1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Sema/Designator.h" 21 #include "clang/Sema/Initialization.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_UTF8StringIntoPlainChar, 53 SIF_PlainStringIntoUTF8Char, 54 SIF_Other 55 }; 56 57 /// Check whether the array of type AT can be initialized by the Init 58 /// expression by means of string initialization. Returns SIF_None if so, 59 /// otherwise returns a StringInitFailureKind that describes why the 60 /// initialization would not work. 61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 62 ASTContext &Context) { 63 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 64 return SIF_Other; 65 66 // See if this is a string literal or @encode. 67 Init = Init->IgnoreParens(); 68 69 // Handle @encode, which is a narrow string. 70 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 71 return SIF_None; 72 73 // Otherwise we can only handle string literals. 74 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 75 if (!SL) 76 return SIF_Other; 77 78 const QualType ElemTy = 79 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 80 81 switch (SL->getKind()) { 82 case StringLiteral::UTF8: 83 // char8_t array can be initialized with a UTF-8 string. 84 if (ElemTy->isChar8Type()) 85 return SIF_None; 86 LLVM_FALLTHROUGH; 87 case StringLiteral::Ascii: 88 // char array can be initialized with a narrow string. 89 // Only allow char x[] = "foo"; not char x[] = L"foo"; 90 if (ElemTy->isCharType()) 91 return (SL->getKind() == StringLiteral::UTF8 && 92 Context.getLangOpts().Char8) 93 ? SIF_UTF8StringIntoPlainChar 94 : SIF_None; 95 if (ElemTy->isChar8Type()) 96 return SIF_PlainStringIntoUTF8Char; 97 if (IsWideCharCompatible(ElemTy, Context)) 98 return SIF_NarrowStringIntoWideChar; 99 return SIF_Other; 100 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 101 // "An array with element type compatible with a qualified or unqualified 102 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 103 // string literal with the corresponding encoding prefix (L, u, or U, 104 // respectively), optionally enclosed in braces. 105 case StringLiteral::UTF16: 106 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 107 return SIF_None; 108 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 109 return SIF_WideStringIntoChar; 110 if (IsWideCharCompatible(ElemTy, Context)) 111 return SIF_IncompatWideStringIntoWideChar; 112 return SIF_Other; 113 case StringLiteral::UTF32: 114 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 115 return SIF_None; 116 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 117 return SIF_WideStringIntoChar; 118 if (IsWideCharCompatible(ElemTy, Context)) 119 return SIF_IncompatWideStringIntoWideChar; 120 return SIF_Other; 121 case StringLiteral::Wide: 122 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 123 return SIF_None; 124 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 125 return SIF_WideStringIntoChar; 126 if (IsWideCharCompatible(ElemTy, Context)) 127 return SIF_IncompatWideStringIntoWideChar; 128 return SIF_Other; 129 } 130 131 llvm_unreachable("missed a StringLiteral kind?"); 132 } 133 134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 135 ASTContext &Context) { 136 const ArrayType *arrayType = Context.getAsArrayType(declType); 137 if (!arrayType) 138 return SIF_Other; 139 return IsStringInit(init, arrayType, Context); 140 } 141 142 /// Update the type of a string literal, including any surrounding parentheses, 143 /// to match the type of the object which it is initializing. 144 static void updateStringLiteralType(Expr *E, QualType Ty) { 145 while (true) { 146 E->setType(Ty); 147 E->setValueKind(VK_RValue); 148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 149 break; 150 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 151 E = PE->getSubExpr(); 152 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 153 assert(UO->getOpcode() == UO_Extension); 154 E = UO->getSubExpr(); 155 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 156 E = GSE->getResultExpr(); 157 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 158 E = CE->getChosenSubExpr(); 159 } else { 160 llvm_unreachable("unexpected expr in string literal init"); 161 } 162 } 163 } 164 165 /// Fix a compound literal initializing an array so it's correctly marked 166 /// as an rvalue. 167 static void updateGNUCompoundLiteralRValue(Expr *E) { 168 while (true) { 169 E->setValueKind(VK_RValue); 170 if (isa<CompoundLiteralExpr>(E)) { 171 break; 172 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 173 E = PE->getSubExpr(); 174 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 175 assert(UO->getOpcode() == UO_Extension); 176 E = UO->getSubExpr(); 177 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 178 E = GSE->getResultExpr(); 179 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 180 E = CE->getChosenSubExpr(); 181 } else { 182 llvm_unreachable("unexpected expr in array compound literal init"); 183 } 184 } 185 } 186 187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 188 Sema &S) { 189 // Get the length of the string as parsed. 190 auto *ConstantArrayTy = 191 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 192 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 193 194 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 195 // C99 6.7.8p14. We have an array of character type with unknown size 196 // being initialized to a string literal. 197 llvm::APInt ConstVal(32, StrLength); 198 // Return a new array type (C99 6.7.8p22). 199 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 200 ConstVal, 201 ArrayType::Normal, 0); 202 updateStringLiteralType(Str, DeclT); 203 return; 204 } 205 206 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 207 208 // We have an array of character type with known size. However, 209 // the size may be smaller or larger than the string we are initializing. 210 // FIXME: Avoid truncation for 64-bit length strings. 211 if (S.getLangOpts().CPlusPlus) { 212 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 213 // For Pascal strings it's OK to strip off the terminating null character, 214 // so the example below is valid: 215 // 216 // unsigned char a[2] = "\pa"; 217 if (SL->isPascal()) 218 StrLength--; 219 } 220 221 // [dcl.init.string]p2 222 if (StrLength > CAT->getSize().getZExtValue()) 223 S.Diag(Str->getBeginLoc(), 224 diag::err_initializer_string_for_char_array_too_long) 225 << Str->getSourceRange(); 226 } else { 227 // C99 6.7.8p14. 228 if (StrLength-1 > CAT->getSize().getZExtValue()) 229 S.Diag(Str->getBeginLoc(), 230 diag::ext_initializer_string_for_char_array_too_long) 231 << Str->getSourceRange(); 232 } 233 234 // Set the type to the actual size that we are initializing. If we have 235 // something like: 236 // char x[1] = "foo"; 237 // then this will set the string literal's type to char[1]. 238 updateStringLiteralType(Str, DeclT); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Semantic checking for initializer lists. 243 //===----------------------------------------------------------------------===// 244 245 namespace { 246 247 /// Semantic checking for initializer lists. 248 /// 249 /// The InitListChecker class contains a set of routines that each 250 /// handle the initialization of a certain kind of entity, e.g., 251 /// arrays, vectors, struct/union types, scalars, etc. The 252 /// InitListChecker itself performs a recursive walk of the subobject 253 /// structure of the type to be initialized, while stepping through 254 /// the initializer list one element at a time. The IList and Index 255 /// parameters to each of the Check* routines contain the active 256 /// (syntactic) initializer list and the index into that initializer 257 /// list that represents the current initializer. Each routine is 258 /// responsible for moving that Index forward as it consumes elements. 259 /// 260 /// Each Check* routine also has a StructuredList/StructuredIndex 261 /// arguments, which contains the current "structured" (semantic) 262 /// initializer list and the index into that initializer list where we 263 /// are copying initializers as we map them over to the semantic 264 /// list. Once we have completed our recursive walk of the subobject 265 /// structure, we will have constructed a full semantic initializer 266 /// list. 267 /// 268 /// C99 designators cause changes in the initializer list traversal, 269 /// because they make the initialization "jump" into a specific 270 /// subobject and then continue the initialization from that 271 /// point. CheckDesignatedInitializer() recursively steps into the 272 /// designated subobject and manages backing out the recursion to 273 /// initialize the subobjects after the one designated. 274 class InitListChecker { 275 Sema &SemaRef; 276 bool hadError; 277 bool VerifyOnly; // no diagnostics, no structure building 278 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 279 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 280 InitListExpr *FullyStructuredList; 281 282 void CheckImplicitInitList(const InitializedEntity &Entity, 283 InitListExpr *ParentIList, QualType T, 284 unsigned &Index, InitListExpr *StructuredList, 285 unsigned &StructuredIndex); 286 void CheckExplicitInitList(const InitializedEntity &Entity, 287 InitListExpr *IList, QualType &T, 288 InitListExpr *StructuredList, 289 bool TopLevelObject = false); 290 void CheckListElementTypes(const InitializedEntity &Entity, 291 InitListExpr *IList, QualType &DeclType, 292 bool SubobjectIsDesignatorContext, 293 unsigned &Index, 294 InitListExpr *StructuredList, 295 unsigned &StructuredIndex, 296 bool TopLevelObject = false); 297 void CheckSubElementType(const InitializedEntity &Entity, 298 InitListExpr *IList, QualType ElemType, 299 unsigned &Index, 300 InitListExpr *StructuredList, 301 unsigned &StructuredIndex); 302 void CheckComplexType(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType DeclType, 304 unsigned &Index, 305 InitListExpr *StructuredList, 306 unsigned &StructuredIndex); 307 void CheckScalarType(const InitializedEntity &Entity, 308 InitListExpr *IList, QualType DeclType, 309 unsigned &Index, 310 InitListExpr *StructuredList, 311 unsigned &StructuredIndex); 312 void CheckReferenceType(const InitializedEntity &Entity, 313 InitListExpr *IList, QualType DeclType, 314 unsigned &Index, 315 InitListExpr *StructuredList, 316 unsigned &StructuredIndex); 317 void CheckVectorType(const InitializedEntity &Entity, 318 InitListExpr *IList, QualType DeclType, unsigned &Index, 319 InitListExpr *StructuredList, 320 unsigned &StructuredIndex); 321 void CheckStructUnionTypes(const InitializedEntity &Entity, 322 InitListExpr *IList, QualType DeclType, 323 CXXRecordDecl::base_class_range Bases, 324 RecordDecl::field_iterator Field, 325 bool SubobjectIsDesignatorContext, unsigned &Index, 326 InitListExpr *StructuredList, 327 unsigned &StructuredIndex, 328 bool TopLevelObject = false); 329 void CheckArrayType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType &DeclType, 331 llvm::APSInt elementIndex, 332 bool SubobjectIsDesignatorContext, unsigned &Index, 333 InitListExpr *StructuredList, 334 unsigned &StructuredIndex); 335 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 336 InitListExpr *IList, DesignatedInitExpr *DIE, 337 unsigned DesigIdx, 338 QualType &CurrentObjectType, 339 RecordDecl::field_iterator *NextField, 340 llvm::APSInt *NextElementIndex, 341 unsigned &Index, 342 InitListExpr *StructuredList, 343 unsigned &StructuredIndex, 344 bool FinishSubobjectInit, 345 bool TopLevelObject); 346 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 347 QualType CurrentObjectType, 348 InitListExpr *StructuredList, 349 unsigned StructuredIndex, 350 SourceRange InitRange, 351 bool IsFullyOverwritten = false); 352 void UpdateStructuredListElement(InitListExpr *StructuredList, 353 unsigned &StructuredIndex, 354 Expr *expr); 355 int numArrayElements(QualType DeclType); 356 int numStructUnionElements(QualType DeclType); 357 358 static ExprResult PerformEmptyInit(Sema &SemaRef, 359 SourceLocation Loc, 360 const InitializedEntity &Entity, 361 bool VerifyOnly, 362 bool TreatUnavailableAsInvalid); 363 364 // Explanation on the "FillWithNoInit" mode: 365 // 366 // Assume we have the following definitions (Case#1): 367 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 368 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 369 // 370 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 371 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 372 // 373 // But if we have (Case#2): 374 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 375 // 376 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 377 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 378 // 379 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 380 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 381 // initializers but with special "NoInitExpr" place holders, which tells the 382 // CodeGen not to generate any initializers for these parts. 383 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 384 const InitializedEntity &ParentEntity, 385 InitListExpr *ILE, bool &RequiresSecondPass, 386 bool FillWithNoInit); 387 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 388 const InitializedEntity &ParentEntity, 389 InitListExpr *ILE, bool &RequiresSecondPass, 390 bool FillWithNoInit = false); 391 void FillInEmptyInitializations(const InitializedEntity &Entity, 392 InitListExpr *ILE, bool &RequiresSecondPass, 393 InitListExpr *OuterILE, unsigned OuterIndex, 394 bool FillWithNoInit = false); 395 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 396 Expr *InitExpr, FieldDecl *Field, 397 bool TopLevelObject); 398 void CheckEmptyInitializable(const InitializedEntity &Entity, 399 SourceLocation Loc); 400 401 public: 402 InitListChecker(Sema &S, const InitializedEntity &Entity, 403 InitListExpr *IL, QualType &T, bool VerifyOnly, 404 bool TreatUnavailableAsInvalid); 405 bool HadError() { return hadError; } 406 407 // Retrieves the fully-structured initializer list used for 408 // semantic analysis and code generation. 409 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 410 }; 411 412 } // end anonymous namespace 413 414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 415 SourceLocation Loc, 416 const InitializedEntity &Entity, 417 bool VerifyOnly, 418 bool TreatUnavailableAsInvalid) { 419 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 420 true); 421 MultiExprArg SubInit; 422 Expr *InitExpr; 423 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 424 425 // C++ [dcl.init.aggr]p7: 426 // If there are fewer initializer-clauses in the list than there are 427 // members in the aggregate, then each member not explicitly initialized 428 // ... 429 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 430 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 431 if (EmptyInitList) { 432 // C++1y / DR1070: 433 // shall be initialized [...] from an empty initializer list. 434 // 435 // We apply the resolution of this DR to C++11 but not C++98, since C++98 436 // does not have useful semantics for initialization from an init list. 437 // We treat this as copy-initialization, because aggregate initialization 438 // always performs copy-initialization on its elements. 439 // 440 // Only do this if we're initializing a class type, to avoid filling in 441 // the initializer list where possible. 442 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 443 InitListExpr(SemaRef.Context, Loc, None, Loc); 444 InitExpr->setType(SemaRef.Context.VoidTy); 445 SubInit = InitExpr; 446 Kind = InitializationKind::CreateCopy(Loc, Loc); 447 } else { 448 // C++03: 449 // shall be value-initialized. 450 } 451 452 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 453 // libstdc++4.6 marks the vector default constructor as explicit in 454 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 455 // stlport does so too. Look for std::__debug for libstdc++, and for 456 // std:: for stlport. This is effectively a compiler-side implementation of 457 // LWG2193. 458 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 459 InitializationSequence::FK_ExplicitConstructor) { 460 OverloadCandidateSet::iterator Best; 461 OverloadingResult O = 462 InitSeq.getFailedCandidateSet() 463 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 464 (void)O; 465 assert(O == OR_Success && "Inconsistent overload resolution"); 466 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 467 CXXRecordDecl *R = CtorDecl->getParent(); 468 469 if (CtorDecl->getMinRequiredArguments() == 0 && 470 CtorDecl->isExplicit() && R->getDeclName() && 471 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 472 bool IsInStd = false; 473 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 474 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 475 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 476 IsInStd = true; 477 } 478 479 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 480 .Cases("basic_string", "deque", "forward_list", true) 481 .Cases("list", "map", "multimap", "multiset", true) 482 .Cases("priority_queue", "queue", "set", "stack", true) 483 .Cases("unordered_map", "unordered_set", "vector", true) 484 .Default(false)) { 485 InitSeq.InitializeFrom( 486 SemaRef, Entity, 487 InitializationKind::CreateValue(Loc, Loc, Loc, true), 488 MultiExprArg(), /*TopLevelOfInitList=*/false, 489 TreatUnavailableAsInvalid); 490 // Emit a warning for this. System header warnings aren't shown 491 // by default, but people working on system headers should see it. 492 if (!VerifyOnly) { 493 SemaRef.Diag(CtorDecl->getLocation(), 494 diag::warn_invalid_initializer_from_system_header); 495 if (Entity.getKind() == InitializedEntity::EK_Member) 496 SemaRef.Diag(Entity.getDecl()->getLocation(), 497 diag::note_used_in_initialization_here); 498 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 499 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 500 } 501 } 502 } 503 } 504 if (!InitSeq) { 505 if (!VerifyOnly) { 506 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 507 if (Entity.getKind() == InitializedEntity::EK_Member) 508 SemaRef.Diag(Entity.getDecl()->getLocation(), 509 diag::note_in_omitted_aggregate_initializer) 510 << /*field*/1 << Entity.getDecl(); 511 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 512 bool IsTrailingArrayNewMember = 513 Entity.getParent() && 514 Entity.getParent()->isVariableLengthArrayNew(); 515 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 516 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 517 << Entity.getElementIndex(); 518 } 519 } 520 return ExprError(); 521 } 522 523 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 524 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 525 } 526 527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 528 SourceLocation Loc) { 529 assert(VerifyOnly && 530 "CheckEmptyInitializable is only inteded for verification mode."); 531 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true, 532 TreatUnavailableAsInvalid).isInvalid()) 533 hadError = true; 534 } 535 536 void InitListChecker::FillInEmptyInitForBase( 537 unsigned Init, const CXXBaseSpecifier &Base, 538 const InitializedEntity &ParentEntity, InitListExpr *ILE, 539 bool &RequiresSecondPass, bool FillWithNoInit) { 540 assert(Init < ILE->getNumInits() && "should have been expanded"); 541 542 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 543 SemaRef.Context, &Base, false, &ParentEntity); 544 545 if (!ILE->getInit(Init)) { 546 ExprResult BaseInit = 547 FillWithNoInit 548 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 549 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity, 550 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 551 if (BaseInit.isInvalid()) { 552 hadError = true; 553 return; 554 } 555 556 ILE->setInit(Init, BaseInit.getAs<Expr>()); 557 } else if (InitListExpr *InnerILE = 558 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 559 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 560 ILE, Init, FillWithNoInit); 561 } else if (DesignatedInitUpdateExpr *InnerDIUE = 562 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 563 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 564 RequiresSecondPass, ILE, Init, 565 /*FillWithNoInit =*/true); 566 } 567 } 568 569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 570 const InitializedEntity &ParentEntity, 571 InitListExpr *ILE, 572 bool &RequiresSecondPass, 573 bool FillWithNoInit) { 574 SourceLocation Loc = ILE->getEndLoc(); 575 unsigned NumInits = ILE->getNumInits(); 576 InitializedEntity MemberEntity 577 = InitializedEntity::InitializeMember(Field, &ParentEntity); 578 579 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 580 if (!RType->getDecl()->isUnion()) 581 assert(Init < NumInits && "This ILE should have been expanded"); 582 583 if (Init >= NumInits || !ILE->getInit(Init)) { 584 if (FillWithNoInit) { 585 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 586 if (Init < NumInits) 587 ILE->setInit(Init, Filler); 588 else 589 ILE->updateInit(SemaRef.Context, Init, Filler); 590 return; 591 } 592 // C++1y [dcl.init.aggr]p7: 593 // If there are fewer initializer-clauses in the list than there are 594 // members in the aggregate, then each member not explicitly initialized 595 // shall be initialized from its brace-or-equal-initializer [...] 596 if (Field->hasInClassInitializer()) { 597 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 598 if (DIE.isInvalid()) { 599 hadError = true; 600 return; 601 } 602 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 603 if (Init < NumInits) 604 ILE->setInit(Init, DIE.get()); 605 else { 606 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 607 RequiresSecondPass = true; 608 } 609 return; 610 } 611 612 if (Field->getType()->isReferenceType()) { 613 // C++ [dcl.init.aggr]p9: 614 // If an incomplete or empty initializer-list leaves a 615 // member of reference type uninitialized, the program is 616 // ill-formed. 617 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 618 << Field->getType() 619 << ILE->getSyntacticForm()->getSourceRange(); 620 SemaRef.Diag(Field->getLocation(), 621 diag::note_uninit_reference_member); 622 hadError = true; 623 return; 624 } 625 626 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 627 /*VerifyOnly*/false, 628 TreatUnavailableAsInvalid); 629 if (MemberInit.isInvalid()) { 630 hadError = true; 631 return; 632 } 633 634 if (hadError) { 635 // Do nothing 636 } else if (Init < NumInits) { 637 ILE->setInit(Init, MemberInit.getAs<Expr>()); 638 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 639 // Empty initialization requires a constructor call, so 640 // extend the initializer list to include the constructor 641 // call and make a note that we'll need to take another pass 642 // through the initializer list. 643 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 644 RequiresSecondPass = true; 645 } 646 } else if (InitListExpr *InnerILE 647 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 648 FillInEmptyInitializations(MemberEntity, InnerILE, 649 RequiresSecondPass, ILE, Init, FillWithNoInit); 650 else if (DesignatedInitUpdateExpr *InnerDIUE 651 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) 652 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 653 RequiresSecondPass, ILE, Init, 654 /*FillWithNoInit =*/true); 655 } 656 657 /// Recursively replaces NULL values within the given initializer list 658 /// with expressions that perform value-initialization of the 659 /// appropriate type, and finish off the InitListExpr formation. 660 void 661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 662 InitListExpr *ILE, 663 bool &RequiresSecondPass, 664 InitListExpr *OuterILE, 665 unsigned OuterIndex, 666 bool FillWithNoInit) { 667 assert((ILE->getType() != SemaRef.Context.VoidTy) && 668 "Should not have void type"); 669 670 // If this is a nested initializer list, we might have changed its contents 671 // (and therefore some of its properties, such as instantiation-dependence) 672 // while filling it in. Inform the outer initializer list so that its state 673 // can be updated to match. 674 // FIXME: We should fully build the inner initializers before constructing 675 // the outer InitListExpr instead of mutating AST nodes after they have 676 // been used as subexpressions of other nodes. 677 struct UpdateOuterILEWithUpdatedInit { 678 InitListExpr *Outer; 679 unsigned OuterIndex; 680 ~UpdateOuterILEWithUpdatedInit() { 681 if (Outer) 682 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 683 } 684 } UpdateOuterRAII = {OuterILE, OuterIndex}; 685 686 // A transparent ILE is not performing aggregate initialization and should 687 // not be filled in. 688 if (ILE->isTransparent()) 689 return; 690 691 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 692 const RecordDecl *RDecl = RType->getDecl(); 693 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 694 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 695 Entity, ILE, RequiresSecondPass, FillWithNoInit); 696 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 697 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 698 for (auto *Field : RDecl->fields()) { 699 if (Field->hasInClassInitializer()) { 700 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 701 FillWithNoInit); 702 break; 703 } 704 } 705 } else { 706 // The fields beyond ILE->getNumInits() are default initialized, so in 707 // order to leave them uninitialized, the ILE is expanded and the extra 708 // fields are then filled with NoInitExpr. 709 unsigned NumElems = numStructUnionElements(ILE->getType()); 710 if (RDecl->hasFlexibleArrayMember()) 711 ++NumElems; 712 if (ILE->getNumInits() < NumElems) 713 ILE->resizeInits(SemaRef.Context, NumElems); 714 715 unsigned Init = 0; 716 717 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 718 for (auto &Base : CXXRD->bases()) { 719 if (hadError) 720 return; 721 722 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 723 FillWithNoInit); 724 ++Init; 725 } 726 } 727 728 for (auto *Field : RDecl->fields()) { 729 if (Field->isUnnamedBitfield()) 730 continue; 731 732 if (hadError) 733 return; 734 735 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 736 FillWithNoInit); 737 if (hadError) 738 return; 739 740 ++Init; 741 742 // Only look at the first initialization of a union. 743 if (RDecl->isUnion()) 744 break; 745 } 746 } 747 748 return; 749 } 750 751 QualType ElementType; 752 753 InitializedEntity ElementEntity = Entity; 754 unsigned NumInits = ILE->getNumInits(); 755 unsigned NumElements = NumInits; 756 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 757 ElementType = AType->getElementType(); 758 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 759 NumElements = CAType->getSize().getZExtValue(); 760 // For an array new with an unknown bound, ask for one additional element 761 // in order to populate the array filler. 762 if (Entity.isVariableLengthArrayNew()) 763 ++NumElements; 764 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 765 0, Entity); 766 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 767 ElementType = VType->getElementType(); 768 NumElements = VType->getNumElements(); 769 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 770 0, Entity); 771 } else 772 ElementType = ILE->getType(); 773 774 for (unsigned Init = 0; Init != NumElements; ++Init) { 775 if (hadError) 776 return; 777 778 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 779 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 780 ElementEntity.setElementIndex(Init); 781 782 if (Init >= NumInits && ILE->hasArrayFiller()) 783 return; 784 785 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 786 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 787 ILE->setInit(Init, ILE->getArrayFiller()); 788 else if (!InitExpr && !ILE->hasArrayFiller()) { 789 Expr *Filler = nullptr; 790 791 if (FillWithNoInit) 792 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 793 else { 794 ExprResult ElementInit = 795 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity, 796 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 797 if (ElementInit.isInvalid()) { 798 hadError = true; 799 return; 800 } 801 802 Filler = ElementInit.getAs<Expr>(); 803 } 804 805 if (hadError) { 806 // Do nothing 807 } else if (Init < NumInits) { 808 // For arrays, just set the expression used for value-initialization 809 // of the "holes" in the array. 810 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 811 ILE->setArrayFiller(Filler); 812 else 813 ILE->setInit(Init, Filler); 814 } else { 815 // For arrays, just set the expression used for value-initialization 816 // of the rest of elements and exit. 817 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 818 ILE->setArrayFiller(Filler); 819 return; 820 } 821 822 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 823 // Empty initialization requires a constructor call, so 824 // extend the initializer list to include the constructor 825 // call and make a note that we'll need to take another pass 826 // through the initializer list. 827 ILE->updateInit(SemaRef.Context, Init, Filler); 828 RequiresSecondPass = true; 829 } 830 } 831 } else if (InitListExpr *InnerILE 832 = dyn_cast_or_null<InitListExpr>(InitExpr)) 833 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 834 ILE, Init, FillWithNoInit); 835 else if (DesignatedInitUpdateExpr *InnerDIUE 836 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) 837 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 838 RequiresSecondPass, ILE, Init, 839 /*FillWithNoInit =*/true); 840 } 841 } 842 843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 844 InitListExpr *IL, QualType &T, 845 bool VerifyOnly, 846 bool TreatUnavailableAsInvalid) 847 : SemaRef(S), VerifyOnly(VerifyOnly), 848 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) { 849 // FIXME: Check that IL isn't already the semantic form of some other 850 // InitListExpr. If it is, we'd create a broken AST. 851 852 hadError = false; 853 854 FullyStructuredList = 855 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 856 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 857 /*TopLevelObject=*/true); 858 859 if (!hadError && !VerifyOnly) { 860 bool RequiresSecondPass = false; 861 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 862 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 863 if (RequiresSecondPass && !hadError) 864 FillInEmptyInitializations(Entity, FullyStructuredList, 865 RequiresSecondPass, nullptr, 0); 866 } 867 } 868 869 int InitListChecker::numArrayElements(QualType DeclType) { 870 // FIXME: use a proper constant 871 int maxElements = 0x7FFFFFFF; 872 if (const ConstantArrayType *CAT = 873 SemaRef.Context.getAsConstantArrayType(DeclType)) { 874 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 875 } 876 return maxElements; 877 } 878 879 int InitListChecker::numStructUnionElements(QualType DeclType) { 880 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 881 int InitializableMembers = 0; 882 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 883 InitializableMembers += CXXRD->getNumBases(); 884 for (const auto *Field : structDecl->fields()) 885 if (!Field->isUnnamedBitfield()) 886 ++InitializableMembers; 887 888 if (structDecl->isUnion()) 889 return std::min(InitializableMembers, 1); 890 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 891 } 892 893 /// Determine whether Entity is an entity for which it is idiomatic to elide 894 /// the braces in aggregate initialization. 895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 896 // Recursive initialization of the one and only field within an aggregate 897 // class is considered idiomatic. This case arises in particular for 898 // initialization of std::array, where the C++ standard suggests the idiom of 899 // 900 // std::array<T, N> arr = {1, 2, 3}; 901 // 902 // (where std::array is an aggregate struct containing a single array field. 903 904 // FIXME: Should aggregate initialization of a struct with a single 905 // base class and no members also suppress the warning? 906 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 907 return false; 908 909 auto *ParentRD = 910 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 911 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 912 if (CXXRD->getNumBases()) 913 return false; 914 915 auto FieldIt = ParentRD->field_begin(); 916 assert(FieldIt != ParentRD->field_end() && 917 "no fields but have initializer for member?"); 918 return ++FieldIt == ParentRD->field_end(); 919 } 920 921 /// Check whether the range of the initializer \p ParentIList from element 922 /// \p Index onwards can be used to initialize an object of type \p T. Update 923 /// \p Index to indicate how many elements of the list were consumed. 924 /// 925 /// This also fills in \p StructuredList, from element \p StructuredIndex 926 /// onwards, with the fully-braced, desugared form of the initialization. 927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 928 InitListExpr *ParentIList, 929 QualType T, unsigned &Index, 930 InitListExpr *StructuredList, 931 unsigned &StructuredIndex) { 932 int maxElements = 0; 933 934 if (T->isArrayType()) 935 maxElements = numArrayElements(T); 936 else if (T->isRecordType()) 937 maxElements = numStructUnionElements(T); 938 else if (T->isVectorType()) 939 maxElements = T->getAs<VectorType>()->getNumElements(); 940 else 941 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 942 943 if (maxElements == 0) { 944 if (!VerifyOnly) 945 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 946 diag::err_implicit_empty_initializer); 947 ++Index; 948 hadError = true; 949 return; 950 } 951 952 // Build a structured initializer list corresponding to this subobject. 953 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 954 ParentIList, Index, T, StructuredList, StructuredIndex, 955 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 956 ParentIList->getSourceRange().getEnd())); 957 unsigned StructuredSubobjectInitIndex = 0; 958 959 // Check the element types and build the structural subobject. 960 unsigned StartIndex = Index; 961 CheckListElementTypes(Entity, ParentIList, T, 962 /*SubobjectIsDesignatorContext=*/false, Index, 963 StructuredSubobjectInitList, 964 StructuredSubobjectInitIndex); 965 966 if (!VerifyOnly) { 967 StructuredSubobjectInitList->setType(T); 968 969 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 970 // Update the structured sub-object initializer so that it's ending 971 // range corresponds with the end of the last initializer it used. 972 if (EndIndex < ParentIList->getNumInits() && 973 ParentIList->getInit(EndIndex)) { 974 SourceLocation EndLoc 975 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 976 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 977 } 978 979 // Complain about missing braces. 980 if ((T->isArrayType() || T->isRecordType()) && 981 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 982 !isIdiomaticBraceElisionEntity(Entity)) { 983 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 984 diag::warn_missing_braces) 985 << StructuredSubobjectInitList->getSourceRange() 986 << FixItHint::CreateInsertion( 987 StructuredSubobjectInitList->getBeginLoc(), "{") 988 << FixItHint::CreateInsertion( 989 SemaRef.getLocForEndOfToken( 990 StructuredSubobjectInitList->getEndLoc()), 991 "}"); 992 } 993 994 // Warn if this type won't be an aggregate in future versions of C++. 995 auto *CXXRD = T->getAsCXXRecordDecl(); 996 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 997 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 998 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 999 << StructuredSubobjectInitList->getSourceRange() << T; 1000 } 1001 } 1002 } 1003 1004 /// Warn that \p Entity was of scalar type and was initialized by a 1005 /// single-element braced initializer list. 1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1007 SourceRange Braces) { 1008 // Don't warn during template instantiation. If the initialization was 1009 // non-dependent, we warned during the initial parse; otherwise, the 1010 // type might not be scalar in some uses of the template. 1011 if (S.inTemplateInstantiation()) 1012 return; 1013 1014 unsigned DiagID = 0; 1015 1016 switch (Entity.getKind()) { 1017 case InitializedEntity::EK_VectorElement: 1018 case InitializedEntity::EK_ComplexElement: 1019 case InitializedEntity::EK_ArrayElement: 1020 case InitializedEntity::EK_Parameter: 1021 case InitializedEntity::EK_Parameter_CF_Audited: 1022 case InitializedEntity::EK_Result: 1023 // Extra braces here are suspicious. 1024 DiagID = diag::warn_braces_around_scalar_init; 1025 break; 1026 1027 case InitializedEntity::EK_Member: 1028 // Warn on aggregate initialization but not on ctor init list or 1029 // default member initializer. 1030 if (Entity.getParent()) 1031 DiagID = diag::warn_braces_around_scalar_init; 1032 break; 1033 1034 case InitializedEntity::EK_Variable: 1035 case InitializedEntity::EK_LambdaCapture: 1036 // No warning, might be direct-list-initialization. 1037 // FIXME: Should we warn for copy-list-initialization in these cases? 1038 break; 1039 1040 case InitializedEntity::EK_New: 1041 case InitializedEntity::EK_Temporary: 1042 case InitializedEntity::EK_CompoundLiteralInit: 1043 // No warning, braces are part of the syntax of the underlying construct. 1044 break; 1045 1046 case InitializedEntity::EK_RelatedResult: 1047 // No warning, we already warned when initializing the result. 1048 break; 1049 1050 case InitializedEntity::EK_Exception: 1051 case InitializedEntity::EK_Base: 1052 case InitializedEntity::EK_Delegating: 1053 case InitializedEntity::EK_BlockElement: 1054 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1055 case InitializedEntity::EK_Binding: 1056 case InitializedEntity::EK_StmtExprResult: 1057 llvm_unreachable("unexpected braced scalar init"); 1058 } 1059 1060 if (DiagID) { 1061 S.Diag(Braces.getBegin(), DiagID) 1062 << Braces 1063 << FixItHint::CreateRemoval(Braces.getBegin()) 1064 << FixItHint::CreateRemoval(Braces.getEnd()); 1065 } 1066 } 1067 1068 /// Check whether the initializer \p IList (that was written with explicit 1069 /// braces) can be used to initialize an object of type \p T. 1070 /// 1071 /// This also fills in \p StructuredList with the fully-braced, desugared 1072 /// form of the initialization. 1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1074 InitListExpr *IList, QualType &T, 1075 InitListExpr *StructuredList, 1076 bool TopLevelObject) { 1077 if (!VerifyOnly) { 1078 SyntacticToSemantic[IList] = StructuredList; 1079 StructuredList->setSyntacticForm(IList); 1080 } 1081 1082 unsigned Index = 0, StructuredIndex = 0; 1083 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1084 Index, StructuredList, StructuredIndex, TopLevelObject); 1085 if (!VerifyOnly) { 1086 QualType ExprTy = T; 1087 if (!ExprTy->isArrayType()) 1088 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1089 IList->setType(ExprTy); 1090 StructuredList->setType(ExprTy); 1091 } 1092 if (hadError) 1093 return; 1094 1095 if (Index < IList->getNumInits()) { 1096 // We have leftover initializers 1097 if (VerifyOnly) { 1098 if (SemaRef.getLangOpts().CPlusPlus || 1099 (SemaRef.getLangOpts().OpenCL && 1100 IList->getType()->isVectorType())) { 1101 hadError = true; 1102 } 1103 return; 1104 } 1105 1106 if (StructuredIndex == 1 && 1107 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1108 SIF_None) { 1109 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; 1110 if (SemaRef.getLangOpts().CPlusPlus) { 1111 DK = diag::err_excess_initializers_in_char_array_initializer; 1112 hadError = true; 1113 } 1114 // Special-case 1115 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1116 << IList->getInit(Index)->getSourceRange(); 1117 } else if (!T->isIncompleteType()) { 1118 // Don't complain for incomplete types, since we'll get an error 1119 // elsewhere 1120 QualType CurrentObjectType = StructuredList->getType(); 1121 int initKind = 1122 CurrentObjectType->isArrayType()? 0 : 1123 CurrentObjectType->isVectorType()? 1 : 1124 CurrentObjectType->isScalarType()? 2 : 1125 CurrentObjectType->isUnionType()? 3 : 1126 4; 1127 1128 unsigned DK = diag::ext_excess_initializers; 1129 if (SemaRef.getLangOpts().CPlusPlus) { 1130 DK = diag::err_excess_initializers; 1131 hadError = true; 1132 } 1133 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 1134 DK = diag::err_excess_initializers; 1135 hadError = true; 1136 } 1137 1138 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1139 << initKind << IList->getInit(Index)->getSourceRange(); 1140 } 1141 } 1142 1143 if (!VerifyOnly) { 1144 if (T->isScalarType() && IList->getNumInits() == 1 && 1145 !isa<InitListExpr>(IList->getInit(0))) 1146 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1147 1148 // Warn if this is a class type that won't be an aggregate in future 1149 // versions of C++. 1150 auto *CXXRD = T->getAsCXXRecordDecl(); 1151 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1152 // Don't warn if there's an equivalent default constructor that would be 1153 // used instead. 1154 bool HasEquivCtor = false; 1155 if (IList->getNumInits() == 0) { 1156 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1157 HasEquivCtor = CD && !CD->isDeleted(); 1158 } 1159 1160 if (!HasEquivCtor) { 1161 SemaRef.Diag(IList->getBeginLoc(), 1162 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1163 << IList->getSourceRange() << T; 1164 } 1165 } 1166 } 1167 } 1168 1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1170 InitListExpr *IList, 1171 QualType &DeclType, 1172 bool SubobjectIsDesignatorContext, 1173 unsigned &Index, 1174 InitListExpr *StructuredList, 1175 unsigned &StructuredIndex, 1176 bool TopLevelObject) { 1177 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1178 // Explicitly braced initializer for complex type can be real+imaginary 1179 // parts. 1180 CheckComplexType(Entity, IList, DeclType, Index, 1181 StructuredList, StructuredIndex); 1182 } else if (DeclType->isScalarType()) { 1183 CheckScalarType(Entity, IList, DeclType, Index, 1184 StructuredList, StructuredIndex); 1185 } else if (DeclType->isVectorType()) { 1186 CheckVectorType(Entity, IList, DeclType, Index, 1187 StructuredList, StructuredIndex); 1188 } else if (DeclType->isRecordType()) { 1189 assert(DeclType->isAggregateType() && 1190 "non-aggregate records should be handed in CheckSubElementType"); 1191 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1192 auto Bases = 1193 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1194 CXXRecordDecl::base_class_iterator()); 1195 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1196 Bases = CXXRD->bases(); 1197 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1198 SubobjectIsDesignatorContext, Index, StructuredList, 1199 StructuredIndex, TopLevelObject); 1200 } else if (DeclType->isArrayType()) { 1201 llvm::APSInt Zero( 1202 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1203 false); 1204 CheckArrayType(Entity, IList, DeclType, Zero, 1205 SubobjectIsDesignatorContext, Index, 1206 StructuredList, StructuredIndex); 1207 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1208 // This type is invalid, issue a diagnostic. 