this case for aggregate initialization in a constructor: 6668 // struct A { int &&r; }; 6669 // struct B : A { B() : A{0} {} }; 6670 // In this case, use the outermost field decl as the context. 6671 return {InitField, LK_MemInitializer}; 6672 6673 case InitializedEntity::EK_BlockElement: 6674 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6675 case InitializedEntity::EK_LambdaCapture: 6676 case InitializedEntity::EK_VectorElement: 6677 case InitializedEntity::EK_ComplexElement: 6678 return {nullptr, LK_FullExpression}; 6679 6680 case InitializedEntity::EK_Exception: 6681 // FIXME: Can we diagnose lifetime problems with exceptions? 6682 return {nullptr, LK_FullExpression}; 6683 } 6684 llvm_unreachable("unknown entity kind"); 6685 } 6686 6687 namespace { 6688 enum ReferenceKind { 6689 /// Lifetime would be extended by a reference binding to a temporary. 6690 RK_ReferenceBinding, 6691 /// Lifetime would be extended by a std::initializer_list object binding to 6692 /// its backing array. 6693 RK_StdInitializerList, 6694 }; 6695 6696 /// A temporary or local variable. This will be one of: 6697 /// * A MaterializeTemporaryExpr. 6698 /// * A DeclRefExpr whose declaration is a local. 6699 /// * An AddrLabelExpr. 6700 /// * A BlockExpr for a block with captures. 6701 using Local = Expr*; 6702 6703 /// Expressions we stepped over when looking for the local state. Any steps 6704 /// that would inhibit lifetime extension or take us out of subexpressions of 6705 /// the initializer are included. 6706 struct IndirectLocalPathEntry { 6707 enum EntryKind { 6708 DefaultInit, 6709 AddressOf, 6710 VarInit, 6711 LValToRVal, 6712 LifetimeBoundCall, 6713 GslReferenceInit, 6714 GslPointerInit 6715 } Kind; 6716 Expr *E; 6717 const Decl *D = nullptr; 6718 IndirectLocalPathEntry() {} 6719 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6720 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6721 : Kind(K), E(E), D(D) {} 6722 }; 6723 6724 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6725 6726 struct RevertToOldSizeRAII { 6727 IndirectLocalPath &Path; 6728 unsigned OldSize = Path.size(); 6729 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6730 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6731 }; 6732 6733 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6734 ReferenceKind RK)>; 6735 } 6736 6737 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6738 for (auto E : Path) 6739 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6740 return true; 6741 return false; 6742 } 6743 6744 static bool pathContainsInit(IndirectLocalPath &Path) { 6745 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6746 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6747 E.Kind == IndirectLocalPathEntry::VarInit; 6748 }); 6749 } 6750 6751 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6752 Expr *Init, LocalVisitor Visit, 6753 bool RevisitSubinits, 6754 bool EnableLifetimeWarnings); 6755 6756 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6757 Expr *Init, ReferenceKind RK, 6758 LocalVisitor Visit, 6759 bool EnableLifetimeWarnings); 6760 6761 template <typename T> static bool isRecordWithAttr(QualType Type) { 6762 if (auto *RD = Type->getAsCXXRecordDecl()) 6763 return RD->hasAttr<T>(); 6764 return false; 6765 } 6766 6767 // Decl::isInStdNamespace will return false for iterators in some STL 6768 // implementations due to them being defined in a namespace outside of the std 6769 // namespace. 6770 static bool isInStlNamespace(const Decl *D) { 6771 const DeclContext *DC = D->getDeclContext(); 6772 if (!DC) 6773 return false; 6774 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6775 if (const IdentifierInfo *II = ND->getIdentifier()) { 6776 StringRef Name = II->getName(); 6777 if (Name.size() >= 2 && Name.front() == '_' && 6778 (Name[1] == '_' || isUppercase(Name[1]))) 6779 return true; 6780 } 6781 6782 return DC->isStdNamespace(); 6783 } 6784 6785 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6786 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6787 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6788 return true; 6789 if (!isInStlNamespace(Callee->getParent())) 6790 return false; 6791 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6792 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6793 return false; 6794 if (Callee->getReturnType()->isPointerType() || 6795 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6796 if (!Callee->getIdentifier()) 6797 return false; 6798 return llvm::StringSwitch<bool>(Callee->getName()) 6799 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6800 .Cases("end", "rend", "cend", "crend", true) 6801 .Cases("c_str", "data", "get", true) 6802 // Map and set types. 6803 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6804 .Default(false); 6805 } else if (Callee->getReturnType()->isReferenceType()) { 6806 if (!Callee->getIdentifier()) { 6807 auto OO = Callee->getOverloadedOperator(); 6808 return OO == OverloadedOperatorKind::OO_Subscript || 6809 OO == OverloadedOperatorKind::OO_Star; 6810 } 6811 return llvm::StringSwitch<bool>(Callee->getName()) 6812 .Cases("front", "back", "at", "top", "value", true) 6813 .Default(false); 6814 } 6815 return false; 6816 } 6817 6818 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6819 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6820 return false; 6821 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6822 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6823 return false; 6824 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6825 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6826 return false; 6827 if (FD->getReturnType()->isPointerType() || 6828 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6829 return llvm::StringSwitch<bool>(FD->getName()) 6830 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6831 .Cases("end", "rend", "cend", "crend", true) 6832 .Case("data", true) 6833 .Default(false); 6834 } else if (FD->getReturnType()->isReferenceType()) { 6835 return llvm::StringSwitch<bool>(FD->getName()) 6836 .Cases("get", "any_cast", true) 6837 .Default(false); 6838 } 6839 return false; 6840 } 6841 6842 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6843 LocalVisitor Visit) { 6844 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6845 // We are not interested in the temporary base objects of gsl Pointers: 6846 // Temp().ptr; // Here ptr might not dangle. 6847 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6848 return; 6849 // Once we initialized a value with a reference, it can no longer dangle. 6850 if (!Value) { 6851 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6852 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6853 continue; 6854 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6855 return; 6856 break; 6857 } 6858 } 6859 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6860 : IndirectLocalPathEntry::GslReferenceInit, 6861 Arg, D}); 6862 if (Arg->isGLValue()) 6863 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6864 Visit, 6865 /*EnableLifetimeWarnings=*/true); 6866 else 6867 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6868 /*EnableLifetimeWarnings=*/true); 6869 Path.pop_back(); 6870 }; 6871 6872 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6873 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6874 if (MD && shouldTrackImplicitObjectArg(MD)) 6875 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6876 !MD->getReturnType()->isReferenceType()); 6877 return; 6878 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6879 FunctionDecl *Callee = OCE->getDirectCallee(); 6880 if (Callee && Callee->isCXXInstanceMember() && 6881 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6882 VisitPointerArg(Callee, OCE->getArg(0), 6883 !Callee->getReturnType()->isReferenceType()); 6884 return; 6885 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6886 FunctionDecl *Callee = CE->getDirectCallee(); 6887 if (Callee && shouldTrackFirstArgument(Callee)) 6888 VisitPointerArg(Callee, CE->getArg(0), 6889 !Callee->getReturnType()->isReferenceType()); 6890 return; 6891 } 6892 6893 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6894 const auto *Ctor = CCE->getConstructor(); 6895 const CXXRecordDecl *RD = Ctor->getParent(); 6896 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6897 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6898 } 6899 } 6900 6901 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6902 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6903 if (!TSI) 6904 return false; 6905 // Don't declare this variable in the second operand of the for-statement; 6906 // GCC miscompiles that by ending its lifetime before evaluating the 6907 // third operand. See gcc.gnu.org/PR86769. 6908 AttributedTypeLoc ATL; 6909 for (TypeLoc TL = TSI->getTypeLoc(); 6910 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6911 TL = ATL.getModifiedLoc()) { 6912 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6913 return true; 6914 } 6915 return false; 6916 } 6917 6918 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6919 LocalVisitor Visit) { 6920 const FunctionDecl *Callee; 6921 ArrayRef<Expr*> Args; 6922 6923 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6924 Callee = CE->getDirectCallee(); 6925 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6926 } else { 6927 auto *CCE = cast<CXXConstructExpr>(Call); 6928 Callee = CCE->getConstructor(); 6929 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6930 } 6931 if (!Callee) 6932 return; 6933 6934 Expr *ObjectArg = nullptr; 6935 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6936 ObjectArg = Args[0]; 6937 Args = Args.slice(1); 6938 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6939 ObjectArg = MCE->getImplicitObjectArgument(); 6940 } 6941 6942 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6943 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6944 if (Arg->isGLValue()) 6945 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6946 Visit, 6947 /*EnableLifetimeWarnings=*/false); 6948 else 6949 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6950 /*EnableLifetimeWarnings=*/false); 6951 Path.pop_back(); 6952 }; 6953 6954 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6955 VisitLifetimeBoundArg(Callee, ObjectArg); 6956 6957 for (unsigned I = 0, 6958 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6959 I != N; ++I) { 6960 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6961 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6962 } 6963 } 6964 6965 /// Visit the locals that would be reachable through a reference bound to the 6966 /// glvalue expression \c Init. 6967 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6968 Expr *Init, ReferenceKind RK, 6969 LocalVisitor Visit, 6970 bool EnableLifetimeWarnings) { 6971 RevertToOldSizeRAII RAII(Path); 6972 6973 // Walk past any constructs which we can lifetime-extend across. 6974 Expr *Old; 6975 do { 6976 Old = Init; 6977 6978 if (auto *FE = dyn_cast<FullExpr>(Init)) 6979 Init = FE->getSubExpr(); 6980 6981 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6982 // If this is just redundant braces around an initializer, step over it. 6983 if (ILE->isTransparent()) 6984 Init = ILE->getInit(0); 6985 } 6986 6987 // Step over any subobject adjustments; we may have a materialized 6988 // temporary inside them. 6989 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6990 6991 // Per current approach for DR1376, look through casts to reference type 6992 // when performing lifetime extension. 6993 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6994 if (CE->getSubExpr()->isGLValue()) 6995 Init = CE->getSubExpr(); 6996 6997 // Per the current approach for DR1299, look through array element access 6998 // on array glvalues when performing lifetime extension. 6999 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 7000 Init = ASE->getBase(); 7001 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 7002 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 7003 Init = ICE->getSubExpr(); 7004 else 7005 // We can't lifetime extend through this but we might still find some 7006 // retained temporaries. 7007 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 7008 EnableLifetimeWarnings); 7009 } 7010 7011 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7012 // constructor inherits one as an implicit mem-initializer. 7013 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7014 Path.push_back( 7015 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7016 Init = DIE->getExpr(); 7017 } 7018 } while (Init != Old); 7019 7020 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 7021 if (Visit(Path, Local(MTE), RK)) 7022 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 7023 EnableLifetimeWarnings); 7024 } 7025 7026 if (isa<CallExpr>(Init)) { 7027 if (EnableLifetimeWarnings) 7028 handleGslAnnotatedTypes(Path, Init, Visit); 7029 return visitLifetimeBoundArguments(Path, Init, Visit); 7030 } 7031 7032 switch (Init->getStmtClass()) { 7033 case Stmt::DeclRefExprClass: { 7034 // If we find the name of a local non-reference parameter, we could have a 7035 // lifetime problem. 7036 auto *DRE = cast<DeclRefExpr>(Init); 7037 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7038 if (VD && VD->hasLocalStorage() && 7039 !DRE->refersToEnclosingVariableOrCapture()) { 7040 if (!VD->getType()->isReferenceType()) { 7041 Visit(Path, Local(DRE), RK); 7042 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 7043 // The lifetime of a reference parameter is unknown; assume it's OK 7044 // for now. 7045 break; 7046 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 7047 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7048 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 7049 RK_ReferenceBinding, Visit, 7050 EnableLifetimeWarnings); 7051 } 7052 } 7053 break; 7054 } 7055 7056 case Stmt::UnaryOperatorClass: { 7057 // The only unary operator that make sense to handle here 7058 // is Deref. All others don't resolve to a "name." This includes 7059 // handling all sorts of rvalues passed to a unary operator. 7060 const UnaryOperator *U = cast<UnaryOperator>(Init); 7061 if (U->getOpcode() == UO_Deref) 7062 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7063 EnableLifetimeWarnings); 7064 break; 7065 } 7066 7067 case Stmt::OMPArraySectionExprClass: { 7068 visitLocalsRetainedByInitializer(Path, 7069 cast<OMPArraySectionExpr>(Init)->getBase(), 7070 Visit, true, EnableLifetimeWarnings); 7071 break; 7072 } 7073 7074 case Stmt::ConditionalOperatorClass: 7075 case Stmt::BinaryConditionalOperatorClass: { 7076 auto *C = cast<AbstractConditionalOperator>(Init); 7077 if (!C->getTrueExpr()->getType()->isVoidType()) 7078 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7079 EnableLifetimeWarnings); 7080 if (!C->getFalseExpr()->getType()->isVoidType()) 7081 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7082 EnableLifetimeWarnings); 7083 break; 7084 } 7085 7086 // FIXME: Visit the left-hand side of an -> or ->*. 