1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 
34 //===----------------------------------------------------------------------===//
35 // Sema Initialization Checking
36 //===----------------------------------------------------------------------===//
37 
38 /// Check whether T is compatible with a wide character type (wchar_t,
39 /// char16_t or char32_t).
40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41   if (Context.typesAreCompatible(Context.getWideCharType(), T))
42     return true;
43   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44     return Context.typesAreCompatible(Context.Char16Ty, T) ||
45            Context.typesAreCompatible(Context.Char32Ty, T);
46   }
47   return false;
48 }
49 
50 enum StringInitFailureKind {
51   SIF_None,
52   SIF_NarrowStringIntoWideChar,
53   SIF_WideStringIntoChar,
54   SIF_IncompatWideStringIntoWideChar,
55   SIF_UTF8StringIntoPlainChar,
56   SIF_PlainStringIntoUTF8Char,
57   SIF_Other
58 };
59 
60 /// Check whether the array of type AT can be initialized by the Init
61 /// expression by means of string initialization. Returns SIF_None if so,
62 /// otherwise returns a StringInitFailureKind that describes why the
63 /// initialization would not work.
64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65                                           ASTContext &Context) {
66   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67     return SIF_Other;
68 
69   // See if this is a string literal or @encode.
70   Init = Init->IgnoreParens();
71 
72   // Handle @encode, which is a narrow string.
73   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74     return SIF_None;
75 
76   // Otherwise we can only handle string literals.
77   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78   if (!SL)
79     return SIF_Other;
80 
81   const QualType ElemTy =
82       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83 
84   switch (SL->getKind()) {
85   case StringLiteral::UTF8:
86     // char8_t array can be initialized with a UTF-8 string.
87     if (ElemTy->isChar8Type())
88       return SIF_None;
89     LLVM_FALLTHROUGH;
90   case StringLiteral::Ascii:
91     // char array can be initialized with a narrow string.
92     // Only allow char x[] = "foo";  not char x[] = L"foo";
93     if (ElemTy->isCharType())
94       return (SL->getKind() == StringLiteral::UTF8 &&
95               Context.getLangOpts().Char8)
96                  ? SIF_UTF8StringIntoPlainChar
97                  : SIF_None;
98     if (ElemTy->isChar8Type())
99       return SIF_PlainStringIntoUTF8Char;
100     if (IsWideCharCompatible(ElemTy, Context))
101       return SIF_NarrowStringIntoWideChar;
102     return SIF_Other;
103   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104   // "An array with element type compatible with a qualified or unqualified
105   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106   // string literal with the corresponding encoding prefix (L, u, or U,
107   // respectively), optionally enclosed in braces.
108   case StringLiteral::UTF16:
109     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110       return SIF_None;
111     if (ElemTy->isCharType() || ElemTy->isChar8Type())
112       return SIF_WideStringIntoChar;
113     if (IsWideCharCompatible(ElemTy, Context))
114       return SIF_IncompatWideStringIntoWideChar;
115     return SIF_Other;
116   case StringLiteral::UTF32:
117     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118       return SIF_None;
119     if (ElemTy->isCharType() || ElemTy->isChar8Type())
120       return SIF_WideStringIntoChar;
121     if (IsWideCharCompatible(ElemTy, Context))
122       return SIF_IncompatWideStringIntoWideChar;
123     return SIF_Other;
124   case StringLiteral::Wide:
125     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126       return SIF_None;
127     if (ElemTy->isCharType() || ElemTy->isChar8Type())
128       return SIF_WideStringIntoChar;
129     if (IsWideCharCompatible(ElemTy, Context))
130       return SIF_IncompatWideStringIntoWideChar;
131     return SIF_Other;
132   }
133 
134   llvm_unreachable("missed a StringLiteral kind?");
135 }
136 
137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138                                           ASTContext &Context) {
139   const ArrayType *arrayType = Context.getAsArrayType(declType);
140   if (!arrayType)
141     return SIF_Other;
142   return IsStringInit(init, arrayType, Context);
143 }
144 
145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146   return ::IsStringInit(Init, AT, Context) == SIF_None;
147 }
148 
149 /// Update the type of a string literal, including any surrounding parentheses,
150 /// to match the type of the object which it is initializing.
151 static void updateStringLiteralType(Expr *E, QualType Ty) {
152   while (true) {
153     E->setType(Ty);
154     E->setValueKind(VK_RValue);
155     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156       break;
157     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158       E = PE->getSubExpr();
159     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160       assert(UO->getOpcode() == UO_Extension);
161       E = UO->getSubExpr();
162     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163       E = GSE->getResultExpr();
164     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165       E = CE->getChosenSubExpr();
166     } else {
167       llvm_unreachable("unexpected expr in string literal init");
168     }
169   }
170 }
171 
172 /// Fix a compound literal initializing an array so it's correctly marked
173 /// as an rvalue.
174 static void updateGNUCompoundLiteralRValue(Expr *E) {
175   while (true) {
176     E->setValueKind(VK_RValue);
177     if (isa<CompoundLiteralExpr>(E)) {
178       break;
179     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180       E = PE->getSubExpr();
181     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182       assert(UO->getOpcode() == UO_Extension);
183       E = UO->getSubExpr();
184     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185       E = GSE->getResultExpr();
186     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187       E = CE->getChosenSubExpr();
188     } else {
189       llvm_unreachable("unexpected expr in array compound literal init");
190     }
191   }
192 }
193 
194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195                             Sema &S) {
196   // Get the length of the string as parsed.
197   auto *ConstantArrayTy =
198       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200 
201   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202     // C99 6.7.8p14. We have an array of character type with unknown size
203     // being initialized to a string literal.
204     llvm::APInt ConstVal(32, StrLength);
205     // Return a new array type (C99 6.7.8p22).
206     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207                                            ConstVal, nullptr,
208                                            ArrayType::Normal, 0);
209     updateStringLiteralType(Str, DeclT);
210     return;
211   }
212 
213   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214 
215   // We have an array of character type with known size.  However,
216   // the size may be smaller or larger than the string we are initializing.
217   // FIXME: Avoid truncation for 64-bit length strings.
218   if (S.getLangOpts().CPlusPlus) {
219     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220       // For Pascal strings it's OK to strip off the terminating null character,
221       // so the example below is valid:
222       //
223       // unsigned char a[2] = "\pa";
224       if (SL->isPascal())
225         StrLength--;
226     }
227 
228     // [dcl.init.string]p2
229     if (StrLength > CAT->getSize().getZExtValue())
230       S.Diag(Str->getBeginLoc(),
231              diag::err_initializer_string_for_char_array_too_long)
232           << Str->getSourceRange();
233   } else {
234     // C99 6.7.8p14.
235     if (StrLength-1 > CAT->getSize().getZExtValue())
236       S.Diag(Str->getBeginLoc(),
237              diag::ext_initializer_string_for_char_array_too_long)
238           << Str->getSourceRange();
239   }
240 
241   // Set the type to the actual size that we are initializing.  If we have
242   // something like:
243   //   char x[1] = "foo";
244   // then this will set the string literal's type to char[1].
245   updateStringLiteralType(Str, DeclT);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Semantic checking for initializer lists.
250 //===----------------------------------------------------------------------===//
251 
252 namespace {
253 
254 /// Semantic checking for initializer lists.
255 ///
256 /// The InitListChecker class contains a set of routines that each
257 /// handle the initialization of a certain kind of entity, e.g.,
258 /// arrays, vectors, struct/union types, scalars, etc. The
259 /// InitListChecker itself performs a recursive walk of the subobject
260 /// structure of the type to be initialized, while stepping through
261 /// the initializer list one element at a time. The IList and Index
262 /// parameters to each of the Check* routines contain the active
263 /// (syntactic) initializer list and the index into that initializer
264 /// list that represents the current initializer. Each routine is
265 /// responsible for moving that Index forward as it consumes elements.
266 ///
267 /// Each Check* routine also has a StructuredList/StructuredIndex
268 /// arguments, which contains the current "structured" (semantic)
269 /// initializer list and the index into that initializer list where we
270 /// are copying initializers as we map them over to the semantic
271 /// list. Once we have completed our recursive walk of the subobject
272 /// structure, we will have constructed a full semantic initializer
273 /// list.
274 ///
275 /// C99 designators cause changes in the initializer list traversal,
276 /// because they make the initialization "jump" into a specific
277 /// subobject and then continue the initialization from that
278 /// point. CheckDesignatedInitializer() recursively steps into the
279 /// designated subobject and manages backing out the recursion to
280 /// initialize the subobjects after the one designated.
281 ///
282 /// If an initializer list contains any designators, we build a placeholder
283 /// structured list even in 'verify only' mode, so that we can track which
284 /// elements need 'empty' initializtion.
285 class InitListChecker {
286   Sema &SemaRef;
287   bool hadError = false;
288   bool VerifyOnly; // No diagnostics.
289   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290   bool InOverloadResolution;
291   InitListExpr *FullyStructuredList = nullptr;
292   NoInitExpr *DummyExpr = nullptr;
293 
294   NoInitExpr *getDummyInit() {
295     if (!DummyExpr)
296       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297     return DummyExpr;
298   }
299 
300   void CheckImplicitInitList(const InitializedEntity &Entity,
301                              InitListExpr *ParentIList, QualType T,
302                              unsigned &Index, InitListExpr *StructuredList,
303                              unsigned &StructuredIndex);
304   void CheckExplicitInitList(const InitializedEntity &Entity,
305                              InitListExpr *IList, QualType &T,
306                              InitListExpr *StructuredList,
307                              bool TopLevelObject = false);
308   void CheckListElementTypes(const InitializedEntity &Entity,
309                              InitListExpr *IList, QualType &DeclType,
310                              bool SubobjectIsDesignatorContext,
311                              unsigned &Index,
312                              InitListExpr *StructuredList,
313                              unsigned &StructuredIndex,
314                              bool TopLevelObject = false);
315   void CheckSubElementType(const InitializedEntity &Entity,
316                            InitListExpr *IList, QualType ElemType,
317                            unsigned &Index,
318                            InitListExpr *StructuredList,
319                            unsigned &StructuredIndex,
320                            bool DirectlyDesignated = false);
321   void CheckComplexType(const InitializedEntity &Entity,
322                         InitListExpr *IList, QualType DeclType,
323                         unsigned &Index,
324                         InitListExpr *StructuredList,
325                         unsigned &StructuredIndex);
326   void CheckScalarType(const InitializedEntity &Entity,
327                        InitListExpr *IList, QualType DeclType,
328                        unsigned &Index,
329                        InitListExpr *StructuredList,
330                        unsigned &StructuredIndex);
331   void CheckReferenceType(const InitializedEntity &Entity,
332                           InitListExpr *IList, QualType DeclType,
333                           unsigned &Index,
334                           InitListExpr *StructuredList,
335                           unsigned &StructuredIndex);
336   void CheckVectorType(const InitializedEntity &Entity,
337                        InitListExpr *IList, QualType DeclType, unsigned &Index,
338                        InitListExpr *StructuredList,
339                        unsigned &StructuredIndex);
340   void CheckStructUnionTypes(const InitializedEntity &Entity,
341                              InitListExpr *IList, QualType DeclType,
342                              CXXRecordDecl::base_class_range Bases,
343                              RecordDecl::field_iterator Field,
344                              bool SubobjectIsDesignatorContext, unsigned &Index,
345                              InitListExpr *StructuredList,
346                              unsigned &StructuredIndex,
347                              bool TopLevelObject = false);
348   void CheckArrayType(const InitializedEntity &Entity,
349                       InitListExpr *IList, QualType &DeclType,
350                       llvm::APSInt elementIndex,
351                       bool SubobjectIsDesignatorContext, unsigned &Index,
352                       InitListExpr *StructuredList,
353                       unsigned &StructuredIndex);
354   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355                                   InitListExpr *IList, DesignatedInitExpr *DIE,
356                                   unsigned DesigIdx,
357                                   QualType &CurrentObjectType,
358                                   RecordDecl::field_iterator *NextField,
359                                   llvm::APSInt *NextElementIndex,
360                                   unsigned &Index,
361                                   InitListExpr *StructuredList,
362                                   unsigned &StructuredIndex,
363                                   bool FinishSubobjectInit,
364                                   bool TopLevelObject);
365   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366                                            QualType CurrentObjectType,
367                                            InitListExpr *StructuredList,
368                                            unsigned StructuredIndex,
369                                            SourceRange InitRange,
370                                            bool IsFullyOverwritten = false);
371   void UpdateStructuredListElement(InitListExpr *StructuredList,
372                                    unsigned &StructuredIndex,
373                                    Expr *expr);
374   InitListExpr *createInitListExpr(QualType CurrentObjectType,
375                                    SourceRange InitRange,
376                                    unsigned ExpectedNumInits);
377   int numArrayElements(QualType DeclType);
378   int numStructUnionElements(QualType DeclType);
379 
380   ExprResult PerformEmptyInit(SourceLocation Loc,
381                               const InitializedEntity &Entity);
382 
383   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
384   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385                             bool FullyOverwritten = true) {
386     // Overriding an initializer via a designator is valid with C99 designated
387     // initializers, but ill-formed with C++20 designated initializers.
388     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389                           ? diag::ext_initializer_overrides
390                           : diag::warn_initializer_overrides;
391 
392     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393       // In overload resolution, we have to strictly enforce the rules, and so
394       // don't allow any overriding of prior initializers. This matters for a
395       // case such as:
396       //
397       //   union U { int a, b; };
398       //   struct S { int a, b; };
399       //   void f(U), f(S);
400       //
401       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402       // consistency, we disallow all overriding of prior initializers in
403       // overload resolution, not only overriding of union members.
404       hadError = true;
405     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406       // If we'll be keeping around the old initializer but overwriting part of
407       // the object it initialized, and that object is not trivially
408       // destructible, this can leak. Don't allow that, not even as an
409       // extension.
410       //
411       // FIXME: It might be reasonable to allow this in cases where the part of
412       // the initializer that we're overriding has trivial destruction.
413       DiagID = diag::err_initializer_overrides_destructed;
414     } else if (!OldInit->getSourceRange().isValid()) {
415       // We need to check on source range validity because the previous
416       // initializer does not have to be an explicit initializer. e.g.,
417       //
418       // struct P { int a, b; };
419       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420       //
421       // There is an overwrite taking place because the first braced initializer
422       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423       //
424       // Such overwrites are harmless, so we don't diagnose them. (Note that in
425       // C++, this cannot be reached unless we've already seen and diagnosed a
426       // different conformance issue, such as a mixture of designated and
427       // non-designated initializers or a multi-level designator.)
428       return;
429     }
430 
431     if (!VerifyOnly) {
432       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433           << NewInitRange << FullyOverwritten << OldInit->getType();
434       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436           << OldInit->getSourceRange();
437     }
438   }
439 
440   // Explanation on the "FillWithNoInit" mode:
441   //
442   // Assume we have the following definitions (Case#1):
443   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445   //
446   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448   //
449   // But if we have (Case#2):
450   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451   //
452   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454   //
455   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457   // initializers but with special "NoInitExpr" place holders, which tells the
458   // CodeGen not to generate any initializers for these parts.
459   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460                               const InitializedEntity &ParentEntity,
461                               InitListExpr *ILE, bool &RequiresSecondPass,
462                               bool FillWithNoInit);
463   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464                                const InitializedEntity &ParentEntity,
465                                InitListExpr *ILE, bool &RequiresSecondPass,
466                                bool FillWithNoInit = false);
467   void FillInEmptyInitializations(const InitializedEntity &Entity,
468                                   InitListExpr *ILE, bool &RequiresSecondPass,
469                                   InitListExpr *OuterILE, unsigned OuterIndex,
470                                   bool FillWithNoInit = false);
471   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472                               Expr *InitExpr, FieldDecl *Field,
473                               bool TopLevelObject);
474   void CheckEmptyInitializable(const InitializedEntity &Entity,
475                                SourceLocation Loc);
476 
477 public:
478   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480                   bool InOverloadResolution = false);
481   bool HadError() { return hadError; }
482 
483   // Retrieves the fully-structured initializer list used for
484   // semantic analysis and code generation.
485   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486 };
487 
488 } // end anonymous namespace
489 
490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491                                              const InitializedEntity &Entity) {
492   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493                                                             true);
494   MultiExprArg SubInit;
495   Expr *InitExpr;
496   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497 
498   // C++ [dcl.init.aggr]p7:
499   //   If there are fewer initializer-clauses in the list than there are
500   //   members in the aggregate, then each member not explicitly initialized
501   //   ...
502   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504   if (EmptyInitList) {
505     // C++1y / DR1070:
506     //   shall be initialized [...] from an empty initializer list.
507     //
508     // We apply the resolution of this DR to C++11 but not C++98, since C++98
509     // does not have useful semantics for initialization from an init list.
510     // We treat this as copy-initialization, because aggregate initialization
511     // always performs copy-initialization on its elements.
512     //
513     // Only do this if we're initializing a class type, to avoid filling in
514     // the initializer list where possible.
515     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516                    InitListExpr(SemaRef.Context, Loc, None, Loc);
517     InitExpr->setType(SemaRef.Context.VoidTy);
518     SubInit = InitExpr;
519     Kind = InitializationKind::CreateCopy(Loc, Loc);
520   } else {
521     // C++03:
522     //   shall be value-initialized.
523   }
524 
525   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526   // libstdc++4.6 marks the vector default constructor as explicit in
527   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528   // stlport does so too. Look for std::__debug for libstdc++, and for
529   // std:: for stlport.  This is effectively a compiler-side implementation of
530   // LWG2193.
531   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532           InitializationSequence::FK_ExplicitConstructor) {
533     OverloadCandidateSet::iterator Best;
534     OverloadingResult O =
535         InitSeq.getFailedCandidateSet()
536             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537     (void)O;
538     assert(O == OR_Success && "Inconsistent overload resolution");
539     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540     CXXRecordDecl *R = CtorDecl->getParent();
541 
542     if (CtorDecl->getMinRequiredArguments() == 0 &&
543         CtorDecl->isExplicit() && R->getDeclName() &&
544         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545       bool IsInStd = false;
546       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549           IsInStd = true;
550       }
551 
552       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553               .Cases("basic_string", "deque", "forward_list", true)
554               .Cases("list", "map", "multimap", "multiset", true)
555               .Cases("priority_queue", "queue", "set", "stack", true)
556               .Cases("unordered_map", "unordered_set", "vector", true)
557               .Default(false)) {
558         InitSeq.InitializeFrom(
559             SemaRef, Entity,
560             InitializationKind::CreateValue(Loc, Loc, Loc, true),
561             MultiExprArg(), /*TopLevelOfInitList=*/false,
562             TreatUnavailableAsInvalid);
563         // Emit a warning for this.  System header warnings aren't shown
564         // by default, but people working on system headers should see it.
565         if (!VerifyOnly) {
566           SemaRef.Diag(CtorDecl->getLocation(),
567                        diag::warn_invalid_initializer_from_system_header);
568           if (Entity.getKind() == InitializedEntity::EK_Member)
569             SemaRef.Diag(Entity.getDecl()->getLocation(),
570                          diag::note_used_in_initialization_here);
571           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573         }
574       }
575     }
576   }
577   if (!InitSeq) {
578     if (!VerifyOnly) {
579       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580       if (Entity.getKind() == InitializedEntity::EK_Member)
581         SemaRef.Diag(Entity.getDecl()->getLocation(),
582                      diag::note_in_omitted_aggregate_initializer)
583           << /*field*/1 << Entity.getDecl();
584       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585         bool IsTrailingArrayNewMember =
586             Entity.getParent() &&
587             Entity.getParent()->isVariableLengthArrayNew();
588         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590           << Entity.getElementIndex();
591       }
592     }
593     hadError = true;
594     return ExprError();
595   }
596 
597   return VerifyOnly ? ExprResult()
598                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599 }
600 
601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602                                               SourceLocation Loc) {
603   // If we're building a fully-structured list, we'll check this at the end
604   // once we know which elements are actually initialized. Otherwise, we know
605   // that there are no designators so we can just check now.
606   if (FullyStructuredList)
607     return;
608   PerformEmptyInit(Loc, Entity);
609 }
610 
611 void InitListChecker::FillInEmptyInitForBase(
612     unsigned Init, const CXXBaseSpecifier &Base,
613     const InitializedEntity &ParentEntity, InitListExpr *ILE,
614     bool &RequiresSecondPass, bool FillWithNoInit) {
615   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616       SemaRef.Context, &Base, false, &ParentEntity);
617 
618   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619     ExprResult BaseInit = FillWithNoInit
620                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
621                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622     if (BaseInit.isInvalid()) {
623       hadError = true;
624       return;
625     }
626 
627     if (!VerifyOnly) {
628       assert(Init < ILE->getNumInits() && "should have been expanded");
629       ILE->setInit(Init, BaseInit.getAs<Expr>());
630     }
631   } else if (InitListExpr *InnerILE =
632                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634                                ILE, Init, FillWithNoInit);
635   } else if (DesignatedInitUpdateExpr *InnerDIUE =
636                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638                                RequiresSecondPass, ILE, Init,
639                                /*FillWithNoInit =*/true);
640   }
641 }
642 
643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644                                         const InitializedEntity &ParentEntity,
645                                               InitListExpr *ILE,
646                                               bool &RequiresSecondPass,
647                                               bool FillWithNoInit) {
648   SourceLocation Loc = ILE->getEndLoc();
649   unsigned NumInits = ILE->getNumInits();
650   InitializedEntity MemberEntity
651     = InitializedEntity::InitializeMember(Field, &ParentEntity);
652 
653   if (Init >= NumInits || !ILE->getInit(Init)) {
654     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655       if (!RType->getDecl()->isUnion())
656         assert((Init < NumInits || VerifyOnly) &&
657                "This ILE should have been expanded");
658 
659     if (FillWithNoInit) {
660       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
661       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662       if (Init < NumInits)
663         ILE->setInit(Init, Filler);
664       else
665         ILE->updateInit(SemaRef.Context, Init, Filler);
666       return;
667     }
668     // C++1y [dcl.init.aggr]p7:
669     //   If there are fewer initializer-clauses in the list than there are
670     //   members in the aggregate, then each member not explicitly initialized
671     //   shall be initialized from its brace-or-equal-initializer [...]
672     if (Field->hasInClassInitializer()) {
673       if (VerifyOnly)
674         return;
675 
676       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677       if (DIE.isInvalid()) {
678         hadError = true;
679         return;
680       }
681       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682       if (Init < NumInits)
683         ILE->setInit(Init, DIE.get());
684       else {
685         ILE->updateInit(SemaRef.Context, Init, DIE.get());
686         RequiresSecondPass = true;
687       }
688       return;
689     }
690 
691     if (Field->getType()->isReferenceType()) {
692       if (!VerifyOnly) {
693         // C++ [dcl.init.aggr]p9:
694         //   If an incomplete or empty initializer-list leaves a
695         //   member of reference type uninitialized, the program is
696         //   ill-formed.
697         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698           << Field->getType()
699           << ILE->getSyntacticForm()->getSourceRange();
700         SemaRef.Diag(Field->getLocation(),
701                      diag::note_uninit_reference_member);
702       }
703       hadError = true;
704       return;
705     }
706 
707     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708     if (MemberInit.isInvalid()) {
709       hadError = true;
710       return;
711     }
712 
713     if (hadError || VerifyOnly) {
714       // Do nothing
715     } else if (Init < NumInits) {
716       ILE->setInit(Init, MemberInit.getAs<Expr>());
717     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718       // Empty initialization requires a constructor call, so
719       // extend the initializer list to include the constructor
720       // call and make a note that we'll need to take another pass
721       // through the initializer list.
722       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723       RequiresSecondPass = true;
724     }
725   } else if (InitListExpr *InnerILE
726                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727     FillInEmptyInitializations(MemberEntity, InnerILE,
728                                RequiresSecondPass, ILE, Init, FillWithNoInit);
729   } else if (DesignatedInitUpdateExpr *InnerDIUE =
730                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732                                RequiresSecondPass, ILE, Init,
733                                /*FillWithNoInit =*/true);
734   }
735 }
736 
737 /// Recursively replaces NULL values within the given initializer list
738 /// with expressions that perform value-initialization of the
739 /// appropriate type, and finish off the InitListExpr formation.
740 void
741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742                                             InitListExpr *ILE,
743                                             bool &RequiresSecondPass,
744                                             InitListExpr *OuterILE,
745                                             unsigned OuterIndex,
746                                             bool FillWithNoInit) {
747   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
748          "Should not have void type");
749 
750   // We don't need to do any checks when just filling NoInitExprs; that can't
751   // fail.
752   if (FillWithNoInit && VerifyOnly)
753     return;
754 
755   // If this is a nested initializer list, we might have changed its contents
756   // (and therefore some of its properties, such as instantiation-dependence)
757   // while filling it in. Inform the outer initializer list so that its state
758   // can be updated to match.
759   // FIXME: We should fully build the inner initializers before constructing
760   // the outer InitListExpr instead of mutating AST nodes after they have
761   // been used as subexpressions of other nodes.
762   struct UpdateOuterILEWithUpdatedInit {
763     InitListExpr *Outer;
764     unsigned OuterIndex;
765     ~UpdateOuterILEWithUpdatedInit() {
766       if (Outer)
767         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768     }
769   } UpdateOuterRAII = {OuterILE, OuterIndex};
770 
771   // A transparent ILE is not performing aggregate initialization and should
772   // not be filled in.
773   if (ILE->isTransparent())
774     return;
775 
776   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777     const RecordDecl *RDecl = RType->getDecl();
778     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
781     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783       for (auto *Field : RDecl->fields()) {
784         if (Field->hasInClassInitializer()) {
785           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786                                   FillWithNoInit);
787           break;
788         }
789       }
790     } else {
791       // The fields beyond ILE->getNumInits() are default initialized, so in
792       // order to leave them uninitialized, the ILE is expanded and the extra
793       // fields are then filled with NoInitExpr.
794       unsigned NumElems = numStructUnionElements(ILE->getType());
795       if (RDecl->hasFlexibleArrayMember())
796         ++NumElems;
797       if (!VerifyOnly && ILE->getNumInits() < NumElems)
798         ILE->resizeInits(SemaRef.Context, NumElems);
799 
800       unsigned Init = 0;
801 
802       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803         for (auto &Base : CXXRD->bases()) {
804           if (hadError)
805             return;
806 
807           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808                                  FillWithNoInit);
809           ++Init;
810         }
811       }
812 
813       for (auto *Field : RDecl->fields()) {
814         if (Field->isUnnamedBitfield())
815           continue;
816 
817         if (hadError)
818           return;
819 
820         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821                                 FillWithNoInit);
822         if (hadError)
823           return;
824 
825         ++Init;
826 
827         // Only look at the first initialization of a union.
828         if (RDecl->isUnion())
829           break;
830       }
831     }
832 
833     return;
834   }
835 
836   QualType ElementType;
837 
838   InitializedEntity ElementEntity = Entity;
839   unsigned NumInits = ILE->getNumInits();
840   unsigned NumElements = NumInits;
841   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842     ElementType = AType->getElementType();
843     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844       NumElements = CAType->getSize().getZExtValue();
845     // For an array new with an unknown bound, ask for one additional element
846     // in order to populate the array filler.
847     if (Entity.isVariableLengthArrayNew())
848       ++NumElements;
849     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850                                                          0, Entity);
851   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852     ElementType = VType->getElementType();
853     NumElements = VType->getNumElements();
854     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855                                                          0, Entity);
856   } else
857     ElementType = ILE->getType();
858 
859   bool SkipEmptyInitChecks = false;
860   for (unsigned Init = 0; Init != NumElements; ++Init) {
861     if (hadError)
862       return;
863 
864     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866       ElementEntity.setElementIndex(Init);
867 
868     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869       return;
870 
871     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873       ILE->setInit(Init, ILE->getArrayFiller());
874     else if (!InitExpr && !ILE->hasArrayFiller()) {
875       // In VerifyOnly mode, there's no point performing empty initialization
876       // more than once.
877       if (SkipEmptyInitChecks)
878         continue;
879 
880       Expr *Filler = nullptr;
881 
882       if (FillWithNoInit)
883         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884       else {
885         ExprResult ElementInit =
886             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887         if (ElementInit.isInvalid()) {
888           hadError = true;
889           return;
890         }
891 
892         Filler = ElementInit.getAs<Expr>();
893       }
894 
895       if (hadError) {
896         // Do nothing
897       } else if (VerifyOnly) {
898         SkipEmptyInitChecks = true;
899       } else if (Init < NumInits) {
900         // For arrays, just set the expression used for value-initialization
901         // of the "holes" in the array.
902         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903           ILE->setArrayFiller(Filler);
904         else
905           ILE->setInit(Init, Filler);
906       } else {
907         // For arrays, just set the expression used for value-initialization
908         // of the rest of elements and exit.
909         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910           ILE->setArrayFiller(Filler);
911           return;
912         }
913 
914         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915           // Empty initialization requires a constructor call, so
916           // extend the initializer list to include the constructor
917           // call and make a note that we'll need to take another pass
918           // through the initializer list.
919           ILE->updateInit(SemaRef.Context, Init, Filler);
920           RequiresSecondPass = true;
921         }
922       }
923     } else if (InitListExpr *InnerILE
924                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926                                  ILE, Init, FillWithNoInit);
927     } else if (DesignatedInitUpdateExpr *InnerDIUE =
928                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930                                  RequiresSecondPass, ILE, Init,
931                                  /*FillWithNoInit =*/true);
932     }
933   }
934 }
935 
936 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937   for (const Stmt *Init : *IL)
938     if (Init && isa<DesignatedInitExpr>(Init))
939       return true;
940   return false;
941 }
942 
943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
945                                  bool TreatUnavailableAsInvalid,
946                                  bool InOverloadResolution)
947     : SemaRef(S), VerifyOnly(VerifyOnly),
948       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949       InOverloadResolution(InOverloadResolution) {
950   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951     FullyStructuredList =
952         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953 
954     // FIXME: Check that IL isn't already the semantic form of some other
955     // InitListExpr. If it is, we'd create a broken AST.
956     if (!VerifyOnly)
957       FullyStructuredList->setSyntacticForm(IL);
958   }
959 
960   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961                         /*TopLevelObject=*/true);
962 
963   if (!hadError && FullyStructuredList) {
964     bool RequiresSecondPass = false;
965     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967     if (RequiresSecondPass && !hadError)
968       FillInEmptyInitializations(Entity, FullyStructuredList,
969                                  RequiresSecondPass, nullptr, 0);
970   }
971   if (hadError && FullyStructuredList)
972     FullyStructuredList->markError();
973 }
974 
975 int InitListChecker::numArrayElements(QualType DeclType) {
976   // FIXME: use a proper constant
977   int maxElements = 0x7FFFFFFF;
978   if (const ConstantArrayType *CAT =
979         SemaRef.Context.getAsConstantArrayType(DeclType)) {
980     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981   }
982   return maxElements;
983 }
984 
985 int InitListChecker::numStructUnionElements(QualType DeclType) {
986   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987   int InitializableMembers = 0;
988   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989     InitializableMembers += CXXRD->getNumBases();
990   for (const auto *Field : structDecl->fields())
991     if (!Field->isUnnamedBitfield())
992       ++InitializableMembers;
993 
994   if (structDecl->isUnion())
995     return std::min(InitializableMembers, 1);
996   return InitializableMembers - structDecl->hasFlexibleArrayMember();
997 }
998 
999 /// Determine whether Entity is an entity for which it is idiomatic to elide
1000 /// the braces in aggregate initialization.
1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002   // Recursive initialization of the one and only field within an aggregate
1003   // class is considered idiomatic. This case arises in particular for
1004   // initialization of std::array, where the C++ standard suggests the idiom of
1005   //
1006   //   std::array<T, N> arr = {1, 2, 3};
1007   //
1008   // (where std::array is an aggregate struct containing a single array field.
1009 
1010   // FIXME: Should aggregate initialization of a struct with a single
1011   // base class and no members also suppress the warning?
1012   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
1013     return false;
1014 
1015   auto *ParentRD =
1016       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
1018     if (CXXRD->getNumBases())
1019       return false;
1020 
1021   auto FieldIt = ParentRD->field_begin();
1022   assert(FieldIt != ParentRD->field_end() &&
1023          "no fields but have initializer for member?");
1024   return ++FieldIt == ParentRD->field_end();
1025 }
1026 
1027 /// Check whether the range of the initializer \p ParentIList from element
1028 /// \p Index onwards can be used to initialize an object of type \p T. Update
1029 /// \p Index to indicate how many elements of the list were consumed.
1030 ///
1031 /// This also fills in \p StructuredList, from element \p StructuredIndex
1032 /// onwards, with the fully-braced, desugared form of the initialization.
1033 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1034                                             InitListExpr *ParentIList,
1035                                             QualType T, unsigned &Index,
1036                                             InitListExpr *StructuredList,
1037                                             unsigned &StructuredIndex) {
1038   int maxElements = 0;
1039 
1040   if (T->isArrayType())
1041     maxElements = numArrayElements(T);
1042   else if (T->isRecordType())
1043     maxElements = numStructUnionElements(T);
1044   else if (T->isVectorType())
1045     maxElements = T->castAs<VectorType>()->getNumElements();
1046   else
1047     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1048 
1049   if (maxElements == 0) {
1050     if (!VerifyOnly)
1051       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1052                    diag::err_implicit_empty_initializer);
1053     ++Index;
1054     hadError = true;
1055     return;
1056   }
1057 
1058   // Build a structured initializer list corresponding to this subobject.
1059   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1060       ParentIList, Index, T, StructuredList, StructuredIndex,
1061       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1062                   ParentIList->getSourceRange().getEnd()));
1063   unsigned StructuredSubobjectInitIndex = 0;
1064 
1065   // Check the element types and build the structural subobject.
1066   unsigned StartIndex = Index;
1067   CheckListElementTypes(Entity, ParentIList, T,
1068                         /*SubobjectIsDesignatorContext=*/false, Index,
1069                         StructuredSubobjectInitList,
1070                         StructuredSubobjectInitIndex);
1071 
1072   if (StructuredSubobjectInitList) {
1073     StructuredSubobjectInitList->setType(T);
1074 
1075     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1076     // Update the structured sub-object initializer so that it's ending
1077     // range corresponds with the end of the last initializer it used.
1078     if (EndIndex < ParentIList->getNumInits() &&
1079         ParentIList->getInit(EndIndex)) {
1080       SourceLocation EndLoc
1081         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1082       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1083     }
1084 
1085     // Complain about missing braces.
1086     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1087         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1088         !isIdiomaticBraceElisionEntity(Entity)) {
1089       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1090                    diag::warn_missing_braces)
1091           << StructuredSubobjectInitList->getSourceRange()
1092           << FixItHint::CreateInsertion(
1093                  StructuredSubobjectInitList->getBeginLoc(), "{")
1094           << FixItHint::CreateInsertion(
1095                  SemaRef.getLocForEndOfToken(
1096                      StructuredSubobjectInitList->getEndLoc()),
1097                  "}");
1098     }
1099 
1100     // Warn if this type won't be an aggregate in future versions of C++.
1101     auto *CXXRD = T->getAsCXXRecordDecl();
1102     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1103       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1104                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1105           << StructuredSubobjectInitList->getSourceRange() << T;
1106     }
1107   }
1108 }
1109 
1110 /// Warn that \p Entity was of scalar type and was initialized by a
1111 /// single-element braced initializer list.
1112 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1113                                  SourceRange Braces) {
1114   // Don't warn during template instantiation. If the initialization was
1115   // non-dependent, we warned during the initial parse; otherwise, the
1116   // type might not be scalar in some uses of the template.
1117   if (S.inTemplateInstantiation())
1118     return;
1119 
1120   unsigned DiagID = 0;
1121 
1122   switch (Entity.getKind()) {
1123   case InitializedEntity::EK_VectorElement:
1124   case InitializedEntity::EK_ComplexElement:
1125   case InitializedEntity::EK_ArrayElement:
1126   case InitializedEntity::EK_Parameter:
1127   case InitializedEntity::EK_Parameter_CF_Audited:
1128   case InitializedEntity::EK_TemplateParameter:
1129   case InitializedEntity::EK_Result:
1130     // Extra braces here are suspicious.
1131     DiagID = diag::warn_braces_around_init;
1132     break;
1133 
1134   case InitializedEntity::EK_Member:
1135     // Warn on aggregate initialization but not on ctor init list or
1136     // default member initializer.
1137     if (Entity.getParent())
1138       DiagID = diag::warn_braces_around_init;
1139     break;
1140 
1141   case InitializedEntity::EK_Variable:
1142   case InitializedEntity::EK_LambdaCapture:
1143     // No warning, might be direct-list-initialization.
1144     // FIXME: Should we warn for copy-list-initialization in these cases?
1145     break;
1146 
1147   case InitializedEntity::EK_New:
1148   case InitializedEntity::EK_Temporary:
1149   case InitializedEntity::EK_CompoundLiteralInit:
1150     // No warning, braces are part of the syntax of the underlying construct.
1151     break;
1152 
1153   case InitializedEntity::EK_RelatedResult:
1154     // No warning, we already warned when initializing the result.
1155     break;
1156 
1157   case InitializedEntity::EK_Exception:
1158   case InitializedEntity::EK_Base:
1159   case InitializedEntity::EK_Delegating:
1160   case InitializedEntity::EK_BlockElement:
1161   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1162   case InitializedEntity::EK_Binding:
1163   case InitializedEntity::EK_StmtExprResult:
1164     llvm_unreachable("unexpected braced scalar init");
1165   }
1166 
1167   if (DiagID) {
1168     S.Diag(Braces.getBegin(), DiagID)
1169         << Entity.getType()->isSizelessBuiltinType() << Braces
1170         << FixItHint::CreateRemoval(Braces.getBegin())
1171         << FixItHint::CreateRemoval(Braces.getEnd());
1172   }
1173 }
1174 
1175 /// Check whether the initializer \p IList (that was written with explicit
1176 /// braces) can be used to initialize an object of type \p T.
1177 ///
1178 /// This also fills in \p StructuredList with the fully-braced, desugared
1179 /// form of the initialization.
1180 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1181                                             InitListExpr *IList, QualType &T,
1182                                             InitListExpr *StructuredList,
1183                                             bool TopLevelObject) {
1184   unsigned Index = 0, StructuredIndex = 0;
1185   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1186                         Index, StructuredList, StructuredIndex, TopLevelObject);
1187   if (StructuredList) {
1188     QualType ExprTy = T;
1189     if (!ExprTy->isArrayType())
1190       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1191     if (!VerifyOnly)
1192       IList->setType(ExprTy);
1193     StructuredList->setType(ExprTy);
1194   }
1195   if (hadError)
1196     return;
1197 
1198   // Don't complain for incomplete types, since we'll get an error elsewhere.
1199   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1200     // We have leftover initializers
1201     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1202           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1203     hadError = ExtraInitsIsError;
1204     if (VerifyOnly) {
1205       return;
1206     } else if (StructuredIndex == 1 &&
1207                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1208                    SIF_None) {
1209       unsigned DK =
1210           ExtraInitsIsError
1211               ? diag::err_excess_initializers_in_char_array_initializer
1212               : diag::ext_excess_initializers_in_char_array_initializer;
1213       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1214           << IList->getInit(Index)->getSourceRange();
1215     } else if (T->isSizelessBuiltinType()) {
1216       unsigned DK = ExtraInitsIsError
1217                         ? diag::err_excess_initializers_for_sizeless_type
1218                         : diag::ext_excess_initializers_for_sizeless_type;
1219       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1220           << T << IList->getInit(Index)->getSourceRange();
1221     } else {
1222       int initKind = T->isArrayType() ? 0 :
1223                      T->isVectorType() ? 1 :
1224                      T->isScalarType() ? 2 :
1225                      T->isUnionType() ? 3 :
1226                      4;
1227 
1228       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1229                                       : diag::ext_excess_initializers;
1230       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1231           << initKind << IList->getInit(Index)->getSourceRange();
1232     }
1233   }
1234 
1235   if (!VerifyOnly) {
1236     if (T->isScalarType() && IList->getNumInits() == 1 &&
1237         !isa<InitListExpr>(IList->getInit(0)))
1238       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1239 
1240     // Warn if this is a class type that won't be an aggregate in future
1241     // versions of C++.
1242     auto *CXXRD = T->getAsCXXRecordDecl();
1243     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1244       // Don't warn if there's an equivalent default constructor that would be
1245       // used instead.
1246       bool HasEquivCtor = false;
1247       if (IList->getNumInits() == 0) {
1248         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1249         HasEquivCtor = CD && !CD->isDeleted();
1250       }
1251 
1252       if (!HasEquivCtor) {
1253         SemaRef.Diag(IList->getBeginLoc(),
1254                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1255             << IList->getSourceRange() << T;
1256       }
1257     }
1258   }
1259 }
1260 
1261 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1262                                             InitListExpr *IList,
1263                                             QualType &DeclType,
1264                                             bool SubobjectIsDesignatorContext,
1265                                             unsigned &Index,
1266                                             InitListExpr *StructuredList,
1267                                             unsigned &StructuredIndex,
1268                                             bool TopLevelObject) {
1269   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1270     // Explicitly braced initializer for complex type can be real+imaginary
1271     // parts.
1272     CheckComplexType(Entity, IList, DeclType, Index,
1273                      StructuredList, StructuredIndex);
1274   } else if (DeclType->isScalarType()) {
1275     CheckScalarType(Entity, IList, DeclType, Index,
1276                     StructuredList, StructuredIndex);
1277   } else if (DeclType->isVectorType()) {
1278     CheckVectorType(Entity, IList, DeclType, Index,
1279                     StructuredList, StructuredIndex);
1280   } else if (DeclType->isRecordType()) {
1281     assert(DeclType->isAggregateType() &&
1282            "non-aggregate records should be handed in CheckSubElementType");
1283     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1284     auto Bases =
1285         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1286                                         CXXRecordDecl::base_class_iterator());
1287     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1288       Bases = CXXRD->bases();
1289     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1290                           SubobjectIsDesignatorContext, Index, StructuredList,
1291                           StructuredIndex, TopLevelObject);
1292   } else if (DeclType->isArrayType()) {
1293     llvm::APSInt Zero(
1294                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1295                     false);
1296     CheckArrayType(Entity, IList, DeclType, Zero,
1297                    SubobjectIsDesignatorContext, Index,
1298                    StructuredList, StructuredIndex);
1299   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1300     // This type is invalid, issue a diagnostic.