1209 ++Index; 1210 if (!VerifyOnly) 1211 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1212 << DeclType; 1213 hadError = true; 1214 } else if (DeclType->isReferenceType()) { 1215 CheckReferenceType(Entity, IList, DeclType, Index, 1216 StructuredList, StructuredIndex); 1217 } else if (DeclType->isObjCObjectType()) { 1218 if (!VerifyOnly) 1219 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1220 hadError = true; 1221 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1222 // Checks for scalar type are sufficient for these types too. 1223 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1224 StructuredIndex); 1225 } else { 1226 if (!VerifyOnly) 1227 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1228 << DeclType; 1229 hadError = true; 1230 } 1231 } 1232 1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1234 InitListExpr *IList, 1235 QualType ElemType, 1236 unsigned &Index, 1237 InitListExpr *StructuredList, 1238 unsigned &StructuredIndex) { 1239 Expr *expr = IList->getInit(Index); 1240 1241 if (ElemType->isReferenceType()) 1242 return CheckReferenceType(Entity, IList, ElemType, Index, 1243 StructuredList, StructuredIndex); 1244 1245 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1246 if (SubInitList->getNumInits() == 1 && 1247 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1248 SIF_None) { 1249 expr = SubInitList->getInit(0); 1250 } else if (!SemaRef.getLangOpts().CPlusPlus) { 1251 InitListExpr *InnerStructuredList 1252 = getStructuredSubobjectInit(IList, Index, ElemType, 1253 StructuredList, StructuredIndex, 1254 SubInitList->getSourceRange(), true); 1255 CheckExplicitInitList(Entity, SubInitList, ElemType, 1256 InnerStructuredList); 1257 1258 if (!hadError && !VerifyOnly) { 1259 bool RequiresSecondPass = false; 1260 FillInEmptyInitializations(Entity, InnerStructuredList, 1261 RequiresSecondPass, StructuredList, 1262 StructuredIndex); 1263 if (RequiresSecondPass && !hadError) 1264 FillInEmptyInitializations(Entity, InnerStructuredList, 1265 RequiresSecondPass, StructuredList, 1266 StructuredIndex); 1267 } 1268 ++StructuredIndex; 1269 ++Index; 1270 return; 1271 } 1272 // C++ initialization is handled later. 1273 } else if (isa<ImplicitValueInitExpr>(expr)) { 1274 // This happens during template instantiation when we see an InitListExpr 1275 // that we've already checked once. 1276 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1277 "found implicit initialization for the wrong type"); 1278 if (!VerifyOnly) 1279 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1280 ++Index; 1281 return; 1282 } 1283 1284 if (SemaRef.getLangOpts().CPlusPlus) { 1285 // C++ [dcl.init.aggr]p2: 1286 // Each member is copy-initialized from the corresponding 1287 // initializer-clause. 1288 1289 // FIXME: Better EqualLoc? 1290 InitializationKind Kind = 1291 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1292 InitializationSequence Seq(SemaRef, Entity, Kind, expr, 1293 /*TopLevelOfInitList*/ true); 1294 1295 // C++14 [dcl.init.aggr]p13: 1296 // If the assignment-expression can initialize a member, the member is 1297 // initialized. Otherwise [...] brace elision is assumed 1298 // 1299 // Brace elision is never performed if the element is not an 1300 // assignment-expression. 1301 if (Seq || isa<InitListExpr>(expr)) { 1302 if (!VerifyOnly) { 1303 ExprResult Result = 1304 Seq.Perform(SemaRef, Entity, Kind, expr); 1305 if (Result.isInvalid()) 1306 hadError = true; 1307 1308 UpdateStructuredListElement(StructuredList, StructuredIndex, 1309 Result.getAs<Expr>()); 1310 } else if (!Seq) 1311 hadError = true; 1312 ++Index; 1313 return; 1314 } 1315 1316 // Fall through for subaggregate initialization 1317 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1318 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1319 return CheckScalarType(Entity, IList, ElemType, Index, 1320 StructuredList, StructuredIndex); 1321 } else if (const ArrayType *arrayType = 1322 SemaRef.Context.getAsArrayType(ElemType)) { 1323 // arrayType can be incomplete if we're initializing a flexible 1324 // array member. There's nothing we can do with the completed 1325 // type here, though. 1326 1327 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1328 if (!VerifyOnly) { 1329 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1330 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1331 } 1332 ++Index; 1333 return; 1334 } 1335 1336 // Fall through for subaggregate initialization. 1337 1338 } else { 1339 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1340 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1341 1342 // C99 6.7.8p13: 1343 // 1344 // The initializer for a structure or union object that has 1345 // automatic storage duration shall be either an initializer 1346 // list as described below, or a single expression that has 1347 // compatible structure or union type. In the latter case, the 1348 // initial value of the object, including unnamed members, is 1349 // that of the expression. 1350 ExprResult ExprRes = expr; 1351 if (SemaRef.CheckSingleAssignmentConstraints( 1352 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1353 if (ExprRes.isInvalid()) 1354 hadError = true; 1355 else { 1356 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1357 if (ExprRes.isInvalid()) 1358 hadError = true; 1359 } 1360 UpdateStructuredListElement(StructuredList, StructuredIndex, 1361 ExprRes.getAs<Expr>()); 1362 ++Index; 1363 return; 1364 } 1365 ExprRes.get(); 1366 // Fall through for subaggregate initialization 1367 } 1368 1369 // C++ [dcl.init.aggr]p12: 1370 // 1371 // [...] Otherwise, if the member is itself a non-empty 1372 // subaggregate, brace elision is assumed and the initializer is 1373 // considered for the initialization of the first member of 1374 // the subaggregate. 1375 // OpenCL vector initializer is handled elsewhere. 1376 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1377 ElemType->isAggregateType()) { 1378 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1379 StructuredIndex); 1380 ++StructuredIndex; 1381 } else { 1382 if (!VerifyOnly) { 1383 // We cannot initialize this element, so let 1384 // PerformCopyInitialization produce the appropriate diagnostic. 1385 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1386 /*TopLevelOfInitList=*/true); 1387 } 1388 hadError = true; 1389 ++Index; 1390 ++StructuredIndex; 1391 } 1392 } 1393 1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1395 InitListExpr *IList, QualType DeclType, 1396 unsigned &Index, 1397 InitListExpr *StructuredList, 1398 unsigned &StructuredIndex) { 1399 assert(Index == 0 && "Index in explicit init list must be zero"); 1400 1401 // As an extension, clang supports complex initializers, which initialize 1402 // a complex number component-wise. When an explicit initializer list for 1403 // a complex number contains two two initializers, this extension kicks in: 1404 // it exepcts the initializer list to contain two elements convertible to 1405 // the element type of the complex type. The first element initializes 1406 // the real part, and the second element intitializes the imaginary part. 1407 1408 if (IList->getNumInits() != 2) 1409 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1410 StructuredIndex); 1411 1412 // This is an extension in C. (The builtin _Complex type does not exist 1413 // in the C++ standard.) 1414 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1415 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1416 << IList->getSourceRange(); 1417 1418 // Initialize the complex number. 1419 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1420 InitializedEntity ElementEntity = 1421 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1422 1423 for (unsigned i = 0; i < 2; ++i) { 1424 ElementEntity.setElementIndex(Index); 1425 CheckSubElementType(ElementEntity, IList, elementType, Index, 1426 StructuredList, StructuredIndex); 1427 } 1428 } 1429 1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1431 InitListExpr *IList, QualType DeclType, 1432 unsigned &Index, 1433 InitListExpr *StructuredList, 1434 unsigned &StructuredIndex) { 1435 if (Index >= IList->getNumInits()) { 1436 if (!VerifyOnly) 1437 SemaRef.Diag(IList->getBeginLoc(), 1438 SemaRef.getLangOpts().CPlusPlus11 1439 ? diag::warn_cxx98_compat_empty_scalar_initializer 1440 : diag::err_empty_scalar_initializer) 1441 << IList->getSourceRange(); 1442 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1443 ++Index; 1444 ++StructuredIndex; 1445 return; 1446 } 1447 1448 Expr *expr = IList->getInit(Index); 1449 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1450 // FIXME: This is invalid, and accepting it causes overload resolution 1451 // to pick the wrong overload in some corner cases. 1452 if (!VerifyOnly) 1453 SemaRef.Diag(SubIList->getBeginLoc(), 1454 diag::ext_many_braces_around_scalar_init) 1455 << SubIList->getSourceRange(); 1456 1457 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1458 StructuredIndex); 1459 return; 1460 } else if (isa<DesignatedInitExpr>(expr)) { 1461 if (!VerifyOnly) 1462 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1463 << DeclType << expr->getSourceRange(); 1464 hadError = true; 1465 ++Index; 1466 ++StructuredIndex; 1467 return; 1468 } 1469 1470 if (VerifyOnly) { 1471 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1472 hadError = true; 1473 ++Index; 1474 return; 1475 } 1476 1477 ExprResult Result = 1478 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1479 /*TopLevelOfInitList=*/true); 1480 1481 Expr *ResultExpr = nullptr; 1482 1483 if (Result.isInvalid()) 1484 hadError = true; // types weren't compatible. 1485 else { 1486 ResultExpr = Result.getAs<Expr>(); 1487 1488 if (ResultExpr != expr) { 1489 // The type was promoted, update initializer list. 1490 IList->setInit(Index, ResultExpr); 1491 } 1492 } 1493 if (hadError) 1494 ++StructuredIndex; 1495 else 1496 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1497 ++Index; 1498 } 1499 1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1501 InitListExpr *IList, QualType DeclType, 1502 unsigned &Index, 1503 InitListExpr *StructuredList, 1504 unsigned &StructuredIndex) { 1505 if (Index >= IList->getNumInits()) { 1506 // FIXME: It would be wonderful if we could point at the actual member. In 1507 // general, it would be useful to pass location information down the stack, 1508 // so that we know the location (or decl) of the "current object" being 1509 // initialized. 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 diag::err_init_reference_member_uninitialized) 1513 << DeclType << IList->getSourceRange(); 1514 hadError = true; 1515 ++Index; 1516 ++StructuredIndex; 1517 return; 1518 } 1519 1520 Expr *expr = IList->getInit(Index); 1521 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1522 if (!VerifyOnly) 1523 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1524 << DeclType << IList->getSourceRange(); 1525 hadError = true; 1526 ++Index; 1527 ++StructuredIndex; 1528 return; 1529 } 1530 1531 if (VerifyOnly) { 1532 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1533 hadError = true; 1534 ++Index; 1535 return; 1536 } 1537 1538 ExprResult Result = 1539 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1540 /*TopLevelOfInitList=*/true); 1541 1542 if (Result.isInvalid()) 1543 hadError = true; 1544 1545 expr = Result.getAs<Expr>(); 1546 IList->setInit(Index, expr); 1547 1548 if (hadError) 1549 ++StructuredIndex; 1550 else 1551 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1552 ++Index; 1553 } 1554 1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1556 InitListExpr *IList, QualType DeclType, 1557 unsigned &Index, 1558 InitListExpr *StructuredList, 1559 unsigned &StructuredIndex) { 1560 const VectorType *VT = DeclType->getAs<VectorType>(); 1561 unsigned maxElements = VT->getNumElements(); 1562 unsigned numEltsInit = 0; 1563 QualType elementType = VT->getElementType(); 1564 1565 if (Index >= IList->getNumInits()) { 1566 // Make sure the element type can be value-initialized. 1567 if (VerifyOnly) 1568 CheckEmptyInitializable( 1569 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1570 IList->getEndLoc()); 1571 return; 1572 } 1573 1574 if (!SemaRef.getLangOpts().OpenCL) { 1575 // If the initializing element is a vector, try to copy-initialize 1576 // instead of breaking it apart (which is doomed to failure anyway). 1577 Expr *Init = IList->getInit(Index); 1578 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1579 if (VerifyOnly) { 1580 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1581 hadError = true; 1582 ++Index; 1583 return; 1584 } 1585 1586 ExprResult Result = 1587 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1588 /*TopLevelOfInitList=*/true); 1589 1590 Expr *ResultExpr = nullptr; 1591 if (Result.isInvalid()) 1592 hadError = true; // types weren't compatible. 1593 else { 1594 ResultExpr = Result.getAs<Expr>(); 1595 1596 if (ResultExpr != Init) { 1597 // The type was promoted, update initializer list. 1598 IList->setInit(Index, ResultExpr); 1599 } 1600 } 1601 if (hadError) 1602 ++StructuredIndex; 1603 else 1604 UpdateStructuredListElement(StructuredList, StructuredIndex, 1605 ResultExpr); 1606 ++Index; 1607 return; 1608 } 1609 1610 InitializedEntity ElementEntity = 1611 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1612 1613 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1614 // Don't attempt to go past the end of the init list 1615 if (Index >= IList->getNumInits()) { 1616 if (VerifyOnly) 1617 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1618 break; 1619 } 1620 1621 ElementEntity.setElementIndex(Index); 1622 CheckSubElementType(ElementEntity, IList, elementType, Index, 1623 StructuredList, StructuredIndex); 1624 } 1625 1626 if (VerifyOnly) 1627 return; 1628 1629 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1630 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1631 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1632 T->getVectorKind() == VectorType::NeonPolyVector)) { 1633 // The ability to use vector initializer lists is a GNU vector extension 1634 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1635 // endian machines it works fine, however on big endian machines it 1636 // exhibits surprising behaviour: 1637 // 1638 // uint32x2_t x = {42, 64}; 1639 // return vget_lane_u32(x, 0); // Will return 64. 1640 // 1641 // Because of this, explicitly call out that it is non-portable. 1642 // 1643 SemaRef.Diag(IList->getBeginLoc(), 1644 diag::warn_neon_vector_initializer_non_portable); 1645 1646 const char *typeCode; 1647 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1648 1649 if (elementType->isFloatingType()) 1650 typeCode = "f"; 1651 else if (elementType->isSignedIntegerType()) 1652 typeCode = "s"; 1653 else if (elementType->isUnsignedIntegerType()) 1654 typeCode = "u"; 1655 else 1656 llvm_unreachable("Invalid element type!"); 1657 1658 SemaRef.Diag(IList->getBeginLoc(), 1659 SemaRef.Context.getTypeSize(VT) > 64 1660 ? diag::note_neon_vector_initializer_non_portable_q 1661 : diag::note_neon_vector_initializer_non_portable) 1662 << typeCode << typeSize; 1663 } 1664 1665 return; 1666 } 1667 1668 InitializedEntity ElementEntity = 1669 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1670 1671 // OpenCL initializers allows vectors to be constructed from vectors. 1672 for (unsigned i = 0; i < maxElements; ++i) { 1673 // Don't attempt to go past the end of the init list 1674 if (Index >= IList->getNumInits()) 1675 break; 1676 1677 ElementEntity.setElementIndex(Index); 1678 1679 QualType IType = IList->getInit(Index)->getType(); 1680 if (!IType->isVectorType()) { 1681 CheckSubElementType(ElementEntity, IList, elementType, Index, 1682 StructuredList, StructuredIndex); 1683 ++numEltsInit; 1684 } else { 1685 QualType VecType; 1686 const VectorType *IVT = IType->getAs<VectorType>(); 1687 unsigned numIElts = IVT->getNumElements(); 1688 1689 if (IType->isExtVectorType()) 1690 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1691 else 1692 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1693 IVT->getVectorKind()); 1694 CheckSubElementType(ElementEntity, IList, VecType, Index, 1695 StructuredList, StructuredIndex); 1696 numEltsInit += numIElts; 1697 } 1698 } 1699 1700 // OpenCL requires all elements to be initialized. 1701 if (numEltsInit != maxElements) { 1702 if (!VerifyOnly) 1703 SemaRef.Diag(IList->getBeginLoc(), 1704 diag::err_vector_incorrect_num_initializers) 1705 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1706 hadError = true; 1707 } 1708 } 1709 1710 /// Check if the type of a class element has an accessible destructor, and marks 1711 /// it referenced. Returns true if we shouldn't form a reference to the 1712 /// destructor. 1713 /// 1714 /// Aggregate initialization requires a class element's destructor be 1715 /// accessible per 11.6.1 [dcl.init.aggr]: 1716 /// 1717 /// The destructor for each element of class type is potentially invoked 1718 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1719 /// occurs. 1720 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1721 Sema &SemaRef) { 1722 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1723 if (!CXXRD) 1724 return false; 1725 1726 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1727 SemaRef.CheckDestructorAccess(Loc, Destructor, 1728 SemaRef.PDiag(diag::err_access_dtor_temp) 1729 << ElementType); 1730 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1731 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1732 } 1733 1734 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1735 InitListExpr *IList, QualType &DeclType, 1736 llvm::APSInt elementIndex, 1737 bool SubobjectIsDesignatorContext, 1738 unsigned &Index, 1739 InitListExpr *StructuredList, 1740 unsigned &StructuredIndex) { 1741 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1742 1743 if (!VerifyOnly) { 1744 if (checkDestructorReference(arrayType->getElementType(), 1745 IList->getEndLoc(), SemaRef)) { 1746 hadError = true; 1747 return; 1748 } 1749 } 1750 1751 // Check for the special-case of initializing an array with a string. 1752 if (Index < IList->getNumInits()) { 1753 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1754 SIF_None) { 1755 // We place the string literal directly into the resulting 1756 // initializer list. This is the only place where the structure 1757 // of the structured initializer list doesn't match exactly, 1758 // because doing so would involve allocating one character 1759 // constant for each string. 1760 if (!VerifyOnly) { 1761 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1762 UpdateStructuredListElement(StructuredList, StructuredIndex, 1763 IList->getInit(Index)); 1764 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1765 } 1766 ++Index; 1767 return; 1768 } 1769 } 1770 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1771 // Check for VLAs; in standard C it would be possible to check this 1772 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1773 // them in all sorts of strange places). 1774 if (!VerifyOnly) 1775 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1776 diag::err_variable_object_no_init) 1777 << VAT->getSizeExpr()->getSourceRange(); 1778 hadError = true; 1779 ++Index; 1780 ++StructuredIndex; 1781 return; 1782 } 1783 1784 // We might know the maximum number of elements in advance. 1785 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1786 elementIndex.isUnsigned()); 1787 bool maxElementsKnown = false; 1788 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1789 maxElements = CAT->getSize(); 1790 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1791 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1792 maxElementsKnown = true; 1793 } 1794 1795 QualType elementType = arrayType->getElementType(); 1796 while (Index < IList->getNumInits()) { 1797 Expr *Init = IList->getInit(Index); 1798 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1799 // If we're not the subobject that matches up with the '{' for 1800 // the designator, we shouldn't be handling the 1801 // designator. Return immediately. 1802 if (!SubobjectIsDesignatorContext) 1803 return; 1804 1805 // Handle this designated initializer. elementIndex will be 1806 // updated to be the next array element we'll initialize. 1807 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1808 DeclType, nullptr, &elementIndex, Index, 1809 StructuredList, StructuredIndex, true, 1810 false)) { 1811 hadError = true; 1812 continue; 1813 } 1814 1815 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1816 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1817 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1818 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1819 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1820 1821 // If the array is of incomplete type, keep track of the number of 1822 // elements in the initializer. 1823 if (!maxElementsKnown && elementIndex > maxElements) 1824 maxElements = elementIndex; 1825 1826 continue; 1827 } 1828 1829 // If we know the maximum number of elements, and we've already 1830 // hit it, stop consuming elements in the initializer list. 1831 if (maxElementsKnown && elementIndex == maxElements) 1832 break; 1833 1834 InitializedEntity ElementEntity = 1835 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1836 Entity); 1837 // Check this element. 1838 CheckSubElementType(ElementEntity, IList, elementType, Index, 1839 StructuredList, StructuredIndex); 1840 ++elementIndex; 1841 1842 // If the array is of incomplete type, keep track of the number of 1843 // elements in the initializer. 1844 if (!maxElementsKnown && elementIndex > maxElements) 1845 maxElements = elementIndex; 1846 } 1847 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1848 // If this is an incomplete array type, the actual type needs to 1849 // be calculated here. 1850 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1851 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1852 // Sizing an array implicitly to zero is not allowed by ISO C, 1853 // but is supported by GNU. 1854 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1855 } 1856 1857 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1858 ArrayType::Normal, 0); 1859 } 1860 if (!hadError && VerifyOnly) { 1861 // If there are any members of the array that get value-initialized, check 1862 // that is possible. That happens if we know the bound and don't have 1863 // enough elements, or if we're performing an array new with an unknown 1864 // bound. 1865 // FIXME: This needs to detect holes left by designated initializers too. 1866 if ((maxElementsKnown && elementIndex < maxElements) || 1867 Entity.isVariableLengthArrayNew()) 1868 CheckEmptyInitializable( 1869 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1870 IList->getEndLoc()); 1871 } 1872 } 1873 1874 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1875 Expr *InitExpr, 1876 FieldDecl *Field, 1877 bool TopLevelObject) { 1878 // Handle GNU flexible array initializers. 1879 unsigned FlexArrayDiag; 1880 if (isa<InitListExpr>(InitExpr) && 1881 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1882 // Empty flexible array init always allowed as an extension 1883 FlexArrayDiag = diag::ext_flexible_array_init; 1884 } else if (SemaRef.getLangOpts().CPlusPlus) { 1885 // Disallow flexible array init in C++; it is not required for gcc 1886 // compatibility, and it needs work to IRGen correctly in general. 1887 FlexArrayDiag = diag::err_flexible_array_init; 1888 } else if (!TopLevelObject) { 1889 // Disallow flexible array init on non-top-level object 1890 FlexArrayDiag = diag::err_flexible_array_init; 1891 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1892 // Disallow flexible array init on anything which is not a variable. 1893 FlexArrayDiag = diag::err_flexible_array_init; 1894 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1895 // Disallow flexible array init on local variables. 1896 FlexArrayDiag = diag::err_flexible_array_init; 1897 } else { 1898 // Allow other cases. 1899 FlexArrayDiag = diag::ext_flexible_array_init; 1900 } 1901 1902 if (!VerifyOnly) { 1903 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1904 << InitExpr->getBeginLoc(); 1905 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1906 << Field; 1907 } 1908 1909 return FlexArrayDiag != diag::ext_flexible_array_init; 1910 } 1911 1912 void InitListChecker::CheckStructUnionTypes( 1913 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1914 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1915 bool SubobjectIsDesignatorContext, unsigned &Index, 1916 InitListExpr *StructuredList, unsigned &StructuredIndex, 1917 bool TopLevelObject) { 1918 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 1919 1920 // If the record is invalid, some of it's members are invalid. To avoid 1921 // confusion, we forgo checking the intializer for the entire record. 1922 if (structDecl->isInvalidDecl()) { 1923 // Assume it was supposed to consume a single initializer. 1924 ++Index; 1925 hadError = true; 1926 return; 1927 } 1928 1929 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1930 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1931 1932 if (!VerifyOnly) 1933 for (FieldDecl *FD : RD->fields()) { 1934 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 1935 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 1936 hadError = true; 1937 return; 1938 } 1939 } 1940 1941 // If there's a default initializer, use it. 1942 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1943 if (VerifyOnly) 1944 return; 1945 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1946 Field != FieldEnd; ++Field) { 1947 if (Field->hasInClassInitializer()) { 1948 StructuredList->setInitializedFieldInUnion(*Field); 1949 // FIXME: Actually build a CXXDefaultInitExpr? 1950 return; 1951 } 1952 } 1953 } 1954 1955 // Value-initialize the first member of the union that isn't an unnamed 1956 // bitfield. 1957 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1958 Field != FieldEnd; ++Field) { 1959 if (!Field->isUnnamedBitfield()) { 1960 if (VerifyOnly) 1961 CheckEmptyInitializable( 1962 InitializedEntity::InitializeMember(*Field, &Entity), 1963 IList->getEndLoc()); 1964 else 1965 StructuredList->setInitializedFieldInUnion(*Field); 1966 break; 1967 } 1968 } 1969 return; 1970 } 1971 1972 bool InitializedSomething = false; 1973 1974 // If we have any base classes, they are initialized prior to the fields. 1975 for (auto &Base : Bases) { 1976 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 1977 1978 // Designated inits always initialize fields, so if we see one, all 1979 // remaining base classes have no explicit initializer. 1980 if (Init && isa<DesignatedInitExpr>(Init)) 1981 Init = nullptr; 1982 1983 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 1984 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 1985 SemaRef.Context, &Base, false, &Entity); 1986 if (Init) { 1987 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 1988 StructuredList, StructuredIndex); 1989 InitializedSomething = true; 1990 } else if (VerifyOnly) { 1991 CheckEmptyInitializable(BaseEntity, InitLoc); 1992 } 1993 1994 if (!VerifyOnly) 1995 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 1996 hadError = true; 1997 return; 1998 } 1999 } 2000 2001 // If structDecl is a forward declaration, this loop won't do 2002 // anything except look at designated initializers; That's okay, 2003 // because an error should get printed out elsewhere. It might be 2004 // worthwhile to skip over the rest of the initializer, though. 2005 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 2006 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2007 bool CheckForMissingFields = 2008 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2009 bool HasDesignatedInit = false; 2010 2011 while (Index < IList->getNumInits()) { 2012 Expr *Init = IList->getInit(Index); 2013 SourceLocation InitLoc = Init->getBeginLoc(); 2014 2015 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2016 // If we're not the subobject that matches up with the '{' for 2017 // the designator, we shouldn't be handling the 2018 // designator. Return immediately. 2019 if (!SubobjectIsDesignatorContext) 2020 return; 2021 2022 HasDesignatedInit = true; 2023 2024 // Handle this designated initializer. Field will be updated to 2025 // the next field that we'll be initializing. 2026 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2027 DeclType, &Field, nullptr, Index, 2028 StructuredList, StructuredIndex, 2029 true, TopLevelObject)) 2030 hadError = true; 2031 else if (!VerifyOnly) { 2032 // Find the field named by the designated initializer. 2033 RecordDecl::field_iterator F = RD->field_begin(); 2034 while (std::next(F) != Field) 2035 ++F; 2036 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2037 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2038 hadError = true; 2039 return; 2040 } 2041 } 2042 2043 InitializedSomething = true; 2044 2045 // Disable check for missing fields when designators are used. 2046 // This matches gcc behaviour. 2047 CheckForMissingFields = false; 2048 continue; 2049 } 2050 2051 if (Field == FieldEnd) { 2052 // We've run out of fields. We're done. 2053 break; 2054 } 2055 2056 // We've already initialized a member of a union. We're done. 2057 if (InitializedSomething && DeclType->isUnionType()) 2058 break; 2059 2060 // If we've hit the flexible array member at the end, we're done. 2061 if (Field->getType()->isIncompleteArrayType()) 2062 break; 2063 2064 if (Field->isUnnamedBitfield()) { 2065 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2066 ++Field; 2067 continue; 2068 } 2069 2070 // Make sure we can use this declaration. 2071 bool InvalidUse; 2072 if (VerifyOnly) 2073 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2074 else 2075 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2076 *Field, IList->getInit(Index)->getBeginLoc()); 2077 if (InvalidUse) { 2078 ++Index; 2079 ++Field; 2080 hadError = true; 2081 continue; 2082 } 2083 2084 if (!VerifyOnly) { 2085 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2086 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2087 hadError = true; 2088 return; 2089 } 2090 } 2091 2092 InitializedEntity MemberEntity = 2093 InitializedEntity::InitializeMember(*Field, &Entity); 2094 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2095 StructuredList, StructuredIndex); 2096 InitializedSomething = true; 2097 2098 if (DeclType->isUnionType() && !VerifyOnly) { 2099 // Initialize the first field within the union. 2100 StructuredList->setInitializedFieldInUnion(*Field); 2101 } 2102 2103 ++Field; 2104 } 2105 2106 // Emit warnings for missing struct field initializers. 2107 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2108 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2109 !DeclType->isUnionType()) { 2110 // It is possible we have one or more unnamed bitfields remaining. 2111 // Find first (if any) named field and emit warning. 2112 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2113 it != end; ++it) { 2114 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2115 SemaRef.Diag(IList->getSourceRange().getEnd(), 2116 diag::warn_missing_field_initializers) << *it; 2117 break; 2118 } 2119 } 2120 } 2121 2122 // Check that any remaining fields can be value-initialized. 2123 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 2124 !Field->getType()->isIncompleteArrayType()) { 2125 // FIXME: Should check for holes left by designated initializers too. 2126 for (; Field != FieldEnd && !hadError; ++Field) { 2127 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2128 CheckEmptyInitializable( 2129 InitializedEntity::InitializeMember(*Field, &Entity), 2130 IList->getEndLoc()); 2131 } 2132 } 2133 2134 // Check that the types of the remaining fields have accessible destructors. 2135 if (!VerifyOnly) { 2136 // If the initializer expression has a designated initializer, check the 2137 // elements for which a designated initializer is not provided too. 2138 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2139 : Field; 2140 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2141 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2142 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2143 hadError = true; 2144 return; 2145 } 2146 } 2147 } 2148 2149 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2150 Index >= IList->getNumInits()) 2151 return; 2152 2153 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2154 TopLevelObject)) { 2155 hadError = true; 2156 ++Index; 2157 return; 2158 } 2159 2160 InitializedEntity MemberEntity = 2161 InitializedEntity::InitializeMember(*Field, &Entity); 2162 2163 if (isa<InitListExpr>(IList->getInit(Index))) 2164 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2165 StructuredList, StructuredIndex); 2166 else 2167 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2168 StructuredList, StructuredIndex); 2169 } 2170 2171 /// Expand a field designator that refers to a member of an 2172 /// anonymous struct or union into a series of field designators that 2173 /// refers to the field within the appropriate subobject. 2174 /// 2175 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2176 DesignatedInitExpr *DIE, 2177 unsigned DesigIdx, 2178 IndirectFieldDecl *IndirectField) { 2179 typedef DesignatedInitExpr::Designator Designator; 2180 2181 // Build the replacement designators. 2182 SmallVector<Designator, 4> Replacements; 2183 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2184 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2185 if (PI + 1 == PE) 2186 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2187 DIE->getDesignator(DesigIdx)->getDotLoc(), 2188 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2189 else 2190 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2191 SourceLocation(), SourceLocation())); 2192 assert(isa<FieldDecl>(*PI)); 2193 Replacements.back().setField(cast<FieldDecl>(*PI)); 2194 } 2195 2196 // Expand the current designator into the set of replacement 2197 // designators, so we have a full subobject path down to where the 2198 // member of the anonymous struct/union is actually stored. 2199 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2200 &Replacements[0] + Replacements.size()); 2201 } 2202 2203 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2204 DesignatedInitExpr *DIE) { 2205 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2206 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2207 for (unsigned I = 0; I < NumIndexExprs; ++I) 2208 IndexExprs[I] = DIE->getSubExpr(I + 1); 2209 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2210 IndexExprs, 2211 DIE->getEqualOrColonLoc(), 2212 DIE->usesGNUSyntax(), DIE->getInit()); 2213 } 2214 2215 namespace { 2216 2217 // Callback to only accept typo corrections that are for field members of 2218 // the given struct or union. 2219 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2220 public: 2221 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2222 : Record(RD) {} 2223 2224 bool ValidateCandidate(const TypoCorrection &candidate) override { 2225 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2226 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2227 } 2228 2229 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2230 return llvm::make_unique<FieldInitializerValidatorCCC>(*this); 2231 } 2232 2233 private: 2234 RecordDecl *Record; 2235 }; 2236 2237 } // end anonymous namespace 2238 2239 /// Check the well-formedness of a C99 designated initializer. 2240 /// 2241 /// Determines whether the designated initializer @p DIE, which 2242 /// resides at the given @p Index within the initializer list @p 2243 /// IList, is well-formed for a current object of type @p DeclType 2244 /// (C99 6.7.8). The actual subobject that this designator refers to 2245 /// within the current subobject is returned in either 2246 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2247 /// 2248 /// @param IList The initializer list in which this designated 2249 /// initializer occurs. 2250 /// 2251 /// @param DIE The designated initializer expression. 2252 /// 2253 /// @param DesigIdx The index of the current designator. 2254 /// 2255 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2256 /// into which the designation in @p DIE should refer. 2257 /// 2258 /// @param NextField If non-NULL and the first designator in @p DIE is 2259 /// a field, this will be set to the field declaration corresponding 2260 /// to the field named by the designator. 2261 /// 2262 /// @param NextElementIndex If non-NULL and the first designator in @p 2263 /// DIE is an array designator or GNU array-range designator, this 2264 /// will be set to the last index initialized by this designator. 2265 /// 2266 /// @param Index Index into @p IList where the designated initializer 2267 /// @p DIE occurs. 2268 /// 2269 /// @param StructuredList The initializer list expression that 2270 /// describes all of the subobject initializers in the order they'll 2271 /// actually be initialized. 2272 /// 2273 /// @returns true if there was an error, false otherwise. 2274 bool 2275 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2276 InitListExpr *IList, 2277 DesignatedInitExpr *DIE, 2278 unsigned DesigIdx, 2279 QualType &CurrentObjectType, 2280 RecordDecl::field_iterator *NextField, 2281 llvm::APSInt *NextElementIndex, 2282 unsigned &Index, 2283 InitListExpr *StructuredList, 2284 unsigned &StructuredIndex, 2285 bool FinishSubobjectInit, 2286 bool TopLevelObject) { 2287 if (DesigIdx == DIE->size()) { 2288 // Check the actual initialization for the designated object type. 2289 bool prevHadError = hadError; 2290 2291 // Temporarily remove the designator expression from the 2292 // initializer list that the child calls see, so that we don't try 2293 // to re-process the designator. 2294 unsigned OldIndex = Index; 2295 IList->setInit(OldIndex, DIE->getInit()); 2296 2297 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2298 StructuredList, StructuredIndex); 2299 2300 // Restore the designated initializer expression in the syntactic 2301 // form of the initializer list. 2302 if (IList->getInit(OldIndex) != DIE->getInit()) 2303 DIE->setInit(IList->getInit(OldIndex)); 2304 IList->setInit(OldIndex, DIE); 2305 2306 return hadError && !prevHadError; 2307 } 2308 2309 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2310 bool IsFirstDesignator = (DesigIdx == 0); 2311 if (!VerifyOnly) { 2312 assert((IsFirstDesignator || StructuredList) && 2313 "Need a non-designated initializer list to start from"); 2314 2315 // Determine the structural initializer list that corresponds to the 2316 // current subobject. 2317 if (IsFirstDesignator) 2318 StructuredList = SyntacticToSemantic.lookup(IList); 2319 else { 2320 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2321 StructuredList->getInit(StructuredIndex) : nullptr; 2322 if (!ExistingInit && StructuredList->hasArrayFiller()) 2323 ExistingInit = StructuredList->getArrayFiller(); 2324 2325 if (!ExistingInit) 2326 StructuredList = getStructuredSubobjectInit( 2327 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2328 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2329 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2330 StructuredList = Result; 2331 else { 2332 if (DesignatedInitUpdateExpr *E = 2333 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2334 StructuredList = E->getUpdater(); 2335 else { 2336 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2337 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2338 ExistingInit, DIE->getEndLoc()); 2339 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2340 StructuredList = DIUE->getUpdater(); 2341 } 2342 2343 // We need to check on source range validity because the previous 2344 // initializer does not have to be an explicit initializer. e.g., 2345 // 2346 // struct P { int a, b; }; 2347 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2348 // 2349 // There is an overwrite taking place because the first braced initializer 2350 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 2351 if (ExistingInit->getSourceRange().isValid()) { 2352 // We are creating an initializer list that initializes the 2353 // subobjects of the current object, but there was already an 2354 // initialization that completely initialized the current 2355 // subobject, e.g., by a compound literal: 2356 // 2357 // struct X { int a, b; }; 2358 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2359 // 2360 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2361 // designated initializer re-initializes the whole 2362 // subobject [0], overwriting previous initializers. 2363 SemaRef.Diag(D->getBeginLoc(), 2364 diag::warn_subobject_initializer_overrides) 2365 << SourceRange(D->getBeginLoc(), DIE->getEndLoc()); 2366 2367 SemaRef.Diag(ExistingInit->getBeginLoc(), 2368 diag::note_previous_initializer) 2369 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2370 } 2371 } 2372 } 2373 assert(StructuredList && "Expected a structured initializer list"); 2374 } 2375 2376 if (D->isFieldDesignator()) { 2377 // C99 6.7.8p7: 2378 // 2379 // If a designator has the form 2380 // 2381 // . identifier 2382 // 2383 // then the current object (defined below) shall have 2384 // structure or union type and the identifier shall be the 2385 // name of a member of that type. 2386 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2387 if (!RT) { 2388 SourceLocation Loc = D->getDotLoc(); 2389 if (Loc.isInvalid()) 2390 Loc = D->getFieldLoc(); 2391 if (!VerifyOnly) 2392 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2393 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2394 ++Index; 2395 return true; 2396 } 2397 2398 FieldDecl *KnownField = D->getField(); 2399 if (!KnownField) { 2400 IdentifierInfo *FieldName = D->getFieldName(); 2401 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2402 for (NamedDecl *ND : Lookup) { 2403 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2404 KnownField = FD; 2405 break; 2406 } 2407 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2408 // In verify mode, don't modify the original. 2409 if (VerifyOnly) 2410 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2411 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2412 D = DIE->getDesignator(DesigIdx); 2413 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2414 break; 2415 } 2416 } 2417 if (!KnownField) { 2418 if (VerifyOnly) { 2419 ++Index; 2420 return true; // No typo correction when just trying this out. 2421 } 2422 2423 // Name lookup found something, but it wasn't a field. 2424 if (!Lookup.empty()) { 2425 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2426 << FieldName; 2427 SemaRef.Diag(Lookup.front()->getLocation(), 2428 diag::note_field_designator_found); 2429 ++Index; 2430 return true; 2431 } 2432 2433 // Name lookup didn't find anything. 