7087 7088 default: 7089 break; 7090 } 7091 } 7092 7093 /// Visit the locals that would be reachable through an object initialized by 7094 /// the prvalue expression \c Init. 7095 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7096 Expr *Init, LocalVisitor Visit, 7097 bool RevisitSubinits, 7098 bool EnableLifetimeWarnings) { 7099 RevertToOldSizeRAII RAII(Path); 7100 7101 Expr *Old; 7102 do { 7103 Old = Init; 7104 7105 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7106 // constructor inherits one as an implicit mem-initializer. 7107 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7108 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7109 Init = DIE->getExpr(); 7110 } 7111 7112 if (auto *FE = dyn_cast<FullExpr>(Init)) 7113 Init = FE->getSubExpr(); 7114 7115 // Dig out the expression which constructs the extended temporary. 7116 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7117 7118 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7119 Init = BTE->getSubExpr(); 7120 7121 Init = Init->IgnoreParens(); 7122 7123 // Step over value-preserving rvalue casts. 7124 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7125 switch (CE->getCastKind()) { 7126 case CK_LValueToRValue: 7127 // If we can match the lvalue to a const object, we can look at its 7128 // initializer. 7129 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7130 return visitLocalsRetainedByReferenceBinding( 7131 Path, Init, RK_ReferenceBinding, 7132 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7133 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7134 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7135 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7136 !isVarOnPath(Path, VD)) { 7137 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7138 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7139 EnableLifetimeWarnings); 7140 } 7141 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7142 if (MTE->getType().isConstQualified()) 7143 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7144 true, EnableLifetimeWarnings); 7145 } 7146 return false; 7147 }, EnableLifetimeWarnings); 7148 7149 // We assume that objects can be retained by pointers cast to integers, 7150 // but not if the integer is cast to floating-point type or to _Complex. 7151 // We assume that casts to 'bool' do not preserve enough information to 7152 // retain a local object. 7153 case CK_NoOp: 7154 case CK_BitCast: 7155 case CK_BaseToDerived: 7156 case CK_DerivedToBase: 7157 case CK_UncheckedDerivedToBase: 7158 case CK_Dynamic: 7159 case CK_ToUnion: 7160 case CK_UserDefinedConversion: 7161 case CK_ConstructorConversion: 7162 case CK_IntegralToPointer: 7163 case CK_PointerToIntegral: 7164 case CK_VectorSplat: 7165 case CK_IntegralCast: 7166 case CK_CPointerToObjCPointerCast: 7167 case CK_BlockPointerToObjCPointerCast: 7168 case CK_AnyPointerToBlockPointerCast: 7169 case CK_AddressSpaceConversion: 7170 break; 7171 7172 case CK_ArrayToPointerDecay: 7173 // Model array-to-pointer decay as taking the address of the array 7174 // lvalue. 7175 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7176 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7177 RK_ReferenceBinding, Visit, 7178 EnableLifetimeWarnings); 7179 7180 default: 7181 return; 7182 } 7183 7184 Init = CE->getSubExpr(); 7185 } 7186 } while (Old != Init); 7187 7188 // C++17 [dcl.init.list]p6: 7189 // initializing an initializer_list object from the array extends the 7190 // lifetime of the array exactly like binding a reference to a temporary. 7191 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7192 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7193 RK_StdInitializerList, Visit, 7194 EnableLifetimeWarnings); 7195 7196 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7197 // We already visited the elements of this initializer list while 7198 // performing the initialization. Don't visit them again unless we've 7199 // changed the lifetime of the initialized entity. 7200 if (!RevisitSubinits) 7201 return; 7202 7203 if (ILE->isTransparent()) 7204 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7205 RevisitSubinits, 7206 EnableLifetimeWarnings); 7207 7208 if (ILE->getType()->isArrayType()) { 7209 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7210 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7211 RevisitSubinits, 7212 EnableLifetimeWarnings); 7213 return; 7214 } 7215 7216 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7217 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7218 7219 // If we lifetime-extend a braced initializer which is initializing an 7220 // aggregate, and that aggregate contains reference members which are 7221 // bound to temporaries, those temporaries are also lifetime-extended. 7222 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7223 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7224 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7225 RK_ReferenceBinding, Visit, 7226 EnableLifetimeWarnings); 7227 else { 7228 unsigned Index = 0; 7229 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7230 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7231 RevisitSubinits, 7232 EnableLifetimeWarnings); 7233 for (const auto *I : RD->fields()) { 7234 if (Index >= ILE->getNumInits()) 7235 break; 7236 if (I->isUnnamedBitfield()) 7237 continue; 7238 Expr *SubInit = ILE->getInit(Index); 7239 if (I->getType()->isReferenceType()) 7240 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7241 RK_ReferenceBinding, Visit, 7242 EnableLifetimeWarnings); 7243 else 7244 // This might be either aggregate-initialization of a member or 7245 // initialization of a std::initializer_list object. Regardless, 7246 // we should recursively lifetime-extend that initializer. 7247 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7248 RevisitSubinits, 7249 EnableLifetimeWarnings); 7250 ++Index; 7251 } 7252 } 7253 } 7254 return; 7255 } 7256 7257 // The lifetime of an init-capture is that of the closure object constructed 7258 // by a lambda-expression. 7259 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7260 for (Expr *E : LE->capture_inits()) { 7261 if (!E) 7262 continue; 7263 if (E->isGLValue()) 7264 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7265 Visit, EnableLifetimeWarnings); 7266 else 7267 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7268 EnableLifetimeWarnings); 7269 } 7270 } 7271 7272 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7273 if (EnableLifetimeWarnings) 7274 handleGslAnnotatedTypes(Path, Init, Visit); 7275 return visitLifetimeBoundArguments(Path, Init, Visit); 7276 } 7277 7278 switch (Init->getStmtClass()) { 7279 case Stmt::UnaryOperatorClass: { 7280 auto *UO = cast<UnaryOperator>(Init); 7281 // If the initializer is the address of a local, we could have a lifetime 7282 // problem. 7283 if (UO->getOpcode() == UO_AddrOf) { 7284 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7285 // it. Don't produce a redundant warning about the lifetime of the 7286 // temporary. 7287 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7288 return; 7289 7290 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7291 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7292 RK_ReferenceBinding, Visit, 7293 EnableLifetimeWarnings); 7294 } 7295 break; 7296 } 7297 7298 case Stmt::BinaryOperatorClass: { 7299 // Handle pointer arithmetic. 7300 auto *BO = cast<BinaryOperator>(Init); 7301 BinaryOperatorKind BOK = BO->getOpcode(); 7302 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7303 break; 7304 7305 if (BO->getLHS()->getType()->isPointerType()) 7306 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7307 EnableLifetimeWarnings); 7308 else if (BO->getRHS()->getType()->isPointerType()) 7309 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7310 EnableLifetimeWarnings); 7311 break; 7312 } 7313 7314 case Stmt::ConditionalOperatorClass: 7315 case Stmt::BinaryConditionalOperatorClass: { 7316 auto *C = cast<AbstractConditionalOperator>(Init); 7317 // In C++, we can have a throw-expression operand, which has 'void' type 7318 // and isn't interesting from a lifetime perspective. 7319 if (!C->getTrueExpr()->getType()->isVoidType()) 7320 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7321 EnableLifetimeWarnings); 7322 if (!C->getFalseExpr()->getType()->isVoidType()) 7323 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7324 EnableLifetimeWarnings); 7325 break; 7326 } 7327 7328 case Stmt::BlockExprClass: 7329 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7330 // This is a local block, whose lifetime is that of the function. 7331 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7332 } 7333 break; 7334 7335 case Stmt::AddrLabelExprClass: 7336 // We want to warn if the address of a label would escape the function. 7337 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7338 break; 7339 7340 default: 7341 break; 7342 } 7343 } 7344 7345 /// Determine whether this is an indirect path to a temporary that we are 7346 /// supposed to lifetime-extend along (but don't). 7347 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7348 for (auto Elem : Path) { 7349 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7350 return false; 7351 } 7352 return true; 7353 } 7354 7355 /// Find the range for the first interesting entry in the path at or after I. 7356 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7357 Expr *E) { 7358 for (unsigned N = Path.size(); I != N; ++I) { 7359 switch (Path[I].Kind) { 7360 case IndirectLocalPathEntry::AddressOf: 7361 case IndirectLocalPathEntry::LValToRVal: 7362 case IndirectLocalPathEntry::LifetimeBoundCall: 7363 case IndirectLocalPathEntry::GslReferenceInit: 7364 case IndirectLocalPathEntry::GslPointerInit: 7365 // These exist primarily to mark the path as not permitting or 7366 // supporting lifetime extension. 7367 break; 7368 7369 case IndirectLocalPathEntry::VarInit: 7370 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7371 return SourceRange(); 7372 LLVM_FALLTHROUGH; 7373 case IndirectLocalPathEntry::DefaultInit: 7374 return Path[I].E->getSourceRange(); 7375 } 7376 } 7377 return E->getSourceRange(); 7378 } 7379 7380 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7381 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7382 if (It->Kind == IndirectLocalPathEntry::VarInit) 7383 continue; 7384 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7385 continue; 7386 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7387 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7388 } 7389 return false; 7390 } 7391 7392 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7393 Expr *Init) { 7394 LifetimeResult LR = getEntityLifetime(&Entity); 7395 LifetimeKind LK = LR.getInt(); 7396 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7397 7398 // If this entity doesn't have an interesting lifetime, don't bother looking 7399 // for temporaries within its initializer. 7400 if (LK == LK_FullExpression) 7401 return; 7402 7403 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7404 ReferenceKind RK) -> bool { 7405 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7406 SourceLocation DiagLoc = DiagRange.getBegin(); 7407 7408 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7409 7410 bool IsGslPtrInitWithGslTempOwner = false; 7411 bool IsLocalGslOwner = false; 7412 if (pathOnlyInitializesGslPointer(Path)) { 7413 if (isa<DeclRefExpr>(L)) { 7414 // We do not want to follow the references when returning a pointer originating 7415 // from a local owner to avoid the following false positive: 7416 // int &p = *localUniquePtr; 7417 // someContainer.add(std::move(localUniquePtr)); 7418 // return p; 7419 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7420 if (pathContainsInit(Path) || !IsLocalGslOwner) 7421 return false; 7422 } else { 7423 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7424 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7425 // Skipping a chain of initializing gsl::Pointer annotated objects. 7426 // We are looking only for the final source to find out if it was 7427 // a local or temporary owner or the address of a local variable/param. 7428 if (!IsGslPtrInitWithGslTempOwner) 7429 return true; 7430 } 7431 } 7432 7433 switch (LK) { 7434 case LK_FullExpression: 7435 llvm_unreachable("already handled this"); 7436 7437 case LK_Extended: { 7438 if (!MTE) { 7439 // The initialized entity has lifetime beyond the full-expression, 7440 // and the local entity does too, so don't warn. 7441 // 7442 // FIXME: We should consider warning if a static / thread storage 7443 // duration variable retains an automatic storage duration local. 7444 return false; 7445 } 7446 7447 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7448 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7449 return false; 7450 } 7451 7452 // Lifetime-extend the temporary. 7453 if (Path.empty()) { 7454 // Update the storage duration of the materialized temporary. 7455 // FIXME: Rebuild the expression instead of mutating it. 7456 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7457 ExtendingEntity->allocateManglingNumber()); 7458 // Also visit the temporaries lifetime-extended by this initializer. 7459 return true; 7460 } 7461 7462 if (shouldLifetimeExtendThroughPath(Path)) { 7463 // We're supposed to lifetime-extend the temporary along this path (per 7464 // the resolution of DR1815), but we don't support that yet. 7465 // 7466 // FIXME: Properly handle this situation. Perhaps the easiest approach 7467 // would be to clone the initializer expression on each use that would 7468 // lifetime extend its temporaries. 7469 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7470 << RK << DiagRange; 7471 } else { 7472 // If the path goes through the initialization of a variable or field, 7473 // it can't possibly reach a temporary created in this full-expression. 7474 // We will have already diagnosed any problems with the initializer. 7475 if (pathContainsInit(Path)) 7476 return false; 7477 7478 Diag(DiagLoc, diag::warn_dangling_variable) 7479 << RK << !Entity.getParent() 7480 << ExtendingEntity->getDecl()->isImplicit() 7481 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7482 } 7483 break; 7484 } 7485 7486 case LK_MemInitializer: { 7487 if (isa<MaterializeTemporaryExpr>(L)) { 7488 // Under C++ DR1696, if a mem-initializer (or a default member 7489 // initializer used by the absence of one) would lifetime-extend a 7490 // temporary, the program is ill-formed. 