1301     ++Index;
1302     if (!VerifyOnly)
1303       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1304           << DeclType;
1305     hadError = true;
1306   } else if (DeclType->isReferenceType()) {
1307     CheckReferenceType(Entity, IList, DeclType, Index,
1308                        StructuredList, StructuredIndex);
1309   } else if (DeclType->isObjCObjectType()) {
1310     if (!VerifyOnly)
1311       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1312     hadError = true;
1313   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1314              DeclType->isSizelessBuiltinType()) {
1315     // Checks for scalar type are sufficient for these types too.
1316     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1317                     StructuredIndex);
1318   } else {
1319     if (!VerifyOnly)
1320       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1321           << DeclType;
1322     hadError = true;
1323   }
1324 }
1325 
1326 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1327                                           InitListExpr *IList,
1328                                           QualType ElemType,
1329                                           unsigned &Index,
1330                                           InitListExpr *StructuredList,
1331                                           unsigned &StructuredIndex,
1332                                           bool DirectlyDesignated) {
1333   Expr *expr = IList->getInit(Index);
1334 
1335   if (ElemType->isReferenceType())
1336     return CheckReferenceType(Entity, IList, ElemType, Index,
1337                               StructuredList, StructuredIndex);
1338 
1339   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1340     if (SubInitList->getNumInits() == 1 &&
1341         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1342         SIF_None) {
1343       // FIXME: It would be more faithful and no less correct to include an
1344       // InitListExpr in the semantic form of the initializer list in this case.
1345       expr = SubInitList->getInit(0);
1346     }
1347     // Nested aggregate initialization and C++ initialization are handled later.
1348   } else if (isa<ImplicitValueInitExpr>(expr)) {
1349     // This happens during template instantiation when we see an InitListExpr
1350     // that we've already checked once.
1351     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1352            "found implicit initialization for the wrong type");
1353     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1354     ++Index;
1355     return;
1356   }
1357 
1358   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1359     // C++ [dcl.init.aggr]p2:
1360     //   Each member is copy-initialized from the corresponding
1361     //   initializer-clause.
1362 
1363     // FIXME: Better EqualLoc?
1364     InitializationKind Kind =
1365         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1366 
1367     // Vector elements can be initialized from other vectors in which case
1368     // we need initialization entity with a type of a vector (and not a vector
1369     // element!) initializing multiple vector elements.
1370     auto TmpEntity =
1371         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1372             ? InitializedEntity::InitializeTemporary(ElemType)
1373             : Entity;
1374 
1375     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1376                                /*TopLevelOfInitList*/ true);
1377 
1378     // C++14 [dcl.init.aggr]p13:
1379     //   If the assignment-expression can initialize a member, the member is
1380     //   initialized. Otherwise [...] brace elision is assumed
1381     //
1382     // Brace elision is never performed if the element is not an
1383     // assignment-expression.
1384     if (Seq || isa<InitListExpr>(expr)) {
1385       if (!VerifyOnly) {
1386         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1387         if (Result.isInvalid())
1388           hadError = true;
1389 
1390         UpdateStructuredListElement(StructuredList, StructuredIndex,
1391                                     Result.getAs<Expr>());
1392       } else if (!Seq) {
1393         hadError = true;
1394       } else if (StructuredList) {
1395         UpdateStructuredListElement(StructuredList, StructuredIndex,
1396                                     getDummyInit());
1397       }
1398       ++Index;
1399       return;
1400     }
1401 
1402     // Fall through for subaggregate initialization
1403   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1404     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1405     return CheckScalarType(Entity, IList, ElemType, Index,
1406                            StructuredList, StructuredIndex);
1407   } else if (const ArrayType *arrayType =
1408                  SemaRef.Context.getAsArrayType(ElemType)) {
1409     // arrayType can be incomplete if we're initializing a flexible
1410     // array member.  There's nothing we can do with the completed
1411     // type here, though.
1412 
1413     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1414       // FIXME: Should we do this checking in verify-only mode?
1415       if (!VerifyOnly)
1416         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1417       if (StructuredList)
1418         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1419       ++Index;
1420       return;
1421     }
1422 
1423     // Fall through for subaggregate initialization.
1424 
1425   } else {
1426     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1427             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1428 
1429     // C99 6.7.8p13:
1430     //
1431     //   The initializer for a structure or union object that has
1432     //   automatic storage duration shall be either an initializer
1433     //   list as described below, or a single expression that has
1434     //   compatible structure or union type. In the latter case, the
1435     //   initial value of the object, including unnamed members, is
1436     //   that of the expression.
1437     ExprResult ExprRes = expr;
1438     if (SemaRef.CheckSingleAssignmentConstraints(
1439             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1440       if (ExprRes.isInvalid())
1441         hadError = true;
1442       else {
1443         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1444         if (ExprRes.isInvalid())
1445           hadError = true;
1446       }
1447       UpdateStructuredListElement(StructuredList, StructuredIndex,
1448                                   ExprRes.getAs<Expr>());
1449       ++Index;
1450       return;
1451     }
1452     ExprRes.get();
1453     // Fall through for subaggregate initialization
1454   }
1455 
1456   // C++ [dcl.init.aggr]p12:
1457   //
1458   //   [...] Otherwise, if the member is itself a non-empty
1459   //   subaggregate, brace elision is assumed and the initializer is
1460   //   considered for the initialization of the first member of
1461   //   the subaggregate.
1462   // OpenCL vector initializer is handled elsewhere.
1463   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1464       ElemType->isAggregateType()) {
1465     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1466                           StructuredIndex);
1467     ++StructuredIndex;
1468 
1469     // In C++20, brace elision is not permitted for a designated initializer.
1470     if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1471       if (InOverloadResolution)
1472         hadError = true;
1473       if (!VerifyOnly) {
1474         SemaRef.Diag(expr->getBeginLoc(),
1475                      diag::ext_designated_init_brace_elision)
1476             << expr->getSourceRange()
1477             << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1478             << FixItHint::CreateInsertion(
1479                    SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1480       }
1481     }
1482   } else {
1483     if (!VerifyOnly) {
1484       // We cannot initialize this element, so let PerformCopyInitialization
1485       // produce the appropriate diagnostic. We already checked that this
1486       // initialization will fail.
1487       ExprResult Copy =
1488           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1489                                             /*TopLevelOfInitList=*/true);
1490       (void)Copy;
1491       assert(Copy.isInvalid() &&
1492              "expected non-aggregate initialization to fail");
1493     }
1494     hadError = true;
1495     ++Index;
1496     ++StructuredIndex;
1497   }
1498 }
1499 
1500 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1501                                        InitListExpr *IList, QualType DeclType,
1502                                        unsigned &Index,
1503                                        InitListExpr *StructuredList,
1504                                        unsigned &StructuredIndex) {
1505   assert(Index == 0 && "Index in explicit init list must be zero");
1506 
1507   // As an extension, clang supports complex initializers, which initialize
1508   // a complex number component-wise.  When an explicit initializer list for
1509   // a complex number contains two two initializers, this extension kicks in:
1510   // it exepcts the initializer list to contain two elements convertible to
1511   // the element type of the complex type. The first element initializes
1512   // the real part, and the second element intitializes the imaginary part.
1513 
1514   if (IList->getNumInits() != 2)
1515     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1516                            StructuredIndex);
1517 
1518   // This is an extension in C.  (The builtin _Complex type does not exist
1519   // in the C++ standard.)
1520   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1521     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1522         << IList->getSourceRange();
1523 
1524   // Initialize the complex number.
1525   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1526   InitializedEntity ElementEntity =
1527     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1528 
1529   for (unsigned i = 0; i < 2; ++i) {
1530     ElementEntity.setElementIndex(Index);
1531     CheckSubElementType(ElementEntity, IList, elementType, Index,
1532                         StructuredList, StructuredIndex);
1533   }
1534 }
1535 
1536 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1537                                       InitListExpr *IList, QualType DeclType,
1538                                       unsigned &Index,
1539                                       InitListExpr *StructuredList,
1540                                       unsigned &StructuredIndex) {
1541   if (Index >= IList->getNumInits()) {
1542     if (!VerifyOnly) {
1543       if (DeclType->isSizelessBuiltinType())
1544         SemaRef.Diag(IList->getBeginLoc(),
1545                      SemaRef.getLangOpts().CPlusPlus11
1546                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1547                          : diag::err_empty_sizeless_initializer)
1548             << DeclType << IList->getSourceRange();
1549       else
1550         SemaRef.Diag(IList->getBeginLoc(),
1551                      SemaRef.getLangOpts().CPlusPlus11
1552                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1553                          : diag::err_empty_scalar_initializer)
1554             << IList->getSourceRange();
1555     }
1556     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1557     ++Index;
1558     ++StructuredIndex;
1559     return;
1560   }
1561 
1562   Expr *expr = IList->getInit(Index);
1563   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1564     // FIXME: This is invalid, and accepting it causes overload resolution
1565     // to pick the wrong overload in some corner cases.
1566     if (!VerifyOnly)
1567       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1568           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1569 
1570     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1571                     StructuredIndex);
1572     return;
1573   } else if (isa<DesignatedInitExpr>(expr)) {
1574     if (!VerifyOnly)
1575       SemaRef.Diag(expr->getBeginLoc(),
1576                    diag::err_designator_for_scalar_or_sizeless_init)
1577           << DeclType->isSizelessBuiltinType() << DeclType
1578           << expr->getSourceRange();
1579     hadError = true;
1580     ++Index;
1581     ++StructuredIndex;
1582     return;
1583   }
1584 
1585   ExprResult Result;
1586   if (VerifyOnly) {
1587     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1588       Result = getDummyInit();
1589     else
1590       Result = ExprError();
1591   } else {
1592     Result =
1593         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1594                                           /*TopLevelOfInitList=*/true);
1595   }
1596 
1597   Expr *ResultExpr = nullptr;
1598 
1599   if (Result.isInvalid())
1600     hadError = true; // types weren't compatible.
1601   else {
1602     ResultExpr = Result.getAs<Expr>();
1603 
1604     if (ResultExpr != expr && !VerifyOnly) {
1605       // The type was promoted, update initializer list.
1606       // FIXME: Why are we updating the syntactic init list?
1607       IList->setInit(Index, ResultExpr);
1608     }
1609   }
1610   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1611   ++Index;
1612 }
1613 
1614 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1615                                          InitListExpr *IList, QualType DeclType,
1616                                          unsigned &Index,
1617                                          InitListExpr *StructuredList,
1618                                          unsigned &StructuredIndex) {
1619   if (Index >= IList->getNumInits()) {
1620     // FIXME: It would be wonderful if we could point at the actual member. In
1621     // general, it would be useful to pass location information down the stack,
1622     // so that we know the location (or decl) of the "current object" being
1623     // initialized.
1624     if (!VerifyOnly)
1625       SemaRef.Diag(IList->getBeginLoc(),
1626                    diag::err_init_reference_member_uninitialized)
1627           << DeclType << IList->getSourceRange();
1628     hadError = true;
1629     ++Index;
1630     ++StructuredIndex;
1631     return;
1632   }
1633 
1634   Expr *expr = IList->getInit(Index);
1635   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1636     if (!VerifyOnly)
1637       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1638           << DeclType << IList->getSourceRange();
1639     hadError = true;
1640     ++Index;
1641     ++StructuredIndex;
1642     return;
1643   }
1644 
1645   ExprResult Result;
1646   if (VerifyOnly) {
1647     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1648       Result = getDummyInit();
1649     else
1650       Result = ExprError();
1651   } else {
1652     Result =
1653         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1654                                           /*TopLevelOfInitList=*/true);
1655   }
1656 
1657   if (Result.isInvalid())
1658     hadError = true;
1659 
1660   expr = Result.getAs<Expr>();
1661   // FIXME: Why are we updating the syntactic init list?
1662   if (!VerifyOnly && expr)
1663     IList->setInit(Index, expr);
1664 
1665   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1666   ++Index;
1667 }
1668 
1669 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1670                                       InitListExpr *IList, QualType DeclType,
1671                                       unsigned &Index,
1672                                       InitListExpr *StructuredList,
1673                                       unsigned &StructuredIndex) {
1674   const VectorType *VT = DeclType->castAs<VectorType>();
1675   unsigned maxElements = VT->getNumElements();
1676   unsigned numEltsInit = 0;
1677   QualType elementType = VT->getElementType();
1678 
1679   if (Index >= IList->getNumInits()) {
1680     // Make sure the element type can be value-initialized.
1681     CheckEmptyInitializable(
1682         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1683         IList->getEndLoc());
1684     return;
1685   }
1686 
1687   if (!SemaRef.getLangOpts().OpenCL) {
1688     // If the initializing element is a vector, try to copy-initialize
1689     // instead of breaking it apart (which is doomed to failure anyway).
1690     Expr *Init = IList->getInit(Index);
1691     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1692       ExprResult Result;
1693       if (VerifyOnly) {
1694         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1695           Result = getDummyInit();
1696         else
1697           Result = ExprError();
1698       } else {
1699         Result =
1700             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1701                                               /*TopLevelOfInitList=*/true);
1702       }
1703 
1704       Expr *ResultExpr = nullptr;
1705       if (Result.isInvalid())
1706         hadError = true; // types weren't compatible.
1707       else {
1708         ResultExpr = Result.getAs<Expr>();
1709 
1710         if (ResultExpr != Init && !VerifyOnly) {
1711           // The type was promoted, update initializer list.
1712           // FIXME: Why are we updating the syntactic init list?
1713           IList->setInit(Index, ResultExpr);
1714         }
1715       }
1716       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1717       ++Index;
1718       return;
1719     }
1720 
1721     InitializedEntity ElementEntity =
1722       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1723 
1724     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1725       // Don't attempt to go past the end of the init list
1726       if (Index >= IList->getNumInits()) {
1727         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1728         break;
1729       }
1730 
1731       ElementEntity.setElementIndex(Index);
1732       CheckSubElementType(ElementEntity, IList, elementType, Index,
1733                           StructuredList, StructuredIndex);
1734     }
1735 
1736     if (VerifyOnly)
1737       return;
1738 
1739     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1740     const VectorType *T = Entity.getType()->castAs<VectorType>();
1741     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1742                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1743       // The ability to use vector initializer lists is a GNU vector extension
1744       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1745       // endian machines it works fine, however on big endian machines it
1746       // exhibits surprising behaviour:
1747       //
1748       //   uint32x2_t x = {42, 64};
1749       //   return vget_lane_u32(x, 0); // Will return 64.
1750       //
1751       // Because of this, explicitly call out that it is non-portable.
1752       //
1753       SemaRef.Diag(IList->getBeginLoc(),
1754                    diag::warn_neon_vector_initializer_non_portable);
1755 
1756       const char *typeCode;
1757       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1758 
1759       if (elementType->isFloatingType())
1760         typeCode = "f";
1761       else if (elementType->isSignedIntegerType())
1762         typeCode = "s";
1763       else if (elementType->isUnsignedIntegerType())
1764         typeCode = "u";
1765       else
1766         llvm_unreachable("Invalid element type!");
1767 
1768       SemaRef.Diag(IList->getBeginLoc(),
1769                    SemaRef.Context.getTypeSize(VT) > 64
1770                        ? diag::note_neon_vector_initializer_non_portable_q
1771                        : diag::note_neon_vector_initializer_non_portable)
1772           << typeCode << typeSize;
1773     }
1774 
1775     return;
1776   }
1777 
1778   InitializedEntity ElementEntity =
1779     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1780 
1781   // OpenCL initializers allows vectors to be constructed from vectors.
1782   for (unsigned i = 0; i < maxElements; ++i) {
1783     // Don't attempt to go past the end of the init list
1784     if (Index >= IList->getNumInits())
1785       break;
1786 
1787     ElementEntity.setElementIndex(Index);
1788 
1789     QualType IType = IList->getInit(Index)->getType();
1790     if (!IType->isVectorType()) {
1791       CheckSubElementType(ElementEntity, IList, elementType, Index,
1792                           StructuredList, StructuredIndex);
1793       ++numEltsInit;
1794     } else {
1795       QualType VecType;
1796       const VectorType *IVT = IType->castAs<VectorType>();
1797       unsigned numIElts = IVT->getNumElements();
1798 
1799       if (IType->isExtVectorType())
1800         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1801       else
1802         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1803                                                 IVT->getVectorKind());
1804       CheckSubElementType(ElementEntity, IList, VecType, Index,
1805                           StructuredList, StructuredIndex);
1806       numEltsInit += numIElts;
1807     }
1808   }
1809 
1810   // OpenCL requires all elements to be initialized.
1811   if (numEltsInit != maxElements) {
1812     if (!VerifyOnly)
1813       SemaRef.Diag(IList->getBeginLoc(),
1814                    diag::err_vector_incorrect_num_initializers)
1815           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1816     hadError = true;
1817   }
1818 }
1819 
1820 /// Check if the type of a class element has an accessible destructor, and marks
1821 /// it referenced. Returns true if we shouldn't form a reference to the
1822 /// destructor.
1823 ///
1824 /// Aggregate initialization requires a class element's destructor be
1825 /// accessible per 11.6.1 [dcl.init.aggr]:
1826 ///
1827 /// The destructor for each element of class type is potentially invoked
1828 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1829 /// occurs.
1830 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1831                                      Sema &SemaRef) {
1832   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1833   if (!CXXRD)
1834     return false;
1835 
1836   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1837   SemaRef.CheckDestructorAccess(Loc, Destructor,
1838                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1839                                 << ElementType);
1840   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1841   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1842 }
1843 
1844 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1845                                      InitListExpr *IList, QualType &DeclType,
1846                                      llvm::APSInt elementIndex,
1847                                      bool SubobjectIsDesignatorContext,
1848                                      unsigned &Index,
1849                                      InitListExpr *StructuredList,
1850                                      unsigned &StructuredIndex) {
1851   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1852 
1853   if (!VerifyOnly) {
1854     if (checkDestructorReference(arrayType->getElementType(),
1855                                  IList->getEndLoc(), SemaRef)) {
1856       hadError = true;
1857       return;
1858     }
1859   }
1860 
1861   // Check for the special-case of initializing an array with a string.
1862   if (Index < IList->getNumInits()) {
1863     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1864         SIF_None) {
1865       // We place the string literal directly into the resulting
1866       // initializer list. This is the only place where the structure
1867       // of the structured initializer list doesn't match exactly,
1868       // because doing so would involve allocating one character
1869       // constant for each string.
1870       // FIXME: Should we do these checks in verify-only mode too?
1871       if (!VerifyOnly)
1872         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1873       if (StructuredList) {
1874         UpdateStructuredListElement(StructuredList, StructuredIndex,
1875                                     IList->getInit(Index));
1876         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1877       }
1878       ++Index;
1879       return;
1880     }
1881   }
1882   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1883     // Check for VLAs; in standard C it would be possible to check this
1884     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1885     // them in all sorts of strange places).
1886     if (!VerifyOnly)
1887       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1888                    diag::err_variable_object_no_init)
1889           << VAT->getSizeExpr()->getSourceRange();
1890     hadError = true;
1891     ++Index;
1892     ++StructuredIndex;
1893     return;
1894   }
1895 
1896   // We might know the maximum number of elements in advance.
1897   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1898                            elementIndex.isUnsigned());
1899   bool maxElementsKnown = false;
1900   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1901     maxElements = CAT->getSize();
1902     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1903     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1904     maxElementsKnown = true;
1905   }
1906 
1907   QualType elementType = arrayType->getElementType();
1908   while (Index < IList->getNumInits()) {
1909     Expr *Init = IList->getInit(Index);
1910     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1911       // If we're not the subobject that matches up with the '{' for
1912       // the designator, we shouldn't be handling the
1913       // designator. Return immediately.
1914       if (!SubobjectIsDesignatorContext)
1915         return;
1916 
1917       // Handle this designated initializer. elementIndex will be
1918       // updated to be the next array element we'll initialize.
1919       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1920                                      DeclType, nullptr, &elementIndex, Index,
1921                                      StructuredList, StructuredIndex, true,
1922                                      false)) {
1923         hadError = true;
1924         continue;
1925       }
1926 
1927       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1928         maxElements = maxElements.extend(elementIndex.getBitWidth());
1929       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1930         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1931       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1932 
1933       // If the array is of incomplete type, keep track of the number of
1934       // elements in the initializer.
1935       if (!maxElementsKnown && elementIndex > maxElements)
1936         maxElements = elementIndex;
1937 
1938       continue;
1939     }
1940 
1941     // If we know the maximum number of elements, and we've already
1942     // hit it, stop consuming elements in the initializer list.
1943     if (maxElementsKnown && elementIndex == maxElements)
1944       break;
1945 
1946     InitializedEntity ElementEntity =
1947       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1948                                            Entity);
1949     // Check this element.
1950     CheckSubElementType(ElementEntity, IList, elementType, Index,
1951                         StructuredList, StructuredIndex);
1952     ++elementIndex;
1953 
1954     // If the array is of incomplete type, keep track of the number of
1955     // elements in the initializer.
1956     if (!maxElementsKnown && elementIndex > maxElements)
1957       maxElements = elementIndex;
1958   }
1959   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1960     // If this is an incomplete array type, the actual type needs to
1961     // be calculated here.
1962     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1963     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1964       // Sizing an array implicitly to zero is not allowed by ISO C,
1965       // but is supported by GNU.
1966       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1967     }
1968 
1969     DeclType = SemaRef.Context.getConstantArrayType(
1970         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1971   }
1972   if (!hadError) {
1973     // If there are any members of the array that get value-initialized, check
1974     // that is possible. That happens if we know the bound and don't have
1975     // enough elements, or if we're performing an array new with an unknown
1976     // bound.
1977     if ((maxElementsKnown && elementIndex < maxElements) ||
1978         Entity.isVariableLengthArrayNew())
1979       CheckEmptyInitializable(
1980           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1981           IList->getEndLoc());
1982   }
1983 }
1984 
1985 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1986                                              Expr *InitExpr,
1987                                              FieldDecl *Field,
1988                                              bool TopLevelObject) {
1989   // Handle GNU flexible array initializers.
1990   unsigned FlexArrayDiag;
1991   if (isa<InitListExpr>(InitExpr) &&
1992       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1993     // Empty flexible array init always allowed as an extension
1994     FlexArrayDiag = diag::ext_flexible_array_init;
1995   } else if (SemaRef.getLangOpts().CPlusPlus) {
1996     // Disallow flexible array init in C++; it is not required for gcc
1997     // compatibility, and it needs work to IRGen correctly in general.
1998     FlexArrayDiag = diag::err_flexible_array_init;
1999   } else if (!TopLevelObject) {
2000     // Disallow flexible array init on non-top-level object
2001     FlexArrayDiag = diag::err_flexible_array_init;
2002   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2003     // Disallow flexible array init on anything which is not a variable.
2004     FlexArrayDiag = diag::err_flexible_array_init;
2005   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2006     // Disallow flexible array init on local variables.
2007     FlexArrayDiag = diag::err_flexible_array_init;
2008   } else {
2009     // Allow other cases.
2010     FlexArrayDiag = diag::ext_flexible_array_init;
2011   }
2012 
2013   if (!VerifyOnly) {
2014     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2015         << InitExpr->getBeginLoc();
2016     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2017       << Field;
2018   }
2019 
2020   return FlexArrayDiag != diag::ext_flexible_array_init;
2021 }
2022 
2023 void InitListChecker::CheckStructUnionTypes(
2024     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2025     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2026     bool SubobjectIsDesignatorContext, unsigned &Index,
2027     InitListExpr *StructuredList, unsigned &StructuredIndex,
2028     bool TopLevelObject) {
2029   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2030 
2031   // If the record is invalid, some of it's members are invalid. To avoid
2032   // confusion, we forgo checking the intializer for the entire record.
2033   if (structDecl->isInvalidDecl()) {
2034     // Assume it was supposed to consume a single initializer.
2035     ++Index;
2036     hadError = true;
2037     return;
2038   }
2039 
2040   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2041     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2042 
2043     if (!VerifyOnly)
2044       for (FieldDecl *FD : RD->fields()) {
2045         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2046         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2047           hadError = true;
2048           return;
2049         }
2050       }
2051 
2052     // If there's a default initializer, use it.
2053     if (isa<CXXRecordDecl>(RD) &&
2054         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2055       if (!StructuredList)
2056         return;
2057       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2058            Field != FieldEnd; ++Field) {
2059         if (Field->hasInClassInitializer()) {
2060           StructuredList->setInitializedFieldInUnion(*Field);
2061           // FIXME: Actually build a CXXDefaultInitExpr?
2062           return;
2063         }
2064       }
2065     }
2066 
2067     // Value-initialize the first member of the union that isn't an unnamed
2068     // bitfield.
2069     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2070          Field != FieldEnd; ++Field) {
2071       if (!Field->isUnnamedBitfield()) {
2072         CheckEmptyInitializable(
2073             InitializedEntity::InitializeMember(*Field, &Entity),
2074             IList->getEndLoc());
2075         if (StructuredList)
2076           StructuredList->setInitializedFieldInUnion(*Field);
2077         break;
2078       }
2079     }
2080     return;
2081   }
2082 
2083   bool InitializedSomething = false;
2084 
2085   // If we have any base classes, they are initialized prior to the fields.
2086   for (auto &Base : Bases) {
2087     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2088 
2089     // Designated inits always initialize fields, so if we see one, all
2090     // remaining base classes have no explicit initializer.
2091     if (Init && isa<DesignatedInitExpr>(Init))
2092       Init = nullptr;
2093 
2094     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2095     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2096         SemaRef.Context, &Base, false, &Entity);
2097     if (Init) {
2098       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2099                           StructuredList, StructuredIndex);
2100       InitializedSomething = true;
2101     } else {
2102       CheckEmptyInitializable(BaseEntity, InitLoc);
2103     }
2104 
2105     if (!VerifyOnly)
2106       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2107         hadError = true;
2108         return;
2109       }
2110   }
2111 
2112   // If structDecl is a forward declaration, this loop won't do
2113   // anything except look at designated initializers; That's okay,
2114   // because an error should get printed out elsewhere. It might be
2115   // worthwhile to skip over the rest of the initializer, though.
2116   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2117   RecordDecl::field_iterator FieldEnd = RD->field_end();
2118   bool CheckForMissingFields =
2119     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2120   bool HasDesignatedInit = false;
2121 
2122   while (Index < IList->getNumInits()) {
2123     Expr *Init = IList->getInit(Index);
2124     SourceLocation InitLoc = Init->getBeginLoc();
2125 
2126     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2127       // If we're not the subobject that matches up with the '{' for
2128       // the designator, we shouldn't be handling the
2129       // designator. Return immediately.
2130       if (!SubobjectIsDesignatorContext)
2131         return;
2132 
2133       HasDesignatedInit = true;
2134 
2135       // Handle this designated initializer. Field will be updated to
2136       // the next field that we'll be initializing.
2137       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2138                                      DeclType, &Field, nullptr, Index,
2139                                      StructuredList, StructuredIndex,
2140                                      true, TopLevelObject))
2141         hadError = true;
2142       else if (!VerifyOnly) {
2143         // Find the field named by the designated initializer.
2144         RecordDecl::field_iterator F = RD->field_begin();
2145         while (std::next(F) != Field)
2146           ++F;
2147         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2148         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2149           hadError = true;
2150           return;
2151         }
2152       }
2153 
2154       InitializedSomething = true;
2155 
2156       // Disable check for missing fields when designators are used.
2157       // This matches gcc behaviour.
2158       CheckForMissingFields = false;
2159       continue;
2160     }
2161 
2162     if (Field == FieldEnd) {
2163       // We've run out of fields. We're done.
2164       break;
2165     }
2166 
2167     // We've already initialized a member of a union. We're done.
2168     if (InitializedSomething && DeclType->isUnionType())
2169       break;
2170 
2171     // If we've hit the flexible array member at the end, we're done.
2172     if (Field->getType()->isIncompleteArrayType())
2173       break;
2174 
2175     if (Field->isUnnamedBitfield()) {
2176       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2177       ++Field;
2178       continue;
2179     }
2180 
2181     // Make sure we can use this declaration.
2182     bool InvalidUse;
2183     if (VerifyOnly)
2184       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2185     else
2186       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2187           *Field, IList->getInit(Index)->getBeginLoc());
2188     if (InvalidUse) {
2189       ++Index;
2190       ++Field;
2191       hadError = true;
2192       continue;
2193     }
2194 
2195     if (!VerifyOnly) {
2196       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2197       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2198         hadError = true;
2199         return;
2200       }
2201     }
2202 
2203     InitializedEntity MemberEntity =
2204       InitializedEntity::InitializeMember(*Field, &Entity);
2205     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2206                         StructuredList, StructuredIndex);
2207     InitializedSomething = true;
2208 
2209     if (DeclType->isUnionType() && StructuredList) {
2210       // Initialize the first field within the union.
2211       StructuredList->setInitializedFieldInUnion(*Field);
2212     }
2213 
2214     ++Field;
2215   }
2216 
2217   // Emit warnings for missing struct field initializers.
2218   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2219       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2220       !DeclType->isUnionType()) {
2221     // It is possible we have one or more unnamed bitfields remaining.
2222     // Find first (if any) named field and emit warning.
2223     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2224          it != end; ++it) {
2225       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2226         SemaRef.Diag(IList->getSourceRange().getEnd(),
2227                      diag::warn_missing_field_initializers) << *it;
2228         break;
2229       }
2230     }
2231   }
2232 
2233   // Check that any remaining fields can be value-initialized if we're not
2234   // building a structured list. (If we are, we'll check this later.)
2235   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2236       !Field->getType()->isIncompleteArrayType()) {
2237     for (; Field != FieldEnd && !hadError; ++Field) {
2238       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2239         CheckEmptyInitializable(
2240             InitializedEntity::InitializeMember(*Field, &Entity),
2241             IList->getEndLoc());
2242     }
2243   }
2244 
2245   // Check that the types of the remaining fields have accessible destructors.
2246   if (!VerifyOnly) {
2247     // If the initializer expression has a designated initializer, check the
2248     // elements for which a designated initializer is not provided too.
2249     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2250                                                      : Field;
2251     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2252       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2253       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2254         hadError = true;
2255         return;
2256       }
2257     }
2258   }
2259 
2260   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2261       Index >= IList->getNumInits())
2262     return;
2263 
2264   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2265                              TopLevelObject)) {
2266     hadError = true;
2267     ++Index;
2268     return;
2269   }
2270 
2271   InitializedEntity MemberEntity =
2272     InitializedEntity::InitializeMember(*Field, &Entity);
2273 
2274   if (isa<InitListExpr>(IList->getInit(Index)))
2275     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2276                         StructuredList, StructuredIndex);
2277   else
2278     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2279                           StructuredList, StructuredIndex);
2280 }
2281 
2282 /// Expand a field designator that refers to a member of an
2283 /// anonymous struct or union into a series of field designators that
2284 /// refers to the field within the appropriate subobject.
2285 ///
2286 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2287                                            DesignatedInitExpr *DIE,
2288                                            unsigned DesigIdx,
2289                                            IndirectFieldDecl *IndirectField) {
2290   typedef DesignatedInitExpr::Designator Designator;
2291 
2292   // Build the replacement designators.
2293   SmallVector<Designator, 4> Replacements;
2294   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2295        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2296     if (PI + 1 == PE)
2297       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2298                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2299                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2300     else
2301       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2302                                         SourceLocation(), SourceLocation()));
2303     assert(isa<FieldDecl>(*PI));
2304     Replacements.back().setField(cast<FieldDecl>(*PI));
2305   }
2306 
2307   // Expand the current designator into the set of replacement
2308   // designators, so we have a full subobject path down to where the
2309   // member of the anonymous struct/union is actually stored.
2310   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2311                         &Replacements[0] + Replacements.size());
2312 }
2313 
2314 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2315                                                    DesignatedInitExpr *DIE) {
2316   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2317   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2318   for (unsigned I = 0; I < NumIndexExprs; ++I)
2319     IndexExprs[I] = DIE->getSubExpr(I + 1);
2320   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2321                                     IndexExprs,
2322                                     DIE->getEqualOrColonLoc(),
2323                                     DIE->usesGNUSyntax(), DIE->getInit());
2324 }
2325 
2326 namespace {
2327 
2328 // Callback to only accept typo corrections that are for field members of
2329 // the given struct or union.
2330 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2331  public:
2332   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2333       : Record(RD) {}
2334 
2335   bool ValidateCandidate(const TypoCorrection &candidate) override {
2336     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2337     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2338   }
2339 
2340   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2341     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2342   }
2343 
2344  private:
2345   RecordDecl *Record;
2346 };
2347 
2348 } // end anonymous namespace
2349 
2350 /// Check the well-formedness of a C99 designated initializer.
2351 ///
2352 /// Determines whether the designated initializer @p DIE, which
2353 /// resides at the given @p Index within the initializer list @p
2354 /// IList, is well-formed for a current object of type @p DeclType
2355 /// (C99 6.7.8). The actual subobject that this designator refers to
2356 /// within the current subobject is returned in either
2357 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2358 ///
2359 /// @param IList  The initializer list in which this designated
2360 /// initializer occurs.
2361 ///
2362 /// @param DIE The designated initializer expression.
2363 ///
2364 /// @param DesigIdx  The index of the current designator.
2365 ///
2366 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2367 /// into which the designation in @p DIE should refer.
2368 ///
2369 /// @param NextField  If non-NULL and the first designator in @p DIE is
2370 /// a field, this will be set to the field declaration corresponding
2371 /// to the field named by the designator. On input, this is expected to be
2372 /// the next field that would be initialized in the absence of designation,
2373 /// if the complete object being initialized is a struct.
2374 ///
2375 /// @param NextElementIndex  If non-NULL and the first designator in @p
2376 /// DIE is an array designator or GNU array-range designator, this
2377 /// will be set to the last index initialized by this designator.
2378 ///
2379 /// @param Index  Index into @p IList where the designated initializer
2380 /// @p DIE occurs.
2381 ///
2382 /// @param StructuredList  The initializer list expression that
2383 /// describes all of the subobject initializers in the order they'll
2384 /// actually be initialized.
2385 ///
2386 /// @returns true if there was an error, false otherwise.
2387 bool
2388 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2389                                             InitListExpr *IList,
2390                                             DesignatedInitExpr *DIE,
2391                                             unsigned DesigIdx,
2392                                             QualType &CurrentObjectType,
2393                                           RecordDecl::field_iterator *NextField,
2394                                             llvm::APSInt *NextElementIndex,
2395                                             unsigned &Index,
2396                                             InitListExpr *StructuredList,
2397                                             unsigned &StructuredIndex,
2398                                             bool FinishSubobjectInit,
2399                                             bool TopLevelObject) {
2400   if (DesigIdx == DIE->size()) {
2401     // C++20 designated initialization can result in direct-list-initialization
2402     // of the designated subobject. This is the only way that we can end up
2403     // performing direct initialization as part of aggregate initialization, so
2404     // it needs special handling.
2405     if (DIE->isDirectInit()) {
2406       Expr *Init = DIE->getInit();
2407       assert(isa<InitListExpr>(Init) &&
2408              "designator result in direct non-list initialization?");
2409       InitializationKind Kind = InitializationKind::CreateDirectList(
2410           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2411       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2412                                  /*TopLevelOfInitList*/ true);
2413       if (StructuredList) {
2414         ExprResult Result = VerifyOnly
2415                                 ? getDummyInit()
2416                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2417         UpdateStructuredListElement(StructuredList, StructuredIndex,
2418                                     Result.get());
2419       }
2420       ++Index;
2421       return !Seq;
2422     }
2423 
2424     // Check the actual initialization for the designated object type.
2425     bool prevHadError = hadError;
2426 
2427     // Temporarily remove the designator expression from the
2428     // initializer list that the child calls see, so that we don't try
2429     // to re-process the designator.
2430     unsigned OldIndex = Index;
2431     IList->setInit(OldIndex, DIE->getInit());
2432 
2433     CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2434                         StructuredIndex, /*DirectlyDesignated=*/true);
2435 
2436     // Restore the designated initializer expression in the syntactic
2437     // form of the initializer list.
2438     if (IList->getInit(OldIndex) != DIE->getInit())
2439       DIE->setInit(IList->getInit(OldIndex));
2440     IList->setInit(OldIndex, DIE);
2441 
2442     return hadError && !prevHadError;
2443   }
2444 
2445   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2446   bool IsFirstDesignator = (DesigIdx == 0);
2447   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2448     // Determine the structural initializer list that corresponds to the
2449     // current subobject.
2450     if (IsFirstDesignator)
2451       StructuredList = FullyStructuredList;
2452     else {
2453       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2454           StructuredList->getInit(StructuredIndex) : nullptr;
2455       if (!ExistingInit && StructuredList->hasArrayFiller())
2456         ExistingInit = StructuredList->getArrayFiller();
2457 
2458       if (!ExistingInit)
2459         StructuredList = getStructuredSubobjectInit(
2460             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2461             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2462       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2463         StructuredList = Result;
2464       else {
2465         // We are creating an initializer list that initializes the
2466         // subobjects of the current object, but there was already an
2467         // initialization that completely initialized the current
2468         // subobject, e.g., by a compound literal:
2469         //
2470         // struct X { int a, b; };
2471         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2472         //
2473         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2474         // designated initializer re-initializes only its current object
2475         // subobject [0].b.
2476         diagnoseInitOverride(ExistingInit,
2477                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2478                              /*FullyOverwritten=*/false);
2479 
2480         if (!VerifyOnly) {
2481           if (DesignatedInitUpdateExpr *E =
2482                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2483             StructuredList = E->getUpdater();
2484           else {
2485             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2486                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2487                                          ExistingInit, DIE->getEndLoc());
2488             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2489             StructuredList = DIUE->getUpdater();
2490           }
2491         } else {
2492           // We don't need to track the structured representation of a
2493           // designated init update of an already-fully-initialized object in
2494           // verify-only mode. The only reason we would need the structure is
2495           // to determine where the uninitialized "holes" are, and in this
2496           // case, we know there aren't any and we can't introduce any.
2497           StructuredList = nullptr;
2498         }
2499       }
2500     }
2501   }
2502 
2503   if (D->isFieldDesignator()) {
2504     // C99 6.7.8p7:
2505     //
2506     //   If a designator has the form
2507     //
2508     //      . identifier
2509     //
2510     //   then the current object (defined below) shall have
2511     //   structure or union type and the identifier shall be the
2512     //   name of a member of that type.
2513     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2514     if (!RT) {
2515       SourceLocation Loc = D->getDotLoc();
2516       if (Loc.isInvalid())
2517         Loc = D->getFieldLoc();
2518       if (!VerifyOnly)
2519         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2520           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2521       ++Index;
2522       return true;
2523     }
2524 
2525     FieldDecl *KnownField = D->getField();
2526     if (!KnownField) {
2527       IdentifierInfo *FieldName = D->getFieldName();
2528       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2529       for (NamedDecl *ND : Lookup) {
2530         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2531           KnownField = FD;
2532           break;
2533         }
2534         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2535           // In verify mode, don't modify the original.
2536           if (VerifyOnly)
2537             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2538           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2539           D = DIE->getDesignator(DesigIdx);
2540           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2541           break;
2542         }
2543       }
2544       if (!KnownField) {
2545         if (VerifyOnly) {
2546           ++Index;
2547           return true;  // No typo correction when just trying this out.
2548         }
2549 
2550         // Name lookup found something, but it wasn't a field.
2551         if (!Lookup.empty()) {
2552           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2553             << FieldName;
2554           SemaRef.Diag(Lookup.front()->getLocation(),
2555                        diag::note_field_designator_found);
2556           ++Index;
2557           return true;
2558         }
2559 
2560         // Name lookup didn't find anything.
2561         // Determine whether this was a typo for another field name.
2562         FieldInitializerValidatorCCC CCC(RT->getDecl());
2563         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2564                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2565                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2566                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2567           SemaRef.diagnoseTypo(
2568               Corrected,
2569               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2570                 << FieldName << CurrentObjectType);
2571           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2572           hadError = true;
2573         } else {
2574           // Typo correction didn't find anything.
2575           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2576             << FieldName << CurrentObjectType;
2577           ++Index;
2578           return true;
2579         }
2580       }
2581     }
2582 
2583     unsigned NumBases = 0;
2584     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2585       NumBases = CXXRD->getNumBases();
2586 
2587     unsigned FieldIndex = NumBases;
2588 
2589     for (auto *FI : RT->getDecl()->fields()) {
2590       if (FI->isUnnamedBitfield())
2591         continue;
2592       if (declaresSameEntity(KnownField, FI)) {
2593         KnownField = FI;
2594         break;
2595       }
2596       ++FieldIndex;
2597     }
2598 
2599     RecordDecl::field_iterator Field =
2600         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2601 
2602     // All of the fields of a union are located at the same place in
2603     // the initializer list.
2604     if (RT->getDecl()->isUnion()) {
2605       FieldIndex = 0;
2606       if (StructuredList) {
2607         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2608         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2609           assert(StructuredList->getNumInits() == 1
2610                  && "A union should never have more than one initializer!");
2611 
2612           Expr *ExistingInit = StructuredList->getInit(0);
2613           if (ExistingInit) {
2614             // We're about to throw away an initializer, emit warning.
2615             diagnoseInitOverride(
2616                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2617           }
2618 
2619           // remove existing initializer
2620           StructuredList->resizeInits(SemaRef.Context, 0);
2621           StructuredList->setInitializedFieldInUnion(nullptr);
2622         }
2623 
2624         StructuredList->setInitializedFieldInUnion(*Field);
2625       }
2626     }
2627 
2628     // Make sure we can use this declaration.
2629     bool InvalidUse;
2630     if (VerifyOnly)
2631       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2632     else
2633       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2634     if (InvalidUse) {
2635       ++Index;
2636       return true;
2637     }
2638 
2639     // C++20 [dcl.init.list]p3:
2640     //   The ordered identifiers in the designators of the designated-
2641     //   initializer-list shall form a subsequence of the ordered identifiers
2642     //   in the direct non-static data members of T.