2434 // Determine whether this was a typo for another field name. 2435 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2436 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2437 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2438 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2439 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2440 SemaRef.diagnoseTypo( 2441 Corrected, 2442 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2443 << FieldName << CurrentObjectType); 2444 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2445 hadError = true; 2446 } else { 2447 // Typo correction didn't find anything. 2448 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2449 << FieldName << CurrentObjectType; 2450 ++Index; 2451 return true; 2452 } 2453 } 2454 } 2455 2456 unsigned FieldIndex = 0; 2457 2458 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2459 FieldIndex = CXXRD->getNumBases(); 2460 2461 for (auto *FI : RT->getDecl()->fields()) { 2462 if (FI->isUnnamedBitfield()) 2463 continue; 2464 if (declaresSameEntity(KnownField, FI)) { 2465 KnownField = FI; 2466 break; 2467 } 2468 ++FieldIndex; 2469 } 2470 2471 RecordDecl::field_iterator Field = 2472 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2473 2474 // All of the fields of a union are located at the same place in 2475 // the initializer list. 2476 if (RT->getDecl()->isUnion()) { 2477 FieldIndex = 0; 2478 if (!VerifyOnly) { 2479 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2480 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2481 assert(StructuredList->getNumInits() == 1 2482 && "A union should never have more than one initializer!"); 2483 2484 Expr *ExistingInit = StructuredList->getInit(0); 2485 if (ExistingInit) { 2486 // We're about to throw away an initializer, emit warning. 2487 SemaRef.Diag(D->getFieldLoc(), 2488 diag::warn_initializer_overrides) 2489 << D->getSourceRange(); 2490 SemaRef.Diag(ExistingInit->getBeginLoc(), 2491 diag::note_previous_initializer) 2492 << /*FIXME:has side effects=*/0 2493 << ExistingInit->getSourceRange(); 2494 } 2495 2496 // remove existing initializer 2497 StructuredList->resizeInits(SemaRef.Context, 0); 2498 StructuredList->setInitializedFieldInUnion(nullptr); 2499 } 2500 2501 StructuredList->setInitializedFieldInUnion(*Field); 2502 } 2503 } 2504 2505 // Make sure we can use this declaration. 2506 bool InvalidUse; 2507 if (VerifyOnly) 2508 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2509 else 2510 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2511 if (InvalidUse) { 2512 ++Index; 2513 return true; 2514 } 2515 2516 if (!VerifyOnly) { 2517 // Update the designator with the field declaration. 2518 D->setField(*Field); 2519 2520 // Make sure that our non-designated initializer list has space 2521 // for a subobject corresponding to this field. 2522 if (FieldIndex >= StructuredList->getNumInits()) 2523 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2524 } 2525 2526 // This designator names a flexible array member. 2527 if (Field->getType()->isIncompleteArrayType()) { 2528 bool Invalid = false; 2529 if ((DesigIdx + 1) != DIE->size()) { 2530 // We can't designate an object within the flexible array 2531 // member (because GCC doesn't allow it). 2532 if (!VerifyOnly) { 2533 DesignatedInitExpr::Designator *NextD 2534 = DIE->getDesignator(DesigIdx + 1); 2535 SemaRef.Diag(NextD->getBeginLoc(), 2536 diag::err_designator_into_flexible_array_member) 2537 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2538 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2539 << *Field; 2540 } 2541 Invalid = true; 2542 } 2543 2544 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2545 !isa<StringLiteral>(DIE->getInit())) { 2546 // The initializer is not an initializer list. 2547 if (!VerifyOnly) { 2548 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2549 diag::err_flexible_array_init_needs_braces) 2550 << DIE->getInit()->getSourceRange(); 2551 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2552 << *Field; 2553 } 2554 Invalid = true; 2555 } 2556 2557 // Check GNU flexible array initializer. 2558 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2559 TopLevelObject)) 2560 Invalid = true; 2561 2562 if (Invalid) { 2563 ++Index; 2564 return true; 2565 } 2566 2567 // Initialize the array. 2568 bool prevHadError = hadError; 2569 unsigned newStructuredIndex = FieldIndex; 2570 unsigned OldIndex = Index; 2571 IList->setInit(Index, DIE->getInit()); 2572 2573 InitializedEntity MemberEntity = 2574 InitializedEntity::InitializeMember(*Field, &Entity); 2575 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2576 StructuredList, newStructuredIndex); 2577 2578 IList->setInit(OldIndex, DIE); 2579 if (hadError && !prevHadError) { 2580 ++Field; 2581 ++FieldIndex; 2582 if (NextField) 2583 *NextField = Field; 2584 StructuredIndex = FieldIndex; 2585 return true; 2586 } 2587 } else { 2588 // Recurse to check later designated subobjects. 2589 QualType FieldType = Field->getType(); 2590 unsigned newStructuredIndex = FieldIndex; 2591 2592 InitializedEntity MemberEntity = 2593 InitializedEntity::InitializeMember(*Field, &Entity); 2594 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2595 FieldType, nullptr, nullptr, Index, 2596 StructuredList, newStructuredIndex, 2597 FinishSubobjectInit, false)) 2598 return true; 2599 } 2600 2601 // Find the position of the next field to be initialized in this 2602 // subobject. 2603 ++Field; 2604 ++FieldIndex; 2605 2606 // If this the first designator, our caller will continue checking 2607 // the rest of this struct/class/union subobject. 2608 if (IsFirstDesignator) { 2609 if (NextField) 2610 *NextField = Field; 2611 StructuredIndex = FieldIndex; 2612 return false; 2613 } 2614 2615 if (!FinishSubobjectInit) 2616 return false; 2617 2618 // We've already initialized something in the union; we're done. 2619 if (RT->getDecl()->isUnion()) 2620 return hadError; 2621 2622 // Check the remaining fields within this class/struct/union subobject. 2623 bool prevHadError = hadError; 2624 2625 auto NoBases = 2626 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2627 CXXRecordDecl::base_class_iterator()); 2628 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2629 false, Index, StructuredList, FieldIndex); 2630 return hadError && !prevHadError; 2631 } 2632 2633 // C99 6.7.8p6: 2634 // 2635 // If a designator has the form 2636 // 2637 // [ constant-expression ] 2638 // 2639 // then the current object (defined below) shall have array 2640 // type and the expression shall be an integer constant 2641 // expression. If the array is of unknown size, any 2642 // nonnegative value is valid. 2643 // 2644 // Additionally, cope with the GNU extension that permits 2645 // designators of the form 2646 // 2647 // [ constant-expression ... constant-expression ] 2648 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2649 if (!AT) { 2650 if (!VerifyOnly) 2651 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2652 << CurrentObjectType; 2653 ++Index; 2654 return true; 2655 } 2656 2657 Expr *IndexExpr = nullptr; 2658 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2659 if (D->isArrayDesignator()) { 2660 IndexExpr = DIE->getArrayIndex(*D); 2661 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2662 DesignatedEndIndex = DesignatedStartIndex; 2663 } else { 2664 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2665 2666 DesignatedStartIndex = 2667 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2668 DesignatedEndIndex = 2669 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2670 IndexExpr = DIE->getArrayRangeEnd(*D); 2671 2672 // Codegen can't handle evaluating array range designators that have side 2673 // effects, because we replicate the AST value for each initialized element. 2674 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2675 // elements with something that has a side effect, so codegen can emit an 2676 // "error unsupported" error instead of miscompiling the app. 2677 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2678 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2679 FullyStructuredList->sawArrayRangeDesignator(); 2680 } 2681 2682 if (isa<ConstantArrayType>(AT)) { 2683 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2684 DesignatedStartIndex 2685 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2686 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2687 DesignatedEndIndex 2688 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2689 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2690 if (DesignatedEndIndex >= MaxElements) { 2691 if (!VerifyOnly) 2692 SemaRef.Diag(IndexExpr->getBeginLoc(), 2693 diag::err_array_designator_too_large) 2694 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2695 << IndexExpr->getSourceRange(); 2696 ++Index; 2697 return true; 2698 } 2699 } else { 2700 unsigned DesignatedIndexBitWidth = 2701 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2702 DesignatedStartIndex = 2703 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2704 DesignatedEndIndex = 2705 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2706 DesignatedStartIndex.setIsUnsigned(true); 2707 DesignatedEndIndex.setIsUnsigned(true); 2708 } 2709 2710 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2711 // We're modifying a string literal init; we have to decompose the string 2712 // so we can modify the individual characters. 2713 ASTContext &Context = SemaRef.Context; 2714 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2715 2716 // Compute the character type 2717 QualType CharTy = AT->getElementType(); 2718 2719 // Compute the type of the integer literals. 2720 QualType PromotedCharTy = CharTy; 2721 if (CharTy->isPromotableIntegerType()) 2722 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2723 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2724 2725 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2726 // Get the length of the string. 2727 uint64_t StrLen = SL->getLength(); 2728 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2729 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2730 StructuredList->resizeInits(Context, StrLen); 2731 2732 // Build a literal for each character in the string, and put them into 2733 // the init list. 2734 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2735 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2736 Expr *Init = new (Context) IntegerLiteral( 2737 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2738 if (CharTy != PromotedCharTy) 2739 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2740 Init, nullptr, VK_RValue); 2741 StructuredList->updateInit(Context, i, Init); 2742 } 2743 } else { 2744 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2745 std::string Str; 2746 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2747 2748 // Get the length of the string. 2749 uint64_t StrLen = Str.size(); 2750 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2751 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2752 StructuredList->resizeInits(Context, StrLen); 2753 2754 // Build a literal for each character in the string, and put them into 2755 // the init list. 2756 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2757 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2758 Expr *Init = new (Context) IntegerLiteral( 2759 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2760 if (CharTy != PromotedCharTy) 2761 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2762 Init, nullptr, VK_RValue); 2763 StructuredList->updateInit(Context, i, Init); 2764 } 2765 } 2766 } 2767 2768 // Make sure that our non-designated initializer list has space 2769 // for a subobject corresponding to this array element. 2770 if (!VerifyOnly && 2771 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2772 StructuredList->resizeInits(SemaRef.Context, 2773 DesignatedEndIndex.getZExtValue() + 1); 2774 2775 // Repeatedly perform subobject initializations in the range 2776 // [DesignatedStartIndex, DesignatedEndIndex]. 2777 2778 // Move to the next designator 2779 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2780 unsigned OldIndex = Index; 2781 2782 InitializedEntity ElementEntity = 2783 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2784 2785 while (DesignatedStartIndex <= DesignatedEndIndex) { 2786 // Recurse to check later designated subobjects. 2787 QualType ElementType = AT->getElementType(); 2788 Index = OldIndex; 2789 2790 ElementEntity.setElementIndex(ElementIndex); 2791 if (CheckDesignatedInitializer( 2792 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2793 nullptr, Index, StructuredList, ElementIndex, 2794 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2795 false)) 2796 return true; 2797 2798 // Move to the next index in the array that we'll be initializing. 2799 ++DesignatedStartIndex; 2800 ElementIndex = DesignatedStartIndex.getZExtValue(); 2801 } 2802 2803 // If this the first designator, our caller will continue checking 2804 // the rest of this array subobject. 2805 if (IsFirstDesignator) { 2806 if (NextElementIndex) 2807 *NextElementIndex = DesignatedStartIndex; 2808 StructuredIndex = ElementIndex; 2809 return false; 2810 } 2811 2812 if (!FinishSubobjectInit) 2813 return false; 2814 2815 // Check the remaining elements within this array subobject. 2816 bool prevHadError = hadError; 2817 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2818 /*SubobjectIsDesignatorContext=*/false, Index, 2819 StructuredList, ElementIndex); 2820 return hadError && !prevHadError; 2821 } 2822 2823 // Get the structured initializer list for a subobject of type 2824 // @p CurrentObjectType. 2825 InitListExpr * 2826 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2827 QualType CurrentObjectType, 2828 InitListExpr *StructuredList, 2829 unsigned StructuredIndex, 2830 SourceRange InitRange, 2831 bool IsFullyOverwritten) { 2832 if (VerifyOnly) 2833 return nullptr; // No structured list in verification-only mode. 2834 Expr *ExistingInit = nullptr; 2835 if (!StructuredList) 2836 ExistingInit = SyntacticToSemantic.lookup(IList); 2837 else if (StructuredIndex < StructuredList->getNumInits()) 2838 ExistingInit = StructuredList->getInit(StructuredIndex); 2839 2840 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2841 // There might have already been initializers for subobjects of the current 2842 // object, but a subsequent initializer list will overwrite the entirety 2843 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2844 // 2845 // struct P { char x[6]; }; 2846 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2847 // 2848 // The first designated initializer is ignored, and l.x is just "f". 2849 if (!IsFullyOverwritten) 2850 return Result; 2851 2852 if (ExistingInit) { 2853 // We are creating an initializer list that initializes the 2854 // subobjects of the current object, but there was already an 2855 // initialization that completely initialized the current 2856 // subobject, e.g., by a compound literal: 2857 // 2858 // struct X { int a, b; }; 2859 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2860 // 2861 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2862 // designated initializer re-initializes the whole 2863 // subobject [0], overwriting previous initializers. 2864 SemaRef.Diag(InitRange.getBegin(), 2865 diag::warn_subobject_initializer_overrides) 2866 << InitRange; 2867 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer) 2868 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2869 } 2870 2871 InitListExpr *Result 2872 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2873 InitRange.getBegin(), None, 2874 InitRange.getEnd()); 2875 2876 QualType ResultType = CurrentObjectType; 2877 if (!ResultType->isArrayType()) 2878 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2879 Result->setType(ResultType); 2880 2881 // Pre-allocate storage for the structured initializer list. 2882 unsigned NumElements = 0; 2883 unsigned NumInits = 0; 2884 bool GotNumInits = false; 2885 if (!StructuredList) { 2886 NumInits = IList->getNumInits(); 2887 GotNumInits = true; 2888 } else if (Index < IList->getNumInits()) { 2889 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2890 NumInits = SubList->getNumInits(); 2891 GotNumInits = true; 2892 } 2893 } 2894 2895 if (const ArrayType *AType 2896 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2897 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2898 NumElements = CAType->getSize().getZExtValue(); 2899 // Simple heuristic so that we don't allocate a very large 2900 // initializer with many empty entries at the end. 2901 if (GotNumInits && NumElements > NumInits) 2902 NumElements = 0; 2903 } 2904 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2905 NumElements = VType->getNumElements(); 2906 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2907 RecordDecl *RDecl = RType->getDecl(); 2908 if (RDecl->isUnion()) 2909 NumElements = 1; 2910 else 2911 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2912 } 2913 2914 Result->reserveInits(SemaRef.Context, NumElements); 2915 2916 // Link this new initializer list into the structured initializer 2917 // lists. 2918 if (StructuredList) 2919 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2920 else { 2921 Result->setSyntacticForm(IList); 2922 SyntacticToSemantic[IList] = Result; 2923 } 2924 2925 return Result; 2926 } 2927 2928 /// Update the initializer at index @p StructuredIndex within the 2929 /// structured initializer list to the value @p expr. 2930 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2931 unsigned &StructuredIndex, 2932 Expr *expr) { 2933 // No structured initializer list to update 2934 if (!StructuredList) 2935 return; 2936 2937 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2938 StructuredIndex, expr)) { 2939 // This initializer overwrites a previous initializer. Warn. 2940 // We need to check on source range validity because the previous 2941 // initializer does not have to be an explicit initializer. 2942 // struct P { int a, b; }; 2943 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2944 // There is an overwrite taking place because the first braced initializer 2945 // list "{ .a = 2 }' already provides value for .p.b (which is zero). 2946 if (PrevInit->getSourceRange().isValid()) { 2947 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides) 2948 << expr->getSourceRange(); 2949 2950 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer) 2951 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange(); 2952 } 2953 } 2954 2955 ++StructuredIndex; 2956 } 2957 2958 /// Check that the given Index expression is a valid array designator 2959 /// value. This is essentially just a wrapper around 2960 /// VerifyIntegerConstantExpression that also checks for negative values 2961 /// and produces a reasonable diagnostic if there is a 2962 /// failure. Returns the index expression, possibly with an implicit cast 2963 /// added, on success. If everything went okay, Value will receive the 2964 /// value of the constant expression. 2965 static ExprResult 2966 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2967 SourceLocation Loc = Index->getBeginLoc(); 2968 2969 // Make sure this is an integer constant expression. 2970 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2971 if (Result.isInvalid()) 2972 return Result; 2973 2974 if (Value.isSigned() && Value.isNegative()) 2975 return S.Diag(Loc, diag::err_array_designator_negative) 2976 << Value.toString(10) << Index->getSourceRange(); 2977 2978 Value.setIsUnsigned(true); 2979 return Result; 2980 } 2981 2982 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2983 SourceLocation Loc, 2984 bool GNUSyntax, 2985 ExprResult Init) { 2986 typedef DesignatedInitExpr::Designator ASTDesignator; 2987 2988 bool Invalid = false; 2989 SmallVector<ASTDesignator, 32> Designators; 2990 SmallVector<Expr *, 32> InitExpressions; 2991 2992 // Build designators and check array designator expressions. 2993 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2994 const Designator &D = Desig.getDesignator(Idx); 2995 switch (D.getKind()) { 2996 case Designator::FieldDesignator: 2997 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2998 D.getFieldLoc())); 2999 break; 3000 3001 case Designator::ArrayDesignator: { 3002 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3003 llvm::APSInt IndexValue; 3004 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3005 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3006 if (!Index) 3007 Invalid = true; 3008 else { 3009 Designators.push_back(ASTDesignator(InitExpressions.size(), 3010 D.getLBracketLoc(), 3011 D.getRBracketLoc())); 3012 InitExpressions.push_back(Index); 3013 } 3014 break; 3015 } 3016 3017 case Designator::ArrayRangeDesignator: { 3018 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3019 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3020 llvm::APSInt StartValue; 3021 llvm::APSInt EndValue; 3022 bool StartDependent = StartIndex->isTypeDependent() || 3023 StartIndex->isValueDependent(); 3024 bool EndDependent = EndIndex->isTypeDependent() || 3025 EndIndex->isValueDependent(); 3026 if (!StartDependent) 3027 StartIndex = 3028 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3029 if (!EndDependent) 3030 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3031 3032 if (!StartIndex || !EndIndex) 3033 Invalid = true; 3034 else { 3035 // Make sure we're comparing values with the same bit width. 3036 if (StartDependent || EndDependent) { 3037 // Nothing to compute. 3038 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3039 EndValue = EndValue.extend(StartValue.getBitWidth()); 3040 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3041 StartValue = StartValue.extend(EndValue.getBitWidth()); 3042 3043 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3044 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3045 << StartValue.toString(10) << EndValue.toString(10) 3046 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3047 Invalid = true; 3048 } else { 3049 Designators.push_back(ASTDesignator(InitExpressions.size(), 3050 D.getLBracketLoc(), 3051 D.getEllipsisLoc(), 3052 D.getRBracketLoc())); 3053 InitExpressions.push_back(StartIndex); 3054 InitExpressions.push_back(EndIndex); 3055 } 3056 } 3057 break; 3058 } 3059 } 3060 } 3061 3062 if (Invalid || Init.isInvalid()) 3063 return ExprError(); 3064 3065 // Clear out the expressions within the designation. 3066 Desig.ClearExprs(*this); 3067 3068 DesignatedInitExpr *DIE 3069 = DesignatedInitExpr::Create(Context, 3070 Designators, 3071 InitExpressions, Loc, GNUSyntax, 3072 Init.getAs<Expr>()); 3073 3074 if (!getLangOpts().C99) 3075 Diag(DIE->getBeginLoc(), diag::ext_designated_init) 3076 << DIE->getSourceRange(); 3077 3078 return DIE; 3079 } 3080 3081 //===----------------------------------------------------------------------===// 3082 // Initialization entity 3083 //===----------------------------------------------------------------------===// 3084 3085 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3086 const InitializedEntity &Parent) 3087 : Parent(&Parent), Index(Index) 3088 { 3089 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3090 Kind = EK_ArrayElement; 3091 Type = AT->getElementType(); 3092 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3093 Kind = EK_VectorElement; 3094 Type = VT->getElementType(); 3095 } else { 3096 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3097 assert(CT && "Unexpected type"); 3098 Kind = EK_ComplexElement; 3099 Type = CT->getElementType(); 3100 } 3101 } 3102 3103 InitializedEntity 3104 InitializedEntity::InitializeBase(ASTContext &Context, 3105 const CXXBaseSpecifier *Base, 3106 bool IsInheritedVirtualBase, 3107 const InitializedEntity *Parent) { 3108 InitializedEntity Result; 3109 Result.Kind = EK_Base; 3110 Result.Parent = Parent; 3111 Result.Base = reinterpret_cast<uintptr_t>(Base); 3112 if (IsInheritedVirtualBase) 3113 Result.Base |= 0x01; 3114 3115 Result.Type = Base->getType(); 3116 return Result; 3117 } 3118 3119 DeclarationName InitializedEntity::getName() const { 3120 switch (getKind()) { 3121 case EK_Parameter: 3122 case EK_Parameter_CF_Audited: { 3123 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3124 return (D ? D->getDeclName() : DeclarationName()); 3125 } 3126 3127 case EK_Variable: 3128 case EK_Member: 3129 case EK_Binding: 3130 return Variable.VariableOrMember->getDeclName(); 3131 3132 case EK_LambdaCapture: 3133 return DeclarationName(Capture.VarID); 3134 3135 case EK_Result: 3136 case EK_StmtExprResult: 3137 case EK_Exception: 3138 case EK_New: 3139 case EK_Temporary: 3140 case EK_Base: 3141 case EK_Delegating: 3142 case EK_ArrayElement: 3143 case EK_VectorElement: 3144 case EK_ComplexElement: 3145 case EK_BlockElement: 3146 case EK_LambdaToBlockConversionBlockElement: 3147 case EK_CompoundLiteralInit: 3148 case EK_RelatedResult: 3149 return DeclarationName(); 3150 } 3151 3152 llvm_unreachable("Invalid EntityKind!"); 3153 } 3154 3155 ValueDecl *InitializedEntity::getDecl() const { 3156 switch (getKind()) { 3157 case EK_Variable: 3158 case EK_Member: 3159 case EK_Binding: 3160 return Variable.VariableOrMember; 3161 3162 case EK_Parameter: 3163 case EK_Parameter_CF_Audited: 3164 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3165 3166 case EK_Result: 3167 case EK_StmtExprResult: 3168 case EK_Exception: 3169 case EK_New: 3170 case EK_Temporary: 3171 case EK_Base: 3172 case EK_Delegating: 3173 case EK_ArrayElement: 3174 case EK_VectorElement: 3175 case EK_ComplexElement: 3176 case EK_BlockElement: 3177 case EK_LambdaToBlockConversionBlockElement: 3178 case EK_LambdaCapture: 3179 case EK_CompoundLiteralInit: 3180 case EK_RelatedResult: 3181 return nullptr; 3182 } 3183 3184 llvm_unreachable("Invalid EntityKind!"); 3185 } 3186 3187 bool InitializedEntity::allowsNRVO() const { 3188 switch (getKind()) { 3189 case EK_Result: 3190 case EK_Exception: 3191 return LocAndNRVO.NRVO; 3192 3193 case EK_StmtExprResult: 3194 case EK_Variable: 3195 case EK_Parameter: 3196 case EK_Parameter_CF_Audited: 3197 case EK_Member: 3198 case EK_Binding: 3199 case EK_New: 3200 case EK_Temporary: 3201 case EK_CompoundLiteralInit: 3202 case EK_Base: 3203 case EK_Delegating: 3204 case EK_ArrayElement: 3205 case EK_VectorElement: 3206 case EK_ComplexElement: 3207 case EK_BlockElement: 3208 case EK_LambdaToBlockConversionBlockElement: 3209 case EK_LambdaCapture: 3210 case EK_RelatedResult: 3211 break; 3212 } 3213 3214 return false; 3215 } 3216 3217 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3218 assert(getParent() != this); 3219 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3220 for (unsigned I = 0; I != Depth; ++I) 3221 OS << "`-"; 3222 3223 switch (getKind()) { 3224 case EK_Variable: OS << "Variable"; break; 3225 case EK_Parameter: OS << "Parameter"; break; 3226 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3227 break; 3228 case EK_Result: OS << "Result"; break; 3229 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3230 case EK_Exception: OS << "Exception"; break; 3231 case EK_Member: OS << "Member"; break; 3232 case EK_Binding: OS << "Binding"; break; 3233 case EK_New: OS << "New"; break; 3234 case EK_Temporary: OS << "Temporary"; break; 3235 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3236 case EK_RelatedResult: OS << "RelatedResult"; break; 3237 case EK_Base: OS << "Base"; break; 3238 case EK_Delegating: OS << "Delegating"; break; 3239 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3240 case EK_VectorElement: OS << "VectorElement " << Index; break; 3241 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3242 case EK_BlockElement: OS << "Block"; break; 3243 case EK_LambdaToBlockConversionBlockElement: 3244 OS << "Block (lambda)"; 3245 break; 3246 case EK_LambdaCapture: 3247 OS << "LambdaCapture "; 3248 OS << DeclarationName(Capture.VarID); 3249 break; 3250 } 3251 3252 if (auto *D = getDecl()) { 3253 OS << " "; 3254 D->printQualifiedName(OS); 3255 } 3256 3257 OS << " '" << getType().getAsString() << "'\n"; 3258 3259 return Depth + 1; 3260 } 3261 3262 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3263 dumpImpl(llvm::errs()); 3264 } 3265 3266 //===----------------------------------------------------------------------===// 3267 // Initialization sequence 3268 //===----------------------------------------------------------------------===// 3269 3270 void InitializationSequence::Step::Destroy() { 3271 switch (Kind) { 3272 case SK_ResolveAddressOfOverloadedFunction: 3273 case SK_CastDerivedToBaseRValue: 3274 case SK_CastDerivedToBaseXValue: 3275 case SK_CastDerivedToBaseLValue: 3276 case SK_BindReference: 3277 case SK_BindReferenceToTemporary: 3278 case SK_FinalCopy: 3279 case SK_ExtraneousCopyToTemporary: 3280 case SK_UserConversion: 3281 case SK_QualificationConversionRValue: 3282 case SK_QualificationConversionXValue: 3283 case SK_QualificationConversionLValue: 3284 case SK_AtomicConversion: 3285 case SK_LValueToRValue: 3286 case SK_ListInitialization: 3287 case SK_UnwrapInitList: 3288 case SK_RewrapInitList: 3289 case SK_ConstructorInitialization: 3290 case SK_ConstructorInitializationFromList: 3291 case SK_ZeroInitialization: 3292 case SK_CAssignment: 3293 case SK_StringInit: 3294 case SK_ObjCObjectConversion: 3295 case SK_ArrayLoopIndex: 3296 case SK_ArrayLoopInit: 3297 case SK_ArrayInit: 3298 case SK_GNUArrayInit: 3299 case SK_ParenthesizedArrayInit: 3300 case SK_PassByIndirectCopyRestore: 3301 case SK_PassByIndirectRestore: 3302 case SK_ProduceObjCObject: 3303 case SK_StdInitializerList: 3304 case SK_StdInitializerListConstructorCall: 3305 case SK_OCLSamplerInit: 3306 case SK_OCLZeroOpaqueType: 3307 break; 3308 3309 case SK_ConversionSequence: 3310 case SK_ConversionSequenceNoNarrowing: 3311 delete ICS; 3312 } 3313 } 3314 3315 bool InitializationSequence::isDirectReferenceBinding() const { 3316 // There can be some lvalue adjustments after the SK_BindReference step. 3317 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3318 if (I->Kind == SK_BindReference) 3319 return true; 3320 if (I->Kind == SK_BindReferenceToTemporary) 3321 return false; 3322 } 3323 return false; 3324 } 3325 3326 bool InitializationSequence::isAmbiguous() const { 3327 if (!Failed()) 3328 return false; 3329 3330 switch (getFailureKind()) { 3331 case FK_TooManyInitsForReference: 3332 case FK_ParenthesizedListInitForReference: 3333 case FK_ArrayNeedsInitList: 3334 case FK_ArrayNeedsInitListOrStringLiteral: 3335 case FK_ArrayNeedsInitListOrWideStringLiteral: 3336 case FK_NarrowStringIntoWideCharArray: 3337 case FK_WideStringIntoCharArray: 3338 case FK_IncompatWideStringIntoWideChar: 3339 case FK_PlainStringIntoUTF8Char: 3340 case FK_UTF8StringIntoPlainChar: 3341 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3342 case FK_NonConstLValueReferenceBindingToTemporary: 3343 case FK_NonConstLValueReferenceBindingToBitfield: 3344 case FK_NonConstLValueReferenceBindingToVectorElement: 3345 case FK_NonConstLValueReferenceBindingToUnrelated: 3346 case FK_RValueReferenceBindingToLValue: 3347 case FK_ReferenceAddrspaceMismatchTemporary: 3348 case FK_ReferenceInitDropsQualifiers: 3349 case FK_ReferenceInitFailed: 3350 case FK_ConversionFailed: 3351 case FK_ConversionFromPropertyFailed: 3352 case FK_TooManyInitsForScalar: 3353 case FK_ParenthesizedListInitForScalar: 3354 case FK_ReferenceBindingToInitList: 3355 case FK_InitListBadDestinationType: 3356 case FK_DefaultInitOfConst: 3357 case FK_Incomplete: 3358 case FK_ArrayTypeMismatch: 3359 case FK_NonConstantArrayInit: 3360 case FK_ListInitializationFailed: 3361 case FK_VariableLengthArrayHasInitializer: 3362 case FK_PlaceholderType: 3363 case FK_ExplicitConstructor: 3364 case FK_AddressOfUnaddressableFunction: 3365 return false; 3366 3367 case FK_ReferenceInitOverloadFailed: 3368 case FK_UserConversionOverloadFailed: 3369 case FK_ConstructorOverloadFailed: 3370 case FK_ListConstructorOverloadFailed: 3371 return FailedOverloadResult == OR_Ambiguous; 3372 } 3373 3374 llvm_unreachable("Invalid EntityKind!"); 3375 } 3376 3377 bool InitializationSequence::isConstructorInitialization() const { 3378 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3379 } 3380 3381 void 3382 InitializationSequence 3383 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3384 DeclAccessPair Found, 3385 bool HadMultipleCandidates) { 3386 Step S; 3387 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3388 S.Type = Function->getType(); 3389 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3390 S.Function.Function = Function; 3391 S.Function.FoundDecl = Found; 3392 Steps.push_back(S); 3393 } 3394 3395 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3396 ExprValueKind VK) { 3397 Step S; 3398 switch (VK) { 3399 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3400 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3401 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3402 } 3403 S.Type = BaseType; 3404 Steps.push_back(S); 3405 } 3406 3407 void InitializationSequence::AddReferenceBindingStep(QualType T, 3408 bool BindingTemporary) { 3409 Step S; 3410 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3411 S.Type = T; 3412 Steps.push_back(S); 3413 } 3414 3415 void InitializationSequence::AddFinalCopy(QualType T) { 3416 Step S; 3417 S.Kind = SK_FinalCopy; 3418 S.Type = T; 3419 Steps.push_back(S); 3420 } 3421 3422 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3423 Step S; 3424 S.Kind = SK_ExtraneousCopyToTemporary; 3425 S.Type = T; 3426 Steps.push_back(S); 3427 } 3428 3429 void 3430 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3431 DeclAccessPair FoundDecl, 3432 QualType T, 3433 bool HadMultipleCandidates) { 3434 Step S; 3435 S.Kind = SK_UserConversion; 3436 S.Type = T; 3437 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3438 S.Function.Function = Function; 3439 S.Function.FoundDecl = FoundDecl; 3440 Steps.push_back(S); 3441 } 3442 3443 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3444 ExprValueKind VK) { 3445 Step S; 3446 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3447 switch (VK) { 3448 case VK_RValue: 3449 S.Kind = SK_QualificationConversionRValue; 3450 break; 3451 case VK_XValue: 3452 S.Kind = SK_QualificationConversionXValue; 3453 break; 3454 case VK_LValue: 3455 S.Kind = SK_QualificationConversionLValue; 3456 break; 3457 } 3458 S.Type = Ty; 3459 Steps.push_back(S); 3460 } 3461 3462 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3463 Step S; 3464 S.Kind = SK_AtomicConversion; 3465 S.Type = Ty; 3466 Steps.push_back(S); 3467 } 3468 3469 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 3470 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 3471 3472 Step S; 3473 S.Kind = SK_LValueToRValue; 3474 S.Type = Ty; 3475 Steps.push_back(S); 3476 } 3477 3478 void InitializationSequence::AddConversionSequenceStep( 3479 const ImplicitConversionSequence &ICS, QualType T, 3480 bool TopLevelOfInitList) { 3481 Step S; 3482 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3483 : SK_ConversionSequence; 3484 S.Type = T; 3485 S.ICS = new ImplicitConversionSequence(ICS); 3486 Steps.push_back(S); 3487 } 3488 3489 void InitializationSequence::AddListInitializationStep(QualType T) { 3490 Step S; 3491 S.Kind = SK_ListInitialization; 3492 S.Type = T; 3493 Steps.push_back(S); 3494 } 3495 3496 void InitializationSequence::AddConstructorInitializationStep( 3497 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3498 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3499 Step S; 3500 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3501 : SK_ConstructorInitializationFromList 3502 : SK_ConstructorInitialization; 3503 S.Type = T; 3504 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3505 S.Function.Function = Constructor; 3506 S.Function.FoundDecl = FoundDecl; 3507 Steps.push_back(S); 3508 } 3509 3510 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3511 Step S; 3512 S.Kind = SK_ZeroInitialization; 3513 S.Type = T; 3514 Steps.push_back(S); 3515 } 3516 3517 void InitializationSequence::AddCAssignmentStep(QualType T) { 3518 Step S; 3519 S.Kind = SK_CAssignment; 3520 S.Type = T; 3521 Steps.push_back(S); 3522 } 3523 3524 void InitializationSequence::AddStringInitStep(QualType T) { 3525 Step S; 3526 S.Kind = SK_StringInit; 3527 S.Type = T; 3528 Steps.push_back(S); 3529 } 3530 3531 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3532 Step S; 3533 S.Kind = SK_ObjCObjectConversion; 3534 S.Type = T; 3535 Steps.push_back(S); 3536 } 3537 3538 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3539 Step S; 3540 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3541 S.Type = T; 3542 Steps.push_back(S); 3543 } 3544 3545 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3546 Step S; 3547 S.Kind = SK_ArrayLoopIndex; 3548 S.Type = EltT; 3549 Steps.insert(Steps.begin(), S); 3550 3551 S.Kind = SK_ArrayLoopInit; 3552 S.Type = T; 3553 Steps.push_back(S); 3554 } 3555 3556 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3557 Step S; 3558 S.Kind = SK_ParenthesizedArrayInit; 3559 S.Type = T; 3560 Steps.push_back(S); 3561 } 3562 3563 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3564 bool shouldCopy) { 3565 Step s; 3566 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3567 : SK_PassByIndirectRestore); 3568 s.Type = type; 3569 Steps.push_back(s); 3570 } 3571 3572 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3573 Step S; 3574 S.Kind = SK_ProduceObjCObject; 3575 S.Type = T; 3576 Steps.push_back(S); 3577 } 3578 3579 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3580 Step S; 3581 S.Kind = SK_StdInitializerList; 3582 S.Type = T; 3583 Steps.push_back(S); 3584 } 3585 3586 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3587 Step S; 3588 S.Kind = SK_OCLSamplerInit; 3589 S.Type = T; 3590 Steps.push_back(S); 3591 } 3592 3593 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3594 Step S; 3595 S.Kind = SK_OCLZeroOpaqueType; 3596 S.Type = T; 3597 Steps.push_back(S); 3598 } 3599 3600 void InitializationSequence::RewrapReferenceInitList(QualType T, 3601 InitListExpr *Syntactic) { 3602 assert(Syntactic->getNumInits() == 1 && 3603 "Can only rewrap trivial init lists."); 3604 Step S; 3605 S.Kind = SK_UnwrapInitList; 3606 S.Type = Syntactic->getInit(0)->getType(); 3607 Steps.insert(Steps.begin(), S); 3608 3609 S.Kind = SK_RewrapInitList; 3610 S.Type = T; 3611 S.WrappingSyntacticList = Syntactic; 3612 Steps.push_back(S); 3613 } 3614 3615 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3616 OverloadingResult Result) { 3617 setSequenceKind(FailedSequence); 3618 this->Failure = Failure; 3619 this->FailedOverloadResult = Result; 3620 } 3621 3622 //===----------------------------------------------------------------------===// 3623 // Attempt initialization 3624 //===----------------------------------------------------------------------===// 3625 3626 /// Tries to add a zero initializer. Returns true if that worked. 3627 static bool 3628 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3629 const InitializedEntity &Entity) { 3630 if (Entity.getKind() != InitializedEntity::EK_Variable) 3631 return false; 3632 3633 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3634 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3635 return false; 3636 3637 QualType VariableTy = VD->getType().getCanonicalType(); 3638 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3639 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3640 if (!Init.empty()) { 3641 Sequence.AddZeroInitializationStep(Entity.getType()); 3642 Sequence.SetZeroInitializationFixit(Init, Loc); 3643 return true; 3644 } 3645 return false; 3646 } 3647 3648 static void MaybeProduceObjCObject(Sema &S, 3649 InitializationSequence &Sequence, 3650 const InitializedEntity &Entity) { 3651 if (!S.getLangOpts().ObjCAutoRefCount) return; 3652 3653 /// When initializing a parameter, produce the value if it's marked 3654 /// __attribute__((ns_consumed)). 3655 if (Entity.isParameterKind()) { 3656 if (!Entity.isParameterConsumed()) 3657 return; 3658 3659 assert(Entity.getType()->isObjCRetainableType() && 3660 "consuming an object of unretainable type?"); 3661 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3662 3663 /// When initializing a return value, if the return type is a 3664 /// retainable type, then returns need to immediately retain the 3665 /// object. If an autorelease is required, it will be done at the 3666 /// last instant. 3667 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3668 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3669 if (!Entity.getType()->isObjCRetainableType()) 3670 return; 3671 3672 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3673 } 3674 } 3675 3676 static void TryListInitialization(Sema &S, 3677 const InitializedEntity &Entity, 3678 const InitializationKind &Kind, 3679 InitListExpr *InitList, 3680 InitializationSequence &Sequence, 3681 bool TreatUnavailableAsInvalid); 3682 3683 /// When initializing from init list via constructor, handle 3684 /// initialization of an object of type std::initializer_list<T>. 3685 /// 3686 /// \return true if we have handled initialization of an object of type 3687 /// std::initializer_list<T>, false otherwise. 3688 static bool TryInitializerListConstruction(Sema &S, 3689 InitListExpr *List, 3690 QualType DestType, 3691 InitializationSequence &Sequence, 3692 bool TreatUnavailableAsInvalid) { 3693 QualType E; 3694 if (!S.isStdInitializerList(DestType, &E)) 3695 return false; 3696 3697 if (!S.isCompleteType(List->getExprLoc(), E)) { 3698 Sequence.setIncompleteTypeFailure(E); 3699 return true; 3700 } 3701 3702 // Try initializing a temporary array from the init list. 3703 QualType ArrayType = S.Context.getConstantArrayType( 3704 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3705 List->getNumInits()), 3706 clang::ArrayType::Normal, 0); 3707 InitializedEntity HiddenArray = 3708 InitializedEntity::InitializeTemporary(ArrayType); 3709 InitializationKind Kind = InitializationKind::CreateDirectList( 3710 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3711 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3712 TreatUnavailableAsInvalid); 3713 if (Sequence) 3714 Sequence.AddStdInitializerListConstructionStep(DestType); 3715 return true; 3716 } 3717 3718 /// Determine if the constructor has the signature of a copy or move 3719 /// constructor for the type T of the class in which it was found. That is, 3720 /// determine if its first parameter is of type T or reference to (possibly 3721 /// cv-qualified) T. 3722 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3723 const ConstructorInfo &Info) { 3724 if (Info.Constructor->getNumParams() == 0) 3725 return false; 3726 3727 QualType ParmT = 3728 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3729 QualType ClassT = 3730 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3731 3732 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3733 } 3734 3735 static OverloadingResult 3736 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3737 MultiExprArg Args, 3738 OverloadCandidateSet &CandidateSet, 3739 QualType DestType, 3740 DeclContext::lookup_result Ctors, 3741 OverloadCandidateSet::iterator &Best, 3742 bool CopyInitializing, bool AllowExplicit, 3743 bool OnlyListConstructors, bool IsListInit, 3744 bool SecondStepOfCopyInit = false) { 3745 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3746 3747 for (NamedDecl *D : Ctors) { 3748 auto Info = getConstructorInfo(D); 3749 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3750 continue; 3751 3752 if (!AllowExplicit && Info.Constructor->isExplicit()) 3753 continue; 3754 3755 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3756 continue; 3757 3758 // C++11 [over.best.ics]p4: 3759 // ... and the constructor or user-defined conversion function is a 3760 // candidate by 3761 // - 13.3.1.3, when the argument is the temporary in the second step 3762 // of a class copy-initialization, or 3763 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3764 // - the second phase of 13.3.1.7 when the initializer list has exactly 3765 // one element that is itself an initializer list, and the target is 3766 // the first parameter of a constructor of class X, and the conversion 3767 // is to X or reference to (possibly cv-qualified X), 3768 // user-defined conversion sequences are not considered. 