1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_UTF8StringIntoPlainChar,
53   SIF_PlainStringIntoUTF8Char,
54   SIF_Other
55 };
56 
57 /// Check whether the array of type AT can be initialized by the Init
58 /// expression by means of string initialization. Returns SIF_None if so,
59 /// otherwise returns a StringInitFailureKind that describes why the
60 /// initialization would not work.
61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62                                           ASTContext &Context) {
63   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64     return SIF_Other;
65 
66   // See if this is a string literal or @encode.
67   Init = Init->IgnoreParens();
68 
69   // Handle @encode, which is a narrow string.
70   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71     return SIF_None;
72 
73   // Otherwise we can only handle string literals.
74   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75   if (!SL)
76     return SIF_Other;
77 
78   const QualType ElemTy =
79       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80 
81   switch (SL->getKind()) {
82   case StringLiteral::UTF8:
83     // char8_t array can be initialized with a UTF-8 string.
84     if (ElemTy->isChar8Type())
85       return SIF_None;
86     LLVM_FALLTHROUGH;
87   case StringLiteral::Ascii:
88     // char array can be initialized with a narrow string.
89     // Only allow char x[] = "foo";  not char x[] = L"foo";
90     if (ElemTy->isCharType())
91       return (SL->getKind() == StringLiteral::UTF8 &&
92               Context.getLangOpts().Char8)
93                  ? SIF_UTF8StringIntoPlainChar
94                  : SIF_None;
95     if (ElemTy->isChar8Type())
96       return SIF_PlainStringIntoUTF8Char;
97     if (IsWideCharCompatible(ElemTy, Context))
98       return SIF_NarrowStringIntoWideChar;
99     return SIF_Other;
100   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101   // "An array with element type compatible with a qualified or unqualified
102   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103   // string literal with the corresponding encoding prefix (L, u, or U,
104   // respectively), optionally enclosed in braces.
105   case StringLiteral::UTF16:
106     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107       return SIF_None;
108     if (ElemTy->isCharType() || ElemTy->isChar8Type())
109       return SIF_WideStringIntoChar;
110     if (IsWideCharCompatible(ElemTy, Context))
111       return SIF_IncompatWideStringIntoWideChar;
112     return SIF_Other;
113   case StringLiteral::UTF32:
114     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115       return SIF_None;
116     if (ElemTy->isCharType() || ElemTy->isChar8Type())
117       return SIF_WideStringIntoChar;
118     if (IsWideCharCompatible(ElemTy, Context))
119       return SIF_IncompatWideStringIntoWideChar;
120     return SIF_Other;
121   case StringLiteral::Wide:
122     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123       return SIF_None;
124     if (ElemTy->isCharType() || ElemTy->isChar8Type())
125       return SIF_WideStringIntoChar;
126     if (IsWideCharCompatible(ElemTy, Context))
127       return SIF_IncompatWideStringIntoWideChar;
128     return SIF_Other;
129   }
130 
131   llvm_unreachable("missed a StringLiteral kind?");
132 }
133 
134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135                                           ASTContext &Context) {
136   const ArrayType *arrayType = Context.getAsArrayType(declType);
137   if (!arrayType)
138     return SIF_Other;
139   return IsStringInit(init, arrayType, Context);
140 }
141 
142 /// Update the type of a string literal, including any surrounding parentheses,
143 /// to match the type of the object which it is initializing.
144 static void updateStringLiteralType(Expr *E, QualType Ty) {
145   while (true) {
146     E->setType(Ty);
147     E->setValueKind(VK_RValue);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
149       break;
150     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
151       E = PE->getSubExpr();
152     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
153       assert(UO->getOpcode() == UO_Extension);
154       E = UO->getSubExpr();
155     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
156       E = GSE->getResultExpr();
157     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
158       E = CE->getChosenSubExpr();
159     } else {
160       llvm_unreachable("unexpected expr in string literal init");
161     }
162   }
163 }
164 
165 /// Fix a compound literal initializing an array so it's correctly marked
166 /// as an rvalue.
167 static void updateGNUCompoundLiteralRValue(Expr *E) {
168   while (true) {
169     E->setValueKind(VK_RValue);
170     if (isa<CompoundLiteralExpr>(E)) {
171       break;
172     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
173       E = PE->getSubExpr();
174     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
175       assert(UO->getOpcode() == UO_Extension);
176       E = UO->getSubExpr();
177     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
178       E = GSE->getResultExpr();
179     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
180       E = CE->getChosenSubExpr();
181     } else {
182       llvm_unreachable("unexpected expr in array compound literal init");
183     }
184   }
185 }
186 
187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
188                             Sema &S) {
189   // Get the length of the string as parsed.
190   auto *ConstantArrayTy =
191       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
192   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
193 
194   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
195     // C99 6.7.8p14. We have an array of character type with unknown size
196     // being initialized to a string literal.
197     llvm::APInt ConstVal(32, StrLength);
198     // Return a new array type (C99 6.7.8p22).
199     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
200                                            ConstVal,
201                                            ArrayType::Normal, 0);
202     updateStringLiteralType(Str, DeclT);
203     return;
204   }
205 
206   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
207 
208   // We have an array of character type with known size.  However,
209   // the size may be smaller or larger than the string we are initializing.
210   // FIXME: Avoid truncation for 64-bit length strings.
211   if (S.getLangOpts().CPlusPlus) {
212     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
213       // For Pascal strings it's OK to strip off the terminating null character,
214       // so the example below is valid:
215       //
216       // unsigned char a[2] = "\pa";
217       if (SL->isPascal())
218         StrLength--;
219     }
220 
221     // [dcl.init.string]p2
222     if (StrLength > CAT->getSize().getZExtValue())
223       S.Diag(Str->getBeginLoc(),
224              diag::err_initializer_string_for_char_array_too_long)
225           << Str->getSourceRange();
226   } else {
227     // C99 6.7.8p14.