2643     //
2644     // Note that this is not a condition on forming the aggregate
2645     // initialization, only on actually performing initialization,
2646     // so it is not checked in VerifyOnly mode.
2647     //
2648     // FIXME: This is the only reordering diagnostic we produce, and it only
2649     // catches cases where we have a top-level field designator that jumps
2650     // backwards. This is the only such case that is reachable in an
2651     // otherwise-valid C++20 program, so is the only case that's required for
2652     // conformance, but for consistency, we should diagnose all the other
2653     // cases where a designator takes us backwards too.
2654     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2655         NextField &&
2656         (*NextField == RT->getDecl()->field_end() ||
2657          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2658       // Find the field that we just initialized.
2659       FieldDecl *PrevField = nullptr;
2660       for (auto FI = RT->getDecl()->field_begin();
2661            FI != RT->getDecl()->field_end(); ++FI) {
2662         if (FI->isUnnamedBitfield())
2663           continue;
2664         if (*NextField != RT->getDecl()->field_end() &&
2665             declaresSameEntity(*FI, **NextField))
2666           break;
2667         PrevField = *FI;
2668       }
2669 
2670       if (PrevField &&
2671           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2672         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2673             << KnownField << PrevField << DIE->getSourceRange();
2674 
2675         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2676         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2677           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2678             SemaRef.Diag(PrevInit->getBeginLoc(),
2679                          diag::note_previous_field_init)
2680                 << PrevField << PrevInit->getSourceRange();
2681           }
2682         }
2683       }
2684     }
2685 
2686 
2687     // Update the designator with the field declaration.
2688     if (!VerifyOnly)
2689       D->setField(*Field);
2690 
2691     // Make sure that our non-designated initializer list has space
2692     // for a subobject corresponding to this field.
2693     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2694       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2695 
2696     // This designator names a flexible array member.
2697     if (Field->getType()->isIncompleteArrayType()) {
2698       bool Invalid = false;
2699       if ((DesigIdx + 1) != DIE->size()) {
2700         // We can't designate an object within the flexible array
2701         // member (because GCC doesn't allow it).
2702         if (!VerifyOnly) {
2703           DesignatedInitExpr::Designator *NextD
2704             = DIE->getDesignator(DesigIdx + 1);
2705           SemaRef.Diag(NextD->getBeginLoc(),
2706                        diag::err_designator_into_flexible_array_member)
2707               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2708           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2709             << *Field;
2710         }
2711         Invalid = true;
2712       }
2713 
2714       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2715           !isa<StringLiteral>(DIE->getInit())) {
2716         // The initializer is not an initializer list.
2717         if (!VerifyOnly) {
2718           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2719                        diag::err_flexible_array_init_needs_braces)
2720               << DIE->getInit()->getSourceRange();
2721           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2722             << *Field;
2723         }
2724         Invalid = true;
2725       }
2726 
2727       // Check GNU flexible array initializer.
2728       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2729                                              TopLevelObject))
2730         Invalid = true;
2731 
2732       if (Invalid) {
2733         ++Index;
2734         return true;
2735       }
2736 
2737       // Initialize the array.
2738       bool prevHadError = hadError;
2739       unsigned newStructuredIndex = FieldIndex;
2740       unsigned OldIndex = Index;
2741       IList->setInit(Index, DIE->getInit());
2742 
2743       InitializedEntity MemberEntity =
2744         InitializedEntity::InitializeMember(*Field, &Entity);
2745       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2746                           StructuredList, newStructuredIndex);
2747 
2748       IList->setInit(OldIndex, DIE);
2749       if (hadError && !prevHadError) {
2750         ++Field;
2751         ++FieldIndex;
2752         if (NextField)
2753           *NextField = Field;
2754         StructuredIndex = FieldIndex;
2755         return true;
2756       }
2757     } else {
2758       // Recurse to check later designated subobjects.
2759       QualType FieldType = Field->getType();
2760       unsigned newStructuredIndex = FieldIndex;
2761 
2762       InitializedEntity MemberEntity =
2763         InitializedEntity::InitializeMember(*Field, &Entity);
2764       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2765                                      FieldType, nullptr, nullptr, Index,
2766                                      StructuredList, newStructuredIndex,
2767                                      FinishSubobjectInit, false))
2768         return true;
2769     }
2770 
2771     // Find the position of the next field to be initialized in this
2772     // subobject.
2773     ++Field;
2774     ++FieldIndex;
2775 
2776     // If this the first designator, our caller will continue checking
2777     // the rest of this struct/class/union subobject.
2778     if (IsFirstDesignator) {
2779       if (NextField)
2780         *NextField = Field;
2781       StructuredIndex = FieldIndex;
2782       return false;
2783     }
2784 
2785     if (!FinishSubobjectInit)
2786       return false;
2787 
2788     // We've already initialized something in the union; we're done.
2789     if (RT->getDecl()->isUnion())
2790       return hadError;
2791 
2792     // Check the remaining fields within this class/struct/union subobject.
2793     bool prevHadError = hadError;
2794 
2795     auto NoBases =
2796         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2797                                         CXXRecordDecl::base_class_iterator());
2798     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2799                           false, Index, StructuredList, FieldIndex);
2800     return hadError && !prevHadError;
2801   }
2802 
2803   // C99 6.7.8p6:
2804   //
2805   //   If a designator has the form
2806   //
2807   //      [ constant-expression ]
2808   //
2809   //   then the current object (defined below) shall have array
2810   //   type and the expression shall be an integer constant
2811   //   expression. If the array is of unknown size, any
2812   //   nonnegative value is valid.
2813   //
2814   // Additionally, cope with the GNU extension that permits
2815   // designators of the form
2816   //
2817   //      [ constant-expression ... constant-expression ]
2818   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2819   if (!AT) {
2820     if (!VerifyOnly)
2821       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2822         << CurrentObjectType;
2823     ++Index;
2824     return true;
2825   }
2826 
2827   Expr *IndexExpr = nullptr;
2828   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2829   if (D->isArrayDesignator()) {
2830     IndexExpr = DIE->getArrayIndex(*D);
2831     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2832     DesignatedEndIndex = DesignatedStartIndex;
2833   } else {
2834     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2835 
2836     DesignatedStartIndex =
2837       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2838     DesignatedEndIndex =
2839       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2840     IndexExpr = DIE->getArrayRangeEnd(*D);
2841 
2842     // Codegen can't handle evaluating array range designators that have side
2843     // effects, because we replicate the AST value for each initialized element.
2844     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2845     // elements with something that has a side effect, so codegen can emit an
2846     // "error unsupported" error instead of miscompiling the app.
2847     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2848         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2849       FullyStructuredList->sawArrayRangeDesignator();
2850   }
2851 
2852   if (isa<ConstantArrayType>(AT)) {
2853     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2854     DesignatedStartIndex
2855       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2856     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2857     DesignatedEndIndex
2858       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2859     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2860     if (DesignatedEndIndex >= MaxElements) {
2861       if (!VerifyOnly)
2862         SemaRef.Diag(IndexExpr->getBeginLoc(),
2863                      diag::err_array_designator_too_large)
2864             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2865             << IndexExpr->getSourceRange();
2866       ++Index;
2867       return true;
2868     }
2869   } else {
2870     unsigned DesignatedIndexBitWidth =
2871       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2872     DesignatedStartIndex =
2873       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2874     DesignatedEndIndex =
2875       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2876     DesignatedStartIndex.setIsUnsigned(true);
2877     DesignatedEndIndex.setIsUnsigned(true);
2878   }
2879 
2880   bool IsStringLiteralInitUpdate =
2881       StructuredList && StructuredList->isStringLiteralInit();
2882   if (IsStringLiteralInitUpdate && VerifyOnly) {
2883     // We're just verifying an update to a string literal init. We don't need
2884     // to split the string up into individual characters to do that.
2885     StructuredList = nullptr;
2886   } else if (IsStringLiteralInitUpdate) {
2887     // We're modifying a string literal init; we have to decompose the string
2888     // so we can modify the individual characters.
2889     ASTContext &Context = SemaRef.Context;
2890     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2891 
2892     // Compute the character type
2893     QualType CharTy = AT->getElementType();
2894 
2895     // Compute the type of the integer literals.
2896     QualType PromotedCharTy = CharTy;
2897     if (CharTy->isPromotableIntegerType())
2898       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2899     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2900 
2901     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2902       // Get the length of the string.
2903       uint64_t StrLen = SL->getLength();
2904       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2905         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2906       StructuredList->resizeInits(Context, StrLen);
2907 
2908       // Build a literal for each character in the string, and put them into
2909       // the init list.
2910       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2911         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2912         Expr *Init = new (Context) IntegerLiteral(
2913             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2914         if (CharTy != PromotedCharTy)
2915           Init =
2916               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2917                                        nullptr, VK_RValue, FPOptionsOverride());
2918         StructuredList->updateInit(Context, i, Init);
2919       }
2920     } else {
2921       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2922       std::string Str;
2923       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2924 
2925       // Get the length of the string.
2926       uint64_t StrLen = Str.size();
2927       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2928         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2929       StructuredList->resizeInits(Context, StrLen);
2930 
2931       // Build a literal for each character in the string, and put them into
2932       // the init list.
2933       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2934         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2935         Expr *Init = new (Context) IntegerLiteral(
2936             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2937         if (CharTy != PromotedCharTy)
2938           Init =
2939               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2940                                        nullptr, VK_RValue, FPOptionsOverride());
2941         StructuredList->updateInit(Context, i, Init);
2942       }
2943     }
2944   }
2945 
2946   // Make sure that our non-designated initializer list has space
2947   // for a subobject corresponding to this array element.
2948   if (StructuredList &&
2949       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2950     StructuredList->resizeInits(SemaRef.Context,
2951                                 DesignatedEndIndex.getZExtValue() + 1);
2952 
2953   // Repeatedly perform subobject initializations in the range
2954   // [DesignatedStartIndex, DesignatedEndIndex].
2955 
2956   // Move to the next designator
2957   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2958   unsigned OldIndex = Index;
2959 
2960   InitializedEntity ElementEntity =
2961     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2962 
2963   while (DesignatedStartIndex <= DesignatedEndIndex) {
2964     // Recurse to check later designated subobjects.
2965     QualType ElementType = AT->getElementType();
2966     Index = OldIndex;
2967 
2968     ElementEntity.setElementIndex(ElementIndex);
2969     if (CheckDesignatedInitializer(
2970             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2971             nullptr, Index, StructuredList, ElementIndex,
2972             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2973             false))
2974       return true;
2975 
2976     // Move to the next index in the array that we'll be initializing.
2977     ++DesignatedStartIndex;
2978     ElementIndex = DesignatedStartIndex.getZExtValue();
2979   }
2980 
2981   // If this the first designator, our caller will continue checking
2982   // the rest of this array subobject.
2983   if (IsFirstDesignator) {
2984     if (NextElementIndex)
2985       *NextElementIndex = DesignatedStartIndex;
2986     StructuredIndex = ElementIndex;
2987     return false;
2988   }
2989 
2990   if (!FinishSubobjectInit)
2991     return false;
2992 
2993   // Check the remaining elements within this array subobject.
2994   bool prevHadError = hadError;
2995   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2996                  /*SubobjectIsDesignatorContext=*/false, Index,
2997                  StructuredList, ElementIndex);
2998   return hadError && !prevHadError;
2999 }
3000 
3001 // Get the structured initializer list for a subobject of type
3002 // @p CurrentObjectType.
3003 InitListExpr *
3004 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3005                                             QualType CurrentObjectType,
3006                                             InitListExpr *StructuredList,
3007                                             unsigned StructuredIndex,
3008                                             SourceRange InitRange,
3009                                             bool IsFullyOverwritten) {
3010   if (!StructuredList)
3011     return nullptr;
3012 
3013   Expr *ExistingInit = nullptr;
3014   if (StructuredIndex < StructuredList->getNumInits())
3015     ExistingInit = StructuredList->getInit(StructuredIndex);
3016 
3017   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3018     // There might have already been initializers for subobjects of the current
3019     // object, but a subsequent initializer list will overwrite the entirety
3020     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3021     //
3022     // struct P { char x[6]; };
3023     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3024     //
3025     // The first designated initializer is ignored, and l.x is just "f".
3026     if (!IsFullyOverwritten)
3027       return Result;
3028 
3029   if (ExistingInit) {
3030     // We are creating an initializer list that initializes the
3031     // subobjects of the current object, but there was already an
3032     // initialization that completely initialized the current
3033     // subobject:
3034     //
3035     // struct X { int a, b; };
3036     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3037     //
3038     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3039     // designated initializer overwrites the [0].b initializer
3040     // from the prior initialization.
3041     //
3042     // When the existing initializer is an expression rather than an
3043     // initializer list, we cannot decompose and update it in this way.
3044     // For example:
3045     //
3046     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3047     //
3048     // This case is handled by CheckDesignatedInitializer.
3049     diagnoseInitOverride(ExistingInit, InitRange);
3050   }
3051 
3052   unsigned ExpectedNumInits = 0;
3053   if (Index < IList->getNumInits()) {
3054     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3055       ExpectedNumInits = Init->getNumInits();
3056     else
3057       ExpectedNumInits = IList->getNumInits() - Index;
3058   }
3059 
3060   InitListExpr *Result =
3061       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3062 
3063   // Link this new initializer list into the structured initializer
3064   // lists.
3065   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3066   return Result;
3067 }
3068 
3069 InitListExpr *
3070 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3071                                     SourceRange InitRange,
3072                                     unsigned ExpectedNumInits) {
3073   InitListExpr *Result
3074     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3075                                          InitRange.getBegin(), None,
3076                                          InitRange.getEnd());
3077 
3078   QualType ResultType = CurrentObjectType;
3079   if (!ResultType->isArrayType())
3080     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3081   Result->setType(ResultType);
3082 
3083   // Pre-allocate storage for the structured initializer list.
3084   unsigned NumElements = 0;
3085 
3086   if (const ArrayType *AType
3087       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3088     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3089       NumElements = CAType->getSize().getZExtValue();
3090       // Simple heuristic so that we don't allocate a very large
3091       // initializer with many empty entries at the end.
3092       if (NumElements > ExpectedNumInits)
3093         NumElements = 0;
3094     }
3095   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3096     NumElements = VType->getNumElements();
3097   } else if (CurrentObjectType->isRecordType()) {
3098     NumElements = numStructUnionElements(CurrentObjectType);
3099   }
3100 
3101   Result->reserveInits(SemaRef.Context, NumElements);
3102 
3103   return Result;
3104 }
3105 
3106 /// Update the initializer at index @p StructuredIndex within the
3107 /// structured initializer list to the value @p expr.
3108 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3109                                                   unsigned &StructuredIndex,
3110                                                   Expr *expr) {
3111   // No structured initializer list to update
3112   if (!StructuredList)
3113     return;
3114 
3115   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3116                                                   StructuredIndex, expr)) {
3117     // This initializer overwrites a previous initializer.
3118     // No need to diagnose when `expr` is nullptr because a more relevant
3119     // diagnostic has already been issued and this diagnostic is potentially
3120     // noise.
3121     if (expr)
3122       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3123   }
3124 
3125   ++StructuredIndex;
3126 }
3127 
3128 /// Determine whether we can perform aggregate initialization for the purposes
3129 /// of overload resolution.
3130 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3131     const InitializedEntity &Entity, InitListExpr *From) {
3132   QualType Type = Entity.getType();
3133   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3134                         /*TreatUnavailableAsInvalid=*/false,
3135                         /*InOverloadResolution=*/true);
3136   return !Check.HadError();
3137 }
3138 
3139 /// Check that the given Index expression is a valid array designator
3140 /// value. This is essentially just a wrapper around
3141 /// VerifyIntegerConstantExpression that also checks for negative values
3142 /// and produces a reasonable diagnostic if there is a
3143 /// failure. Returns the index expression, possibly with an implicit cast
3144 /// added, on success.  If everything went okay, Value will receive the
3145 /// value of the constant expression.
3146 static ExprResult
3147 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3148   SourceLocation Loc = Index->getBeginLoc();
3149 
3150   // Make sure this is an integer constant expression.
3151   ExprResult Result =
3152       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3153   if (Result.isInvalid())
3154     return Result;
3155 
3156   if (Value.isSigned() && Value.isNegative())
3157     return S.Diag(Loc, diag::err_array_designator_negative)
3158       << Value.toString(10) << Index->getSourceRange();
3159 
3160   Value.setIsUnsigned(true);
3161   return Result;
3162 }
3163 
3164 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3165                                             SourceLocation EqualOrColonLoc,
3166                                             bool GNUSyntax,
3167                                             ExprResult Init) {
3168   typedef DesignatedInitExpr::Designator ASTDesignator;
3169 
3170   bool Invalid = false;
3171   SmallVector<ASTDesignator, 32> Designators;
3172   SmallVector<Expr *, 32> InitExpressions;
3173 
3174   // Build designators and check array designator expressions.
3175   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3176     const Designator &D = Desig.getDesignator(Idx);
3177     switch (D.getKind()) {
3178     case Designator::FieldDesignator:
3179       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3180                                           D.getFieldLoc()));
3181       break;
3182 
3183     case Designator::ArrayDesignator: {
3184       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3185       llvm::APSInt IndexValue;
3186       if (!Index->isTypeDependent() && !Index->isValueDependent())
3187         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3188       if (!Index)
3189         Invalid = true;
3190       else {
3191         Designators.push_back(ASTDesignator(InitExpressions.size(),
3192                                             D.getLBracketLoc(),
3193                                             D.getRBracketLoc()));
3194         InitExpressions.push_back(Index);
3195       }
3196       break;
3197     }
3198 
3199     case Designator::ArrayRangeDesignator: {
3200       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3201       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3202       llvm::APSInt StartValue;
3203       llvm::APSInt EndValue;
3204       bool StartDependent = StartIndex->isTypeDependent() ||
3205                             StartIndex->isValueDependent();
3206       bool EndDependent = EndIndex->isTypeDependent() ||
3207                           EndIndex->isValueDependent();
3208       if (!StartDependent)
3209         StartIndex =
3210             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3211       if (!EndDependent)
3212         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3213 
3214       if (!StartIndex || !EndIndex)
3215         Invalid = true;
3216       else {
3217         // Make sure we're comparing values with the same bit width.
3218         if (StartDependent || EndDependent) {
3219           // Nothing to compute.
3220         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3221           EndValue = EndValue.extend(StartValue.getBitWidth());
3222         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3223           StartValue = StartValue.extend(EndValue.getBitWidth());
3224 
3225         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3226           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3227             << StartValue.toString(10) << EndValue.toString(10)
3228             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3229           Invalid = true;
3230         } else {
3231           Designators.push_back(ASTDesignator(InitExpressions.size(),
3232                                               D.getLBracketLoc(),
3233                                               D.getEllipsisLoc(),
3234                                               D.getRBracketLoc()));
3235           InitExpressions.push_back(StartIndex);
3236           InitExpressions.push_back(EndIndex);
3237         }
3238       }
3239       break;
3240     }
3241     }
3242   }
3243 
3244   if (Invalid || Init.isInvalid())
3245     return ExprError();
3246 
3247   // Clear out the expressions within the designation.
3248   Desig.ClearExprs(*this);
3249 
3250   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3251                                     EqualOrColonLoc, GNUSyntax,
3252                                     Init.getAs<Expr>());
3253 }
3254 
3255 //===----------------------------------------------------------------------===//
3256 // Initialization entity
3257 //===----------------------------------------------------------------------===//
3258 
3259 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3260                                      const InitializedEntity &Parent)
3261   : Parent(&Parent), Index(Index)
3262 {
3263   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3264     Kind = EK_ArrayElement;
3265     Type = AT->getElementType();
3266   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3267     Kind = EK_VectorElement;
3268     Type = VT->getElementType();
3269   } else {
3270     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3271     assert(CT && "Unexpected type");
3272     Kind = EK_ComplexElement;
3273     Type = CT->getElementType();
3274   }
3275 }
3276 
3277 InitializedEntity
3278 InitializedEntity::InitializeBase(ASTContext &Context,
3279                                   const CXXBaseSpecifier *Base,
3280                                   bool IsInheritedVirtualBase,
3281                                   const InitializedEntity *Parent) {
3282   InitializedEntity Result;
3283   Result.Kind = EK_Base;
3284   Result.Parent = Parent;
3285   Result.Base = {Base, IsInheritedVirtualBase};
3286   Result.Type = Base->getType();
3287   return Result;
3288 }
3289 
3290 DeclarationName InitializedEntity::getName() const {
3291   switch (getKind()) {
3292   case EK_Parameter:
3293   case EK_Parameter_CF_Audited: {
3294     ParmVarDecl *D = Parameter.getPointer();
3295     return (D ? D->getDeclName() : DeclarationName());
3296   }
3297 
3298   case EK_Variable:
3299   case EK_Member:
3300   case EK_Binding:
3301   case EK_TemplateParameter:
3302     return Variable.VariableOrMember->getDeclName();
3303 
3304   case EK_LambdaCapture:
3305     return DeclarationName(Capture.VarID);
3306 
3307   case EK_Result:
3308   case EK_StmtExprResult:
3309   case EK_Exception:
3310   case EK_New:
3311   case EK_Temporary:
3312   case EK_Base:
3313   case EK_Delegating:
3314   case EK_ArrayElement:
3315   case EK_VectorElement:
3316   case EK_ComplexElement:
3317   case EK_BlockElement:
3318   case EK_LambdaToBlockConversionBlockElement:
3319   case EK_CompoundLiteralInit:
3320   case EK_RelatedResult:
3321     return DeclarationName();
3322   }
3323 
3324   llvm_unreachable("Invalid EntityKind!");
3325 }
3326 
3327 ValueDecl *InitializedEntity::getDecl() const {
3328   switch (getKind()) {
3329   case EK_Variable:
3330   case EK_Member:
3331   case EK_Binding:
3332   case EK_TemplateParameter:
3333     return Variable.VariableOrMember;
3334 
3335   case EK_Parameter:
3336   case EK_Parameter_CF_Audited:
3337     return Parameter.getPointer();
3338 
3339   case EK_Result:
3340   case EK_StmtExprResult:
3341   case EK_Exception:
3342   case EK_New:
3343   case EK_Temporary:
3344   case EK_Base:
3345   case EK_Delegating:
3346   case EK_ArrayElement:
3347   case EK_VectorElement:
3348   case EK_ComplexElement:
3349   case EK_BlockElement:
3350   case EK_LambdaToBlockConversionBlockElement:
3351   case EK_LambdaCapture:
3352   case EK_CompoundLiteralInit:
3353   case EK_RelatedResult:
3354     return nullptr;
3355   }
3356 
3357   llvm_unreachable("Invalid EntityKind!");
3358 }
3359 
3360 bool InitializedEntity::allowsNRVO() const {
3361   switch (getKind()) {
3362   case EK_Result:
3363   case EK_Exception:
3364     return LocAndNRVO.NRVO;
3365 
3366   case EK_StmtExprResult:
3367   case EK_Variable:
3368   case EK_Parameter:
3369   case EK_Parameter_CF_Audited:
3370   case EK_TemplateParameter:
3371   case EK_Member:
3372   case EK_Binding:
3373   case EK_New:
3374   case EK_Temporary:
3375   case EK_CompoundLiteralInit:
3376   case EK_Base:
3377   case EK_Delegating:
3378   case EK_ArrayElement:
3379   case EK_VectorElement:
3380   case EK_ComplexElement:
3381   case EK_BlockElement:
3382   case EK_LambdaToBlockConversionBlockElement:
3383   case EK_LambdaCapture:
3384   case EK_RelatedResult:
3385     break;
3386   }
3387 
3388   return false;
3389 }
3390 
3391 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3392   assert(getParent() != this);
3393   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3394   for (unsigned I = 0; I != Depth; ++I)
3395     OS << "`-";
3396 
3397   switch (getKind()) {
3398   case EK_Variable: OS << "Variable"; break;
3399   case EK_Parameter: OS << "Parameter"; break;
3400   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3401     break;
3402   case EK_TemplateParameter: OS << "TemplateParameter"; break;
3403   case EK_Result: OS << "Result"; break;
3404   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3405   case EK_Exception: OS << "Exception"; break;
3406   case EK_Member: OS << "Member"; break;
3407   case EK_Binding: OS << "Binding"; break;
3408   case EK_New: OS << "New"; break;
3409   case EK_Temporary: OS << "Temporary"; break;
3410   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3411   case EK_RelatedResult: OS << "RelatedResult"; break;
3412   case EK_Base: OS << "Base"; break;
3413   case EK_Delegating: OS << "Delegating"; break;
3414   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3415   case EK_VectorElement: OS << "VectorElement " << Index; break;
3416   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3417   case EK_BlockElement: OS << "Block"; break;
3418   case EK_LambdaToBlockConversionBlockElement:
3419     OS << "Block (lambda)";
3420     break;
3421   case EK_LambdaCapture:
3422     OS << "LambdaCapture ";
3423     OS << DeclarationName(Capture.VarID);
3424     break;
3425   }
3426 
3427   if (auto *D = getDecl()) {
3428     OS << " ";
3429     D->printQualifiedName(OS);
3430   }
3431 
3432   OS << " '" << getType().getAsString() << "'\n";
3433 
3434   return Depth + 1;
3435 }
3436 
3437 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3438   dumpImpl(llvm::errs());
3439 }
3440 
3441 //===----------------------------------------------------------------------===//
3442 // Initialization sequence
3443 //===----------------------------------------------------------------------===//
3444 
3445 void InitializationSequence::Step::Destroy() {
3446   switch (Kind) {
3447   case SK_ResolveAddressOfOverloadedFunction:
3448   case SK_CastDerivedToBaseRValue:
3449   case SK_CastDerivedToBaseXValue:
3450   case SK_CastDerivedToBaseLValue:
3451   case SK_BindReference:
3452   case SK_BindReferenceToTemporary:
3453   case SK_FinalCopy:
3454   case SK_ExtraneousCopyToTemporary:
3455   case SK_UserConversion:
3456   case SK_QualificationConversionRValue:
3457   case SK_QualificationConversionXValue:
3458   case SK_QualificationConversionLValue:
3459   case SK_FunctionReferenceConversion:
3460   case SK_AtomicConversion:
3461   case SK_ListInitialization:
3462   case SK_UnwrapInitList:
3463   case SK_RewrapInitList:
3464   case SK_ConstructorInitialization:
3465   case SK_ConstructorInitializationFromList:
3466   case SK_ZeroInitialization:
3467   case SK_CAssignment:
3468   case SK_StringInit:
3469   case SK_ObjCObjectConversion:
3470   case SK_ArrayLoopIndex:
3471   case SK_ArrayLoopInit:
3472   case SK_ArrayInit:
3473   case SK_GNUArrayInit:
3474   case SK_ParenthesizedArrayInit:
3475   case SK_PassByIndirectCopyRestore:
3476   case SK_PassByIndirectRestore:
3477   case SK_ProduceObjCObject:
3478   case SK_StdInitializerList:
3479   case SK_StdInitializerListConstructorCall:
3480   case SK_OCLSamplerInit:
3481   case SK_OCLZeroOpaqueType:
3482     break;
3483 
3484   case SK_ConversionSequence:
3485   case SK_ConversionSequenceNoNarrowing:
3486     delete ICS;
3487   }
3488 }
3489 
3490 bool InitializationSequence::isDirectReferenceBinding() const {
3491   // There can be some lvalue adjustments after the SK_BindReference step.
3492   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3493     if (I->Kind == SK_BindReference)
3494       return true;
3495     if (I->Kind == SK_BindReferenceToTemporary)
3496       return false;
3497   }
3498   return false;
3499 }
3500 
3501 bool InitializationSequence::isAmbiguous() const {
3502   if (!Failed())
3503     return false;
3504 
3505   switch (getFailureKind()) {
3506   case FK_TooManyInitsForReference:
3507   case FK_ParenthesizedListInitForReference:
3508   case FK_ArrayNeedsInitList:
3509   case FK_ArrayNeedsInitListOrStringLiteral:
3510   case FK_ArrayNeedsInitListOrWideStringLiteral:
3511   case FK_NarrowStringIntoWideCharArray:
3512   case FK_WideStringIntoCharArray:
3513   case FK_IncompatWideStringIntoWideChar:
3514   case FK_PlainStringIntoUTF8Char:
3515   case FK_UTF8StringIntoPlainChar:
3516   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3517   case FK_NonConstLValueReferenceBindingToTemporary:
3518   case FK_NonConstLValueReferenceBindingToBitfield:
3519   case FK_NonConstLValueReferenceBindingToVectorElement:
3520   case FK_NonConstLValueReferenceBindingToMatrixElement:
3521   case FK_NonConstLValueReferenceBindingToUnrelated:
3522   case FK_RValueReferenceBindingToLValue:
3523   case FK_ReferenceAddrspaceMismatchTemporary:
3524   case FK_ReferenceInitDropsQualifiers:
3525   case FK_ReferenceInitFailed:
3526   case FK_ConversionFailed:
3527   case FK_ConversionFromPropertyFailed:
3528   case FK_TooManyInitsForScalar:
3529   case FK_ParenthesizedListInitForScalar:
3530   case FK_ReferenceBindingToInitList:
3531   case FK_InitListBadDestinationType:
3532   case FK_DefaultInitOfConst:
3533   case FK_Incomplete:
3534   case FK_ArrayTypeMismatch:
3535   case FK_NonConstantArrayInit:
3536   case FK_ListInitializationFailed:
3537   case FK_VariableLengthArrayHasInitializer:
3538   case FK_PlaceholderType:
3539   case FK_ExplicitConstructor:
3540   case FK_AddressOfUnaddressableFunction:
3541     return false;
3542 
3543   case FK_ReferenceInitOverloadFailed:
3544   case FK_UserConversionOverloadFailed:
3545   case FK_ConstructorOverloadFailed:
3546   case FK_ListConstructorOverloadFailed:
3547     return FailedOverloadResult == OR_Ambiguous;
3548   }
3549 
3550   llvm_unreachable("Invalid EntityKind!");
3551 }
3552 
3553 bool InitializationSequence::isConstructorInitialization() const {
3554   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3555 }
3556 
3557 void
3558 InitializationSequence
3559 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3560                                    DeclAccessPair Found,
3561                                    bool HadMultipleCandidates) {
3562   Step S;
3563   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3564   S.Type = Function->getType();
3565   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3566   S.Function.Function = Function;
3567   S.Function.FoundDecl = Found;
3568   Steps.push_back(S);
3569 }
3570 
3571 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3572                                                       ExprValueKind VK) {
3573   Step S;
3574   switch (VK) {
3575   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3576   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3577   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3578   }
3579   S.Type = BaseType;
3580   Steps.push_back(S);
3581 }
3582 
3583 void InitializationSequence::AddReferenceBindingStep(QualType T,
3584                                                      bool BindingTemporary) {
3585   Step S;
3586   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3587   S.Type = T;
3588   Steps.push_back(S);
3589 }
3590 
3591 void InitializationSequence::AddFinalCopy(QualType T) {
3592   Step S;
3593   S.Kind = SK_FinalCopy;
3594   S.Type = T;
3595   Steps.push_back(S);
3596 }
3597 
3598 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3599   Step S;
3600   S.Kind = SK_ExtraneousCopyToTemporary;
3601   S.Type = T;
3602   Steps.push_back(S);
3603 }
3604 
3605 void
3606 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3607                                               DeclAccessPair FoundDecl,
3608                                               QualType T,
3609                                               bool HadMultipleCandidates) {
3610   Step S;
3611   S.Kind = SK_UserConversion;
3612   S.Type = T;
3613   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3614   S.Function.Function = Function;
3615   S.Function.FoundDecl = FoundDecl;
3616   Steps.push_back(S);
3617 }
3618 
3619 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3620                                                             ExprValueKind VK) {
3621   Step S;
3622   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3623   switch (VK) {
3624   case VK_RValue:
3625     S.Kind = SK_QualificationConversionRValue;
3626     break;
3627   case VK_XValue:
3628     S.Kind = SK_QualificationConversionXValue;
3629     break;
3630   case VK_LValue:
3631     S.Kind = SK_QualificationConversionLValue;
3632     break;
3633   }
3634   S.Type = Ty;
3635   Steps.push_back(S);
3636 }
3637 
3638 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3639   Step S;
3640   S.Kind = SK_FunctionReferenceConversion;
3641   S.Type = Ty;
3642   Steps.push_back(S);
3643 }
3644 
3645 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3646   Step S;
3647   S.Kind = SK_AtomicConversion;
3648   S.Type = Ty;
3649   Steps.push_back(S);
3650 }
3651 
3652 void InitializationSequence::AddConversionSequenceStep(
3653     const ImplicitConversionSequence &ICS, QualType T,
3654     bool TopLevelOfInitList) {
3655   Step S;
3656   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3657                               : SK_ConversionSequence;
3658   S.Type = T;
3659   S.ICS = new ImplicitConversionSequence(ICS);
3660   Steps.push_back(S);
3661 }
3662 
3663 void InitializationSequence::AddListInitializationStep(QualType T) {
3664   Step S;
3665   S.Kind = SK_ListInitialization;
3666   S.Type = T;
3667   Steps.push_back(S);
3668 }
3669 
3670 void InitializationSequence::AddConstructorInitializationStep(
3671     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3672     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3673   Step S;
3674   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3675                                      : SK_ConstructorInitializationFromList
3676                         : SK_ConstructorInitialization;
3677   S.Type = T;
3678   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3679   S.Function.Function = Constructor;
3680   S.Function.FoundDecl = FoundDecl;
3681   Steps.push_back(S);
3682 }
3683 
3684 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3685   Step S;
3686   S.Kind = SK_ZeroInitialization;
3687   S.Type = T;
3688   Steps.push_back(S);
3689 }
3690 
3691 void InitializationSequence::AddCAssignmentStep(QualType T) {
3692   Step S;
3693   S.Kind = SK_CAssignment;
3694   S.Type = T;
3695   Steps.push_back(S);
3696 }
3697 
3698 void InitializationSequence::AddStringInitStep(QualType T) {
3699   Step S;
3700   S.Kind = SK_StringInit;
3701   S.Type = T;
3702   Steps.push_back(S);
3703 }
3704 
3705 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3706   Step S;
3707   S.Kind = SK_ObjCObjectConversion;
3708   S.Type = T;
3709   Steps.push_back(S);
3710 }
3711 
3712 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3713   Step S;
3714   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3715   S.Type = T;
3716   Steps.push_back(S);
3717 }
3718 
3719 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3720   Step S;
3721   S.Kind = SK_ArrayLoopIndex;
3722   S.Type = EltT;
3723   Steps.insert(Steps.begin(), S);
3724 
3725   S.Kind = SK_ArrayLoopInit;
3726   S.Type = T;
3727   Steps.push_back(S);
3728 }
3729 
3730 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3731   Step S;
3732   S.Kind = SK_ParenthesizedArrayInit;
3733   S.Type = T;
3734   Steps.push_back(S);
3735 }
3736 
3737 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3738                                                               bool shouldCopy) {
3739   Step s;
3740   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3741                        : SK_PassByIndirectRestore);
3742   s.Type = type;
3743   Steps.push_back(s);
3744 }
3745 
3746 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3747   Step S;
3748   S.Kind = SK_ProduceObjCObject;
3749   S.Type = T;
3750   Steps.push_back(S);
3751 }
3752 
3753 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3754   Step S;
3755   S.Kind = SK_StdInitializerList;
3756   S.Type = T;
3757   Steps.push_back(S);
3758 }
3759 
3760 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3761   Step S;
3762   S.Kind = SK_OCLSamplerInit;
3763   S.Type = T;
3764   Steps.push_back(S);
3765 }
3766 
3767 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3768   Step S;
3769   S.Kind = SK_OCLZeroOpaqueType;
3770   S.Type = T;
3771   Steps.push_back(S);
3772 }
3773 
3774 void InitializationSequence::RewrapReferenceInitList(QualType T,
3775                                                      InitListExpr *Syntactic) {
3776   assert(Syntactic->getNumInits() == 1 &&
3777          "Can only rewrap trivial init lists.");
3778   Step S;
3779   S.Kind = SK_UnwrapInitList;
3780   S.Type = Syntactic->getInit(0)->getType();
3781   Steps.insert(Steps.begin(), S);
3782 
3783   S.Kind = SK_RewrapInitList;
3784   S.Type = T;
3785   S.WrappingSyntacticList = Syntactic;
3786   Steps.push_back(S);
3787 }
3788 
3789 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3790                                                 OverloadingResult Result) {
3791   setSequenceKind(FailedSequence);
3792   this->Failure = Failure;
3793   this->FailedOverloadResult = Result;
3794 }
3795 
3796 //===----------------------------------------------------------------------===//
3797 // Attempt initialization
3798 //===----------------------------------------------------------------------===//
3799 
3800 /// Tries to add a zero initializer. Returns true if that worked.
3801 static bool
3802 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3803                                    const InitializedEntity &Entity) {
3804   if (Entity.getKind() != InitializedEntity::EK_Variable)
3805     return false;
3806 
3807   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3808   if (VD->getInit() || VD->getEndLoc().isMacroID())
3809     return false;
3810 
3811   QualType VariableTy = VD->getType().getCanonicalType();
3812   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3813   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3814   if (!Init.empty()) {
3815     Sequence.AddZeroInitializationStep(Entity.getType());
3816     Sequence.SetZeroInitializationFixit(Init, Loc);
3817     return true;
3818   }
3819   return false;
3820 }
3821 
3822 static void MaybeProduceObjCObject(Sema &S,
3823                                    InitializationSequence &Sequence,
3824                                    const InitializedEntity &Entity) {
3825   if (!S.getLangOpts().ObjCAutoRefCount) return;
3826 
3827   /// When initializing a parameter, produce the value if it's marked
3828   /// __attribute__((ns_consumed)).
3829   if (Entity.isParameterKind()) {
3830     if (!Entity.isParameterConsumed())
3831       return;
3832 
3833     assert(Entity.getType()->isObjCRetainableType() &&
3834            "consuming an object of unretainable type?");
3835     Sequence.AddProduceObjCObjectStep(Entity.getType());
3836 
3837   /// When initializing a return value, if the return type is a
3838   /// retainable type, then returns need to immediately retain the
3839   /// object.  If an autorelease is required, it will be done at the
3840   /// last instant.
3841   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3842              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3843     if (!Entity.getType()->isObjCRetainableType())
3844       return;
3845 
3846     Sequence.AddProduceObjCObjectStep(Entity.getType());
3847   }
3848 }
3849 
3850 static void TryListInitialization(Sema &S,
3851                                   const InitializedEntity &Entity,
3852                                   const InitializationKind &Kind,
3853                                   InitListExpr *InitList,
3854                                   InitializationSequence &Sequence,
3855                                   bool TreatUnavailableAsInvalid);
3856 
3857 /// When initializing from init list via constructor, handle
3858 /// initialization of an object of type std::initializer_list<T>.
3859 ///
3860 /// \return true if we have handled initialization of an object of type
3861 /// std::initializer_list<T>, false otherwise.
3862 static bool TryInitializerListConstruction(Sema &S,
3863                                            InitListExpr *List,
3864                                            QualType DestType,
3865                                            InitializationSequence &Sequence,
3866                                            bool TreatUnavailableAsInvalid) {
3867   QualType E;
3868   if (!S.isStdInitializerList(DestType, &E))
3869     return false;
3870 
3871   if (!S.isCompleteType(List->getExprLoc(), E)) {
3872     Sequence.setIncompleteTypeFailure(E);
3873     return true;
3874   }
3875 
3876   // Try initializing a temporary array from the init list.
3877   QualType ArrayType = S.Context.getConstantArrayType(
3878       E.withConst(),
3879       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3880                   List->getNumInits()),
3881       nullptr, clang::ArrayType::Normal, 0);
3882   InitializedEntity HiddenArray =
3883       InitializedEntity::InitializeTemporary(ArrayType);
3884   InitializationKind Kind = InitializationKind::CreateDirectList(
3885       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3886   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3887                         TreatUnavailableAsInvalid);
3888   if (Sequence)
3889     Sequence.AddStdInitializerListConstructionStep(DestType);
3890   return true;
3891 }
3892 
3893 /// Determine if the constructor has the signature of a copy or move
3894 /// constructor for the type T of the class in which it was found. That is,
3895 /// determine if its first parameter is of type T or reference to (possibly
3896 /// cv-qualified) T.
3897 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3898                                    const ConstructorInfo &Info) {
3899   if (Info.Constructor->getNumParams() == 0)
3900     return false;
3901 
3902   QualType ParmT =
3903       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3904   QualType ClassT =
3905       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3906 
3907   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3908 }
3909 
3910 static OverloadingResult
3911 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3912                            MultiExprArg Args,
3913                            OverloadCandidateSet &CandidateSet,
3914                            QualType DestType,
3915                            DeclContext::lookup_result Ctors,
3916                            OverloadCandidateSet::iterator &Best,
3917                            bool CopyInitializing, bool AllowExplicit,
3918                            bool OnlyListConstructors, bool IsListInit,
3919                            bool SecondStepOfCopyInit = false) {
3920   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3921   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3922 
3923   for (NamedDecl *D : Ctors) {
3924     auto Info = getConstructorInfo(D);
3925     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3926       continue;
3927 
3928     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3929       continue;
3930 
3931     // C++11 [over.best.ics]p4:
3932     //   ... and the constructor or user-defined conversion function is a
3933     //   candidate by
3934     //   - 13.3.1.3, when the argument is the temporary in the second step
3935     //     of a class copy-initialization, or
3936     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3937     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3938     //     one element that is itself an initializer list, and the target is
3939     //     the first parameter of a constructor of class X, and the conversion
3940     //     is to X or reference to (possibly cv-qualified X),
3941     //   user-defined conversion sequences are not considered.
3942     bool SuppressUserConversions =
3943         SecondStepOfCopyInit ||
3944         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3945          hasCopyOrMoveCtorParam(S.Context, Info));
3946 
3947     if (Info.ConstructorTmpl)
3948       S.AddTemplateOverloadCandidate(
3949           Info.ConstructorTmpl, Info.FoundDecl,
3950           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3951           /*PartialOverloading=*/false, AllowExplicit);
3952     else {
3953       // C++ [over.match.copy]p1:
3954       //   - When initializing a temporary to be bound to the first parameter
3955       //     of a constructor [for type T] that takes a reference to possibly
3956       //     cv-qualified T as its first argument, called with a single
3957       //     argument in the context of direct-initialization, explicit
3958       //     conversion functions are also considered.