3769 bool SuppressUserConversions = 3770 SecondStepOfCopyInit || 3771 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3772 hasCopyOrMoveCtorParam(S.Context, Info)); 3773 3774 if (Info.ConstructorTmpl) 3775 S.AddTemplateOverloadCandidate( 3776 Info.ConstructorTmpl, Info.FoundDecl, 3777 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3778 /*PartialOverloading=*/false, AllowExplicit); 3779 else { 3780 // C++ [over.match.copy]p1: 3781 // - When initializing a temporary to be bound to the first parameter 3782 // of a constructor [for type T] that takes a reference to possibly 3783 // cv-qualified T as its first argument, called with a single 3784 // argument in the context of direct-initialization, explicit 3785 // conversion functions are also considered. 3786 // FIXME: What if a constructor template instantiates to such a signature? 3787 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3788 Args.size() == 1 && 3789 hasCopyOrMoveCtorParam(S.Context, Info); 3790 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3791 CandidateSet, SuppressUserConversions, 3792 /*PartialOverloading=*/false, AllowExplicit, 3793 AllowExplicitConv); 3794 } 3795 } 3796 3797 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3798 // 3799 // When initializing an object of class type T by constructor 3800 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3801 // from a single expression of class type U, conversion functions of 3802 // U that convert to the non-reference type cv T are candidates. 3803 // Explicit conversion functions are only candidates during 3804 // direct-initialization. 3805 // 3806 // Note: SecondStepOfCopyInit is only ever true in this case when 3807 // evaluating whether to produce a C++98 compatibility warning. 3808 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3809 !SecondStepOfCopyInit) { 3810 Expr *Initializer = Args[0]; 3811 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3812 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3813 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3814 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3815 NamedDecl *D = *I; 3816 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3817 D = D->getUnderlyingDecl(); 3818 3819 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3820 CXXConversionDecl *Conv; 3821 if (ConvTemplate) 3822 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3823 else 3824 Conv = cast<CXXConversionDecl>(D); 3825 3826 if (AllowExplicit || !Conv->isExplicit()) { 3827 if (ConvTemplate) 3828 S.AddTemplateConversionCandidate( 3829 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3830 CandidateSet, AllowExplicit, AllowExplicit, 3831 /*AllowResultConversion*/ false); 3832 else 3833 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3834 DestType, CandidateSet, AllowExplicit, 3835 AllowExplicit, 3836 /*AllowResultConversion*/ false); 3837 } 3838 } 3839 } 3840 } 3841 3842 // Perform overload resolution and return the result. 3843 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3844 } 3845 3846 /// Attempt initialization by constructor (C++ [dcl.init]), which 3847 /// enumerates the constructors of the initialized entity and performs overload 3848 /// resolution to select the best. 3849 /// \param DestType The destination class type. 3850 /// \param DestArrayType The destination type, which is either DestType or 3851 /// a (possibly multidimensional) array of DestType. 3852 /// \param IsListInit Is this list-initialization? 3853 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3854 /// list-initialization from {x} where x is the same 3855 /// type as the entity? 3856 static void TryConstructorInitialization(Sema &S, 3857 const InitializedEntity &Entity, 3858 const InitializationKind &Kind, 3859 MultiExprArg Args, QualType DestType, 3860 QualType DestArrayType, 3861 InitializationSequence &Sequence, 3862 bool IsListInit = false, 3863 bool IsInitListCopy = false) { 3864 assert(((!IsListInit && !IsInitListCopy) || 3865 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3866 "IsListInit/IsInitListCopy must come with a single initializer list " 3867 "argument."); 3868 InitListExpr *ILE = 3869 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3870 MultiExprArg UnwrappedArgs = 3871 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 3872 3873 // The type we're constructing needs to be complete. 3874 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3875 Sequence.setIncompleteTypeFailure(DestType); 3876 return; 3877 } 3878 3879 // C++17 [dcl.init]p17: 3880 // - If the initializer expression is a prvalue and the cv-unqualified 3881 // version of the source type is the same class as the class of the 3882 // destination, the initializer expression is used to initialize the 3883 // destination object. 3884 // Per DR (no number yet), this does not apply when initializing a base 3885 // class or delegating to another constructor from a mem-initializer. 3886 // ObjC++: Lambda captured by the block in the lambda to block conversion 3887 // should avoid copy elision. 3888 if (S.getLangOpts().CPlusPlus17 && 3889 Entity.getKind() != InitializedEntity::EK_Base && 3890 Entity.getKind() != InitializedEntity::EK_Delegating && 3891 Entity.getKind() != 3892 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 3893 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 3894 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 3895 // Convert qualifications if necessary. 3896 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3897 if (ILE) 3898 Sequence.RewrapReferenceInitList(DestType, ILE); 3899 return; 3900 } 3901 3902 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3903 assert(DestRecordType && "Constructor initialization requires record type"); 3904 CXXRecordDecl *DestRecordDecl 3905 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3906 3907 // Build the candidate set directly in the initialization sequence 3908 // structure, so that it will persist if we fail. 3909 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3910 3911 // Determine whether we are allowed to call explicit constructors or 3912 // explicit conversion operators. 3913 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 3914 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3915 3916 // - Otherwise, if T is a class type, constructors are considered. The 3917 // applicable constructors are enumerated, and the best one is chosen 3918 // through overload resolution. 3919 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 3920 3921 OverloadingResult Result = OR_No_Viable_Function; 3922 OverloadCandidateSet::iterator Best; 3923 bool AsInitializerList = false; 3924 3925 // C++11 [over.match.list]p1, per DR1467: 3926 // When objects of non-aggregate type T are list-initialized, such that 3927 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 3928 // according to the rules in this section, overload resolution selects 3929 // the constructor in two phases: 3930 // 3931 // - Initially, the candidate functions are the initializer-list 3932 // constructors of the class T and the argument list consists of the 3933 // initializer list as a single argument. 3934 if (IsListInit) { 3935 AsInitializerList = true; 3936 3937 // If the initializer list has no elements and T has a default constructor, 3938 // the first phase is omitted. 3939 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 3940 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3941 CandidateSet, DestType, Ctors, Best, 3942 CopyInitialization, AllowExplicit, 3943 /*OnlyListConstructor=*/true, 3944 IsListInit); 3945 } 3946 3947 // C++11 [over.match.list]p1: 3948 // - If no viable initializer-list constructor is found, overload resolution 3949 // is performed again, where the candidate functions are all the 3950 // constructors of the class T and the argument list consists of the 3951 // elements of the initializer list. 3952 if (Result == OR_No_Viable_Function) { 3953 AsInitializerList = false; 3954 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 3955 CandidateSet, DestType, Ctors, Best, 3956 CopyInitialization, AllowExplicit, 3957 /*OnlyListConstructors=*/false, 3958 IsListInit); 3959 } 3960 if (Result) { 3961 Sequence.SetOverloadFailure(IsListInit ? 3962 InitializationSequence::FK_ListConstructorOverloadFailed : 3963 InitializationSequence::FK_ConstructorOverloadFailed, 3964 Result); 3965 return; 3966 } 3967 3968 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3969 3970 // In C++17, ResolveConstructorOverload can select a conversion function 3971 // instead of a constructor. 3972 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 3973 // Add the user-defined conversion step that calls the conversion function. 3974 QualType ConvType = CD->getConversionType(); 3975 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 3976 "should not have selected this conversion function"); 3977 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 3978 HadMultipleCandidates); 3979 if (!S.Context.hasSameType(ConvType, DestType)) 3980 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3981 if (IsListInit) 3982 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 3983 return; 3984 } 3985 3986 // C++11 [dcl.init]p6: 3987 // If a program calls for the default initialization of an object 3988 // of a const-qualified type T, T shall be a class type with a 3989 // user-provided default constructor. 3990 // C++ core issue 253 proposal: 3991 // If the implicit default constructor initializes all subobjects, no 3992 // initializer should be required. 3993 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 3994 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3995 if (Kind.getKind() == InitializationKind::IK_Default && 3996 Entity.getType().isConstQualified()) { 3997 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 3998 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 3999 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4000 return; 4001 } 4002 } 4003 4004 // C++11 [over.match.list]p1: 4005 // In copy-list-initialization, if an explicit constructor is chosen, the 4006 // initializer is ill-formed. 4007 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4008 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4009 return; 4010 } 4011 4012 // Add the constructor initialization step. Any cv-qualification conversion is 4013 // subsumed by the initialization. 4014 Sequence.AddConstructorInitializationStep( 4015 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4016 IsListInit | IsInitListCopy, AsInitializerList); 4017 } 4018 4019 static bool 4020 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4021 Expr *Initializer, 4022 QualType &SourceType, 4023 QualType &UnqualifiedSourceType, 4024 QualType UnqualifiedTargetType, 4025 InitializationSequence &Sequence) { 4026 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4027 S.Context.OverloadTy) { 4028 DeclAccessPair Found; 4029 bool HadMultipleCandidates = false; 4030 if (FunctionDecl *Fn 4031 = S.ResolveAddressOfOverloadedFunction(Initializer, 4032 UnqualifiedTargetType, 4033 false, Found, 4034 &HadMultipleCandidates)) { 4035 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4036 HadMultipleCandidates); 4037 SourceType = Fn->getType(); 4038 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4039 } else if (!UnqualifiedTargetType->isRecordType()) { 4040 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4041 return true; 4042 } 4043 } 4044 return false; 4045 } 4046 4047 static void TryReferenceInitializationCore(Sema &S, 4048 const InitializedEntity &Entity, 4049 const InitializationKind &Kind, 4050 Expr *Initializer, 4051 QualType cv1T1, QualType T1, 4052 Qualifiers T1Quals, 4053 QualType cv2T2, QualType T2, 4054 Qualifiers T2Quals, 4055 InitializationSequence &Sequence); 4056 4057 static void TryValueInitialization(Sema &S, 4058 const InitializedEntity &Entity, 4059 const InitializationKind &Kind, 4060 InitializationSequence &Sequence, 4061 InitListExpr *InitList = nullptr); 4062 4063 /// Attempt list initialization of a reference. 4064 static void TryReferenceListInitialization(Sema &S, 4065 const InitializedEntity &Entity, 4066 const InitializationKind &Kind, 4067 InitListExpr *InitList, 4068 InitializationSequence &Sequence, 4069 bool TreatUnavailableAsInvalid) { 4070 // First, catch C++03 where this isn't possible. 4071 if (!S.getLangOpts().CPlusPlus11) { 4072 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4073 return; 4074 } 4075 // Can't reference initialize a compound literal. 4076 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4077 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4078 return; 4079 } 4080 4081 QualType DestType = Entity.getType(); 4082 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4083 Qualifiers T1Quals; 4084 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4085 4086 // Reference initialization via an initializer list works thus: 4087 // If the initializer list consists of a single element that is 4088 // reference-related to the referenced type, bind directly to that element 4089 // (possibly creating temporaries). 4090 // Otherwise, initialize a temporary with the initializer list and 4091 // bind to that. 4092 if (InitList->getNumInits() == 1) { 4093 Expr *Initializer = InitList->getInit(0); 4094 QualType cv2T2 = Initializer->getType(); 4095 Qualifiers T2Quals; 4096 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4097 4098 // If this fails, creating a temporary wouldn't work either. 4099 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4100 T1, Sequence)) 4101 return; 4102 4103 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4104 bool dummy1, dummy2, dummy3; 4105 Sema::ReferenceCompareResult RefRelationship 4106 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 4107 dummy2, dummy3); 4108 if (RefRelationship >= Sema::Ref_Related) { 4109 // Try to bind the reference here. 4110 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4111 T1Quals, cv2T2, T2, T2Quals, Sequence); 4112 if (Sequence) 4113 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4114 return; 4115 } 4116 4117 // Update the initializer if we've resolved an overloaded function. 4118 if (Sequence.step_begin() != Sequence.step_end()) 4119 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4120 } 4121 4122 // Not reference-related. Create a temporary and bind to that. 4123 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4124 4125 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4126 TreatUnavailableAsInvalid); 4127 if (Sequence) { 4128 if (DestType->isRValueReferenceType() || 4129 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4130 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4131 else 4132 Sequence.SetFailed( 4133 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4134 } 4135 } 4136 4137 /// Attempt list initialization (C++0x [dcl.init.list]) 4138 static void TryListInitialization(Sema &S, 4139 const InitializedEntity &Entity, 4140 const InitializationKind &Kind, 4141 InitListExpr *InitList, 4142 InitializationSequence &Sequence, 4143 bool TreatUnavailableAsInvalid) { 4144 QualType DestType = Entity.getType(); 4145 4146 // C++ doesn't allow scalar initialization with more than one argument. 4147 // But C99 complex numbers are scalars and it makes sense there. 4148 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4149 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4150 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4151 return; 4152 } 4153 if (DestType->isReferenceType()) { 4154 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4155 TreatUnavailableAsInvalid); 4156 return; 4157 } 4158 4159 if (DestType->isRecordType() && 4160 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4161 Sequence.setIncompleteTypeFailure(DestType); 4162 return; 4163 } 4164 4165 // C++11 [dcl.init.list]p3, per DR1467: 4166 // - If T is a class type and the initializer list has a single element of 4167 // type cv U, where U is T or a class derived from T, the object is 4168 // initialized from that element (by copy-initialization for 4169 // copy-list-initialization, or by direct-initialization for 4170 // direct-list-initialization). 4171 // - Otherwise, if T is a character array and the initializer list has a 4172 // single element that is an appropriately-typed string literal 4173 // (8.5.2 [dcl.init.string]), initialization is performed as described 4174 // in that section. 4175 // - Otherwise, if T is an aggregate, [...] (continue below). 4176 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4177 if (DestType->isRecordType()) { 4178 QualType InitType = InitList->getInit(0)->getType(); 4179 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4180 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4181 Expr *InitListAsExpr = InitList; 4182 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4183 DestType, Sequence, 4184 /*InitListSyntax*/false, 4185 /*IsInitListCopy*/true); 4186 return; 4187 } 4188 } 4189 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4190 Expr *SubInit[1] = {InitList->getInit(0)}; 4191 if (!isa<VariableArrayType>(DestAT) && 4192 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4193 InitializationKind SubKind = 4194 Kind.getKind() == InitializationKind::IK_DirectList 4195 ? InitializationKind::CreateDirect(Kind.getLocation(), 4196 InitList->getLBraceLoc(), 4197 InitList->getRBraceLoc()) 4198 : Kind; 4199 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4200 /*TopLevelOfInitList*/ true, 4201 TreatUnavailableAsInvalid); 4202 4203 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4204 // the element is not an appropriately-typed string literal, in which 4205 // case we should proceed as in C++11 (below). 4206 if (Sequence) { 4207 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4208 return; 4209 } 4210 } 4211 } 4212 } 4213 4214 // C++11 [dcl.init.list]p3: 4215 // - If T is an aggregate, aggregate initialization is performed. 4216 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4217 (S.getLangOpts().CPlusPlus11 && 4218 S.isStdInitializerList(DestType, nullptr))) { 4219 if (S.getLangOpts().CPlusPlus11) { 4220 // - Otherwise, if the initializer list has no elements and T is a 4221 // class type with a default constructor, the object is 4222 // value-initialized. 4223 if (InitList->getNumInits() == 0) { 4224 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4225 if (RD->hasDefaultConstructor()) { 4226 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4227 return; 4228 } 4229 } 4230 4231 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4232 // an initializer_list object constructed [...] 4233 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4234 TreatUnavailableAsInvalid)) 4235 return; 4236 4237 // - Otherwise, if T is a class type, constructors are considered. 4238 Expr *InitListAsExpr = InitList; 4239 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4240 DestType, Sequence, /*InitListSyntax*/true); 4241 } else 4242 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4243 return; 4244 } 4245 4246 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4247 InitList->getNumInits() == 1) { 4248 Expr *E = InitList->getInit(0); 4249 4250 // - Otherwise, if T is an enumeration with a fixed underlying type, 4251 // the initializer-list has a single element v, and the initialization 4252 // is direct-list-initialization, the object is initialized with the 4253 // value T(v); if a narrowing conversion is required to convert v to 4254 // the underlying type of T, the program is ill-formed. 4255 auto *ET = DestType->getAs<EnumType>(); 4256 if (S.getLangOpts().CPlusPlus17 && 4257 Kind.getKind() == InitializationKind::IK_DirectList && 4258 ET && ET->getDecl()->isFixed() && 4259 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4260 (E->getType()->isIntegralOrEnumerationType() || 4261 E->getType()->isFloatingType())) { 4262 // There are two ways that T(v) can work when T is an enumeration type. 4263 // If there is either an implicit conversion sequence from v to T or 4264 // a conversion function that can convert from v to T, then we use that. 4265 // Otherwise, if v is of integral, enumeration, or floating-point type, 4266 // it is converted to the enumeration type via its underlying type. 4267 // There is no overlap possible between these two cases (except when the 4268 // source value is already of the destination type), and the first 4269 // case is handled by the general case for single-element lists below. 4270 ImplicitConversionSequence ICS; 4271 ICS.setStandard(); 4272 ICS.Standard.setAsIdentityConversion(); 4273 if (!E->isRValue()) 4274 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4275 // If E is of a floating-point type, then the conversion is ill-formed 4276 // due to narrowing, but go through the motions in order to produce the 4277 // right diagnostic. 4278 ICS.Standard.Second = E->getType()->isFloatingType() 4279 ? ICK_Floating_Integral 4280 : ICK_Integral_Conversion; 4281 ICS.Standard.setFromType(E->getType()); 4282 ICS.Standard.setToType(0, E->getType()); 4283 ICS.Standard.setToType(1, DestType); 4284 ICS.Standard.setToType(2, DestType); 4285 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4286 /*TopLevelOfInitList*/true); 4287 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4288 return; 4289 } 4290 4291 // - Otherwise, if the initializer list has a single element of type E 4292 // [...references are handled above...], the object or reference is 4293 // initialized from that element (by copy-initialization for 4294 // copy-list-initialization, or by direct-initialization for 4295 // direct-list-initialization); if a narrowing conversion is required 4296 // to convert the element to T, the program is ill-formed. 4297 // 4298 // Per core-24034, this is direct-initialization if we were performing 4299 // direct-list-initialization and copy-initialization otherwise. 4300 // We can't use InitListChecker for this, because it always performs 4301 // copy-initialization. This only matters if we might use an 'explicit' 4302 // conversion operator, so we only need to handle the cases where the source 4303 // is of record type. 4304 if (InitList->getInit(0)->getType()->isRecordType()) { 4305 InitializationKind SubKind = 4306 Kind.getKind() == InitializationKind::IK_DirectList 4307 ? InitializationKind::CreateDirect(Kind.getLocation(), 4308 InitList->getLBraceLoc(), 4309 InitList->getRBraceLoc()) 4310 : Kind; 4311 Expr *SubInit[1] = { InitList->getInit(0) }; 4312 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4313 /*TopLevelOfInitList*/true, 4314 TreatUnavailableAsInvalid); 4315 if (Sequence) 4316 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4317 return; 4318 } 4319 } 4320 4321 InitListChecker CheckInitList(S, Entity, InitList, 4322 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4323 if (CheckInitList.HadError()) { 4324 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4325 return; 4326 } 4327 4328 // Add the list initialization step with the built init list. 4329 Sequence.AddListInitializationStep(DestType); 4330 } 4331 4332 /// Try a reference initialization that involves calling a conversion 4333 /// function. 4334 static OverloadingResult TryRefInitWithConversionFunction( 4335 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4336 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4337 InitializationSequence &Sequence) { 4338 QualType DestType = Entity.getType(); 4339 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4340 QualType T1 = cv1T1.getUnqualifiedType(); 4341 QualType cv2T2 = Initializer->getType(); 4342 QualType T2 = cv2T2.getUnqualifiedType(); 4343 4344 bool DerivedToBase; 4345 bool ObjCConversion; 4346 bool ObjCLifetimeConversion; 4347 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, 4348 DerivedToBase, ObjCConversion, 4349 ObjCLifetimeConversion) && 4350 "Must have incompatible references when binding via conversion"); 4351 (void)DerivedToBase; 4352 (void)ObjCConversion; 4353 (void)ObjCLifetimeConversion; 4354 4355 // Build the candidate set directly in the initialization sequence 4356 // structure, so that it will persist if we fail. 4357 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4358 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4359 4360 // Determine whether we are allowed to call explicit conversion operators. 4361 // Note that none of [over.match.copy], [over.match.conv], nor 4362 // [over.match.ref] permit an explicit constructor to be chosen when 4363 // initializing a reference, not even for direct-initialization. 4364 bool AllowExplicitCtors = false; 4365 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4366 4367 const RecordType *T1RecordType = nullptr; 4368 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4369 S.isCompleteType(Kind.getLocation(), T1)) { 4370 // The type we're converting to is a class type. Enumerate its constructors 4371 // to see if there is a suitable conversion. 4372 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4373 4374 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4375 auto Info = getConstructorInfo(D); 4376 if (!Info.Constructor) 4377 continue; 4378 4379 if (!Info.Constructor->isInvalidDecl() && 4380 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4381 if (Info.ConstructorTmpl) 4382 S.AddTemplateOverloadCandidate( 4383 Info.ConstructorTmpl, Info.FoundDecl, 4384 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4385 /*SuppressUserConversions=*/true, 4386 /*PartialOverloading*/ false, AllowExplicitCtors); 4387 else 4388 S.AddOverloadCandidate( 4389 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4390 /*SuppressUserConversions=*/true, 4391 /*PartialOverloading*/ false, AllowExplicitCtors); 4392 } 4393 } 4394 } 4395 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4396 return OR_No_Viable_Function; 4397 4398 const RecordType *T2RecordType = nullptr; 4399 if ((T2RecordType = T2->getAs<RecordType>()) && 4400 S.isCompleteType(Kind.getLocation(), T2)) { 4401 // The type we're converting from is a class type, enumerate its conversion 4402 // functions. 4403 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4404 4405 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4406 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4407 NamedDecl *D = *I; 4408 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4409 if (isa<UsingShadowDecl>(D)) 4410 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4411 4412 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4413 CXXConversionDecl *Conv; 4414 if (ConvTemplate) 4415 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4416 else 4417 Conv = cast<CXXConversionDecl>(D); 4418 4419 // If the conversion function doesn't return a reference type, 4420 // it can't be considered for this conversion unless we're allowed to 4421 // consider rvalues. 4422 // FIXME: Do we need to make sure that we only consider conversion 4423 // candidates with reference-compatible results? That might be needed to 4424 // break recursion. 4425 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4426 (AllowRValues || 4427 Conv->getConversionType()->isLValueReferenceType())) { 4428 if (ConvTemplate) 4429 S.AddTemplateConversionCandidate( 4430 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4431 CandidateSet, 4432 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4433 else 4434 S.AddConversionCandidate( 4435 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4436 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4437 } 4438 } 4439 } 4440 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4441 return OR_No_Viable_Function; 4442 4443 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4444 4445 // Perform overload resolution. If it fails, return the failed result. 4446 OverloadCandidateSet::iterator Best; 4447 if (OverloadingResult Result 4448 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4449 return Result; 4450 4451 FunctionDecl *Function = Best->Function; 4452 // This is the overload that will be used for this initialization step if we 4453 // use this initialization. Mark it as referenced. 4454 Function->setReferenced(); 4455 4456 // Compute the returned type and value kind of the conversion. 4457 QualType cv3T3; 4458 if (isa<CXXConversionDecl>(Function)) 4459 cv3T3 = Function->getReturnType(); 4460 else 4461 cv3T3 = T1; 4462 4463 ExprValueKind VK = VK_RValue; 4464 if (cv3T3->isLValueReferenceType()) 4465 VK = VK_LValue; 4466 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4467 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4468 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4469 4470 // Add the user-defined conversion step. 4471 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4472 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4473 HadMultipleCandidates); 4474 4475 // Determine whether we'll need to perform derived-to-base adjustments or 4476 // other conversions. 4477 bool NewDerivedToBase = false; 4478 bool NewObjCConversion = false; 4479 bool NewObjCLifetimeConversion = false; 4480 Sema::ReferenceCompareResult NewRefRelationship 4481 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, 4482 NewDerivedToBase, NewObjCConversion, 4483 NewObjCLifetimeConversion); 4484 4485 // Add the final conversion sequence, if necessary. 4486 if (NewRefRelationship == Sema::Ref_Incompatible) { 4487 assert(!isa<CXXConstructorDecl>(Function) && 4488 "should not have conversion after constructor"); 4489 4490 ImplicitConversionSequence ICS; 4491 ICS.setStandard(); 4492 ICS.Standard = Best->FinalConversion; 4493 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4494 4495 // Every implicit conversion results in a prvalue, except for a glvalue 4496 // derived-to-base conversion, which we handle below. 4497 cv3T3 = ICS.Standard.getToType(2); 4498 VK = VK_RValue; 4499 } 4500 4501 // If the converted initializer is a prvalue, its type T4 is adjusted to 4502 // type "cv1 T4" and the temporary materialization conversion is applied. 4503 // 4504 // We adjust the cv-qualifications to match the reference regardless of 4505 // whether we have a prvalue so that the AST records the change. In this 4506 // case, T4 is "cv3 T3". 4507 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4508 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4509 Sequence.AddQualificationConversionStep(cv1T4, VK); 4510 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4511 VK = IsLValueRef ? VK_LValue : VK_XValue; 4512 4513 if (NewDerivedToBase) 4514 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4515 else if (NewObjCConversion) 4516 Sequence.AddObjCObjectConversionStep(cv1T1); 4517 4518 return OR_Success; 4519 } 4520 4521 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4522 const InitializedEntity &Entity, 4523 Expr *CurInitExpr); 4524 4525 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4526 static void TryReferenceInitialization(Sema &S, 4527 const InitializedEntity &Entity, 4528 const InitializationKind &Kind, 4529 Expr *Initializer, 4530 InitializationSequence &Sequence) { 4531 QualType DestType = Entity.getType(); 4532 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4533 Qualifiers T1Quals; 4534 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4535 QualType cv2T2 = Initializer->getType(); 4536 Qualifiers T2Quals; 4537 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4538 4539 // If the initializer is the address of an overloaded function, try 4540 // to resolve the overloaded function. If all goes well, T2 is the 4541 // type of the resulting function. 4542 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4543 T1, Sequence)) 4544 return; 4545 4546 // Delegate everything else to a subfunction. 4547 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4548 T1Quals, cv2T2, T2, T2Quals, Sequence); 4549 } 4550 4551 /// Determine whether an expression is a non-referenceable glvalue (one to 4552 /// which a reference can never bind). Attempting to bind a reference to 4553 /// such a glvalue will always create a temporary. 4554 static bool isNonReferenceableGLValue(Expr *E) { 4555 return E->refersToBitField() || E->refersToVectorElement(); 4556 } 4557 4558 /// Reference initialization without resolving overloaded functions. 4559 static void TryReferenceInitializationCore(Sema &S, 4560 const InitializedEntity &Entity, 4561 const InitializationKind &Kind, 4562 Expr *Initializer, 4563 QualType cv1T1, QualType T1, 4564 Qualifiers T1Quals, 4565 QualType cv2T2, QualType T2, 4566 Qualifiers T2Quals, 4567 InitializationSequence &Sequence) { 4568 QualType DestType = Entity.getType(); 4569 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4570 // Compute some basic properties of the types and the initializer. 4571 bool isLValueRef = DestType->isLValueReferenceType(); 4572 bool isRValueRef = !isLValueRef; 4573 bool DerivedToBase = false; 4574 bool ObjCConversion = false; 4575 bool ObjCLifetimeConversion = false; 4576 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4577 Sema::ReferenceCompareResult RefRelationship 4578 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 4579 ObjCConversion, ObjCLifetimeConversion); 4580 4581 // C++0x [dcl.init.ref]p5: 4582 // A reference to type "cv1 T1" is initialized by an expression of type 4583 // "cv2 T2" as follows: 4584 // 4585 // - If the reference is an lvalue reference and the initializer 4586 // expression 4587 // Note the analogous bullet points for rvalue refs to functions. Because 4588 // there are no function rvalues in C++, rvalue refs to functions are treated 4589 // like lvalue refs. 4590 OverloadingResult ConvOvlResult = OR_Success; 4591 bool T1Function = T1->isFunctionType(); 4592 if (isLValueRef || T1Function) { 4593 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4594 (RefRelationship == Sema::Ref_Compatible || 4595 (Kind.isCStyleOrFunctionalCast() && 4596 RefRelationship == Sema::Ref_Related))) { 4597 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4598 // reference-compatible with "cv2 T2," or 4599 if (T1Quals != T2Quals) 4600 // Convert to cv1 T2. This should only add qualifiers unless this is a 4601 // c-style cast. The removal of qualifiers in that case notionally 4602 // happens after the reference binding, but that doesn't matter. 4603 Sequence.AddQualificationConversionStep( 4604 S.Context.getQualifiedType(T2, T1Quals), 4605 Initializer->getValueKind()); 4606 if (DerivedToBase) 4607 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4608 else if (ObjCConversion) 4609 Sequence.AddObjCObjectConversionStep(cv1T1); 4610 4611 // We only create a temporary here when binding a reference to a 4612 // bit-field or vector element. Those cases are't supposed to be 4613 // handled by this bullet, but the outcome is the same either way. 4614 Sequence.AddReferenceBindingStep(cv1T1, false); 4615 return; 4616 } 4617 4618 // - has a class type (i.e., T2 is a class type), where T1 is not 4619 // reference-related to T2, and can be implicitly converted to an 4620 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4621 // with "cv3 T3" (this conversion is selected by enumerating the 4622 // applicable conversion functions (13.3.1.6) and choosing the best 4623 // one through overload resolution (13.3)), 4624 // If we have an rvalue ref to function type here, the rhs must be 4625 // an rvalue. DR1287 removed the "implicitly" here. 4626 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4627 (isLValueRef || InitCategory.isRValue())) { 4628 ConvOvlResult = TryRefInitWithConversionFunction( 4629 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4630 /*IsLValueRef*/ isLValueRef, Sequence); 4631 if (ConvOvlResult == OR_Success) 4632 return; 4633 if (ConvOvlResult != OR_No_Viable_Function) 4634 Sequence.SetOverloadFailure( 4635 InitializationSequence::FK_ReferenceInitOverloadFailed, 4636 ConvOvlResult); 4637 } 4638 } 4639 4640 // - Otherwise, the reference shall be an lvalue reference to a 4641 // non-volatile const type (i.e., cv1 shall be const), or the reference 4642 // shall be an rvalue reference. 4643 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4644 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4645 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4646 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4647 Sequence.SetOverloadFailure( 4648 InitializationSequence::FK_ReferenceInitOverloadFailed, 4649 ConvOvlResult); 4650 else if (!InitCategory.isLValue()) 4651 Sequence.SetFailed( 4652 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4653 else { 4654 InitializationSequence::FailureKind FK; 4655 switch (RefRelationship) { 4656 case Sema::Ref_Compatible: 4657 if (Initializer->refersToBitField()) 4658 FK = InitializationSequence:: 4659 FK_NonConstLValueReferenceBindingToBitfield; 4660 else if (Initializer->refersToVectorElement()) 4661 FK = InitializationSequence:: 4662 FK_NonConstLValueReferenceBindingToVectorElement; 4663 else 4664 llvm_unreachable("unexpected kind of compatible initializer"); 4665 break; 4666 case Sema::Ref_Related: 4667 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4668 break; 4669 case Sema::Ref_Incompatible: 4670 FK = InitializationSequence:: 4671 FK_NonConstLValueReferenceBindingToUnrelated; 4672 break; 4673 } 4674 Sequence.SetFailed(FK); 4675 } 4676 return; 4677 } 4678 4679 // - If the initializer expression 4680 // - is an 4681 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4682 // [1z] rvalue (but not a bit-field) or 4683 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4684 // 4685 // Note: functions are handled above and below rather than here... 4686 if (!T1Function && 4687 (RefRelationship == Sema::Ref_Compatible || 4688 (Kind.isCStyleOrFunctionalCast() && 4689 RefRelationship == Sema::Ref_Related)) && 4690 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4691 (InitCategory.isPRValue() && 4692 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4693 T2->isArrayType())))) { 4694 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4695 if (InitCategory.isPRValue() && T2->isRecordType()) { 4696 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4697 // compiler the freedom to perform a copy here or bind to the 4698 // object, while C++0x requires that we bind directly to the 4699 // object. Hence, we always bind to the object without making an 4700 // extra copy. However, in C++03 requires that we check for the 4701 // presence of a suitable copy constructor: 4702 // 4703 // The constructor that would be used to make the copy shall 4704 // be callable whether or not the copy is actually done. 4705 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4706 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4707 else if (S.getLangOpts().CPlusPlus11) 4708 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4709 } 4710 4711 // C++1z [dcl.init.ref]/5.2.1.2: 4712 // If the converted initializer is a prvalue, its type T4 is adjusted 4713 // to type "cv1 T4" and the temporary materialization conversion is 4714 // applied. 4715 // Postpone address space conversions to after the temporary materialization 4716 // conversion to allow creating temporaries in the alloca address space. 4717 auto T1QualsIgnoreAS = T1Quals; 4718 auto T2QualsIgnoreAS = T2Quals; 4719 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4720 T1QualsIgnoreAS.removeAddressSpace(); 4721 T2QualsIgnoreAS.removeAddressSpace(); 4722 } 4723 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4724 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4725 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4726 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4727 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4728 // Add addr space conversion if required. 4729 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4730 auto T4Quals = cv1T4.getQualifiers(); 4731 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4732 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4733 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4734 } 4735 4736 // In any case, the reference is bound to the resulting glvalue (or to 4737 // an appropriate base class subobject). 4738 if (DerivedToBase) 4739 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4740 else if (ObjCConversion) 4741 Sequence.AddObjCObjectConversionStep(cv1T1); 4742 return; 4743 } 4744 4745 // - has a class type (i.e., T2 is a class type), where T1 is not 4746 // reference-related to T2, and can be implicitly converted to an 4747 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4748 // where "cv1 T1" is reference-compatible with "cv3 T3", 4749 // 4750 // DR1287 removes the "implicitly" here. 4751 if (T2->isRecordType()) { 4752 if (RefRelationship == Sema::Ref_Incompatible) { 4753 ConvOvlResult = TryRefInitWithConversionFunction( 4754 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4755 /*IsLValueRef*/ isLValueRef, Sequence); 4756 if (ConvOvlResult) 4757 Sequence.SetOverloadFailure( 4758 InitializationSequence::FK_ReferenceInitOverloadFailed, 4759 ConvOvlResult); 4760 4761 return; 4762 } 4763 4764 if (RefRelationship == Sema::Ref_Compatible && 4765 isRValueRef && InitCategory.isLValue()) { 4766 Sequence.SetFailed( 4767 InitializationSequence::FK_RValueReferenceBindingToLValue); 4768 return; 4769 } 4770 4771 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4772 return; 4773 } 4774 4775 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4776 // from the initializer expression using the rules for a non-reference 4777 // copy-initialization (8.5). The reference is then bound to the 4778 // temporary. [...] 4779 4780 // Ignore address space of reference type at this point and perform address 4781 // space conversion after the reference binding step. 4782 QualType cv1T1IgnoreAS = 4783 T1Quals.hasAddressSpace() 4784 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4785 : cv1T1; 4786 4787 InitializedEntity TempEntity = 4788 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4789 4790 // FIXME: Why do we use an implicit conversion here rather than trying 4791 // copy-initialization? 