228     if (StrLength-1 > CAT->getSize().getZExtValue())
229       S.Diag(Str->getBeginLoc(),
230              diag::ext_initializer_string_for_char_array_too_long)
231           << Str->getSourceRange();
232   }
233 
234   // Set the type to the actual size that we are initializing.  If we have
235   // something like:
236   //   char x[1] = "foo";
237   // then this will set the string literal's type to char[1].
238   updateStringLiteralType(Str, DeclT);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 // Semantic checking for initializer lists.
243 //===----------------------------------------------------------------------===//
244 
245 namespace {
246 
247 /// Semantic checking for initializer lists.
248 ///
249 /// The InitListChecker class contains a set of routines that each
250 /// handle the initialization of a certain kind of entity, e.g.,
251 /// arrays, vectors, struct/union types, scalars, etc. The
252 /// InitListChecker itself performs a recursive walk of the subobject
253 /// structure of the type to be initialized, while stepping through
254 /// the initializer list one element at a time. The IList and Index
255 /// parameters to each of the Check* routines contain the active
256 /// (syntactic) initializer list and the index into that initializer
257 /// list that represents the current initializer. Each routine is
258 /// responsible for moving that Index forward as it consumes elements.
259 ///
260 /// Each Check* routine also has a StructuredList/StructuredIndex
261 /// arguments, which contains the current "structured" (semantic)
262 /// initializer list and the index into that initializer list where we
263 /// are copying initializers as we map them over to the semantic
264 /// list. Once we have completed our recursive walk of the subobject
265 /// structure, we will have constructed a full semantic initializer
266 /// list.
267 ///
268 /// C99 designators cause changes in the initializer list traversal,
269 /// because they make the initialization "jump" into a specific
270 /// subobject and then continue the initialization from that
271 /// point. CheckDesignatedInitializer() recursively steps into the
272 /// designated subobject and manages backing out the recursion to
273 /// initialize the subobjects after the one designated.
274 class InitListChecker {
275   Sema &SemaRef;
276   bool hadError;
277   bool VerifyOnly; // no diagnostics, no structure building
278   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
279   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
280   InitListExpr *FullyStructuredList;
281 
282   void CheckImplicitInitList(const InitializedEntity &Entity,
283                              InitListExpr *ParentIList, QualType T,
284                              unsigned &Index, InitListExpr *StructuredList,
285                              unsigned &StructuredIndex);
286   void CheckExplicitInitList(const InitializedEntity &Entity,
287                              InitListExpr *IList, QualType &T,
288                              InitListExpr *StructuredList,
289                              bool TopLevelObject = false);
290   void CheckListElementTypes(const InitializedEntity &Entity,
291                              InitListExpr *IList, QualType &DeclType,
292                              bool SubobjectIsDesignatorContext,
293                              unsigned &Index,
294                              InitListExpr *StructuredList,
295                              unsigned &StructuredIndex,
296                              bool TopLevelObject = false);
297   void CheckSubElementType(const InitializedEntity &Entity,
298                            InitListExpr *IList, QualType ElemType,
299                            unsigned &Index,
300                            InitListExpr *StructuredList,
301                            unsigned &StructuredIndex);
302   void CheckComplexType(const InitializedEntity &Entity,
303                         InitListExpr *IList, QualType DeclType,
304                         unsigned &Index,
305                         InitListExpr *StructuredList,
306                         unsigned &StructuredIndex);
307   void CheckScalarType(const InitializedEntity &Entity,
308                        InitListExpr *IList, QualType DeclType,
309                        unsigned &Index,
310                        InitListExpr *StructuredList,
311                        unsigned &StructuredIndex);
312   void CheckReferenceType(const InitializedEntity &Entity,
313                           InitListExpr *IList, QualType DeclType,
314                           unsigned &Index,
315                           InitListExpr *StructuredList,
316                           unsigned &StructuredIndex);
317   void CheckVectorType(const InitializedEntity &Entity,
318                        InitListExpr *IList, QualType DeclType, unsigned &Index,
319                        InitListExpr *StructuredList,
320                        unsigned &StructuredIndex);
321   void CheckStructUnionTypes(const InitializedEntity &Entity,
322                              InitListExpr *IList, QualType DeclType,
323                              CXXRecordDecl::base_class_range Bases,
324                              RecordDecl::field_iterator Field,
325                              bool SubobjectIsDesignatorContext, unsigned &Index,
326                              InitListExpr *StructuredList,
327                              unsigned &StructuredIndex,
328                              bool TopLevelObject = false);
329   void CheckArrayType(const InitializedEntity &Entity,
330                       InitListExpr *IList, QualType &DeclType,
331                       llvm::APSInt elementIndex,
332                       bool SubobjectIsDesignatorContext, unsigned &Index,
333                       InitListExpr *StructuredList,
334                       unsigned &StructuredIndex);
335   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
336                                   InitListExpr *IList, DesignatedInitExpr *DIE,
337                                   unsigned DesigIdx,
338                                   QualType &CurrentObjectType,
339                                   RecordDecl::field_iterator *NextField,
340                                   llvm::APSInt *NextElementIndex,
341                                   unsigned &Index,
342                                   InitListExpr *StructuredList,
343                                   unsigned &StructuredIndex,
344                                   bool FinishSubobjectInit,
345                                   bool TopLevelObject);
346   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
347                                            QualType CurrentObjectType,
348                                            InitListExpr *StructuredList,
349                                            unsigned StructuredIndex,
350                                            SourceRange InitRange,
351                                            bool IsFullyOverwritten = false);
352   void UpdateStructuredListElement(InitListExpr *StructuredList,
353                                    unsigned &StructuredIndex,
354                                    Expr *expr);
355   int numArrayElements(QualType DeclType);
356   int numStructUnionElements(QualType DeclType);
357 
358   static ExprResult PerformEmptyInit(Sema &SemaRef,
359                                      SourceLocation Loc,
360                                      const InitializedEntity &Entity,
361                                      bool VerifyOnly,
362                                      bool TreatUnavailableAsInvalid);
363 
364   // Explanation on the "FillWithNoInit" mode:
365   //
366   // Assume we have the following definitions (Case#1):
367   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
368   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
369   //
370   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
371   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
372   //
373   // But if we have (Case#2):
374   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
375   //
376   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
377   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
378   //
379   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
380   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
381   // initializers but with special "NoInitExpr" place holders, which tells the
382   // CodeGen not to generate any initializers for these parts.