7491 if (auto *ExtendingDecl = 7492 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7493 if (IsGslPtrInitWithGslTempOwner) { 7494 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7495 << ExtendingDecl << DiagRange; 7496 Diag(ExtendingDecl->getLocation(), 7497 diag::note_ref_or_ptr_member_declared_here) 7498 << true; 7499 return false; 7500 } 7501 bool IsSubobjectMember = ExtendingEntity != &Entity; 7502 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7503 ? diag::err_dangling_member 7504 : diag::warn_dangling_member) 7505 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7506 // Don't bother adding a note pointing to the field if we're inside 7507 // its default member initializer; our primary diagnostic points to 7508 // the same place in that case. 7509 if (Path.empty() || 7510 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7511 Diag(ExtendingDecl->getLocation(), 7512 diag::note_lifetime_extending_member_declared_here) 7513 << RK << IsSubobjectMember; 7514 } 7515 } else { 7516 // We have a mem-initializer but no particular field within it; this 7517 // is either a base class or a delegating initializer directly 7518 // initializing the base-class from something that doesn't live long 7519 // enough. 7520 // 7521 // FIXME: Warn on this. 7522 return false; 7523 } 7524 } else { 7525 // Paths via a default initializer can only occur during error recovery 7526 // (there's no other way that a default initializer can refer to a 7527 // local). Don't produce a bogus warning on those cases. 7528 if (pathContainsInit(Path)) 7529 return false; 7530 7531 // Suppress false positives for code like the one below: 7532 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7533 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7534 return false; 7535 7536 auto *DRE = dyn_cast<DeclRefExpr>(L); 7537 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7538 if (!VD) { 7539 // A member was initialized to a local block. 7540 // FIXME: Warn on this. 7541 return false; 7542 } 7543 7544 if (auto *Member = 7545 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7546 bool IsPointer = !Member->getType()->isReferenceType(); 7547 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7548 : diag::warn_bind_ref_member_to_parameter) 7549 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7550 Diag(Member->getLocation(), 7551 diag::note_ref_or_ptr_member_declared_here) 7552 << (unsigned)IsPointer; 7553 } 7554 } 7555 break; 7556 } 7557 7558 case LK_New: 7559 if (isa<MaterializeTemporaryExpr>(L)) { 7560 if (IsGslPtrInitWithGslTempOwner) 7561 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7562 else 7563 Diag(DiagLoc, RK == RK_ReferenceBinding 7564 ? diag::warn_new_dangling_reference 7565 : diag::warn_new_dangling_initializer_list) 7566 << !Entity.getParent() << DiagRange; 7567 } else { 7568 // We can't determine if the allocation outlives the local declaration. 7569 return false; 7570 } 7571 break; 7572 7573 case LK_Return: 7574 case LK_StmtExprResult: 7575 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7576 // We can't determine if the local variable outlives the statement 7577 // expression. 7578 if (LK == LK_StmtExprResult) 7579 return false; 7580 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7581 << Entity.getType()->isReferenceType() << DRE->getDecl() 7582 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7583 } else if (isa<BlockExpr>(L)) { 7584 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7585 } else if (isa<AddrLabelExpr>(L)) { 7586 // Don't warn when returning a label from a statement expression. 7587 // Leaving the scope doesn't end its lifetime. 7588 if (LK == LK_StmtExprResult) 7589 return false; 7590 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7591 } else { 7592 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7593 << Entity.getType()->isReferenceType() << DiagRange; 7594 } 7595 break; 7596 } 7597 7598 for (unsigned I = 0; I != Path.size(); ++I) { 7599 auto Elem = Path[I]; 7600 7601 switch (Elem.Kind) { 7602 case IndirectLocalPathEntry::AddressOf: 7603 case IndirectLocalPathEntry::LValToRVal: 7604 // These exist primarily to mark the path as not permitting or 7605 // supporting lifetime extension. 7606 break; 7607 7608 case IndirectLocalPathEntry::LifetimeBoundCall: 7609 case IndirectLocalPathEntry::GslPointerInit: 7610 case IndirectLocalPathEntry::GslReferenceInit: 7611 // FIXME: Consider adding a note for these. 7612 break; 7613 7614 case IndirectLocalPathEntry::DefaultInit: { 7615 auto *FD = cast<FieldDecl>(Elem.D); 7616 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7617 << FD << nextPathEntryRange(Path, I + 1, L); 7618 break; 7619 } 7620 7621 case IndirectLocalPathEntry::VarInit: 7622 const VarDecl *VD = cast<VarDecl>(Elem.D); 7623 Diag(VD->getLocation(), diag::note_local_var_initializer) 7624 << VD->getType()->isReferenceType() 7625 << VD->isImplicit() << VD->getDeclName() 7626 << nextPathEntryRange(Path, I + 1, L); 7627 break; 7628 } 7629 } 7630 7631 // We didn't lifetime-extend, so don't go any further; we don't need more 7632 // warnings or errors on inner temporaries within this one's initializer. 7633 return false; 7634 }; 7635 7636 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7637 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7638 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7639 if (Init->isGLValue()) 7640 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7641 TemporaryVisitor, 7642 EnableLifetimeWarnings); 7643 else 7644 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7645 EnableLifetimeWarnings); 7646 } 7647 7648 static void DiagnoseNarrowingInInitList(Sema &S, 7649 const ImplicitConversionSequence &ICS, 7650 QualType PreNarrowingType, 7651 QualType EntityType, 7652 const Expr *PostInit); 7653 7654 /// Provide warnings when std::move is used on construction. 7655 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7656 bool IsReturnStmt) { 7657 if (!InitExpr) 7658 return; 7659 7660 if (S.inTemplateInstantiation()) 7661 return; 7662 7663 QualType DestType = InitExpr->getType(); 7664 if (!DestType->isRecordType()) 7665 return; 7666 7667 unsigned DiagID = 0; 7668 if (IsReturnStmt) { 7669 const CXXConstructExpr *CCE = 7670 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7671 if (!CCE || CCE->getNumArgs() != 1) 7672 return; 7673 7674 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7675 return; 7676 7677 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7678 } 7679 7680 // Find the std::move call and get the argument. 7681 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7682 if (!CE || !CE->isCallToStdMove()) 7683 return; 7684 7685 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7686 7687 if (IsReturnStmt) { 7688 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7689 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7690 return; 7691 7692 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7693 if (!VD || !VD->hasLocalStorage()) 7694 return; 7695 7696 // __block variables are not moved implicitly. 7697 if (VD->hasAttr<BlocksAttr>()) 7698 return; 7699 7700 QualType SourceType = VD->getType(); 7701 if (!SourceType->isRecordType()) 7702 return; 7703 7704 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7705 return; 7706 } 7707 7708 // If we're returning a function parameter, copy elision 7709 // is not possible. 7710 if (isa<ParmVarDecl>(VD)) 7711 DiagID = diag::warn_redundant_move_on_return; 7712 else 7713 DiagID = diag::warn_pessimizing_move_on_return; 7714 } else { 7715 DiagID = diag::warn_pessimizing_move_on_initialization; 7716 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7717 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7718 return; 7719 } 7720 7721 S.Diag(CE->getBeginLoc(), DiagID); 7722 7723 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7724 // is within a macro. 7725 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7726 if (CallBegin.isMacroID()) 7727 return; 7728 SourceLocation RParen = CE->getRParenLoc(); 7729 if (RParen.isMacroID()) 7730 return; 7731 SourceLocation LParen; 7732 SourceLocation ArgLoc = Arg->getBeginLoc(); 7733 7734 // Special testing for the argument location. Since the fix-it needs the 7735 // location right before the argument, the argument location can be in a 7736 // macro only if it is at the beginning of the macro. 7737 while (ArgLoc.isMacroID() && 7738 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7739 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7740 } 7741 7742 if (LParen.isMacroID()) 7743 return; 7744 7745 LParen = ArgLoc.getLocWithOffset(-1); 7746 7747 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7748 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7749 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7750 } 7751 7752 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7753 // Check to see if we are dereferencing a null pointer. If so, this is 7754 // undefined behavior, so warn about it. This only handles the pattern 7755 // "*null", which is a very syntactic check. 7756 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7757 if (UO->getOpcode() == UO_Deref && 7758 UO->getSubExpr()->IgnoreParenCasts()-> 7759 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7760 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7761 S.PDiag(diag::warn_binding_null_to_reference) 7762 << UO->getSubExpr()->getSourceRange()); 7763 } 7764 } 7765 7766 MaterializeTemporaryExpr * 7767 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7768 bool BoundToLvalueReference) { 7769 auto MTE = new (Context) 7770 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7771 7772 // Order an ExprWithCleanups for lifetime marks. 7773 // 7774 // TODO: It'll be good to have a single place to check the access of the 7775 // destructor and generate ExprWithCleanups for various uses. Currently these 7776 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7777 // but there may be a chance to merge them. 7778 Cleanup.setExprNeedsCleanups(false); 7779 return MTE; 7780 } 7781 7782 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7783 // In C++98, we don't want to implicitly create an xvalue. 7784 // FIXME: This means that AST consumers need to deal with "prvalues" that 7785 // denote materialized temporaries. Maybe we should add another ValueKind 7786 // for "xvalue pretending to be a prvalue" for C++98 support. 7787 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7788 return E; 7789 7790 // C++1z [conv.rval]/1: T shall be a complete type. 7791 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7792 // If so, we should check for a non-abstract class type here too. 7793 QualType T = E->getType(); 7794 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7795 return ExprError(); 7796 7797 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7798 } 7799 7800 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7801 ExprValueKind VK, 7802 CheckedConversionKind CCK) { 7803 7804 CastKind CK = CK_NoOp; 7805 7806 if (VK == VK_RValue) { 7807 auto PointeeTy = Ty->getPointeeType(); 7808 auto ExprPointeeTy = E->getType()->getPointeeType(); 7809 if (!PointeeTy.isNull() && 7810 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7811 CK = CK_AddressSpaceConversion; 7812 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7813 CK = CK_AddressSpaceConversion; 7814 } 7815 7816 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7817 } 7818 7819 ExprResult InitializationSequence::Perform(Sema &S, 7820 const InitializedEntity &Entity, 7821 const InitializationKind &Kind, 7822 MultiExprArg Args, 7823 QualType *ResultType) { 7824 if (Failed()) { 7825 Diagnose(S, Entity, Kind, Args); 7826 return ExprError(); 7827 } 7828 if (!ZeroInitializationFixit.empty()) { 7829 unsigned DiagID = diag::err_default_init_const; 7830 if (Decl *D = Entity.getDecl()) 7831 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7832 DiagID = diag::ext_default_init_const; 7833 7834 // The initialization would have succeeded with this fixit. Since the fixit 7835 // is on the error, we need to build a valid AST in this case, so this isn't 7836 // handled in the Failed() branch above. 7837 QualType DestType = Entity.getType(); 7838 S.Diag(Kind.getLocation(), DiagID) 7839 << DestType << (bool)DestType->getAs<RecordType>() 7840 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7841 ZeroInitializationFixit); 7842 } 7843 7844 if (getKind() == DependentSequence) { 7845 // If the declaration is a non-dependent, incomplete array type 7846 // that has an initializer, then its type will be completed once 7847 // the initializer is instantiated. 7848 if (ResultType && !Entity.getType()->isDependentType() && 7849 Args.size() == 1) { 7850 QualType DeclType = Entity.getType(); 7851 if (const IncompleteArrayType *ArrayT 7852 = S.Context.getAsIncompleteArrayType(DeclType)) { 7853 // FIXME: We don't currently have the ability to accurately 7854 // compute the length of an initializer list without 7855 // performing full type-checking of the initializer list 7856 // (since we have to determine where braces are implicitly 7857 // introduced and such). So, we fall back to making the array 7858 // type a dependently-sized array type with no specified 7859 // bound. 7860 if (isa<InitListExpr>((Expr *)Args[0])) { 7861 SourceRange Brackets; 7862 7863 // Scavange the location of the brackets from the entity, if we can. 7864 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7865 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7866 TypeLoc TL = TInfo->getTypeLoc(); 7867 if (IncompleteArrayTypeLoc ArrayLoc = 7868 TL.getAs<IncompleteArrayTypeLoc>()) 7869 Brackets = ArrayLoc.getBracketsRange(); 7870 } 7871 } 7872 7873 *ResultType 7874 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7875 /*NumElts=*/nullptr, 7876 ArrayT->getSizeModifier(), 7877 ArrayT->getIndexTypeCVRQualifiers(), 7878 Brackets); 7879 } 7880 7881 } 7882 } 7883 if (Kind.getKind() == InitializationKind::IK_Direct && 7884 !Kind.isExplicitCast()) { 7885 // Rebuild the ParenListExpr. 7886 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7887 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7888 Args); 7889 } 7890 assert(Kind.getKind() == InitializationKind::IK_Copy || 7891 Kind.isExplicitCast() || 7892 Kind.getKind() == InitializationKind::IK_DirectList); 7893 return ExprResult(Args[0]); 7894 } 7895 7896 // No steps means no initialization. 7897 if (Steps.empty()) 7898 return ExprResult((Expr *)nullptr); 7899 7900 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7901 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7902 !Entity.isParamOrTemplateParamKind()) { 7903 // Produce a C++98 compatibility warning if we are initializing a reference 7904 // from an initializer list. For parameters, we produce a better warning 7905 // elsewhere. 