4792 ImplicitConversionSequence ICS 4793 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4794 /*SuppressUserConversions=*/false, 4795 /*AllowExplicit=*/false, 4796 /*FIXME:InOverloadResolution=*/false, 4797 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4798 /*AllowObjCWritebackConversion=*/false); 4799 4800 if (ICS.isBad()) { 4801 // FIXME: Use the conversion function set stored in ICS to turn 4802 // this into an overloading ambiguity diagnostic. However, we need 4803 // to keep that set as an OverloadCandidateSet rather than as some 4804 // other kind of set. 4805 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4806 Sequence.SetOverloadFailure( 4807 InitializationSequence::FK_ReferenceInitOverloadFailed, 4808 ConvOvlResult); 4809 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4810 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4811 else 4812 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4813 return; 4814 } else { 4815 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4816 } 4817 4818 // [...] If T1 is reference-related to T2, cv1 must be the 4819 // same cv-qualification as, or greater cv-qualification 4820 // than, cv2; otherwise, the program is ill-formed. 4821 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4822 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4823 if ((RefRelationship == Sema::Ref_Related && 4824 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4825 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4826 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4827 return; 4828 } 4829 4830 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4831 // reference, the initializer expression shall not be an lvalue. 4832 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4833 InitCategory.isLValue()) { 4834 Sequence.SetFailed( 4835 InitializationSequence::FK_RValueReferenceBindingToLValue); 4836 return; 4837 } 4838 4839 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true); 4840 4841 if (T1Quals.hasAddressSpace()) { 4842 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4843 LangAS::Default)) { 4844 Sequence.SetFailed( 4845 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4846 return; 4847 } 4848 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4849 : VK_XValue); 4850 } 4851 } 4852 4853 /// Attempt character array initialization from a string literal 4854 /// (C++ [dcl.init.string], C99 6.7.8). 4855 static void TryStringLiteralInitialization(Sema &S, 4856 const InitializedEntity &Entity, 4857 const InitializationKind &Kind, 4858 Expr *Initializer, 4859 InitializationSequence &Sequence) { 4860 Sequence.AddStringInitStep(Entity.getType()); 4861 } 4862 4863 /// Attempt value initialization (C++ [dcl.init]p7). 4864 static void TryValueInitialization(Sema &S, 4865 const InitializedEntity &Entity, 4866 const InitializationKind &Kind, 4867 InitializationSequence &Sequence, 4868 InitListExpr *InitList) { 4869 assert((!InitList || InitList->getNumInits() == 0) && 4870 "Shouldn't use value-init for non-empty init lists"); 4871 4872 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4873 // 4874 // To value-initialize an object of type T means: 4875 QualType T = Entity.getType(); 4876 4877 // -- if T is an array type, then each element is value-initialized; 4878 T = S.Context.getBaseElementType(T); 4879 4880 if (const RecordType *RT = T->getAs<RecordType>()) { 4881 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4882 bool NeedZeroInitialization = true; 4883 // C++98: 4884 // -- if T is a class type (clause 9) with a user-declared constructor 4885 // (12.1), then the default constructor for T is called (and the 4886 // initialization is ill-formed if T has no accessible default 4887 // constructor); 4888 // C++11: 4889 // -- if T is a class type (clause 9) with either no default constructor 4890 // (12.1 [class.ctor]) or a default constructor that is user-provided 4891 // or deleted, then the object is default-initialized; 4892 // 4893 // Note that the C++11 rule is the same as the C++98 rule if there are no 4894 // defaulted or deleted constructors, so we just use it unconditionally. 4895 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4896 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4897 NeedZeroInitialization = false; 4898 4899 // -- if T is a (possibly cv-qualified) non-union class type without a 4900 // user-provided or deleted default constructor, then the object is 4901 // zero-initialized and, if T has a non-trivial default constructor, 4902 // default-initialized; 4903 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4904 // constructor' part was removed by DR1507. 4905 if (NeedZeroInitialization) 4906 Sequence.AddZeroInitializationStep(Entity.getType()); 4907 4908 // C++03: 4909 // -- if T is a non-union class type without a user-declared constructor, 4910 // then every non-static data member and base class component of T is 4911 // value-initialized; 4912 // [...] A program that calls for [...] value-initialization of an 4913 // entity of reference type is ill-formed. 4914 // 4915 // C++11 doesn't need this handling, because value-initialization does not 4916 // occur recursively there, and the implicit default constructor is 4917 // defined as deleted in the problematic cases. 4918 if (!S.getLangOpts().CPlusPlus11 && 4919 ClassDecl->hasUninitializedReferenceMember()) { 4920 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4921 return; 4922 } 4923 4924 // If this is list-value-initialization, pass the empty init list on when 4925 // building the constructor call. This affects the semantics of a few 4926 // things (such as whether an explicit default constructor can be called). 4927 Expr *InitListAsExpr = InitList; 4928 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4929 bool InitListSyntax = InitList; 4930 4931 // FIXME: Instead of creating a CXXConstructExpr of array type here, 4932 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 4933 return TryConstructorInitialization( 4934 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 4935 } 4936 } 4937 4938 Sequence.AddZeroInitializationStep(Entity.getType()); 4939 } 4940 4941 /// Attempt default initialization (C++ [dcl.init]p6). 4942 static void TryDefaultInitialization(Sema &S, 4943 const InitializedEntity &Entity, 4944 const InitializationKind &Kind, 4945 InitializationSequence &Sequence) { 4946 assert(Kind.getKind() == InitializationKind::IK_Default); 4947 4948 // C++ [dcl.init]p6: 4949 // To default-initialize an object of type T means: 4950 // - if T is an array type, each element is default-initialized; 4951 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4952 4953 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4954 // constructor for T is called (and the initialization is ill-formed if 4955 // T has no accessible default constructor); 4956 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4957 TryConstructorInitialization(S, Entity, Kind, None, DestType, 4958 Entity.getType(), Sequence); 4959 return; 4960 } 4961 4962 // - otherwise, no initialization is performed. 4963 4964 // If a program calls for the default initialization of an object of 4965 // a const-qualified type T, T shall be a class type with a user-provided 4966 // default constructor. 4967 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4968 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4969 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4970 return; 4971 } 4972 4973 // If the destination type has a lifetime property, zero-initialize it. 4974 if (DestType.getQualifiers().hasObjCLifetime()) { 4975 Sequence.AddZeroInitializationStep(Entity.getType()); 4976 return; 4977 } 4978 } 4979 4980 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 4981 /// which enumerates all conversion functions and performs overload resolution 4982 /// to select the best. 4983 static void TryUserDefinedConversion(Sema &S, 4984 QualType DestType, 4985 const InitializationKind &Kind, 4986 Expr *Initializer, 4987 InitializationSequence &Sequence, 4988 bool TopLevelOfInitList) { 4989 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4990 QualType SourceType = Initializer->getType(); 4991 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4992 "Must have a class type to perform a user-defined conversion"); 4993 4994 // Build the candidate set directly in the initialization sequence 4995 // structure, so that it will persist if we fail. 4996 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4997 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4998 4999 // Determine whether we are allowed to call explicit constructors or 5000 // explicit conversion operators. 5001 bool AllowExplicit = Kind.AllowExplicit(); 5002 5003 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5004 // The type we're converting to is a class type. Enumerate its constructors 5005 // to see if there is a suitable conversion. 5006 CXXRecordDecl *DestRecordDecl 5007 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5008 5009 // Try to complete the type we're converting to. 5010 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5011 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5012 auto Info = getConstructorInfo(D); 5013 if (!Info.Constructor) 5014 continue; 5015 5016 if (!Info.Constructor->isInvalidDecl() && 5017 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 5018 if (Info.ConstructorTmpl) 5019 S.AddTemplateOverloadCandidate( 5020 Info.ConstructorTmpl, Info.FoundDecl, 5021 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5022 /*SuppressUserConversions=*/true, 5023 /*PartialOverloading*/ false, AllowExplicit); 5024 else 5025 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5026 Initializer, CandidateSet, 5027 /*SuppressUserConversions=*/true, 5028 /*PartialOverloading*/ false, AllowExplicit); 5029 } 5030 } 5031 } 5032 } 5033 5034 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5035 5036 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5037 // The type we're converting from is a class type, enumerate its conversion 5038 // functions. 5039 5040 // We can only enumerate the conversion functions for a complete type; if 5041 // the type isn't complete, simply skip this step. 5042 if (S.isCompleteType(DeclLoc, SourceType)) { 5043 CXXRecordDecl *SourceRecordDecl 5044 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5045 5046 const auto &Conversions = 5047 SourceRecordDecl->getVisibleConversionFunctions(); 5048 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5049 NamedDecl *D = *I; 5050 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5051 if (isa<UsingShadowDecl>(D)) 5052 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5053 5054 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5055 CXXConversionDecl *Conv; 5056 if (ConvTemplate) 5057 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5058 else 5059 Conv = cast<CXXConversionDecl>(D); 5060 5061 if (AllowExplicit || !Conv->isExplicit()) { 5062 if (ConvTemplate) 5063 S.AddTemplateConversionCandidate( 5064 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5065 CandidateSet, AllowExplicit, AllowExplicit); 5066 else 5067 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5068 DestType, CandidateSet, AllowExplicit, 5069 AllowExplicit); 5070 } 5071 } 5072 } 5073 } 5074 5075 // Perform overload resolution. If it fails, return the failed result. 5076 OverloadCandidateSet::iterator Best; 5077 if (OverloadingResult Result 5078 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5079 Sequence.SetOverloadFailure( 5080 InitializationSequence::FK_UserConversionOverloadFailed, 5081 Result); 5082 return; 5083 } 5084 5085 FunctionDecl *Function = Best->Function; 5086 Function->setReferenced(); 5087 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5088 5089 if (isa<CXXConstructorDecl>(Function)) { 5090 // Add the user-defined conversion step. Any cv-qualification conversion is 5091 // subsumed by the initialization. Per DR5, the created temporary is of the 5092 // cv-unqualified type of the destination. 5093 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5094 DestType.getUnqualifiedType(), 5095 HadMultipleCandidates); 5096 5097 // C++14 and before: 5098 // - if the function is a constructor, the call initializes a temporary 5099 // of the cv-unqualified version of the destination type. The [...] 5100 // temporary [...] is then used to direct-initialize, according to the 5101 // rules above, the object that is the destination of the 5102 // copy-initialization. 5103 // Note that this just performs a simple object copy from the temporary. 5104 // 5105 // C++17: 5106 // - if the function is a constructor, the call is a prvalue of the 5107 // cv-unqualified version of the destination type whose return object 5108 // is initialized by the constructor. The call is used to 5109 // direct-initialize, according to the rules above, the object that 5110 // is the destination of the copy-initialization. 5111 // Therefore we need to do nothing further. 5112 // 5113 // FIXME: Mark this copy as extraneous. 5114 if (!S.getLangOpts().CPlusPlus17) 5115 Sequence.AddFinalCopy(DestType); 5116 else if (DestType.hasQualifiers()) 5117 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5118 return; 5119 } 5120 5121 // Add the user-defined conversion step that calls the conversion function. 5122 QualType ConvType = Function->getCallResultType(); 5123 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5124 HadMultipleCandidates); 5125 5126 if (ConvType->getAs<RecordType>()) { 5127 // The call is used to direct-initialize [...] the object that is the 5128 // destination of the copy-initialization. 5129 // 5130 // In C++17, this does not call a constructor if we enter /17.6.1: 5131 // - If the initializer expression is a prvalue and the cv-unqualified 5132 // version of the source type is the same as the class of the 5133 // destination [... do not make an extra copy] 5134 // 5135 // FIXME: Mark this copy as extraneous. 5136 if (!S.getLangOpts().CPlusPlus17 || 5137 Function->getReturnType()->isReferenceType() || 5138 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5139 Sequence.AddFinalCopy(DestType); 5140 else if (!S.Context.hasSameType(ConvType, DestType)) 5141 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5142 return; 5143 } 5144 5145 // If the conversion following the call to the conversion function 5146 // is interesting, add it as a separate step. 5147 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5148 Best->FinalConversion.Third) { 5149 ImplicitConversionSequence ICS; 5150 ICS.setStandard(); 5151 ICS.Standard = Best->FinalConversion; 5152 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5153 } 5154 } 5155 5156 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5157 /// a function with a pointer return type contains a 'return false;' statement. 5158 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5159 /// code using that header. 5160 /// 5161 /// Work around this by treating 'return false;' as zero-initializing the result 5162 /// if it's used in a pointer-returning function in a system header. 5163 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5164 const InitializedEntity &Entity, 5165 const Expr *Init) { 5166 return S.getLangOpts().CPlusPlus11 && 5167 Entity.getKind() == InitializedEntity::EK_Result && 5168 Entity.getType()->isPointerType() && 5169 isa<CXXBoolLiteralExpr>(Init) && 5170 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5171 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5172 } 5173 5174 /// The non-zero enum values here are indexes into diagnostic alternatives. 5175 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5176 5177 /// Determines whether this expression is an acceptable ICR source. 5178 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5179 bool isAddressOf, bool &isWeakAccess) { 5180 // Skip parens. 5181 e = e->IgnoreParens(); 5182 5183 // Skip address-of nodes. 5184 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5185 if (op->getOpcode() == UO_AddrOf) 5186 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5187 isWeakAccess); 5188 5189 // Skip certain casts. 5190 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5191 switch (ce->getCastKind()) { 5192 case CK_Dependent: 5193 case CK_BitCast: 5194 case CK_LValueBitCast: 5195 case CK_NoOp: 5196 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5197 5198 case CK_ArrayToPointerDecay: 5199 return IIK_nonscalar; 5200 5201 case CK_NullToPointer: 5202 return IIK_okay; 5203 5204 default: 5205 break; 5206 } 5207 5208 // If we have a declaration reference, it had better be a local variable. 5209 } else if (isa<DeclRefExpr>(e)) { 5210 // set isWeakAccess to true, to mean that there will be an implicit 5211 // load which requires a cleanup. 5212 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5213 isWeakAccess = true; 5214 5215 if (!isAddressOf) return IIK_nonlocal; 5216 5217 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5218 if (!var) return IIK_nonlocal; 5219 5220 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5221 5222 // If we have a conditional operator, check both sides. 5223 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5224 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5225 isWeakAccess)) 5226 return iik; 5227 5228 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5229 5230 // These are never scalar. 5231 } else if (isa<ArraySubscriptExpr>(e)) { 5232 return IIK_nonscalar; 5233 5234 // Otherwise, it needs to be a null pointer constant. 5235 } else { 5236 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5237 ? IIK_okay : IIK_nonlocal); 5238 } 5239 5240 return IIK_nonlocal; 5241 } 5242 5243 /// Check whether the given expression is a valid operand for an 5244 /// indirect copy/restore. 5245 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5246 assert(src->isRValue()); 5247 bool isWeakAccess = false; 5248 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5249 // If isWeakAccess to true, there will be an implicit 5250 // load which requires a cleanup. 5251 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5252 S.Cleanup.setExprNeedsCleanups(true); 5253 5254 if (iik == IIK_okay) return; 5255 5256 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5257 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5258 << src->getSourceRange(); 5259 } 5260 5261 /// Determine whether we have compatible array types for the 5262 /// purposes of GNU by-copy array initialization. 5263 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5264 const ArrayType *Source) { 5265 // If the source and destination array types are equivalent, we're 5266 // done. 5267 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5268 return true; 5269 5270 // Make sure that the element types are the same. 5271 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5272 return false; 5273 5274 // The only mismatch we allow is when the destination is an 5275 // incomplete array type and the source is a constant array type. 5276 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5277 } 5278 5279 static bool tryObjCWritebackConversion(Sema &S, 5280 InitializationSequence &Sequence, 5281 const InitializedEntity &Entity, 5282 Expr *Initializer) { 5283 bool ArrayDecay = false; 5284 QualType ArgType = Initializer->getType(); 5285 QualType ArgPointee; 5286 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5287 ArrayDecay = true; 5288 ArgPointee = ArgArrayType->getElementType(); 5289 ArgType = S.Context.getPointerType(ArgPointee); 5290 } 5291 5292 // Handle write-back conversion. 5293 QualType ConvertedArgType; 5294 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5295 ConvertedArgType)) 5296 return false; 5297 5298 // We should copy unless we're passing to an argument explicitly 5299 // marked 'out'. 5300 bool ShouldCopy = true; 5301 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5302 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5303 5304 // Do we need an lvalue conversion? 5305 if (ArrayDecay || Initializer->isGLValue()) { 5306 ImplicitConversionSequence ICS; 5307 ICS.setStandard(); 5308 ICS.Standard.setAsIdentityConversion(); 5309 5310 QualType ResultType; 5311 if (ArrayDecay) { 5312 ICS.Standard.First = ICK_Array_To_Pointer; 5313 ResultType = S.Context.getPointerType(ArgPointee); 5314 } else { 5315 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5316 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5317 } 5318 5319 Sequence.AddConversionSequenceStep(ICS, ResultType); 5320 } 5321 5322 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5323 return true; 5324 } 5325 5326 static bool TryOCLSamplerInitialization(Sema &S, 5327 InitializationSequence &Sequence, 5328 QualType DestType, 5329 Expr *Initializer) { 5330 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5331 (!Initializer->isIntegerConstantExpr(S.Context) && 5332 !Initializer->getType()->isSamplerT())) 5333 return false; 5334 5335 Sequence.AddOCLSamplerInitStep(DestType); 5336 return true; 5337 } 5338 5339 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5340 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5341 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5342 } 5343 5344 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5345 InitializationSequence &Sequence, 5346 QualType DestType, 5347 Expr *Initializer) { 5348 if (!S.getLangOpts().OpenCL) 5349 return false; 5350 5351 // 5352 // OpenCL 1.2 spec, s6.12.10 5353 // 5354 // The event argument can also be used to associate the 5355 // async_work_group_copy with a previous async copy allowing 5356 // an event to be shared by multiple async copies; otherwise 5357 // event should be zero. 5358 // 5359 if (DestType->isEventT() || DestType->isQueueT()) { 5360 if (!IsZeroInitializer(Initializer, S)) 5361 return false; 5362 5363 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5364 return true; 5365 } 5366 5367 // We should allow zero initialization for all types defined in the 5368 // cl_intel_device_side_avc_motion_estimation extension, except 5369 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5370 if (S.getOpenCLOptions().isEnabled( 5371 "cl_intel_device_side_avc_motion_estimation") && 5372 DestType->isOCLIntelSubgroupAVCType()) { 5373 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5374 DestType->isOCLIntelSubgroupAVCMceResultType()) 5375 return false; 5376 if (!IsZeroInitializer(Initializer, S)) 5377 return false; 5378 5379 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5380 return true; 5381 } 5382 5383 return false; 5384 } 5385 5386 InitializationSequence::InitializationSequence(Sema &S, 5387 const InitializedEntity &Entity, 5388 const InitializationKind &Kind, 5389 MultiExprArg Args, 5390 bool TopLevelOfInitList, 5391 bool TreatUnavailableAsInvalid) 5392 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5393 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5394 TreatUnavailableAsInvalid); 5395 } 5396 5397 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5398 /// address of that function, this returns true. Otherwise, it returns false. 5399 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5400 auto *DRE = dyn_cast<DeclRefExpr>(E); 5401 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5402 return false; 5403 5404 return !S.checkAddressOfFunctionIsAvailable( 5405 cast<FunctionDecl>(DRE->getDecl())); 5406 } 5407 5408 /// Determine whether we can perform an elementwise array copy for this kind 5409 /// of entity. 5410 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5411 switch (Entity.getKind()) { 5412 case InitializedEntity::EK_LambdaCapture: 5413 // C++ [expr.prim.lambda]p24: 5414 // For array members, the array elements are direct-initialized in 5415 // increasing subscript order. 5416 return true; 5417 5418 case InitializedEntity::EK_Variable: 5419 // C++ [dcl.decomp]p1: 5420 // [...] each element is copy-initialized or direct-initialized from the 5421 // corresponding element of the assignment-expression [...] 5422 return isa<DecompositionDecl>(Entity.getDecl()); 5423 5424 case InitializedEntity::EK_Member: 5425 // C++ [class.copy.ctor]p14: 5426 // - if the member is an array, each element is direct-initialized with 5427 // the corresponding subobject of x 5428 return Entity.isImplicitMemberInitializer(); 5429 5430 case InitializedEntity::EK_ArrayElement: 5431 // All the above cases are intended to apply recursively, even though none 5432 // of them actually say that. 5433 if (auto *E = Entity.getParent()) 5434 return canPerformArrayCopy(*E); 5435 break; 5436 5437 default: 5438 break; 5439 } 5440 5441 return false; 5442 } 5443 5444 void InitializationSequence::InitializeFrom(Sema &S, 5445 const InitializedEntity &Entity, 5446 const InitializationKind &Kind, 5447 MultiExprArg Args, 5448 bool TopLevelOfInitList, 5449 bool TreatUnavailableAsInvalid) { 5450 ASTContext &Context = S.Context; 5451 5452 // Eliminate non-overload placeholder types in the arguments. We 5453 // need to do this before checking whether types are dependent 5454 // because lowering a pseudo-object expression might well give us 5455 // something of dependent type. 5456 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5457 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5458 // FIXME: should we be doing this here? 5459 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5460 if (result.isInvalid()) { 5461 SetFailed(FK_PlaceholderType); 5462 return; 5463 } 5464 Args[I] = result.get(); 5465 } 5466 5467 // C++0x [dcl.init]p16: 5468 // The semantics of initializers are as follows. The destination type is 5469 // the type of the object or reference being initialized and the source 5470 // type is the type of the initializer expression. The source type is not 5471 // defined when the initializer is a braced-init-list or when it is a 5472 // parenthesized list of expressions. 5473 QualType DestType = Entity.getType(); 5474 5475 if (DestType->isDependentType() || 5476 Expr::hasAnyTypeDependentArguments(Args)) { 5477 SequenceKind = DependentSequence; 5478 return; 5479 } 5480 5481 // Almost everything is a normal sequence. 5482 setSequenceKind(NormalSequence); 5483 5484 QualType SourceType; 5485 Expr *Initializer = nullptr; 5486 if (Args.size() == 1) { 5487 Initializer = Args[0]; 5488 if (S.getLangOpts().ObjC) { 5489 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5490 DestType, Initializer->getType(), 5491 Initializer) || 5492 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5493 Args[0] = Initializer; 5494 } 5495 if (!isa<InitListExpr>(Initializer)) 5496 SourceType = Initializer->getType(); 5497 } 5498 5499 // - If the initializer is a (non-parenthesized) braced-init-list, the 5500 // object is list-initialized (8.5.4). 5501 if (Kind.getKind() != InitializationKind::IK_Direct) { 5502 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5503 TryListInitialization(S, Entity, Kind, InitList, *this, 5504 TreatUnavailableAsInvalid); 5505 return; 5506 } 5507 } 5508 5509 // - If the destination type is a reference type, see 8.5.3. 5510 if (DestType->isReferenceType()) { 5511 // C++0x [dcl.init.ref]p1: 5512 // A variable declared to be a T& or T&&, that is, "reference to type T" 5513 // (8.3.2), shall be initialized by an object, or function, of type T or 5514 // by an object that can be converted into a T. 5515 // (Therefore, multiple arguments are not permitted.) 5516 if (Args.size() != 1) 5517 SetFailed(FK_TooManyInitsForReference); 5518 // C++17 [dcl.init.ref]p5: 5519 // A reference [...] is initialized by an expression [...] as follows: 5520 // If the initializer is not an expression, presumably we should reject, 5521 // but the standard fails to actually say so. 5522 else if (isa<InitListExpr>(Args[0])) 5523 SetFailed(FK_ParenthesizedListInitForReference); 5524 else 5525 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5526 return; 5527 } 5528 5529 // - If the initializer is (), the object is value-initialized. 5530 if (Kind.getKind() == InitializationKind::IK_Value || 5531 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5532 TryValueInitialization(S, Entity, Kind, *this); 5533 return; 5534 } 5535 5536 // Handle default initialization. 5537 if (Kind.getKind() == InitializationKind::IK_Default) { 5538 TryDefaultInitialization(S, Entity, Kind, *this); 5539 return; 5540 } 5541 5542 // - If the destination type is an array of characters, an array of 5543 // char16_t, an array of char32_t, or an array of wchar_t, and the 5544 // initializer is a string literal, see 8.5.2. 5545 // - Otherwise, if the destination type is an array, the program is 5546 // ill-formed. 5547 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5548 if (Initializer && isa<VariableArrayType>(DestAT)) { 5549 SetFailed(FK_VariableLengthArrayHasInitializer); 5550 return; 5551 } 5552 5553 if (Initializer) { 5554 switch (IsStringInit(Initializer, DestAT, Context)) { 5555 case SIF_None: 5556 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5557 return; 5558 case SIF_NarrowStringIntoWideChar: 5559 SetFailed(FK_NarrowStringIntoWideCharArray); 5560 return; 5561 case SIF_WideStringIntoChar: 5562 SetFailed(FK_WideStringIntoCharArray); 5563 return; 5564 case SIF_IncompatWideStringIntoWideChar: 5565 SetFailed(FK_IncompatWideStringIntoWideChar); 5566 return; 5567 case SIF_PlainStringIntoUTF8Char: 5568 SetFailed(FK_PlainStringIntoUTF8Char); 5569 return; 5570 case SIF_UTF8StringIntoPlainChar: 5571 SetFailed(FK_UTF8StringIntoPlainChar); 5572 return; 5573 case SIF_Other: 5574 break; 5575 } 5576 } 5577 5578 // Some kinds of initialization permit an array to be initialized from 5579 // another array of the same type, and perform elementwise initialization. 5580 if (Initializer && isa<ConstantArrayType>(DestAT) && 5581 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5582 Entity.getType()) && 5583 canPerformArrayCopy(Entity)) { 5584 // If source is a prvalue, use it directly. 5585 if (Initializer->getValueKind() == VK_RValue) { 5586 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5587 return; 5588 } 5589 5590 // Emit element-at-a-time copy loop. 5591 InitializedEntity Element = 5592 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5593 QualType InitEltT = 5594 Context.getAsArrayType(Initializer->getType())->getElementType(); 5595 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5596 Initializer->getValueKind(), 5597 Initializer->getObjectKind()); 5598 Expr *OVEAsExpr = &OVE; 5599 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5600 TreatUnavailableAsInvalid); 5601 if (!Failed()) 5602 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5603 return; 5604 } 5605 5606 // Note: as an GNU C extension, we allow initialization of an 5607 // array from a compound literal that creates an array of the same 5608 // type, so long as the initializer has no side effects. 5609 if (!S.getLangOpts().CPlusPlus && Initializer && 5610 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5611 Initializer->getType()->isArrayType()) { 5612 const ArrayType *SourceAT 5613 = Context.getAsArrayType(Initializer->getType()); 5614 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5615 SetFailed(FK_ArrayTypeMismatch); 5616 else if (Initializer->HasSideEffects(S.Context)) 5617 SetFailed(FK_NonConstantArrayInit); 5618 else { 5619 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5620 } 5621 } 5622 // Note: as a GNU C++ extension, we allow list-initialization of a 5623 // class member of array type from a parenthesized initializer list. 5624 else if (S.getLangOpts().CPlusPlus && 5625 Entity.getKind() == InitializedEntity::EK_Member && 5626 Initializer && isa<InitListExpr>(Initializer)) { 5627 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5628 *this, TreatUnavailableAsInvalid); 5629 AddParenthesizedArrayInitStep(DestType); 5630 } else if (DestAT->getElementType()->isCharType()) 5631 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5632 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5633 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5634 else 5635 SetFailed(FK_ArrayNeedsInitList); 5636 5637 return; 5638 } 5639 5640 // Determine whether we should consider writeback conversions for 5641 // Objective-C ARC. 5642 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5643 Entity.isParameterKind(); 5644 5645 // We're at the end of the line for C: it's either a write-back conversion 5646 // or it's a C assignment. There's no need to check anything else. 5647 if (!S.getLangOpts().CPlusPlus) { 5648 // If allowed, check whether this is an Objective-C writeback conversion. 5649 if (allowObjCWritebackConversion && 5650 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5651 return; 5652 } 5653 5654 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5655 return; 5656 5657 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5658 return; 5659 5660 // Handle initialization in C 5661 AddCAssignmentStep(DestType); 5662 MaybeProduceObjCObject(S, *this, Entity); 5663 return; 5664 } 5665 5666 assert(S.getLangOpts().CPlusPlus); 5667 5668 // - If the destination type is a (possibly cv-qualified) class type: 5669 if (DestType->isRecordType()) { 5670 // - If the initialization is direct-initialization, or if it is 5671 // copy-initialization where the cv-unqualified version of the 5672 // source type is the same class as, or a derived class of, the 5673 // class of the destination, constructors are considered. [...] 5674 if (Kind.getKind() == InitializationKind::IK_Direct || 5675 (Kind.getKind() == InitializationKind::IK_Copy && 5676 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5677 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5678 TryConstructorInitialization(S, Entity, Kind, Args, 5679 DestType, DestType, *this); 5680 // - Otherwise (i.e., for the remaining copy-initialization cases), 5681 // user-defined conversion sequences that can convert from the source 5682 // type to the destination type or (when a conversion function is 5683 // used) to a derived class thereof are enumerated as described in 5684 // 13.3.1.4, and the best one is chosen through overload resolution 5685 // (13.3). 5686 else 5687 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5688 TopLevelOfInitList); 5689 return; 5690 } 5691 5692 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5693 5694 // The remaining cases all need a source type. 5695 if (Args.size() > 1) { 5696 SetFailed(FK_TooManyInitsForScalar); 5697 return; 5698 } else if (isa<InitListExpr>(Args[0])) { 5699 SetFailed(FK_ParenthesizedListInitForScalar); 5700 return; 5701 } 5702 5703 // - Otherwise, if the source type is a (possibly cv-qualified) class 5704 // type, conversion functions are considered. 5705 if (!SourceType.isNull() && SourceType->isRecordType()) { 5706 // For a conversion to _Atomic(T) from either T or a class type derived 5707 // from T, initialize the T object then convert to _Atomic type. 5708 bool NeedAtomicConversion = false; 5709 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5710 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5711 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5712 Atomic->getValueType())) { 5713 DestType = Atomic->getValueType(); 5714 NeedAtomicConversion = true; 5715 } 5716 } 5717 5718 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5719 TopLevelOfInitList); 5720 MaybeProduceObjCObject(S, *this, Entity); 5721 if (!Failed() && NeedAtomicConversion) 5722 AddAtomicConversionStep(Entity.getType()); 5723 return; 5724 } 5725 5726 // - Otherwise, the initial value of the object being initialized is the 5727 // (possibly converted) value of the initializer expression. Standard 5728 // conversions (Clause 4) will be used, if necessary, to convert the 5729 // initializer expression to the cv-unqualified version of the 5730 // destination type; no user-defined conversions are considered. 5731 5732 ImplicitConversionSequence ICS 5733 = S.TryImplicitConversion(Initializer, DestType, 5734 /*SuppressUserConversions*/true, 5735 /*AllowExplicitConversions*/ false, 5736 /*InOverloadResolution*/ false, 5737 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5738 allowObjCWritebackConversion); 5739 5740 if (ICS.isStandard() && 5741 ICS.Standard.Second == ICK_Writeback_Conversion) { 5742 // Objective-C ARC writeback conversion. 5743 5744 // We should copy unless we're passing to an argument explicitly 5745 // marked 'out'. 5746 bool ShouldCopy = true; 5747 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5748 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5749 5750 // If there was an lvalue adjustment, add it as a separate conversion. 5751 if (ICS.Standard.First == ICK_Array_To_Pointer || 5752 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5753 ImplicitConversionSequence LvalueICS; 5754 LvalueICS.setStandard(); 5755 LvalueICS.Standard.setAsIdentityConversion(); 5756 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5757 LvalueICS.Standard.First = ICS.Standard.First; 5758 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5759 } 5760 5761 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5762 } else if (ICS.isBad()) { 5763 DeclAccessPair dap; 5764 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5765 AddZeroInitializationStep(Entity.getType()); 5766 } else if (Initializer->getType() == Context.OverloadTy && 5767 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5768 false, dap)) 5769 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5770 else if (Initializer->getType()->isFunctionType() && 5771 isExprAnUnaddressableFunction(S, Initializer)) 5772 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5773 else 5774 SetFailed(InitializationSequence::FK_ConversionFailed); 5775 } else { 5776 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5777 5778 MaybeProduceObjCObject(S, *this, Entity); 5779 } 5780 } 5781 5782 InitializationSequence::~InitializationSequence() { 5783 for (auto &S : Steps) 5784 S.Destroy(); 5785 } 5786 5787 //===----------------------------------------------------------------------===// 5788 // Perform initialization 5789 //===----------------------------------------------------------------------===// 5790 static Sema::AssignmentAction 5791 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5792 switch(Entity.getKind()) { 5793 case InitializedEntity::EK_Variable: 5794 case InitializedEntity::EK_New: 5795 case InitializedEntity::EK_Exception: 5796 case InitializedEntity::EK_Base: 5797 case InitializedEntity::EK_Delegating: 5798 return Sema::AA_Initializing; 5799 5800 case InitializedEntity::EK_Parameter: 5801 if (Entity.getDecl() && 5802 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5803 return Sema::AA_Sending; 5804 5805 return Sema::AA_Passing; 5806 5807 case InitializedEntity::EK_Parameter_CF_Audited: 5808 if (Entity.getDecl() && 5809 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5810 return Sema::AA_Sending; 5811 5812 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5813 5814 case InitializedEntity::EK_Result: 5815 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5816 return Sema::AA_Returning; 5817 5818 case InitializedEntity::EK_Temporary: 5819 case InitializedEntity::EK_RelatedResult: 5820 // FIXME: Can we tell apart casting vs. converting? 5821 return Sema::AA_Casting; 5822 5823 case InitializedEntity::EK_Member: 5824 case InitializedEntity::EK_Binding: 5825 case InitializedEntity::EK_ArrayElement: 5826 case InitializedEntity::EK_VectorElement: 5827 case InitializedEntity::EK_ComplexElement: 5828 case InitializedEntity::EK_BlockElement: 5829 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5830 case InitializedEntity::EK_LambdaCapture: 5831 case InitializedEntity::EK_CompoundLiteralInit: 5832 return Sema::AA_Initializing; 5833 } 5834 5835 llvm_unreachable("Invalid EntityKind!"); 5836 } 5837 5838 /// Whether we should bind a created object as a temporary when 5839 /// initializing the given entity. 5840 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5841 switch (Entity.getKind()) { 5842 case InitializedEntity::EK_ArrayElement: 5843 case InitializedEntity::EK_Member: 5844 case InitializedEntity::EK_Result: 5845 case InitializedEntity::EK_StmtExprResult: 5846 case InitializedEntity::EK_New: 5847 case InitializedEntity::EK_Variable: 5848 case InitializedEntity::EK_Base: 5849 case InitializedEntity::EK_Delegating: 5850 case InitializedEntity::EK_VectorElement: 5851 case InitializedEntity::EK_ComplexElement: 5852 case InitializedEntity::EK_Exception: 5853 case InitializedEntity::EK_BlockElement: 5854 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5855 case InitializedEntity::EK_LambdaCapture: 5856 case InitializedEntity::EK_CompoundLiteralInit: 5857 return false; 5858 5859 case InitializedEntity::EK_Parameter: 5860 case InitializedEntity::EK_Parameter_CF_Audited: 5861 case InitializedEntity::EK_Temporary: 5862 case InitializedEntity::EK_RelatedResult: 5863 case InitializedEntity::EK_Binding: 5864 return true; 5865 } 5866 5867 llvm_unreachable("missed an InitializedEntity kind?"); 5868 } 5869 5870 /// Whether the given entity, when initialized with an object 5871 /// created for that initialization, requires destruction. 5872 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 5873 switch (Entity.getKind()) { 5874 case InitializedEntity::EK_Result: 5875 case InitializedEntity::EK_StmtExprResult: 5876 case InitializedEntity::EK_New: 5877 case InitializedEntity::EK_Base: 5878 case InitializedEntity::EK_Delegating: 5879 case InitializedEntity::EK_VectorElement: 5880 case InitializedEntity::EK_ComplexElement: 5881 case InitializedEntity::EK_BlockElement: 5882 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5883 case InitializedEntity::EK_LambdaCapture: 5884 return false; 5885 5886 case InitializedEntity::EK_Member: 5887 case InitializedEntity::EK_Binding: 5888 case InitializedEntity::EK_Variable: 5889 case InitializedEntity::EK_Parameter: 5890 case InitializedEntity::EK_Parameter_CF_Audited: 5891 case InitializedEntity::EK_Temporary: 5892 case InitializedEntity::EK_ArrayElement: 5893 case InitializedEntity::EK_Exception: 5894 case InitializedEntity::EK_CompoundLiteralInit: 5895 case InitializedEntity::EK_RelatedResult: 5896 return true; 5897 } 5898 5899 llvm_unreachable("missed an InitializedEntity kind?"); 5900 } 5901 5902 /// Get the location at which initialization diagnostics should appear. 