383   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
384                               const InitializedEntity &ParentEntity,
385                               InitListExpr *ILE, bool &RequiresSecondPass,
386                               bool FillWithNoInit);
387   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
388                                const InitializedEntity &ParentEntity,
389                                InitListExpr *ILE, bool &RequiresSecondPass,
390                                bool FillWithNoInit = false);
391   void FillInEmptyInitializations(const InitializedEntity &Entity,
392                                   InitListExpr *ILE, bool &RequiresSecondPass,
393                                   InitListExpr *OuterILE, unsigned OuterIndex,
394                                   bool FillWithNoInit = false);
395   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
396                               Expr *InitExpr, FieldDecl *Field,
397                               bool TopLevelObject);
398   void CheckEmptyInitializable(const InitializedEntity &Entity,
399                                SourceLocation Loc);
400 
401 public:
402   InitListChecker(Sema &S, const InitializedEntity &Entity,
403                   InitListExpr *IL, QualType &T, bool VerifyOnly,
404                   bool TreatUnavailableAsInvalid);
405   bool HadError() { return hadError; }
406 
407   // Retrieves the fully-structured initializer list used for
408   // semantic analysis and code generation.
409   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
410 };
411 
412 } // end anonymous namespace
413 
414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
415                                              SourceLocation Loc,
416                                              const InitializedEntity &Entity,
417                                              bool VerifyOnly,
418                                              bool TreatUnavailableAsInvalid) {
419   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
420                                                             true);
421   MultiExprArg SubInit;
422   Expr *InitExpr;
423   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
424 
425   // C++ [dcl.init.aggr]p7:
426   //   If there are fewer initializer-clauses in the list than there are
427   //   members in the aggregate, then each member not explicitly initialized
428   //   ...
429   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
430       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
431   if (EmptyInitList) {
432     // C++1y / DR1070:
433     //   shall be initialized [...] from an empty initializer list.
434     //
435     // We apply the resolution of this DR to C++11 but not C++98, since C++98
436     // does not have useful semantics for initialization from an init list.
437     // We treat this as copy-initialization, because aggregate initialization
438     // always performs copy-initialization on its elements.
439     //
440     // Only do this if we're initializing a class type, to avoid filling in
441     // the initializer list where possible.
442     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
443                    InitListExpr(SemaRef.Context, Loc, None, Loc);
444     InitExpr->setType(SemaRef.Context.VoidTy);
445     SubInit = InitExpr;
446     Kind = InitializationKind::CreateCopy(Loc, Loc);
447   } else {
448     // C++03:
449     //   shall be value-initialized.
450   }
451 
452   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
453   // libstdc++4.6 marks the vector default constructor as explicit in
454   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
455   // stlport does so too. Look for std::__debug for libstdc++, and for
456   // std:: for stlport.  This is effectively a compiler-side implementation of
457   // LWG2193.
458   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
459           InitializationSequence::FK_ExplicitConstructor) {
460     OverloadCandidateSet::iterator Best;
461     OverloadingResult O =
462         InitSeq.getFailedCandidateSet()
463             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
464     (void)O;
465     assert(O == OR_Success && "Inconsistent overload resolution");
466     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
467     CXXRecordDecl *R = CtorDecl->getParent();
468 
469     if (CtorDecl->getMinRequiredArguments() == 0 &&
470         CtorDecl->isExplicit() && R->getDeclName() &&
471         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
472       bool IsInStd = false;
473       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
474            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
475         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
476           IsInStd = true;
477       }
478 
479       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
480               .Cases("basic_string", "deque", "forward_list", true)
481               .Cases("list", "map", "multimap", "multiset", true)
482               .Cases("priority_queue", "queue", "set", "stack", true)
483               .Cases("unordered_map", "unordered_set", "vector", true)
484               .Default(false)) {
485         InitSeq.InitializeFrom(
486             SemaRef, Entity,
487             InitializationKind::CreateValue(Loc, Loc, Loc, true),
488             MultiExprArg(), /*TopLevelOfInitList=*/false,
489             TreatUnavailableAsInvalid);
490         // Emit a warning for this.  System header warnings aren't shown
491         // by default, but people working on system headers should see it.