7906 Expr *Init = Args[0]; 7907 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7908 << Init->getSourceRange(); 7909 } 7910 7911 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7912 QualType ETy = Entity.getType(); 7913 bool HasGlobalAS = ETy.hasAddressSpace() && 7914 ETy.getAddressSpace() == LangAS::opencl_global; 7915 7916 if (S.getLangOpts().OpenCLVersion >= 200 && 7917 ETy->isAtomicType() && !HasGlobalAS && 7918 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7919 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7920 << 1 7921 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7922 return ExprError(); 7923 } 7924 7925 QualType DestType = Entity.getType().getNonReferenceType(); 7926 // FIXME: Ugly hack around the fact that Entity.getType() is not 7927 // the same as Entity.getDecl()->getType() in cases involving type merging, 7928 // and we want latter when it makes sense. 7929 if (ResultType) 7930 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7931 Entity.getType(); 7932 7933 ExprResult CurInit((Expr *)nullptr); 7934 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7935 7936 // For initialization steps that start with a single initializer, 7937 // grab the only argument out the Args and place it into the "current" 7938 // initializer. 7939 switch (Steps.front().Kind) { 7940 case SK_ResolveAddressOfOverloadedFunction: 7941 case SK_CastDerivedToBaseRValue: 7942 case SK_CastDerivedToBaseXValue: 7943 case SK_CastDerivedToBaseLValue: 7944 case SK_BindReference: 7945 case SK_BindReferenceToTemporary: 7946 case SK_FinalCopy: 7947 case SK_ExtraneousCopyToTemporary: 7948 case SK_UserConversion: 7949 case SK_QualificationConversionLValue: 7950 case SK_QualificationConversionXValue: 7951 case SK_QualificationConversionRValue: 7952 case SK_AtomicConversion: 7953 case SK_ConversionSequence: 7954 case SK_ConversionSequenceNoNarrowing: 7955 case SK_ListInitialization: 7956 case SK_UnwrapInitList: 7957 case SK_RewrapInitList: 7958 case SK_CAssignment: 7959 case SK_StringInit: 7960 case SK_ObjCObjectConversion: 7961 case SK_ArrayLoopIndex: 7962 case SK_ArrayLoopInit: 7963 case SK_ArrayInit: 7964 case SK_GNUArrayInit: 7965 case SK_ParenthesizedArrayInit: 7966 case SK_PassByIndirectCopyRestore: 7967 case SK_PassByIndirectRestore: 7968 case SK_ProduceObjCObject: 7969 case SK_StdInitializerList: 7970 case SK_OCLSamplerInit: 7971 case SK_OCLZeroOpaqueType: { 7972 assert(Args.size() == 1); 7973 CurInit = Args[0]; 7974 if (!CurInit.get()) return ExprError(); 7975 break; 7976 } 7977 7978 case SK_ConstructorInitialization: 7979 case SK_ConstructorInitializationFromList: 7980 case SK_StdInitializerListConstructorCall: 7981 case SK_ZeroInitialization: 7982 break; 7983 } 7984 7985 // Promote from an unevaluated context to an unevaluated list context in 7986 // C++11 list-initialization; we need to instantiate entities usable in 7987 // constant expressions here in order to perform narrowing checks =( 7988 EnterExpressionEvaluationContext Evaluated( 7989 S, EnterExpressionEvaluationContext::InitList, 7990 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7991 7992 // C++ [class.abstract]p2: 7993 // no objects of an abstract class can be created except as subobjects 7994 // of a class derived from it 7995 auto checkAbstractType = [&](QualType T) -> bool { 7996 if (Entity.getKind() == InitializedEntity::EK_Base || 7997 Entity.getKind() == InitializedEntity::EK_Delegating) 7998 return false; 7999 return S.RequireNonAbstractType(Kind.getLocation(), T, 8000 diag::err_allocation_of_abstract_type); 8001 }; 8002 8003 // Walk through the computed steps for the initialization sequence, 8004 // performing the specified conversions along the way. 8005 bool ConstructorInitRequiresZeroInit = false; 8006 for (step_iterator Step = step_begin(), StepEnd = step_end(); 8007 Step != StepEnd; ++Step) { 8008 if (CurInit.isInvalid()) 8009 return ExprError(); 8010 8011 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 8012 8013 switch (Step->Kind) { 8014 case SK_ResolveAddressOfOverloadedFunction: 8015 // Overload resolution determined which function invoke; update the 8016 // initializer to reflect that choice. 8017 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 8018 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 8019 return ExprError(); 8020 CurInit = S.FixOverloadedFunctionReference(CurInit, 8021 Step->Function.FoundDecl, 8022 Step->Function.Function); 8023 break; 8024 8025 case SK_CastDerivedToBaseRValue: 8026 case SK_CastDerivedToBaseXValue: 8027 case SK_CastDerivedToBaseLValue: { 8028 // We have a derived-to-base cast that produces either an rvalue or an 8029 // lvalue. Perform that cast. 8030 8031 CXXCastPath BasePath; 8032 8033 // Casts to inaccessible base classes are allowed with C-style casts. 8034 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 8035 if (S.CheckDerivedToBaseConversion( 8036 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 8037 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 8038 return ExprError(); 8039 8040 ExprValueKind VK = 8041 Step->Kind == SK_CastDerivedToBaseLValue ? 8042 VK_LValue : 8043 (Step->Kind == SK_CastDerivedToBaseXValue ? 8044 VK_XValue : 8045 VK_RValue); 8046 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8047 CK_DerivedToBase, CurInit.get(), 8048 &BasePath, VK, FPOptionsOverride()); 8049 break; 8050 } 8051 8052 case SK_BindReference: 8053 // Reference binding does not have any corresponding ASTs. 8054 8055 // Check exception specifications 8056 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8057 return ExprError(); 8058 8059 // We don't check for e.g. function pointers here, since address 8060 // availability checks should only occur when the function first decays 8061 // into a pointer or reference. 8062 if (CurInit.get()->getType()->isFunctionProtoType()) { 8063 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8064 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8065 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8066 DRE->getBeginLoc())) 8067 return ExprError(); 8068 } 8069 } 8070 } 8071 8072 CheckForNullPointerDereference(S, CurInit.get()); 8073 break; 8074 8075 case SK_BindReferenceToTemporary: { 8076 // Make sure the "temporary" is actually an rvalue. 8077 assert(CurInit.get()->isRValue() && "not a temporary"); 8078 8079 // Check exception specifications 8080 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8081 return ExprError(); 8082 8083 // Materialize the temporary into memory. 8084 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8085 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8086 CurInit = MTE; 8087 8088 // If we're extending this temporary to automatic storage duration -- we 8089 // need to register its cleanup during the full-expression's cleanups. 8090 if (MTE->getStorageDuration() == SD_Automatic && 8091 MTE->getType().isDestructedType()) 8092 S.Cleanup.setExprNeedsCleanups(true); 8093 break; 8094 } 8095 8096 case SK_FinalCopy: 8097 if (checkAbstractType(Step->Type)) 8098 return ExprError(); 8099 8100 // If the overall initialization is initializing a temporary, we already 8101 // bound our argument if it was necessary to do so. If not (if we're 8102 // ultimately initializing a non-temporary), our argument needs to be 8103 // bound since it's initializing a function parameter. 8104 // FIXME: This is a mess. Rationalize temporary destruction. 8105 if (!shouldBindAsTemporary(Entity)) 8106 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8107 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8108 /*IsExtraneousCopy=*/false); 8109 break; 8110 8111 case SK_ExtraneousCopyToTemporary: 8112 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8113 /*IsExtraneousCopy=*/true); 8114 break; 8115 8116 case SK_UserConversion: { 8117 // We have a user-defined conversion that invokes either a constructor 8118 // or a conversion function. 8119 CastKind CastKind; 8120 FunctionDecl *Fn = Step->Function.Function; 8121 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8122 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8123 bool CreatedObject = false; 8124 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8125 // Build a call to the selected constructor. 8126 SmallVector<Expr*, 8> ConstructorArgs; 8127 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8128 8129 // Determine the arguments required to actually perform the constructor 8130 // call. 8131 Expr *Arg = CurInit.get(); 8132 if (S.CompleteConstructorCall(Constructor, 8133 MultiExprArg(&Arg, 1), 8134 Loc, ConstructorArgs)) 8135 return ExprError(); 8136 8137 // Build an expression that constructs a temporary. 8138 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8139 FoundFn, Constructor, 8140 ConstructorArgs, 8141 HadMultipleCandidates, 8142 /*ListInit*/ false, 8143 /*StdInitListInit*/ false, 8144 /*ZeroInit*/ false, 8145 CXXConstructExpr::CK_Complete, 8146 SourceRange()); 8147 if (CurInit.isInvalid()) 8148 return ExprError(); 8149 8150 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8151 Entity); 8152 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8153 return ExprError(); 8154 8155 CastKind = CK_ConstructorConversion; 8156 CreatedObject = true; 8157 } else { 8158 // Build a call to the conversion function. 8159 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8160 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8161 FoundFn); 8162 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8163 return ExprError(); 8164 8165 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8166 HadMultipleCandidates); 8167 if (CurInit.isInvalid()) 8168 return ExprError(); 8169 8170 CastKind = CK_UserDefinedConversion; 8171 CreatedObject = Conversion->getReturnType()->isRecordType(); 8172 } 8173 8174 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8175 return ExprError(); 8176 8177 CurInit = ImplicitCastExpr::Create( 8178 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, 8179 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); 8180 8181 if (shouldBindAsTemporary(Entity)) 8182 // The overall entity is temporary, so this expression should be 8183 // destroyed at the end of its full-expression. 8184 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8185 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8186 // The object outlasts the full-expression, but we need to prepare for 8187 // a destructor being run on it. 8188 // FIXME: It makes no sense to do this here. This should happen 8189 // regardless of how we initialized the entity. 8190 QualType T = CurInit.get()->getType(); 8191 if (const RecordType *Record = T->getAs<RecordType>()) { 8192 CXXDestructorDecl *Destructor 8193 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8194 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8195 S.PDiag(diag::err_access_dtor_temp) << T); 8196 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8197 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8198 return ExprError(); 8199 } 8200 } 8201 break; 8202 } 8203 8204 case SK_QualificationConversionLValue: 8205 case SK_QualificationConversionXValue: 8206 case SK_QualificationConversionRValue: { 8207 // Perform a qualification conversion; these can never go wrong. 8208 ExprValueKind VK = 8209 Step->Kind == SK_QualificationConversionLValue 8210 ? VK_LValue 8211 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8212 : VK_RValue); 8213 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8214 break; 8215 } 8216 8217 case SK_AtomicConversion: { 8218 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8219 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8220 CK_NonAtomicToAtomic, VK_RValue); 8221 break; 8222 } 8223 8224 case SK_ConversionSequence: 8225 case SK_ConversionSequenceNoNarrowing: { 8226 if (const auto *FromPtrType = 8227 CurInit.get()->getType()->getAs<PointerType>()) { 8228 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8229 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8230 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8231 // Do not check static casts here because they are checked earlier 8232 // in Sema::ActOnCXXNamedCast() 8233 if (!Kind.isStaticCast()) { 8234 S.Diag(CurInit.get()->getExprLoc(), 8235 diag::warn_noderef_to_dereferenceable_pointer) 8236 << CurInit.get()->getSourceRange(); 8237 } 8238 } 8239 } 8240 } 8241 8242 Sema::CheckedConversionKind CCK 8243 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8244 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8245 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8246 : Sema::CCK_ImplicitConversion; 8247 ExprResult CurInitExprRes = 8248 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8249 getAssignmentAction(Entity), CCK); 8250 if (CurInitExprRes.isInvalid()) 8251 return ExprError(); 8252 8253 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8254 8255 CurInit = CurInitExprRes; 8256 8257 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8258 S.getLangOpts().CPlusPlus) 8259 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8260 CurInit.get()); 8261 8262 break; 8263 } 8264 8265 case SK_ListInitialization: { 8266 if (checkAbstractType(Step->Type)) 8267 return ExprError(); 8268 8269 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8270 // If we're not initializing the top-level entity, we need to create an 8271 // InitializeTemporary entity for our target type. 8272 QualType Ty = Step->Type; 8273 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8274 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8275 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8276 InitListChecker PerformInitList(S, InitEntity, 8277 InitList, Ty, /*VerifyOnly=*/false, 8278 /*TreatUnavailableAsInvalid=*/false); 8279 if (PerformInitList.HadError()) 8280 return ExprError(); 8281 8282 // Hack: We must update *ResultType if available in order to set the 8283 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8284 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8285 if (ResultType && 8286 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8287 if ((*ResultType)->isRValueReferenceType()) 8288 Ty = S.Context.getRValueReferenceType(Ty); 8289 else if ((*ResultType)->isLValueReferenceType()) 8290 Ty = S.Context.getLValueReferenceType(Ty, 8291 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8292 *ResultType = Ty; 8293 } 8294 8295 InitListExpr *StructuredInitList = 8296 PerformInitList.getFullyStructuredList(); 8297 CurInit.get(); 8298 CurInit = shouldBindAsTemporary(InitEntity) 8299 ? S.MaybeBindToTemporary(StructuredInitList) 8300 : StructuredInitList; 8301 break; 8302 } 8303 8304 case SK_ConstructorInitializationFromList: { 8305 if (checkAbstractType(Step->Type)) 8306 return ExprError(); 8307 8308 // When an initializer list is passed for a parameter of type "reference 8309 // to object", we don't get an EK_Temporary entity, but instead an 8310 // EK_Parameter entity with reference type. 8311 // FIXME: This is a hack. What we really should do is create a user 8312 // conversion step for this case, but this makes it considerably more 8313 // complicated. For now, this will do. 8314 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8315 Entity.getType().getNonReferenceType()); 8316 bool UseTemporary = Entity.getType()->isReferenceType(); 8317 assert(Args.size() == 1 && "expected a single argument for list init"); 8318 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8319 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8320 << InitList->getSourceRange(); 8321 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8322 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8323 Entity, 8324 Kind, Arg, *Step, 8325 ConstructorInitRequiresZeroInit, 8326 /*IsListInitialization*/true, 8327 /*IsStdInitListInit*/false, 8328 InitList->getLBraceLoc(), 8329 InitList->getRBraceLoc()); 8330 break; 8331 } 8332 8333 case SK_UnwrapInitList: 8334 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8335 break; 8336 8337 case SK_RewrapInitList: { 8338 Expr *E = CurInit.get(); 8339 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8340 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8341 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8342 ILE->setSyntacticForm(Syntactic); 8343 ILE->setType(E->getType()); 8344 ILE->setValueKind(E->getValueKind()); 8345 CurInit = ILE; 8346 break; 8347 } 8348 8349 case SK_ConstructorInitialization: 8350 case SK_StdInitializerListConstructorCall: { 8351 if (checkAbstractType(Step->Type)) 8352 return ExprError(); 8353 8354 // When an initializer list is passed for a parameter of type "reference 8355 // to object", we don't get an EK_Temporary entity, but instead an 8356 // EK_Parameter entity with reference type. 8357 // FIXME: This is a hack. What we really should do is create a user 8358 // conversion step for this case, but this makes it considerably more 8359 // complicated. For now, this will do. 8360 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8361 Entity.getType().getNonReferenceType()); 8362 bool UseTemporary = Entity.getType()->isReferenceType(); 8363 bool IsStdInitListInit = 8364 Step->Kind == SK_StdInitializerListConstructorCall; 8365 Expr *Source = CurInit.get(); 8366 SourceRange Range = Kind.hasParenOrBraceRange() 8367 ? Kind.getParenOrBraceRange() 8368 : SourceRange(); 8369 CurInit = PerformConstructorInitialization( 8370 S, UseTemporary ? TempEntity : Entity, Kind, 8371 Source ? MultiExprArg(Source) : Args, *Step, 8372 ConstructorInitRequiresZeroInit, 8373 /*IsListInitialization*/ IsStdInitListInit, 8374 /*IsStdInitListInitialization*/ IsStdInitListInit, 8375 /*LBraceLoc*/ Range.getBegin(), 8376 /*RBraceLoc*/ Range.getEnd()); 8377 break; 8378 } 8379 8380 case SK_ZeroInitialization: { 8381 step_iterator NextStep = Step; 8382 ++NextStep; 8383 if (NextStep != StepEnd && 8384 (NextStep->Kind == SK_ConstructorInitialization || 8385 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8386 // The need for zero-initialization is recorded directly into 8387 // the call to the object's constructor within the next step. 8388 ConstructorInitRequiresZeroInit = true; 8389 } else if (Kind.getKind() == InitializationKind::IK_Value && 8390 S.getLangOpts().CPlusPlus && 8391 !Kind.isImplicitValueInit()) { 8392 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8393 if (!TSInfo) 8394 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8395 Kind.getRange().getBegin()); 8396 8397 CurInit = new (S.Context) CXXScalarValueInitExpr( 8398 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8399 Kind.getRange().getEnd()); 8400 } else { 8401 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8402 } 8403 break; 8404 } 8405 8406 case SK_CAssignment: { 8407 QualType SourceType = CurInit.get()->getType(); 8408 8409 // Save off the initial CurInit in case we need to emit a diagnostic 8410 ExprResult InitialCurInit = CurInit; 8411 ExprResult Result = CurInit; 8412 Sema::AssignConvertType ConvTy = 8413 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8414 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8415 if (Result.isInvalid()) 8416 return ExprError(); 8417 CurInit = Result; 8418 8419 // If this is a call, allow conversion to a transparent union. 8420 ExprResult CurInitExprRes = CurInit; 8421 if (ConvTy != Sema::Compatible && 8422 Entity.isParameterKind() && 8423 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8424 == Sema::Compatible) 8425 ConvTy = Sema::Compatible; 8426 if (CurInitExprRes.isInvalid()) 8427 return ExprError(); 8428 CurInit = CurInitExprRes; 8429 8430 bool Complained; 8431 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8432 Step->Type, SourceType, 8433 InitialCurInit.get(), 8434 getAssignmentAction(Entity, true), 8435 &Complained)) { 8436 PrintInitLocationNote(S, Entity); 8437 return ExprError(); 8438 } else if (Complained) 8439 PrintInitLocationNote(S, Entity); 8440 break; 8441 } 8442 8443 case SK_StringInit: { 8444 QualType Ty = Step->Type; 8445 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); 8446 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, 8447 S.Context.getAsArrayType(Ty), S); 8448 break; 8449 } 8450 8451 case SK_ObjCObjectConversion: 8452 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8453 CK_ObjCObjectLValueCast, 8454 CurInit.get()->getValueKind()); 8455 break; 8456 8457 case SK_ArrayLoopIndex: { 8458 Expr *Cur = CurInit.get(); 8459 Expr *BaseExpr = new (S.Context) 8460 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8461 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8462 Expr *IndexExpr = 8463 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8464 CurInit = S.CreateBuiltinArraySubscriptExpr( 8465 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8466 ArrayLoopCommonExprs.push_back(BaseExpr); 8467 break; 8468 } 8469 8470 case SK_ArrayLoopInit: { 8471 assert(!ArrayLoopCommonExprs.empty() && 8472 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8473 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8474 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8475 CurInit.get()); 8476 break; 8477 } 8478 8479 case SK_GNUArrayInit: 8480 // Okay: we checked everything before creating this step. Note that 8481 // this is a GNU extension. 8482 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8483 << Step->Type << CurInit.get()->getType() 8484 << CurInit.get()->getSourceRange(); 8485 updateGNUCompoundLiteralRValue(CurInit.get()); 8486 LLVM_FALLTHROUGH; 8487 case SK_ArrayInit: 8488 // If the destination type is an incomplete array type, update the 8489 // type accordingly. 8490 if (ResultType) { 8491 if (const IncompleteArrayType *IncompleteDest 8492 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8493 if (const ConstantArrayType *ConstantSource 8494 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8495 *ResultType = S.Context.getConstantArrayType( 8496 IncompleteDest->getElementType(), 8497 ConstantSource->getSize(), 8498 ConstantSource->getSizeExpr(), 8499 ArrayType::Normal, 0); 8500 } 8501 } 8502 } 8503 break; 8504 8505 case SK_ParenthesizedArrayInit: 8506 // Okay: we checked everything before creating this step. Note that 8507 // this is a GNU extension. 8508 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8509 << CurInit.get()->getSourceRange(); 8510 break; 8511 8512 case SK_PassByIndirectCopyRestore: 8513 case SK_PassByIndirectRestore: 8514 checkIndirectCopyRestoreSource(S, CurInit.get()); 8515 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8516 CurInit.get(), Step->Type, 8517 Step->Kind == SK_PassByIndirectCopyRestore); 8518 break; 8519 8520 case SK_ProduceObjCObject: 8521 CurInit = ImplicitCastExpr::Create( 8522 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, 8523 VK_RValue, FPOptionsOverride()); 8524 break; 8525 8526 case SK_StdInitializerList: { 8527 S.Diag(CurInit.get()->getExprLoc(), 8528 diag::warn_cxx98_compat_initializer_list_init) 8529 << CurInit.get()->getSourceRange(); 8530 8531 // Materialize the temporary into memory. 8532 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8533 CurInit.get()->getType(), CurInit.get(), 8534 /*BoundToLvalueReference=*/false); 8535 8536 // Wrap it in a construction of a std::initializer_list<T>. 8537 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8538 8539 // Bind the result, in case the library has given initializer_list a 8540 // non-trivial destructor. 8541 if (shouldBindAsTemporary(Entity)) 8542 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8543 break; 8544 } 8545 8546 case SK_OCLSamplerInit: { 8547 // Sampler initialization have 5 cases: 8548 // 1. function argument passing 8549 // 1a. argument is a file-scope variable 8550 // 1b. argument is a function-scope variable 8551 // 1c. argument is one of caller function's parameters 8552 // 2. variable initialization 8553 // 2a. initializing a file-scope variable 8554 // 2b. initializing a function-scope variable 8555 // 8556 // For file-scope variables, since they cannot be initialized by function 8557 // call of __translate_sampler_initializer in LLVM IR, their references 8558 // need to be replaced by a cast from their literal initializers to 8559 // sampler type. Since sampler variables can only be used in function 8560 // calls as arguments, we only need to replace them when handling the 8561 // argument passing. 8562 assert(Step->Type->isSamplerT() && 8563 "Sampler initialization on non-sampler type."); 8564 Expr *Init = CurInit.get()->IgnoreParens(); 8565 QualType SourceType = Init->getType(); 8566 // Case 1 8567 if (Entity.isParameterKind()) { 8568 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8569 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8570 << SourceType; 8571 break; 8572 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8573 auto Var = cast<VarDecl>(DRE->getDecl()); 8574 // Case 1b and 1c 8575 // No cast from integer to sampler is needed. 8576 if (!Var->hasGlobalStorage()) { 8577 CurInit = ImplicitCastExpr::Create( 8578 S.Context, Step->Type, CK_LValueToRValue, Init, 8579 /*BasePath=*/nullptr, VK_RValue, FPOptionsOverride()); 8580 break; 8581 } 8582 // Case 1a 8583 // For function call with a file-scope sampler variable as argument, 8584 // get the integer literal. 8585 // Do not diagnose if the file-scope variable does not have initializer 8586 // since this has already been diagnosed when parsing the variable 8587 // declaration. 8588 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8589 break; 8590 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8591 Var->getInit()))->getSubExpr(); 8592 SourceType = Init->getType(); 8593 } 8594 } else { 8595 // Case 2 8596 // Check initializer is 32 bit integer constant. 8597 // If the initializer is taken from global variable, do not diagnose since 8598 // this has already been done when parsing the variable declaration. 8599 if (!Init->isConstantInitializer(S.Context, false)) 8600 break; 8601 8602 if (!SourceType->isIntegerType() || 8603 32 != S.Context.getIntWidth(SourceType)) { 8604 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8605 << SourceType; 8606 break; 8607 } 8608 8609 Expr::EvalResult EVResult; 8610 Init->EvaluateAsInt(EVResult, S.Context); 8611 llvm::APSInt Result = EVResult.Val.getInt(); 8612 const uint64_t SamplerValue = Result.getLimitedValue(); 8613 // 32-bit value of sampler's initializer is interpreted as 8614 // bit-field with the following structure: 8615 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8616 // |31 6|5 4|3 1| 0| 8617 // This structure corresponds to enum values of sampler properties 8618 // defined in SPIR spec v1.2 and also opencl-c.h 8619 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8620 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8621 if (FilterMode != 1 && FilterMode != 2 && 8622 !S.getOpenCLOptions().isEnabled( 8623 "cl_intel_device_side_avc_motion_estimation")) 8624 S.Diag(Kind.getLocation(), 8625 diag::warn_sampler_initializer_invalid_bits) 8626 << "Filter Mode"; 8627 if (AddressingMode > 4) 8628 S.Diag(Kind.getLocation(), 8629 diag::warn_sampler_initializer_invalid_bits) 8630 << "Addressing Mode"; 8631 } 8632 8633 // Cases 1a, 2a and 2b 8634 // Insert cast from integer to sampler. 8635 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8636 CK_IntToOCLSampler); 8637 break; 8638 } 8639 case SK_OCLZeroOpaqueType: { 8640 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8641 Step->Type->isOCLIntelSubgroupAVCType()) && 8642 "Wrong type for initialization of OpenCL opaque type."); 8643 8644 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8645 CK_ZeroToOCLOpaqueType, 8646 CurInit.get()->getValueKind()); 8647 break; 8648 } 8649 } 8650 } 8651 8652 // Check whether the initializer has a shorter lifetime than the initialized 8653 // entity, and if not, either lifetime-extend or warn as appropriate. 8654 if (auto *Init = CurInit.get()) 8655 S.checkInitializerLifetime(Entity, Init); 8656 8657 // Diagnose non-fatal problems with the completed initialization. 8658 if (Entity.getKind() == InitializedEntity::EK_Member && 8659 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8660 S.CheckBitFieldInitialization(Kind.getLocation(), 8661 cast<FieldDecl>(Entity.getDecl()), 8662 CurInit.get()); 8663 8664 // Check for std::move on construction. 8665 if (const Expr *E = CurInit.get()) { 8666 CheckMoveOnConstruction(S, E, 8667 Entity.getKind() == InitializedEntity::EK_Result); 8668 } 8669 8670 return CurInit; 8671 } 8672 8673 /// Somewhere within T there is an uninitialized reference subobject. 8674 /// Dig it out and diagnose it. 8675 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8676 QualType T) { 8677 if (T->isReferenceType()) { 8678 S.Diag(Loc, diag::err_reference_without_init) 8679 << T.getNonReferenceType(); 8680 return true; 8681 } 8682 8683 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8684 if (!RD || !RD->hasUninitializedReferenceMember()) 8685 return false; 8686 8687 for (const auto *FI : RD->fields()) { 8688 if (FI->isUnnamedBitfield()) 8689 continue; 8690 8691 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8692 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8693 return true; 8694 } 8695 } 8696 8697 for (const auto &BI : RD->bases()) { 8698 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8699 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8700 return true; 8701 } 8702 } 8703 8704 return false; 8705 } 8706 8707 8708 //===----------------------------------------------------------------------===// 8709 // Diagnose initialization failures 8710 //===----------------------------------------------------------------------===// 8711 8712 /// Emit notes associated with an initialization that failed due to a 8713 /// "simple" conversion failure. 