5903 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 5904 Expr *Initializer) { 5905 switch (Entity.getKind()) { 5906 case InitializedEntity::EK_Result: 5907 case InitializedEntity::EK_StmtExprResult: 5908 return Entity.getReturnLoc(); 5909 5910 case InitializedEntity::EK_Exception: 5911 return Entity.getThrowLoc(); 5912 5913 case InitializedEntity::EK_Variable: 5914 case InitializedEntity::EK_Binding: 5915 return Entity.getDecl()->getLocation(); 5916 5917 case InitializedEntity::EK_LambdaCapture: 5918 return Entity.getCaptureLoc(); 5919 5920 case InitializedEntity::EK_ArrayElement: 5921 case InitializedEntity::EK_Member: 5922 case InitializedEntity::EK_Parameter: 5923 case InitializedEntity::EK_Parameter_CF_Audited: 5924 case InitializedEntity::EK_Temporary: 5925 case InitializedEntity::EK_New: 5926 case InitializedEntity::EK_Base: 5927 case InitializedEntity::EK_Delegating: 5928 case InitializedEntity::EK_VectorElement: 5929 case InitializedEntity::EK_ComplexElement: 5930 case InitializedEntity::EK_BlockElement: 5931 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5932 case InitializedEntity::EK_CompoundLiteralInit: 5933 case InitializedEntity::EK_RelatedResult: 5934 return Initializer->getBeginLoc(); 5935 } 5936 llvm_unreachable("missed an InitializedEntity kind?"); 5937 } 5938 5939 /// Make a (potentially elidable) temporary copy of the object 5940 /// provided by the given initializer by calling the appropriate copy 5941 /// constructor. 5942 /// 5943 /// \param S The Sema object used for type-checking. 5944 /// 5945 /// \param T The type of the temporary object, which must either be 5946 /// the type of the initializer expression or a superclass thereof. 5947 /// 5948 /// \param Entity The entity being initialized. 5949 /// 5950 /// \param CurInit The initializer expression. 5951 /// 5952 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5953 /// is permitted in C++03 (but not C++0x) when binding a reference to 5954 /// an rvalue. 5955 /// 5956 /// \returns An expression that copies the initializer expression into 5957 /// a temporary object, or an error expression if a copy could not be 5958 /// created. 5959 static ExprResult CopyObject(Sema &S, 5960 QualType T, 5961 const InitializedEntity &Entity, 5962 ExprResult CurInit, 5963 bool IsExtraneousCopy) { 5964 if (CurInit.isInvalid()) 5965 return CurInit; 5966 // Determine which class type we're copying to. 5967 Expr *CurInitExpr = (Expr *)CurInit.get(); 5968 CXXRecordDecl *Class = nullptr; 5969 if (const RecordType *Record = T->getAs<RecordType>()) 5970 Class = cast<CXXRecordDecl>(Record->getDecl()); 5971 if (!Class) 5972 return CurInit; 5973 5974 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5975 5976 // Make sure that the type we are copying is complete. 5977 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5978 return CurInit; 5979 5980 // Perform overload resolution using the class's constructors. Per 5981 // C++11 [dcl.init]p16, second bullet for class types, this initialization 5982 // is direct-initialization. 5983 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5984 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 5985 5986 OverloadCandidateSet::iterator Best; 5987 switch (ResolveConstructorOverload( 5988 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 5989 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 5990 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 5991 /*SecondStepOfCopyInit=*/true)) { 5992 case OR_Success: 5993 break; 5994 5995 case OR_No_Viable_Function: 5996 CandidateSet.NoteCandidates( 5997 PartialDiagnosticAt( 5998 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 5999 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6000 : diag::err_temp_copy_no_viable) 6001 << (int)Entity.getKind() << CurInitExpr->getType() 6002 << CurInitExpr->getSourceRange()), 6003 S, OCD_AllCandidates, CurInitExpr); 6004 if (!IsExtraneousCopy || S.isSFINAEContext()) 6005 return ExprError(); 6006 return CurInit; 6007 6008 case OR_Ambiguous: 6009 CandidateSet.NoteCandidates( 6010 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6011 << (int)Entity.getKind() 6012 << CurInitExpr->getType() 6013 << CurInitExpr->getSourceRange()), 6014 S, OCD_ViableCandidates, CurInitExpr); 6015 return ExprError(); 6016 6017 case OR_Deleted: 6018 S.Diag(Loc, diag::err_temp_copy_deleted) 6019 << (int)Entity.getKind() << CurInitExpr->getType() 6020 << CurInitExpr->getSourceRange(); 6021 S.NoteDeletedFunction(Best->Function); 6022 return ExprError(); 6023 } 6024 6025 bool HadMultipleCandidates = CandidateSet.size() > 1; 6026 6027 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6028 SmallVector<Expr*, 8> ConstructorArgs; 6029 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6030 6031 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6032 IsExtraneousCopy); 6033 6034 if (IsExtraneousCopy) { 6035 // If this is a totally extraneous copy for C++03 reference 6036 // binding purposes, just return the original initialization 6037 // expression. We don't generate an (elided) copy operation here 6038 // because doing so would require us to pass down a flag to avoid 6039 // infinite recursion, where each step adds another extraneous, 6040 // elidable copy. 6041 6042 // Instantiate the default arguments of any extra parameters in 6043 // the selected copy constructor, as if we were going to create a 6044 // proper call to the copy constructor. 6045 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6046 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6047 if (S.RequireCompleteType(Loc, Parm->getType(), 6048 diag::err_call_incomplete_argument)) 6049 break; 6050 6051 // Build the default argument expression; we don't actually care 6052 // if this succeeds or not, because this routine will complain 6053 // if there was a problem. 6054 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6055 } 6056 6057 return CurInitExpr; 6058 } 6059 6060 // Determine the arguments required to actually perform the 6061 // constructor call (we might have derived-to-base conversions, or 6062 // the copy constructor may have default arguments). 6063 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6064 return ExprError(); 6065 6066 // C++0x [class.copy]p32: 6067 // When certain criteria are met, an implementation is allowed to 6068 // omit the copy/move construction of a class object, even if the 6069 // copy/move constructor and/or destructor for the object have 6070 // side effects. [...] 6071 // - when a temporary class object that has not been bound to a 6072 // reference (12.2) would be copied/moved to a class object 6073 // with the same cv-unqualified type, the copy/move operation 6074 // can be omitted by constructing the temporary object 6075 // directly into the target of the omitted copy/move 6076 // 6077 // Note that the other three bullets are handled elsewhere. Copy 6078 // elision for return statements and throw expressions are handled as part 6079 // of constructor initialization, while copy elision for exception handlers 6080 // is handled by the run-time. 6081 // 6082 // FIXME: If the function parameter is not the same type as the temporary, we 6083 // should still be able to elide the copy, but we don't have a way to 6084 // represent in the AST how much should be elided in this case. 6085 bool Elidable = 6086 CurInitExpr->isTemporaryObject(S.Context, Class) && 6087 S.Context.hasSameUnqualifiedType( 6088 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6089 CurInitExpr->getType()); 6090 6091 // Actually perform the constructor call. 6092 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6093 Elidable, 6094 ConstructorArgs, 6095 HadMultipleCandidates, 6096 /*ListInit*/ false, 6097 /*StdInitListInit*/ false, 6098 /*ZeroInit*/ false, 6099 CXXConstructExpr::CK_Complete, 6100 SourceRange()); 6101 6102 // If we're supposed to bind temporaries, do so. 6103 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6104 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6105 return CurInit; 6106 } 6107 6108 /// Check whether elidable copy construction for binding a reference to 6109 /// a temporary would have succeeded if we were building in C++98 mode, for 6110 /// -Wc++98-compat. 6111 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6112 const InitializedEntity &Entity, 6113 Expr *CurInitExpr) { 6114 assert(S.getLangOpts().CPlusPlus11); 6115 6116 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6117 if (!Record) 6118 return; 6119 6120 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6121 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6122 return; 6123 6124 // Find constructors which would have been considered. 6125 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6126 DeclContext::lookup_result Ctors = 6127 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6128 6129 // Perform overload resolution. 6130 OverloadCandidateSet::iterator Best; 6131 OverloadingResult OR = ResolveConstructorOverload( 6132 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6133 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6134 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6135 /*SecondStepOfCopyInit=*/true); 6136 6137 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6138 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6139 << CurInitExpr->getSourceRange(); 6140 6141 switch (OR) { 6142 case OR_Success: 6143 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6144 Best->FoundDecl, Entity, Diag); 6145 // FIXME: Check default arguments as far as that's possible. 6146 break; 6147 6148 case OR_No_Viable_Function: 6149 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6150 OCD_AllCandidates, CurInitExpr); 6151 break; 6152 6153 case OR_Ambiguous: 6154 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6155 OCD_ViableCandidates, CurInitExpr); 6156 break; 6157 6158 case OR_Deleted: 6159 S.Diag(Loc, Diag); 6160 S.NoteDeletedFunction(Best->Function); 6161 break; 6162 } 6163 } 6164 6165 void InitializationSequence::PrintInitLocationNote(Sema &S, 6166 const InitializedEntity &Entity) { 6167 if (Entity.isParameterKind() && Entity.getDecl()) { 6168 if (Entity.getDecl()->getLocation().isInvalid()) 6169 return; 6170 6171 if (Entity.getDecl()->getDeclName()) 6172 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6173 << Entity.getDecl()->getDeclName(); 6174 else 6175 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6176 } 6177 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6178 Entity.getMethodDecl()) 6179 S.Diag(Entity.getMethodDecl()->getLocation(), 6180 diag::note_method_return_type_change) 6181 << Entity.getMethodDecl()->getDeclName(); 6182 } 6183 6184 /// Returns true if the parameters describe a constructor initialization of 6185 /// an explicit temporary object, e.g. "Point(x, y)". 6186 static bool isExplicitTemporary(const InitializedEntity &Entity, 6187 const InitializationKind &Kind, 6188 unsigned NumArgs) { 6189 switch (Entity.getKind()) { 6190 case InitializedEntity::EK_Temporary: 6191 case InitializedEntity::EK_CompoundLiteralInit: 6192 case InitializedEntity::EK_RelatedResult: 6193 break; 6194 default: 6195 return false; 6196 } 6197 6198 switch (Kind.getKind()) { 6199 case InitializationKind::IK_DirectList: 6200 return true; 6201 // FIXME: Hack to work around cast weirdness. 6202 case InitializationKind::IK_Direct: 6203 case InitializationKind::IK_Value: 6204 return NumArgs != 1; 6205 default: 6206 return false; 6207 } 6208 } 6209 6210 static ExprResult 6211 PerformConstructorInitialization(Sema &S, 6212 const InitializedEntity &Entity, 6213 const InitializationKind &Kind, 6214 MultiExprArg Args, 6215 const InitializationSequence::Step& Step, 6216 bool &ConstructorInitRequiresZeroInit, 6217 bool IsListInitialization, 6218 bool IsStdInitListInitialization, 6219 SourceLocation LBraceLoc, 6220 SourceLocation RBraceLoc) { 6221 unsigned NumArgs = Args.size(); 6222 CXXConstructorDecl *Constructor 6223 = cast<CXXConstructorDecl>(Step.Function.Function); 6224 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6225 6226 // Build a call to the selected constructor. 6227 SmallVector<Expr*, 8> ConstructorArgs; 6228 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6229 ? Kind.getEqualLoc() 6230 : Kind.getLocation(); 6231 6232 if (Kind.getKind() == InitializationKind::IK_Default) { 6233 // Force even a trivial, implicit default constructor to be 6234 // semantically checked. We do this explicitly because we don't build 6235 // the definition for completely trivial constructors. 6236 assert(Constructor->getParent() && "No parent class for constructor."); 6237 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6238 Constructor->isTrivial() && !Constructor->isUsed(false)) 6239 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6240 } 6241 6242 ExprResult CurInit((Expr *)nullptr); 6243 6244 // C++ [over.match.copy]p1: 6245 // - When initializing a temporary to be bound to the first parameter 6246 // of a constructor that takes a reference to possibly cv-qualified 6247 // T as its first argument, called with a single argument in the 6248 // context of direct-initialization, explicit conversion functions 6249 // are also considered. 6250 bool AllowExplicitConv = 6251 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6252 hasCopyOrMoveCtorParam(S.Context, 6253 getConstructorInfo(Step.Function.FoundDecl)); 6254 6255 // Determine the arguments required to actually perform the constructor 6256 // call. 6257 if (S.CompleteConstructorCall(Constructor, Args, 6258 Loc, ConstructorArgs, 6259 AllowExplicitConv, 6260 IsListInitialization)) 6261 return ExprError(); 6262 6263 6264 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6265 // An explicitly-constructed temporary, e.g., X(1, 2). 6266 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6267 return ExprError(); 6268 6269 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6270 if (!TSInfo) 6271 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6272 SourceRange ParenOrBraceRange = 6273 (Kind.getKind() == InitializationKind::IK_DirectList) 6274 ? SourceRange(LBraceLoc, RBraceLoc) 6275 : Kind.getParenOrBraceRange(); 6276 6277 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6278 Step.Function.FoundDecl.getDecl())) { 6279 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6280 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6281 return ExprError(); 6282 } 6283 S.MarkFunctionReferenced(Loc, Constructor); 6284 6285 CurInit = CXXTemporaryObjectExpr::Create( 6286 S.Context, Constructor, 6287 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6288 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6289 IsListInitialization, IsStdInitListInitialization, 6290 ConstructorInitRequiresZeroInit); 6291 } else { 6292 CXXConstructExpr::ConstructionKind ConstructKind = 6293 CXXConstructExpr::CK_Complete; 6294 6295 if (Entity.getKind() == InitializedEntity::EK_Base) { 6296 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6297 CXXConstructExpr::CK_VirtualBase : 6298 CXXConstructExpr::CK_NonVirtualBase; 6299 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6300 ConstructKind = CXXConstructExpr::CK_Delegating; 6301 } 6302 6303 // Only get the parenthesis or brace range if it is a list initialization or 6304 // direct construction. 6305 SourceRange ParenOrBraceRange; 6306 if (IsListInitialization) 6307 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6308 else if (Kind.getKind() == InitializationKind::IK_Direct) 6309 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6310 6311 // If the entity allows NRVO, mark the construction as elidable 6312 // unconditionally. 6313 if (Entity.allowsNRVO()) 6314 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6315 Step.Function.FoundDecl, 6316 Constructor, /*Elidable=*/true, 6317 ConstructorArgs, 6318 HadMultipleCandidates, 6319 IsListInitialization, 6320 IsStdInitListInitialization, 6321 ConstructorInitRequiresZeroInit, 6322 ConstructKind, 6323 ParenOrBraceRange); 6324 else 6325 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6326 Step.Function.FoundDecl, 6327 Constructor, 6328 ConstructorArgs, 6329 HadMultipleCandidates, 6330 IsListInitialization, 6331 IsStdInitListInitialization, 6332 ConstructorInitRequiresZeroInit, 6333 ConstructKind, 6334 ParenOrBraceRange); 6335 } 6336 if (CurInit.isInvalid()) 6337 return ExprError(); 6338 6339 // Only check access if all of that succeeded. 6340 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6341 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6342 return ExprError(); 6343 6344 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6345 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6346 return ExprError(); 6347 6348 if (shouldBindAsTemporary(Entity)) 6349 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6350 6351 return CurInit; 6352 } 6353 6354 namespace { 6355 enum LifetimeKind { 6356 /// The lifetime of a temporary bound to this entity ends at the end of the 6357 /// full-expression, and that's (probably) fine. 6358 LK_FullExpression, 6359 6360 /// The lifetime of a temporary bound to this entity is extended to the 6361 /// lifeitme of the entity itself. 6362 LK_Extended, 6363 6364 /// The lifetime of a temporary bound to this entity probably ends too soon, 6365 /// because the entity is allocated in a new-expression. 6366 LK_New, 6367 6368 /// The lifetime of a temporary bound to this entity ends too soon, because 6369 /// the entity is a return object. 6370 LK_Return, 6371 6372 /// The lifetime of a temporary bound to this entity ends too soon, because 6373 /// the entity is the result of a statement expression. 6374 LK_StmtExprResult, 6375 6376 /// This is a mem-initializer: if it would extend a temporary (other than via 6377 /// a default member initializer), the program is ill-formed. 6378 LK_MemInitializer, 6379 }; 6380 using LifetimeResult = 6381 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6382 } 6383 6384 /// Determine the declaration which an initialized entity ultimately refers to, 6385 /// for the purpose of lifetime-extending a temporary bound to a reference in 6386 /// the initialization of \p Entity. 6387 static LifetimeResult getEntityLifetime( 6388 const InitializedEntity *Entity, 6389 const InitializedEntity *InitField = nullptr) { 6390 // C++11 [class.temporary]p5: 6391 switch (Entity->getKind()) { 6392 case InitializedEntity::EK_Variable: 6393 // The temporary [...] persists for the lifetime of the reference 6394 return {Entity, LK_Extended}; 6395 6396 case InitializedEntity::EK_Member: 6397 // For subobjects, we look at the complete object. 6398 if (Entity->getParent()) 6399 return getEntityLifetime(Entity->getParent(), Entity); 6400 6401 // except: 6402 // C++17 [class.base.init]p8: 6403 // A temporary expression bound to a reference member in a 6404 // mem-initializer is ill-formed. 6405 // C++17 [class.base.init]p11: 6406 // A temporary expression bound to a reference member from a 6407 // default member initializer is ill-formed. 6408 // 6409 // The context of p11 and its example suggest that it's only the use of a 6410 // default member initializer from a constructor that makes the program 6411 // ill-formed, not its mere existence, and that it can even be used by 6412 // aggregate initialization. 6413 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6414 : LK_MemInitializer}; 6415 6416 case InitializedEntity::EK_Binding: 6417 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6418 // type. 6419 return {Entity, LK_Extended}; 6420 6421 case InitializedEntity::EK_Parameter: 6422 case InitializedEntity::EK_Parameter_CF_Audited: 6423 // -- A temporary bound to a reference parameter in a function call 6424 // persists until the completion of the full-expression containing 6425 // the call. 6426 return {nullptr, LK_FullExpression}; 6427 6428 case InitializedEntity::EK_Result: 6429 // -- The lifetime of a temporary bound to the returned value in a 6430 // function return statement is not extended; the temporary is 6431 // destroyed at the end of the full-expression in the return statement. 6432 return {nullptr, LK_Return}; 6433 6434 case InitializedEntity::EK_StmtExprResult: 6435 // FIXME: Should we lifetime-extend through the result of a statement 6436 // expression? 6437 return {nullptr, LK_StmtExprResult}; 6438 6439 case InitializedEntity::EK_New: 6440 // -- A temporary bound to a reference in a new-initializer persists 6441 // until the completion of the full-expression containing the 6442 // new-initializer. 6443 return {nullptr, LK_New}; 6444 6445 case InitializedEntity::EK_Temporary: 6446 case InitializedEntity::EK_CompoundLiteralInit: 6447 case InitializedEntity::EK_RelatedResult: 6448 // We don't yet know the storage duration of the surrounding temporary. 6449 // Assume it's got full-expression duration for now, it will patch up our 6450 // storage duration if that's not correct. 6451 return {nullptr, LK_FullExpression}; 6452 6453 case InitializedEntity::EK_ArrayElement: 6454 // For subobjects, we look at the complete object. 6455 return getEntityLifetime(Entity->getParent(), InitField); 6456 6457 case InitializedEntity::EK_Base: 6458 // For subobjects, we look at the complete object. 6459 if (Entity->getParent()) 6460 return getEntityLifetime(Entity->getParent(), InitField); 6461 return {InitField, LK_MemInitializer}; 6462 6463 case InitializedEntity::EK_Delegating: 6464 // We can reach this case for aggregate initialization in a constructor: 6465 // struct A { int &&r; }; 6466 // struct B : A { B() : A{0} {} }; 6467 // In this case, use the outermost field decl as the context. 6468 return {InitField, LK_MemInitializer}; 6469 6470 case InitializedEntity::EK_BlockElement: 6471 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6472 case InitializedEntity::EK_LambdaCapture: 6473 case InitializedEntity::EK_VectorElement: 6474 case InitializedEntity::EK_ComplexElement: 6475 return {nullptr, LK_FullExpression}; 6476 6477 case InitializedEntity::EK_Exception: 6478 // FIXME: Can we diagnose lifetime problems with exceptions? 6479 return {nullptr, LK_FullExpression}; 6480 } 6481 llvm_unreachable("unknown entity kind"); 6482 } 6483 6484 namespace { 6485 enum ReferenceKind { 6486 /// Lifetime would be extended by a reference binding to a temporary. 6487 RK_ReferenceBinding, 6488 /// Lifetime would be extended by a std::initializer_list object binding to 6489 /// its backing array. 6490 RK_StdInitializerList, 6491 }; 6492 6493 /// A temporary or local variable. This will be one of: 6494 /// * A MaterializeTemporaryExpr. 6495 /// * A DeclRefExpr whose declaration is a local. 6496 /// * An AddrLabelExpr. 6497 /// * A BlockExpr for a block with captures. 6498 using Local = Expr*; 6499 6500 /// Expressions we stepped over when looking for the local state. Any steps 6501 /// that would inhibit lifetime extension or take us out of subexpressions of 6502 /// the initializer are included. 6503 struct IndirectLocalPathEntry { 6504 enum EntryKind { 6505 DefaultInit, 6506 AddressOf, 6507 VarInit, 6508 LValToRVal, 6509 LifetimeBoundCall, 6510 } Kind; 6511 Expr *E; 6512 const Decl *D = nullptr; 6513 IndirectLocalPathEntry() {} 6514 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6515 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6516 : Kind(K), E(E), D(D) {} 6517 }; 6518 6519 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6520 6521 struct RevertToOldSizeRAII { 6522 IndirectLocalPath &Path; 6523 unsigned OldSize = Path.size(); 6524 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6525 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6526 }; 6527 6528 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6529 ReferenceKind RK)>; 6530 } 6531 6532 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6533 for (auto E : Path) 6534 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6535 return true; 6536 return false; 6537 } 6538 6539 static bool pathContainsInit(IndirectLocalPath &Path) { 6540 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6541 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6542 E.Kind == IndirectLocalPathEntry::VarInit; 6543 }); 6544 } 6545 6546 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6547 Expr *Init, LocalVisitor Visit, 6548 bool RevisitSubinits); 6549 6550 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6551 Expr *Init, ReferenceKind RK, 6552 LocalVisitor Visit); 6553 6554 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6555 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6556 if (!TSI) 6557 return false; 6558 // Don't declare this variable in the second operand of the for-statement; 6559 // GCC miscompiles that by ending its lifetime before evaluating the 6560 // third operand. See gcc.gnu.org/PR86769. 6561 AttributedTypeLoc ATL; 6562 for (TypeLoc TL = TSI->getTypeLoc(); 6563 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6564 TL = ATL.getModifiedLoc()) { 6565 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6566 return true; 6567 } 6568 return false; 6569 } 6570 6571 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6572 LocalVisitor Visit) { 6573 const FunctionDecl *Callee; 6574 ArrayRef<Expr*> Args; 6575 6576 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6577 Callee = CE->getDirectCallee(); 6578 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6579 } else { 6580 auto *CCE = cast<CXXConstructExpr>(Call); 6581 Callee = CCE->getConstructor(); 6582 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6583 } 6584 if (!Callee) 6585 return; 6586 6587 Expr *ObjectArg = nullptr; 6588 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6589 ObjectArg = Args[0]; 6590 Args = Args.slice(1); 6591 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6592 ObjectArg = MCE->getImplicitObjectArgument(); 6593 } 6594 6595 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6596 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6597 if (Arg->isGLValue()) 6598 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6599 Visit); 6600 else 6601 visitLocalsRetainedByInitializer(Path, Arg, Visit, true); 6602 Path.pop_back(); 6603 }; 6604 6605 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6606 VisitLifetimeBoundArg(Callee, ObjectArg); 6607 6608 for (unsigned I = 0, 6609 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6610 I != N; ++I) { 6611 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6612 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6613 } 6614 } 6615 6616 /// Visit the locals that would be reachable through a reference bound to the 6617 /// glvalue expression \c Init. 6618 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6619 Expr *Init, ReferenceKind RK, 6620 LocalVisitor Visit) { 6621 RevertToOldSizeRAII RAII(Path); 6622 6623 // Walk past any constructs which we can lifetime-extend across. 6624 Expr *Old; 6625 do { 6626 Old = Init; 6627 6628 if (auto *FE = dyn_cast<FullExpr>(Init)) 6629 Init = FE->getSubExpr(); 6630 6631 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6632 // If this is just redundant braces around an initializer, step over it. 6633 if (ILE->isTransparent()) 6634 Init = ILE->getInit(0); 6635 } 6636 6637 // Step over any subobject adjustments; we may have a materialized 6638 // temporary inside them. 6639 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6640 6641 // Per current approach for DR1376, look through casts to reference type 6642 // when performing lifetime extension. 6643 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6644 if (CE->getSubExpr()->isGLValue()) 6645 Init = CE->getSubExpr(); 6646 6647 // Per the current approach for DR1299, look through array element access 6648 // on array glvalues when performing lifetime extension. 6649 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6650 Init = ASE->getBase(); 6651 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6652 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6653 Init = ICE->getSubExpr(); 6654 else 6655 // We can't lifetime extend through this but we might still find some 6656 // retained temporaries. 6657 return visitLocalsRetainedByInitializer(Path, Init, Visit, true); 6658 } 6659 6660 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6661 // constructor inherits one as an implicit mem-initializer. 6662 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6663 Path.push_back( 6664 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6665 Init = DIE->getExpr(); 6666 } 6667 } while (Init != Old); 6668 6669 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6670 if (Visit(Path, Local(MTE), RK)) 6671 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit, 6672 true); 6673 } 6674 6675 if (isa<CallExpr>(Init)) 6676 return visitLifetimeBoundArguments(Path, Init, Visit); 6677 6678 switch (Init->getStmtClass()) { 6679 case Stmt::DeclRefExprClass: { 6680 // If we find the name of a local non-reference parameter, we could have a 6681 // lifetime problem. 6682 auto *DRE = cast<DeclRefExpr>(Init); 6683 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6684 if (VD && VD->hasLocalStorage() && 6685 !DRE->refersToEnclosingVariableOrCapture()) { 6686 if (!VD->getType()->isReferenceType()) { 6687 Visit(Path, Local(DRE), RK); 6688 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6689 // The lifetime of a reference parameter is unknown; assume it's OK 6690 // for now. 6691 break; 6692 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6693 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6694 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6695 RK_ReferenceBinding, Visit); 6696 } 6697 } 6698 break; 6699 } 6700 6701 case Stmt::UnaryOperatorClass: { 6702 // The only unary operator that make sense to handle here 6703 // is Deref. All others don't resolve to a "name." This includes 6704 // handling all sorts of rvalues passed to a unary operator. 6705 const UnaryOperator *U = cast<UnaryOperator>(Init); 6706 if (U->getOpcode() == UO_Deref) 6707 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); 6708 break; 6709 } 6710 6711 case Stmt::OMPArraySectionExprClass: { 6712 visitLocalsRetainedByInitializer( 6713 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true); 6714 break; 6715 } 6716 6717 case Stmt::ConditionalOperatorClass: 6718 case Stmt::BinaryConditionalOperatorClass: { 6719 auto *C = cast<AbstractConditionalOperator>(Init); 6720 if (!C->getTrueExpr()->getType()->isVoidType()) 6721 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); 6722 if (!C->getFalseExpr()->getType()->isVoidType()) 6723 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); 6724 break; 6725 } 6726 6727 // FIXME: Visit the left-hand side of an -> or ->*. 6728 6729 default: 6730 break; 6731 } 6732 } 6733 6734 /// Visit the locals that would be reachable through an object initialized by 6735 /// the prvalue expression \c Init. 6736 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6737 Expr *Init, LocalVisitor Visit, 6738 bool RevisitSubinits) { 6739 RevertToOldSizeRAII RAII(Path); 6740 6741 Expr *Old; 6742 do { 6743 Old = Init; 6744 6745 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6746 // constructor inherits one as an implicit mem-initializer. 6747 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6748 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6749 Init = DIE->getExpr(); 6750 } 6751 6752 if (auto *FE = dyn_cast<FullExpr>(Init)) 6753 Init = FE->getSubExpr(); 6754 6755 // Dig out the expression which constructs the extended temporary. 6756 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6757 6758 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 6759 Init = BTE->getSubExpr(); 6760 6761 Init = Init->IgnoreParens(); 6762 6763 // Step over value-preserving rvalue casts. 6764 if (auto *CE = dyn_cast<CastExpr>(Init)) { 6765 switch (CE->getCastKind()) { 6766 case CK_LValueToRValue: 6767 // If we can match the lvalue to a const object, we can look at its 6768 // initializer. 6769 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 6770 return visitLocalsRetainedByReferenceBinding( 6771 Path, Init, RK_ReferenceBinding, 6772 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 6773 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 6774 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6775 if (VD && VD->getType().isConstQualified() && VD->getInit() && 6776 !isVarOnPath(Path, VD)) { 6777 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6778 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true); 6779 } 6780 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 6781 if (MTE->getType().isConstQualified()) 6782 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), 6783 Visit, true); 6784 } 6785 return false; 6786 }); 6787 6788 // We assume that objects can be retained by pointers cast to integers, 6789 // but not if the integer is cast to floating-point type or to _Complex. 6790 // We assume that casts to 'bool' do not preserve enough information to 6791 // retain a local object. 6792 case CK_NoOp: 6793 case CK_BitCast: 6794 case CK_BaseToDerived: 6795 case CK_DerivedToBase: 6796 case CK_UncheckedDerivedToBase: 6797 case CK_Dynamic: 6798 case CK_ToUnion: 6799 case CK_UserDefinedConversion: 6800 case CK_ConstructorConversion: 6801 case CK_IntegralToPointer: 6802 case CK_PointerToIntegral: 6803 case CK_VectorSplat: 6804 case CK_IntegralCast: 6805 case CK_CPointerToObjCPointerCast: 6806 case CK_BlockPointerToObjCPointerCast: 6807 case CK_AnyPointerToBlockPointerCast: 6808 case CK_AddressSpaceConversion: 6809 break; 6810 6811 case CK_ArrayToPointerDecay: 6812 // Model array-to-pointer decay as taking the address of the array 6813 // lvalue. 6814 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 6815 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 6816 RK_ReferenceBinding, Visit); 6817 6818 default: 6819 return; 6820 } 6821 6822 Init = CE->getSubExpr(); 6823 } 6824 } while (Old != Init); 6825 6826 // C++17 [dcl.init.list]p6: 6827 // initializing an initializer_list object from the array extends the 6828 // lifetime of the array exactly like binding a reference to a temporary. 6829 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 6830 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 6831 RK_StdInitializerList, Visit); 6832 6833 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6834 // We already visited the elements of this initializer list while 6835 // performing the initialization. Don't visit them again unless we've 6836 // changed the lifetime of the initialized entity. 6837 if (!RevisitSubinits) 6838 return; 6839 6840 if (ILE->isTransparent()) 6841 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 6842 RevisitSubinits); 6843 6844 if (ILE->getType()->isArrayType()) { 6845 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 6846 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 6847 RevisitSubinits); 6848 return; 6849 } 6850 6851 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 6852 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 6853 6854 // If we lifetime-extend a braced initializer which is initializing an 6855 // aggregate, and that aggregate contains reference members which are 6856 // bound to temporaries, those temporaries are also lifetime-extended. 6857 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 6858 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 6859 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 6860 RK_ReferenceBinding, Visit); 6861 else { 6862 unsigned Index = 0; 6863 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 6864 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 6865 RevisitSubinits); 6866 for (const auto *I : RD->fields()) { 6867 if (Index >= ILE->getNumInits()) 6868 break; 6869 if (I->isUnnamedBitfield()) 6870 continue; 6871 Expr *SubInit = ILE->getInit(Index); 6872 if (I->getType()->isReferenceType()) 6873 visitLocalsRetainedByReferenceBinding(Path, SubInit, 6874 RK_ReferenceBinding, Visit); 6875 else 6876 // This might be either aggregate-initialization of a member or 6877 // initialization of a std::initializer_list object. Regardless, 6878 // we should recursively lifetime-extend that initializer. 6879 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 6880 RevisitSubinits); 6881 ++Index; 6882 } 6883 } 6884 } 6885 return; 6886 } 6887 6888 // The lifetime of an init-capture is that of the closure object constructed 6889 // by a lambda-expression. 6890 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 6891 for (Expr *E : LE->capture_inits()) { 6892 if (!E) 6893 continue; 6894 if (E->isGLValue()) 6895 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 6896 Visit); 6897 else 6898 visitLocalsRetainedByInitializer(Path, E, Visit, true); 6899 } 6900 } 6901 6902 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) 6903 return visitLifetimeBoundArguments(Path, Init, Visit); 6904 6905 switch (Init->getStmtClass()) { 6906 case Stmt::UnaryOperatorClass: { 6907 auto *UO = cast<UnaryOperator>(Init); 6908 // If the initializer is the address of a local, we could have a lifetime 6909 // problem. 6910 if (UO->getOpcode() == UO_AddrOf) { 6911 // If this is &rvalue, then it's ill-formed and we have already diagnosed 6912 // it. Don't produce a redundant warning about the lifetime of the 6913 // temporary. 6914 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 6915 return; 6916 6917 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 6918 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 6919 RK_ReferenceBinding, Visit); 6920 } 6921 break; 6922 } 6923 6924 case Stmt::BinaryOperatorClass: { 6925 // Handle pointer arithmetic. 6926 auto *BO = cast<BinaryOperator>(Init); 6927 BinaryOperatorKind BOK = BO->getOpcode(); 6928 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 6929 break; 6930 6931 if (BO->getLHS()->getType()->isPointerType()) 6932 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); 6933 else if (BO->getRHS()->getType()->isPointerType()) 6934 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); 6935 break; 6936 } 6937 6938 case Stmt::ConditionalOperatorClass: 6939 case Stmt::BinaryConditionalOperatorClass: { 6940 auto *C = cast<AbstractConditionalOperator>(Init); 6941 // In C++, we can have a throw-expression operand, which has 'void' type 6942 // and isn't interesting from a lifetime perspective. 6943 if (!C->getTrueExpr()->getType()->isVoidType()) 6944 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); 6945 if (!C->getFalseExpr()->getType()->isVoidType()) 6946 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); 6947 break; 6948 } 6949 6950 case Stmt::BlockExprClass: 6951 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 6952 // This is a local block, whose lifetime is that of the function. 6953 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 6954 } 6955 break; 6956 6957 case Stmt::AddrLabelExprClass: 6958 // We want to warn if the address of a label would escape the function. 6959 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 6960 break; 6961 6962 default: 6963 break; 6964 } 6965 } 6966 6967 /// Determine whether this is an indirect path to a temporary that we are 6968 /// supposed to lifetime-extend along (but don't). 6969 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 6970 for (auto Elem : Path) { 6971 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 6972 return false; 6973 } 6974 return true; 6975 } 6976 6977 /// Find the range for the first interesting entry in the path at or after I. 6978 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 6979 Expr *E) { 6980 for (unsigned N = Path.size(); I != N; ++I) { 6981 switch (Path[I].Kind) { 6982 case IndirectLocalPathEntry::AddressOf: 6983 case IndirectLocalPathEntry::LValToRVal: 6984 case IndirectLocalPathEntry::LifetimeBoundCall: 6985 // These exist primarily to mark the path as not permitting or 6986 // supporting lifetime extension. 6987 break; 6988 6989 case IndirectLocalPathEntry::DefaultInit: 6990 case IndirectLocalPathEntry::VarInit: 6991 return Path[I].E->getSourceRange(); 6992 } 6993 } 6994 return E->getSourceRange(); 6995 } 6996 6997 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 6998 Expr *Init) { 6999 LifetimeResult LR = getEntityLifetime(&Entity); 7000 LifetimeKind LK = LR.getInt(); 7001 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7002 7003 // If this entity doesn't have an interesting lifetime, don't bother looking 7004 // for temporaries within its initializer. 7005 if (LK == LK_FullExpression) 7006 return; 7007 7008 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7009 ReferenceKind RK) -> bool { 7010 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7011 SourceLocation DiagLoc = DiagRange.getBegin(); 7012 7013 switch (LK) { 7014 case LK_FullExpression: 7015 llvm_unreachable("already handled this"); 7016 7017 case LK_Extended: { 7018 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7019 if (!MTE) { 7020 // The initialized entity has lifetime beyond the full-expression, 7021 // and the local entity does too, so don't warn. 7022 // 7023 // FIXME: We should consider warning if a static / thread storage 7024 // duration variable retains an automatic storage duration local. 7025 return false; 7026 } 7027 7028 // Lifetime-extend the temporary. 7029 if (Path.empty()) { 7030 // Update the storage duration of the materialized temporary. 7031 // FIXME: Rebuild the expression instead of mutating it. 7032 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7033 ExtendingEntity->allocateManglingNumber()); 7034 // Also visit the temporaries lifetime-extended by this initializer. 7035 return true; 7036 } 7037 7038 if (shouldLifetimeExtendThroughPath(Path)) { 7039 // We're supposed to lifetime-extend the temporary along this path (per 7040 // the resolution of DR1815), but we don't support that yet. 7041 // 7042 // FIXME: Properly handle this situation. Perhaps the easiest approach 7043 // would be to clone the initializer expression on each use that would 7044 // lifetime extend its temporaries. 7045 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7046 << RK << DiagRange; 7047 } else { 7048 // If the path goes through the initialization of a variable or field, 7049 // it can't possibly reach a temporary created in this full-expression. 7050 // We will have already diagnosed any problems with the initializer. 7051 if (pathContainsInit(Path)) 7052 return false; 7053 7054 Diag(DiagLoc, diag::warn_dangling_variable) 7055 << RK << !Entity.getParent() 7056 << ExtendingEntity->getDecl()->isImplicit() 7057 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7058 } 7059 break; 7060 } 7061 7062 case LK_MemInitializer: { 7063 if (isa<MaterializeTemporaryExpr>(L)) { 7064 // Under C++ DR1696, if a mem-initializer (or a default member 7065 // initializer used by the absence of one) would lifetime-extend a 7066 // temporary, the program is ill-formed. 7067 if (auto *ExtendingDecl = 7068 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7069 bool IsSubobjectMember = ExtendingEntity != &Entity; 7070 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7071 ? diag::err_dangling_member 7072 : diag::warn_dangling_member) 7073 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7074 // Don't bother adding a note pointing to the field if we're inside 7075 // its default member initializer; our primary diagnostic points to 7076 // the same place in that case. 7077 if (Path.empty() || 7078 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7079 Diag(ExtendingDecl->getLocation(), 7080 diag::note_lifetime_extending_member_declared_here) 7081 << RK << IsSubobjectMember; 7082 } 7083 } else { 7084 // We have a mem-initializer but no particular field within it; this 7085 // is either a base class or a delegating initializer directly 7086 // initializing the base-class from something that doesn't live long 7087 // enough. 