492         if (!VerifyOnly) {
493           SemaRef.Diag(CtorDecl->getLocation(),
494                        diag::warn_invalid_initializer_from_system_header);
495           if (Entity.getKind() == InitializedEntity::EK_Member)
496             SemaRef.Diag(Entity.getDecl()->getLocation(),
497                          diag::note_used_in_initialization_here);
498           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
499             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
500         }
501       }
502     }
503   }
504   if (!InitSeq) {
505     if (!VerifyOnly) {
506       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
507       if (Entity.getKind() == InitializedEntity::EK_Member)
508         SemaRef.Diag(Entity.getDecl()->getLocation(),
509                      diag::note_in_omitted_aggregate_initializer)
510           << /*field*/1 << Entity.getDecl();
511       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
512         bool IsTrailingArrayNewMember =
513             Entity.getParent() &&
514             Entity.getParent()->isVariableLengthArrayNew();
515         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
516           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
517           << Entity.getElementIndex();
518       }
519     }
520     return ExprError();
521   }
522 
523   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
524                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
525 }
526 
527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
528                                               SourceLocation Loc) {
529   assert(VerifyOnly &&
530          "CheckEmptyInitializable is only inteded for verification mode.");
531   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
532                        TreatUnavailableAsInvalid).isInvalid())
533     hadError = true;
534 }
535 
536 void InitListChecker::FillInEmptyInitForBase(
537     unsigned Init, const CXXBaseSpecifier &Base,
538     const InitializedEntity &ParentEntity, InitListExpr *ILE,
539     bool &RequiresSecondPass, bool FillWithNoInit) {
540   assert(Init < ILE->getNumInits() && "should have been expanded");
541 
542   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
543       SemaRef.Context, &Base, false, &ParentEntity);
544 
545   if (!ILE->getInit(Init)) {
546     ExprResult BaseInit =
547         FillWithNoInit
548             ? new (SemaRef.Context) NoInitExpr(Base.getType())
549             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
550                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
551     if (BaseInit.isInvalid()) {
552       hadError = true;
553       return;
554     }
555 
556     ILE->setInit(Init, BaseInit.getAs<Expr>());
557   } else if (InitListExpr *InnerILE =
558                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
559     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
560                                ILE, Init, FillWithNoInit);
561   } else if (DesignatedInitUpdateExpr *InnerDIUE =
562                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
563     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
564                                RequiresSecondPass, ILE, Init,
565                                /*FillWithNoInit =*/true);
566   }
567 }
568 
569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
570                                         const InitializedEntity &ParentEntity,
571                                               InitListExpr *ILE,
572                                               bool &RequiresSecondPass,
573                                               bool FillWithNoInit) {
574   SourceLocation Loc = ILE->getEndLoc();
575   unsigned NumInits = ILE->getNumInits();
576   InitializedEntity MemberEntity
577     = InitializedEntity::InitializeMember(Field, &ParentEntity);
578 
579   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
580     if (!RType->getDecl()->isUnion())
581       assert(Init < NumInits && "This ILE should have been expanded");
582 
583   if (Init >= NumInits || !ILE->getInit(Init)) {
584     if (FillWithNoInit) {
585       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
586       if (Init < NumInits)
587         ILE->setInit(Init, Filler);
588       else
589         ILE->updateInit(SemaRef.Context, Init, Filler);
590       return;
591     }
592     // C++1y [dcl.init.aggr]p7:
593     //   If there are fewer initializer-clauses in the list than there are
594     //   members in the aggregate, then each member not explicitly initialized
595     //   shall be initialized from its brace-or-equal-initializer [...]
596     if (Field->hasInClassInitializer()) {
597       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
598       if (DIE.isInvalid()) {
599         hadError = true;
600         return;
601       }
602       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
603       if (Init < NumInits)
604         ILE->setInit(Init, DIE.get());
605       else {
606         ILE->updateInit(SemaRef.Context, Init, DIE.get());
607         RequiresSecondPass = true;
608       }
609       return;
610     }
611 
612     if (Field->getType()->isReferenceType()) {
613       // C++ [dcl.init.aggr]p9:
614       //   If an incomplete or empty initializer-list leaves a
615       //   member of reference type uninitialized, the program is
616       //   ill-formed.
617       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
618         << Field->getType()
619         << ILE->getSyntacticForm()->getSourceRange();
620       SemaRef.Diag(Field->getLocation(),
621                    diag::note_uninit_reference_member);
622       hadError = true;
623       return;
624     }
625 
626     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
627                                              /*VerifyOnly*/false,
628                                              TreatUnavailableAsInvalid);
629     if (MemberInit.isInvalid()) {
630       hadError = true;
631       return;
632     }
633 
634     if (hadError) {
635       // Do nothing
636     } else if (Init < NumInits) {
637       ILE->setInit(Init, MemberInit.getAs<Expr>());
638     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
639       // Empty initialization requires a constructor call, so
640       // extend the initializer list to include the constructor
641       // call and make a note that we'll need to take another pass
642       // through the initializer list.
643       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
644       RequiresSecondPass = true;
645     }
646   } else if (InitListExpr *InnerILE
647                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
648     FillInEmptyInitializations(MemberEntity, InnerILE,
649                                RequiresSecondPass, ILE, Init, FillWithNoInit);
650   else if (DesignatedInitUpdateExpr *InnerDIUE
651                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
652     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
653                                RequiresSecondPass, ILE, Init,
654                                /*FillWithNoInit =*/true);
655 }
656 
657 /// Recursively replaces NULL values within the given initializer list
658 /// with expressions that perform value-initialization of the
659 /// appropriate type, and finish off the InitListExpr formation.
660 void
661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
662                                             InitListExpr *ILE,
663                                             bool &RequiresSecondPass,
664                                             InitListExpr *OuterILE,
665                                             unsigned OuterIndex,
666                                             bool FillWithNoInit) {
667   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
668          "Should not have void type");
669 
670   // If this is a nested initializer list, we might have changed its contents
671   // (and therefore some of its properties, such as instantiation-dependence)
672   // while filling it in. Inform the outer initializer list so that its state
673   // can be updated to match.
674   // FIXME: We should fully build the inner initializers before constructing
675   // the outer InitListExpr instead of mutating AST nodes after they have
676   // been used as subexpressions of other nodes.