8714 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8715 Expr *op) { 8716 QualType destType = entity.getType(); 8717 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8718 op->getType()->isObjCObjectPointerType()) { 8719 8720 // Emit a possible note about the conversion failing because the 8721 // operand is a message send with a related result type. 8722 S.EmitRelatedResultTypeNote(op); 8723 8724 // Emit a possible note about a return failing because we're 8725 // expecting a related result type. 8726 if (entity.getKind() == InitializedEntity::EK_Result) 8727 S.EmitRelatedResultTypeNoteForReturn(destType); 8728 } 8729 QualType fromType = op->getType(); 8730 auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl(); 8731 auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl(); 8732 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && 8733 destDecl->getDeclKind() == Decl::CXXRecord && 8734 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && 8735 !fromDecl->hasDefinition()) 8736 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) 8737 << S.getASTContext().getTagDeclType(fromDecl) 8738 << S.getASTContext().getTagDeclType(destDecl); 8739 } 8740 8741 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8742 InitListExpr *InitList) { 8743 QualType DestType = Entity.getType(); 8744 8745 QualType E; 8746 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8747 QualType ArrayType = S.Context.getConstantArrayType( 8748 E.withConst(), 8749 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8750 InitList->getNumInits()), 8751 nullptr, clang::ArrayType::Normal, 0); 8752 InitializedEntity HiddenArray = 8753 InitializedEntity::InitializeTemporary(ArrayType); 8754 return diagnoseListInit(S, HiddenArray, InitList); 8755 } 8756 8757 if (DestType->isReferenceType()) { 8758 // A list-initialization failure for a reference means that we tried to 8759 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8760 // inner initialization failed. 8761 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8762 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8763 SourceLocation Loc = InitList->getBeginLoc(); 8764 if (auto *D = Entity.getDecl()) 8765 Loc = D->getLocation(); 8766 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8767 return; 8768 } 8769 8770 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8771 /*VerifyOnly=*/false, 8772 /*TreatUnavailableAsInvalid=*/false); 8773 assert(DiagnoseInitList.HadError() && 8774 "Inconsistent init list check result."); 8775 } 8776 8777 bool InitializationSequence::Diagnose(Sema &S, 8778 const InitializedEntity &Entity, 8779 const InitializationKind &Kind, 8780 ArrayRef<Expr *> Args) { 8781 if (!Failed()) 8782 return false; 8783 8784 // When we want to diagnose only one element of a braced-init-list, 8785 // we need to factor it out. 8786 Expr *OnlyArg; 8787 if (Args.size() == 1) { 8788 auto *List = dyn_cast<InitListExpr>(Args[0]); 8789 if (List && List->getNumInits() == 1) 8790 OnlyArg = List->getInit(0); 8791 else 8792 OnlyArg = Args[0]; 8793 } 8794 else 8795 OnlyArg = nullptr; 8796 8797 QualType DestType = Entity.getType(); 8798 switch (Failure) { 8799 case FK_TooManyInitsForReference: 8800 // FIXME: Customize for the initialized entity? 8801 if (Args.empty()) { 8802 // Dig out the reference subobject which is uninitialized and diagnose it. 8803 // If this is value-initialization, this could be nested some way within 8804 // the target type. 8805 assert(Kind.getKind() == InitializationKind::IK_Value || 8806 DestType->isReferenceType()); 8807 bool Diagnosed = 8808 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8809 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8810 (void)Diagnosed; 8811 } else // FIXME: diagnostic below could be better! 8812 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8813 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8814 break; 8815 case FK_ParenthesizedListInitForReference: 8816 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8817 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8818 break; 8819 8820 case FK_ArrayNeedsInitList: 8821 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8822 break; 8823 case FK_ArrayNeedsInitListOrStringLiteral: 8824 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8825 break; 8826 case FK_ArrayNeedsInitListOrWideStringLiteral: 8827 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8828 break; 8829 case FK_NarrowStringIntoWideCharArray: 8830 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8831 break; 8832 case FK_WideStringIntoCharArray: 8833 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8834 break; 8835 case FK_IncompatWideStringIntoWideChar: 8836 S.Diag(Kind.getLocation(), 8837 diag::err_array_init_incompat_wide_string_into_wchar); 8838 break; 8839 case FK_PlainStringIntoUTF8Char: 8840 S.Diag(Kind.getLocation(), 8841 diag::err_array_init_plain_string_into_char8_t); 8842 S.Diag(Args.front()->getBeginLoc(), 8843 diag::note_array_init_plain_string_into_char8_t) 8844 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8845 break; 8846 case FK_UTF8StringIntoPlainChar: 8847 S.Diag(Kind.getLocation(), 8848 diag::err_array_init_utf8_string_into_char) 8849 << S.getLangOpts().CPlusPlus20; 8850 break; 8851 case FK_ArrayTypeMismatch: 8852 case FK_NonConstantArrayInit: 8853 S.Diag(Kind.getLocation(), 8854 (Failure == FK_ArrayTypeMismatch 8855 ? diag::err_array_init_different_type 8856 : diag::err_array_init_non_constant_array)) 8857 << DestType.getNonReferenceType() 8858 << OnlyArg->getType() 8859 << Args[0]->getSourceRange(); 8860 break; 8861 8862 case FK_VariableLengthArrayHasInitializer: 8863 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8864 << Args[0]->getSourceRange(); 8865 break; 8866 8867 case FK_AddressOfOverloadFailed: { 8868 DeclAccessPair Found; 8869 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8870 DestType.getNonReferenceType(), 8871 true, 8872 Found); 8873 break; 8874 } 8875 8876 case FK_AddressOfUnaddressableFunction: { 8877 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8878 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8879 OnlyArg->getBeginLoc()); 8880 break; 8881 } 8882 8883 case FK_ReferenceInitOverloadFailed: 8884 case FK_UserConversionOverloadFailed: 8885 switch (FailedOverloadResult) { 8886 case OR_Ambiguous: 8887 8888 FailedCandidateSet.NoteCandidates( 8889 PartialDiagnosticAt( 8890 Kind.getLocation(), 8891 Failure == FK_UserConversionOverloadFailed 8892 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8893 << OnlyArg->getType() << DestType 8894 << Args[0]->getSourceRange()) 8895 : (S.PDiag(diag::err_ref_init_ambiguous) 8896 << DestType << OnlyArg->getType() 8897 << Args[0]->getSourceRange())), 8898 S, OCD_AmbiguousCandidates, Args); 8899 break; 8900 8901 case OR_No_Viable_Function: { 8902 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8903 if (!S.RequireCompleteType(Kind.getLocation(), 8904 DestType.getNonReferenceType(), 8905 diag::err_typecheck_nonviable_condition_incomplete, 8906 OnlyArg->getType(), Args[0]->getSourceRange())) 8907 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8908 << (Entity.getKind() == InitializedEntity::EK_Result) 8909 << OnlyArg->getType() << Args[0]->getSourceRange() 8910 << DestType.getNonReferenceType(); 8911 8912 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8913 break; 8914 } 8915 case OR_Deleted: { 8916 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8917 << OnlyArg->getType() << DestType.getNonReferenceType() 8918 << Args[0]->getSourceRange(); 8919 OverloadCandidateSet::iterator Best; 8920 OverloadingResult Ovl 8921 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8922 if (Ovl == OR_Deleted) { 8923 S.NoteDeletedFunction(Best->Function); 8924 } else { 8925 llvm_unreachable("Inconsistent overload resolution?"); 8926 } 8927 break; 8928 } 8929 8930 case OR_Success: 8931 llvm_unreachable("Conversion did not fail!"); 8932 } 8933 break; 8934 8935 case FK_NonConstLValueReferenceBindingToTemporary: 8936 if (isa<InitListExpr>(Args[0])) { 8937 S.Diag(Kind.getLocation(), 8938 diag::err_lvalue_reference_bind_to_initlist) 8939 << DestType.getNonReferenceType().isVolatileQualified() 8940 << DestType.getNonReferenceType() 8941 << Args[0]->getSourceRange(); 8942 break; 8943 } 8944 LLVM_FALLTHROUGH; 8945 8946 case FK_NonConstLValueReferenceBindingToUnrelated: 8947 S.Diag(Kind.getLocation(), 8948 Failure == FK_NonConstLValueReferenceBindingToTemporary 8949 ? diag::err_lvalue_reference_bind_to_temporary 8950 : diag::err_lvalue_reference_bind_to_unrelated) 8951 << DestType.getNonReferenceType().isVolatileQualified() 8952 << DestType.getNonReferenceType() 8953 << OnlyArg->getType() 8954 << Args[0]->getSourceRange(); 8955 break; 8956 8957 case FK_NonConstLValueReferenceBindingToBitfield: { 8958 // We don't necessarily have an unambiguous source bit-field. 8959 FieldDecl *BitField = Args[0]->getSourceBitField(); 8960 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8961 << DestType.isVolatileQualified() 8962 << (BitField ? BitField->getDeclName() : DeclarationName()) 8963 << (BitField != nullptr) 8964 << Args[0]->getSourceRange(); 8965 if (BitField) 8966 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8967 break; 8968 } 8969 8970 case FK_NonConstLValueReferenceBindingToVectorElement: 8971 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8972 << DestType.isVolatileQualified() 8973 << Args[0]->getSourceRange(); 8974 break; 8975 8976 case FK_NonConstLValueReferenceBindingToMatrixElement: 8977 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) 8978 << DestType.isVolatileQualified() << Args[0]->getSourceRange(); 8979 break; 8980 8981 case FK_RValueReferenceBindingToLValue: 8982 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8983 << DestType.getNonReferenceType() << OnlyArg->getType() 8984 << Args[0]->getSourceRange(); 8985 break; 8986 8987 case FK_ReferenceAddrspaceMismatchTemporary: 8988 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8989 << DestType << Args[0]->getSourceRange(); 8990 break; 8991 8992 case FK_ReferenceInitDropsQualifiers: { 8993 QualType SourceType = OnlyArg->getType(); 8994 QualType NonRefType = DestType.getNonReferenceType(); 8995 Qualifiers DroppedQualifiers = 8996 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8997 8998 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8999 SourceType.getQualifiers())) 9000 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9001 << NonRefType << SourceType << 1 /*addr space*/ 9002 << Args[0]->getSourceRange(); 9003 else if (DroppedQualifiers.hasQualifiers()) 9004 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9005 << NonRefType << SourceType << 0 /*cv quals*/ 9006 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 9007 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 9008 else 9009 // FIXME: Consider decomposing the type and explaining which qualifiers 9010 // were dropped where, or on which level a 'const' is missing, etc. 9011 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9012 << NonRefType << SourceType << 2 /*incompatible quals*/ 9013 << Args[0]->getSourceRange(); 9014 break; 9015 } 9016 9017 case FK_ReferenceInitFailed: 9018 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 9019 << DestType.getNonReferenceType() 9020 << DestType.getNonReferenceType()->isIncompleteType() 9021 << OnlyArg->isLValue() 9022 << OnlyArg->getType() 9023 << Args[0]->getSourceRange(); 9024 emitBadConversionNotes(S, Entity, Args[0]); 9025 break; 9026 9027 case FK_ConversionFailed: { 9028 QualType FromType = OnlyArg->getType(); 9029 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 9030 << (int)Entity.getKind() 9031 << DestType 9032 << OnlyArg->isLValue() 9033 << FromType 9034 << Args[0]->getSourceRange(); 9035 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 9036 S.Diag(Kind.getLocation(), PDiag); 9037 emitBadConversionNotes(S, Entity, Args[0]); 9038 break; 9039 } 9040 9041 case FK_ConversionFromPropertyFailed: 9042 // No-op. This error has already been reported. 9043 break; 9044 9045 case FK_TooManyInitsForScalar: { 9046 SourceRange R; 9047 9048 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 9049 if (InitList && InitList->getNumInits() >= 1) { 9050 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 9051 } else { 9052 assert(Args.size() > 1 && "Expected multiple initializers!"); 9053 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 9054 } 9055 9056 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 9057 if (Kind.isCStyleOrFunctionalCast()) 9058 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 9059 << R; 9060 else 9061 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 9062 << /*scalar=*/2 << R; 9063 break; 9064 } 9065 9066 case FK_ParenthesizedListInitForScalar: 9067 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9068 << 0 << Entity.getType() << Args[0]->getSourceRange(); 9069 break; 9070 9071 case FK_ReferenceBindingToInitList: 9072 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 9073 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 9074 break; 9075 9076 case FK_InitListBadDestinationType: 9077 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 9078 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 9079 break; 9080 9081 case FK_ListConstructorOverloadFailed: 9082 case FK_ConstructorOverloadFailed: { 9083 SourceRange ArgsRange; 9084 if (Args.size()) 9085 ArgsRange = 9086 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9087 9088 if (Failure == FK_ListConstructorOverloadFailed) { 9089 assert(Args.size() == 1 && 9090 "List construction from other than 1 argument."); 9091 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9092 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9093 } 9094 9095 // FIXME: Using "DestType" for the entity we're printing is probably 9096 // bad. 9097 switch (FailedOverloadResult) { 9098 case OR_Ambiguous: 9099 FailedCandidateSet.NoteCandidates( 9100 PartialDiagnosticAt(Kind.getLocation(), 9101 S.PDiag(diag::err_ovl_ambiguous_init) 9102 << DestType << ArgsRange), 9103 S, OCD_AmbiguousCandidates, Args); 9104 break; 9105 9106 case OR_No_Viable_Function: 9107 if (Kind.getKind() == InitializationKind::IK_Default && 9108 (Entity.getKind() == InitializedEntity::EK_Base || 9109 Entity.getKind() == InitializedEntity::EK_Member) && 9110 isa<CXXConstructorDecl>(S.CurContext)) { 9111 // This is implicit default initialization of a member or 9112 // base within a constructor. If no viable function was 9113 // found, notify the user that they need to explicitly 9114 // initialize this base/member. 