7088 // 7089 // FIXME: Warn on this. 7090 return false; 7091 } 7092 } else { 7093 // Paths via a default initializer can only occur during error recovery 7094 // (there's no other way that a default initializer can refer to a 7095 // local). Don't produce a bogus warning on those cases. 7096 if (pathContainsInit(Path)) 7097 return false; 7098 7099 auto *DRE = dyn_cast<DeclRefExpr>(L); 7100 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7101 if (!VD) { 7102 // A member was initialized to a local block. 7103 // FIXME: Warn on this. 7104 return false; 7105 } 7106 7107 if (auto *Member = 7108 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7109 bool IsPointer = Member->getType()->isAnyPointerType(); 7110 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7111 : diag::warn_bind_ref_member_to_parameter) 7112 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7113 Diag(Member->getLocation(), 7114 diag::note_ref_or_ptr_member_declared_here) 7115 << (unsigned)IsPointer; 7116 } 7117 } 7118 break; 7119 } 7120 7121 case LK_New: 7122 if (isa<MaterializeTemporaryExpr>(L)) { 7123 Diag(DiagLoc, RK == RK_ReferenceBinding 7124 ? diag::warn_new_dangling_reference 7125 : diag::warn_new_dangling_initializer_list) 7126 << !Entity.getParent() << DiagRange; 7127 } else { 7128 // We can't determine if the allocation outlives the local declaration. 7129 return false; 7130 } 7131 break; 7132 7133 case LK_Return: 7134 case LK_StmtExprResult: 7135 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7136 // We can't determine if the local variable outlives the statement 7137 // expression. 7138 if (LK == LK_StmtExprResult) 7139 return false; 7140 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7141 << Entity.getType()->isReferenceType() << DRE->getDecl() 7142 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7143 } else if (isa<BlockExpr>(L)) { 7144 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7145 } else if (isa<AddrLabelExpr>(L)) { 7146 // Don't warn when returning a label from a statement expression. 7147 // Leaving the scope doesn't end its lifetime. 7148 if (LK == LK_StmtExprResult) 7149 return false; 7150 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7151 } else { 7152 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7153 << Entity.getType()->isReferenceType() << DiagRange; 7154 } 7155 break; 7156 } 7157 7158 for (unsigned I = 0; I != Path.size(); ++I) { 7159 auto Elem = Path[I]; 7160 7161 switch (Elem.Kind) { 7162 case IndirectLocalPathEntry::AddressOf: 7163 case IndirectLocalPathEntry::LValToRVal: 7164 // These exist primarily to mark the path as not permitting or 7165 // supporting lifetime extension. 7166 break; 7167 7168 case IndirectLocalPathEntry::LifetimeBoundCall: 7169 // FIXME: Consider adding a note for this. 7170 break; 7171 7172 case IndirectLocalPathEntry::DefaultInit: { 7173 auto *FD = cast<FieldDecl>(Elem.D); 7174 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7175 << FD << nextPathEntryRange(Path, I + 1, L); 7176 break; 7177 } 7178 7179 case IndirectLocalPathEntry::VarInit: 7180 const VarDecl *VD = cast<VarDecl>(Elem.D); 7181 Diag(VD->getLocation(), diag::note_local_var_initializer) 7182 << VD->getType()->isReferenceType() 7183 << VD->isImplicit() << VD->getDeclName() 7184 << nextPathEntryRange(Path, I + 1, L); 7185 break; 7186 } 7187 } 7188 7189 // We didn't lifetime-extend, so don't go any further; we don't need more 7190 // warnings or errors on inner temporaries within this one's initializer. 7191 return false; 7192 }; 7193 7194 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7195 if (Init->isGLValue()) 7196 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7197 TemporaryVisitor); 7198 else 7199 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false); 7200 } 7201 7202 static void DiagnoseNarrowingInInitList(Sema &S, 7203 const ImplicitConversionSequence &ICS, 7204 QualType PreNarrowingType, 7205 QualType EntityType, 7206 const Expr *PostInit); 7207 7208 /// Provide warnings when std::move is used on construction. 7209 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7210 bool IsReturnStmt) { 7211 if (!InitExpr) 7212 return; 7213 7214 if (S.inTemplateInstantiation()) 7215 return; 7216 7217 QualType DestType = InitExpr->getType(); 7218 if (!DestType->isRecordType()) 7219 return; 7220 7221 unsigned DiagID = 0; 7222 if (IsReturnStmt) { 7223 const CXXConstructExpr *CCE = 7224 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7225 if (!CCE || CCE->getNumArgs() != 1) 7226 return; 7227 7228 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7229 return; 7230 7231 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7232 } 7233 7234 // Find the std::move call and get the argument. 7235 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7236 if (!CE || !CE->isCallToStdMove()) 7237 return; 7238 7239 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7240 7241 if (IsReturnStmt) { 7242 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7243 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7244 return; 7245 7246 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7247 if (!VD || !VD->hasLocalStorage()) 7248 return; 7249 7250 // __block variables are not moved implicitly. 7251 if (VD->hasAttr<BlocksAttr>()) 7252 return; 7253 7254 QualType SourceType = VD->getType(); 7255 if (!SourceType->isRecordType()) 7256 return; 7257 7258 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7259 return; 7260 } 7261 7262 // If we're returning a function parameter, copy elision 7263 // is not possible. 7264 if (isa<ParmVarDecl>(VD)) 7265 DiagID = diag::warn_redundant_move_on_return; 7266 else 7267 DiagID = diag::warn_pessimizing_move_on_return; 7268 } else { 7269 DiagID = diag::warn_pessimizing_move_on_initialization; 7270 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7271 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7272 return; 7273 } 7274 7275 S.Diag(CE->getBeginLoc(), DiagID); 7276 7277 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7278 // is within a macro. 7279 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7280 if (CallBegin.isMacroID()) 7281 return; 7282 SourceLocation RParen = CE->getRParenLoc(); 7283 if (RParen.isMacroID()) 7284 return; 7285 SourceLocation LParen; 7286 SourceLocation ArgLoc = Arg->getBeginLoc(); 7287 7288 // Special testing for the argument location. Since the fix-it needs the 7289 // location right before the argument, the argument location can be in a 7290 // macro only if it is at the beginning of the macro. 7291 while (ArgLoc.isMacroID() && 7292 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7293 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7294 } 7295 7296 if (LParen.isMacroID()) 7297 return; 7298 7299 LParen = ArgLoc.getLocWithOffset(-1); 7300 7301 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7302 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7303 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7304 } 7305 7306 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7307 // Check to see if we are dereferencing a null pointer. If so, this is 7308 // undefined behavior, so warn about it. This only handles the pattern 7309 // "*null", which is a very syntactic check. 7310 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7311 if (UO->getOpcode() == UO_Deref && 7312 UO->getSubExpr()->IgnoreParenCasts()-> 7313 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7314 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7315 S.PDiag(diag::warn_binding_null_to_reference) 7316 << UO->getSubExpr()->getSourceRange()); 7317 } 7318 } 7319 7320 MaterializeTemporaryExpr * 7321 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7322 bool BoundToLvalueReference) { 7323 auto MTE = new (Context) 7324 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7325 7326 // Order an ExprWithCleanups for lifetime marks. 7327 // 7328 // TODO: It'll be good to have a single place to check the access of the 7329 // destructor and generate ExprWithCleanups for various uses. Currently these 7330 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7331 // but there may be a chance to merge them. 7332 Cleanup.setExprNeedsCleanups(false); 7333 return MTE; 7334 } 7335 7336 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7337 // In C++98, we don't want to implicitly create an xvalue. 7338 // FIXME: This means that AST consumers need to deal with "prvalues" that 7339 // denote materialized temporaries. Maybe we should add another ValueKind 7340 // for "xvalue pretending to be a prvalue" for C++98 support. 7341 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7342 return E; 7343 7344 // C++1z [conv.rval]/1: T shall be a complete type. 7345 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7346 // If so, we should check for a non-abstract class type here too. 7347 QualType T = E->getType(); 7348 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7349 return ExprError(); 7350 7351 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7352 } 7353 7354 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7355 ExprValueKind VK, 7356 CheckedConversionKind CCK) { 7357 7358 CastKind CK = CK_NoOp; 7359 7360 if (VK == VK_RValue) { 7361 auto PointeeTy = Ty->getPointeeType(); 7362 auto ExprPointeeTy = E->getType()->getPointeeType(); 7363 if (!PointeeTy.isNull() && 7364 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7365 CK = CK_AddressSpaceConversion; 7366 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7367 CK = CK_AddressSpaceConversion; 7368 } 7369 7370 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7371 } 7372 7373 ExprResult InitializationSequence::Perform(Sema &S, 7374 const InitializedEntity &Entity, 7375 const InitializationKind &Kind, 7376 MultiExprArg Args, 7377 QualType *ResultType) { 7378 if (Failed()) { 7379 Diagnose(S, Entity, Kind, Args); 7380 return ExprError(); 7381 } 7382 if (!ZeroInitializationFixit.empty()) { 7383 unsigned DiagID = diag::err_default_init_const; 7384 if (Decl *D = Entity.getDecl()) 7385 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7386 DiagID = diag::ext_default_init_const; 7387 7388 // The initialization would have succeeded with this fixit. Since the fixit 7389 // is on the error, we need to build a valid AST in this case, so this isn't 7390 // handled in the Failed() branch above. 7391 QualType DestType = Entity.getType(); 7392 S.Diag(Kind.getLocation(), DiagID) 7393 << DestType << (bool)DestType->getAs<RecordType>() 7394 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7395 ZeroInitializationFixit); 7396 } 7397 7398 if (getKind() == DependentSequence) { 7399 // If the declaration is a non-dependent, incomplete array type 7400 // that has an initializer, then its type will be completed once 7401 // the initializer is instantiated. 7402 if (ResultType && !Entity.getType()->isDependentType() && 7403 Args.size() == 1) { 7404 QualType DeclType = Entity.getType(); 7405 if (const IncompleteArrayType *ArrayT 7406 = S.Context.getAsIncompleteArrayType(DeclType)) { 7407 // FIXME: We don't currently have the ability to accurately 7408 // compute the length of an initializer list without 7409 // performing full type-checking of the initializer list 7410 // (since we have to determine where braces are implicitly 7411 // introduced and such). So, we fall back to making the array 7412 // type a dependently-sized array type with no specified 7413 // bound. 7414 if (isa<InitListExpr>((Expr *)Args[0])) { 7415 SourceRange Brackets; 7416 7417 // Scavange the location of the brackets from the entity, if we can. 7418 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7419 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7420 TypeLoc TL = TInfo->getTypeLoc(); 7421 if (IncompleteArrayTypeLoc ArrayLoc = 7422 TL.getAs<IncompleteArrayTypeLoc>()) 7423 Brackets = ArrayLoc.getBracketsRange(); 7424 } 7425 } 7426 7427 *ResultType 7428 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7429 /*NumElts=*/nullptr, 7430 ArrayT->getSizeModifier(), 7431 ArrayT->getIndexTypeCVRQualifiers(), 7432 Brackets); 7433 } 7434 7435 } 7436 } 7437 if (Kind.getKind() == InitializationKind::IK_Direct && 7438 !Kind.isExplicitCast()) { 7439 // Rebuild the ParenListExpr. 7440 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7441 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7442 Args); 7443 } 7444 assert(Kind.getKind() == InitializationKind::IK_Copy || 7445 Kind.isExplicitCast() || 7446 Kind.getKind() == InitializationKind::IK_DirectList); 7447 return ExprResult(Args[0]); 7448 } 7449 7450 // No steps means no initialization. 7451 if (Steps.empty()) 7452 return ExprResult((Expr *)nullptr); 7453 7454 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7455 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7456 !Entity.isParameterKind()) { 7457 // Produce a C++98 compatibility warning if we are initializing a reference 7458 // from an initializer list. For parameters, we produce a better warning 7459 // elsewhere. 7460 Expr *Init = Args[0]; 7461 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7462 << Init->getSourceRange(); 7463 } 7464 7465 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7466 QualType ETy = Entity.getType(); 7467 Qualifiers TyQualifiers = ETy.getQualifiers(); 7468 bool HasGlobalAS = TyQualifiers.hasAddressSpace() && 7469 TyQualifiers.getAddressSpace() == LangAS::opencl_global; 7470 7471 if (S.getLangOpts().OpenCLVersion >= 200 && 7472 ETy->isAtomicType() && !HasGlobalAS && 7473 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7474 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7475 << 1 7476 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7477 return ExprError(); 7478 } 7479 7480 QualType DestType = Entity.getType().getNonReferenceType(); 7481 // FIXME: Ugly hack around the fact that Entity.getType() is not 7482 // the same as Entity.getDecl()->getType() in cases involving type merging, 7483 // and we want latter when it makes sense. 7484 if (ResultType) 7485 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7486 Entity.getType(); 7487 7488 ExprResult CurInit((Expr *)nullptr); 7489 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7490 7491 // For initialization steps that start with a single initializer, 7492 // grab the only argument out the Args and place it into the "current" 7493 // initializer. 7494 switch (Steps.front().Kind) { 7495 case SK_ResolveAddressOfOverloadedFunction: 7496 case SK_CastDerivedToBaseRValue: 7497 case SK_CastDerivedToBaseXValue: 7498 case SK_CastDerivedToBaseLValue: 7499 case SK_BindReference: 7500 case SK_BindReferenceToTemporary: 7501 case SK_FinalCopy: 7502 case SK_ExtraneousCopyToTemporary: 7503 case SK_UserConversion: 7504 case SK_QualificationConversionLValue: 7505 case SK_QualificationConversionXValue: 7506 case SK_QualificationConversionRValue: 7507 case SK_AtomicConversion: 7508 case SK_LValueToRValue: 7509 case SK_ConversionSequence: 7510 case SK_ConversionSequenceNoNarrowing: 7511 case SK_ListInitialization: 7512 case SK_UnwrapInitList: 7513 case SK_RewrapInitList: 7514 case SK_CAssignment: 7515 case SK_StringInit: 7516 case SK_ObjCObjectConversion: 7517 case SK_ArrayLoopIndex: 7518 case SK_ArrayLoopInit: 7519 case SK_ArrayInit: 7520 case SK_GNUArrayInit: 7521 case SK_ParenthesizedArrayInit: 7522 case SK_PassByIndirectCopyRestore: 7523 case SK_PassByIndirectRestore: 7524 case SK_ProduceObjCObject: 7525 case SK_StdInitializerList: 7526 case SK_OCLSamplerInit: 7527 case SK_OCLZeroOpaqueType: { 7528 assert(Args.size() == 1); 7529 CurInit = Args[0]; 7530 if (!CurInit.get()) return ExprError(); 7531 break; 7532 } 7533 7534 case SK_ConstructorInitialization: 7535 case SK_ConstructorInitializationFromList: 7536 case SK_StdInitializerListConstructorCall: 7537 case SK_ZeroInitialization: 7538 break; 7539 } 7540 7541 // Promote from an unevaluated context to an unevaluated list context in 7542 // C++11 list-initialization; we need to instantiate entities usable in 7543 // constant expressions here in order to perform narrowing checks =( 7544 EnterExpressionEvaluationContext Evaluated( 7545 S, EnterExpressionEvaluationContext::InitList, 7546 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7547 7548 // C++ [class.abstract]p2: 7549 // no objects of an abstract class can be created except as subobjects 7550 // of a class derived from it 7551 auto checkAbstractType = [&](QualType T) -> bool { 7552 if (Entity.getKind() == InitializedEntity::EK_Base || 7553 Entity.getKind() == InitializedEntity::EK_Delegating) 7554 return false; 7555 return S.RequireNonAbstractType(Kind.getLocation(), T, 7556 diag::err_allocation_of_abstract_type); 7557 }; 7558 7559 // Walk through the computed steps for the initialization sequence, 7560 // performing the specified conversions along the way. 7561 bool ConstructorInitRequiresZeroInit = false; 7562 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7563 Step != StepEnd; ++Step) { 7564 if (CurInit.isInvalid()) 7565 return ExprError(); 7566 7567 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7568 7569 switch (Step->Kind) { 7570 case SK_ResolveAddressOfOverloadedFunction: 7571 // Overload resolution determined which function invoke; update the 7572 // initializer to reflect that choice. 7573 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7574 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7575 return ExprError(); 7576 CurInit = S.FixOverloadedFunctionReference(CurInit, 7577 Step->Function.FoundDecl, 7578 Step->Function.Function); 7579 break; 7580 7581 case SK_CastDerivedToBaseRValue: 7582 case SK_CastDerivedToBaseXValue: 7583 case SK_CastDerivedToBaseLValue: { 7584 // We have a derived-to-base cast that produces either an rvalue or an 7585 // lvalue. Perform that cast. 7586 7587 CXXCastPath BasePath; 7588 7589 // Casts to inaccessible base classes are allowed with C-style casts. 7590 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7591 if (S.CheckDerivedToBaseConversion( 7592 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7593 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7594 return ExprError(); 7595 7596 ExprValueKind VK = 7597 Step->Kind == SK_CastDerivedToBaseLValue ? 7598 VK_LValue : 7599 (Step->Kind == SK_CastDerivedToBaseXValue ? 7600 VK_XValue : 7601 VK_RValue); 7602 CurInit = 7603 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7604 CurInit.get(), &BasePath, VK); 7605 break; 7606 } 7607 7608 case SK_BindReference: 7609 // Reference binding does not have any corresponding ASTs. 7610 7611 // Check exception specifications 7612 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7613 return ExprError(); 7614 7615 // We don't check for e.g. function pointers here, since address 7616 // availability checks should only occur when the function first decays 7617 // into a pointer or reference. 7618 if (CurInit.get()->getType()->isFunctionProtoType()) { 7619 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7620 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7621 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7622 DRE->getBeginLoc())) 7623 return ExprError(); 7624 } 7625 } 7626 } 7627 7628 CheckForNullPointerDereference(S, CurInit.get()); 7629 break; 7630 7631 case SK_BindReferenceToTemporary: { 7632 // Make sure the "temporary" is actually an rvalue. 7633 assert(CurInit.get()->isRValue() && "not a temporary"); 7634 7635 // Check exception specifications 7636 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7637 return ExprError(); 7638 7639 // Materialize the temporary into memory. 7640 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 7641 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 7642 CurInit = MTE; 7643 7644 // If we're extending this temporary to automatic storage duration -- we 7645 // need to register its cleanup during the full-expression's cleanups. 7646 if (MTE->getStorageDuration() == SD_Automatic && 7647 MTE->getType().isDestructedType()) 7648 S.Cleanup.setExprNeedsCleanups(true); 7649 break; 7650 } 7651 7652 case SK_FinalCopy: 7653 if (checkAbstractType(Step->Type)) 7654 return ExprError(); 7655 7656 // If the overall initialization is initializing a temporary, we already 7657 // bound our argument if it was necessary to do so. If not (if we're 7658 // ultimately initializing a non-temporary), our argument needs to be 7659 // bound since it's initializing a function parameter. 7660 // FIXME: This is a mess. Rationalize temporary destruction. 7661 if (!shouldBindAsTemporary(Entity)) 7662 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7663 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7664 /*IsExtraneousCopy=*/false); 7665 break; 7666 7667 case SK_ExtraneousCopyToTemporary: 7668 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7669 /*IsExtraneousCopy=*/true); 7670 break; 7671 7672 case SK_UserConversion: { 7673 // We have a user-defined conversion that invokes either a constructor 7674 // or a conversion function. 7675 CastKind CastKind; 7676 FunctionDecl *Fn = Step->Function.Function; 7677 DeclAccessPair FoundFn = Step->Function.FoundDecl; 7678 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 7679 bool CreatedObject = false; 7680 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 7681 // Build a call to the selected constructor. 7682 SmallVector<Expr*, 8> ConstructorArgs; 7683 SourceLocation Loc = CurInit.get()->getBeginLoc(); 7684 7685 // Determine the arguments required to actually perform the constructor 7686 // call. 7687 Expr *Arg = CurInit.get(); 7688 if (S.CompleteConstructorCall(Constructor, 7689 MultiExprArg(&Arg, 1), 7690 Loc, ConstructorArgs)) 7691 return ExprError(); 7692 7693 // Build an expression that constructs a temporary. 7694 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 7695 FoundFn, Constructor, 7696 ConstructorArgs, 7697 HadMultipleCandidates, 7698 /*ListInit*/ false, 7699 /*StdInitListInit*/ false, 7700 /*ZeroInit*/ false, 7701 CXXConstructExpr::CK_Complete, 7702 SourceRange()); 7703 if (CurInit.isInvalid()) 7704 return ExprError(); 7705 7706 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 7707 Entity); 7708 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7709 return ExprError(); 7710 7711 CastKind = CK_ConstructorConversion; 7712 CreatedObject = true; 7713 } else { 7714 // Build a call to the conversion function. 7715 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 7716 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 7717 FoundFn); 7718 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7719 return ExprError(); 7720 7721 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 7722 HadMultipleCandidates); 7723 if (CurInit.isInvalid()) 7724 return ExprError(); 7725 7726 CastKind = CK_UserDefinedConversion; 7727 CreatedObject = Conversion->getReturnType()->isRecordType(); 7728 } 7729 7730 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 7731 return ExprError(); 7732 7733 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 7734 CastKind, CurInit.get(), nullptr, 7735 CurInit.get()->getValueKind()); 7736 7737 if (shouldBindAsTemporary(Entity)) 7738 // The overall entity is temporary, so this expression should be 7739 // destroyed at the end of its full-expression. 7740 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 7741 else if (CreatedObject && shouldDestroyEntity(Entity)) { 7742 // The object outlasts the full-expression, but we need to prepare for 7743 // a destructor being run on it. 7744 // FIXME: It makes no sense to do this here. This should happen 7745 // regardless of how we initialized the entity. 7746 QualType T = CurInit.get()->getType(); 7747 if (const RecordType *Record = T->getAs<RecordType>()) { 7748 CXXDestructorDecl *Destructor 7749 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 7750 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 7751 S.PDiag(diag::err_access_dtor_temp) << T); 7752 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 7753 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 7754 return ExprError(); 7755 } 7756 } 7757 break; 7758 } 7759 7760 case SK_QualificationConversionLValue: 7761 case SK_QualificationConversionXValue: 7762 case SK_QualificationConversionRValue: { 7763 // Perform a qualification conversion; these can never go wrong. 7764 ExprValueKind VK = 7765 Step->Kind == SK_QualificationConversionLValue 7766 ? VK_LValue 7767 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 7768 : VK_RValue); 7769 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 7770 break; 7771 } 7772 7773 case SK_AtomicConversion: { 7774 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 7775 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7776 CK_NonAtomicToAtomic, VK_RValue); 7777 break; 7778 } 7779 7780 case SK_LValueToRValue: { 7781 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 7782 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 7783 CK_LValueToRValue, CurInit.get(), 7784 /*BasePath=*/nullptr, VK_RValue); 7785 break; 7786 } 7787 7788 case SK_ConversionSequence: 7789 case SK_ConversionSequenceNoNarrowing: { 7790 if (const auto *FromPtrType = 7791 CurInit.get()->getType()->getAs<PointerType>()) { 7792 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 7793 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 7794 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 7795 S.Diag(CurInit.get()->getExprLoc(), 7796 diag::warn_noderef_to_dereferenceable_pointer) 7797 << CurInit.get()->getSourceRange(); 7798 } 7799 } 7800 } 7801 7802 Sema::CheckedConversionKind CCK 7803 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 7804 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 7805 : Kind.isExplicitCast()? Sema::CCK_OtherCast 7806 : Sema::CCK_ImplicitConversion; 7807 ExprResult CurInitExprRes = 7808 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 7809 getAssignmentAction(Entity), CCK); 7810 if (CurInitExprRes.isInvalid()) 7811 return ExprError(); 7812 7813 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 7814 7815 CurInit = CurInitExprRes; 7816 7817 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 7818 S.getLangOpts().CPlusPlus) 7819 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 7820 CurInit.get()); 7821 7822 break; 7823 } 7824 7825 case SK_ListInitialization: { 7826 if (checkAbstractType(Step->Type)) 7827 return ExprError(); 7828 7829 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 7830 // If we're not initializing the top-level entity, we need to create an 7831 // InitializeTemporary entity for our target type. 7832 QualType Ty = Step->Type; 7833 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 7834 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 7835 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 7836 InitListChecker PerformInitList(S, InitEntity, 7837 InitList, Ty, /*VerifyOnly=*/false, 7838 /*TreatUnavailableAsInvalid=*/false); 7839 if (PerformInitList.HadError()) 7840 return ExprError(); 7841 7842 // Hack: We must update *ResultType if available in order to set the 7843 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 7844 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 7845 if (ResultType && 7846 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 7847 if ((*ResultType)->isRValueReferenceType()) 7848 Ty = S.Context.getRValueReferenceType(Ty); 7849 else if ((*ResultType)->isLValueReferenceType()) 7850 Ty = S.Context.getLValueReferenceType(Ty, 7851 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 7852 *ResultType = Ty; 7853 } 7854 7855 InitListExpr *StructuredInitList = 7856 PerformInitList.getFullyStructuredList(); 7857 CurInit.get(); 7858 CurInit = shouldBindAsTemporary(InitEntity) 7859 ? S.MaybeBindToTemporary(StructuredInitList) 7860 : StructuredInitList; 7861 break; 7862 } 7863 7864 case SK_ConstructorInitializationFromList: { 7865 if (checkAbstractType(Step->Type)) 7866 return ExprError(); 7867 7868 // When an initializer list is passed for a parameter of type "reference 7869 // to object", we don't get an EK_Temporary entity, but instead an 7870 // EK_Parameter entity with reference type. 7871 // FIXME: This is a hack. What we really should do is create a user 7872 // conversion step for this case, but this makes it considerably more 7873 // complicated. For now, this will do. 7874 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7875 Entity.getType().getNonReferenceType()); 7876 bool UseTemporary = Entity.getType()->isReferenceType(); 7877 assert(Args.size() == 1 && "expected a single argument for list init"); 7878 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7879 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 7880 << InitList->getSourceRange(); 7881 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 7882 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 7883 Entity, 7884 Kind, Arg, *Step, 7885 ConstructorInitRequiresZeroInit, 7886 /*IsListInitialization*/true, 7887 /*IsStdInitListInit*/false, 7888 InitList->getLBraceLoc(), 7889 InitList->getRBraceLoc()); 7890 break; 7891 } 7892 7893 case SK_UnwrapInitList: 7894 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 7895 break; 7896 7897 case SK_RewrapInitList: { 7898 Expr *E = CurInit.get(); 7899 InitListExpr *Syntactic = Step->WrappingSyntacticList; 7900 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 7901 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 7902 ILE->setSyntacticForm(Syntactic); 7903 ILE->setType(E->getType()); 7904 ILE->setValueKind(E->getValueKind()); 7905 CurInit = ILE; 7906 break; 7907 } 7908 7909 case SK_ConstructorInitialization: 7910 case SK_StdInitializerListConstructorCall: { 7911 if (checkAbstractType(Step->Type)) 7912 return ExprError(); 7913 7914 // When an initializer list is passed for a parameter of type "reference 7915 // to object", we don't get an EK_Temporary entity, but instead an 7916 // EK_Parameter entity with reference type. 7917 // FIXME: This is a hack. What we really should do is create a user 7918 // conversion step for this case, but this makes it considerably more 7919 // complicated. For now, this will do. 7920 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7921 Entity.getType().getNonReferenceType()); 7922 bool UseTemporary = Entity.getType()->isReferenceType(); 7923 bool IsStdInitListInit = 7924 Step->Kind == SK_StdInitializerListConstructorCall; 7925 Expr *Source = CurInit.get(); 7926 SourceRange Range = Kind.hasParenOrBraceRange() 7927 ? Kind.getParenOrBraceRange() 7928 : SourceRange(); 7929 CurInit = PerformConstructorInitialization( 7930 S, UseTemporary ? TempEntity : Entity, Kind, 7931 Source ? MultiExprArg(Source) : Args, *Step, 7932 ConstructorInitRequiresZeroInit, 7933 /*IsListInitialization*/ IsStdInitListInit, 7934 /*IsStdInitListInitialization*/ IsStdInitListInit, 7935 /*LBraceLoc*/ Range.getBegin(), 7936 /*RBraceLoc*/ Range.getEnd()); 7937 break; 7938 } 7939 7940 case SK_ZeroInitialization: { 7941 step_iterator NextStep = Step; 7942 ++NextStep; 7943 if (NextStep != StepEnd && 7944 (NextStep->Kind == SK_ConstructorInitialization || 7945 NextStep->Kind == SK_ConstructorInitializationFromList)) { 7946 // The need for zero-initialization is recorded directly into 7947 // the call to the object's constructor within the next step. 7948 ConstructorInitRequiresZeroInit = true; 7949 } else if (Kind.getKind() == InitializationKind::IK_Value && 7950 S.getLangOpts().CPlusPlus && 7951 !Kind.isImplicitValueInit()) { 7952 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 7953 if (!TSInfo) 7954 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 7955 Kind.getRange().getBegin()); 7956 7957 CurInit = new (S.Context) CXXScalarValueInitExpr( 7958 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 7959 Kind.getRange().getEnd()); 7960 } else { 7961 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 7962 } 7963 break; 7964 } 7965 7966 case SK_CAssignment: { 7967 QualType SourceType = CurInit.get()->getType(); 7968 7969 // Save off the initial CurInit in case we need to emit a diagnostic 7970 ExprResult InitialCurInit = CurInit; 7971 ExprResult Result = CurInit; 7972 Sema::AssignConvertType ConvTy = 7973 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 7974 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 7975 if (Result.isInvalid()) 7976 return ExprError(); 7977 CurInit = Result; 7978 7979 // If this is a call, allow conversion to a transparent union. 7980 ExprResult CurInitExprRes = CurInit; 7981 if (ConvTy != Sema::Compatible && 7982 Entity.isParameterKind() && 7983 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 7984 == Sema::Compatible) 7985 ConvTy = Sema::Compatible; 7986 if (CurInitExprRes.isInvalid()) 7987 return ExprError(); 7988 CurInit = CurInitExprRes; 7989 7990 bool Complained; 7991 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 7992 Step->Type, SourceType, 7993 InitialCurInit.get(), 7994 getAssignmentAction(Entity, true), 7995 &Complained)) { 7996 PrintInitLocationNote(S, Entity); 7997 return ExprError(); 7998 } else if (Complained) 7999 PrintInitLocationNote(S, Entity); 8000 break; 8001 } 8002 8003 case SK_StringInit: { 8004 QualType Ty = Step->Type; 8005 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8006 S.Context.getAsArrayType(Ty), S); 8007 break; 8008 } 8009 8010 case SK_ObjCObjectConversion: 8011 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8012 CK_ObjCObjectLValueCast, 8013 CurInit.get()->getValueKind()); 8014 break; 8015 8016 case SK_ArrayLoopIndex: { 8017 Expr *Cur = CurInit.get(); 8018 Expr *BaseExpr = new (S.Context) 8019 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8020 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8021 Expr *IndexExpr = 8022 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8023 CurInit = S.CreateBuiltinArraySubscriptExpr( 8024 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8025 ArrayLoopCommonExprs.push_back(BaseExpr); 8026 break; 8027 } 8028 8029 case SK_ArrayLoopInit: { 8030 assert(!ArrayLoopCommonExprs.empty() && 8031 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8032 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8033 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8034 CurInit.get()); 8035 break; 8036 } 8037 8038 case SK_GNUArrayInit: 8039 // Okay: we checked everything before creating this step. Note that 8040 // this is a GNU extension. 8041 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8042 << Step->Type << CurInit.get()->getType() 8043 << CurInit.get()->getSourceRange(); 8044 updateGNUCompoundLiteralRValue(CurInit.get()); 8045 LLVM_FALLTHROUGH; 8046 case SK_ArrayInit: 8047 // If the destination type is an incomplete array type, update the 8048 // type accordingly. 8049 if (ResultType) { 8050 if (const IncompleteArrayType *IncompleteDest 8051 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8052 if (const ConstantArrayType *ConstantSource 8053 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8054 *ResultType = S.Context.getConstantArrayType( 8055 IncompleteDest->getElementType(), 8056 ConstantSource->getSize(), 8057 ArrayType::Normal, 0); 8058 } 8059 } 8060 } 8061 break; 8062 8063 case SK_ParenthesizedArrayInit: 8064 // Okay: we checked everything before creating this step. Note that 8065 // this is a GNU extension. 8066 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8067 << CurInit.get()->getSourceRange(); 8068 break; 8069 8070 case SK_PassByIndirectCopyRestore: 8071 case SK_PassByIndirectRestore: 8072 checkIndirectCopyRestoreSource(S, CurInit.get()); 8073 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8074 CurInit.get(), Step->Type, 8075 Step->Kind == SK_PassByIndirectCopyRestore); 8076 break; 8077 8078 case SK_ProduceObjCObject: 8079 CurInit = 8080 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8081 CurInit.get(), nullptr, VK_RValue); 8082 break; 8083 8084 case SK_StdInitializerList: { 8085 S.Diag(CurInit.get()->getExprLoc(), 8086 diag::warn_cxx98_compat_initializer_list_init) 8087 << CurInit.get()->getSourceRange(); 8088 8089 // Materialize the temporary into memory. 8090 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8091 CurInit.get()->getType(), CurInit.get(), 8092 /*BoundToLvalueReference=*/false); 8093 8094 // Wrap it in a construction of a std::initializer_list<T>. 8095 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8096 8097 // Bind the result, in case the library has given initializer_list a 8098 // non-trivial destructor. 8099 if (shouldBindAsTemporary(Entity)) 8100 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8101 break; 8102 } 8103 8104 case SK_OCLSamplerInit: { 8105 // Sampler initialization have 5 cases: 8106 // 1. function argument passing 8107 // 1a. argument is a file-scope variable 8108 // 1b. argument is a function-scope variable 8109 // 1c. argument is one of caller function's parameters 8110 // 2. variable initialization 8111 // 2a. initializing a file-scope variable 8112 // 2b. initializing a function-scope variable 8113 // 8114 // For file-scope variables, since they cannot be initialized by function 8115 // call of __translate_sampler_initializer in LLVM IR, their references 8116 // need to be replaced by a cast from their literal initializers to 8117 // sampler type. Since sampler variables can only be used in function 8118 // calls as arguments, we only need to replace them when handling the 8119 // argument passing. 8120 assert(Step->Type->isSamplerT() && 8121 "Sampler initialization on non-sampler type."); 8122 Expr *Init = CurInit.get(); 8123 QualType SourceType = Init->getType(); 8124 // Case 1 8125 if (Entity.isParameterKind()) { 8126 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8127 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8128 << SourceType; 8129 break; 8130 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8131 auto Var = cast<VarDecl>(DRE->getDecl()); 8132 // Case 1b and 1c 8133 // No cast from integer to sampler is needed. 8134 if (!Var->hasGlobalStorage()) { 8135 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8136 CK_LValueToRValue, Init, 8137 /*BasePath=*/nullptr, VK_RValue); 8138 break; 8139 } 8140 // Case 1a 8141 // For function call with a file-scope sampler variable as argument, 8142 // get the integer literal. 8143 // Do not diagnose if the file-scope variable does not have initializer 8144 // since this has already been diagnosed when parsing the variable 8145 // declaration. 8146 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8147 break; 8148 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8149 Var->getInit()))->getSubExpr(); 8150 SourceType = Init->getType(); 8151 } 8152 } else { 8153 // Case 2 8154 // Check initializer is 32 bit integer constant. 8155 // If the initializer is taken from global variable, do not diagnose since 8156 // this has already been done when parsing the variable declaration. 8157 if (!Init->isConstantInitializer(S.Context, false)) 8158 break; 8159 8160 if (!SourceType->isIntegerType() || 8161 32 != S.Context.getIntWidth(SourceType)) { 8162 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8163 << SourceType; 8164 break; 8165 } 8166 8167 Expr::EvalResult EVResult; 8168 Init->EvaluateAsInt(EVResult, S.Context); 8169 llvm::APSInt Result = EVResult.Val.getInt(); 8170 const uint64_t SamplerValue = Result.getLimitedValue(); 8171 // 32-bit value of sampler's initializer is interpreted as 8172 // bit-field with the following structure: 8173 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8174 // |31 6|5 4|3 1| 0| 8175 // This structure corresponds to enum values of sampler properties 8176 // defined in SPIR spec v1.2 and also opencl-c.h 8177 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8178 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8179 if (FilterMode != 1 && FilterMode != 2 && 8180 !S.getOpenCLOptions().isEnabled( 8181 "cl_intel_device_side_avc_motion_estimation")) 8182 S.Diag(Kind.getLocation(), 8183 diag::warn_sampler_initializer_invalid_bits) 8184 << "Filter Mode"; 8185 if (AddressingMode > 4) 8186 S.Diag(Kind.getLocation(), 8187 diag::warn_sampler_initializer_invalid_bits) 8188 << "Addressing Mode"; 8189 } 8190 8191 // Cases 1a, 2a and 2b 8192 // Insert cast from integer to sampler. 8193 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8194 CK_IntToOCLSampler); 8195 break; 8196 } 8197 case SK_OCLZeroOpaqueType: { 8198 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8199 Step->Type->isOCLIntelSubgroupAVCType()) && 8200 "Wrong type for initialization of OpenCL opaque type."); 8201 8202 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8203 CK_ZeroToOCLOpaqueType, 8204 CurInit.get()->getValueKind()); 8205 break; 8206 } 8207 } 8208 } 8209 8210 // Check whether the initializer has a shorter lifetime than the initialized 8211 // entity, and if not, either lifetime-extend or warn as appropriate. 8212 if (auto *Init = CurInit.get()) 8213 S.checkInitializerLifetime(Entity, Init); 8214 8215 // Diagnose non-fatal problems with the completed initialization. 8216 if (Entity.getKind() == InitializedEntity::EK_Member && 8217 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8218 S.CheckBitFieldInitialization(Kind.getLocation(), 8219 cast<FieldDecl>(Entity.getDecl()), 8220 CurInit.get()); 8221 8222 // Check for std::move on construction. 8223 if (const Expr *E = CurInit.get()) { 8224 CheckMoveOnConstruction(S, E, 8225 Entity.getKind() == InitializedEntity::EK_Result); 8226 } 8227 8228 return CurInit; 8229 } 8230 8231 /// Somewhere within T there is an uninitialized reference subobject. 8232 /// Dig it out and diagnose it. 8233 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8234 QualType T) { 8235 if (T->isReferenceType()) { 8236 S.Diag(Loc, diag::err_reference_without_init) 8237 << T.getNonReferenceType(); 8238 return true; 8239 } 8240 8241 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8242 if (!RD || !RD->hasUninitializedReferenceMember()) 8243 return false; 8244 8245 for (const auto *FI : RD->fields()) { 8246 if (FI->isUnnamedBitfield()) 8247 continue; 8248 8249 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8250 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8251 return true; 8252 } 8253 } 8254 8255 for (const auto &BI : RD->bases()) { 8256 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8257 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8258 return true; 8259 } 8260 } 8261 8262 return false; 8263 } 8264 8265 8266 //===----------------------------------------------------------------------===// 8267 // Diagnose initialization failures 8268 //===----------------------------------------------------------------------===// 8269 8270 /// Emit notes associated with an initialization that failed due to a 8271 /// "simple" conversion failure. 