677   struct UpdateOuterILEWithUpdatedInit {
678     InitListExpr *Outer;
679     unsigned OuterIndex;
680     ~UpdateOuterILEWithUpdatedInit() {
681       if (Outer)
682         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
683     }
684   } UpdateOuterRAII = {OuterILE, OuterIndex};
685 
686   // A transparent ILE is not performing aggregate initialization and should
687   // not be filled in.
688   if (ILE->isTransparent())
689     return;
690 
691   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
692     const RecordDecl *RDecl = RType->getDecl();
693     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
694       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
695                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
696     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
697              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
698       for (auto *Field : RDecl->fields()) {
699         if (Field->hasInClassInitializer()) {
700           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
701                                   FillWithNoInit);
702           break;
703         }
704       }
705     } else {
706       // The fields beyond ILE->getNumInits() are default initialized, so in
707       // order to leave them uninitialized, the ILE is expanded and the extra
708       // fields are then filled with NoInitExpr.
709       unsigned NumElems = numStructUnionElements(ILE->getType());
710       if (RDecl->hasFlexibleArrayMember())
711         ++NumElems;
712       if (ILE->getNumInits() < NumElems)
713         ILE->resizeInits(SemaRef.Context, NumElems);
714 
715       unsigned Init = 0;
716 
717       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
718         for (auto &Base : CXXRD->bases()) {
719           if (hadError)
720             return;
721 
722           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
723                                  FillWithNoInit);
724           ++Init;
725         }
726       }
727 
728       for (auto *Field : RDecl->fields()) {
729         if (Field->isUnnamedBitfield())
730           continue;
731 
732         if (hadError)
733           return;
734 
735         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
736                                 FillWithNoInit);
737         if (hadError)
738           return;
739 
740         ++Init;
741 
742         // Only look at the first initialization of a union.
743         if (RDecl->isUnion())
744           break;
745       }
746     }
747 
748     return;
749   }
750 
751   QualType ElementType;
752 
753   InitializedEntity ElementEntity = Entity;
754   unsigned NumInits = ILE->getNumInits();
755   unsigned NumElements = NumInits;
756   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
757     ElementType = AType->getElementType();
758     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
759       NumElements = CAType->getSize().getZExtValue();
760     // For an array new with an unknown bound, ask for one additional element
761     // in order to populate the array filler.
762     if (Entity.isVariableLengthArrayNew())
763       ++NumElements;
764     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
765                                                          0, Entity);
766   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
767     ElementType = VType->getElementType();
768     NumElements = VType->getNumElements();
769     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
770                                                          0, Entity);
771   } else
772     ElementType = ILE->getType();
773 
774   for (unsigned Init = 0; Init != NumElements; ++Init) {
775     if (hadError)
776       return;
777 
778     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
779         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
780       ElementEntity.setElementIndex(Init);
781 
782     if (Init >= NumInits && ILE->hasArrayFiller())
783       return;
784 
785     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
786     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
787       ILE->setInit(Init, ILE->getArrayFiller());
788     else if (!InitExpr && !ILE->hasArrayFiller()) {
789       Expr *Filler = nullptr;
790 
791       if (FillWithNoInit)
792         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
793       else {
794         ExprResult ElementInit =
795             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
796                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
797         if (ElementInit.isInvalid()) {
798           hadError = true;
799           return;
800         }
801 
802         Filler = ElementInit.getAs<Expr>();
803       }
804 
805       if (hadError) {
806         // Do nothing
807       } else if (Init < NumInits) {
808         // For arrays, just set the expression used for value-initialization
809         // of the "holes" in the array.
810         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
811           ILE->setArrayFiller(Filler);
812         else
813           ILE->setInit(Init, Filler);
814       } else {
815         // For arrays, just set the expression used for value-initialization
816         // of the rest of elements and exit.
817         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
818           ILE->setArrayFiller(Filler);
819           return;
820         }
821 
822         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
823           // Empty initialization requires a constructor call, so
824           // extend the initializer list to include the constructor
825           // call and make a note that we'll need to take another pass
826           // through the initializer list.
827           ILE->updateInit(SemaRef.Context, Init, Filler);
828           RequiresSecondPass = true;
829         }
830       }
831     } else if (InitListExpr *InnerILE
832                  = dyn_cast_or_null<InitListExpr>(InitExpr))
833       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
834                                  ILE, Init, FillWithNoInit);
835     else if (DesignatedInitUpdateExpr *InnerDIUE
836                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
837       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
838                                  RequiresSecondPass, ILE, Init,
839                                  /*FillWithNoInit =*/true);
840   }
841 }
842 
843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
844                                  InitListExpr *IL, QualType &T,
845                                  bool VerifyOnly,
846                                  bool TreatUnavailableAsInvalid)
847   : SemaRef(S), VerifyOnly(VerifyOnly),
848     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
849   // FIXME: Check that IL isn't already the semantic form of some other
850   // InitListExpr. If it is, we'd create a broken AST.