3959       // FIXME: What if a constructor template instantiates to such a signature?
3960       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3961                                Args.size() == 1 &&
3962                                hasCopyOrMoveCtorParam(S.Context, Info);
3963       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3964                              CandidateSet, SuppressUserConversions,
3965                              /*PartialOverloading=*/false, AllowExplicit,
3966                              AllowExplicitConv);
3967     }
3968   }
3969 
3970   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3971   //
3972   // When initializing an object of class type T by constructor
3973   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3974   // from a single expression of class type U, conversion functions of
3975   // U that convert to the non-reference type cv T are candidates.
3976   // Explicit conversion functions are only candidates during
3977   // direct-initialization.
3978   //
3979   // Note: SecondStepOfCopyInit is only ever true in this case when
3980   // evaluating whether to produce a C++98 compatibility warning.
3981   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3982       !SecondStepOfCopyInit) {
3983     Expr *Initializer = Args[0];
3984     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3985     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3986       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3987       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3988         NamedDecl *D = *I;
3989         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3990         D = D->getUnderlyingDecl();
3991 
3992         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3993         CXXConversionDecl *Conv;
3994         if (ConvTemplate)
3995           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3996         else
3997           Conv = cast<CXXConversionDecl>(D);
3998 
3999         if (ConvTemplate)
4000           S.AddTemplateConversionCandidate(
4001               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4002               CandidateSet, AllowExplicit, AllowExplicit,
4003               /*AllowResultConversion*/ false);
4004         else
4005           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4006                                    DestType, CandidateSet, AllowExplicit,
4007                                    AllowExplicit,
4008                                    /*AllowResultConversion*/ false);
4009       }
4010     }
4011   }
4012 
4013   // Perform overload resolution and return the result.
4014   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4015 }
4016 
4017 /// Attempt initialization by constructor (C++ [dcl.init]), which
4018 /// enumerates the constructors of the initialized entity and performs overload
4019 /// resolution to select the best.
4020 /// \param DestType       The destination class type.
4021 /// \param DestArrayType  The destination type, which is either DestType or
4022 ///                       a (possibly multidimensional) array of DestType.
4023 /// \param IsListInit     Is this list-initialization?
4024 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4025 ///                       list-initialization from {x} where x is the same
4026 ///                       type as the entity?
4027 static void TryConstructorInitialization(Sema &S,
4028                                          const InitializedEntity &Entity,
4029                                          const InitializationKind &Kind,
4030                                          MultiExprArg Args, QualType DestType,
4031                                          QualType DestArrayType,
4032                                          InitializationSequence &Sequence,
4033                                          bool IsListInit = false,
4034                                          bool IsInitListCopy = false) {
4035   assert(((!IsListInit && !IsInitListCopy) ||
4036           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4037          "IsListInit/IsInitListCopy must come with a single initializer list "
4038          "argument.");
4039   InitListExpr *ILE =
4040       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4041   MultiExprArg UnwrappedArgs =
4042       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4043 
4044   // The type we're constructing needs to be complete.
4045   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4046     Sequence.setIncompleteTypeFailure(DestType);
4047     return;
4048   }
4049 
4050   // C++17 [dcl.init]p17:
4051   //     - If the initializer expression is a prvalue and the cv-unqualified
4052   //       version of the source type is the same class as the class of the
4053   //       destination, the initializer expression is used to initialize the
4054   //       destination object.
4055   // Per DR (no number yet), this does not apply when initializing a base
4056   // class or delegating to another constructor from a mem-initializer.
4057   // ObjC++: Lambda captured by the block in the lambda to block conversion
4058   // should avoid copy elision.
4059   if (S.getLangOpts().CPlusPlus17 &&
4060       Entity.getKind() != InitializedEntity::EK_Base &&
4061       Entity.getKind() != InitializedEntity::EK_Delegating &&
4062       Entity.getKind() !=
4063           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4064       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4065       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4066     // Convert qualifications if necessary.
4067     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4068     if (ILE)
4069       Sequence.RewrapReferenceInitList(DestType, ILE);
4070     return;
4071   }
4072 
4073   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4074   assert(DestRecordType && "Constructor initialization requires record type");
4075   CXXRecordDecl *DestRecordDecl
4076     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4077 
4078   // Build the candidate set directly in the initialization sequence
4079   // structure, so that it will persist if we fail.
4080   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4081 
4082   // Determine whether we are allowed to call explicit constructors or
4083   // explicit conversion operators.
4084   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4085   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4086 
4087   //   - Otherwise, if T is a class type, constructors are considered. The
4088   //     applicable constructors are enumerated, and the best one is chosen
4089   //     through overload resolution.
4090   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4091 
4092   OverloadingResult Result = OR_No_Viable_Function;
4093   OverloadCandidateSet::iterator Best;
4094   bool AsInitializerList = false;
4095 
4096   // C++11 [over.match.list]p1, per DR1467:
4097   //   When objects of non-aggregate type T are list-initialized, such that
4098   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4099   //   according to the rules in this section, overload resolution selects
4100   //   the constructor in two phases:
4101   //
4102   //   - Initially, the candidate functions are the initializer-list
4103   //     constructors of the class T and the argument list consists of the
4104   //     initializer list as a single argument.
4105   if (IsListInit) {
4106     AsInitializerList = true;
4107 
4108     // If the initializer list has no elements and T has a default constructor,
4109     // the first phase is omitted.
4110     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4111       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4112                                           CandidateSet, DestType, Ctors, Best,
4113                                           CopyInitialization, AllowExplicit,
4114                                           /*OnlyListConstructors=*/true,
4115                                           IsListInit);
4116   }
4117 
4118   // C++11 [over.match.list]p1:
4119   //   - If no viable initializer-list constructor is found, overload resolution
4120   //     is performed again, where the candidate functions are all the
4121   //     constructors of the class T and the argument list consists of the
4122   //     elements of the initializer list.
4123   if (Result == OR_No_Viable_Function) {
4124     AsInitializerList = false;
4125     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4126                                         CandidateSet, DestType, Ctors, Best,
4127                                         CopyInitialization, AllowExplicit,
4128                                         /*OnlyListConstructors=*/false,
4129                                         IsListInit);
4130   }
4131   if (Result) {
4132     Sequence.SetOverloadFailure(
4133         IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4134                    : InitializationSequence::FK_ConstructorOverloadFailed,
4135         Result);
4136 
4137     if (Result != OR_Deleted)
4138       return;
4139   }
4140 
4141   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4142 
4143   // In C++17, ResolveConstructorOverload can select a conversion function
4144   // instead of a constructor.
4145   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4146     // Add the user-defined conversion step that calls the conversion function.
4147     QualType ConvType = CD->getConversionType();
4148     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4149            "should not have selected this conversion function");
4150     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4151                                    HadMultipleCandidates);
4152     if (!S.Context.hasSameType(ConvType, DestType))
4153       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4154     if (IsListInit)
4155       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4156     return;
4157   }
4158 
4159   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4160   if (Result != OR_Deleted) {
4161     // C++11 [dcl.init]p6:
4162     //   If a program calls for the default initialization of an object
4163     //   of a const-qualified type T, T shall be a class type with a
4164     //   user-provided default constructor.
4165     // C++ core issue 253 proposal:
4166     //   If the implicit default constructor initializes all subobjects, no
4167     //   initializer should be required.
4168     // The 253 proposal is for example needed to process libstdc++ headers
4169     // in 5.x.
4170     if (Kind.getKind() == InitializationKind::IK_Default &&
4171         Entity.getType().isConstQualified()) {
4172       if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4173         if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4174           Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4175         return;
4176       }
4177     }
4178 
4179     // C++11 [over.match.list]p1:
4180     //   In copy-list-initialization, if an explicit constructor is chosen, the
4181     //   initializer is ill-formed.
4182     if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4183       Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4184       return;
4185     }
4186   }
4187 
4188   // [class.copy.elision]p3:
4189   // In some copy-initialization contexts, a two-stage overload resolution
4190   // is performed.
4191   // If the first overload resolution selects a deleted function, we also
4192   // need the initialization sequence to decide whether to perform the second
4193   // overload resolution.
4194   // For deleted functions in other contexts, there is no need to get the
4195   // initialization sequence.
4196   if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4197     return;
4198 
4199   // Add the constructor initialization step. Any cv-qualification conversion is
4200   // subsumed by the initialization.
4201   Sequence.AddConstructorInitializationStep(
4202       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4203       IsListInit | IsInitListCopy, AsInitializerList);
4204 }
4205 
4206 static bool
4207 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4208                                              Expr *Initializer,
4209                                              QualType &SourceType,
4210                                              QualType &UnqualifiedSourceType,
4211                                              QualType UnqualifiedTargetType,
4212                                              InitializationSequence &Sequence) {
4213   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4214         S.Context.OverloadTy) {
4215     DeclAccessPair Found;
4216     bool HadMultipleCandidates = false;
4217     if (FunctionDecl *Fn
4218         = S.ResolveAddressOfOverloadedFunction(Initializer,
4219                                                UnqualifiedTargetType,
4220                                                false, Found,
4221                                                &HadMultipleCandidates)) {
4222       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4223                                                 HadMultipleCandidates);
4224       SourceType = Fn->getType();
4225       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4226     } else if (!UnqualifiedTargetType->isRecordType()) {
4227       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4228       return true;
4229     }
4230   }
4231   return false;
4232 }
4233 
4234 static void TryReferenceInitializationCore(Sema &S,
4235                                            const InitializedEntity &Entity,
4236                                            const InitializationKind &Kind,
4237                                            Expr *Initializer,
4238                                            QualType cv1T1, QualType T1,
4239                                            Qualifiers T1Quals,
4240                                            QualType cv2T2, QualType T2,
4241                                            Qualifiers T2Quals,
4242                                            InitializationSequence &Sequence);
4243 
4244 static void TryValueInitialization(Sema &S,
4245                                    const InitializedEntity &Entity,
4246                                    const InitializationKind &Kind,
4247                                    InitializationSequence &Sequence,
4248                                    InitListExpr *InitList = nullptr);
4249 
4250 /// Attempt list initialization of a reference.
4251 static void TryReferenceListInitialization(Sema &S,
4252                                            const InitializedEntity &Entity,
4253                                            const InitializationKind &Kind,
4254                                            InitListExpr *InitList,
4255                                            InitializationSequence &Sequence,
4256                                            bool TreatUnavailableAsInvalid) {
4257   // First, catch C++03 where this isn't possible.
4258   if (!S.getLangOpts().CPlusPlus11) {
4259     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4260     return;
4261   }
4262   // Can't reference initialize a compound literal.
4263   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4264     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4265     return;
4266   }
4267 
4268   QualType DestType = Entity.getType();
4269   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4270   Qualifiers T1Quals;
4271   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4272 
4273   // Reference initialization via an initializer list works thus:
4274   // If the initializer list consists of a single element that is
4275   // reference-related to the referenced type, bind directly to that element
4276   // (possibly creating temporaries).
4277   // Otherwise, initialize a temporary with the initializer list and
4278   // bind to that.
4279   if (InitList->getNumInits() == 1) {
4280     Expr *Initializer = InitList->getInit(0);
4281     QualType cv2T2 = S.getCompletedType(Initializer);
4282     Qualifiers T2Quals;
4283     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4284 
4285     // If this fails, creating a temporary wouldn't work either.
4286     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4287                                                      T1, Sequence))
4288       return;
4289 
4290     SourceLocation DeclLoc = Initializer->getBeginLoc();
4291     Sema::ReferenceCompareResult RefRelationship
4292       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4293     if (RefRelationship >= Sema::Ref_Related) {
4294       // Try to bind the reference here.
4295       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4296                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4297       if (Sequence)
4298         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4299       return;
4300     }
4301 
4302     // Update the initializer if we've resolved an overloaded function.
4303     if (Sequence.step_begin() != Sequence.step_end())
4304       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4305   }
4306   // Perform address space compatibility check.
4307   QualType cv1T1IgnoreAS = cv1T1;
4308   if (T1Quals.hasAddressSpace()) {
4309     Qualifiers T2Quals;
4310     (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4311     if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4312       Sequence.SetFailed(
4313           InitializationSequence::FK_ReferenceInitDropsQualifiers);
4314       return;
4315     }
4316     // Ignore address space of reference type at this point and perform address
4317     // space conversion after the reference binding step.
4318     cv1T1IgnoreAS =
4319         S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4320   }
4321   // Not reference-related. Create a temporary and bind to that.
4322   InitializedEntity TempEntity =
4323       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4324 
4325   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4326                         TreatUnavailableAsInvalid);
4327   if (Sequence) {
4328     if (DestType->isRValueReferenceType() ||
4329         (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4330       Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4331                                        /*BindingTemporary=*/true);
4332       if (T1Quals.hasAddressSpace())
4333         Sequence.AddQualificationConversionStep(
4334             cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4335     } else
4336       Sequence.SetFailed(
4337           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4338   }
4339 }
4340 
4341 /// Attempt list initialization (C++0x [dcl.init.list])
4342 static void TryListInitialization(Sema &S,
4343                                   const InitializedEntity &Entity,
4344                                   const InitializationKind &Kind,
4345                                   InitListExpr *InitList,
4346                                   InitializationSequence &Sequence,
4347                                   bool TreatUnavailableAsInvalid) {
4348   QualType DestType = Entity.getType();
4349 
4350   // C++ doesn't allow scalar initialization with more than one argument.
4351   // But C99 complex numbers are scalars and it makes sense there.
4352   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4353       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4354     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4355     return;
4356   }
4357   if (DestType->isReferenceType()) {
4358     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4359                                    TreatUnavailableAsInvalid);
4360     return;
4361   }
4362 
4363   if (DestType->isRecordType() &&
4364       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4365     Sequence.setIncompleteTypeFailure(DestType);
4366     return;
4367   }
4368 
4369   // C++11 [dcl.init.list]p3, per DR1467:
4370   // - If T is a class type and the initializer list has a single element of
4371   //   type cv U, where U is T or a class derived from T, the object is
4372   //   initialized from that element (by copy-initialization for
4373   //   copy-list-initialization, or by direct-initialization for
4374   //   direct-list-initialization).
4375   // - Otherwise, if T is a character array and the initializer list has a
4376   //   single element that is an appropriately-typed string literal
4377   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4378   //   in that section.
4379   // - Otherwise, if T is an aggregate, [...] (continue below).
4380   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4381     if (DestType->isRecordType()) {
4382       QualType InitType = InitList->getInit(0)->getType();
4383       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4384           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4385         Expr *InitListAsExpr = InitList;
4386         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4387                                      DestType, Sequence,
4388                                      /*InitListSyntax*/false,
4389                                      /*IsInitListCopy*/true);
4390         return;
4391       }
4392     }
4393     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4394       Expr *SubInit[1] = {InitList->getInit(0)};
4395       if (!isa<VariableArrayType>(DestAT) &&
4396           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4397         InitializationKind SubKind =
4398             Kind.getKind() == InitializationKind::IK_DirectList
4399                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4400                                                    InitList->getLBraceLoc(),
4401                                                    InitList->getRBraceLoc())
4402                 : Kind;
4403         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4404                                 /*TopLevelOfInitList*/ true,
4405                                 TreatUnavailableAsInvalid);
4406 
4407         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4408         // the element is not an appropriately-typed string literal, in which
4409         // case we should proceed as in C++11 (below).
4410         if (Sequence) {
4411           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4412           return;
4413         }
4414       }
4415     }
4416   }
4417 
4418   // C++11 [dcl.init.list]p3:
4419   //   - If T is an aggregate, aggregate initialization is performed.
4420   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4421       (S.getLangOpts().CPlusPlus11 &&
4422        S.isStdInitializerList(DestType, nullptr))) {
4423     if (S.getLangOpts().CPlusPlus11) {
4424       //   - Otherwise, if the initializer list has no elements and T is a
4425       //     class type with a default constructor, the object is
4426       //     value-initialized.
4427       if (InitList->getNumInits() == 0) {
4428         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4429         if (S.LookupDefaultConstructor(RD)) {
4430           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4431           return;
4432         }
4433       }
4434 
4435       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4436       //     an initializer_list object constructed [...]
4437       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4438                                          TreatUnavailableAsInvalid))
4439         return;
4440 
4441       //   - Otherwise, if T is a class type, constructors are considered.
4442       Expr *InitListAsExpr = InitList;
4443       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4444                                    DestType, Sequence, /*InitListSyntax*/true);
4445     } else
4446       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4447     return;
4448   }
4449 
4450   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4451       InitList->getNumInits() == 1) {
4452     Expr *E = InitList->getInit(0);
4453 
4454     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4455     //     the initializer-list has a single element v, and the initialization
4456     //     is direct-list-initialization, the object is initialized with the
4457     //     value T(v); if a narrowing conversion is required to convert v to
4458     //     the underlying type of T, the program is ill-formed.
4459     auto *ET = DestType->getAs<EnumType>();
4460     if (S.getLangOpts().CPlusPlus17 &&
4461         Kind.getKind() == InitializationKind::IK_DirectList &&
4462         ET && ET->getDecl()->isFixed() &&
4463         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4464         (E->getType()->isIntegralOrEnumerationType() ||
4465          E->getType()->isFloatingType())) {
4466       // There are two ways that T(v) can work when T is an enumeration type.
4467       // If there is either an implicit conversion sequence from v to T or
4468       // a conversion function that can convert from v to T, then we use that.
4469       // Otherwise, if v is of integral, enumeration, or floating-point type,
4470       // it is converted to the enumeration type via its underlying type.
4471       // There is no overlap possible between these two cases (except when the
4472       // source value is already of the destination type), and the first
4473       // case is handled by the general case for single-element lists below.
4474       ImplicitConversionSequence ICS;
4475       ICS.setStandard();
4476       ICS.Standard.setAsIdentityConversion();
4477       if (!E->isRValue())
4478         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4479       // If E is of a floating-point type, then the conversion is ill-formed
4480       // due to narrowing, but go through the motions in order to produce the
4481       // right diagnostic.
4482       ICS.Standard.Second = E->getType()->isFloatingType()
4483                                 ? ICK_Floating_Integral
4484                                 : ICK_Integral_Conversion;
4485       ICS.Standard.setFromType(E->getType());
4486       ICS.Standard.setToType(0, E->getType());
4487       ICS.Standard.setToType(1, DestType);
4488       ICS.Standard.setToType(2, DestType);
4489       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4490                                          /*TopLevelOfInitList*/true);
4491       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4492       return;
4493     }
4494 
4495     //   - Otherwise, if the initializer list has a single element of type E
4496     //     [...references are handled above...], the object or reference is
4497     //     initialized from that element (by copy-initialization for
4498     //     copy-list-initialization, or by direct-initialization for
4499     //     direct-list-initialization); if a narrowing conversion is required
4500     //     to convert the element to T, the program is ill-formed.
4501     //
4502     // Per core-24034, this is direct-initialization if we were performing
4503     // direct-list-initialization and copy-initialization otherwise.
4504     // We can't use InitListChecker for this, because it always performs
4505     // copy-initialization. This only matters if we might use an 'explicit'
4506     // conversion operator, or for the special case conversion of nullptr_t to
4507     // bool, so we only need to handle those cases.
4508     //
4509     // FIXME: Why not do this in all cases?
4510     Expr *Init = InitList->getInit(0);
4511     if (Init->getType()->isRecordType() ||
4512         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4513       InitializationKind SubKind =
4514           Kind.getKind() == InitializationKind::IK_DirectList
4515               ? InitializationKind::CreateDirect(Kind.getLocation(),
4516                                                  InitList->getLBraceLoc(),
4517                                                  InitList->getRBraceLoc())
4518               : Kind;
4519       Expr *SubInit[1] = { Init };
4520       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4521                               /*TopLevelOfInitList*/true,
4522                               TreatUnavailableAsInvalid);
4523       if (Sequence)
4524         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4525       return;
4526     }
4527   }
4528 
4529   InitListChecker CheckInitList(S, Entity, InitList,
4530           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4531   if (CheckInitList.HadError()) {
4532     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4533     return;
4534   }
4535 
4536   // Add the list initialization step with the built init list.
4537   Sequence.AddListInitializationStep(DestType);
4538 }
4539 
4540 /// Try a reference initialization that involves calling a conversion
4541 /// function.
4542 static OverloadingResult TryRefInitWithConversionFunction(
4543     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4544     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4545     InitializationSequence &Sequence) {
4546   QualType DestType = Entity.getType();
4547   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4548   QualType T1 = cv1T1.getUnqualifiedType();
4549   QualType cv2T2 = Initializer->getType();
4550   QualType T2 = cv2T2.getUnqualifiedType();
4551 
4552   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4553          "Must have incompatible references when binding via conversion");
4554 
4555   // Build the candidate set directly in the initialization sequence
4556   // structure, so that it will persist if we fail.
4557   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4558   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4559 
4560   // Determine whether we are allowed to call explicit conversion operators.
4561   // Note that none of [over.match.copy], [over.match.conv], nor
4562   // [over.match.ref] permit an explicit constructor to be chosen when
4563   // initializing a reference, not even for direct-initialization.
4564   bool AllowExplicitCtors = false;
4565   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4566 
4567   const RecordType *T1RecordType = nullptr;
4568   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4569       S.isCompleteType(Kind.getLocation(), T1)) {
4570     // The type we're converting to is a class type. Enumerate its constructors
4571     // to see if there is a suitable conversion.
4572     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4573 
4574     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4575       auto Info = getConstructorInfo(D);
4576       if (!Info.Constructor)
4577         continue;
4578 
4579       if (!Info.Constructor->isInvalidDecl() &&
4580           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4581         if (Info.ConstructorTmpl)
4582           S.AddTemplateOverloadCandidate(
4583               Info.ConstructorTmpl, Info.FoundDecl,
4584               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4585               /*SuppressUserConversions=*/true,
4586               /*PartialOverloading*/ false, AllowExplicitCtors);
4587         else
4588           S.AddOverloadCandidate(
4589               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4590               /*SuppressUserConversions=*/true,
4591               /*PartialOverloading*/ false, AllowExplicitCtors);
4592       }
4593     }
4594   }
4595   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4596     return OR_No_Viable_Function;
4597 
4598   const RecordType *T2RecordType = nullptr;
4599   if ((T2RecordType = T2->getAs<RecordType>()) &&
4600       S.isCompleteType(Kind.getLocation(), T2)) {
4601     // The type we're converting from is a class type, enumerate its conversion
4602     // functions.
4603     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4604 
4605     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4606     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4607       NamedDecl *D = *I;
4608       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4609       if (isa<UsingShadowDecl>(D))
4610         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4611 
4612       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4613       CXXConversionDecl *Conv;
4614       if (ConvTemplate)
4615         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4616       else
4617         Conv = cast<CXXConversionDecl>(D);
4618 
4619       // If the conversion function doesn't return a reference type,
4620       // it can't be considered for this conversion unless we're allowed to
4621       // consider rvalues.
4622       // FIXME: Do we need to make sure that we only consider conversion
4623       // candidates with reference-compatible results? That might be needed to
4624       // break recursion.
4625       if ((AllowRValues ||
4626            Conv->getConversionType()->isLValueReferenceType())) {
4627         if (ConvTemplate)
4628           S.AddTemplateConversionCandidate(
4629               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4630               CandidateSet,
4631               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4632         else
4633           S.AddConversionCandidate(
4634               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4635               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4636       }
4637     }
4638   }
4639   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4640     return OR_No_Viable_Function;
4641 
4642   SourceLocation DeclLoc = Initializer->getBeginLoc();
4643 
4644   // Perform overload resolution. If it fails, return the failed result.
4645   OverloadCandidateSet::iterator Best;
4646   if (OverloadingResult Result
4647         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4648     return Result;
4649 
4650   FunctionDecl *Function = Best->Function;
4651   // This is the overload that will be used for this initialization step if we
4652   // use this initialization. Mark it as referenced.
4653   Function->setReferenced();
4654 
4655   // Compute the returned type and value kind of the conversion.
4656   QualType cv3T3;
4657   if (isa<CXXConversionDecl>(Function))
4658     cv3T3 = Function->getReturnType();
4659   else
4660     cv3T3 = T1;
4661 
4662   ExprValueKind VK = VK_RValue;
4663   if (cv3T3->isLValueReferenceType())
4664     VK = VK_LValue;
4665   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4666     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4667   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4668 
4669   // Add the user-defined conversion step.
4670   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4671   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4672                                  HadMultipleCandidates);
4673 
4674   // Determine whether we'll need to perform derived-to-base adjustments or
4675   // other conversions.
4676   Sema::ReferenceConversions RefConv;
4677   Sema::ReferenceCompareResult NewRefRelationship =
4678       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4679 
4680   // Add the final conversion sequence, if necessary.
4681   if (NewRefRelationship == Sema::Ref_Incompatible) {
4682     assert(!isa<CXXConstructorDecl>(Function) &&
4683            "should not have conversion after constructor");
4684 
4685     ImplicitConversionSequence ICS;
4686     ICS.setStandard();
4687     ICS.Standard = Best->FinalConversion;
4688     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4689 
4690     // Every implicit conversion results in a prvalue, except for a glvalue
4691     // derived-to-base conversion, which we handle below.
4692     cv3T3 = ICS.Standard.getToType(2);
4693     VK = VK_RValue;
4694   }
4695 
4696   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4697   //   type "cv1 T4" and the temporary materialization conversion is applied.
4698   //
4699   // We adjust the cv-qualifications to match the reference regardless of
4700   // whether we have a prvalue so that the AST records the change. In this
4701   // case, T4 is "cv3 T3".
4702   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4703   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4704     Sequence.AddQualificationConversionStep(cv1T4, VK);
4705   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4706   VK = IsLValueRef ? VK_LValue : VK_XValue;
4707 
4708   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4709     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4710   else if (RefConv & Sema::ReferenceConversions::ObjC)
4711     Sequence.AddObjCObjectConversionStep(cv1T1);
4712   else if (RefConv & Sema::ReferenceConversions::Function)
4713     Sequence.AddFunctionReferenceConversionStep(cv1T1);
4714   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4715     if (!S.Context.hasSameType(cv1T4, cv1T1))
4716       Sequence.AddQualificationConversionStep(cv1T1, VK);
4717   }
4718 
4719   return OR_Success;
4720 }
4721 
4722 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4723                                            const InitializedEntity &Entity,
4724                                            Expr *CurInitExpr);
4725 
4726 /// Attempt reference initialization (C++0x [dcl.init.ref])
4727 static void TryReferenceInitialization(Sema &S,
4728                                        const InitializedEntity &Entity,
4729                                        const InitializationKind &Kind,
4730                                        Expr *Initializer,
4731                                        InitializationSequence &Sequence) {
4732   QualType DestType = Entity.getType();
4733   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4734   Qualifiers T1Quals;
4735   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4736   QualType cv2T2 = S.getCompletedType(Initializer);
4737   Qualifiers T2Quals;
4738   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4739 
4740   // If the initializer is the address of an overloaded function, try
4741   // to resolve the overloaded function. If all goes well, T2 is the
4742   // type of the resulting function.
4743   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4744                                                    T1, Sequence))
4745     return;
4746 
4747   // Delegate everything else to a subfunction.
4748   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4749                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4750 }
4751 
4752 /// Determine whether an expression is a non-referenceable glvalue (one to
4753 /// which a reference can never bind). Attempting to bind a reference to
4754 /// such a glvalue will always create a temporary.
4755 static bool isNonReferenceableGLValue(Expr *E) {
4756   return E->refersToBitField() || E->refersToVectorElement() ||
4757          E->refersToMatrixElement();
4758 }
4759 
4760 /// Reference initialization without resolving overloaded functions.
4761 ///
4762 /// We also can get here in C if we call a builtin which is declared as
4763 /// a function with a parameter of reference type (such as __builtin_va_end()).
4764 static void TryReferenceInitializationCore(Sema &S,
4765                                            const InitializedEntity &Entity,
4766                                            const InitializationKind &Kind,
4767                                            Expr *Initializer,
4768                                            QualType cv1T1, QualType T1,
4769                                            Qualifiers T1Quals,
4770                                            QualType cv2T2, QualType T2,
4771                                            Qualifiers T2Quals,
4772                                            InitializationSequence &Sequence) {
4773   QualType DestType = Entity.getType();
4774   SourceLocation DeclLoc = Initializer->getBeginLoc();
4775 
4776   // Compute some basic properties of the types and the initializer.
4777   bool isLValueRef = DestType->isLValueReferenceType();
4778   bool isRValueRef = !isLValueRef;
4779   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4780 
4781   Sema::ReferenceConversions RefConv;
4782   Sema::ReferenceCompareResult RefRelationship =
4783       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4784 
4785   // C++0x [dcl.init.ref]p5:
4786   //   A reference to type "cv1 T1" is initialized by an expression of type
4787   //   "cv2 T2" as follows:
4788   //
4789   //     - If the reference is an lvalue reference and the initializer
4790   //       expression
4791   // Note the analogous bullet points for rvalue refs to functions. Because
4792   // there are no function rvalues in C++, rvalue refs to functions are treated
4793   // like lvalue refs.
4794   OverloadingResult ConvOvlResult = OR_Success;
4795   bool T1Function = T1->isFunctionType();
4796   if (isLValueRef || T1Function) {
4797     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4798         (RefRelationship == Sema::Ref_Compatible ||
4799          (Kind.isCStyleOrFunctionalCast() &&
4800           RefRelationship == Sema::Ref_Related))) {
4801       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4802       //     reference-compatible with "cv2 T2," or
4803       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4804                      Sema::ReferenceConversions::ObjC)) {
4805         // If we're converting the pointee, add any qualifiers first;
4806         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4807         if (RefConv & (Sema::ReferenceConversions::Qualification))
4808           Sequence.AddQualificationConversionStep(
4809               S.Context.getQualifiedType(T2, T1Quals),
4810               Initializer->getValueKind());
4811         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4812           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4813         else
4814           Sequence.AddObjCObjectConversionStep(cv1T1);
4815       } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4816         // Perform a (possibly multi-level) qualification conversion.
4817         Sequence.AddQualificationConversionStep(cv1T1,
4818                                                 Initializer->getValueKind());
4819       } else if (RefConv & Sema::ReferenceConversions::Function) {
4820         Sequence.AddFunctionReferenceConversionStep(cv1T1);
4821       }
4822 
4823       // We only create a temporary here when binding a reference to a
4824       // bit-field or vector element. Those cases are't supposed to be
4825       // handled by this bullet, but the outcome is the same either way.
4826       Sequence.AddReferenceBindingStep(cv1T1, false);
4827       return;
4828     }
4829 
4830     //     - has a class type (i.e., T2 is a class type), where T1 is not
4831     //       reference-related to T2, and can be implicitly converted to an
4832     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4833     //       with "cv3 T3" (this conversion is selected by enumerating the
4834     //       applicable conversion functions (13.3.1.6) and choosing the best
4835     //       one through overload resolution (13.3)),
4836     // If we have an rvalue ref to function type here, the rhs must be
4837     // an rvalue. DR1287 removed the "implicitly" here.
4838     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4839         (isLValueRef || InitCategory.isRValue())) {
4840       if (S.getLangOpts().CPlusPlus) {
4841         // Try conversion functions only for C++.
4842         ConvOvlResult = TryRefInitWithConversionFunction(
4843             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4844             /*IsLValueRef*/ isLValueRef, Sequence);
4845         if (ConvOvlResult == OR_Success)
4846           return;
4847         if (ConvOvlResult != OR_No_Viable_Function)
4848           Sequence.SetOverloadFailure(
4849               InitializationSequence::FK_ReferenceInitOverloadFailed,
4850               ConvOvlResult);
4851       } else {
4852         ConvOvlResult = OR_No_Viable_Function;
4853       }
4854     }
4855   }
4856 
4857   //     - Otherwise, the reference shall be an lvalue reference to a
4858   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4859   //       shall be an rvalue reference.
4860   //       For address spaces, we interpret this to mean that an addr space
4861   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4862   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4863                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4864     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4865       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4866     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4867       Sequence.SetOverloadFailure(
4868                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4869                                   ConvOvlResult);
4870     else if (!InitCategory.isLValue())
4871       Sequence.SetFailed(
4872           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4873               ? InitializationSequence::
4874                     FK_NonConstLValueReferenceBindingToTemporary
4875               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4876     else {
4877       InitializationSequence::FailureKind FK;
4878       switch (RefRelationship) {
4879       case Sema::Ref_Compatible:
4880         if (Initializer->refersToBitField())
4881           FK = InitializationSequence::
4882               FK_NonConstLValueReferenceBindingToBitfield;
4883         else if (Initializer->refersToVectorElement())
4884           FK = InitializationSequence::
4885               FK_NonConstLValueReferenceBindingToVectorElement;
4886         else if (Initializer->refersToMatrixElement())
4887           FK = InitializationSequence::
4888               FK_NonConstLValueReferenceBindingToMatrixElement;
4889         else
4890           llvm_unreachable("unexpected kind of compatible initializer");
4891         break;
4892       case Sema::Ref_Related:
4893         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4894         break;
4895       case Sema::Ref_Incompatible:
4896         FK = InitializationSequence::
4897             FK_NonConstLValueReferenceBindingToUnrelated;
4898         break;
4899       }
4900       Sequence.SetFailed(FK);
4901     }
4902     return;
4903   }
4904 
4905   //    - If the initializer expression
4906   //      - is an
4907   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4908   // [1z]   rvalue (but not a bit-field) or
4909   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4910   //
4911   // Note: functions are handled above and below rather than here...
4912   if (!T1Function &&
4913       (RefRelationship == Sema::Ref_Compatible ||
4914        (Kind.isCStyleOrFunctionalCast() &&
4915         RefRelationship == Sema::Ref_Related)) &&
4916       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4917        (InitCategory.isPRValue() &&
4918         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4919          T2->isArrayType())))) {
4920     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4921     if (InitCategory.isPRValue() && T2->isRecordType()) {
4922       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4923       // compiler the freedom to perform a copy here or bind to the
4924       // object, while C++0x requires that we bind directly to the
4925       // object. Hence, we always bind to the object without making an
4926       // extra copy. However, in C++03 requires that we check for the
4927       // presence of a suitable copy constructor:
4928       //
4929       //   The constructor that would be used to make the copy shall
4930       //   be callable whether or not the copy is actually done.
4931       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4932         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4933       else if (S.getLangOpts().CPlusPlus11)
4934         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4935     }
4936 
4937     // C++1z [dcl.init.ref]/5.2.1.2:
4938     //   If the converted initializer is a prvalue, its type T4 is adjusted
4939     //   to type "cv1 T4" and the temporary materialization conversion is
4940     //   applied.
4941     // Postpone address space conversions to after the temporary materialization
4942     // conversion to allow creating temporaries in the alloca address space.
4943     auto T1QualsIgnoreAS = T1Quals;
4944     auto T2QualsIgnoreAS = T2Quals;
4945     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4946       T1QualsIgnoreAS.removeAddressSpace();
4947       T2QualsIgnoreAS.removeAddressSpace();
4948     }
4949     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4950     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4951       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4952     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4953     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4954     // Add addr space conversion if required.
4955     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4956       auto T4Quals = cv1T4.getQualifiers();
4957       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4958       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4959       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4960       cv1T4 = cv1T4WithAS;
4961     }
4962 
4963     //   In any case, the reference is bound to the resulting glvalue (or to
4964     //   an appropriate base class subobject).
4965     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4966       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4967     else if (RefConv & Sema::ReferenceConversions::ObjC)
4968       Sequence.AddObjCObjectConversionStep(cv1T1);
4969     else if (RefConv & Sema::ReferenceConversions::Qualification) {
4970       if (!S.Context.hasSameType(cv1T4, cv1T1))
4971         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4972     }
4973     return;
4974   }
4975 
4976   //       - has a class type (i.e., T2 is a class type), where T1 is not
4977   //         reference-related to T2, and can be implicitly converted to an
4978   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4979   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4980   //
4981   // DR1287 removes the "implicitly" here.
4982   if (T2->isRecordType()) {
4983     if (RefRelationship == Sema::Ref_Incompatible) {
4984       ConvOvlResult = TryRefInitWithConversionFunction(
4985           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4986           /*IsLValueRef*/ isLValueRef, Sequence);
4987       if (ConvOvlResult)
4988         Sequence.SetOverloadFailure(
4989             InitializationSequence::FK_ReferenceInitOverloadFailed,
4990             ConvOvlResult);
4991 
4992       return;
4993     }
4994 
4995     if (RefRelationship == Sema::Ref_Compatible &&
4996         isRValueRef && InitCategory.isLValue()) {
4997       Sequence.SetFailed(
4998         InitializationSequence::FK_RValueReferenceBindingToLValue);
4999       return;
5000     }
5001 
5002     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5003     return;
5004   }
5005 
5006   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
5007   //        from the initializer expression using the rules for a non-reference
5008   //        copy-initialization (8.5). The reference is then bound to the
5009   //        temporary. [...]
5010 
5011   // Ignore address space of reference type at this point and perform address
5012   // space conversion after the reference binding step.
5013   QualType cv1T1IgnoreAS =
5014       T1Quals.hasAddressSpace()
5015           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5016           : cv1T1;
5017 
5018   InitializedEntity TempEntity =
5019       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5020 
5021   // FIXME: Why do we use an implicit conversion here rather than trying
5022   // copy-initialization?
5023   ImplicitConversionSequence ICS
5024     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5025                               /*SuppressUserConversions=*/false,
5026                               Sema::AllowedExplicit::None,
5027                               /*FIXME:InOverloadResolution=*/false,
5028                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5029                               /*AllowObjCWritebackConversion=*/false);
5030 
5031   if (ICS.isBad()) {
5032     // FIXME: Use the conversion function set stored in ICS to turn
5033     // this into an overloading ambiguity diagnostic. However, we need
5034     // to keep that set as an OverloadCandidateSet rather than as some
5035     // other kind of set.
5036     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5037       Sequence.SetOverloadFailure(
5038                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5039                                   ConvOvlResult);
5040     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5041       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5042     else
5043       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5044     return;
5045   } else {
5046     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5047   }
5048 
5049   //        [...] If T1 is reference-related to T2, cv1 must be the
5050   //        same cv-qualification as, or greater cv-qualification
5051   //        than, cv2; otherwise, the program is ill-formed.
5052   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5053   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5054   if ((RefRelationship == Sema::Ref_Related &&
5055        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
5056       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
5057     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5058     return;
5059   }
5060 
5061   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5062   //   reference, the initializer expression shall not be an lvalue.
5063   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5064       InitCategory.isLValue()) {
5065     Sequence.SetFailed(
5066                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5067     return;
5068   }
5069 
5070   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5071 
5072   if (T1Quals.hasAddressSpace()) {
5073     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5074                                               LangAS::Default)) {
5075       Sequence.SetFailed(
5076           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5077       return;
5078     }
5079     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5080                                                                : VK_XValue);
5081   }
5082 }
5083 
5084 /// Attempt character array initialization from a string literal
5085 /// (C++ [dcl.init.string], C99 6.7.8).
5086 static void TryStringLiteralInitialization(Sema &S,
5087                                            const InitializedEntity &Entity,
5088                                            const InitializationKind &Kind,
5089                                            Expr *Initializer,
5090                                        InitializationSequence &Sequence) {
5091   Sequence.AddStringInitStep(Entity.getType());
5092 }
5093 
5094 /// Attempt value initialization (C++ [dcl.init]p7).
5095 static void TryValueInitialization(Sema &S,
5096                                    const InitializedEntity &Entity,
5097                                    const InitializationKind &Kind,
5098                                    InitializationSequence &Sequence,
5099                                    InitListExpr *InitList) {
5100   assert((!InitList || InitList->getNumInits() == 0) &&
5101          "Shouldn't use value-init for non-empty init lists");
5102 
5103   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5104   //
5105   //   To value-initialize an object of type T means:
5106   QualType T = Entity.getType();
5107 
5108   //     -- if T is an array type, then each element is value-initialized;
5109   T = S.Context.getBaseElementType(T);
5110 
5111   if (const RecordType *RT = T->getAs<RecordType>()) {
5112     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5113       bool NeedZeroInitialization = true;
5114       // C++98:
5115       // -- if T is a class type (clause 9) with a user-declared constructor
5116       //    (12.1), then the default constructor for T is called (and the
5117       //    initialization is ill-formed if T has no accessible default
5118       //    constructor);
5119       // C++11:
5120       // -- if T is a class type (clause 9) with either no default constructor
5121       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5122       //    or deleted, then the object is default-initialized;
5123       //
5124       // Note that the C++11 rule is the same as the C++98 rule if there are no
5125       // defaulted or deleted constructors, so we just use it unconditionally.
5126       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5127       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5128         NeedZeroInitialization = false;
5129 
5130       // -- if T is a (possibly cv-qualified) non-union class type without a
5131       //    user-provided or deleted default constructor, then the object is
5132       //    zero-initialized and, if T has a non-trivial default constructor,
5133       //    default-initialized;
5134       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5135       // constructor' part was removed by DR1507.
5136       if (NeedZeroInitialization)
5137         Sequence.AddZeroInitializationStep(Entity.getType());
5138 
5139       // C++03:
5140       // -- if T is a non-union class type without a user-declared constructor,
5141       //    then every non-static data member and base class component of T is
5142       //    value-initialized;
5143       // [...] A program that calls for [...] value-initialization of an
5144       // entity of reference type is ill-formed.
5145       //
5146       // C++11 doesn't need this handling, because value-initialization does not
5147       // occur recursively there, and the implicit default constructor is
5148       // defined as deleted in the problematic cases.
5149       if (!S.getLangOpts().CPlusPlus11 &&
5150           ClassDecl->hasUninitializedReferenceMember()) {
5151         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5152         return;
5153       }
5154 
5155       // If this is list-value-initialization, pass the empty init list on when
5156       // building the constructor call. This affects the semantics of a few
5157       // things (such as whether an explicit default constructor can be called).