8272 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8273 Expr *op) { 8274 QualType destType = entity.getType(); 8275 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8276 op->getType()->isObjCObjectPointerType()) { 8277 8278 // Emit a possible note about the conversion failing because the 8279 // operand is a message send with a related result type. 8280 S.EmitRelatedResultTypeNote(op); 8281 8282 // Emit a possible note about a return failing because we're 8283 // expecting a related result type. 8284 if (entity.getKind() == InitializedEntity::EK_Result) 8285 S.EmitRelatedResultTypeNoteForReturn(destType); 8286 } 8287 } 8288 8289 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8290 InitListExpr *InitList) { 8291 QualType DestType = Entity.getType(); 8292 8293 QualType E; 8294 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8295 QualType ArrayType = S.Context.getConstantArrayType( 8296 E.withConst(), 8297 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8298 InitList->getNumInits()), 8299 clang::ArrayType::Normal, 0); 8300 InitializedEntity HiddenArray = 8301 InitializedEntity::InitializeTemporary(ArrayType); 8302 return diagnoseListInit(S, HiddenArray, InitList); 8303 } 8304 8305 if (DestType->isReferenceType()) { 8306 // A list-initialization failure for a reference means that we tried to 8307 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8308 // inner initialization failed. 8309 QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); 8310 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8311 SourceLocation Loc = InitList->getBeginLoc(); 8312 if (auto *D = Entity.getDecl()) 8313 Loc = D->getLocation(); 8314 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8315 return; 8316 } 8317 8318 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8319 /*VerifyOnly=*/false, 8320 /*TreatUnavailableAsInvalid=*/false); 8321 assert(DiagnoseInitList.HadError() && 8322 "Inconsistent init list check result."); 8323 } 8324 8325 bool InitializationSequence::Diagnose(Sema &S, 8326 const InitializedEntity &Entity, 8327 const InitializationKind &Kind, 8328 ArrayRef<Expr *> Args) { 8329 if (!Failed()) 8330 return false; 8331 8332 // When we want to diagnose only one element of a braced-init-list, 8333 // we need to factor it out. 8334 Expr *OnlyArg; 8335 if (Args.size() == 1) { 8336 auto *List = dyn_cast<InitListExpr>(Args[0]); 8337 if (List && List->getNumInits() == 1) 8338 OnlyArg = List->getInit(0); 8339 else 8340 OnlyArg = Args[0]; 8341 } 8342 else 8343 OnlyArg = nullptr; 8344 8345 QualType DestType = Entity.getType(); 8346 switch (Failure) { 8347 case FK_TooManyInitsForReference: 8348 // FIXME: Customize for the initialized entity? 8349 if (Args.empty()) { 8350 // Dig out the reference subobject which is uninitialized and diagnose it. 8351 // If this is value-initialization, this could be nested some way within 8352 // the target type. 8353 assert(Kind.getKind() == InitializationKind::IK_Value || 8354 DestType->isReferenceType()); 8355 bool Diagnosed = 8356 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8357 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8358 (void)Diagnosed; 8359 } else // FIXME: diagnostic below could be better! 8360 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8361 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8362 break; 8363 case FK_ParenthesizedListInitForReference: 8364 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8365 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8366 break; 8367 8368 case FK_ArrayNeedsInitList: 8369 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8370 break; 8371 case FK_ArrayNeedsInitListOrStringLiteral: 8372 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8373 break; 8374 case FK_ArrayNeedsInitListOrWideStringLiteral: 8375 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8376 break; 8377 case FK_NarrowStringIntoWideCharArray: 8378 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8379 break; 8380 case FK_WideStringIntoCharArray: 8381 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8382 break; 8383 case FK_IncompatWideStringIntoWideChar: 8384 S.Diag(Kind.getLocation(), 8385 diag::err_array_init_incompat_wide_string_into_wchar); 8386 break; 8387 case FK_PlainStringIntoUTF8Char: 8388 S.Diag(Kind.getLocation(), 8389 diag::err_array_init_plain_string_into_char8_t); 8390 S.Diag(Args.front()->getBeginLoc(), 8391 diag::note_array_init_plain_string_into_char8_t) 8392 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8393 break; 8394 case FK_UTF8StringIntoPlainChar: 8395 S.Diag(Kind.getLocation(), 8396 diag::err_array_init_utf8_string_into_char) 8397 << S.getLangOpts().CPlusPlus2a; 8398 break; 8399 case FK_ArrayTypeMismatch: 8400 case FK_NonConstantArrayInit: 8401 S.Diag(Kind.getLocation(), 8402 (Failure == FK_ArrayTypeMismatch 8403 ? diag::err_array_init_different_type 8404 : diag::err_array_init_non_constant_array)) 8405 << DestType.getNonReferenceType() 8406 << OnlyArg->getType() 8407 << Args[0]->getSourceRange(); 8408 break; 8409 8410 case FK_VariableLengthArrayHasInitializer: 8411 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8412 << Args[0]->getSourceRange(); 8413 break; 8414 8415 case FK_AddressOfOverloadFailed: { 8416 DeclAccessPair Found; 8417 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8418 DestType.getNonReferenceType(), 8419 true, 8420 Found); 8421 break; 8422 } 8423 8424 case FK_AddressOfUnaddressableFunction: { 8425 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8426 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8427 OnlyArg->getBeginLoc()); 8428 break; 8429 } 8430 8431 case FK_ReferenceInitOverloadFailed: 8432 case FK_UserConversionOverloadFailed: 8433 switch (FailedOverloadResult) { 8434 case OR_Ambiguous: 8435 8436 FailedCandidateSet.NoteCandidates( 8437 PartialDiagnosticAt( 8438 Kind.getLocation(), 8439 Failure == FK_UserConversionOverloadFailed 8440 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8441 << OnlyArg->getType() << DestType 8442 << Args[0]->getSourceRange()) 8443 : (S.PDiag(diag::err_ref_init_ambiguous) 8444 << DestType << OnlyArg->getType() 8445 << Args[0]->getSourceRange())), 8446 S, OCD_ViableCandidates, Args); 8447 break; 8448 8449 case OR_No_Viable_Function: { 8450 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8451 if (!S.RequireCompleteType(Kind.getLocation(), 8452 DestType.getNonReferenceType(), 8453 diag::err_typecheck_nonviable_condition_incomplete, 8454 OnlyArg->getType(), Args[0]->getSourceRange())) 8455 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8456 << (Entity.getKind() == InitializedEntity::EK_Result) 8457 << OnlyArg->getType() << Args[0]->getSourceRange() 8458 << DestType.getNonReferenceType(); 8459 8460 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8461 break; 8462 } 8463 case OR_Deleted: { 8464 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8465 << OnlyArg->getType() << DestType.getNonReferenceType() 8466 << Args[0]->getSourceRange(); 8467 OverloadCandidateSet::iterator Best; 8468 OverloadingResult Ovl 8469 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8470 if (Ovl == OR_Deleted) { 8471 S.NoteDeletedFunction(Best->Function); 8472 } else { 8473 llvm_unreachable("Inconsistent overload resolution?"); 8474 } 8475 break; 8476 } 8477 8478 case OR_Success: 8479 llvm_unreachable("Conversion did not fail!"); 8480 } 8481 break; 8482 8483 case FK_NonConstLValueReferenceBindingToTemporary: 8484 if (isa<InitListExpr>(Args[0])) { 8485 S.Diag(Kind.getLocation(), 8486 diag::err_lvalue_reference_bind_to_initlist) 8487 << DestType.getNonReferenceType().isVolatileQualified() 8488 << DestType.getNonReferenceType() 8489 << Args[0]->getSourceRange(); 8490 break; 8491 } 8492 LLVM_FALLTHROUGH; 8493 8494 case FK_NonConstLValueReferenceBindingToUnrelated: 8495 S.Diag(Kind.getLocation(), 8496 Failure == FK_NonConstLValueReferenceBindingToTemporary 8497 ? diag::err_lvalue_reference_bind_to_temporary 8498 : diag::err_lvalue_reference_bind_to_unrelated) 8499 << DestType.getNonReferenceType().isVolatileQualified() 8500 << DestType.getNonReferenceType() 8501 << OnlyArg->getType() 8502 << Args[0]->getSourceRange(); 8503 break; 8504 8505 case FK_NonConstLValueReferenceBindingToBitfield: { 8506 // We don't necessarily have an unambiguous source bit-field. 8507 FieldDecl *BitField = Args[0]->getSourceBitField(); 8508 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8509 << DestType.isVolatileQualified() 8510 << (BitField ? BitField->getDeclName() : DeclarationName()) 8511 << (BitField != nullptr) 8512 << Args[0]->getSourceRange(); 8513 if (BitField) 8514 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8515 break; 8516 } 8517 8518 case FK_NonConstLValueReferenceBindingToVectorElement: 8519 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8520 << DestType.isVolatileQualified() 8521 << Args[0]->getSourceRange(); 8522 break; 8523 8524 case FK_RValueReferenceBindingToLValue: 8525 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8526 << DestType.getNonReferenceType() << OnlyArg->getType() 8527 << Args[0]->getSourceRange(); 8528 break; 8529 8530 case FK_ReferenceAddrspaceMismatchTemporary: 8531 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8532 << DestType << Args[0]->getSourceRange(); 8533 break; 8534 8535 case FK_ReferenceInitDropsQualifiers: { 8536 QualType SourceType = OnlyArg->getType(); 8537 QualType NonRefType = DestType.getNonReferenceType(); 8538 Qualifiers DroppedQualifiers = 8539 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8540 8541 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8542 << SourceType 8543 << NonRefType 8544 << DroppedQualifiers.getCVRQualifiers() 8545 << Args[0]->getSourceRange(); 8546 break; 8547 } 8548 8549 case FK_ReferenceInitFailed: 8550 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8551 << DestType.getNonReferenceType() 8552 << DestType.getNonReferenceType()->isIncompleteType() 8553 << OnlyArg->isLValue() 8554 << OnlyArg->getType() 8555 << Args[0]->getSourceRange(); 8556 emitBadConversionNotes(S, Entity, Args[0]); 8557 break; 8558 8559 case FK_ConversionFailed: { 8560 QualType FromType = OnlyArg->getType(); 8561 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8562 << (int)Entity.getKind() 8563 << DestType 8564 << OnlyArg->isLValue() 8565 << FromType 8566 << Args[0]->getSourceRange(); 8567 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8568 S.Diag(Kind.getLocation(), PDiag); 8569 emitBadConversionNotes(S, Entity, Args[0]); 8570 break; 8571 } 8572 8573 case FK_ConversionFromPropertyFailed: 8574 // No-op. This error has already been reported. 8575 break; 8576 8577 case FK_TooManyInitsForScalar: { 8578 SourceRange R; 8579 8580 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8581 if (InitList && InitList->getNumInits() >= 1) { 8582 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8583 } else { 8584 assert(Args.size() > 1 && "Expected multiple initializers!"); 8585 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8586 } 8587 8588 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8589 if (Kind.isCStyleOrFunctionalCast()) 8590 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8591 << R; 8592 else 8593 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8594 << /*scalar=*/2 << R; 8595 break; 8596 } 8597 8598 case FK_ParenthesizedListInitForScalar: 8599 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8600 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8601 break; 8602 8603 case FK_ReferenceBindingToInitList: 8604 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8605 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8606 break; 8607 8608 case FK_InitListBadDestinationType: 8609 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8610 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8611 break; 8612 8613 case FK_ListConstructorOverloadFailed: 8614 case FK_ConstructorOverloadFailed: { 8615 SourceRange ArgsRange; 8616 if (Args.size()) 8617 ArgsRange = 8618 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8619 8620 if (Failure == FK_ListConstructorOverloadFailed) { 8621 assert(Args.size() == 1 && 8622 "List construction from other than 1 argument."); 8623 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8624 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 8625 } 8626 8627 // FIXME: Using "DestType" for the entity we're printing is probably 8628 // bad. 8629 switch (FailedOverloadResult) { 8630 case OR_Ambiguous: 8631 FailedCandidateSet.NoteCandidates( 8632 PartialDiagnosticAt(Kind.getLocation(), 8633 S.PDiag(diag::err_ovl_ambiguous_init) 8634 << DestType << ArgsRange), 8635 S, OCD_ViableCandidates, Args); 8636 break; 8637 8638 case OR_No_Viable_Function: 8639 if (Kind.getKind() == InitializationKind::IK_Default && 8640 (Entity.getKind() == InitializedEntity::EK_Base || 8641 Entity.getKind() == InitializedEntity::EK_Member) && 8642 isa<CXXConstructorDecl>(S.CurContext)) { 8643 // This is implicit default initialization of a member or 8644 // base within a constructor. If no viable function was 8645 // found, notify the user that they need to explicitly 8646 // initialize this base/member. 8647 CXXConstructorDecl *Constructor 8648 = cast<CXXConstructorDecl>(S.CurContext); 8649 const CXXRecordDecl *InheritedFrom = nullptr; 8650 if (auto Inherited = Constructor->getInheritedConstructor()) 8651 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 8652 if (Entity.getKind() == InitializedEntity::EK_Base) { 8653 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8654 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8655 << S.Context.getTypeDeclType(Constructor->getParent()) 8656 << /*base=*/0 8657 << Entity.getType() 8658 << InheritedFrom; 8659 8660 RecordDecl *BaseDecl 8661 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 8662 ->getDecl(); 8663 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 8664 << S.Context.getTagDeclType(BaseDecl); 8665 } else { 8666 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8667 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8668 << S.Context.getTypeDeclType(Constructor->getParent()) 8669 << /*member=*/1 8670 << Entity.getName() 8671 << InheritedFrom; 8672 S.Diag(Entity.getDecl()->getLocation(), 8673 diag::note_member_declared_at); 8674 8675 if (const RecordType *Record 8676 = Entity.getType()->getAs<RecordType>()) 8677 S.Diag(Record->getDecl()->getLocation(), 8678 diag::note_previous_decl) 8679 << S.Context.getTagDeclType(Record->getDecl()); 8680 } 8681 break; 8682 } 8683 8684 FailedCandidateSet.NoteCandidates( 8685 PartialDiagnosticAt( 8686 Kind.getLocation(), 8687 S.PDiag(diag::err_ovl_no_viable_function_in_init) 8688 << DestType << ArgsRange), 8689 S, OCD_AllCandidates, Args); 8690 break; 8691 8692 case OR_Deleted: { 8693 OverloadCandidateSet::iterator Best; 8694 OverloadingResult Ovl 8695 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8696 if (Ovl != OR_Deleted) { 8697 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8698 << DestType << ArgsRange; 8699 llvm_unreachable("Inconsistent overload resolution?"); 8700 break; 8701 } 8702 8703 // If this is a defaulted or implicitly-declared function, then 8704 // it was implicitly deleted. Make it clear that the deletion was 8705 // implicit. 8706 if (S.isImplicitlyDeleted(Best->Function)) 8707 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 8708 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 8709 << DestType << ArgsRange; 8710 else 8711 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8712 << DestType << ArgsRange; 8713 8714 S.NoteDeletedFunction(Best->Function); 8715 break; 8716 } 8717 8718 case OR_Success: 8719 llvm_unreachable("Conversion did not fail!"); 8720 } 8721 } 8722 break; 8723 8724 case FK_DefaultInitOfConst: 8725 if (Entity.getKind() == InitializedEntity::EK_Member && 8726 isa<CXXConstructorDecl>(S.CurContext)) { 8727 // This is implicit default-initialization of a const member in 8728 // a constructor. Complain that it needs to be explicitly 8729 // initialized. 8730 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 8731 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 8732 << (Constructor->getInheritedConstructor() ? 2 : 8733 Constructor->isImplicit() ? 1 : 0) 8734 << S.Context.getTypeDeclType(Constructor->getParent()) 8735 << /*const=*/1 8736 << Entity.getName(); 8737 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 8738 << Entity.getName(); 8739 } else { 8740 S.Diag(Kind.getLocation(), diag::err_default_init_const) 8741 << DestType << (bool)DestType->getAs<RecordType>(); 8742 } 8743 break; 8744 8745 case FK_Incomplete: 8746 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 8747 diag::err_init_incomplete_type); 8748 break; 8749 8750 case FK_ListInitializationFailed: { 8751 // Run the init list checker again to emit diagnostics. 8752 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8753 diagnoseListInit(S, Entity, InitList); 8754 break; 8755 } 8756 8757 case FK_PlaceholderType: { 8758 // FIXME: Already diagnosed! 8759 break; 8760 } 8761 8762 case FK_ExplicitConstructor: { 8763 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 8764 << Args[0]->getSourceRange(); 8765 OverloadCandidateSet::iterator Best; 8766 OverloadingResult Ovl 8767 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8768 (void)Ovl; 8769 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 8770 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 8771 S.Diag(CtorDecl->getLocation(), 8772 diag::note_explicit_ctor_deduction_guide_here) << false; 8773 break; 8774 } 8775 } 8776 8777 PrintInitLocationNote(S, Entity); 8778 return true; 8779 } 8780 8781 void InitializationSequence::dump(raw_ostream &OS) const { 8782 switch (SequenceKind) { 8783 case FailedSequence: { 8784 OS << "Failed sequence: "; 8785 switch (Failure) { 8786 case FK_TooManyInitsForReference: 8787 OS << "too many initializers for reference"; 8788 break; 8789 8790 case FK_ParenthesizedListInitForReference: 8791 OS << "parenthesized list init for reference"; 8792 break; 8793 8794 case FK_ArrayNeedsInitList: 8795 OS << "array requires initializer list"; 8796 break; 8797 8798 case FK_AddressOfUnaddressableFunction: 8799 OS << "address of unaddressable function was taken"; 8800 break; 8801 8802 case FK_ArrayNeedsInitListOrStringLiteral: 8803 OS << "array requires initializer list or string literal"; 8804 break; 8805 8806 case FK_ArrayNeedsInitListOrWideStringLiteral: 8807 OS << "array requires initializer list or wide string literal"; 8808 break; 8809 8810 case FK_NarrowStringIntoWideCharArray: 8811 OS << "narrow string into wide char array"; 8812 break; 8813 8814 case FK_WideStringIntoCharArray: 8815 OS << "wide string into char array"; 8816 break; 8817 8818 case FK_IncompatWideStringIntoWideChar: 8819 OS << "incompatible wide string into wide char array"; 8820 break; 8821 8822 case FK_PlainStringIntoUTF8Char: 8823 OS << "plain string literal into char8_t array"; 8824 break; 8825 8826 case FK_UTF8StringIntoPlainChar: 8827 OS << "u8 string literal into char array"; 8828 break; 8829 8830 case FK_ArrayTypeMismatch: 8831 OS << "array type mismatch"; 8832 break; 8833 8834 case FK_NonConstantArrayInit: 8835 OS << "non-constant array initializer"; 8836 break; 8837 8838 case FK_AddressOfOverloadFailed: 8839 OS << "address of overloaded function failed"; 8840 break; 8841 8842 case FK_ReferenceInitOverloadFailed: 8843 OS << "overload resolution for reference initialization failed"; 8844 break; 8845 8846 case FK_NonConstLValueReferenceBindingToTemporary: 8847 OS << "non-const lvalue reference bound to temporary"; 8848 break; 8849 8850 case FK_NonConstLValueReferenceBindingToBitfield: 8851 OS << "non-const lvalue reference bound to bit-field"; 8852 break; 8853 8854 case FK_NonConstLValueReferenceBindingToVectorElement: 8855 OS << "non-const lvalue reference bound to vector element"; 8856 break; 8857 8858 case FK_NonConstLValueReferenceBindingToUnrelated: 8859 OS << "non-const lvalue reference bound to unrelated type"; 8860 break; 8861 8862 case FK_RValueReferenceBindingToLValue: 8863 OS << "rvalue reference bound to an lvalue"; 8864 break; 8865 8866 case FK_ReferenceInitDropsQualifiers: 8867 OS << "reference initialization drops qualifiers"; 8868 break; 8869 8870 case FK_ReferenceAddrspaceMismatchTemporary: 8871 OS << "reference with mismatching address space bound to temporary"; 8872 break; 8873 8874 case FK_ReferenceInitFailed: 8875 OS << "reference initialization failed"; 8876 break; 8877 8878 case FK_ConversionFailed: 8879 OS << "conversion failed"; 8880 break; 8881 8882 case FK_ConversionFromPropertyFailed: 8883 OS << "conversion from property failed"; 8884 break; 8885 8886 case FK_TooManyInitsForScalar: 8887 OS << "too many initializers for scalar"; 8888 break; 8889 8890 case FK_ParenthesizedListInitForScalar: 8891 OS << "parenthesized list init for reference"; 8892 break; 8893 8894 case FK_ReferenceBindingToInitList: 8895 OS << "referencing binding to initializer list"; 8896 break; 8897 8898 case FK_InitListBadDestinationType: 8899 OS << "initializer list for non-aggregate, non-scalar type"; 8900 break; 8901 8902 case FK_UserConversionOverloadFailed: 8903 OS << "overloading failed for user-defined conversion"; 8904 break; 8905 8906 case FK_ConstructorOverloadFailed: 8907 OS << "constructor overloading failed"; 8908 break; 8909 8910 case FK_DefaultInitOfConst: 8911 OS << "default initialization of a const variable"; 8912 break; 8913 8914 case FK_Incomplete: 8915 OS << "initialization of incomplete type"; 8916 break; 8917 8918 case FK_ListInitializationFailed: 8919 OS << "list initialization checker failure"; 8920 break; 8921 8922 case FK_VariableLengthArrayHasInitializer: 8923 OS << "variable length array has an initializer"; 8924 break; 8925 8926 case FK_PlaceholderType: 8927 OS << "initializer expression isn't contextually valid"; 8928 break; 8929 8930 case FK_ListConstructorOverloadFailed: 8931 OS << "list constructor overloading failed"; 8932 break; 8933 8934 case FK_ExplicitConstructor: 8935 OS << "list copy initialization chose explicit constructor"; 8936 break; 8937 } 8938 OS << '\n'; 8939 return; 8940 } 8941 8942 case DependentSequence: 8943 OS << "Dependent sequence\n"; 8944 return; 8945 8946 case NormalSequence: 8947 OS << "Normal sequence: "; 8948 break; 8949 } 8950 8951 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 8952 if (S != step_begin()) { 8953 OS << " -> "; 8954 } 8955 8956 switch (S->Kind) { 8957 case SK_ResolveAddressOfOverloadedFunction: 8958 OS << "resolve address of overloaded function"; 8959 break; 8960 8961 case SK_CastDerivedToBaseRValue: 8962 OS << "derived-to-base (rvalue)"; 8963 break; 8964 8965 case SK_CastDerivedToBaseXValue: 8966 OS << "derived-to-base (xvalue)"; 8967 break; 8968 8969 case SK_CastDerivedToBaseLValue: 8970 OS << "derived-to-base (lvalue)"; 8971 break; 8972 8973 case SK_BindReference: 8974 OS << "bind reference to lvalue"; 8975 break; 8976 8977 case SK_BindReferenceToTemporary: 8978 OS << "bind reference to a temporary"; 8979 break; 8980 8981 case SK_FinalCopy: 8982 OS << "final copy in class direct-initialization"; 8983 break; 8984 8985 case SK_ExtraneousCopyToTemporary: 8986 OS << "extraneous C++03 copy to temporary"; 8987 break; 8988 8989 case SK_UserConversion: 8990 OS << "user-defined conversion via " << *S->Function.Function; 8991 break; 8992 8993 case SK_QualificationConversionRValue: 8994 OS << "qualification conversion (rvalue)"; 8995 break; 8996 8997 case SK_QualificationConversionXValue: 8998 OS << "qualification conversion (xvalue)"; 8999 break; 9000 9001 case SK_QualificationConversionLValue: 9002 OS << "qualification conversion (lvalue)"; 9003 break; 9004 9005 case SK_AtomicConversion: 9006 OS << "non-atomic-to-atomic conversion"; 9007 break; 9008 9009 case SK_LValueToRValue: 9010 OS << "load (lvalue to rvalue)"; 9011 break; 9012 9013 case SK_ConversionSequence: 9014 OS << "implicit conversion sequence ("; 9015 S->ICS->dump(); // FIXME: use OS 9016 OS << ")"; 9017 break; 9018 9019 case SK_ConversionSequenceNoNarrowing: 9020 OS << "implicit conversion sequence with narrowing prohibited ("; 9021 S->ICS->dump(); // FIXME: use OS 9022 OS << ")"; 9023 break; 9024 9025 case SK_ListInitialization: 9026 OS << "list aggregate initialization"; 9027 break; 9028 9029 case SK_UnwrapInitList: 9030 OS << "unwrap reference initializer list"; 9031 break; 9032 9033 case SK_RewrapInitList: 9034 OS << "rewrap reference initializer list"; 9035 break; 9036 9037 case SK_ConstructorInitialization: 9038 OS << "constructor initialization"; 9039 break; 9040 9041 case SK_ConstructorInitializationFromList: 9042 OS << "list initialization via constructor"; 9043 break; 9044 9045 case SK_ZeroInitialization: 9046 OS << "zero initialization"; 9047 break; 9048 9049 case SK_CAssignment: 9050 OS << "C assignment"; 9051 break; 9052 9053 case SK_StringInit: 9054 OS << "string initialization"; 9055 break; 9056 9057 case SK_ObjCObjectConversion: 9058 OS << "Objective-C object conversion"; 9059 break; 9060 9061 case SK_ArrayLoopIndex: 9062 OS << "indexing for array initialization loop"; 9063 break; 9064 9065 case SK_ArrayLoopInit: 9066 OS << "array initialization loop"; 9067 break; 9068 9069 case SK_ArrayInit: 9070 OS << "array initialization"; 9071 break; 9072 9073 case SK_GNUArrayInit: 9074 OS << "array initialization (GNU extension)"; 9075 break; 9076 9077 case SK_ParenthesizedArrayInit: 9078 OS << "parenthesized array initialization"; 9079 break; 9080 9081 case SK_PassByIndirectCopyRestore: 9082 OS << "pass by indirect copy and restore"; 9083 break; 9084 9085 case SK_PassByIndirectRestore: 9086 OS << "pass by indirect restore"; 9087 break; 9088 9089 case SK_ProduceObjCObject: 9090 OS << "Objective-C object retension"; 9091 break; 9092 9093 case SK_StdInitializerList: 9094 OS << "std::initializer_list from initializer list"; 9095 break; 9096 9097 case SK_StdInitializerListConstructorCall: 9098 OS << "list initialization from std::initializer_list"; 9099 break; 9100 9101 case SK_OCLSamplerInit: 9102 OS << "OpenCL sampler_t from integer constant"; 9103 break; 9104 9105 case SK_OCLZeroOpaqueType: 9106 OS << "OpenCL opaque type from zero"; 9107 break; 9108 } 9109 9110 OS << " [" << S->Type.getAsString() << ']'; 9111 } 9112 9113 OS << '\n'; 9114 } 9115 9116 void InitializationSequence::dump() const { 9117 dump(llvm::errs()); 9118 } 9119 9120 static bool NarrowingErrs(const LangOptions &L) { 9121 return L.CPlusPlus11 && 9122 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9123 } 9124 9125 static void DiagnoseNarrowingInInitList(Sema &S, 9126 const ImplicitConversionSequence &ICS, 9127 QualType PreNarrowingType, 9128 QualType EntityType, 9129 const Expr *PostInit) { 9130 const StandardConversionSequence *SCS = nullptr; 9131 switch (ICS.getKind()) { 9132 case ImplicitConversionSequence::StandardConversion: 9133 SCS = &ICS.Standard; 9134 break; 9135 case ImplicitConversionSequence::UserDefinedConversion: 9136 SCS = &ICS.UserDefined.After; 9137 break; 9138 case ImplicitConversionSequence::AmbiguousConversion: 9139 case ImplicitConversionSequence::EllipsisConversion: 9140 case ImplicitConversionSequence::BadConversion: 9141 return; 9142 } 9143 9144 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9145 APValue ConstantValue; 9146 QualType ConstantType; 9147 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9148 ConstantType)) { 9149 case NK_Not_Narrowing: 9150 case NK_Dependent_Narrowing: 9151 // No narrowing occurred. 9152 return; 9153 9154 case NK_Type_Narrowing: 9155 // This was a floating-to-integer conversion, which is always considered a 9156 // narrowing conversion even if the value is a constant and can be 9157 // represented exactly as an integer. 9158 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9159 ? diag::ext_init_list_type_narrowing 9160 : diag::warn_init_list_type_narrowing) 9161 << PostInit->getSourceRange() 9162 << PreNarrowingType.getLocalUnqualifiedType() 9163 << EntityType.getLocalUnqualifiedType(); 9164 break; 9165 9166 case NK_Constant_Narrowing: 9167 // A constant value was narrowed. 9168 S.Diag(PostInit->getBeginLoc(), 9169 NarrowingErrs(S.getLangOpts()) 9170 ? diag::ext_init_list_constant_narrowing 9171 : diag::warn_init_list_constant_narrowing) 9172 << PostInit->getSourceRange() 9173 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9174 << EntityType.getLocalUnqualifiedType(); 9175 break; 9176 9177 case NK_Variable_Narrowing: 9178 // A variable's value may have been narrowed. 9179 S.Diag(PostInit->getBeginLoc(), 9180 NarrowingErrs(S.getLangOpts()) 9181 ? diag::ext_init_list_variable_narrowing 9182 : diag::warn_init_list_variable_narrowing) 9183 << PostInit->getSourceRange() 9184 << PreNarrowingType.getLocalUnqualifiedType() 9185 << EntityType.getLocalUnqualifiedType(); 9186 break; 9187 } 9188 9189 SmallString<128> StaticCast; 9190 llvm::raw_svector_ostream OS(StaticCast); 9191 OS << "static_cast<"; 9192 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9193 // It's important to use the typedef's name if there is one so that the 9194 // fixit doesn't break code using types like int64_t. 9195 // 9196 // FIXME: This will break if the typedef requires qualification. But 9197 // getQualifiedNameAsString() includes non-machine-parsable components. 9198 OS << *TT->getDecl(); 9199 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9200 OS << BT->getName(S.getLangOpts()); 9201 else { 9202 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9203 // with a broken cast. 9204 return; 9205 } 9206 OS << ">("; 9207 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9208 << PostInit->getSourceRange() 9209 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9210 << FixItHint::CreateInsertion( 9211 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9212 } 9213 9214 //===----------------------------------------------------------------------===// 9215 // Initialization helper functions 9216 //===----------------------------------------------------------------------===// 9217 bool 9218 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9219 ExprResult Init) { 9220 if (Init.isInvalid()) 9221 return false; 9222 9223 Expr *InitE = Init.get(); 9224 assert(InitE && "No initialization expression"); 9225 9226 InitializationKind Kind = 9227 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9228 InitializationSequence Seq(*this, Entity, Kind, InitE); 9229 return !Seq.Failed(); 9230 } 9231 9232 ExprResult 9233 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9234 SourceLocation EqualLoc, 9235 ExprResult Init, 9236 bool TopLevelOfInitList, 9237 bool AllowExplicit) { 9238 if (Init.isInvalid()) 9239 return ExprError(); 9240 9241 Expr *InitE = Init.get(); 9242 assert(InitE && "No initialization expression?"); 9243 9244 if (EqualLoc.isInvalid()) 9245 EqualLoc = InitE->getBeginLoc(); 9246 9247 InitializationKind Kind = InitializationKind::CreateCopy( 9248 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9249 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9250 9251 // Prevent infinite recursion when performing parameter copy-initialization. 9252 const bool ShouldTrackCopy = 9253 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9254 if (ShouldTrackCopy) { 9255 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9256 CurrentParameterCopyTypes.end()) { 9257 Seq.SetOverloadFailure( 9258 InitializationSequence::FK_ConstructorOverloadFailed, 9259 OR_No_Viable_Function); 9260 9261 // Try to give a meaningful diagnostic note for the problematic 9262 // constructor. 9263 const auto LastStep = Seq.step_end() - 1; 9264 assert(LastStep->Kind == 9265 InitializationSequence::SK_ConstructorInitialization); 9266 const FunctionDecl *Function = LastStep->Function.Function; 9267 auto Candidate = 9268 llvm::find_if(Seq.getFailedCandidateSet(), 9269 [Function](const OverloadCandidate &Candidate) -> bool { 9270 return Candidate.Viable && 9271 Candidate.Function == Function && 9272 Candidate.Conversions.size() > 0; 9273 }); 9274 if (Candidate != Seq.getFailedCandidateSet().end() && 9275 Function->getNumParams() > 0) { 9276 Candidate->Viable = false; 9277 Candidate->FailureKind = ovl_fail_bad_conversion; 9278 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9279 InitE, 9280 Function->getParamDecl(0)->getType()); 9281 } 9282 } 9283 CurrentParameterCopyTypes.push_back(Entity.getType()); 9284 } 9285 9286 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9287 9288 if (ShouldTrackCopy) 9289 CurrentParameterCopyTypes.pop_back(); 9290 9291 return Result; 9292 } 9293 9294 /// Determine whether RD is, or is derived from, a specialization of CTD. 9295 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9296 ClassTemplateDecl *CTD) { 9297 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9298 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9299 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9300 }; 9301 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9302 } 9303 9304 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9305 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9306 const InitializationKind &Kind, MultiExprArg Inits) { 9307 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9308 TSInfo->getType()->getContainedDeducedType()); 9309 assert(DeducedTST && "not a deduced template specialization type"); 9310 9311 auto TemplateName = DeducedTST->getTemplateName(); 9312 if (TemplateName.isDependent()) 9313 return Context.DependentTy; 9314 9315 // We can only perform deduction for class templates. 9316 auto *Template = 9317 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9318 if (!Template) { 9319 Diag(Kind.getLocation(), 9320 diag::err_deduced_non_class_template_specialization_type) 9321 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9322 if (auto *TD = TemplateName.getAsTemplateDecl()) 9323 Diag(TD->getLocation(), diag::note_template_decl_here); 9324 return QualType(); 9325 } 9326 9327 // Can't deduce from dependent arguments. 9328 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9329 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9330 diag::warn_cxx14_compat_class_template_argument_deduction) 9331 << TSInfo->getTypeLoc().getSourceRange() << 0; 9332 return Context.DependentTy; 9333 } 9334 9335 // FIXME: Perform "exact type" matching first, per CWG discussion? 9336 // Or implement this via an implied 'T(T) -> T' deduction guide? 9337 9338 // FIXME: Do we need/want a std::initializer_list<T> special case? 9339 9340 // Look up deduction guides, including those synthesized from constructors. 9341 // 9342 // C++1z [over.match.class.deduct]p1: 9343 // A set of functions and function templates is formed comprising: 9344 // - For each constructor of the class template designated by the 9345 // template-name, a function template [...] 9346 // - For each deduction-guide, a function or function template [...] 9347 DeclarationNameInfo NameInfo( 9348 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9349 TSInfo->getTypeLoc().getEndLoc()); 9350 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9351 LookupQualifiedName(Guides, Template->getDeclContext()); 9352 9353 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9354 // clear on this, but they're not found by name so access does not apply. 9355 Guides.suppressDiagnostics(); 9356 9357 // Figure out if this is list-initialization. 9358 InitListExpr *ListInit = 9359 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9360 ? dyn_cast<InitListExpr>(Inits[0]) 9361 : nullptr; 9362 9363 // C++1z [over.match.class.deduct]p1: 9364 // Initialization and overload resolution are performed as described in 9365 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9366 // (as appropriate for the type of initialization performed) for an object 9367 // of a hypothetical class type, where the selected functions and function 9368 // templates are considered to be the constructors of that class type 9369 // 9370 // Since we know we're initializing a class type of a type unrelated to that 9371 // of the initializer, this reduces to something fairly reasonable. 9372 OverloadCandidateSet Candidates(Kind.getLocation(), 9373 OverloadCandidateSet::CSK_Normal); 9374 OverloadCandidateSet::iterator Best; 9375 9376 bool HasAnyDeductionGuide = false; 9377 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9378 9379 auto tryToResolveOverload = 9380 [&](bool OnlyListConstructors) -> OverloadingResult { 9381 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9382 HasAnyDeductionGuide = false; 9383 9384 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9385 NamedDecl *D = (*I)->getUnderlyingDecl(); 9386 if (D->isInvalidDecl()) 9387 continue; 9388 9389 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9390 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9391 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9392 if (!GD) 9393 continue; 9394 9395 if (!GD->isImplicit()) 9396 HasAnyDeductionGuide = true; 9397 9398 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9399 // For copy-initialization, the candidate functions are all the 9400 // converting constructors (12.3.1) of that class. 9401 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9402 // The converting constructors of T are candidate functions. 9403 if (!AllowExplicit) { 9404 // Only consider converting constructors. 9405 if (GD->isExplicit()) 9406 continue; 9407 9408 // When looking for a converting constructor, deduction guides that 9409 // could never be called with one argument are not interesting to 9410 // check or note. 9411 if (GD->getMinRequiredArguments() > 1 || 9412 (GD->getNumParams() == 0 && !GD->isVariadic())) 9413 continue; 9414 } 9415 9416 // C++ [over.match.list]p1.1: (first phase list initialization) 9417 // Initially, the candidate functions are the initializer-list 9418 // constructors of the class T 9419 if (OnlyListConstructors && !isInitListConstructor(GD)) 9420 continue; 9421 9422 // C++ [over.match.list]p1.2: (second phase list initialization) 9423 // the candidate functions are all the constructors of the class T 9424 // C++ [over.match.ctor]p1: (all other cases) 9425 // the candidate functions are all the constructors of the class of 9426 // the object being initialized 9427 9428 // C++ [over.best.ics]p4: 9429 // When [...] the constructor [...] is a candidate by 9430 // - [over.match.copy] (in all cases) 9431 // FIXME: The "second phase of [over.match.list] case can also 9432 // theoretically happen here, but it's not clear whether we can 9433 // ever have a parameter of the right type. 9434 bool SuppressUserConversions = Kind.isCopyInit(); 9435 9436 if (TD) 9437 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9438 Inits, Candidates, SuppressUserConversions, 9439 /*PartialOverloading*/ false, 9440 AllowExplicit); 9441 else 9442 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9443 SuppressUserConversions, 9444 /*PartialOverloading*/ false, AllowExplicit); 9445 } 9446 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9447 }; 9448 9449 OverloadingResult Result = OR_No_Viable_Function; 9450 9451 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9452 // try initializer-list constructors. 9453 if (ListInit) { 9454 bool TryListConstructors = true; 9455 9456 // Try list constructors unless the list is empty and the class has one or 9457 // more default constructors, in which case those constructors win. 9458 if (!ListInit->getNumInits()) { 9459 for (NamedDecl *D : Guides) { 9460 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9461 if (FD && FD->getMinRequiredArguments() == 0) { 9462 TryListConstructors = false; 9463 break; 9464 } 9465 } 9466 } else if (ListInit->getNumInits() == 1) { 9467 // C++ [over.match.class.deduct]: 9468 // As an exception, the first phase in [over.match.list] (considering 9469 // initializer-list constructors) is omitted if the initializer list 9470 // consists of a single expression of type cv U, where U is a 9471 // specialization of C or a class derived from a specialization of C. 9472 Expr *E = ListInit->getInit(0); 9473 auto *RD = E->getType()->getAsCXXRecordDecl(); 9474 if (!isa<InitListExpr>(E) && RD && 9475 isCompleteType(Kind.getLocation(), E->getType()) && 9476 isOrIsDerivedFromSpecializationOf(RD, Template)) 9477 TryListConstructors = false; 9478 } 9479 9480 if (TryListConstructors) 9481 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9482 // Then unwrap the initializer list and try again considering all 9483 // constructors. 9484 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9485 } 9486 9487 // If list-initialization fails, or if we're doing any other kind of 9488 // initialization, we (eventually) consider constructors. 9489 if (Result == OR_No_Viable_Function) 9490 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9491 9492 switch (Result) { 9493 case OR_Ambiguous: 9494 // FIXME: For list-initialization candidates, it'd usually be better to 9495 // list why they were not viable when given the initializer list itself as 9496 // an argument. 9497 Candidates.NoteCandidates( 9498 PartialDiagnosticAt( 9499 Kind.getLocation(), 9500 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9501 << TemplateName), 9502 *this, OCD_ViableCandidates, Inits); 9503 return QualType(); 9504 9505 case OR_No_Viable_Function: { 9506 CXXRecordDecl *Primary = 9507 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9508 bool Complete = 9509 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9510 Candidates.NoteCandidates( 9511 PartialDiagnosticAt( 9512 Kind.getLocation(), 9513 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9514 : diag::err_deduced_class_template_incomplete) 9515 << TemplateName << !Guides.empty()), 9516 *this, OCD_AllCandidates, Inits); 9517 return QualType(); 9518 } 9519 9520 case OR_Deleted: { 9521 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9522 << TemplateName; 9523 NoteDeletedFunction(Best->Function); 9524 return QualType(); 9525 } 9526 9527 case OR_Success: 9528 // C++ [over.match.list]p1: 9529 // In copy-list-initialization, if an explicit constructor is chosen, the 9530 // initialization is ill-formed. 9531 if (Kind.isCopyInit() && ListInit && 9532 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9533 bool IsDeductionGuide = !Best->Function->isImplicit(); 9534 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9535 << TemplateName << IsDeductionGuide; 9536 Diag(Best->Function->getLocation(), 9537 diag::note_explicit_ctor_deduction_guide_here) 9538 << IsDeductionGuide; 9539 return QualType(); 9540 } 9541 9542 // Make sure we didn't select an unusable deduction guide, and mark it 9543 // as referenced. 9544 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9545 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9546 break; 9547 } 9548 9549 // C++ [dcl.type.class.deduct]p1: 9550 // The placeholder is replaced by the return type of the function selected 9551 // by overload resolution for class template deduction. 9552 QualType DeducedType = 9553 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9554 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9555 diag::warn_cxx14_compat_class_template_argument_deduction) 9556 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9557 9558 // Warn if CTAD was used on a type that does not have any user-defined 9559 // deduction guides. 9560 if (!HasAnyDeductionGuide) { 9561 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9562 diag::warn_ctad_maybe_unsupported) 9563 << TemplateName; 9564 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9565 } 9566 9567 return DeducedType; 9568 } 9569