851 
852   hadError = false;
853 
854   FullyStructuredList =
855       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
856   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
857                         /*TopLevelObject=*/true);
858 
859   if (!hadError && !VerifyOnly) {
860     bool RequiresSecondPass = false;
861     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
862                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
863     if (RequiresSecondPass && !hadError)
864       FillInEmptyInitializations(Entity, FullyStructuredList,
865                                  RequiresSecondPass, nullptr, 0);
866   }
867 }
868 
869 int InitListChecker::numArrayElements(QualType DeclType) {
870   // FIXME: use a proper constant
871   int maxElements = 0x7FFFFFFF;
872   if (const ConstantArrayType *CAT =
873         SemaRef.Context.getAsConstantArrayType(DeclType)) {
874     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
875   }
876   return maxElements;
877 }
878 
879 int InitListChecker::numStructUnionElements(QualType DeclType) {
880   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
881   int InitializableMembers = 0;
882   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
883     InitializableMembers += CXXRD->getNumBases();
884   for (const auto *Field : structDecl->fields())
885     if (!Field->isUnnamedBitfield())
886       ++InitializableMembers;
887 
888   if (structDecl->isUnion())
889     return std::min(InitializableMembers, 1);
890   return InitializableMembers - structDecl->hasFlexibleArrayMember();
891 }
892 
893 /// Determine whether Entity is an entity for which it is idiomatic to elide
894 /// the braces in aggregate initialization.
895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
896   // Recursive initialization of the one and only field within an aggregate
897   // class is considered idiomatic. This case arises in particular for
898   // initialization of std::array, where the C++ standard suggests the idiom of
899   //
900   //   std::array<T, N> arr = {1, 2, 3};
901   //
902   // (where std::array is an aggregate struct containing a single array field.
903 
904   // FIXME: Should aggregate initialization of a struct with a single
905   // base class and no members also suppress the warning?
906   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
907     return false;
908 
909   auto *ParentRD =
910       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
911   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
912     if (CXXRD->getNumBases())
913       return false;
914 
915   auto FieldIt = ParentRD->field_begin();
916   assert(FieldIt != ParentRD->field_end() &&
917          "no fields but have initializer for member?");
918   return ++FieldIt == ParentRD->field_end();
919 }
920 
921 /// Check whether the range of the initializer \p ParentIList from element
922 /// \p Index onwards can be used to initialize an object of type \p T. Update
923 /// \p Index to indicate how many elements of the list were consumed.
924 ///
925 /// This also fills in \p StructuredList, from element \p StructuredIndex
926 /// onwards, with the fully-braced, desugared form of the initialization.
927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
928                                             InitListExpr *ParentIList,
929                                             QualType T, unsigned &Index,
930                                             InitListExpr *StructuredList,
931                                             unsigned &StructuredIndex) {
932   int maxElements = 0;
933 
934   if (T->isArrayType())
935     maxElements = numArrayElements(T);
936   else if (T->isRecordType())
937     maxElements = numStructUnionElements(T);
938   else if (T->isVectorType())
939     maxElements = T->getAs<VectorType>()->getNumElements();
940   else
941     llvm_unreachable("CheckImplicitInitList(): Illegal type");
942 
943   if (maxElements == 0) {
944     if (!VerifyOnly)
945       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
946                    diag::err_implicit_empty_initializer);
947     ++Index;
948     hadError = true;
949     return;
950   }
951 
952   // Build a structured initializer list corresponding to this subobject.
953   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
954       ParentIList, Index, T, StructuredList, StructuredIndex,
955       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
956                   ParentIList->getSourceRange().getEnd()));
957   unsigned StructuredSubobjectInitIndex = 0;
958 
959   // Check the element types and build the structural subobject.
960   unsigned StartIndex = Index;
961   CheckListElementTypes(Entity, ParentIList, T,
962                         /*SubobjectIsDesignatorContext=*/false, Index,
963                         StructuredSubobjectInitList,
964                         StructuredSubobjectInitIndex);
965 
966   if (!VerifyOnly) {
967     StructuredSubobjectInitList->setType(T);
968 
969     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
970     // Update the structured sub-object initializer so that it's ending
971     // range corresponds with the end of the last initializer it used.
972     if (EndIndex < ParentIList->getNumInits() &&
973         ParentIList->getInit(EndIndex)) {
974       SourceLocation EndLoc
975         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
976       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
977     }
978 
979     // Complain about missing braces.
980     if ((T->isArrayType() || T->isRecordType()) &&
981         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
982         !isIdiomaticBraceElisionEntity(Entity)) {
983       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
984                    diag::warn_missing_braces)
985           << StructuredSubobjectInitList->getSourceRange()
986           << FixItHint::CreateInsertion(
987                  StructuredSubobjectInitList->getBeginLoc(), "{")
988           << FixItHint::CreateInsertion(
989                  SemaRef.getLocForEndOfToken(
990                      StructuredSubobjectInitList->getEndLoc()),
991                  "}");
992     }
993 
994     // Warn if this type won't be an aggregate in future versions of C++.
995     auto *CXXRD = T->getAsCXXRecordDecl();
996     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
997       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
998                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
999           << StructuredSubobjectInitList->getSourceRange() << T;
1000     }
1001   }
1002 }
1003 
1004 /// Warn that \p Entity was of scalar type and was initialized by a
1005 /// single-element braced initializer list.
1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1007                                  SourceRange Braces) {
1008   // Don't warn during template instantiation. If the initialization was
1009   // non-dependent, we warned during the initial parse; otherwise, the
1010   // type might not be scalar in some uses of the template.
1011   if (S.inTemplateInstantiation())
1012     return;
1013 
1014   unsigned DiagID = 0;
1015 
1016   switch (Entity.getKind()) {
1017   case InitializedEntity::EK_VectorElement:
1018   case InitializedEntity::EK_ComplexElement:
1019   case InitializedEntity::EK_ArrayElement:
1020   case InitializedEntity::EK_Parameter:
1021   case InitializedEntity::EK_Parameter_CF_Audited:
1022   case InitializedEntity::EK_Result:
1023     // Extra braces here are suspicious.
1024     DiagID = diag::warn_braces_around_scalar_init;
1025     break;
1026 
1027   case InitializedEntity::EK_Member:
1028     // Warn on aggregate initialization but not on ctor init list or
1029     // default member initializer.