5158       Expr *InitListAsExpr = InitList;
5159       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5160       bool InitListSyntax = InitList;
5161 
5162       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5163       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5164       return TryConstructorInitialization(
5165           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5166     }
5167   }
5168 
5169   Sequence.AddZeroInitializationStep(Entity.getType());
5170 }
5171 
5172 /// Attempt default initialization (C++ [dcl.init]p6).
5173 static void TryDefaultInitialization(Sema &S,
5174                                      const InitializedEntity &Entity,
5175                                      const InitializationKind &Kind,
5176                                      InitializationSequence &Sequence) {
5177   assert(Kind.getKind() == InitializationKind::IK_Default);
5178 
5179   // C++ [dcl.init]p6:
5180   //   To default-initialize an object of type T means:
5181   //     - if T is an array type, each element is default-initialized;
5182   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5183 
5184   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5185   //       constructor for T is called (and the initialization is ill-formed if
5186   //       T has no accessible default constructor);
5187   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5188     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5189                                  Entity.getType(), Sequence);
5190     return;
5191   }
5192 
5193   //     - otherwise, no initialization is performed.
5194 
5195   //   If a program calls for the default initialization of an object of
5196   //   a const-qualified type T, T shall be a class type with a user-provided
5197   //   default constructor.
5198   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5199     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5200       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5201     return;
5202   }
5203 
5204   // If the destination type has a lifetime property, zero-initialize it.
5205   if (DestType.getQualifiers().hasObjCLifetime()) {
5206     Sequence.AddZeroInitializationStep(Entity.getType());
5207     return;
5208   }
5209 }
5210 
5211 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5212 /// which enumerates all conversion functions and performs overload resolution
5213 /// to select the best.
5214 static void TryUserDefinedConversion(Sema &S,
5215                                      QualType DestType,
5216                                      const InitializationKind &Kind,
5217                                      Expr *Initializer,
5218                                      InitializationSequence &Sequence,
5219                                      bool TopLevelOfInitList) {
5220   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5221   QualType SourceType = Initializer->getType();
5222   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5223          "Must have a class type to perform a user-defined conversion");
5224 
5225   // Build the candidate set directly in the initialization sequence
5226   // structure, so that it will persist if we fail.
5227   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5228   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5229   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5230 
5231   // Determine whether we are allowed to call explicit constructors or
5232   // explicit conversion operators.
5233   bool AllowExplicit = Kind.AllowExplicit();
5234 
5235   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5236     // The type we're converting to is a class type. Enumerate its constructors
5237     // to see if there is a suitable conversion.
5238     CXXRecordDecl *DestRecordDecl
5239       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5240 
5241     // Try to complete the type we're converting to.
5242     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5243       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5244         auto Info = getConstructorInfo(D);
5245         if (!Info.Constructor)
5246           continue;
5247 
5248         if (!Info.Constructor->isInvalidDecl() &&
5249             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5250           if (Info.ConstructorTmpl)
5251             S.AddTemplateOverloadCandidate(
5252                 Info.ConstructorTmpl, Info.FoundDecl,
5253                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5254                 /*SuppressUserConversions=*/true,
5255                 /*PartialOverloading*/ false, AllowExplicit);
5256           else
5257             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5258                                    Initializer, CandidateSet,
5259                                    /*SuppressUserConversions=*/true,
5260                                    /*PartialOverloading*/ false, AllowExplicit);
5261         }
5262       }
5263     }
5264   }
5265 
5266   SourceLocation DeclLoc = Initializer->getBeginLoc();
5267 
5268   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5269     // The type we're converting from is a class type, enumerate its conversion
5270     // functions.
5271 
5272     // We can only enumerate the conversion functions for a complete type; if
5273     // the type isn't complete, simply skip this step.
5274     if (S.isCompleteType(DeclLoc, SourceType)) {
5275       CXXRecordDecl *SourceRecordDecl
5276         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5277 
5278       const auto &Conversions =
5279           SourceRecordDecl->getVisibleConversionFunctions();
5280       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5281         NamedDecl *D = *I;
5282         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5283         if (isa<UsingShadowDecl>(D))
5284           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5285 
5286         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5287         CXXConversionDecl *Conv;
5288         if (ConvTemplate)
5289           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5290         else
5291           Conv = cast<CXXConversionDecl>(D);
5292 
5293         if (ConvTemplate)
5294           S.AddTemplateConversionCandidate(
5295               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5296               CandidateSet, AllowExplicit, AllowExplicit);
5297         else
5298           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5299                                    DestType, CandidateSet, AllowExplicit,
5300                                    AllowExplicit);
5301       }
5302     }
5303   }
5304 
5305   // Perform overload resolution. If it fails, return the failed result.
5306   OverloadCandidateSet::iterator Best;
5307   if (OverloadingResult Result
5308         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5309     Sequence.SetOverloadFailure(
5310         InitializationSequence::FK_UserConversionOverloadFailed, Result);
5311 
5312     // [class.copy.elision]p3:
5313     // In some copy-initialization contexts, a two-stage overload resolution
5314     // is performed.
5315     // If the first overload resolution selects a deleted function, we also
5316     // need the initialization sequence to decide whether to perform the second
5317     // overload resolution.
5318     if (!(Result == OR_Deleted &&
5319           Kind.getKind() == InitializationKind::IK_Copy))
5320       return;
5321   }
5322 
5323   FunctionDecl *Function = Best->Function;
5324   Function->setReferenced();
5325   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5326 
5327   if (isa<CXXConstructorDecl>(Function)) {
5328     // Add the user-defined conversion step. Any cv-qualification conversion is
5329     // subsumed by the initialization. Per DR5, the created temporary is of the
5330     // cv-unqualified type of the destination.
5331     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5332                                    DestType.getUnqualifiedType(),
5333                                    HadMultipleCandidates);
5334 
5335     // C++14 and before:
5336     //   - if the function is a constructor, the call initializes a temporary
5337     //     of the cv-unqualified version of the destination type. The [...]
5338     //     temporary [...] is then used to direct-initialize, according to the
5339     //     rules above, the object that is the destination of the
5340     //     copy-initialization.
5341     // Note that this just performs a simple object copy from the temporary.
5342     //
5343     // C++17:
5344     //   - if the function is a constructor, the call is a prvalue of the
5345     //     cv-unqualified version of the destination type whose return object
5346     //     is initialized by the constructor. The call is used to
5347     //     direct-initialize, according to the rules above, the object that
5348     //     is the destination of the copy-initialization.
5349     // Therefore we need to do nothing further.
5350     //
5351     // FIXME: Mark this copy as extraneous.
5352     if (!S.getLangOpts().CPlusPlus17)
5353       Sequence.AddFinalCopy(DestType);
5354     else if (DestType.hasQualifiers())
5355       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5356     return;
5357   }
5358 
5359   // Add the user-defined conversion step that calls the conversion function.
5360   QualType ConvType = Function->getCallResultType();
5361   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5362                                  HadMultipleCandidates);
5363 
5364   if (ConvType->getAs<RecordType>()) {
5365     //   The call is used to direct-initialize [...] the object that is the
5366     //   destination of the copy-initialization.
5367     //
5368     // In C++17, this does not call a constructor if we enter /17.6.1:
5369     //   - If the initializer expression is a prvalue and the cv-unqualified
5370     //     version of the source type is the same as the class of the
5371     //     destination [... do not make an extra copy]
5372     //
5373     // FIXME: Mark this copy as extraneous.
5374     if (!S.getLangOpts().CPlusPlus17 ||
5375         Function->getReturnType()->isReferenceType() ||
5376         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5377       Sequence.AddFinalCopy(DestType);
5378     else if (!S.Context.hasSameType(ConvType, DestType))
5379       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5380     return;
5381   }
5382 
5383   // If the conversion following the call to the conversion function
5384   // is interesting, add it as a separate step.
5385   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5386       Best->FinalConversion.Third) {
5387     ImplicitConversionSequence ICS;
5388     ICS.setStandard();
5389     ICS.Standard = Best->FinalConversion;
5390     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5391   }
5392 }
5393 
5394 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5395 /// a function with a pointer return type contains a 'return false;' statement.
5396 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5397 /// code using that header.
5398 ///
5399 /// Work around this by treating 'return false;' as zero-initializing the result
5400 /// if it's used in a pointer-returning function in a system header.
5401 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5402                                               const InitializedEntity &Entity,
5403                                               const Expr *Init) {
5404   return S.getLangOpts().CPlusPlus11 &&
5405          Entity.getKind() == InitializedEntity::EK_Result &&
5406          Entity.getType()->isPointerType() &&
5407          isa<CXXBoolLiteralExpr>(Init) &&
5408          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5409          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5410 }
5411 
5412 /// The non-zero enum values here are indexes into diagnostic alternatives.
5413 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5414 
5415 /// Determines whether this expression is an acceptable ICR source.
5416 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5417                                          bool isAddressOf, bool &isWeakAccess) {
5418   // Skip parens.
5419   e = e->IgnoreParens();
5420 
5421   // Skip address-of nodes.
5422   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5423     if (op->getOpcode() == UO_AddrOf)
5424       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5425                                 isWeakAccess);
5426 
5427   // Skip certain casts.
5428   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5429     switch (ce->getCastKind()) {
5430     case CK_Dependent:
5431     case CK_BitCast:
5432     case CK_LValueBitCast:
5433     case CK_NoOp:
5434       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5435 
5436     case CK_ArrayToPointerDecay:
5437       return IIK_nonscalar;
5438 
5439     case CK_NullToPointer:
5440       return IIK_okay;
5441 
5442     default:
5443       break;
5444     }
5445 
5446   // If we have a declaration reference, it had better be a local variable.
5447   } else if (isa<DeclRefExpr>(e)) {
5448     // set isWeakAccess to true, to mean that there will be an implicit
5449     // load which requires a cleanup.
5450     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5451       isWeakAccess = true;
5452 
5453     if (!isAddressOf) return IIK_nonlocal;
5454 
5455     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5456     if (!var) return IIK_nonlocal;
5457 
5458     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5459 
5460   // If we have a conditional operator, check both sides.
5461   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5462     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5463                                                 isWeakAccess))
5464       return iik;
5465 
5466     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5467 
5468   // These are never scalar.
5469   } else if (isa<ArraySubscriptExpr>(e)) {
5470     return IIK_nonscalar;
5471 
5472   // Otherwise, it needs to be a null pointer constant.
5473   } else {
5474     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5475             ? IIK_okay : IIK_nonlocal);
5476   }
5477 
5478   return IIK_nonlocal;
5479 }
5480 
5481 /// Check whether the given expression is a valid operand for an
5482 /// indirect copy/restore.
5483 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5484   assert(src->isRValue());
5485   bool isWeakAccess = false;
5486   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5487   // If isWeakAccess to true, there will be an implicit
5488   // load which requires a cleanup.
5489   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5490     S.Cleanup.setExprNeedsCleanups(true);
5491 
5492   if (iik == IIK_okay) return;
5493 
5494   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5495     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5496     << src->getSourceRange();
5497 }
5498 
5499 /// Determine whether we have compatible array types for the
5500 /// purposes of GNU by-copy array initialization.
5501 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5502                                     const ArrayType *Source) {
5503   // If the source and destination array types are equivalent, we're
5504   // done.
5505   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5506     return true;
5507 
5508   // Make sure that the element types are the same.
5509   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5510     return false;
5511 
5512   // The only mismatch we allow is when the destination is an
5513   // incomplete array type and the source is a constant array type.
5514   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5515 }
5516 
5517 static bool tryObjCWritebackConversion(Sema &S,
5518                                        InitializationSequence &Sequence,
5519                                        const InitializedEntity &Entity,
5520                                        Expr *Initializer) {
5521   bool ArrayDecay = false;
5522   QualType ArgType = Initializer->getType();
5523   QualType ArgPointee;
5524   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5525     ArrayDecay = true;
5526     ArgPointee = ArgArrayType->getElementType();
5527     ArgType = S.Context.getPointerType(ArgPointee);
5528   }
5529 
5530   // Handle write-back conversion.
5531   QualType ConvertedArgType;
5532   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5533                                    ConvertedArgType))
5534     return false;
5535 
5536   // We should copy unless we're passing to an argument explicitly
5537   // marked 'out'.
5538   bool ShouldCopy = true;
5539   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5540     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5541 
5542   // Do we need an lvalue conversion?
5543   if (ArrayDecay || Initializer->isGLValue()) {
5544     ImplicitConversionSequence ICS;
5545     ICS.setStandard();
5546     ICS.Standard.setAsIdentityConversion();
5547 
5548     QualType ResultType;
5549     if (ArrayDecay) {
5550       ICS.Standard.First = ICK_Array_To_Pointer;
5551       ResultType = S.Context.getPointerType(ArgPointee);
5552     } else {
5553       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5554       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5555     }
5556 
5557     Sequence.AddConversionSequenceStep(ICS, ResultType);
5558   }
5559 
5560   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5561   return true;
5562 }
5563 
5564 static bool TryOCLSamplerInitialization(Sema &S,
5565                                         InitializationSequence &Sequence,
5566                                         QualType DestType,
5567                                         Expr *Initializer) {
5568   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5569       (!Initializer->isIntegerConstantExpr(S.Context) &&
5570       !Initializer->getType()->isSamplerT()))
5571     return false;
5572 
5573   Sequence.AddOCLSamplerInitStep(DestType);
5574   return true;
5575 }
5576 
5577 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5578   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5579     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5580 }
5581 
5582 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5583                                                InitializationSequence &Sequence,
5584                                                QualType DestType,
5585                                                Expr *Initializer) {
5586   if (!S.getLangOpts().OpenCL)
5587     return false;
5588 
5589   //
5590   // OpenCL 1.2 spec, s6.12.10
5591   //
5592   // The event argument can also be used to associate the
5593   // async_work_group_copy with a previous async copy allowing
5594   // an event to be shared by multiple async copies; otherwise
5595   // event should be zero.
5596   //
5597   if (DestType->isEventT() || DestType->isQueueT()) {
5598     if (!IsZeroInitializer(Initializer, S))
5599       return false;
5600 
5601     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5602     return true;
5603   }
5604 
5605   // We should allow zero initialization for all types defined in the
5606   // cl_intel_device_side_avc_motion_estimation extension, except
5607   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5608   if (S.getOpenCLOptions().isAvailableOption(
5609           "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5610       DestType->isOCLIntelSubgroupAVCType()) {
5611     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5612         DestType->isOCLIntelSubgroupAVCMceResultType())
5613       return false;
5614     if (!IsZeroInitializer(Initializer, S))
5615       return false;
5616 
5617     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5618     return true;
5619   }
5620 
5621   return false;
5622 }
5623 
5624 InitializationSequence::InitializationSequence(
5625     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5626     MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5627     : FailedOverloadResult(OR_Success),
5628       FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5629   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5630                  TreatUnavailableAsInvalid);
5631 }
5632 
5633 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5634 /// address of that function, this returns true. Otherwise, it returns false.
5635 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5636   auto *DRE = dyn_cast<DeclRefExpr>(E);
5637   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5638     return false;
5639 
5640   return !S.checkAddressOfFunctionIsAvailable(
5641       cast<FunctionDecl>(DRE->getDecl()));
5642 }
5643 
5644 /// Determine whether we can perform an elementwise array copy for this kind
5645 /// of entity.
5646 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5647   switch (Entity.getKind()) {
5648   case InitializedEntity::EK_LambdaCapture:
5649     // C++ [expr.prim.lambda]p24:
5650     //   For array members, the array elements are direct-initialized in
5651     //   increasing subscript order.
5652     return true;
5653 
5654   case InitializedEntity::EK_Variable:
5655     // C++ [dcl.decomp]p1:
5656     //   [...] each element is copy-initialized or direct-initialized from the
5657     //   corresponding element of the assignment-expression [...]
5658     return isa<DecompositionDecl>(Entity.getDecl());
5659 
5660   case InitializedEntity::EK_Member:
5661     // C++ [class.copy.ctor]p14:
5662     //   - if the member is an array, each element is direct-initialized with
5663     //     the corresponding subobject of x
5664     return Entity.isImplicitMemberInitializer();
5665 
5666   case InitializedEntity::EK_ArrayElement:
5667     // All the above cases are intended to apply recursively, even though none
5668     // of them actually say that.
5669     if (auto *E = Entity.getParent())
5670       return canPerformArrayCopy(*E);
5671     break;
5672 
5673   default:
5674     break;
5675   }
5676 
5677   return false;
5678 }
5679 
5680 void InitializationSequence::InitializeFrom(Sema &S,
5681                                             const InitializedEntity &Entity,
5682                                             const InitializationKind &Kind,
5683                                             MultiExprArg Args,
5684                                             bool TopLevelOfInitList,
5685                                             bool TreatUnavailableAsInvalid) {
5686   ASTContext &Context = S.Context;
5687 
5688   // Eliminate non-overload placeholder types in the arguments.  We
5689   // need to do this before checking whether types are dependent
5690   // because lowering a pseudo-object expression might well give us
5691   // something of dependent type.
5692   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5693     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5694       // FIXME: should we be doing this here?
5695       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5696       if (result.isInvalid()) {
5697         SetFailed(FK_PlaceholderType);
5698         return;
5699       }
5700       Args[I] = result.get();
5701     }
5702 
5703   // C++0x [dcl.init]p16:
5704   //   The semantics of initializers are as follows. The destination type is
5705   //   the type of the object or reference being initialized and the source
5706   //   type is the type of the initializer expression. The source type is not
5707   //   defined when the initializer is a braced-init-list or when it is a
5708   //   parenthesized list of expressions.
5709   QualType DestType = Entity.getType();
5710 
5711   if (DestType->isDependentType() ||
5712       Expr::hasAnyTypeDependentArguments(Args)) {
5713     SequenceKind = DependentSequence;
5714     return;
5715   }
5716 
5717   // Almost everything is a normal sequence.
5718   setSequenceKind(NormalSequence);
5719 
5720   QualType SourceType;
5721   Expr *Initializer = nullptr;
5722   if (Args.size() == 1) {
5723     Initializer = Args[0];
5724     if (S.getLangOpts().ObjC) {
5725       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5726                                               DestType, Initializer->getType(),
5727                                               Initializer) ||
5728           S.CheckConversionToObjCLiteral(DestType, Initializer))
5729         Args[0] = Initializer;
5730     }
5731     if (!isa<InitListExpr>(Initializer))
5732       SourceType = Initializer->getType();
5733   }
5734 
5735   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5736   //       object is list-initialized (8.5.4).
5737   if (Kind.getKind() != InitializationKind::IK_Direct) {
5738     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5739       TryListInitialization(S, Entity, Kind, InitList, *this,
5740                             TreatUnavailableAsInvalid);
5741       return;
5742     }
5743   }
5744 
5745   //     - If the destination type is a reference type, see 8.5.3.
5746   if (DestType->isReferenceType()) {
5747     // C++0x [dcl.init.ref]p1:
5748     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5749     //   (8.3.2), shall be initialized by an object, or function, of type T or
5750     //   by an object that can be converted into a T.
5751     // (Therefore, multiple arguments are not permitted.)
5752     if (Args.size() != 1)
5753       SetFailed(FK_TooManyInitsForReference);
5754     // C++17 [dcl.init.ref]p5:
5755     //   A reference [...] is initialized by an expression [...] as follows:
5756     // If the initializer is not an expression, presumably we should reject,
5757     // but the standard fails to actually say so.
5758     else if (isa<InitListExpr>(Args[0]))
5759       SetFailed(FK_ParenthesizedListInitForReference);
5760     else
5761       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5762     return;
5763   }
5764 
5765   //     - If the initializer is (), the object is value-initialized.
5766   if (Kind.getKind() == InitializationKind::IK_Value ||
5767       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5768     TryValueInitialization(S, Entity, Kind, *this);
5769     return;
5770   }
5771 
5772   // Handle default initialization.
5773   if (Kind.getKind() == InitializationKind::IK_Default) {
5774     TryDefaultInitialization(S, Entity, Kind, *this);
5775     return;
5776   }
5777 
5778   //     - If the destination type is an array of characters, an array of
5779   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5780   //       initializer is a string literal, see 8.5.2.
5781   //     - Otherwise, if the destination type is an array, the program is
5782   //       ill-formed.
5783   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5784     if (Initializer && isa<VariableArrayType>(DestAT)) {
5785       SetFailed(FK_VariableLengthArrayHasInitializer);
5786       return;
5787     }
5788 
5789     if (Initializer) {
5790       switch (IsStringInit(Initializer, DestAT, Context)) {
5791       case SIF_None:
5792         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5793         return;
5794       case SIF_NarrowStringIntoWideChar:
5795         SetFailed(FK_NarrowStringIntoWideCharArray);
5796         return;
5797       case SIF_WideStringIntoChar:
5798         SetFailed(FK_WideStringIntoCharArray);
5799         return;
5800       case SIF_IncompatWideStringIntoWideChar:
5801         SetFailed(FK_IncompatWideStringIntoWideChar);
5802         return;
5803       case SIF_PlainStringIntoUTF8Char:
5804         SetFailed(FK_PlainStringIntoUTF8Char);
5805         return;
5806       case SIF_UTF8StringIntoPlainChar:
5807         SetFailed(FK_UTF8StringIntoPlainChar);
5808         return;
5809       case SIF_Other:
5810         break;
5811       }
5812     }
5813 
5814     // Some kinds of initialization permit an array to be initialized from
5815     // another array of the same type, and perform elementwise initialization.
5816     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5817         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5818                                          Entity.getType()) &&
5819         canPerformArrayCopy(Entity)) {
5820       // If source is a prvalue, use it directly.
5821       if (Initializer->getValueKind() == VK_RValue) {
5822         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5823         return;
5824       }
5825 
5826       // Emit element-at-a-time copy loop.
5827       InitializedEntity Element =
5828           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5829       QualType InitEltT =
5830           Context.getAsArrayType(Initializer->getType())->getElementType();
5831       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5832                           Initializer->getValueKind(),
5833                           Initializer->getObjectKind());
5834       Expr *OVEAsExpr = &OVE;
5835       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5836                      TreatUnavailableAsInvalid);
5837       if (!Failed())
5838         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5839       return;
5840     }
5841 
5842     // Note: as an GNU C extension, we allow initialization of an
5843     // array from a compound literal that creates an array of the same
5844     // type, so long as the initializer has no side effects.
5845     if (!S.getLangOpts().CPlusPlus && Initializer &&
5846         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5847         Initializer->getType()->isArrayType()) {
5848       const ArrayType *SourceAT
5849         = Context.getAsArrayType(Initializer->getType());
5850       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5851         SetFailed(FK_ArrayTypeMismatch);
5852       else if (Initializer->HasSideEffects(S.Context))
5853         SetFailed(FK_NonConstantArrayInit);
5854       else {
5855         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5856       }
5857     }
5858     // Note: as a GNU C++ extension, we allow list-initialization of a
5859     // class member of array type from a parenthesized initializer list.
5860     else if (S.getLangOpts().CPlusPlus &&
5861              Entity.getKind() == InitializedEntity::EK_Member &&
5862              Initializer && isa<InitListExpr>(Initializer)) {
5863       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5864                             *this, TreatUnavailableAsInvalid);
5865       AddParenthesizedArrayInitStep(DestType);
5866     } else if (DestAT->getElementType()->isCharType())
5867       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5868     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5869       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5870     else
5871       SetFailed(FK_ArrayNeedsInitList);
5872 
5873     return;
5874   }
5875 
5876   // Determine whether we should consider writeback conversions for
5877   // Objective-C ARC.
5878   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5879          Entity.isParameterKind();
5880 
5881   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5882     return;
5883 
5884   // We're at the end of the line for C: it's either a write-back conversion
5885   // or it's a C assignment. There's no need to check anything else.
5886   if (!S.getLangOpts().CPlusPlus) {
5887     // If allowed, check whether this is an Objective-C writeback conversion.
5888     if (allowObjCWritebackConversion &&
5889         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5890       return;
5891     }
5892 
5893     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5894       return;
5895 
5896     // Handle initialization in C
5897     AddCAssignmentStep(DestType);
5898     MaybeProduceObjCObject(S, *this, Entity);
5899     return;
5900   }
5901 
5902   assert(S.getLangOpts().CPlusPlus);
5903 
5904   //     - If the destination type is a (possibly cv-qualified) class type:
5905   if (DestType->isRecordType()) {
5906     //     - If the initialization is direct-initialization, or if it is
5907     //       copy-initialization where the cv-unqualified version of the
5908     //       source type is the same class as, or a derived class of, the
5909     //       class of the destination, constructors are considered. [...]
5910     if (Kind.getKind() == InitializationKind::IK_Direct ||
5911         (Kind.getKind() == InitializationKind::IK_Copy &&
5912          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5913           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5914       TryConstructorInitialization(S, Entity, Kind, Args,
5915                                    DestType, DestType, *this);
5916     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5917     //       user-defined conversion sequences that can convert from the source
5918     //       type to the destination type or (when a conversion function is
5919     //       used) to a derived class thereof are enumerated as described in
5920     //       13.3.1.4, and the best one is chosen through overload resolution
5921     //       (13.3).
5922     else
5923       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5924                                TopLevelOfInitList);
5925     return;
5926   }
5927 
5928   assert(Args.size() >= 1 && "Zero-argument case handled above");
5929 
5930   // The remaining cases all need a source type.
5931   if (Args.size() > 1) {
5932     SetFailed(FK_TooManyInitsForScalar);
5933     return;
5934   } else if (isa<InitListExpr>(Args[0])) {
5935     SetFailed(FK_ParenthesizedListInitForScalar);
5936     return;
5937   }
5938 
5939   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5940   //      type, conversion functions are considered.
5941   if (!SourceType.isNull() && SourceType->isRecordType()) {
5942     // For a conversion to _Atomic(T) from either T or a class type derived
5943     // from T, initialize the T object then convert to _Atomic type.
5944     bool NeedAtomicConversion = false;
5945     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5946       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5947           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5948                           Atomic->getValueType())) {
5949         DestType = Atomic->getValueType();
5950         NeedAtomicConversion = true;
5951       }
5952     }
5953 
5954     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5955                              TopLevelOfInitList);
5956     MaybeProduceObjCObject(S, *this, Entity);
5957     if (!Failed() && NeedAtomicConversion)
5958       AddAtomicConversionStep(Entity.getType());
5959     return;
5960   }
5961 
5962   //    - Otherwise, if the initialization is direct-initialization, the source
5963   //    type is std::nullptr_t, and the destination type is bool, the initial
5964   //    value of the object being initialized is false.
5965   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5966       DestType->isBooleanType() &&
5967       Kind.getKind() == InitializationKind::IK_Direct) {
5968     AddConversionSequenceStep(
5969         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5970                                                      Initializer->isGLValue()),
5971         DestType);
5972     return;
5973   }
5974 
5975   //    - Otherwise, the initial value of the object being initialized is the
5976   //      (possibly converted) value of the initializer expression. Standard
5977   //      conversions (Clause 4) will be used, if necessary, to convert the
5978   //      initializer expression to the cv-unqualified version of the
5979   //      destination type; no user-defined conversions are considered.
5980 
5981   ImplicitConversionSequence ICS
5982     = S.TryImplicitConversion(Initializer, DestType,
5983                               /*SuppressUserConversions*/true,
5984                               Sema::AllowedExplicit::None,
5985                               /*InOverloadResolution*/ false,
5986                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5987                               allowObjCWritebackConversion);
5988 
5989   if (ICS.isStandard() &&
5990       ICS.Standard.Second == ICK_Writeback_Conversion) {
5991     // Objective-C ARC writeback conversion.
5992 
5993     // We should copy unless we're passing to an argument explicitly
5994     // marked 'out'.
5995     bool ShouldCopy = true;
5996     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5997       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5998 
5999     // If there was an lvalue adjustment, add it as a separate conversion.
6000     if (ICS.Standard.First == ICK_Array_To_Pointer ||
6001         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6002       ImplicitConversionSequence LvalueICS;
6003       LvalueICS.setStandard();
6004       LvalueICS.Standard.setAsIdentityConversion();
6005       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6006       LvalueICS.Standard.First = ICS.Standard.First;
6007       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6008     }
6009 
6010     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6011   } else if (ICS.isBad()) {
6012     DeclAccessPair dap;
6013     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6014       AddZeroInitializationStep(Entity.getType());
6015     } else if (Initializer->getType() == Context.OverloadTy &&
6016                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6017                                                      false, dap))
6018       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6019     else if (Initializer->getType()->isFunctionType() &&
6020              isExprAnUnaddressableFunction(S, Initializer))
6021       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6022     else
6023       SetFailed(InitializationSequence::FK_ConversionFailed);
6024   } else {
6025     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6026 
6027     MaybeProduceObjCObject(S, *this, Entity);
6028   }
6029 }
6030 
6031 InitializationSequence::~InitializationSequence() {
6032   for (auto &S : Steps)
6033     S.Destroy();
6034 }
6035 
6036 //===----------------------------------------------------------------------===//
6037 // Perform initialization
6038 //===----------------------------------------------------------------------===//
6039 static Sema::AssignmentAction
6040 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6041   switch(Entity.getKind()) {
6042   case InitializedEntity::EK_Variable:
6043   case InitializedEntity::EK_New:
6044   case InitializedEntity::EK_Exception:
6045   case InitializedEntity::EK_Base:
6046   case InitializedEntity::EK_Delegating:
6047     return Sema::AA_Initializing;
6048 
6049   case InitializedEntity::EK_Parameter:
6050     if (Entity.getDecl() &&
6051         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6052       return Sema::AA_Sending;
6053 
6054     return Sema::AA_Passing;
6055 
6056   case InitializedEntity::EK_Parameter_CF_Audited:
6057     if (Entity.getDecl() &&
6058       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6059       return Sema::AA_Sending;
6060 
6061     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6062 
6063   case InitializedEntity::EK_Result:
6064   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6065     return Sema::AA_Returning;
6066 
6067   case InitializedEntity::EK_Temporary:
6068   case InitializedEntity::EK_RelatedResult:
6069     // FIXME: Can we tell apart casting vs. converting?
6070     return Sema::AA_Casting;
6071 
6072   case InitializedEntity::EK_TemplateParameter:
6073     // This is really initialization, but refer to it as conversion for
6074     // consistency with CheckConvertedConstantExpression.
6075     return Sema::AA_Converting;
6076 
6077   case InitializedEntity::EK_Member:
6078   case InitializedEntity::EK_Binding:
6079   case InitializedEntity::EK_ArrayElement:
6080   case InitializedEntity::EK_VectorElement:
6081   case InitializedEntity::EK_ComplexElement:
6082   case InitializedEntity::EK_BlockElement:
6083   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6084   case InitializedEntity::EK_LambdaCapture:
6085   case InitializedEntity::EK_CompoundLiteralInit:
6086     return Sema::AA_Initializing;
6087   }
6088 
6089   llvm_unreachable("Invalid EntityKind!");
6090 }
6091 
6092 /// Whether we should bind a created object as a temporary when
6093 /// initializing the given entity.
6094 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6095   switch (Entity.getKind()) {
6096   case InitializedEntity::EK_ArrayElement:
6097   case InitializedEntity::EK_Member:
6098   case InitializedEntity::EK_Result:
6099   case InitializedEntity::EK_StmtExprResult:
6100   case InitializedEntity::EK_New:
6101   case InitializedEntity::EK_Variable:
6102   case InitializedEntity::EK_Base:
6103   case InitializedEntity::EK_Delegating:
6104   case InitializedEntity::EK_VectorElement:
6105   case InitializedEntity::EK_ComplexElement:
6106   case InitializedEntity::EK_Exception:
6107   case InitializedEntity::EK_BlockElement:
6108   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6109   case InitializedEntity::EK_LambdaCapture:
6110   case InitializedEntity::EK_CompoundLiteralInit:
6111   case InitializedEntity::EK_TemplateParameter:
6112     return false;
6113 
6114   case InitializedEntity::EK_Parameter:
6115   case InitializedEntity::EK_Parameter_CF_Audited:
6116   case InitializedEntity::EK_Temporary:
6117   case InitializedEntity::EK_RelatedResult:
6118   case InitializedEntity::EK_Binding:
6119     return true;
6120   }
6121 
6122   llvm_unreachable("missed an InitializedEntity kind?");
6123 }
6124 
6125 /// Whether the given entity, when initialized with an object
6126 /// created for that initialization, requires destruction.
6127 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6128   switch (Entity.getKind()) {
6129     case InitializedEntity::EK_Result:
6130     case InitializedEntity::EK_StmtExprResult:
6131     case InitializedEntity::EK_New:
6132     case InitializedEntity::EK_Base:
6133     case InitializedEntity::EK_Delegating:
6134     case InitializedEntity::EK_VectorElement:
6135     case InitializedEntity::EK_ComplexElement:
6136     case InitializedEntity::EK_BlockElement:
6137     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6138     case InitializedEntity::EK_LambdaCapture:
6139       return false;
6140 
6141     case InitializedEntity::EK_Member:
6142     case InitializedEntity::EK_Binding:
6143     case InitializedEntity::EK_Variable:
6144     case InitializedEntity::EK_Parameter:
6145     case InitializedEntity::EK_Parameter_CF_Audited:
6146     case InitializedEntity::EK_TemplateParameter:
6147     case InitializedEntity::EK_Temporary:
6148     case InitializedEntity::EK_ArrayElement:
6149     case InitializedEntity::EK_Exception:
6150     case InitializedEntity::EK_CompoundLiteralInit:
6151     case InitializedEntity::EK_RelatedResult:
6152       return true;
6153   }
6154 
6155   llvm_unreachable("missed an InitializedEntity kind?");
6156 }
6157 
6158 /// Get the location at which initialization diagnostics should appear.
6159 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6160                                            Expr *Initializer) {
6161   switch (Entity.getKind()) {
6162   case InitializedEntity::EK_Result:
6163   case InitializedEntity::EK_StmtExprResult:
6164     return Entity.getReturnLoc();
6165 
6166   case InitializedEntity::EK_Exception:
6167     return Entity.getThrowLoc();
6168 
6169   case InitializedEntity::EK_Variable:
6170   case InitializedEntity::EK_Binding:
6171     return Entity.getDecl()->getLocation();
6172 
6173   case InitializedEntity::EK_LambdaCapture:
6174     return Entity.getCaptureLoc();
6175 
6176   case InitializedEntity::EK_ArrayElement:
6177   case InitializedEntity::EK_Member:
6178   case InitializedEntity::EK_Parameter:
6179   case InitializedEntity::EK_Parameter_CF_Audited:
6180   case InitializedEntity::EK_TemplateParameter:
6181   case InitializedEntity::EK_Temporary:
6182   case InitializedEntity::EK_New:
6183   case InitializedEntity::EK_Base:
6184   case InitializedEntity::EK_Delegating:
6185   case InitializedEntity::EK_VectorElement:
6186   case InitializedEntity::EK_ComplexElement:
6187   case InitializedEntity::EK_BlockElement:
6188   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6189   case InitializedEntity::EK_CompoundLiteralInit:
6190   case InitializedEntity::EK_RelatedResult:
6191     return Initializer->getBeginLoc();
6192   }
6193   llvm_unreachable("missed an InitializedEntity kind?");
6194 }
6195 
6196 /// Make a (potentially elidable) temporary copy of the object
6197 /// provided by the given initializer by calling the appropriate copy
6198 /// constructor.
6199 ///
6200 /// \param S The Sema object used for type-checking.
6201 ///
6202 /// \param T The type of the temporary object, which must either be
6203 /// the type of the initializer expression or a superclass thereof.
6204 ///
6205 /// \param Entity The entity being initialized.
6206 ///
6207 /// \param CurInit The initializer expression.
6208 ///
6209 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6210 /// is permitted in C++03 (but not C++0x) when binding a reference to
6211 /// an rvalue.
6212 ///
6213 /// \returns An expression that copies the initializer expression into
6214 /// a temporary object, or an error expression if a copy could not be
6215 /// created.
6216 static ExprResult CopyObject(Sema &S,
6217                              QualType T,
6218                              const InitializedEntity &Entity,
6219                              ExprResult CurInit,
6220                              bool IsExtraneousCopy) {
6221   if (CurInit.isInvalid())
6222     return CurInit;
6223   // Determine which class type we're copying to.
6224   Expr *CurInitExpr = (Expr *)CurInit.get();
6225   CXXRecordDecl *Class = nullptr;
6226   if (const RecordType *Record = T->getAs<RecordType>())
6227     Class = cast<CXXRecordDecl>(Record->getDecl());
6228   if (!Class)
6229     return CurInit;
6230 
6231   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6232 
6233   // Make sure that the type we are copying is complete.
6234   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6235     return CurInit;
6236 
6237   // Perform overload resolution using the class's constructors. Per
6238   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6239   // is direct-initialization.
6240   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6241   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6242 
6243   OverloadCandidateSet::iterator Best;
6244   switch (ResolveConstructorOverload(
6245       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6246       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6247       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6248       /*SecondStepOfCopyInit=*/true)) {
6249   case OR_Success:
6250     break;
6251 
6252   case OR_No_Viable_Function:
6253     CandidateSet.NoteCandidates(
6254         PartialDiagnosticAt(
6255             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6256                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6257                              : diag::err_temp_copy_no_viable)
6258                      << (int)Entity.getKind() << CurInitExpr->getType()
6259                      << CurInitExpr->getSourceRange()),
6260         S, OCD_AllCandidates, CurInitExpr);
6261     if (!IsExtraneousCopy || S.isSFINAEContext())
6262       return ExprError();
6263     return CurInit;
6264 
6265   case OR_Ambiguous:
6266     CandidateSet.NoteCandidates(
6267         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6268                                      << (int)Entity.getKind()
6269                                      << CurInitExpr->getType()
6270                                      << CurInitExpr->getSourceRange()),
6271         S, OCD_AmbiguousCandidates, CurInitExpr);
6272     return ExprError();
6273 
6274   case OR_Deleted:
6275     S.Diag(Loc, diag::err_temp_copy_deleted)
6276       << (int)Entity.getKind() << CurInitExpr->getType()
6277       << CurInitExpr->getSourceRange();
6278     S.NoteDeletedFunction(Best->Function);
6279     return ExprError();
6280   }
6281 
6282   bool HadMultipleCandidates = CandidateSet.size() > 1;
6283 
6284   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6285   SmallVector<Expr*, 8> ConstructorArgs;
6286   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6287 
6288   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6289                            IsExtraneousCopy);
6290 
6291   if (IsExtraneousCopy) {
6292     // If this is a totally extraneous copy for C++03 reference
6293     // binding purposes, just return the original initialization
6294     // expression. We don't generate an (elided) copy operation here
6295     // because doing so would require us to pass down a flag to avoid
6296     // infinite recursion, where each step adds another extraneous,
6297     // elidable copy.
6298 
6299     // Instantiate the default arguments of any extra parameters in
6300     // the selected copy constructor, as if we were going to create a
6301     // proper call to the copy constructor.
6302     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6303       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6304       if (S.RequireCompleteType(Loc, Parm->getType(),
6305                                 diag::err_call_incomplete_argument))
6306         break;
6307 
6308       // Build the default argument expression; we don't actually care
6309       // if this succeeds or not, because this routine will complain
6310       // if there was a problem.
6311       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6312     }
6313 
6314     return CurInitExpr;
6315   }
6316 
6317   // Determine the arguments required to actually perform the
6318   // constructor call (we might have derived-to-base conversions, or
6319   // the copy constructor may have default arguments).
6320   if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6321                                 ConstructorArgs))
6322     return ExprError();
6323 
6324   // C++0x [class.copy]p32:
6325   //   When certain criteria are met, an implementation is allowed to
6326   //   omit the copy/move construction of a class object, even if the
6327   //   copy/move constructor and/or destructor for the object have
6328   //   side effects. [...]
6329   //     - when a temporary class object that has not been bound to a
6330   //       reference (12.2) would be copied/moved to a class object
6331   //       with the same cv-unqualified type, the copy/move operation
6332   //       can be omitted by constructing the temporary object
6333   //       directly into the target of the omitted copy/move
6334   //
6335   // Note that the other three bullets are handled elsewhere. Copy
6336   // elision for return statements and throw expressions are handled as part
6337   // of constructor initialization, while copy elision for exception handlers
6338   // is handled by the run-time.
6339   //
6340   // FIXME: If the function parameter is not the same type as the temporary, we
6341   // should still be able to elide the copy, but we don't have a way to
6342   // represent in the AST how much should be elided in this case.
6343   bool Elidable =
6344       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6345       S.Context.hasSameUnqualifiedType(
6346           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6347           CurInitExpr->getType());
6348 
6349   // Actually perform the constructor call.
6350   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6351                                     Elidable,
6352                                     ConstructorArgs,
6353                                     HadMultipleCandidates,
6354                                     /*ListInit*/ false,
6355                                     /*StdInitListInit*/ false,
6356                                     /*ZeroInit*/ false,
6357                                     CXXConstructExpr::CK_Complete,
6358                                     SourceRange());
6359 
6360   // If we're supposed to bind temporaries, do so.
6361   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6362     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6363   return CurInit;
6364 }
6365 
6366 /// Check whether elidable copy construction for binding a reference to
6367 /// a temporary would have succeeded if we were building in C++98 mode, for
6368 /// -Wc++98-compat.
6369 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6370                                            const InitializedEntity &Entity,
6371                                            Expr *CurInitExpr) {
6372   assert(S.getLangOpts().CPlusPlus11);
6373 
6374   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6375   if (!Record)
6376     return;
6377 
6378   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6379   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6380     return;
6381 
6382   // Find constructors which would have been considered.
6383   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6384   DeclContext::lookup_result Ctors =
6385       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6386 
6387   // Perform overload resolution.
6388   OverloadCandidateSet::iterator Best;
6389   OverloadingResult OR = ResolveConstructorOverload(
6390       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6391       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6392       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6393       /*SecondStepOfCopyInit=*/true);
6394 
6395   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6396     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6397     << CurInitExpr->getSourceRange();
6398 
6399   switch (OR) {
6400   case OR_Success:
6401     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6402                              Best->FoundDecl, Entity, Diag);
6403     // FIXME: Check default arguments as far as that's possible.