9115 CXXConstructorDecl *Constructor 9116 = cast<CXXConstructorDecl>(S.CurContext); 9117 const CXXRecordDecl *InheritedFrom = nullptr; 9118 if (auto Inherited = Constructor->getInheritedConstructor()) 9119 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9120 if (Entity.getKind() == InitializedEntity::EK_Base) { 9121 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9122 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9123 << S.Context.getTypeDeclType(Constructor->getParent()) 9124 << /*base=*/0 9125 << Entity.getType() 9126 << InheritedFrom; 9127 9128 RecordDecl *BaseDecl 9129 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9130 ->getDecl(); 9131 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9132 << S.Context.getTagDeclType(BaseDecl); 9133 } else { 9134 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9135 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9136 << S.Context.getTypeDeclType(Constructor->getParent()) 9137 << /*member=*/1 9138 << Entity.getName() 9139 << InheritedFrom; 9140 S.Diag(Entity.getDecl()->getLocation(), 9141 diag::note_member_declared_at); 9142 9143 if (const RecordType *Record 9144 = Entity.getType()->getAs<RecordType>()) 9145 S.Diag(Record->getDecl()->getLocation(), 9146 diag::note_previous_decl) 9147 << S.Context.getTagDeclType(Record->getDecl()); 9148 } 9149 break; 9150 } 9151 9152 FailedCandidateSet.NoteCandidates( 9153 PartialDiagnosticAt( 9154 Kind.getLocation(), 9155 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9156 << DestType << ArgsRange), 9157 S, OCD_AllCandidates, Args); 9158 break; 9159 9160 case OR_Deleted: { 9161 OverloadCandidateSet::iterator Best; 9162 OverloadingResult Ovl 9163 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9164 if (Ovl != OR_Deleted) { 9165 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9166 << DestType << ArgsRange; 9167 llvm_unreachable("Inconsistent overload resolution?"); 9168 break; 9169 } 9170 9171 // If this is a defaulted or implicitly-declared function, then 9172 // it was implicitly deleted. Make it clear that the deletion was 9173 // implicit. 9174 if (S.isImplicitlyDeleted(Best->Function)) 9175 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9176 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9177 << DestType << ArgsRange; 9178 else 9179 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9180 << DestType << ArgsRange; 9181 9182 S.NoteDeletedFunction(Best->Function); 9183 break; 9184 } 9185 9186 case OR_Success: 9187 llvm_unreachable("Conversion did not fail!"); 9188 } 9189 } 9190 break; 9191 9192 case FK_DefaultInitOfConst: 9193 if (Entity.getKind() == InitializedEntity::EK_Member && 9194 isa<CXXConstructorDecl>(S.CurContext)) { 9195 // This is implicit default-initialization of a const member in 9196 // a constructor. Complain that it needs to be explicitly 9197 // initialized. 9198 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9199 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9200 << (Constructor->getInheritedConstructor() ? 2 : 9201 Constructor->isImplicit() ? 1 : 0) 9202 << S.Context.getTypeDeclType(Constructor->getParent()) 9203 << /*const=*/1 9204 << Entity.getName(); 9205 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9206 << Entity.getName(); 9207 } else { 9208 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9209 << DestType << (bool)DestType->getAs<RecordType>(); 9210 } 9211 break; 9212 9213 case FK_Incomplete: 9214 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9215 diag::err_init_incomplete_type); 9216 break; 9217 9218 case FK_ListInitializationFailed: { 9219 // Run the init list checker again to emit diagnostics. 9220 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9221 diagnoseListInit(S, Entity, InitList); 9222 break; 9223 } 9224 9225 case FK_PlaceholderType: { 9226 // FIXME: Already diagnosed! 9227 break; 9228 } 9229 9230 case FK_ExplicitConstructor: { 9231 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9232 << Args[0]->getSourceRange(); 9233 OverloadCandidateSet::iterator Best; 9234 OverloadingResult Ovl 9235 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9236 (void)Ovl; 9237 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9238 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9239 S.Diag(CtorDecl->getLocation(), 9240 diag::note_explicit_ctor_deduction_guide_here) << false; 9241 break; 9242 } 9243 } 9244 9245 PrintInitLocationNote(S, Entity); 9246 return true; 9247 } 9248 9249 void InitializationSequence::dump(raw_ostream &OS) const { 9250 switch (SequenceKind) { 9251 case FailedSequence: { 9252 OS << "Failed sequence: "; 9253 switch (Failure) { 9254 case FK_TooManyInitsForReference: 9255 OS << "too many initializers for reference"; 9256 break; 9257 9258 case FK_ParenthesizedListInitForReference: 9259 OS << "parenthesized list init for reference"; 9260 break; 9261 9262 case FK_ArrayNeedsInitList: 9263 OS << "array requires initializer list"; 9264 break; 9265 9266 case FK_AddressOfUnaddressableFunction: 9267 OS << "address of unaddressable function was taken"; 9268 break; 9269 9270 case FK_ArrayNeedsInitListOrStringLiteral: 9271 OS << "array requires initializer list or string literal"; 9272 break; 9273 9274 case FK_ArrayNeedsInitListOrWideStringLiteral: 9275 OS << "array requires initializer list or wide string literal"; 9276 break; 9277 9278 case FK_NarrowStringIntoWideCharArray: 9279 OS << "narrow string into wide char array"; 9280 break; 9281 9282 case FK_WideStringIntoCharArray: 9283 OS << "wide string into char array"; 9284 break; 9285 9286 case FK_IncompatWideStringIntoWideChar: 9287 OS << "incompatible wide string into wide char array"; 9288 break; 9289 9290 case FK_PlainStringIntoUTF8Char: 9291 OS << "plain string literal into char8_t array"; 9292 break; 9293 9294 case FK_UTF8StringIntoPlainChar: 9295 OS << "u8 string literal into char array"; 9296 break; 9297 9298 case FK_ArrayTypeMismatch: 9299 OS << "array type mismatch"; 9300 break; 9301 9302 case FK_NonConstantArrayInit: 9303 OS << "non-constant array initializer"; 9304 break; 9305 9306 case FK_AddressOfOverloadFailed: 9307 OS << "address of overloaded function failed"; 9308 break; 9309 9310 case FK_ReferenceInitOverloadFailed: 9311 OS << "overload resolution for reference initialization failed"; 9312 break; 9313 9314 case FK_NonConstLValueReferenceBindingToTemporary: 9315 OS << "non-const lvalue reference bound to temporary"; 9316 break; 9317 9318 case FK_NonConstLValueReferenceBindingToBitfield: 9319 OS << "non-const lvalue reference bound to bit-field"; 9320 break; 9321 9322 case FK_NonConstLValueReferenceBindingToVectorElement: 9323 OS << "non-const lvalue reference bound to vector element"; 9324 break; 9325 9326 case FK_NonConstLValueReferenceBindingToMatrixElement: 9327 OS << "non-const lvalue reference bound to matrix element"; 9328 break; 9329 9330 case FK_NonConstLValueReferenceBindingToUnrelated: 9331 OS << "non-const lvalue reference bound to unrelated type"; 9332 break; 9333 9334 case FK_RValueReferenceBindingToLValue: 9335 OS << "rvalue reference bound to an lvalue"; 9336 break; 9337 9338 case FK_ReferenceInitDropsQualifiers: 9339 OS << "reference initialization drops qualifiers"; 9340 break; 9341 9342 case FK_ReferenceAddrspaceMismatchTemporary: 9343 OS << "reference with mismatching address space bound to temporary"; 9344 break; 9345 9346 case FK_ReferenceInitFailed: 9347 OS << "reference initialization failed"; 9348 break; 9349 9350 case FK_ConversionFailed: 9351 OS << "conversion failed"; 9352 break; 9353 9354 case FK_ConversionFromPropertyFailed: 9355 OS << "conversion from property failed"; 9356 break; 9357 9358 case FK_TooManyInitsForScalar: 9359 OS << "too many initializers for scalar"; 9360 break; 9361 9362 case FK_ParenthesizedListInitForScalar: 9363 OS << "parenthesized list init for reference"; 9364 break; 9365 9366 case FK_ReferenceBindingToInitList: 9367 OS << "referencing binding to initializer list"; 9368 break; 9369 9370 case FK_InitListBadDestinationType: 9371 OS << "initializer list for non-aggregate, non-scalar type"; 9372 break; 9373 9374 case FK_UserConversionOverloadFailed: 9375 OS << "overloading failed for user-defined conversion"; 9376 break; 9377 9378 case FK_ConstructorOverloadFailed: 9379 OS << "constructor overloading failed"; 9380 break; 9381 9382 case FK_DefaultInitOfConst: 9383 OS << "default initialization of a const variable"; 9384 break; 9385 9386 case FK_Incomplete: 9387 OS << "initialization of incomplete type"; 9388 break; 9389 9390 case FK_ListInitializationFailed: 9391 OS << "list initialization checker failure"; 9392 break; 9393 9394 case FK_VariableLengthArrayHasInitializer: 9395 OS << "variable length array has an initializer"; 9396 break; 9397 9398 case FK_PlaceholderType: 9399 OS << "initializer expression isn't contextually valid"; 9400 break; 9401 9402 case FK_ListConstructorOverloadFailed: 9403 OS << "list constructor overloading failed"; 9404 break; 9405 9406 case FK_ExplicitConstructor: 9407 OS << "list copy initialization chose explicit constructor"; 9408 break; 9409 } 9410 OS << '\n'; 9411 return; 9412 } 9413 9414 case DependentSequence: 9415 OS << "Dependent sequence\n"; 9416 return; 9417 9418 case NormalSequence: 9419 OS << "Normal sequence: "; 9420 break; 9421 } 9422 9423 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9424 if (S != step_begin()) { 9425 OS << " -> "; 9426 } 9427 9428 switch (S->Kind) { 9429 case SK_ResolveAddressOfOverloadedFunction: 9430 OS << "resolve address of overloaded function"; 9431 break; 9432 9433 case SK_CastDerivedToBaseRValue: 9434 OS << "derived-to-base (rvalue)"; 9435 break; 9436 9437 case SK_CastDerivedToBaseXValue: 9438 OS << "derived-to-base (xvalue)"; 9439 break; 9440 9441 case SK_CastDerivedToBaseLValue: 9442 OS << "derived-to-base (lvalue)"; 9443 break; 9444 9445 case SK_BindReference: 9446 OS << "bind reference to lvalue"; 9447 break; 9448 9449 case SK_BindReferenceToTemporary: 9450 OS << "bind reference to a temporary"; 9451 break; 9452 9453 case SK_FinalCopy: 9454 OS << "final copy in class direct-initialization"; 9455 break; 9456 9457 case SK_ExtraneousCopyToTemporary: 9458 OS << "extraneous C++03 copy to temporary"; 9459 break; 9460 9461 case SK_UserConversion: 9462 OS << "user-defined conversion via " << *S->Function.Function; 9463 break; 9464 9465 case SK_QualificationConversionRValue: 9466 OS << "qualification conversion (rvalue)"; 9467 break; 9468 9469 case SK_QualificationConversionXValue: 9470 OS << "qualification conversion (xvalue)"; 9471 break; 9472 9473 case SK_QualificationConversionLValue: 9474 OS << "qualification conversion (lvalue)"; 9475 break; 9476 9477 case SK_AtomicConversion: 9478 OS << "non-atomic-to-atomic conversion"; 9479 break; 9480 9481 case SK_ConversionSequence: 9482 OS << "implicit conversion sequence ("; 9483 S->ICS->dump(); // FIXME: use OS 9484 OS << ")"; 9485 break; 9486 9487 case SK_ConversionSequenceNoNarrowing: 9488 OS << "implicit conversion sequence with narrowing prohibited ("; 9489 S->ICS->dump(); // FIXME: use OS 9490 OS << ")"; 9491 break; 9492 9493 case SK_ListInitialization: 9494 OS << "list aggregate initialization"; 9495 break; 9496 9497 case SK_UnwrapInitList: 9498 OS << "unwrap reference initializer list"; 9499 break; 9500 9501 case SK_RewrapInitList: 9502 OS << "rewrap reference initializer list"; 9503 break; 9504 9505 case SK_ConstructorInitialization: 9506 OS << "constructor initialization"; 9507 break; 9508 9509 case SK_ConstructorInitializationFromList: 9510 OS << "list initialization via constructor"; 9511 break; 9512 9513 case SK_ZeroInitialization: 9514 OS << "zero initialization"; 9515 break; 9516 9517 case SK_CAssignment: 9518 OS << "C assignment"; 9519 break; 9520 9521 case SK_StringInit: 9522 OS << "string initialization"; 9523 break; 9524 9525 case SK_ObjCObjectConversion: 9526 OS << "Objective-C object conversion"; 9527 break; 9528 9529 case SK_ArrayLoopIndex: 9530 OS << "indexing for array initialization loop"; 9531 break; 9532 9533 case SK_ArrayLoopInit: 9534 OS << "array initialization loop"; 9535 break; 9536 9537 case SK_ArrayInit: 9538 OS << "array initialization"; 9539 break; 9540 9541 case SK_GNUArrayInit: 9542 OS << "array initialization (GNU extension)"; 9543 break; 9544 9545 case SK_ParenthesizedArrayInit: 9546 OS << "parenthesized array initialization"; 9547 break; 9548 9549 case SK_PassByIndirectCopyRestore: 9550 OS << "pass by indirect copy and restore"; 9551 break; 9552 9553 case SK_PassByIndirectRestore: 9554 OS << "pass by indirect restore"; 9555 break; 9556 9557 case SK_ProduceObjCObject: 9558 OS << "Objective-C object retension"; 9559 break; 9560 9561 case SK_StdInitializerList: 9562 OS << "std::initializer_list from initializer list"; 9563 break; 9564 9565 case SK_StdInitializerListConstructorCall: 9566 OS << "list initialization from std::initializer_list"; 9567 break; 9568 9569 case SK_OCLSamplerInit: 9570 OS << "OpenCL sampler_t from integer constant"; 9571 break; 9572 9573 case SK_OCLZeroOpaqueType: 9574 OS << "OpenCL opaque type from zero"; 9575 break; 9576 } 9577 9578 OS << " [" << S->Type.getAsString() << ']'; 9579 } 9580 9581 OS << '\n'; 9582 } 9583 9584 void InitializationSequence::dump() const { 9585 dump(llvm::errs()); 9586 } 9587 9588 static bool NarrowingErrs(const LangOptions &L) { 9589 return L.CPlusPlus11 && 9590 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9591 } 9592 9593 static void DiagnoseNarrowingInInitList(Sema &S, 9594 const ImplicitConversionSequence &ICS, 9595 QualType PreNarrowingType, 9596 QualType EntityType, 9597 const Expr *PostInit) { 9598 const StandardConversionSequence *SCS = nullptr; 9599 switch (ICS.getKind()) { 9600 case ImplicitConversionSequence::StandardConversion: 9601 SCS = &ICS.Standard; 9602 break; 9603 case ImplicitConversionSequence::UserDefinedConversion: 9604 SCS = &ICS.UserDefined.After; 9605 break; 9606 case ImplicitConversionSequence::AmbiguousConversion: 9607 case ImplicitConversionSequence::EllipsisConversion: 9608 case ImplicitConversionSequence::BadConversion: 9609 return; 9610 } 9611 9612 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9613 APValue ConstantValue; 9614 QualType ConstantType; 9615 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9616 ConstantType)) { 9617 case NK_Not_Narrowing: 9618 case NK_Dependent_Narrowing: 9619 // No narrowing occurred. 9620 return; 9621 9622 case NK_Type_Narrowing: 9623 // This was a floating-to-integer conversion, which is always considered a 9624 // narrowing conversion even if the value is a constant and can be 9625 // represented exactly as an integer. 9626 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9627 ? diag::ext_init_list_type_narrowing 9628 : diag::warn_init_list_type_narrowing) 9629 << PostInit->getSourceRange() 9630 << PreNarrowingType.getLocalUnqualifiedType() 9631 << EntityType.getLocalUnqualifiedType(); 9632 break; 9633 9634 case NK_Constant_Narrowing: 9635 // A constant value was narrowed. 9636 S.Diag(PostInit->getBeginLoc(), 9637 NarrowingErrs(S.getLangOpts()) 9638 ? diag::ext_init_list_constant_narrowing 9639 : diag::warn_init_list_constant_narrowing) 9640 << PostInit->getSourceRange() 9641 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9642 << EntityType.getLocalUnqualifiedType(); 9643 break; 9644 9645 case NK_Variable_Narrowing: 9646 // A variable's value may have been narrowed. 