1030     if (Entity.getParent())
1031       DiagID = diag::warn_braces_around_scalar_init;
1032     break;
1033 
1034   case InitializedEntity::EK_Variable:
1035   case InitializedEntity::EK_LambdaCapture:
1036     // No warning, might be direct-list-initialization.
1037     // FIXME: Should we warn for copy-list-initialization in these cases?
1038     break;
1039 
1040   case InitializedEntity::EK_New:
1041   case InitializedEntity::EK_Temporary:
1042   case InitializedEntity::EK_CompoundLiteralInit:
1043     // No warning, braces are part of the syntax of the underlying construct.
1044     break;
1045 
1046   case InitializedEntity::EK_RelatedResult:
1047     // No warning, we already warned when initializing the result.
1048     break;
1049 
1050   case InitializedEntity::EK_Exception:
1051   case InitializedEntity::EK_Base:
1052   case InitializedEntity::EK_Delegating:
1053   case InitializedEntity::EK_BlockElement:
1054   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1055   case InitializedEntity::EK_Binding:
1056   case InitializedEntity::EK_StmtExprResult:
1057     llvm_unreachable("unexpected braced scalar init");
1058   }
1059 
1060   if (DiagID) {
1061     S.Diag(Braces.getBegin(), DiagID)
1062       << Braces
1063       << FixItHint::CreateRemoval(Braces.getBegin())
1064       << FixItHint::CreateRemoval(Braces.getEnd());
1065   }
1066 }
1067 
1068 /// Check whether the initializer \p IList (that was written with explicit
1069 /// braces) can be used to initialize an object of type \p T.
1070 ///
1071 /// This also fills in \p StructuredList with the fully-braced, desugared
1072 /// form of the initialization.
1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1074                                             InitListExpr *IList, QualType &T,
1075                                             InitListExpr *StructuredList,
1076                                             bool TopLevelObject) {
1077   if (!VerifyOnly) {
1078     SyntacticToSemantic[IList] = StructuredList;
1079     StructuredList->setSyntacticForm(IList);
1080   }
1081 
1082   unsigned Index = 0, StructuredIndex = 0;
1083   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1084                         Index, StructuredList, StructuredIndex, TopLevelObject);
1085   if (!VerifyOnly) {
1086     QualType ExprTy = T;
1087     if (!ExprTy->isArrayType())
1088       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1089     IList->setType(ExprTy);
1090     StructuredList->setType(ExprTy);
1091   }
1092   if (hadError)
1093     return;
1094 
1095   if (Index < IList->getNumInits()) {
1096     // We have leftover initializers
1097     if (VerifyOnly) {
1098       if (SemaRef.getLangOpts().CPlusPlus ||
1099           (SemaRef.getLangOpts().OpenCL &&
1100            IList->getType()->isVectorType())) {
1101         hadError = true;
1102       }
1103       return;
1104     }
1105 
1106     if (StructuredIndex == 1 &&
1107         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1108             SIF_None) {
1109       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1110       if (SemaRef.getLangOpts().CPlusPlus) {
1111         DK = diag::err_excess_initializers_in_char_array_initializer;
1112         hadError = true;
1113       }
1114       // Special-case
1115       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1116           << IList->getInit(Index)->getSourceRange();
1117     } else if (!T->isIncompleteType()) {
1118       // Don't complain for incomplete types, since we'll get an error
1119       // elsewhere
1120       QualType CurrentObjectType = StructuredList->getType();
1121       int initKind =
1122         CurrentObjectType->isArrayType()? 0 :
1123         CurrentObjectType->isVectorType()? 1 :
1124         CurrentObjectType->isScalarType()? 2 :
1125         CurrentObjectType->isUnionType()? 3 :
1126         4;
1127 
1128       unsigned DK = diag::ext_excess_initializers;
1129       if (SemaRef.getLangOpts().CPlusPlus) {
1130         DK = diag::err_excess_initializers;
1131         hadError = true;
1132       }
1133       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1134         DK = diag::err_excess_initializers;
1135         hadError = true;
1136       }
1137 
1138       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1139           << initKind << IList->getInit(Index)->getSourceRange();
1140     }
1141   }
1142 
1143   if (!VerifyOnly) {
1144     if (T->isScalarType() && IList->getNumInits() == 1 &&
1145         !isa<InitListExpr>(IList->getInit(0)))
1146       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1147 
1148     // Warn if this is a class type that won't be an aggregate in future
1149     // versions of C++.
1150     auto *CXXRD = T->getAsCXXRecordDecl();
1151     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1152       // Don't warn if there's an equivalent default constructor that would be
1153       // used instead.
1154       bool HasEquivCtor = false;
1155       if (IList->getNumInits() == 0) {
1156         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1157         HasEquivCtor = CD && !CD->isDeleted();
1158       }
1159 
1160       if (!HasEquivCtor) {
1161         SemaRef.Diag(IList->getBeginLoc(),
1162                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1163             << IList->getSourceRange() << T;
1164       }
1165     }
1166   }
1167 }
1168 
1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1170                                             InitListExpr *IList,
1171                                             QualType &DeclType,
1172                                             bool SubobjectIsDesignatorContext,
1173                                             unsigned &Index,
1174                                             InitListExpr *StructuredList,
1175                                             unsigned &StructuredIndex,
1176                                             bool TopLevelObject) {
1177   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1178     // Explicitly braced initializer for complex type can be real+imaginary
1179     // parts.