6404     break;
6405 
6406   case OR_No_Viable_Function:
6407     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6408                                 OCD_AllCandidates, CurInitExpr);
6409     break;
6410 
6411   case OR_Ambiguous:
6412     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6413                                 OCD_AmbiguousCandidates, CurInitExpr);
6414     break;
6415 
6416   case OR_Deleted:
6417     S.Diag(Loc, Diag);
6418     S.NoteDeletedFunction(Best->Function);
6419     break;
6420   }
6421 }
6422 
6423 void InitializationSequence::PrintInitLocationNote(Sema &S,
6424                                               const InitializedEntity &Entity) {
6425   if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6426     if (Entity.getDecl()->getLocation().isInvalid())
6427       return;
6428 
6429     if (Entity.getDecl()->getDeclName())
6430       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6431         << Entity.getDecl()->getDeclName();
6432     else
6433       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6434   }
6435   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6436            Entity.getMethodDecl())
6437     S.Diag(Entity.getMethodDecl()->getLocation(),
6438            diag::note_method_return_type_change)
6439       << Entity.getMethodDecl()->getDeclName();
6440 }
6441 
6442 /// Returns true if the parameters describe a constructor initialization of
6443 /// an explicit temporary object, e.g. "Point(x, y)".
6444 static bool isExplicitTemporary(const InitializedEntity &Entity,
6445                                 const InitializationKind &Kind,
6446                                 unsigned NumArgs) {
6447   switch (Entity.getKind()) {
6448   case InitializedEntity::EK_Temporary:
6449   case InitializedEntity::EK_CompoundLiteralInit:
6450   case InitializedEntity::EK_RelatedResult:
6451     break;
6452   default:
6453     return false;
6454   }
6455 
6456   switch (Kind.getKind()) {
6457   case InitializationKind::IK_DirectList:
6458     return true;
6459   // FIXME: Hack to work around cast weirdness.
6460   case InitializationKind::IK_Direct:
6461   case InitializationKind::IK_Value:
6462     return NumArgs != 1;
6463   default:
6464     return false;
6465   }
6466 }
6467 
6468 static ExprResult
6469 PerformConstructorInitialization(Sema &S,
6470                                  const InitializedEntity &Entity,
6471                                  const InitializationKind &Kind,
6472                                  MultiExprArg Args,
6473                                  const InitializationSequence::Step& Step,
6474                                  bool &ConstructorInitRequiresZeroInit,
6475                                  bool IsListInitialization,
6476                                  bool IsStdInitListInitialization,
6477                                  SourceLocation LBraceLoc,
6478                                  SourceLocation RBraceLoc) {
6479   unsigned NumArgs = Args.size();
6480   CXXConstructorDecl *Constructor
6481     = cast<CXXConstructorDecl>(Step.Function.Function);
6482   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6483 
6484   // Build a call to the selected constructor.
6485   SmallVector<Expr*, 8> ConstructorArgs;
6486   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6487                          ? Kind.getEqualLoc()
6488                          : Kind.getLocation();
6489 
6490   if (Kind.getKind() == InitializationKind::IK_Default) {
6491     // Force even a trivial, implicit default constructor to be
6492     // semantically checked. We do this explicitly because we don't build
6493     // the definition for completely trivial constructors.
6494     assert(Constructor->getParent() && "No parent class for constructor.");
6495     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6496         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6497       S.runWithSufficientStackSpace(Loc, [&] {
6498         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6499       });
6500     }
6501   }
6502 
6503   ExprResult CurInit((Expr *)nullptr);
6504 
6505   // C++ [over.match.copy]p1:
6506   //   - When initializing a temporary to be bound to the first parameter
6507   //     of a constructor that takes a reference to possibly cv-qualified
6508   //     T as its first argument, called with a single argument in the
6509   //     context of direct-initialization, explicit conversion functions
6510   //     are also considered.
6511   bool AllowExplicitConv =
6512       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6513       hasCopyOrMoveCtorParam(S.Context,
6514                              getConstructorInfo(Step.Function.FoundDecl));
6515 
6516   // Determine the arguments required to actually perform the constructor
6517   // call.
6518   if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6519                                 ConstructorArgs, AllowExplicitConv,
6520                                 IsListInitialization))
6521     return ExprError();
6522 
6523   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6524     // An explicitly-constructed temporary, e.g., X(1, 2).
6525     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6526       return ExprError();
6527 
6528     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6529     if (!TSInfo)
6530       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6531     SourceRange ParenOrBraceRange =
6532         (Kind.getKind() == InitializationKind::IK_DirectList)
6533         ? SourceRange(LBraceLoc, RBraceLoc)
6534         : Kind.getParenOrBraceRange();
6535 
6536     CXXConstructorDecl *CalleeDecl = Constructor;
6537     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6538             Step.Function.FoundDecl.getDecl())) {
6539       CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6540       if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6541         return ExprError();
6542     }
6543     S.MarkFunctionReferenced(Loc, CalleeDecl);
6544 
6545     CurInit = S.CheckForImmediateInvocation(
6546         CXXTemporaryObjectExpr::Create(
6547             S.Context, CalleeDecl,
6548             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6549             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6550             IsListInitialization, IsStdInitListInitialization,
6551             ConstructorInitRequiresZeroInit),
6552         CalleeDecl);
6553   } else {
6554     CXXConstructExpr::ConstructionKind ConstructKind =
6555       CXXConstructExpr::CK_Complete;
6556 
6557     if (Entity.getKind() == InitializedEntity::EK_Base) {
6558       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6559         CXXConstructExpr::CK_VirtualBase :
6560         CXXConstructExpr::CK_NonVirtualBase;
6561     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6562       ConstructKind = CXXConstructExpr::CK_Delegating;
6563     }
6564 
6565     // Only get the parenthesis or brace range if it is a list initialization or
6566     // direct construction.
6567     SourceRange ParenOrBraceRange;
6568     if (IsListInitialization)
6569       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6570     else if (Kind.getKind() == InitializationKind::IK_Direct)
6571       ParenOrBraceRange = Kind.getParenOrBraceRange();
6572 
6573     // If the entity allows NRVO, mark the construction as elidable
6574     // unconditionally.
6575     if (Entity.allowsNRVO())
6576       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6577                                         Step.Function.FoundDecl,
6578                                         Constructor, /*Elidable=*/true,
6579                                         ConstructorArgs,
6580                                         HadMultipleCandidates,
6581                                         IsListInitialization,
6582                                         IsStdInitListInitialization,
6583                                         ConstructorInitRequiresZeroInit,
6584                                         ConstructKind,
6585                                         ParenOrBraceRange);
6586     else
6587       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6588                                         Step.Function.FoundDecl,
6589                                         Constructor,
6590                                         ConstructorArgs,
6591                                         HadMultipleCandidates,
6592                                         IsListInitialization,
6593                                         IsStdInitListInitialization,
6594                                         ConstructorInitRequiresZeroInit,
6595                                         ConstructKind,
6596                                         ParenOrBraceRange);
6597   }
6598   if (CurInit.isInvalid())
6599     return ExprError();
6600 
6601   // Only check access if all of that succeeded.
6602   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6603   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6604     return ExprError();
6605 
6606   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6607     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6608       return ExprError();
6609 
6610   if (shouldBindAsTemporary(Entity))
6611     CurInit = S.MaybeBindToTemporary(CurInit.get());
6612 
6613   return CurInit;
6614 }
6615 
6616 namespace {
6617 enum LifetimeKind {
6618   /// The lifetime of a temporary bound to this entity ends at the end of the
6619   /// full-expression, and that's (probably) fine.
6620   LK_FullExpression,
6621 
6622   /// The lifetime of a temporary bound to this entity is extended to the
6623   /// lifeitme of the entity itself.
6624   LK_Extended,
6625 
6626   /// The lifetime of a temporary bound to this entity probably ends too soon,
6627   /// because the entity is allocated in a new-expression.
6628   LK_New,
6629 
6630   /// The lifetime of a temporary bound to this entity ends too soon, because
6631   /// the entity is a return object.
6632   LK_Return,
6633 
6634   /// The lifetime of a temporary bound to this entity ends too soon, because
6635   /// the entity is the result of a statement expression.
6636   LK_StmtExprResult,
6637 
6638   /// This is a mem-initializer: if it would extend a temporary (other than via
6639   /// a default member initializer), the program is ill-formed.
6640   LK_MemInitializer,
6641 };
6642 using LifetimeResult =
6643     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6644 }
6645 
6646 /// Determine the declaration which an initialized entity ultimately refers to,
6647 /// for the purpose of lifetime-extending a temporary bound to a reference in
6648 /// the initialization of \p Entity.
6649 static LifetimeResult getEntityLifetime(
6650     const InitializedEntity *Entity,
6651     const InitializedEntity *InitField = nullptr) {
6652   // C++11 [class.temporary]p5:
6653   switch (Entity->getKind()) {
6654   case InitializedEntity::EK_Variable:
6655     //   The temporary [...] persists for the lifetime of the reference
6656     return {Entity, LK_Extended};
6657 
6658   case InitializedEntity::EK_Member:
6659     // For subobjects, we look at the complete object.
6660     if (Entity->getParent())
6661       return getEntityLifetime(Entity->getParent(), Entity);
6662 
6663     //   except:
6664     // C++17 [class.base.init]p8:
6665     //   A temporary expression bound to a reference member in a
6666     //   mem-initializer is ill-formed.
6667     // C++17 [class.base.init]p11:
6668     //   A temporary expression bound to a reference member from a
6669     //   default member initializer is ill-formed.
6670     //
6671     // The context of p11 and its example suggest that it's only the use of a
6672     // default member initializer from a constructor that makes the program
6673     // ill-formed, not its mere existence, and that it can even be used by
6674     // aggregate initialization.
6675     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6676                                                          : LK_MemInitializer};
6677 
6678   case InitializedEntity::EK_Binding:
6679     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6680     // type.
6681     return {Entity, LK_Extended};
6682 
6683   case InitializedEntity::EK_Parameter:
6684   case InitializedEntity::EK_Parameter_CF_Audited:
6685     //   -- A temporary bound to a reference parameter in a function call
6686     //      persists until the completion of the full-expression containing
6687     //      the call.
6688     return {nullptr, LK_FullExpression};
6689 
6690   case InitializedEntity::EK_TemplateParameter:
6691     // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6692     return {nullptr, LK_FullExpression};
6693 
6694   case InitializedEntity::EK_Result:
6695     //   -- The lifetime of a temporary bound to the returned value in a
6696     //      function return statement is not extended; the temporary is
6697     //      destroyed at the end of the full-expression in the return statement.
6698     return {nullptr, LK_Return};
6699 
6700   case InitializedEntity::EK_StmtExprResult:
6701     // FIXME: Should we lifetime-extend through the result of a statement
6702     // expression?
6703     return {nullptr, LK_StmtExprResult};
6704 
6705   case InitializedEntity::EK_New:
6706     //   -- A temporary bound to a reference in a new-initializer persists
6707     //      until the completion of the full-expression containing the
6708     //      new-initializer.
6709     return {nullptr, LK_New};
6710 
6711   case InitializedEntity::EK_Temporary:
6712   case InitializedEntity::EK_CompoundLiteralInit:
6713   case InitializedEntity::EK_RelatedResult:
6714     // We don't yet know the storage duration of the surrounding temporary.
6715     // Assume it's got full-expression duration for now, it will patch up our
6716     // storage duration if that's not correct.
6717     return {nullptr, LK_FullExpression};
6718 
6719   case InitializedEntity::EK_ArrayElement:
6720     // For subobjects, we look at the complete object.
6721     return getEntityLifetime(Entity->getParent(), InitField);
6722 
6723   case InitializedEntity::EK_Base:
6724     // For subobjects, we look at the complete object.
6725     if (Entity->getParent())
6726       return getEntityLifetime(Entity->getParent(), InitField);
6727     return {InitField, LK_MemInitializer};
6728 
6729   case InitializedEntity::EK_Delegating:
6730     // We can reach this case for aggregate initialization in a constructor:
6731     //   struct A { int &&r; };
6732     //   struct B : A { B() : A{0} {} };
6733     // In this case, use the outermost field decl as the context.
6734     return {InitField, LK_MemInitializer};
6735 
6736   case InitializedEntity::EK_BlockElement:
6737   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6738   case InitializedEntity::EK_LambdaCapture:
6739   case InitializedEntity::EK_VectorElement:
6740   case InitializedEntity::EK_ComplexElement:
6741     return {nullptr, LK_FullExpression};
6742 
6743   case InitializedEntity::EK_Exception:
6744     // FIXME: Can we diagnose lifetime problems with exceptions?
6745     return {nullptr, LK_FullExpression};
6746   }
6747   llvm_unreachable("unknown entity kind");
6748 }
6749 
6750 namespace {
6751 enum ReferenceKind {
6752   /// Lifetime would be extended by a reference binding to a temporary.
6753   RK_ReferenceBinding,
6754   /// Lifetime would be extended by a std::initializer_list object binding to
6755   /// its backing array.
6756   RK_StdInitializerList,
6757 };
6758 
6759 /// A temporary or local variable. This will be one of:
6760 ///  * A MaterializeTemporaryExpr.
6761 ///  * A DeclRefExpr whose declaration is a local.
6762 ///  * An AddrLabelExpr.
6763 ///  * A BlockExpr for a block with captures.
6764 using Local = Expr*;
6765 
6766 /// Expressions we stepped over when looking for the local state. Any steps
6767 /// that would inhibit lifetime extension or take us out of subexpressions of
6768 /// the initializer are included.
6769 struct IndirectLocalPathEntry {
6770   enum EntryKind {
6771     DefaultInit,
6772     AddressOf,
6773     VarInit,
6774     LValToRVal,
6775     LifetimeBoundCall,
6776     TemporaryCopy,
6777     LambdaCaptureInit,
6778     GslReferenceInit,
6779     GslPointerInit
6780   } Kind;
6781   Expr *E;
6782   union {
6783     const Decl *D = nullptr;
6784     const LambdaCapture *Capture;
6785   };
6786   IndirectLocalPathEntry() {}
6787   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6788   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6789       : Kind(K), E(E), D(D) {}
6790   IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6791       : Kind(K), E(E), Capture(Capture) {}
6792 };
6793 
6794 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6795 
6796 struct RevertToOldSizeRAII {
6797   IndirectLocalPath &Path;
6798   unsigned OldSize = Path.size();
6799   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6800   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6801 };
6802 
6803 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6804                                              ReferenceKind RK)>;
6805 }
6806 
6807 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6808   for (auto E : Path)
6809     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6810       return true;
6811   return false;
6812 }
6813 
6814 static bool pathContainsInit(IndirectLocalPath &Path) {
6815   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6816     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6817            E.Kind == IndirectLocalPathEntry::VarInit;
6818   });
6819 }
6820 
6821 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6822                                              Expr *Init, LocalVisitor Visit,
6823                                              bool RevisitSubinits,
6824                                              bool EnableLifetimeWarnings);
6825 
6826 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6827                                                   Expr *Init, ReferenceKind RK,
6828                                                   LocalVisitor Visit,
6829                                                   bool EnableLifetimeWarnings);
6830 
6831 template <typename T> static bool isRecordWithAttr(QualType Type) {
6832   if (auto *RD = Type->getAsCXXRecordDecl())
6833     return RD->hasAttr<T>();
6834   return false;
6835 }
6836 
6837 // Decl::isInStdNamespace will return false for iterators in some STL
6838 // implementations due to them being defined in a namespace outside of the std
6839 // namespace.
6840 static bool isInStlNamespace(const Decl *D) {
6841   const DeclContext *DC = D->getDeclContext();
6842   if (!DC)
6843     return false;
6844   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6845     if (const IdentifierInfo *II = ND->getIdentifier()) {
6846       StringRef Name = II->getName();
6847       if (Name.size() >= 2 && Name.front() == '_' &&
6848           (Name[1] == '_' || isUppercase(Name[1])))
6849         return true;
6850     }
6851 
6852   return DC->isStdNamespace();
6853 }
6854 
6855 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6856   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6857     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6858       return true;
6859   if (!isInStlNamespace(Callee->getParent()))
6860     return false;
6861   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6862       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6863     return false;
6864   if (Callee->getReturnType()->isPointerType() ||
6865       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6866     if (!Callee->getIdentifier())
6867       return false;
6868     return llvm::StringSwitch<bool>(Callee->getName())
6869         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6870         .Cases("end", "rend", "cend", "crend", true)
6871         .Cases("c_str", "data", "get", true)
6872         // Map and set types.
6873         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6874         .Default(false);
6875   } else if (Callee->getReturnType()->isReferenceType()) {
6876     if (!Callee->getIdentifier()) {
6877       auto OO = Callee->getOverloadedOperator();
6878       return OO == OverloadedOperatorKind::OO_Subscript ||
6879              OO == OverloadedOperatorKind::OO_Star;
6880     }
6881     return llvm::StringSwitch<bool>(Callee->getName())
6882         .Cases("front", "back", "at", "top", "value", true)
6883         .Default(false);
6884   }
6885   return false;
6886 }
6887 
6888 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6889   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6890     return false;
6891   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6892   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6893     return false;
6894   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6895       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6896     return false;
6897   if (FD->getReturnType()->isPointerType() ||
6898       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6899     return llvm::StringSwitch<bool>(FD->getName())
6900         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6901         .Cases("end", "rend", "cend", "crend", true)
6902         .Case("data", true)
6903         .Default(false);
6904   } else if (FD->getReturnType()->isReferenceType()) {
6905     return llvm::StringSwitch<bool>(FD->getName())
6906         .Cases("get", "any_cast", true)
6907         .Default(false);
6908   }
6909   return false;
6910 }
6911 
6912 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6913                                     LocalVisitor Visit) {
6914   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6915     // We are not interested in the temporary base objects of gsl Pointers:
6916     //   Temp().ptr; // Here ptr might not dangle.
6917     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6918       return;
6919     // Once we initialized a value with a reference, it can no longer dangle.
6920     if (!Value) {
6921       for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6922         if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6923           continue;
6924         if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6925           return;
6926         break;
6927       }
6928     }
6929     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6930                           : IndirectLocalPathEntry::GslReferenceInit,
6931                     Arg, D});
6932     if (Arg->isGLValue())
6933       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6934                                             Visit,
6935                                             /*EnableLifetimeWarnings=*/true);
6936     else
6937       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6938                                        /*EnableLifetimeWarnings=*/true);
6939     Path.pop_back();
6940   };
6941 
6942   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6943     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6944     if (MD && shouldTrackImplicitObjectArg(MD))
6945       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6946                       !MD->getReturnType()->isReferenceType());
6947     return;
6948   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6949     FunctionDecl *Callee = OCE->getDirectCallee();
6950     if (Callee && Callee->isCXXInstanceMember() &&
6951         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6952       VisitPointerArg(Callee, OCE->getArg(0),
6953                       !Callee->getReturnType()->isReferenceType());
6954     return;
6955   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6956     FunctionDecl *Callee = CE->getDirectCallee();
6957     if (Callee && shouldTrackFirstArgument(Callee))
6958       VisitPointerArg(Callee, CE->getArg(0),
6959                       !Callee->getReturnType()->isReferenceType());
6960     return;
6961   }
6962 
6963   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6964     const auto *Ctor = CCE->getConstructor();
6965     const CXXRecordDecl *RD = Ctor->getParent();
6966     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6967       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6968   }
6969 }
6970 
6971 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6972   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6973   if (!TSI)
6974     return false;
6975   // Don't declare this variable in the second operand of the for-statement;
6976   // GCC miscompiles that by ending its lifetime before evaluating the
6977   // third operand. See gcc.gnu.org/PR86769.
6978   AttributedTypeLoc ATL;
6979   for (TypeLoc TL = TSI->getTypeLoc();
6980        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6981        TL = ATL.getModifiedLoc()) {
6982     if (ATL.getAttrAs<LifetimeBoundAttr>())
6983       return true;
6984   }
6985 
6986   // Assume that all assignment operators with a "normal" return type return
6987   // *this, that is, an lvalue reference that is the same type as the implicit
6988   // object parameter (or the LHS for a non-member operator$=).
6989   OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
6990   if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
6991     QualType RetT = FD->getReturnType();
6992     if (RetT->isLValueReferenceType()) {
6993       ASTContext &Ctx = FD->getASTContext();
6994       QualType LHST;
6995       auto *MD = dyn_cast<CXXMethodDecl>(FD);
6996       if (MD && MD->isCXXInstanceMember())
6997         LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
6998       else
6999         LHST = MD->getParamDecl(0)->getType();
7000       if (Ctx.hasSameType(RetT, LHST))
7001         return true;
7002     }
7003   }
7004 
7005   return false;
7006 }
7007 
7008 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7009                                         LocalVisitor Visit) {
7010   const FunctionDecl *Callee;
7011   ArrayRef<Expr*> Args;
7012 
7013   if (auto *CE = dyn_cast<CallExpr>(Call)) {
7014     Callee = CE->getDirectCallee();
7015     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7016   } else {
7017     auto *CCE = cast<CXXConstructExpr>(Call);
7018     Callee = CCE->getConstructor();
7019     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7020   }
7021   if (!Callee)
7022     return;
7023 
7024   Expr *ObjectArg = nullptr;
7025   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7026     ObjectArg = Args[0];
7027     Args = Args.slice(1);
7028   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7029     ObjectArg = MCE->getImplicitObjectArgument();
7030   }
7031 
7032   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7033     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7034     if (Arg->isGLValue())
7035       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7036                                             Visit,
7037                                             /*EnableLifetimeWarnings=*/false);
7038     else
7039       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7040                                        /*EnableLifetimeWarnings=*/false);
7041     Path.pop_back();
7042   };
7043 
7044   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7045     VisitLifetimeBoundArg(Callee, ObjectArg);
7046 
7047   for (unsigned I = 0,
7048                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7049        I != N; ++I) {
7050     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7051       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7052   }
7053 }
7054 
7055 /// Visit the locals that would be reachable through a reference bound to the
7056 /// glvalue expression \c Init.
7057 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7058                                                   Expr *Init, ReferenceKind RK,
7059                                                   LocalVisitor Visit,
7060                                                   bool EnableLifetimeWarnings) {
7061   RevertToOldSizeRAII RAII(Path);
7062 
7063   // Walk past any constructs which we can lifetime-extend across.
7064   Expr *Old;
7065   do {
7066     Old = Init;
7067 
7068     if (auto *FE = dyn_cast<FullExpr>(Init))
7069       Init = FE->getSubExpr();
7070 
7071     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7072       // If this is just redundant braces around an initializer, step over it.
7073       if (ILE->isTransparent())
7074         Init = ILE->getInit(0);
7075     }
7076 
7077     // Step over any subobject adjustments; we may have a materialized
7078     // temporary inside them.
7079     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7080 
7081     // Per current approach for DR1376, look through casts to reference type
7082     // when performing lifetime extension.
7083     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7084       if (CE->getSubExpr()->isGLValue())
7085         Init = CE->getSubExpr();
7086 
7087     // Per the current approach for DR1299, look through array element access
7088     // on array glvalues when performing lifetime extension.
7089     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7090       Init = ASE->getBase();
7091       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7092       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7093         Init = ICE->getSubExpr();
7094       else
7095         // We can't lifetime extend through this but we might still find some
7096         // retained temporaries.
7097         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7098                                                 EnableLifetimeWarnings);
7099     }
7100 
7101     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7102     // constructor inherits one as an implicit mem-initializer.
7103     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7104       Path.push_back(
7105           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7106       Init = DIE->getExpr();
7107     }
7108   } while (Init != Old);
7109 
7110   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7111     if (Visit(Path, Local(MTE), RK))
7112       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7113                                        EnableLifetimeWarnings);
7114   }
7115 
7116   if (isa<CallExpr>(Init)) {
7117     if (EnableLifetimeWarnings)
7118       handleGslAnnotatedTypes(Path, Init, Visit);
7119     return visitLifetimeBoundArguments(Path, Init, Visit);
7120   }
7121 
7122   switch (Init->getStmtClass()) {
7123   case Stmt::DeclRefExprClass: {
7124     // If we find the name of a local non-reference parameter, we could have a
7125     // lifetime problem.
7126     auto *DRE = cast<DeclRefExpr>(Init);
7127     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7128     if (VD && VD->hasLocalStorage() &&
7129         !DRE->refersToEnclosingVariableOrCapture()) {
7130       if (!VD->getType()->isReferenceType()) {
7131         Visit(Path, Local(DRE), RK);
7132       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7133         // The lifetime of a reference parameter is unknown; assume it's OK
7134         // for now.
7135         break;
7136       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7137         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7138         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7139                                               RK_ReferenceBinding, Visit,
7140                                               EnableLifetimeWarnings);
7141       }
7142     }
7143     break;
7144   }
7145 
7146   case Stmt::UnaryOperatorClass: {
7147     // The only unary operator that make sense to handle here
7148     // is Deref.  All others don't resolve to a "name."  This includes
7149     // handling all sorts of rvalues passed to a unary operator.
7150     const UnaryOperator *U = cast<UnaryOperator>(Init);
7151     if (U->getOpcode() == UO_Deref)
7152       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7153                                        EnableLifetimeWarnings);
7154     break;
7155   }
7156 
7157   case Stmt::OMPArraySectionExprClass: {
7158     visitLocalsRetainedByInitializer(Path,
7159                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7160                                      Visit, true, EnableLifetimeWarnings);
7161     break;
7162   }
7163 
7164   case Stmt::ConditionalOperatorClass:
7165   case Stmt::BinaryConditionalOperatorClass: {
7166     auto *C = cast<AbstractConditionalOperator>(Init);
7167     if (!C->getTrueExpr()->getType()->isVoidType())
7168       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7169                                             EnableLifetimeWarnings);
7170     if (!C->getFalseExpr()->getType()->isVoidType())
7171       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7172                                             EnableLifetimeWarnings);
7173     break;
7174   }
7175 
7176   // FIXME: Visit the left-hand side of an -> or ->*.
7177 
7178   default:
7179     break;
7180   }
7181 }
7182 
7183 /// Visit the locals that would be reachable through an object initialized by
7184 /// the prvalue expression \c Init.
7185 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7186                                              Expr *Init, LocalVisitor Visit,
7187                                              bool RevisitSubinits,
7188                                              bool EnableLifetimeWarnings) {
7189   RevertToOldSizeRAII RAII(Path);
7190 
7191   Expr *Old;
7192   do {
7193     Old = Init;
7194 
7195     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7196     // constructor inherits one as an implicit mem-initializer.
7197     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7198       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7199       Init = DIE->getExpr();
7200     }
7201 
7202     if (auto *FE = dyn_cast<FullExpr>(Init))
7203       Init = FE->getSubExpr();
7204 
7205     // Dig out the expression which constructs the extended temporary.
7206     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7207 
7208     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7209       Init = BTE->getSubExpr();
7210 
7211     Init = Init->IgnoreParens();
7212 
7213     // Step over value-preserving rvalue casts.
7214     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7215       switch (CE->getCastKind()) {
7216       case CK_LValueToRValue:
7217         // If we can match the lvalue to a const object, we can look at its
7218         // initializer.
7219         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7220         return visitLocalsRetainedByReferenceBinding(
7221             Path, Init, RK_ReferenceBinding,
7222             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7223           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7224             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7225             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7226                 !isVarOnPath(Path, VD)) {
7227               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7228               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7229                                                EnableLifetimeWarnings);
7230             }
7231           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7232             if (MTE->getType().isConstQualified())
7233               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7234                                                true, EnableLifetimeWarnings);
7235           }
7236           return false;
7237         }, EnableLifetimeWarnings);
7238 
7239         // We assume that objects can be retained by pointers cast to integers,
7240         // but not if the integer is cast to floating-point type or to _Complex.
7241         // We assume that casts to 'bool' do not preserve enough information to
7242         // retain a local object.
7243       case CK_NoOp:
7244       case CK_BitCast:
7245       case CK_BaseToDerived:
7246       case CK_DerivedToBase:
7247       case CK_UncheckedDerivedToBase:
7248       case CK_Dynamic:
7249       case CK_ToUnion:
7250       case CK_UserDefinedConversion:
7251       case CK_ConstructorConversion:
7252       case CK_IntegralToPointer:
7253       case CK_PointerToIntegral:
7254       case CK_VectorSplat:
7255       case CK_IntegralCast:
7256       case CK_CPointerToObjCPointerCast:
7257       case CK_BlockPointerToObjCPointerCast:
7258       case CK_AnyPointerToBlockPointerCast:
7259       case CK_AddressSpaceConversion:
7260         break;
7261 
7262       case CK_ArrayToPointerDecay:
7263         // Model array-to-pointer decay as taking the address of the array
7264         // lvalue.
7265         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7266         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7267                                                      RK_ReferenceBinding, Visit,
7268                                                      EnableLifetimeWarnings);
7269 
7270       default:
7271         return;
7272       }
7273 
7274       Init = CE->getSubExpr();
7275     }
7276   } while (Old != Init);
7277 
7278   // C++17 [dcl.init.list]p6:
7279   //   initializing an initializer_list object from the array extends the
7280   //   lifetime of the array exactly like binding a reference to a temporary.
7281   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7282     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7283                                                  RK_StdInitializerList, Visit,
7284                                                  EnableLifetimeWarnings);
7285 
7286   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7287     // We already visited the elements of this initializer list while
7288     // performing the initialization. Don't visit them again unless we've
7289     // changed the lifetime of the initialized entity.
7290     if (!RevisitSubinits)
7291       return;
7292 
7293     if (ILE->isTransparent())
7294       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7295                                               RevisitSubinits,
7296                                               EnableLifetimeWarnings);
7297 
7298     if (ILE->getType()->isArrayType()) {
7299       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7300         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7301                                          RevisitSubinits,
7302                                          EnableLifetimeWarnings);
7303       return;
7304     }
7305 
7306     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7307       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7308 
7309       // If we lifetime-extend a braced initializer which is initializing an
7310       // aggregate, and that aggregate contains reference members which are
7311       // bound to temporaries, those temporaries are also lifetime-extended.
7312       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7313           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7314         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7315                                               RK_ReferenceBinding, Visit,
7316                                               EnableLifetimeWarnings);
7317       else {
7318         unsigned Index = 0;
7319         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7320           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7321                                            RevisitSubinits,
7322                                            EnableLifetimeWarnings);
7323         for (const auto *I : RD->fields()) {
7324           if (Index >= ILE->getNumInits())
7325             break;
7326           if (I->isUnnamedBitfield())
7327             continue;
7328           Expr *SubInit = ILE->getInit(Index);
7329           if (I->getType()->isReferenceType())
7330             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7331                                                   RK_ReferenceBinding, Visit,
7332                                                   EnableLifetimeWarnings);
7333           else
7334             // This might be either aggregate-initialization of a member or
7335             // initialization of a std::initializer_list object. Regardless,
7336             // we should recursively lifetime-extend that initializer.
7337             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7338                                              RevisitSubinits,
7339                                              EnableLifetimeWarnings);
7340           ++Index;
7341         }
7342       }
7343     }
7344     return;
7345   }
7346 
7347   // The lifetime of an init-capture is that of the closure object constructed
7348   // by a lambda-expression.
7349   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7350     LambdaExpr::capture_iterator CapI = LE->capture_begin();
7351     for (Expr *E : LE->capture_inits()) {
7352       assert(CapI != LE->capture_end());
7353       const LambdaCapture &Cap = *CapI++;
7354       if (!E)
7355         continue;
7356       if (Cap.capturesVariable())
7357         Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7358       if (E->isGLValue())
7359         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7360                                               Visit, EnableLifetimeWarnings);
7361       else
7362         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7363                                          EnableLifetimeWarnings);
7364       if (Cap.capturesVariable())
7365         Path.pop_back();
7366     }
7367   }
7368 
7369   // Assume that a copy or move from a temporary references the same objects
7370   // that the temporary does.
7371   if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7372     if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7373       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7374         Expr *Arg = MTE->getSubExpr();
7375         Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7376                         CCE->getConstructor()});
7377         visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7378                                          /*EnableLifetimeWarnings*/false);
7379         Path.pop_back();
7380       }
7381     }
7382   }
7383 
7384   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7385     if (EnableLifetimeWarnings)
7386       handleGslAnnotatedTypes(Path, Init, Visit);
7387     return visitLifetimeBoundArguments(Path, Init, Visit);
7388   }
7389 
7390   switch (Init->getStmtClass()) {
7391   case Stmt::UnaryOperatorClass: {
7392     auto *UO = cast<UnaryOperator>(Init);
7393     // If the initializer is the address of a local, we could have a lifetime
7394     // problem.
7395     if (UO->getOpcode() == UO_AddrOf) {
7396       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7397       // it. Don't produce a redundant warning about the lifetime of the
7398       // temporary.
7399       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7400         return;
7401 
7402       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7403       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7404                                             RK_ReferenceBinding, Visit,
7405                                             EnableLifetimeWarnings);
7406     }
7407     break;
7408   }
7409 
7410   case Stmt::BinaryOperatorClass: {
7411     // Handle pointer arithmetic.
7412     auto *BO = cast<BinaryOperator>(Init);
7413     BinaryOperatorKind BOK = BO->getOpcode();
7414     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7415       break;
7416 
7417     if (BO->getLHS()->getType()->isPointerType())
7418       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7419                                        EnableLifetimeWarnings);
7420     else if (BO->getRHS()->getType()->isPointerType())
7421       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7422                                        EnableLifetimeWarnings);
7423     break;
7424   }
7425 
7426   case Stmt::ConditionalOperatorClass:
7427   case Stmt::BinaryConditionalOperatorClass: {
7428     auto *C = cast<AbstractConditionalOperator>(Init);
7429     // In C++, we can have a throw-expression operand, which has 'void' type
7430     // and isn't interesting from a lifetime perspective.
7431     if (!C->getTrueExpr()->getType()->isVoidType())
7432       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7433                                        EnableLifetimeWarnings);
7434     if (!C->getFalseExpr()->getType()->isVoidType())
7435       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7436                                        EnableLifetimeWarnings);
7437     break;
7438   }
7439 
7440   case Stmt::BlockExprClass:
7441     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7442       // This is a local block, whose lifetime is that of the function.
7443       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7444     }
7445     break;
7446 
7447   case Stmt::AddrLabelExprClass:
7448     // We want to warn if the address of a label would escape the function.
7449     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7450     break;
7451 
7452   default:
7453     break;
7454   }
7455 }
7456 
7457 /// Whether a path to an object supports lifetime extension.
7458 enum PathLifetimeKind {
7459   /// Lifetime-extend along this path.
7460   Extend,
7461   /// We should lifetime-extend, but we don't because (due to technical
7462   /// limitations) we can't. This happens for default member initializers,
7463   /// which we don't clone for every use, so we don't have a unique
7464   /// MaterializeTemporaryExpr to update.
7465   ShouldExtend,
7466   /// Do not lifetime extend along this path.
7467   NoExtend
7468 };
7469 
7470 /// Determine whether this is an indirect path to a temporary that we are
7471 /// supposed to lifetime-extend along.
7472 static PathLifetimeKind
7473 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7474   PathLifetimeKind Kind = PathLifetimeKind::Extend;
7475   for (auto Elem : Path) {
7476     if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7477       Kind = PathLifetimeKind::ShouldExtend;
7478     else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7479       return PathLifetimeKind::NoExtend;
7480   }
7481   return Kind;
7482 }
7483 
7484 /// Find the range for the first interesting entry in the path at or after I.
7485 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7486                                       Expr *E) {
7487   for (unsigned N = Path.size(); I != N; ++I) {
7488     switch (Path[I].Kind) {
7489     case IndirectLocalPathEntry::AddressOf:
7490     case IndirectLocalPathEntry::LValToRVal:
7491     case IndirectLocalPathEntry::LifetimeBoundCall:
7492     case IndirectLocalPathEntry::TemporaryCopy:
7493     case IndirectLocalPathEntry::GslReferenceInit:
7494     case IndirectLocalPathEntry::GslPointerInit:
7495       // These exist primarily to mark the path as not permitting or
7496       // supporting lifetime extension.
7497       break;
7498 
7499     case IndirectLocalPathEntry::VarInit:
7500       if (cast<VarDecl>(Path[I].D)->isImplicit())
7501         return SourceRange();
7502       LLVM_FALLTHROUGH;
7503     case IndirectLocalPathEntry::DefaultInit:
7504       return Path[I].E->getSourceRange();
7505 
7506     case IndirectLocalPathEntry::LambdaCaptureInit:
7507       if (!Path[I].Capture->capturesVariable())
7508         continue;
7509       return Path[I].E->getSourceRange();
7510     }
7511   }
7512   return E->getSourceRange();
7513 }
7514 
7515 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7516   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7517     if (It->Kind == IndirectLocalPathEntry::VarInit)
7518       continue;
7519     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7520       continue;
7521     if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7522       continue;
7523     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7524            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7525   }
7526   return false;
7527 }
7528 
7529 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7530                                     Expr *Init) {
7531   LifetimeResult LR = getEntityLifetime(&Entity);
7532   LifetimeKind LK = LR.getInt();
7533   const InitializedEntity *ExtendingEntity = LR.getPointer();
7534 
7535   // If this entity doesn't have an interesting lifetime, don't bother looking
7536   // for temporaries within its initializer.
7537   if (LK == LK_FullExpression)
7538     return;
7539 
7540   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7541                               ReferenceKind RK) -> bool {
7542     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7543     SourceLocation DiagLoc = DiagRange.getBegin();
7544 
7545     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7546 
7547     bool IsGslPtrInitWithGslTempOwner = false;
7548     bool IsLocalGslOwner = false;
7549     if (pathOnlyInitializesGslPointer(Path)) {
7550       if (isa<DeclRefExpr>(L)) {
7551         // We do not want to follow the references when returning a pointer originating
7552         // from a local owner to avoid the following false positive:
7553         //   int &p = *localUniquePtr;
7554         //   someContainer.add(std::move(localUniquePtr));
7555         //   return p;
7556         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7557         if (pathContainsInit(Path) || !IsLocalGslOwner)
7558           return false;
7559       } else {
7560         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7561                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7562         // Skipping a chain of initializing gsl::Pointer annotated objects.
7563         // We are looking only for the final source to find out if it was
7564         // a local or temporary owner or the address of a local variable/param.
7565         if (!IsGslPtrInitWithGslTempOwner)
7566           return true;
7567       }
7568     }
7569 
7570     switch (LK) {
7571     case LK_FullExpression:
7572       llvm_unreachable("already handled this");
7573 
7574     case LK_Extended: {
7575       if (!MTE) {
7576         // The initialized entity has lifetime beyond the full-expression,
7577         // and the local entity does too, so don't warn.
7578         //
7579         // FIXME: We should consider warning if a static / thread storage
7580         // duration variable retains an automatic storage duration local.
7581         return false;
7582       }
7583 
7584       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7585         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7586         return false;
7587       }
7588 
7589       switch (shouldLifetimeExtendThroughPath(Path)) {
7590       case PathLifetimeKind::Extend:
7591         // Update the storage duration of the materialized temporary.
7592         // FIXME: Rebuild the expression instead of mutating it.
7593         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7594                               ExtendingEntity->allocateManglingNumber());
7595         // Also visit the temporaries lifetime-extended by this initializer.
7596         return true;
7597 
7598       case PathLifetimeKind::ShouldExtend:
7599         // We're supposed to lifetime-extend the temporary along this path (per
7600         // the resolution of DR1815), but we don't support that yet.
7601         //
7602         // FIXME: Properly handle this situation. Perhaps the easiest approach
7603         // would be to clone the initializer expression on each use that would
7604         // lifetime extend its temporaries.
7605         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7606             << RK << DiagRange;
7607         break;
7608 
7609       case PathLifetimeKind::NoExtend:
7610         // If the path goes through the initialization of a variable or field,
7611         // it can't possibly reach a temporary created in this full-expression.
7612         // We will have already diagnosed any problems with the initializer.
7613         if (pathContainsInit(Path))
7614           return false;
7615 
7616         Diag(DiagLoc, diag::warn_dangling_variable)
7617             << RK << !Entity.getParent()
7618             << ExtendingEntity->getDecl()->isImplicit()
7619             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7620         break;
7621       }
7622       break;
7623     }
7624 
7625     case LK_MemInitializer: {
7626       if (isa<MaterializeTemporaryExpr>(L)) {
7627         // Under C++ DR1696, if a mem-initializer (or a default member
7628         // initializer used by the absence of one) would lifetime-extend a
7629         // temporary, the program is ill-formed.
7630         if (auto *ExtendingDecl =
7631                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7632           if (IsGslPtrInitWithGslTempOwner) {
7633             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7634                 << ExtendingDecl << DiagRange;
7635             Diag(ExtendingDecl->getLocation(),
7636                  diag::note_ref_or_ptr_member_declared_here)
7637                 << true;
7638             return false;
7639           }
7640           bool IsSubobjectMember = ExtendingEntity != &Entity;
7641           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7642                                 PathLifetimeKind::NoExtend
7643                             ? diag::err_dangling_member
7644                             : diag::warn_dangling_member)
7645               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7646           // Don't bother adding a note pointing to the field if we're inside
7647           // its default member initializer; our primary diagnostic points to
7648           // the same place in that case.
7649           if (Path.empty() ||
7650               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7651             Diag(ExtendingDecl->getLocation(),
7652                  diag::note_lifetime_extending_member_declared_here)
7653                 << RK << IsSubobjectMember;
7654           }
7655         } else {
7656           // We have a mem-initializer but no particular field within it; this
7657           // is either a base class or a delegating initializer directly
7658           // initializing the base-class from something that doesn't live long
7659           // enough.
7660           //
7661           // FIXME: Warn on this.
7662           return false;
7663         }
7664       } else {
7665         // Paths via a default initializer can only occur during error recovery
7666         // (there's no other way that a default initializer can refer to a
7667         // local). Don't produce a bogus warning on those cases.
7668         if (pathContainsInit(Path))
7669           return false;
7670 
7671         // Suppress false positives for code like the one below:
7672         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7673         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7674           return false;
7675 
7676         auto *DRE = dyn_cast<DeclRefExpr>(L);
7677         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7678         if (!VD) {
7679           // A member was initialized to a local block.
7680           // FIXME: Warn on this.