9647 S.Diag(PostInit->getBeginLoc(), 9648 NarrowingErrs(S.getLangOpts()) 9649 ? diag::ext_init_list_variable_narrowing 9650 : diag::warn_init_list_variable_narrowing) 9651 << PostInit->getSourceRange() 9652 << PreNarrowingType.getLocalUnqualifiedType() 9653 << EntityType.getLocalUnqualifiedType(); 9654 break; 9655 } 9656 9657 SmallString<128> StaticCast; 9658 llvm::raw_svector_ostream OS(StaticCast); 9659 OS << "static_cast<"; 9660 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9661 // It's important to use the typedef's name if there is one so that the 9662 // fixit doesn't break code using types like int64_t. 9663 // 9664 // FIXME: This will break if the typedef requires qualification. But 9665 // getQualifiedNameAsString() includes non-machine-parsable components. 9666 OS << *TT->getDecl(); 9667 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9668 OS << BT->getName(S.getLangOpts()); 9669 else { 9670 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9671 // with a broken cast. 9672 return; 9673 } 9674 OS << ">("; 9675 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9676 << PostInit->getSourceRange() 9677 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9678 << FixItHint::CreateInsertion( 9679 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9680 } 9681 9682 //===----------------------------------------------------------------------===// 9683 // Initialization helper functions 9684 //===----------------------------------------------------------------------===// 9685 bool 9686 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9687 ExprResult Init) { 9688 if (Init.isInvalid()) 9689 return false; 9690 9691 Expr *InitE = Init.get(); 9692 assert(InitE && "No initialization expression"); 9693 9694 InitializationKind Kind = 9695 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9696 InitializationSequence Seq(*this, Entity, Kind, InitE); 9697 return !Seq.Failed(); 9698 } 9699 9700 ExprResult 9701 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9702 SourceLocation EqualLoc, 9703 ExprResult Init, 9704 bool TopLevelOfInitList, 9705 bool AllowExplicit) { 9706 if (Init.isInvalid()) 9707 return ExprError(); 9708 9709 Expr *InitE = Init.get(); 9710 assert(InitE && "No initialization expression?"); 9711 9712 if (EqualLoc.isInvalid()) 9713 EqualLoc = InitE->getBeginLoc(); 9714 9715 InitializationKind Kind = InitializationKind::CreateCopy( 9716 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9717 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9718 9719 // Prevent infinite recursion when performing parameter copy-initialization. 9720 const bool ShouldTrackCopy = 9721 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9722 if (ShouldTrackCopy) { 9723 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9724 CurrentParameterCopyTypes.end()) { 9725 Seq.SetOverloadFailure( 9726 InitializationSequence::FK_ConstructorOverloadFailed, 9727 OR_No_Viable_Function); 9728 9729 // Try to give a meaningful diagnostic note for the problematic 9730 // constructor. 9731 const auto LastStep = Seq.step_end() - 1; 9732 assert(LastStep->Kind == 9733 InitializationSequence::SK_ConstructorInitialization); 9734 const FunctionDecl *Function = LastStep->Function.Function; 9735 auto Candidate = 9736 llvm::find_if(Seq.getFailedCandidateSet(), 9737 [Function](const OverloadCandidate &Candidate) -> bool { 9738 return Candidate.Viable && 9739 Candidate.Function == Function && 9740 Candidate.Conversions.size() > 0; 9741 }); 9742 if (Candidate != Seq.getFailedCandidateSet().end() && 9743 Function->getNumParams() > 0) { 9744 Candidate->Viable = false; 9745 Candidate->FailureKind = ovl_fail_bad_conversion; 9746 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9747 InitE, 9748 Function->getParamDecl(0)->getType()); 9749 } 9750 } 9751 CurrentParameterCopyTypes.push_back(Entity.getType()); 9752 } 9753 9754 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9755 9756 if (ShouldTrackCopy) 9757 CurrentParameterCopyTypes.pop_back(); 9758 9759 return Result; 9760 } 9761 9762 /// Determine whether RD is, or is derived from, a specialization of CTD. 9763 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9764 ClassTemplateDecl *CTD) { 9765 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9766 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9767 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9768 }; 9769 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9770 } 9771 9772 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9773 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9774 const InitializationKind &Kind, MultiExprArg Inits) { 9775 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9776 TSInfo->getType()->getContainedDeducedType()); 9777 assert(DeducedTST && "not a deduced template specialization type"); 9778 9779 auto TemplateName = DeducedTST->getTemplateName(); 9780 if (TemplateName.isDependent()) 9781 return SubstAutoType(TSInfo->getType(), Context.DependentTy); 9782 9783 // We can only perform deduction for class templates. 9784 auto *Template = 9785 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9786 if (!Template) { 9787 Diag(Kind.getLocation(), 9788 diag::err_deduced_non_class_template_specialization_type) 9789 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9790 if (auto *TD = TemplateName.getAsTemplateDecl()) 9791 Diag(TD->getLocation(), diag::note_template_decl_here); 9792 return QualType(); 9793 } 9794 9795 // Can't deduce from dependent arguments. 9796 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9797 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9798 diag::warn_cxx14_compat_class_template_argument_deduction) 9799 << TSInfo->getTypeLoc().getSourceRange() << 0; 9800 return SubstAutoType(TSInfo->getType(), Context.DependentTy); 9801 } 9802 9803 // FIXME: Perform "exact type" matching first, per CWG discussion? 9804 // Or implement this via an implied 'T(T) -> T' deduction guide? 9805 9806 // FIXME: Do we need/want a std::initializer_list<T> special case? 9807 9808 // Look up deduction guides, including those synthesized from constructors. 9809 // 9810 // C++1z [over.match.class.deduct]p1: 9811 // A set of functions and function templates is formed comprising: 9812 // - For each constructor of the class template designated by the 9813 // template-name, a function template [...] 9814 // - For each deduction-guide, a function or function template [...] 9815 DeclarationNameInfo NameInfo( 9816 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9817 TSInfo->getTypeLoc().getEndLoc()); 9818 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9819 LookupQualifiedName(Guides, Template->getDeclContext()); 9820 9821 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9822 // clear on this, but they're not found by name so access does not apply. 9823 Guides.suppressDiagnostics(); 9824 9825 // Figure out if this is list-initialization. 9826 InitListExpr *ListInit = 9827 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9828 ? dyn_cast<InitListExpr>(Inits[0]) 9829 : nullptr; 9830 9831 // C++1z [over.match.class.deduct]p1: 9832 // Initialization and overload resolution are performed as described in 9833 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9834 // (as appropriate for the type of initialization performed) for an object 9835 // of a hypothetical class type, where the selected functions and function 9836 // templates are considered to be the constructors of that class type 9837 // 9838 // Since we know we're initializing a class type of a type unrelated to that 9839 // of the initializer, this reduces to something fairly reasonable. 9840 OverloadCandidateSet Candidates(Kind.getLocation(), 9841 OverloadCandidateSet::CSK_Normal); 9842 OverloadCandidateSet::iterator Best; 9843 9844 bool HasAnyDeductionGuide = false; 9845 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9846 9847 auto tryToResolveOverload = 9848 [&](bool OnlyListConstructors) -> OverloadingResult { 9849 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9850 HasAnyDeductionGuide = false; 9851 9852 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9853 NamedDecl *D = (*I)->getUnderlyingDecl(); 9854 if (D->isInvalidDecl()) 9855 continue; 9856 9857 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9858 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9859 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9860 if (!GD) 9861 continue; 9862 9863 if (!GD->isImplicit()) 9864 HasAnyDeductionGuide = true; 9865 9866 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9867 // For copy-initialization, the candidate functions are all the 9868 // converting constructors (12.3.1) of that class. 9869 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9870 // The converting constructors of T are candidate functions. 9871 if (!AllowExplicit) { 9872 // Overload resolution checks whether the deduction guide is declared 9873 // explicit for us. 9874 9875 // When looking for a converting constructor, deduction guides that 9876 // could never be called with one argument are not interesting to 9877 // check or note. 9878 if (GD->getMinRequiredArguments() > 1 || 9879 (GD->getNumParams() == 0 && !GD->isVariadic())) 9880 continue; 9881 } 9882 9883 // C++ [over.match.list]p1.1: (first phase list initialization) 9884 // Initially, the candidate functions are the initializer-list 9885 // constructors of the class T 9886 if (OnlyListConstructors && !isInitListConstructor(GD)) 9887 continue; 9888 9889 // C++ [over.match.list]p1.2: (second phase list initialization) 9890 // the candidate functions are all the constructors of the class T 9891 // C++ [over.match.ctor]p1: (all other cases) 9892 // the candidate functions are all the constructors of the class of 9893 // the object being initialized 9894 9895 // C++ [over.best.ics]p4: 9896 // When [...] the constructor [...] is a candidate by 9897 // - [over.match.copy] (in all cases) 9898 // FIXME: The "second phase of [over.match.list] case can also 9899 // theoretically happen here, but it's not clear whether we can 9900 // ever have a parameter of the right type. 9901 bool SuppressUserConversions = Kind.isCopyInit(); 9902 9903 if (TD) 9904 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9905 Inits, Candidates, SuppressUserConversions, 9906 /*PartialOverloading*/ false, 9907 AllowExplicit); 9908 else 9909 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9910 SuppressUserConversions, 9911 /*PartialOverloading*/ false, AllowExplicit); 9912 } 9913 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9914 }; 9915 9916 OverloadingResult Result = OR_No_Viable_Function; 9917 9918 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9919 // try initializer-list constructors. 9920 if (ListInit) { 9921 bool TryListConstructors = true; 9922 9923 // Try list constructors unless the list is empty and the class has one or 9924 // more default constructors, in which case those constructors win. 9925 if (!ListInit->getNumInits()) { 9926 for (NamedDecl *D : Guides) { 9927 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9928 if (FD && FD->getMinRequiredArguments() == 0) { 9929 TryListConstructors = false; 9930 break; 9931 } 9932 } 9933 } else if (ListInit->getNumInits() == 1) { 9934 // C++ [over.match.class.deduct]: 9935 // As an exception, the first phase in [over.match.list] (considering 9936 // initializer-list constructors) is omitted if the initializer list 9937 // consists of a single expression of type cv U, where U is a 9938 // specialization of C or a class derived from a specialization of C. 9939 Expr *E = ListInit->getInit(0); 9940 auto *RD = E->getType()->getAsCXXRecordDecl(); 9941 if (!isa<InitListExpr>(E) && RD && 9942 isCompleteType(Kind.getLocation(), E->getType()) && 9943 isOrIsDerivedFromSpecializationOf(RD, Template)) 9944 TryListConstructors = false; 9945 } 9946 9947 if (TryListConstructors) 9948 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9949 // Then unwrap the initializer list and try again considering all 9950 // constructors. 9951 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9952 } 9953 9954 // If list-initialization fails, or if we're doing any other kind of 9955 // initialization, we (eventually) consider constructors. 9956 if (Result == OR_No_Viable_Function) 9957 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9958 9959 switch (Result) { 9960 case OR_Ambiguous: 9961 // FIXME: For list-initialization candidates, it'd usually be better to 9962 // list why they were not viable when given the initializer list itself as 9963 // an argument. 9964 Candidates.NoteCandidates( 9965 PartialDiagnosticAt( 9966 Kind.getLocation(), 9967 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9968 << TemplateName), 9969 *this, OCD_AmbiguousCandidates, Inits); 9970 return QualType(); 9971 9972 case OR_No_Viable_Function: { 9973 CXXRecordDecl *Primary = 9974 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9975 bool Complete = 9976 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9977 Candidates.NoteCandidates( 9978 PartialDiagnosticAt( 9979 Kind.getLocation(), 9980 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9981 : diag::err_deduced_class_template_incomplete) 9982 << TemplateName << !Guides.empty()), 9983 *this, OCD_AllCandidates, Inits); 9984 return QualType(); 9985 } 9986 9987 case OR_Deleted: { 9988 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9989 << TemplateName; 9990 NoteDeletedFunction(Best->Function); 9991 return QualType(); 9992 } 9993 9994 case OR_Success: 9995 // C++ [over.match.list]p1: 9996 // In copy-list-initialization, if an explicit constructor is chosen, the 9997 // initialization is ill-formed. 9998 if (Kind.isCopyInit() && ListInit && 9999 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 10000 bool IsDeductionGuide = !Best->Function->isImplicit(); 10001 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 10002 << TemplateName << IsDeductionGuide; 10003 Diag(Best->Function->getLocation(), 10004 diag::note_explicit_ctor_deduction_guide_here) 10005 << IsDeductionGuide; 10006 return QualType(); 10007 } 10008 10009 // Make sure we didn't select an unusable deduction guide, and mark it 10010 // as referenced. 10011 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 10012 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 10013 break; 10014 } 10015 10016 // C++ [dcl.type.class.deduct]p1: 10017 // The placeholder is replaced by the return type of the function selected 10018 // by overload resolution for class template deduction. 10019 QualType DeducedType = 10020 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 10021 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10022 diag::warn_cxx14_compat_class_template_argument_deduction) 10023 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 10024 10025 // Warn if CTAD was used on a type that does not have any user-defined 10026 // deduction guides. 10027 if (!HasAnyDeductionGuide) { 10028 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10029 diag::warn_ctad_maybe_unsupported) 10030 << TemplateName; 10031 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 10032 } 10033 10034 return DeducedType; 10035 } 10036