7681           return false;
7682         }
7683 
7684         if (auto *Member =
7685                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7686           bool IsPointer = !Member->getType()->isReferenceType();
7687           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7688                                   : diag::warn_bind_ref_member_to_parameter)
7689               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7690           Diag(Member->getLocation(),
7691                diag::note_ref_or_ptr_member_declared_here)
7692               << (unsigned)IsPointer;
7693         }
7694       }
7695       break;
7696     }
7697 
7698     case LK_New:
7699       if (isa<MaterializeTemporaryExpr>(L)) {
7700         if (IsGslPtrInitWithGslTempOwner)
7701           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7702         else
7703           Diag(DiagLoc, RK == RK_ReferenceBinding
7704                             ? diag::warn_new_dangling_reference
7705                             : diag::warn_new_dangling_initializer_list)
7706               << !Entity.getParent() << DiagRange;
7707       } else {
7708         // We can't determine if the allocation outlives the local declaration.
7709         return false;
7710       }
7711       break;
7712 
7713     case LK_Return:
7714     case LK_StmtExprResult:
7715       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7716         // We can't determine if the local variable outlives the statement
7717         // expression.
7718         if (LK == LK_StmtExprResult)
7719           return false;
7720         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7721             << Entity.getType()->isReferenceType() << DRE->getDecl()
7722             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7723       } else if (isa<BlockExpr>(L)) {
7724         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7725       } else if (isa<AddrLabelExpr>(L)) {
7726         // Don't warn when returning a label from a statement expression.
7727         // Leaving the scope doesn't end its lifetime.
7728         if (LK == LK_StmtExprResult)
7729           return false;
7730         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7731       } else {
7732         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7733          << Entity.getType()->isReferenceType() << DiagRange;
7734       }
7735       break;
7736     }
7737 
7738     for (unsigned I = 0; I != Path.size(); ++I) {
7739       auto Elem = Path[I];
7740 
7741       switch (Elem.Kind) {
7742       case IndirectLocalPathEntry::AddressOf:
7743       case IndirectLocalPathEntry::LValToRVal:
7744         // These exist primarily to mark the path as not permitting or
7745         // supporting lifetime extension.
7746         break;
7747 
7748       case IndirectLocalPathEntry::LifetimeBoundCall:
7749       case IndirectLocalPathEntry::TemporaryCopy:
7750       case IndirectLocalPathEntry::GslPointerInit:
7751       case IndirectLocalPathEntry::GslReferenceInit:
7752         // FIXME: Consider adding a note for these.
7753         break;
7754 
7755       case IndirectLocalPathEntry::DefaultInit: {
7756         auto *FD = cast<FieldDecl>(Elem.D);
7757         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7758             << FD << nextPathEntryRange(Path, I + 1, L);
7759         break;
7760       }
7761 
7762       case IndirectLocalPathEntry::VarInit: {
7763         const VarDecl *VD = cast<VarDecl>(Elem.D);
7764         Diag(VD->getLocation(), diag::note_local_var_initializer)
7765             << VD->getType()->isReferenceType()
7766             << VD->isImplicit() << VD->getDeclName()
7767             << nextPathEntryRange(Path, I + 1, L);
7768         break;
7769       }
7770 
7771       case IndirectLocalPathEntry::LambdaCaptureInit:
7772         if (!Elem.Capture->capturesVariable())
7773           break;
7774         // FIXME: We can't easily tell apart an init-capture from a nested
7775         // capture of an init-capture.
7776         const VarDecl *VD = Elem.Capture->getCapturedVar();
7777         Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7778             << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7779             << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7780             << nextPathEntryRange(Path, I + 1, L);
7781         break;
7782       }
7783     }
7784 
7785     // We didn't lifetime-extend, so don't go any further; we don't need more
7786     // warnings or errors on inner temporaries within this one's initializer.
7787     return false;
7788   };
7789 
7790   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7791       diag::warn_dangling_lifetime_pointer, SourceLocation());
7792   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7793   if (Init->isGLValue())
7794     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7795                                           TemporaryVisitor,
7796                                           EnableLifetimeWarnings);
7797   else
7798     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7799                                      EnableLifetimeWarnings);
7800 }
7801 
7802 static void DiagnoseNarrowingInInitList(Sema &S,
7803                                         const ImplicitConversionSequence &ICS,
7804                                         QualType PreNarrowingType,
7805                                         QualType EntityType,
7806                                         const Expr *PostInit);
7807 
7808 /// Provide warnings when std::move is used on construction.
7809 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7810                                     bool IsReturnStmt) {
7811   if (!InitExpr)
7812     return;
7813 
7814   if (S.inTemplateInstantiation())
7815     return;
7816 
7817   QualType DestType = InitExpr->getType();
7818   if (!DestType->isRecordType())
7819     return;
7820 
7821   unsigned DiagID = 0;
7822   if (IsReturnStmt) {
7823     const CXXConstructExpr *CCE =
7824         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7825     if (!CCE || CCE->getNumArgs() != 1)
7826       return;
7827 
7828     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7829       return;
7830 
7831     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7832   }
7833 
7834   // Find the std::move call and get the argument.
7835   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7836   if (!CE || !CE->isCallToStdMove())
7837     return;
7838 
7839   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7840 
7841   if (IsReturnStmt) {
7842     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7843     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7844       return;
7845 
7846     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7847     if (!VD || !VD->hasLocalStorage())
7848       return;
7849 
7850     // __block variables are not moved implicitly.
7851     if (VD->hasAttr<BlocksAttr>())
7852       return;
7853 
7854     QualType SourceType = VD->getType();
7855     if (!SourceType->isRecordType())
7856       return;
7857 
7858     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7859       return;
7860     }
7861 
7862     // If we're returning a function parameter, copy elision
7863     // is not possible.
7864     if (isa<ParmVarDecl>(VD))
7865       DiagID = diag::warn_redundant_move_on_return;
7866     else
7867       DiagID = diag::warn_pessimizing_move_on_return;
7868   } else {
7869     DiagID = diag::warn_pessimizing_move_on_initialization;
7870     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7871     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7872       return;
7873   }
7874 
7875   S.Diag(CE->getBeginLoc(), DiagID);
7876 
7877   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7878   // is within a macro.
7879   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7880   if (CallBegin.isMacroID())
7881     return;
7882   SourceLocation RParen = CE->getRParenLoc();
7883   if (RParen.isMacroID())
7884     return;
7885   SourceLocation LParen;
7886   SourceLocation ArgLoc = Arg->getBeginLoc();
7887 
7888   // Special testing for the argument location.  Since the fix-it needs the
7889   // location right before the argument, the argument location can be in a
7890   // macro only if it is at the beginning of the macro.
7891   while (ArgLoc.isMacroID() &&
7892          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7893     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7894   }
7895 
7896   if (LParen.isMacroID())
7897     return;
7898 
7899   LParen = ArgLoc.getLocWithOffset(-1);
7900 
7901   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7902       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7903       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7904 }
7905 
7906 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7907   // Check to see if we are dereferencing a null pointer.  If so, this is
7908   // undefined behavior, so warn about it.  This only handles the pattern
7909   // "*null", which is a very syntactic check.
7910   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7911     if (UO->getOpcode() == UO_Deref &&
7912         UO->getSubExpr()->IgnoreParenCasts()->
7913         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7914     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7915                           S.PDiag(diag::warn_binding_null_to_reference)
7916                             << UO->getSubExpr()->getSourceRange());
7917   }
7918 }
7919 
7920 MaterializeTemporaryExpr *
7921 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7922                                      bool BoundToLvalueReference) {
7923   auto MTE = new (Context)
7924       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7925 
7926   // Order an ExprWithCleanups for lifetime marks.
7927   //
7928   // TODO: It'll be good to have a single place to check the access of the
7929   // destructor and generate ExprWithCleanups for various uses. Currently these
7930   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7931   // but there may be a chance to merge them.
7932   Cleanup.setExprNeedsCleanups(false);
7933   return MTE;
7934 }
7935 
7936 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7937   // In C++98, we don't want to implicitly create an xvalue.
7938   // FIXME: This means that AST consumers need to deal with "prvalues" that
7939   // denote materialized temporaries. Maybe we should add another ValueKind
7940   // for "xvalue pretending to be a prvalue" for C++98 support.
7941   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7942     return E;
7943 
7944   // C++1z [conv.rval]/1: T shall be a complete type.
7945   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7946   // If so, we should check for a non-abstract class type here too.
7947   QualType T = E->getType();
7948   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7949     return ExprError();
7950 
7951   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7952 }
7953 
7954 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7955                                                 ExprValueKind VK,
7956                                                 CheckedConversionKind CCK) {
7957 
7958   CastKind CK = CK_NoOp;
7959 
7960   if (VK == VK_RValue) {
7961     auto PointeeTy = Ty->getPointeeType();
7962     auto ExprPointeeTy = E->getType()->getPointeeType();
7963     if (!PointeeTy.isNull() &&
7964         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7965       CK = CK_AddressSpaceConversion;
7966   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7967     CK = CK_AddressSpaceConversion;
7968   }
7969 
7970   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7971 }
7972 
7973 ExprResult InitializationSequence::Perform(Sema &S,
7974                                            const InitializedEntity &Entity,
7975                                            const InitializationKind &Kind,
7976                                            MultiExprArg Args,
7977                                            QualType *ResultType) {
7978   if (Failed()) {
7979     Diagnose(S, Entity, Kind, Args);
7980     return ExprError();
7981   }
7982   if (!ZeroInitializationFixit.empty()) {
7983     unsigned DiagID = diag::err_default_init_const;
7984     if (Decl *D = Entity.getDecl())
7985       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7986         DiagID = diag::ext_default_init_const;
7987 
7988     // The initialization would have succeeded with this fixit. Since the fixit
7989     // is on the error, we need to build a valid AST in this case, so this isn't
7990     // handled in the Failed() branch above.
7991     QualType DestType = Entity.getType();
7992     S.Diag(Kind.getLocation(), DiagID)
7993         << DestType << (bool)DestType->getAs<RecordType>()
7994         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7995                                       ZeroInitializationFixit);
7996   }
7997 
7998   if (getKind() == DependentSequence) {
7999     // If the declaration is a non-dependent, incomplete array type
8000     // that has an initializer, then its type will be completed once
8001     // the initializer is instantiated.
8002     if (ResultType && !Entity.getType()->isDependentType() &&
8003         Args.size() == 1) {
8004       QualType DeclType = Entity.getType();
8005       if (const IncompleteArrayType *ArrayT
8006                            = S.Context.getAsIncompleteArrayType(DeclType)) {
8007         // FIXME: We don't currently have the ability to accurately
8008         // compute the length of an initializer list without
8009         // performing full type-checking of the initializer list
8010         // (since we have to determine where braces are implicitly
8011         // introduced and such).  So, we fall back to making the array
8012         // type a dependently-sized array type with no specified
8013         // bound.
8014         if (isa<InitListExpr>((Expr *)Args[0])) {
8015           SourceRange Brackets;
8016 
8017           // Scavange the location of the brackets from the entity, if we can.
8018           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8019             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8020               TypeLoc TL = TInfo->getTypeLoc();
8021               if (IncompleteArrayTypeLoc ArrayLoc =
8022                       TL.getAs<IncompleteArrayTypeLoc>())
8023                 Brackets = ArrayLoc.getBracketsRange();
8024             }
8025           }
8026 
8027           *ResultType
8028             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8029                                                    /*NumElts=*/nullptr,
8030                                                    ArrayT->getSizeModifier(),
8031                                        ArrayT->getIndexTypeCVRQualifiers(),
8032                                                    Brackets);
8033         }
8034 
8035       }
8036     }
8037     if (Kind.getKind() == InitializationKind::IK_Direct &&
8038         !Kind.isExplicitCast()) {
8039       // Rebuild the ParenListExpr.
8040       SourceRange ParenRange = Kind.getParenOrBraceRange();
8041       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8042                                   Args);
8043     }
8044     assert(Kind.getKind() == InitializationKind::IK_Copy ||
8045            Kind.isExplicitCast() ||
8046            Kind.getKind() == InitializationKind::IK_DirectList);
8047     return ExprResult(Args[0]);
8048   }
8049 
8050   // No steps means no initialization.
8051   if (Steps.empty())
8052     return ExprResult((Expr *)nullptr);
8053 
8054   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8055       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8056       !Entity.isParamOrTemplateParamKind()) {
8057     // Produce a C++98 compatibility warning if we are initializing a reference
8058     // from an initializer list. For parameters, we produce a better warning
8059     // elsewhere.
8060     Expr *Init = Args[0];
8061     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8062         << Init->getSourceRange();
8063   }
8064 
8065   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8066   QualType ETy = Entity.getType();
8067   bool HasGlobalAS = ETy.hasAddressSpace() &&
8068                      ETy.getAddressSpace() == LangAS::opencl_global;
8069 
8070   if (S.getLangOpts().OpenCLVersion >= 200 &&
8071       ETy->isAtomicType() && !HasGlobalAS &&
8072       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8073     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8074         << 1
8075         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8076     return ExprError();
8077   }
8078 
8079   QualType DestType = Entity.getType().getNonReferenceType();
8080   // FIXME: Ugly hack around the fact that Entity.getType() is not
8081   // the same as Entity.getDecl()->getType() in cases involving type merging,
8082   //  and we want latter when it makes sense.
8083   if (ResultType)
8084     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8085                                      Entity.getType();
8086 
8087   ExprResult CurInit((Expr *)nullptr);
8088   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8089 
8090   // For initialization steps that start with a single initializer,
8091   // grab the only argument out the Args and place it into the "current"
8092   // initializer.
8093   switch (Steps.front().Kind) {
8094   case SK_ResolveAddressOfOverloadedFunction:
8095   case SK_CastDerivedToBaseRValue:
8096   case SK_CastDerivedToBaseXValue:
8097   case SK_CastDerivedToBaseLValue:
8098   case SK_BindReference:
8099   case SK_BindReferenceToTemporary:
8100   case SK_FinalCopy:
8101   case SK_ExtraneousCopyToTemporary:
8102   case SK_UserConversion:
8103   case SK_QualificationConversionLValue:
8104   case SK_QualificationConversionXValue:
8105   case SK_QualificationConversionRValue:
8106   case SK_FunctionReferenceConversion:
8107   case SK_AtomicConversion:
8108   case SK_ConversionSequence:
8109   case SK_ConversionSequenceNoNarrowing:
8110   case SK_ListInitialization:
8111   case SK_UnwrapInitList:
8112   case SK_RewrapInitList:
8113   case SK_CAssignment:
8114   case SK_StringInit:
8115   case SK_ObjCObjectConversion:
8116   case SK_ArrayLoopIndex:
8117   case SK_ArrayLoopInit:
8118   case SK_ArrayInit:
8119   case SK_GNUArrayInit:
8120   case SK_ParenthesizedArrayInit:
8121   case SK_PassByIndirectCopyRestore:
8122   case SK_PassByIndirectRestore:
8123   case SK_ProduceObjCObject:
8124   case SK_StdInitializerList:
8125   case SK_OCLSamplerInit:
8126   case SK_OCLZeroOpaqueType: {
8127     assert(Args.size() == 1);
8128     CurInit = Args[0];
8129     if (!CurInit.get()) return ExprError();
8130     break;
8131   }
8132 
8133   case SK_ConstructorInitialization:
8134   case SK_ConstructorInitializationFromList:
8135   case SK_StdInitializerListConstructorCall:
8136   case SK_ZeroInitialization:
8137     break;
8138   }
8139 
8140   // Promote from an unevaluated context to an unevaluated list context in
8141   // C++11 list-initialization; we need to instantiate entities usable in
8142   // constant expressions here in order to perform narrowing checks =(
8143   EnterExpressionEvaluationContext Evaluated(
8144       S, EnterExpressionEvaluationContext::InitList,
8145       CurInit.get() && isa<InitListExpr>(CurInit.get()));
8146 
8147   // C++ [class.abstract]p2:
8148   //   no objects of an abstract class can be created except as subobjects
8149   //   of a class derived from it
8150   auto checkAbstractType = [&](QualType T) -> bool {
8151     if (Entity.getKind() == InitializedEntity::EK_Base ||
8152         Entity.getKind() == InitializedEntity::EK_Delegating)
8153       return false;
8154     return S.RequireNonAbstractType(Kind.getLocation(), T,
8155                                     diag::err_allocation_of_abstract_type);
8156   };
8157 
8158   // Walk through the computed steps for the initialization sequence,
8159   // performing the specified conversions along the way.
8160   bool ConstructorInitRequiresZeroInit = false;
8161   for (step_iterator Step = step_begin(), StepEnd = step_end();
8162        Step != StepEnd; ++Step) {
8163     if (CurInit.isInvalid())
8164       return ExprError();
8165 
8166     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8167 
8168     switch (Step->Kind) {
8169     case SK_ResolveAddressOfOverloadedFunction:
8170       // Overload resolution determined which function invoke; update the
8171       // initializer to reflect that choice.
8172       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8173       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8174         return ExprError();
8175       CurInit = S.FixOverloadedFunctionReference(CurInit,
8176                                                  Step->Function.FoundDecl,
8177                                                  Step->Function.Function);
8178       break;
8179 
8180     case SK_CastDerivedToBaseRValue:
8181     case SK_CastDerivedToBaseXValue:
8182     case SK_CastDerivedToBaseLValue: {
8183       // We have a derived-to-base cast that produces either an rvalue or an
8184       // lvalue. Perform that cast.
8185 
8186       CXXCastPath BasePath;
8187 
8188       // Casts to inaccessible base classes are allowed with C-style casts.
8189       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8190       if (S.CheckDerivedToBaseConversion(
8191               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8192               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8193         return ExprError();
8194 
8195       ExprValueKind VK =
8196           Step->Kind == SK_CastDerivedToBaseLValue ?
8197               VK_LValue :
8198               (Step->Kind == SK_CastDerivedToBaseXValue ?
8199                    VK_XValue :
8200                    VK_RValue);
8201       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8202                                          CK_DerivedToBase, CurInit.get(),
8203                                          &BasePath, VK, FPOptionsOverride());
8204       break;
8205     }
8206 
8207     case SK_BindReference:
8208       // Reference binding does not have any corresponding ASTs.
8209 
8210       // Check exception specifications
8211       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8212         return ExprError();
8213 
8214       // We don't check for e.g. function pointers here, since address
8215       // availability checks should only occur when the function first decays
8216       // into a pointer or reference.
8217       if (CurInit.get()->getType()->isFunctionProtoType()) {
8218         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8219           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8220             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8221                                                      DRE->getBeginLoc()))
8222               return ExprError();
8223           }
8224         }
8225       }
8226 
8227       CheckForNullPointerDereference(S, CurInit.get());
8228       break;
8229 
8230     case SK_BindReferenceToTemporary: {
8231       // Make sure the "temporary" is actually an rvalue.
8232       assert(CurInit.get()->isRValue() && "not a temporary");
8233 
8234       // Check exception specifications
8235       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8236         return ExprError();
8237 
8238       QualType MTETy = Step->Type;
8239 
8240       // When this is an incomplete array type (such as when this is
8241       // initializing an array of unknown bounds from an init list), use THAT
8242       // type instead so that we propogate the array bounds.
8243       if (MTETy->isIncompleteArrayType() &&
8244           !CurInit.get()->getType()->isIncompleteArrayType() &&
8245           S.Context.hasSameType(
8246               MTETy->getPointeeOrArrayElementType(),
8247               CurInit.get()->getType()->getPointeeOrArrayElementType()))
8248         MTETy = CurInit.get()->getType();
8249 
8250       // Materialize the temporary into memory.
8251       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8252           MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8253       CurInit = MTE;
8254 
8255       // If we're extending this temporary to automatic storage duration -- we
8256       // need to register its cleanup during the full-expression's cleanups.
8257       if (MTE->getStorageDuration() == SD_Automatic &&
8258           MTE->getType().isDestructedType())
8259         S.Cleanup.setExprNeedsCleanups(true);
8260       break;
8261     }
8262 
8263     case SK_FinalCopy:
8264       if (checkAbstractType(Step->Type))
8265         return ExprError();
8266 
8267       // If the overall initialization is initializing a temporary, we already
8268       // bound our argument if it was necessary to do so. If not (if we're
8269       // ultimately initializing a non-temporary), our argument needs to be
8270       // bound since it's initializing a function parameter.
8271       // FIXME: This is a mess. Rationalize temporary destruction.
8272       if (!shouldBindAsTemporary(Entity))
8273         CurInit = S.MaybeBindToTemporary(CurInit.get());
8274       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8275                            /*IsExtraneousCopy=*/false);
8276       break;
8277 
8278     case SK_ExtraneousCopyToTemporary:
8279       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8280                            /*IsExtraneousCopy=*/true);
8281       break;
8282 
8283     case SK_UserConversion: {
8284       // We have a user-defined conversion that invokes either a constructor
8285       // or a conversion function.
8286       CastKind CastKind;
8287       FunctionDecl *Fn = Step->Function.Function;
8288       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8289       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8290       bool CreatedObject = false;
8291       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8292         // Build a call to the selected constructor.
8293         SmallVector<Expr*, 8> ConstructorArgs;
8294         SourceLocation Loc = CurInit.get()->getBeginLoc();
8295 
8296         // Determine the arguments required to actually perform the constructor
8297         // call.
8298         Expr *Arg = CurInit.get();
8299         if (S.CompleteConstructorCall(Constructor, Step->Type,
8300                                       MultiExprArg(&Arg, 1), Loc,
8301                                       ConstructorArgs))
8302           return ExprError();
8303 
8304         // Build an expression that constructs a temporary.
8305         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8306                                           FoundFn, Constructor,
8307                                           ConstructorArgs,
8308                                           HadMultipleCandidates,
8309                                           /*ListInit*/ false,
8310                                           /*StdInitListInit*/ false,
8311                                           /*ZeroInit*/ false,
8312                                           CXXConstructExpr::CK_Complete,
8313                                           SourceRange());
8314         if (CurInit.isInvalid())
8315           return ExprError();
8316 
8317         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8318                                  Entity);
8319         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8320           return ExprError();
8321 
8322         CastKind = CK_ConstructorConversion;
8323         CreatedObject = true;
8324       } else {
8325         // Build a call to the conversion function.
8326         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8327         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8328                                     FoundFn);
8329         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8330           return ExprError();
8331 
8332         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8333                                            HadMultipleCandidates);
8334         if (CurInit.isInvalid())
8335           return ExprError();
8336 
8337         CastKind = CK_UserDefinedConversion;
8338         CreatedObject = Conversion->getReturnType()->isRecordType();
8339       }
8340 
8341       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8342         return ExprError();
8343 
8344       CurInit = ImplicitCastExpr::Create(
8345           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8346           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8347 
8348       if (shouldBindAsTemporary(Entity))
8349         // The overall entity is temporary, so this expression should be
8350         // destroyed at the end of its full-expression.
8351         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8352       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8353         // The object outlasts the full-expression, but we need to prepare for
8354         // a destructor being run on it.
8355         // FIXME: It makes no sense to do this here. This should happen
8356         // regardless of how we initialized the entity.
8357         QualType T = CurInit.get()->getType();
8358         if (const RecordType *Record = T->getAs<RecordType>()) {
8359           CXXDestructorDecl *Destructor
8360             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8361           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8362                                   S.PDiag(diag::err_access_dtor_temp) << T);
8363           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8364           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8365             return ExprError();
8366         }
8367       }
8368       break;
8369     }
8370 
8371     case SK_QualificationConversionLValue:
8372     case SK_QualificationConversionXValue:
8373     case SK_QualificationConversionRValue: {
8374       // Perform a qualification conversion; these can never go wrong.
8375       ExprValueKind VK =
8376           Step->Kind == SK_QualificationConversionLValue
8377               ? VK_LValue
8378               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8379                                                                 : VK_RValue);
8380       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8381       break;
8382     }
8383 
8384     case SK_FunctionReferenceConversion:
8385       assert(CurInit.get()->isLValue() &&
8386              "function reference should be lvalue");
8387       CurInit =
8388           S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8389       break;
8390 
8391     case SK_AtomicConversion: {
8392       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
8393       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8394                                     CK_NonAtomicToAtomic, VK_RValue);
8395       break;
8396     }
8397 
8398     case SK_ConversionSequence:
8399     case SK_ConversionSequenceNoNarrowing: {
8400       if (const auto *FromPtrType =
8401               CurInit.get()->getType()->getAs<PointerType>()) {
8402         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8403           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8404               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8405             // Do not check static casts here because they are checked earlier
8406             // in Sema::ActOnCXXNamedCast()
8407             if (!Kind.isStaticCast()) {
8408               S.Diag(CurInit.get()->getExprLoc(),
8409                      diag::warn_noderef_to_dereferenceable_pointer)
8410                   << CurInit.get()->getSourceRange();
8411             }
8412           }
8413         }
8414       }
8415 
8416       Sema::CheckedConversionKind CCK
8417         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8418         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8419         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8420         : Sema::CCK_ImplicitConversion;
8421       ExprResult CurInitExprRes =
8422         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8423                                     getAssignmentAction(Entity), CCK);
8424       if (CurInitExprRes.isInvalid())
8425         return ExprError();
8426 
8427       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8428 
8429       CurInit = CurInitExprRes;
8430 
8431       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8432           S.getLangOpts().CPlusPlus)
8433         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8434                                     CurInit.get());
8435 
8436       break;
8437     }
8438 
8439     case SK_ListInitialization: {
8440       if (checkAbstractType(Step->Type))
8441         return ExprError();
8442 
8443       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8444       // If we're not initializing the top-level entity, we need to create an
8445       // InitializeTemporary entity for our target type.
8446       QualType Ty = Step->Type;
8447       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8448       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8449       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8450       InitListChecker PerformInitList(S, InitEntity,
8451           InitList, Ty, /*VerifyOnly=*/false,
8452           /*TreatUnavailableAsInvalid=*/false);
8453       if (PerformInitList.HadError())
8454         return ExprError();
8455 
8456       // Hack: We must update *ResultType if available in order to set the
8457       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8458       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8459       if (ResultType &&
8460           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8461         if ((*ResultType)->isRValueReferenceType())
8462           Ty = S.Context.getRValueReferenceType(Ty);
8463         else if ((*ResultType)->isLValueReferenceType())
8464           Ty = S.Context.getLValueReferenceType(Ty,
8465             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8466         *ResultType = Ty;
8467       }
8468 
8469       InitListExpr *StructuredInitList =
8470           PerformInitList.getFullyStructuredList();
8471       CurInit.get();
8472       CurInit = shouldBindAsTemporary(InitEntity)
8473           ? S.MaybeBindToTemporary(StructuredInitList)
8474           : StructuredInitList;
8475       break;
8476     }
8477 
8478     case SK_ConstructorInitializationFromList: {
8479       if (checkAbstractType(Step->Type))
8480         return ExprError();
8481 
8482       // When an initializer list is passed for a parameter of type "reference
8483       // to object", we don't get an EK_Temporary entity, but instead an
8484       // EK_Parameter entity with reference type.
8485       // FIXME: This is a hack. What we really should do is create a user
8486       // conversion step for this case, but this makes it considerably more
8487       // complicated. For now, this will do.
8488       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8489                                         Entity.getType().getNonReferenceType());
8490       bool UseTemporary = Entity.getType()->isReferenceType();
8491       assert(Args.size() == 1 && "expected a single argument for list init");
8492       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8493       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8494         << InitList->getSourceRange();
8495       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8496       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8497                                                                    Entity,
8498                                                  Kind, Arg, *Step,
8499                                                ConstructorInitRequiresZeroInit,
8500                                                /*IsListInitialization*/true,
8501                                                /*IsStdInitListInit*/false,
8502                                                InitList->getLBraceLoc(),
8503                                                InitList->getRBraceLoc());
8504       break;
8505     }
8506 
8507     case SK_UnwrapInitList:
8508       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8509       break;
8510 
8511     case SK_RewrapInitList: {
8512       Expr *E = CurInit.get();
8513       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8514       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8515           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8516       ILE->setSyntacticForm(Syntactic);
8517       ILE->setType(E->getType());
8518       ILE->setValueKind(E->getValueKind());
8519       CurInit = ILE;
8520       break;
8521     }
8522 
8523     case SK_ConstructorInitialization:
8524     case SK_StdInitializerListConstructorCall: {
8525       if (checkAbstractType(Step->Type))
8526         return ExprError();
8527 
8528       // When an initializer list is passed for a parameter of type "reference
8529       // to object", we don't get an EK_Temporary entity, but instead an
8530       // EK_Parameter entity with reference type.
8531       // FIXME: This is a hack. What we really should do is create a user
8532       // conversion step for this case, but this makes it considerably more
8533       // complicated. For now, this will do.
8534       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8535                                         Entity.getType().getNonReferenceType());
8536       bool UseTemporary = Entity.getType()->isReferenceType();
8537       bool IsStdInitListInit =
8538           Step->Kind == SK_StdInitializerListConstructorCall;
8539       Expr *Source = CurInit.get();
8540       SourceRange Range = Kind.hasParenOrBraceRange()
8541                               ? Kind.getParenOrBraceRange()
8542                               : SourceRange();
8543       CurInit = PerformConstructorInitialization(
8544           S, UseTemporary ? TempEntity : Entity, Kind,
8545           Source ? MultiExprArg(Source) : Args, *Step,
8546           ConstructorInitRequiresZeroInit,
8547           /*IsListInitialization*/ IsStdInitListInit,
8548           /*IsStdInitListInitialization*/ IsStdInitListInit,
8549           /*LBraceLoc*/ Range.getBegin(),
8550           /*RBraceLoc*/ Range.getEnd());
8551       break;
8552     }
8553 
8554     case SK_ZeroInitialization: {
8555       step_iterator NextStep = Step;
8556       ++NextStep;
8557       if (NextStep != StepEnd &&
8558           (NextStep->Kind == SK_ConstructorInitialization ||
8559            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8560         // The need for zero-initialization is recorded directly into
8561         // the call to the object's constructor within the next step.
8562         ConstructorInitRequiresZeroInit = true;
8563       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8564                  S.getLangOpts().CPlusPlus &&
8565                  !Kind.isImplicitValueInit()) {
8566         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8567         if (!TSInfo)
8568           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8569                                                     Kind.getRange().getBegin());
8570 
8571         CurInit = new (S.Context) CXXScalarValueInitExpr(
8572             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8573             Kind.getRange().getEnd());
8574       } else {
8575         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8576       }
8577       break;
8578     }
8579 
8580     case SK_CAssignment: {
8581       QualType SourceType = CurInit.get()->getType();
8582 
8583       // Save off the initial CurInit in case we need to emit a diagnostic
8584       ExprResult InitialCurInit = CurInit;
8585       ExprResult Result = CurInit;
8586       Sema::AssignConvertType ConvTy =
8587         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8588             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8589       if (Result.isInvalid())
8590         return ExprError();
8591       CurInit = Result;
8592 
8593       // If this is a call, allow conversion to a transparent union.
8594       ExprResult CurInitExprRes = CurInit;
8595       if (ConvTy != Sema::Compatible &&
8596           Entity.isParameterKind() &&
8597           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8598             == Sema::Compatible)
8599         ConvTy = Sema::Compatible;
8600       if (CurInitExprRes.isInvalid())
8601         return ExprError();
8602       CurInit = CurInitExprRes;
8603 
8604       bool Complained;
8605       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8606                                      Step->Type, SourceType,
8607                                      InitialCurInit.get(),
8608                                      getAssignmentAction(Entity, true),
8609                                      &Complained)) {
8610         PrintInitLocationNote(S, Entity);
8611         return ExprError();
8612       } else if (Complained)
8613         PrintInitLocationNote(S, Entity);
8614       break;
8615     }
8616 
8617     case SK_StringInit: {
8618       QualType Ty = Step->Type;
8619       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8620       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8621                       S.Context.getAsArrayType(Ty), S);
8622       break;
8623     }
8624 
8625     case SK_ObjCObjectConversion:
8626       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8627                           CK_ObjCObjectLValueCast,
8628                           CurInit.get()->getValueKind());
8629       break;
8630 
8631     case SK_ArrayLoopIndex: {
8632       Expr *Cur = CurInit.get();
8633       Expr *BaseExpr = new (S.Context)
8634           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8635                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8636       Expr *IndexExpr =
8637           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8638       CurInit = S.CreateBuiltinArraySubscriptExpr(
8639           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8640       ArrayLoopCommonExprs.push_back(BaseExpr);
8641       break;
8642     }
8643 
8644     case SK_ArrayLoopInit: {
8645       assert(!ArrayLoopCommonExprs.empty() &&
8646              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8647       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8648       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8649                                                   CurInit.get());
8650       break;
8651     }
8652 
8653     case SK_GNUArrayInit:
8654       // Okay: we checked everything before creating this step. Note that
8655       // this is a GNU extension.
8656       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8657         << Step->Type << CurInit.get()->getType()
8658         << CurInit.get()->getSourceRange();
8659       updateGNUCompoundLiteralRValue(CurInit.get());
8660       LLVM_FALLTHROUGH;
8661     case SK_ArrayInit:
8662       // If the destination type is an incomplete array type, update the
8663       // type accordingly.
8664       if (ResultType) {
8665         if (const IncompleteArrayType *IncompleteDest
8666                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8667           if (const ConstantArrayType *ConstantSource
8668                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8669             *ResultType = S.Context.getConstantArrayType(
8670                                              IncompleteDest->getElementType(),
8671                                              ConstantSource->getSize(),
8672                                              ConstantSource->getSizeExpr(),
8673                                              ArrayType::Normal, 0);
8674           }
8675         }
8676       }
8677       break;
8678 
8679     case SK_ParenthesizedArrayInit:
8680       // Okay: we checked everything before creating this step. Note that
8681       // this is a GNU extension.
8682       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8683         << CurInit.get()->getSourceRange();
8684       break;
8685 
8686     case SK_PassByIndirectCopyRestore:
8687     case SK_PassByIndirectRestore:
8688       checkIndirectCopyRestoreSource(S, CurInit.get());
8689       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8690           CurInit.get(), Step->Type,
8691           Step->Kind == SK_PassByIndirectCopyRestore);
8692       break;
8693 
8694     case SK_ProduceObjCObject:
8695       CurInit = ImplicitCastExpr::Create(
8696           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8697           VK_RValue, FPOptionsOverride());
8698       break;
8699 
8700     case SK_StdInitializerList: {
8701       S.Diag(CurInit.get()->getExprLoc(),
8702              diag::warn_cxx98_compat_initializer_list_init)
8703         << CurInit.get()->getSourceRange();
8704 
8705       // Materialize the temporary into memory.
8706       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8707           CurInit.get()->getType(), CurInit.get(),
8708           /*BoundToLvalueReference=*/false);
8709 
8710       // Wrap it in a construction of a std::initializer_list<T>.
8711       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8712 
8713       // Bind the result, in case the library has given initializer_list a
8714       // non-trivial destructor.
8715       if (shouldBindAsTemporary(Entity))
8716         CurInit = S.MaybeBindToTemporary(CurInit.get());
8717       break;
8718     }
8719 
8720     case SK_OCLSamplerInit: {
8721       // Sampler initialization have 5 cases:
8722       //   1. function argument passing
8723       //      1a. argument is a file-scope variable
8724       //      1b. argument is a function-scope variable
8725       //      1c. argument is one of caller function's parameters
8726       //   2. variable initialization
8727       //      2a. initializing a file-scope variable
8728       //      2b. initializing a function-scope variable
8729       //
8730       // For file-scope variables, since they cannot be initialized by function
8731       // call of __translate_sampler_initializer in LLVM IR, their references
8732       // need to be replaced by a cast from their literal initializers to
8733       // sampler type. Since sampler variables can only be used in function
8734       // calls as arguments, we only need to replace them when handling the
8735       // argument passing.
8736       assert(Step->Type->isSamplerT() &&
8737              "Sampler initialization on non-sampler type.");
8738       Expr *Init = CurInit.get()->IgnoreParens();
8739       QualType SourceType = Init->getType();
8740       // Case 1
8741       if (Entity.isParameterKind()) {
8742         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8743           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8744             << SourceType;
8745           break;
8746         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8747           auto Var = cast<VarDecl>(DRE->getDecl());
8748           // Case 1b and 1c
8749           // No cast from integer to sampler is needed.
8750           if (!Var->hasGlobalStorage()) {
8751             CurInit = ImplicitCastExpr::Create(
8752                 S.Context, Step->Type, CK_LValueToRValue, Init,
8753                 /*BasePath=*/nullptr, VK_RValue, FPOptionsOverride());
8754             break;
8755           }
8756           // Case 1a
8757           // For function call with a file-scope sampler variable as argument,
8758           // get the integer literal.
8759           // Do not diagnose if the file-scope variable does not have initializer
8760           // since this has already been diagnosed when parsing the variable
8761           // declaration.
8762           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8763             break;
8764           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8765             Var->getInit()))->getSubExpr();
8766           SourceType = Init->getType();
8767         }
8768       } else {
8769         // Case 2
8770         // Check initializer is 32 bit integer constant.
8771         // If the initializer is taken from global variable, do not diagnose since
8772         // this has already been done when parsing the variable declaration.
8773         if (!Init->isConstantInitializer(S.Context, false))
8774           break;
8775 
8776         if (!SourceType->isIntegerType() ||
8777             32 != S.Context.getIntWidth(SourceType)) {
8778           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8779             << SourceType;
8780           break;
8781         }
8782 
8783         Expr::EvalResult EVResult;
8784         Init->EvaluateAsInt(EVResult, S.Context);
8785         llvm::APSInt Result = EVResult.Val.getInt();
8786         const uint64_t SamplerValue = Result.getLimitedValue();
8787         // 32-bit value of sampler's initializer is interpreted as
8788         // bit-field with the following structure:
8789         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8790         // |31        6|5    4|3             1|                 0|
8791         // This structure corresponds to enum values of sampler properties
8792         // defined in SPIR spec v1.2 and also opencl-c.h
8793         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8794         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8795         if (FilterMode != 1 && FilterMode != 2 &&
8796             !S.getOpenCLOptions().isAvailableOption(
8797                 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8798           S.Diag(Kind.getLocation(),
8799                  diag::warn_sampler_initializer_invalid_bits)
8800                  << "Filter Mode";
8801         if (AddressingMode > 4)
8802           S.Diag(Kind.getLocation(),
8803                  diag::warn_sampler_initializer_invalid_bits)
8804                  << "Addressing Mode";
8805       }
8806 
8807       // Cases 1a, 2a and 2b
8808       // Insert cast from integer to sampler.
8809       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8810                                       CK_IntToOCLSampler);
8811       break;
8812     }
8813     case SK_OCLZeroOpaqueType: {
8814       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8815               Step->Type->isOCLIntelSubgroupAVCType()) &&
8816              "Wrong type for initialization of OpenCL opaque type.");
8817 
8818       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8819                                     CK_ZeroToOCLOpaqueType,
8820                                     CurInit.get()->getValueKind());
8821       break;
8822     }
8823     }
8824   }
8825 
8826   // Check whether the initializer has a shorter lifetime than the initialized
8827   // entity, and if not, either lifetime-extend or warn as appropriate.
8828   if (auto *Init = CurInit.get())
8829     S.checkInitializerLifetime(Entity, Init);
8830 
8831   // Diagnose non-fatal problems with the completed initialization.
8832   if (Entity.getKind() == InitializedEntity::EK_Member &&
8833       cast<FieldDecl>(Entity.getDecl())->isBitField())
8834     S.CheckBitFieldInitialization(Kind.getLocation(),
8835                                   cast<FieldDecl>(Entity.getDecl()),
8836                                   CurInit.get());
8837 
8838   // Check for std::move on construction.
8839   if (const Expr *E = CurInit.get()) {
8840     CheckMoveOnConstruction(S, E,
8841                             Entity.getKind() == InitializedEntity::EK_Result);
8842   }
8843 
8844   return CurInit;
8845 }
8846 
8847 /// Somewhere within T there is an uninitialized reference subobject.
8848 /// Dig it out and diagnose it.
8849 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8850                                            QualType T) {
8851   if (T->isReferenceType()) {
8852     S.Diag(Loc, diag::err_reference_without_init)
8853       << T.getNonReferenceType();
8854     return true;
8855   }
8856 
8857   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8858   if (!RD || !RD->hasUninitializedReferenceMember())
8859     return false;
8860 
8861   for (const auto *FI : RD->fields()) {
8862     if (FI->isUnnamedBitfield())
8863       continue;
8864 
8865     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8866       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8867       return true;
8868     }
8869   }
8870 
8871   for (const auto &BI : RD->bases()) {
8872     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8873       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8874       return true;
8875     }
8876   }
8877 
8878   return false;
8879 }
8880 
8881 
8882 //===----------------------------------------------------------------------===//
8883 // Diagnose initialization failures
8884 //===----------------------------------------------------------------------===//
8885 
8886 /// Emit notes associated with an initialization that failed due to a
8887 /// "simple" conversion failure.
8888 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8889                                    Expr *op) {
8890   QualType destType = entity.getType();
8891   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8892       op->getType()->isObjCObjectPointerType()) {
8893 
8894     // Emit a possible note about the conversion failing because the
8895     // operand is a message send with a related result type.
8896     S.EmitRelatedResultTypeNote(op);
8897 
8898     // Emit a possible note about a return failing because we're
8899     // expecting a related result type.
8900     if (entity.getKind() == InitializedEntity::EK_Result)
8901       S.EmitRelatedResultTypeNoteForReturn(destType);
8902   }
8903   QualType fromType = op->getType();
8904   auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8905   auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8906   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8907       destDecl->getDeclKind() == Decl::CXXRecord &&
8908       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8909       !fromDecl->hasDefinition())
8910     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8911         << S.getASTContext().getTagDeclType(fromDecl)
8912         << S.getASTContext().getTagDeclType(destDecl);
8913 }
8914 
8915 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8916                              InitListExpr *InitList) {
8917   QualType DestType = Entity.getType();
8918 
8919   QualType E;
8920   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8921     QualType ArrayType = S.Context.getConstantArrayType(
8922         E.withConst(),
8923         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8924                     InitList->getNumInits()),
8925         nullptr, clang::ArrayType::Normal, 0);
8926     InitializedEntity HiddenArray =
8927         InitializedEntity::InitializeTemporary(ArrayType);
8928     return diagnoseListInit(S, HiddenArray, InitList);
8929   }
8930 
8931   if (DestType->isReferenceType()) {
8932     // A list-initialization failure for a reference means that we tried to
8933     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8934     // inner initialization failed.
8935     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8936     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8937     SourceLocation Loc = InitList->getBeginLoc();
8938     if (auto *D = Entity.getDecl())
8939       Loc = D->getLocation();
8940     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8941     return;
8942   }
8943 
8944   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8945                                    /*VerifyOnly=*/false,
8946                                    /*TreatUnavailableAsInvalid=*/false);
8947   assert(DiagnoseInitList.HadError() &&
8948          "Inconsistent init list check result.");
8949 }
8950 
8951 bool InitializationSequence::Diagnose(Sema &S,
8952                                       const InitializedEntity &Entity,
8953                                       const InitializationKind &Kind,
8954                                       ArrayRef<Expr *> Args) {
8955   if (!Failed())
8956     return false;
8957 
8958   // When we want to diagnose only one element of a braced-init-list,
8959   // we need to factor it out.
8960   Expr *OnlyArg;
8961   if (Args.size() == 1) {
8962     auto *List = dyn_cast<InitListExpr>(Args[0]);
8963     if (List && List->getNumInits() == 1)
8964       OnlyArg = List->getInit(0);
8965     else
8966       OnlyArg = Args[0];
8967   }
8968   else
8969     OnlyArg = nullptr;
8970 
8971   QualType DestType = Entity.getType();
8972   switch (Failure) {
8973   case FK_TooManyInitsForReference:
8974     // FIXME: Customize for the initialized entity?
8975     if (Args.empty()) {
8976       // Dig out the reference subobject which is uninitialized and diagnose it.
8977       // If this is value-initialization, this could be nested some way within
8978       // the target type.
8979       assert(Kind.getKind() == InitializationKind::IK_Value ||
8980              DestType->isReferenceType());
8981       bool Diagnosed =
8982         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8983       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8984       (void)Diagnosed;
8985     } else  // FIXME: diagnostic below could be better!
8986       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8987           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8988     break;
8989   case FK_ParenthesizedListInitForReference:
8990     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8991       << 1 << Entity.getType() << Args[0]->getSourceRange();
8992     break;
8993 
8994   case FK_ArrayNeedsInitList:
8995     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8996     break;
8997   case FK_ArrayNeedsInitListOrStringLiteral:
8998     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8999     break;
9000   case FK_ArrayNeedsInitListOrWideStringLiteral:
9001     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9002     break;
9003   case FK_NarrowStringIntoWideCharArray:
9004     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9005     break;
9006   case FK_WideStringIntoCharArray:
9007     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9008     break;
9009   case FK_IncompatWideStringIntoWideChar:
9010     S.Diag(Kind.getLocation(),
9011            diag::err_array_init_incompat_wide_string_into_wchar);
9012     break;
9013   case FK_PlainStringIntoUTF8Char:
9014     S.Diag(Kind.getLocation(),
9015            diag::err_array_init_plain_string_into_char8_t);
9016     S.Diag(Args.front()->getBeginLoc(),
9017            diag::note_array_init_plain_string_into_char8_t)
9018         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9019     break;
9020   case FK_UTF8StringIntoPlainChar:
9021     S.Diag(Kind.getLocation(),
9022            diag::err_array_init_utf8_string_into_char)
9023       << S.getLangOpts().CPlusPlus20;
9024     break;
9025   case FK_ArrayTypeMismatch:
9026   case FK_NonConstantArrayInit:
9027     S.Diag(Kind.getLocation(),
9028            (Failure == FK_ArrayTypeMismatch
9029               ? diag::err_array_init_different_type
9030               : diag::err_array_init_non_constant_array))
9031       << DestType.getNonReferenceType()
9032       << OnlyArg->getType()
9033       << Args[0]->getSourceRange();
9034     break;
9035 
9036   case FK_VariableLengthArrayHasInitializer:
9037     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9038       << Args[0]->getSourceRange();
9039     break;
9040 
9041   case FK_AddressOfOverloadFailed: {
9042     DeclAccessPair Found;
9043     S.ResolveAddressOfOverloadedFunction(OnlyArg,
9044                                          DestType.getNonReferenceType(),
9045                                          true,
9046                                          Found);
9047     break;
9048   }
9049 
9050   case FK_AddressOfUnaddressableFunction: {
9051     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9052     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9053                                         OnlyArg->getBeginLoc());
9054     break;
9055   }
9056 
9057   case FK_ReferenceInitOverloadFailed:
9058   case FK_UserConversionOverloadFailed:
9059     switch (FailedOverloadResult) {
9060     case OR_Ambiguous:
9061 
9062       FailedCandidateSet.NoteCandidates(
9063           PartialDiagnosticAt(
9064               Kind.getLocation(),
9065               Failure == FK_UserConversionOverloadFailed
9066                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9067                      << OnlyArg->getType() << DestType
9068                      << Args[0]->getSourceRange())
9069                   : (S.PDiag(diag::err_ref_init_ambiguous)
9070                      << DestType << OnlyArg->getType()
9071                      << Args[0]->getSourceRange())),
9072           S, OCD_AmbiguousCandidates, Args);
9073       break;
9074 
9075     case OR_No_Viable_Function: {
9076       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9077       if (!S.RequireCompleteType(Kind.getLocation(),
9078                                  DestType.getNonReferenceType(),
9079                           diag::err_typecheck_nonviable_condition_incomplete,
9080                                OnlyArg->getType(), Args[0]->getSourceRange()))
9081         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9082           << (Entity.getKind() == InitializedEntity::EK_Result)
9083           << OnlyArg->getType() << Args[0]->getSourceRange()
9084           << DestType.getNonReferenceType();
9085 
9086       FailedCandidateSet.NoteCandidates(S, Args, Cands);
9087       break;
9088     }
9089     case OR_Deleted: {
9090       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9091         << OnlyArg->getType() << DestType.getNonReferenceType()
9092         << Args[0]->getSourceRange();
9093       OverloadCandidateSet::iterator Best;
9094       OverloadingResult Ovl
9095         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9096       if (Ovl == OR_Deleted) {
9097         S.NoteDeletedFunction(Best->Function);
9098       } else {
9099         llvm_unreachable("Inconsistent overload resolution?");
9100       }
9101       break;
9102     }
9103 
9104     case OR_Success:
9105       llvm_unreachable("Conversion did not fail!");
9106     }
9107     break;
9108 
9109   case FK_NonConstLValueReferenceBindingToTemporary:
9110     if (isa<InitListExpr>(Args[0])) {
9111       S.Diag(Kind.getLocation(),
9112              diag::err_lvalue_reference_bind_to_initlist)
9113       << DestType.getNonReferenceType().isVolatileQualified()
9114       << DestType.getNonReferenceType()
9115       << Args[0]->getSourceRange();
9116       break;
9117     }
9118     LLVM_FALLTHROUGH;
9119 
9120   case FK_NonConstLValueReferenceBindingToUnrelated:
9121     S.Diag(Kind.getLocation(),
9122            Failure == FK_NonConstLValueReferenceBindingToTemporary
9123              ? diag::err_lvalue_reference_bind_to_temporary
9124              : diag::err_lvalue_reference_bind_to_unrelated)
9125       << DestType.getNonReferenceType().isVolatileQualified()
9126       << DestType.getNonReferenceType()
9127       << OnlyArg->getType()
9128       << Args[0]->getSourceRange();
9129     break;
9130 
9131   case FK_NonConstLValueReferenceBindingToBitfield: {
9132     // We don't necessarily have an unambiguous source bit-field.
9133     FieldDecl *BitField = Args[0]->getSourceBitField();
9134     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9135       << DestType.isVolatileQualified()
9136       << (BitField ? BitField->getDeclName() : DeclarationName())
9137       << (BitField != nullptr)
9138       << Args[0]->getSourceRange();
9139     if (BitField)
9140       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9141     break;
9142   }
9143 
9144   case FK_NonConstLValueReferenceBindingToVectorElement:
9145     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9146       << DestType.isVolatileQualified()
9147       << Args[0]->getSourceRange();
9148     break;
9149 
9150   case FK_NonConstLValueReferenceBindingToMatrixElement:
9151     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9152         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9153     break;
9154 
9155   case FK_RValueReferenceBindingToLValue:
9156     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9157       << DestType.getNonReferenceType() << OnlyArg->getType()
9158       << Args[0]->getSourceRange();
9159     break;
9160 
9161   case FK_ReferenceAddrspaceMismatchTemporary:
9162     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9163         << DestType << Args[0]->getSourceRange();
9164     break;
9165 
9166   case FK_ReferenceInitDropsQualifiers: {
9167     QualType SourceType = OnlyArg->getType();
9168     QualType NonRefType = DestType.getNonReferenceType();
9169     Qualifiers DroppedQualifiers =
9170         SourceType.getQualifiers() - NonRefType.getQualifiers();
9171 
9172     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9173             SourceType.getQualifiers()))
9174       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9175           << NonRefType << SourceType << 1 /*addr space*/
9176           << Args[0]->getSourceRange();
9177     else if (DroppedQualifiers.hasQualifiers())
9178       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9179           << NonRefType << SourceType << 0 /*cv quals*/
9180           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9181           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9182     else
9183       // FIXME: Consider decomposing the type and explaining which qualifiers
9184       // were dropped where, or on which level a 'const' is missing, etc.
9185       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9186           << NonRefType << SourceType << 2 /*incompatible quals*/
9187           << Args[0]->getSourceRange();
9188     break;
9189   }
9190 
9191   case FK_ReferenceInitFailed:
9192     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9193       << DestType.getNonReferenceType()
9194       << DestType.getNonReferenceType()->isIncompleteType()
9195       << OnlyArg->isLValue()
9196       << OnlyArg->getType()
9197       << Args[0]->getSourceRange();
9198     emitBadConversionNotes(S, Entity, Args[0]);
9199     break;
9200 
9201   case FK_ConversionFailed: {
9202     QualType FromType = OnlyArg->getType();
9203     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9204       << (int)Entity.getKind()
9205       << DestType
9206       << OnlyArg->isLValue()
9207       << FromType
9208       << Args[0]->getSourceRange();
9209     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9210     S.Diag(Kind.getLocation(), PDiag);
9211     emitBadConversionNotes(S, Entity, Args[0]);
9212     break;
9213   }
9214 
9215   case FK_ConversionFromPropertyFailed:
9216     // No-op. This error has already been reported.
9217     break;
9218 
9219   case FK_TooManyInitsForScalar: {
9220     SourceRange R;
9221 
9222     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9223     if (InitList && InitList->getNumInits() >= 1) {
9224       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9225     } else {
9226       assert(Args.size() > 1 && "Expected multiple initializers!");
9227       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9228     }
9229 
9230     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9231     if (Kind.isCStyleOrFunctionalCast())
9232       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9233         << R;
9234     else
9235       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9236         << /*scalar=*/2 << R;
9237     break;
9238   }
9239 
9240   case FK_ParenthesizedListInitForScalar:
9241     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9242       << 0 << Entity.getType() << Args[0]->getSourceRange();
9243     break;
9244 
9245   case FK_ReferenceBindingToInitList:
9246     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9247       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9248     break;
9249 
9250   case FK_InitListBadDestinationType:
9251     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9252       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9253     break;
9254 
9255   case FK_ListConstructorOverloadFailed:
9256   case FK_ConstructorOverloadFailed: {
9257     SourceRange ArgsRange;
9258     if (Args.size())
9259       ArgsRange =
9260           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9261 
9262     if (Failure == FK_ListConstructorOverloadFailed) {
9263       assert(Args.size() == 1 &&
9264              "List construction from other than 1 argument.");
9265       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9266       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9267     }
9268 
9269     // FIXME: Using "DestType" for the entity we're printing is probably
9270     // bad.
9271     switch (FailedOverloadResult) {
9272       case OR_Ambiguous:
9273         FailedCandidateSet.NoteCandidates(
9274             PartialDiagnosticAt(Kind.getLocation(),
9275                                 S.PDiag(diag::err_ovl_ambiguous_init)
9276                                     << DestType << ArgsRange),
9277             S, OCD_AmbiguousCandidates, Args);
9278         break;
9279 
9280       case OR_No_Viable_Function:
9281         if (Kind.getKind() == InitializationKind::IK_Default &&
9282             (Entity.getKind() == InitializedEntity::EK_Base ||
9283              Entity.getKind() == InitializedEntity::EK_Member) &&
9284             isa<CXXConstructorDecl>(S.CurContext)) {
9285           // This is implicit default initialization of a member or
9286           // base within a constructor. If no viable function was
9287           // found, notify the user that they need to explicitly
9288           // initialize this base/member.
9289           CXXConstructorDecl *Constructor
9290             = cast<CXXConstructorDecl>(S.CurContext);
9291           const CXXRecordDecl *InheritedFrom = nullptr;
9292           if (auto Inherited = Constructor->getInheritedConstructor())
9293             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9294           if (Entity.getKind() == InitializedEntity::EK_Base) {
9295             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9296               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9297               << S.Context.getTypeDeclType(Constructor->getParent())
9298               << /*base=*/0
9299               << Entity.getType()
9300               << InheritedFrom;
9301 
9302             RecordDecl *BaseDecl
9303               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9304                                                                   ->getDecl();
9305             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9306               << S.Context.getTagDeclType(BaseDecl);
9307           } else {
9308             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9309               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9310               << S.Context.getTypeDeclType(Constructor->getParent())
9311               << /*member=*/1
9312               << Entity.getName()
9313               << InheritedFrom;
9314             S.Diag(Entity.getDecl()->getLocation(),
9315                    diag::note_member_declared_at);
9316 
9317             if (const RecordType *Record
9318                                  = Entity.getType()->getAs<RecordType>())
9319               S.Diag(Record->getDecl()->getLocation(),
9320                      diag::note_previous_decl)
9321                 << S.Context.getTagDeclType(Record->getDecl());
9322           }
9323           break;
9324         }
9325 
9326         FailedCandidateSet.NoteCandidates(
9327             PartialDiagnosticAt(
9328                 Kind.getLocation(),
9329                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9330                     << DestType << ArgsRange),
9331             S, OCD_AllCandidates, Args);
9332         break;
9333 
9334       case OR_Deleted: {
9335         OverloadCandidateSet::iterator Best;
9336         OverloadingResult Ovl
9337           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9338         if (Ovl != OR_Deleted) {
9339           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9340               << DestType << ArgsRange;
9341           llvm_unreachable("Inconsistent overload resolution?");
9342           break;
9343         }
9344 
9345         // If this is a defaulted or implicitly-declared function, then
9346         // it was implicitly deleted. Make it clear that the deletion was
9347         // implicit.
9348         if (S.isImplicitlyDeleted(Best->Function))
9349           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9350             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9351             << DestType << ArgsRange;
9352         else
9353           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9354               << DestType << ArgsRange;
9355 
9356         S.NoteDeletedFunction(Best->Function);
9357         break;
9358       }
9359 
9360       case OR_Success:
9361         llvm_unreachable("Conversion did not fail!");
9362     }
9363   }
9364   break;
9365 
9366   case FK_DefaultInitOfConst:
9367     if (Entity.getKind() == InitializedEntity::EK_Member &&
9368         isa<CXXConstructorDecl>(S.CurContext)) {
9369       // This is implicit default-initialization of a const member in
9370       // a constructor. Complain that it needs to be explicitly
9371       // initialized.
9372       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9373       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9374         << (Constructor->getInheritedConstructor() ? 2 :
9375             Constructor->isImplicit() ? 1 : 0)
9376         << S.Context.getTypeDeclType(Constructor->getParent())
9377         << /*const=*/1
9378         << Entity.getName();
9379       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9380         << Entity.getName();
9381     } else {
9382       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9383           << DestType << (bool)DestType->getAs<RecordType>();
9384     }
9385     break;
9386 
9387   case FK_Incomplete:
9388     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9389                           diag::err_init_incomplete_type);
9390     break;
9391 
9392   case FK_ListInitializationFailed: {
9393     // Run the init list checker again to emit diagnostics.
9394     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9395     diagnoseListInit(S, Entity, InitList);
9396     break;
9397   }
9398 
9399   case FK_PlaceholderType: {
9400     // FIXME: Already diagnosed!
9401     break;
9402   }
9403 
9404   case FK_ExplicitConstructor: {
9405     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9406       << Args[0]->getSourceRange();
9407     OverloadCandidateSet::iterator Best;
9408     OverloadingResult Ovl
9409       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9410     (void)Ovl;
9411     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9412     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9413     S.Diag(CtorDecl->getLocation(),
9414            diag::note_explicit_ctor_deduction_guide_here) << false;
9415     break;
9416   }
9417   }
9418 
9419   PrintInitLocationNote(S, Entity);
9420   return true;
9421 }
9422 
9423 void InitializationSequence::dump(raw_ostream &OS) const {
9424   switch (SequenceKind) {
9425   case FailedSequence: {
9426     OS << "Failed sequence: ";
9427     switch (Failure) {
9428     case FK_TooManyInitsForReference:
9429       OS << "too many initializers for reference";
9430       break;
9431 
9432     case FK_ParenthesizedListInitForReference:
9433       OS << "parenthesized list init for reference";
9434       break;
9435 
9436     case FK_ArrayNeedsInitList:
9437       OS << "array requires initializer list";
9438       break;
9439 
9440     case FK_AddressOfUnaddressableFunction:
9441       OS << "address of unaddressable function was taken";
9442       break;
9443 
9444     case FK_ArrayNeedsInitListOrStringLiteral:
9445       OS << "array requires initializer list or string literal";
9446       break;
9447 
9448     case FK_ArrayNeedsInitListOrWideStringLiteral:
9449       OS << "array requires initializer list or wide string literal";
9450       break;
9451 
9452     case FK_NarrowStringIntoWideCharArray:
9453       OS << "narrow string into wide char array";
9454       break;
9455 
9456     case FK_WideStringIntoCharArray:
9457       OS << "wide string into char array";
9458       break;
9459 
9460     case FK_IncompatWideStringIntoWideChar:
9461       OS << "incompatible wide string into wide char array";
9462       break;
9463 
9464     case FK_PlainStringIntoUTF8Char:
9465       OS << "plain string literal into char8_t array";
9466       break;
9467 
9468     case FK_UTF8StringIntoPlainChar:
9469       OS << "u8 string literal into char array";
9470       break;
9471 
9472     case FK_ArrayTypeMismatch:
9473       OS << "array type mismatch";
9474       break;
9475 
9476     case FK_NonConstantArrayInit:
9477       OS << "non-constant array initializer";
9478       break;
9479 
9480     case FK_AddressOfOverloadFailed:
9481       OS << "address of overloaded function failed";
9482       break;
9483 
9484     case FK_ReferenceInitOverloadFailed:
9485       OS << "overload resolution for reference initialization failed";
9486       break;
9487 
9488     case FK_NonConstLValueReferenceBindingToTemporary:
9489       OS << "non-const lvalue reference bound to temporary";
9490       break;
9491 
9492     case FK_NonConstLValueReferenceBindingToBitfield:
9493       OS << "non-const lvalue reference bound to bit-field";
9494       break;
9495 
9496     case FK_NonConstLValueReferenceBindingToVectorElement:
9497       OS << "non-const lvalue reference bound to vector element";
9498       break;
9499 
9500     case FK_NonConstLValueReferenceBindingToMatrixElement:
9501       OS << "non-const lvalue reference bound to matrix element";
9502       break;
9503 
9504     case FK_NonConstLValueReferenceBindingToUnrelated:
9505       OS << "non-const lvalue reference bound to unrelated type";
9506       break;
9507 
9508     case FK_RValueReferenceBindingToLValue:
9509       OS << "rvalue reference bound to an lvalue";
9510       break;
9511 
9512     case FK_ReferenceInitDropsQualifiers:
9513       OS << "reference initialization drops qualifiers";
9514       break;
9515 
9516     case FK_ReferenceAddrspaceMismatchTemporary:
9517       OS << "reference with mismatching address space bound to temporary";
9518       break;
9519 
9520     case FK_ReferenceInitFailed:
9521       OS << "reference initialization failed";
9522       break;
9523 
9524     case FK_ConversionFailed:
9525       OS << "conversion failed";
9526       break;
9527 
9528     case FK_ConversionFromPropertyFailed:
9529       OS << "conversion from property failed";
9530       break;
9531 
9532     case FK_TooManyInitsForScalar:
9533       OS << "too many initializers for scalar";
9534       break;
9535 
9536     case FK_ParenthesizedListInitForScalar:
9537       OS << "parenthesized list init for reference";
9538       break;
9539 
9540     case FK_ReferenceBindingToInitList:
9541       OS << "referencing binding to initializer list";
9542       break;
9543 
9544     case FK_InitListBadDestinationType:
9545       OS << "initializer list for non-aggregate, non-scalar type";
9546       break;
9547 
9548     case FK_UserConversionOverloadFailed:
9549       OS << "overloading failed for user-defined conversion";
9550       break;
9551 
9552     case FK_ConstructorOverloadFailed:
9553       OS << "constructor overloading failed";
9554       break;
9555 
9556     case FK_DefaultInitOfConst:
9557       OS << "default initialization of a const variable";
9558       break;
9559 
9560     case FK_Incomplete:
9561       OS << "initialization of incomplete type";
9562       break;
9563 
9564     case FK_ListInitializationFailed:
9565       OS << "list initialization checker failure";
9566       break;
9567 
9568     case FK_VariableLengthArrayHasInitializer:
9569       OS << "variable length array has an initializer";
9570       break;
9571 
9572     case FK_PlaceholderType:
9573       OS << "initializer expression isn't contextually valid";
9574       break;
9575 
9576     case FK_ListConstructorOverloadFailed:
9577       OS << "list constructor overloading failed";
9578       break;
9579 
9580     case FK_ExplicitConstructor:
9581       OS << "list copy initialization chose explicit constructor";
9582       break;
9583     }
9584     OS << '\n';
9585     return;
9586   }
9587 
9588   case DependentSequence:
9589     OS << "Dependent sequence\n";
9590     return;
9591 
9592   case NormalSequence:
9593     OS << "Normal sequence: ";
9594     break;
9595   }
9596 
9597   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9598     if (S != step_begin()) {
9599       OS << " -> ";
9600     }
9601 
9602     switch (S->Kind) {
9603     case SK_ResolveAddressOfOverloadedFunction:
9604       OS << "resolve address of overloaded function";
9605       break;
9606 
9607     case SK_CastDerivedToBaseRValue:
9608       OS << "derived-to-base (rvalue)";
9609       break;
9610 
9611     case SK_CastDerivedToBaseXValue:
9612       OS << "derived-to-base (xvalue)";
9613       break;
9614 
9615     case SK_CastDerivedToBaseLValue:
9616       OS << "derived-to-base (lvalue)";
9617       break;
9618 
9619     case SK_BindReference:
9620       OS << "bind reference to lvalue";
9621       break;
9622 
9623     case SK_BindReferenceToTemporary:
9624       OS << "bind reference to a temporary";
9625       break;
9626 
9627     case SK_FinalCopy:
9628       OS << "final copy in class direct-initialization";
9629       break;
9630 
9631     case SK_ExtraneousCopyToTemporary:
9632       OS << "extraneous C++03 copy to temporary";
9633       break;
9634 
9635     case SK_UserConversion:
9636       OS << "user-defined conversion via " << *S->Function.Function;
9637       break;
9638 
9639     case SK_QualificationConversionRValue:
9640       OS << "qualification conversion (rvalue)";
9641       break;
9642 
9643     case SK_QualificationConversionXValue:
9644       OS << "qualification conversion (xvalue)";
9645       break;
9646 
9647     case SK_QualificationConversionLValue:
9648       OS << "qualification conversion (lvalue)";
9649       break;
9650 
9651     case SK_FunctionReferenceConversion:
9652       OS << "function reference conversion";
9653       break;
9654 
9655     case SK_AtomicConversion:
9656       OS << "non-atomic-to-atomic conversion";
9657       break;
9658 
9659     case SK_ConversionSequence:
9660       OS << "implicit conversion sequence (";
9661       S->ICS->dump(); // FIXME: use OS
9662       OS << ")";
9663       break;
9664 
9665     case SK_ConversionSequenceNoNarrowing:
9666       OS << "implicit conversion sequence with narrowing prohibited (";
9667       S->ICS->dump(); // FIXME: use OS
9668       OS << ")";
9669       break;
9670 
9671     case SK_ListInitialization:
9672       OS << "list aggregate initialization";
9673       break;
9674 
9675     case SK_UnwrapInitList:
9676       OS << "unwrap reference initializer list";
9677       break;
9678 
9679     case SK_RewrapInitList:
9680       OS << "rewrap reference initializer list";
9681       break;
9682 
9683     case SK_ConstructorInitialization:
9684       OS << "constructor initialization";
9685       break;
9686 
9687     case SK_ConstructorInitializationFromList:
9688       OS << "list initialization via constructor";
9689       break;
9690 
9691     case SK_ZeroInitialization:
9692       OS << "zero initialization";
9693       break;
9694 
9695     case SK_CAssignment:
9696       OS << "C assignment";
9697       break;
9698 
9699     case SK_StringInit:
9700       OS << "string initialization";
9701       break;
9702 
9703     case SK_ObjCObjectConversion:
9704       OS << "Objective-C object conversion";
9705       break;
9706 
9707     case SK_ArrayLoopIndex:
9708       OS << "indexing for array initialization loop";
9709       break;
9710 
9711     case SK_ArrayLoopInit:
9712       OS << "array initialization loop";
9713       break;
9714 
9715     case SK_ArrayInit:
9716       OS << "array initialization";
9717       break;
9718 
9719     case SK_GNUArrayInit:
9720       OS << "array initialization (GNU extension)";
9721       break;
9722 
9723     case SK_ParenthesizedArrayInit:
9724       OS << "parenthesized array initialization";
9725       break;
9726 
9727     case SK_PassByIndirectCopyRestore:
9728       OS << "pass by indirect copy and restore";
9729       break;
9730 
9731     case SK_PassByIndirectRestore:
9732       OS << "pass by indirect restore";
9733       break;
9734 
9735     case SK_ProduceObjCObject:
9736       OS << "Objective-C object retension";
9737       break;
9738 
9739     case SK_StdInitializerList:
9740       OS << "std::initializer_list from initializer list";
9741       break;
9742 
9743     case SK_StdInitializerListConstructorCall:
9744       OS << "list initialization from std::initializer_list";
9745       break;
9746 
9747     case SK_OCLSamplerInit:
9748       OS << "OpenCL sampler_t from integer constant";
9749       break;
9750 
9751     case SK_OCLZeroOpaqueType:
9752       OS << "OpenCL opaque type from zero";
9753       break;
9754     }
9755 
9756     OS << " [" << S->Type.getAsString() << ']';
9757   }
9758 
9759   OS << '\n';
9760 }
9761 
9762 void InitializationSequence::dump() const {
9763   dump(llvm::errs());
9764 }
9765 
9766 static bool NarrowingErrs(const LangOptions &L) {
9767   return L.CPlusPlus11 &&
9768          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9769 }
9770 
9771 static void DiagnoseNarrowingInInitList(Sema &S,
9772                                         const ImplicitConversionSequence &ICS,
9773                                         QualType PreNarrowingType,
9774                                         QualType EntityType,
9775                                         const Expr *PostInit) {
9776   const StandardConversionSequence *SCS = nullptr;
9777   switch (ICS.getKind()) {
9778   case ImplicitConversionSequence::StandardConversion:
9779     SCS = &ICS.Standard;
9780     break;
9781   case ImplicitConversionSequence::UserDefinedConversion:
9782     SCS = &ICS.UserDefined.After;
9783     break;
9784   case ImplicitConversionSequence::AmbiguousConversion:
9785   case ImplicitConversionSequence::EllipsisConversion:
9786   case ImplicitConversionSequence::BadConversion:
9787     return;
9788   }
9789 
9790   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9791   APValue ConstantValue;
9792   QualType ConstantType;
9793   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9794                                 ConstantType)) {
9795   case NK_Not_Narrowing:
9796   case NK_Dependent_Narrowing:
9797     // No narrowing occurred.
9798     return;
9799 
9800   case NK_Type_Narrowing:
9801     // This was a floating-to-integer conversion, which is always considered a
9802     // narrowing conversion even if the value is a constant and can be
9803     // represented exactly as an integer.
9804     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9805                                         ? diag::ext_init_list_type_narrowing
9806                                         : diag::warn_init_list_type_narrowing)
9807         << PostInit->getSourceRange()
9808         << PreNarrowingType.getLocalUnqualifiedType()
9809         << EntityType.getLocalUnqualifiedType();
9810     break;
9811 
9812   case NK_Constant_Narrowing:
9813     // A constant value was narrowed.
9814     S.Diag(PostInit->getBeginLoc(),
9815            NarrowingErrs(S.getLangOpts())
9816                ? diag::ext_init_list_constant_narrowing
9817                : diag::warn_init_list_constant_narrowing)
9818         << PostInit->getSourceRange()
9819         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9820         << EntityType.getLocalUnqualifiedType();
9821     break;
9822 
9823   case NK_Variable_Narrowing:
9824     // A variable's value may have been narrowed.
9825     S.Diag(PostInit->getBeginLoc(),
9826            NarrowingErrs(S.getLangOpts())
9827                ? diag::ext_init_list_variable_narrowing
9828                : diag::warn_init_list_variable_narrowing)
9829         << PostInit->getSourceRange()
9830         << PreNarrowingType.getLocalUnqualifiedType()
9831         << EntityType.getLocalUnqualifiedType();
9832     break;
9833   }
9834 
9835   SmallString<128> StaticCast;
9836   llvm::raw_svector_ostream OS(StaticCast);
9837   OS << "static_cast<";
9838   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9839     // It's important to use the typedef's name if there is one so that the
9840     // fixit doesn't break code using types like int64_t.
9841     //
9842     // FIXME: This will break if the typedef requires qualification.  But
9843     // getQualifiedNameAsString() includes non-machine-parsable components.
9844     OS << *TT->getDecl();
9845   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9846     OS << BT->getName(S.getLangOpts());
9847   else {
9848     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9849     // with a broken cast.
9850     return;
9851   }
9852   OS << ">(";
9853   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9854       << PostInit->getSourceRange()
9855       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9856       << FixItHint::CreateInsertion(
9857              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9858 }
9859 
9860 //===----------------------------------------------------------------------===//
9861 // Initialization helper functions
9862 //===----------------------------------------------------------------------===//
9863 bool
9864 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9865                                    ExprResult Init) {
9866   if (Init.isInvalid())
9867     return false;
9868 
9869   Expr *InitE = Init.get();
9870   assert(InitE && "No initialization expression");
9871 
9872   InitializationKind Kind =
9873       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9874   InitializationSequence Seq(*this, Entity, Kind, InitE);
9875   return !Seq.Failed();
9876 }
9877 
9878 ExprResult
9879 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9880                                 SourceLocation EqualLoc,
9881                                 ExprResult Init,
9882                                 bool TopLevelOfInitList,
9883                                 bool AllowExplicit) {
9884   if (Init.isInvalid())
9885     return ExprError();
9886 
9887   Expr *InitE = Init.get();
9888   assert(InitE && "No initialization expression?");
9889 
9890   if (EqualLoc.isInvalid())
9891     EqualLoc = InitE->getBeginLoc();
9892 
9893   InitializationKind Kind = InitializationKind::CreateCopy(
9894       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9895   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9896 
9897   // Prevent infinite recursion when performing parameter copy-initialization.
9898   const bool ShouldTrackCopy =
9899       Entity.isParameterKind() && Seq.isConstructorInitialization();
9900   if (ShouldTrackCopy) {
9901     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9902         CurrentParameterCopyTypes.end()) {
9903       Seq.SetOverloadFailure(
9904           InitializationSequence::FK_ConstructorOverloadFailed,
9905           OR_No_Viable_Function);
9906 
9907       // Try to give a meaningful diagnostic note for the problematic
9908       // constructor.
9909       const auto LastStep = Seq.step_end() - 1;
9910       assert(LastStep->Kind ==
9911              InitializationSequence::SK_ConstructorInitialization);
9912       const FunctionDecl *Function = LastStep->Function.Function;
9913       auto Candidate =
9914           llvm::find_if(Seq.getFailedCandidateSet(),
9915                         [Function](const OverloadCandidate &Candidate) -> bool {
9916                           return Candidate.Viable &&
9917                                  Candidate.Function == Function &&
9918                                  Candidate.Conversions.size() > 0;
9919                         });
9920       if (Candidate != Seq.getFailedCandidateSet().end() &&
9921           Function->getNumParams() > 0) {
9922         Candidate->Viable = false;
9923         Candidate->FailureKind = ovl_fail_bad_conversion;
9924         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9925                                          InitE,
9926                                          Function->getParamDecl(0)->getType());
9927       }
9928     }
9929     CurrentParameterCopyTypes.push_back(Entity.getType());
9930   }
9931 
9932   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9933 
9934   if (ShouldTrackCopy)
9935     CurrentParameterCopyTypes.pop_back();
9936 
9937   return Result;
9938 }
9939 
9940 /// Determine whether RD is, or is derived from, a specialization of CTD.
9941 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9942                                               ClassTemplateDecl *CTD) {
9943   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9944     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9945     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9946   };
9947   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9948 }
9949 
9950 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9951     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9952     const InitializationKind &Kind, MultiExprArg Inits) {
9953   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9954       TSInfo->getType()->getContainedDeducedType());
9955   assert(DeducedTST && "not a deduced template specialization type");
9956 
9957   auto TemplateName = DeducedTST->getTemplateName();
9958   if (TemplateName.isDependent())
9959     return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9960 
9961   // We can only perform deduction for class templates.
9962   auto *Template =
9963       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9964   if (!Template) {
9965     Diag(Kind.getLocation(),
9966          diag::err_deduced_non_class_template_specialization_type)
9967       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9968     if (auto *TD = TemplateName.getAsTemplateDecl())
9969       Diag(TD->getLocation(), diag::note_template_decl_here);
9970     return QualType();
9971   }
9972 
9973   // Can't deduce from dependent arguments.
9974   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9975     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9976          diag::warn_cxx14_compat_class_template_argument_deduction)
9977         << TSInfo->getTypeLoc().getSourceRange() << 0;
9978     return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9979   }
9980 
9981   // FIXME: Perform "exact type" matching first, per CWG discussion?
9982   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9983 
9984   // FIXME: Do we need/want a std::initializer_list<T> special case?
9985 
9986   // Look up deduction guides, including those synthesized from constructors.
9987   //
9988   // C++1z [over.match.class.deduct]p1:
9989   //   A set of functions and function templates is formed comprising:
9990   //   - For each constructor of the class template designated by the
9991   //     template-name, a function template [...]
9992   //  - For each deduction-guide, a function or function template [...]
9993   DeclarationNameInfo NameInfo(
9994       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9995       TSInfo->getTypeLoc().getEndLoc());
9996   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9997   LookupQualifiedName(Guides, Template->getDeclContext());
9998 
9999   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10000   // clear on this, but they're not found by name so access does not apply.
10001   Guides.suppressDiagnostics();
10002 
10003   // Figure out if this is list-initialization.
10004   InitListExpr *ListInit =
10005       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10006           ? dyn_cast<InitListExpr>(Inits[0])
10007           : nullptr;
10008 
10009   // C++1z [over.match.class.deduct]p1:
10010   //   Initialization and overload resolution are performed as described in
10011   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10012   //   (as appropriate for the type of initialization performed) for an object
10013   //   of a hypothetical class type, where the selected functions and function
10014   //   templates are considered to be the constructors of that class type
10015   //
10016   // Since we know we're initializing a class type of a type unrelated to that
10017   // of the initializer, this reduces to something fairly reasonable.
10018   OverloadCandidateSet Candidates(Kind.getLocation(),
10019                                   OverloadCandidateSet::CSK_Normal);
10020   OverloadCandidateSet::iterator Best;
10021 
10022   bool HasAnyDeductionGuide = false;
10023   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10024 
10025   auto tryToResolveOverload =
10026       [&](bool OnlyListConstructors) -> OverloadingResult {
10027     Candidates.clear(OverloadCandidateSet::CSK_Normal);
10028     HasAnyDeductionGuide = false;
10029 
10030     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10031       NamedDecl *D = (*I)->getUnderlyingDecl();
10032       if (D->isInvalidDecl())
10033         continue;
10034 
10035       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10036       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10037           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10038       if (!GD)
10039         continue;
10040 
10041       if (!GD->isImplicit())
10042         HasAnyDeductionGuide = true;
10043 
10044       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10045       //   For copy-initialization, the candidate functions are all the
10046       //   converting constructors (12.3.1) of that class.
10047       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10048       //   The converting constructors of T are candidate functions.
10049       if (!AllowExplicit) {
10050         // Overload resolution checks whether the deduction guide is declared
10051         // explicit for us.
10052 
10053         // When looking for a converting constructor, deduction guides that
10054         // could never be called with one argument are not interesting to
10055         // check or note.
10056         if (GD->getMinRequiredArguments() > 1 ||
10057             (GD->getNumParams() == 0 && !GD->isVariadic()))
10058           continue;
10059       }
10060 
10061       // C++ [over.match.list]p1.1: (first phase list initialization)
10062       //   Initially, the candidate functions are the initializer-list
10063       //   constructors of the class T
10064       if (OnlyListConstructors && !isInitListConstructor(GD))
10065         continue;
10066 
10067       // C++ [over.match.list]p1.2: (second phase list initialization)
10068       //   the candidate functions are all the constructors of the class T
10069       // C++ [over.match.ctor]p1: (all other cases)
10070       //   the candidate functions are all the constructors of the class of
10071       //   the object being initialized
10072 
10073       // C++ [over.best.ics]p4:
10074       //   When [...] the constructor [...] is a candidate by
10075       //    - [over.match.copy] (in all cases)
10076       // FIXME: The "second phase of [over.match.list] case can also
10077       // theoretically happen here, but it's not clear whether we can
10078       // ever have a parameter of the right type.
10079       bool SuppressUserConversions = Kind.isCopyInit();
10080 
10081       if (TD)
10082         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10083                                      Inits, Candidates, SuppressUserConversions,
10084                                      /*PartialOverloading*/ false,
10085                                      AllowExplicit);
10086       else
10087         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10088                              SuppressUserConversions,
10089                              /*PartialOverloading*/ false, AllowExplicit);
10090     }
10091     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10092   };
10093 
10094   OverloadingResult Result = OR_No_Viable_Function;
10095 
10096   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10097   // try initializer-list constructors.
10098   if (ListInit) {
10099     bool TryListConstructors = true;
10100 
10101     // Try list constructors unless the list is empty and the class has one or
10102     // more default constructors, in which case those constructors win.
10103     if (!ListInit->getNumInits()) {
10104       for (NamedDecl *D : Guides) {
10105         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10106         if (FD && FD->getMinRequiredArguments() == 0) {
10107           TryListConstructors = false;
10108           break;
10109         }
10110       }
10111     } else if (ListInit->getNumInits() == 1) {
10112       // C++ [over.match.class.deduct]:
10113       //   As an exception, the first phase in [over.match.list] (considering
10114       //   initializer-list constructors) is omitted if the initializer list
10115       //   consists of a single expression of type cv U, where U is a
10116       //   specialization of C or a class derived from a specialization of C.
10117       Expr *E = ListInit->getInit(0);
10118       auto *RD = E->getType()->getAsCXXRecordDecl();
10119       if (!isa<InitListExpr>(E) && RD &&
10120           isCompleteType(Kind.getLocation(), E->getType()) &&
10121           isOrIsDerivedFromSpecializationOf(RD, Template))
10122         TryListConstructors = false;
10123     }
10124 
10125     if (TryListConstructors)
10126       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10127     // Then unwrap the initializer list and try again considering all
10128     // constructors.
10129     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10130   }
10131 
10132   // If list-initialization fails, or if we're doing any other kind of
10133   // initialization, we (eventually) consider constructors.
10134   if (Result == OR_No_Viable_Function)
10135     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10136 
10137   switch (Result) {
10138   case OR_Ambiguous:
10139     // FIXME: For list-initialization candidates, it'd usually be better to
10140     // list why they were not viable when given the initializer list itself as
10141     // an argument.
10142     Candidates.NoteCandidates(
10143         PartialDiagnosticAt(
10144             Kind.getLocation(),
10145             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10146                 << TemplateName),
10147         *this, OCD_AmbiguousCandidates, Inits);
10148     return QualType();
10149 
10150   case OR_No_Viable_Function: {
10151     CXXRecordDecl *Primary =
10152         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10153     bool Complete =
10154         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10155     Candidates.NoteCandidates(
10156         PartialDiagnosticAt(
10157             Kind.getLocation(),
10158             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10159                            : diag::err_deduced_class_template_incomplete)
10160                 << TemplateName << !Guides.empty()),
10161         *this, OCD_AllCandidates, Inits);
10162     return QualType();
10163   }
10164 
10165   case OR_Deleted: {
10166     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10167       << TemplateName;
10168     NoteDeletedFunction(Best->Function);
10169     return QualType();
10170   }
10171 
10172   case OR_Success:
10173     // C++ [over.match.list]p1:
10174     //   In copy-list-initialization, if an explicit constructor is chosen, the
10175     //   initialization is ill-formed.
10176     if (Kind.isCopyInit() && ListInit &&
10177         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10178       bool IsDeductionGuide = !Best->Function->isImplicit();
10179       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10180           << TemplateName << IsDeductionGuide;
10181       Diag(Best->Function->getLocation(),
10182            diag::note_explicit_ctor_deduction_guide_here)
10183           << IsDeductionGuide;
10184       return QualType();
10185     }
10186 
10187     // Make sure we didn't select an unusable deduction guide, and mark it
10188     // as referenced.
10189     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10190     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10191     break;
10192   }
10193 
10194   // C++ [dcl.type.class.deduct]p1:
10195   //  The placeholder is replaced by the return type of the function selected
10196   //  by overload resolution for class template deduction.
10197   QualType DeducedType =
10198       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10199   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10200        diag::warn_cxx14_compat_class_template_argument_deduction)
10201       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10202 
10203   // Warn if CTAD was used on a type that does not have any user-defined
10204   // deduction guides.
10205   if (!HasAnyDeductionGuide) {
10206     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10207          diag::warn_ctad_maybe_unsupported)
10208         << TemplateName;
10209     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10210   }
10211 
10212   return DeducedType;
10213 }
10214