1180     CheckComplexType(Entity, IList, DeclType, Index,
1181                      StructuredList, StructuredIndex);
1182   } else if (DeclType->isScalarType()) {
1183     CheckScalarType(Entity, IList, DeclType, Index,
1184                     StructuredList, StructuredIndex);
1185   } else if (DeclType->isVectorType()) {
1186     CheckVectorType(Entity, IList, DeclType, Index,
1187                     StructuredList, StructuredIndex);
1188   } else if (DeclType->isRecordType()) {
1189     assert(DeclType->isAggregateType() &&
1190            "non-aggregate records should be handed in CheckSubElementType");
1191     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1192     auto Bases =
1193         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1194                                         CXXRecordDecl::base_class_iterator());
1195     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1196       Bases = CXXRD->bases();
1197     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1198                           SubobjectIsDesignatorContext, Index, StructuredList,
1199                           StructuredIndex, TopLevelObject);
1200   } else if (DeclType->isArrayType()) {
1201     llvm::APSInt Zero(
1202                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1203                     false);
1204     CheckArrayType(Entity, IList, DeclType, Zero,
1205                    SubobjectIsDesignatorContext, Index,
1206                    StructuredList, StructuredIndex);
1207   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1208     // This type is invalid, issue a diagnostic.
1209     ++Index;
1210     if (!VerifyOnly)
1211       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1212           << DeclType;
1213     hadError = true;
1214   } else if (DeclType->isReferenceType()) {
1215     CheckReferenceType(Entity, IList, DeclType, Index,
1216                        StructuredList, StructuredIndex);
1217   } else if (DeclType->isObjCObjectType()) {
1218     if (!VerifyOnly)
1219       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1220     hadError = true;
1221   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1222     // Checks for scalar type are sufficient for these types too.
1223     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1224                     StructuredIndex);
1225   } else {
1226     if (!VerifyOnly)
1227       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1228           << DeclType;
1229     hadError = true;
1230   }
1231 }
1232 
1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1234                                           InitListExpr *IList,
1235                                           QualType ElemType,
1236                                           unsigned &Index,
1237                                           InitListExpr *StructuredList,
1238                                           unsigned &StructuredIndex) {
1239   Expr *expr = IList->getInit(Index);
1240 
1241   if (ElemType->isReferenceType())
1242     return CheckReferenceType(Entity, IList, ElemType, Index,
1243                               StructuredList, StructuredIndex);
1244 
1245   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1246     if (SubInitList->getNumInits() == 1 &&
1247         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1248         SIF_None) {
1249       expr = SubInitList->getInit(0);
1250     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1251       InitListExpr *InnerStructuredList
1252         = getStructuredSubobjectInit(IList, Index, ElemType,
1253                                      StructuredList, StructuredIndex,
1254                                      SubInitList->getSourceRange(), true);
1255       CheckExplicitInitList(Entity, SubInitList, ElemType,
1256                             InnerStructuredList);
1257 
1258       if (!hadError && !VerifyOnly) {
1259         bool RequiresSecondPass = false;
1260         FillInEmptyInitializations(Entity, InnerStructuredList,
1261                                    RequiresSecondPass, StructuredList,
1262                                    StructuredIndex);
1263         if (RequiresSecondPass && !hadError)
1264           FillInEmptyInitializations(Entity, InnerStructuredList,
1265                                      RequiresSecondPass, StructuredList,
1266                                      StructuredIndex);
1267       }
1268       ++StructuredIndex;
1269       ++Index;
1270       return;
1271     }
1272     // C++ initialization is handled later.
1273   } else if (isa<ImplicitValueInitExpr>(expr)) {
1274     // This happens during template instantiation when we see an InitListExpr
1275     // that we've already checked once.
1276     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1277            "found implicit initialization for the wrong type");
1278     if (!VerifyOnly)
1279       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1280     ++Index;
1281     return;
1282   }
1283 
1284   if (SemaRef.getLangOpts().CPlusPlus) {
1285     // C++ [dcl.init.aggr]p2:
1286     //   Each member is copy-initialized from the corresponding
1287     //   initializer-clause.
1288 
1289     // FIXME: Better EqualLoc?
1290     InitializationKind Kind =
1291         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1292     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1293                                /*TopLevelOfInitList*/ true);
1294 
1295     // C++14 [dcl.init.aggr]p13:
1296     //   If the assignment-expression can initialize a member, the member is
1297     //   initialized. Otherwise [...] brace elision is assumed
1298     //
1299     // Brace elision is never performed if the element is not an
1300     // assignment-expression.
1301     if (Seq || isa<InitListExpr>(expr)) {
1302       if (!VerifyOnly) {
1303         ExprResult Result =
1304           Seq.Perform(SemaRef, Entity, Kind, expr);
1305         if (Result.isInvalid())
1306           hadError = true;
1307 
1308         UpdateStructuredListElement(StructuredList, StructuredIndex,
1309                                     Result.getAs<Expr>());
1310       } else if (!Seq)
1311         hadError = true;
1312       ++Index;
1313       return;
1314     }
1315 
1316     // Fall through for subaggregate initialization
1317   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1318     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1319     return CheckScalarType(Entity, IList, ElemType, Index,
1320                            StructuredList, StructuredIndex);
1321   } else if (const ArrayType *arrayType =
1322                  SemaRef.Context.getAsArrayType(ElemType)) {
1323     // arrayType can be incomplete if we're initializing a flexible
1324     // array member.  There's nothing we can do with the completed
1325     // type here, though.
1326 
1327     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1328       if (!VerifyOnly) {
1329         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1330         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1331       }
1332       ++Index;
1333       return;
1334     }
1335 
1336     // Fall through for subaggregate initialization.
1337 
1338   } else {
1339     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1340             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1341 
1342     // C99 6.7.8p13:
1343     //
1344     //   The initializer for a structure or union object that has
1345     //   automatic storage duration shall be either an initializer
1346     //   list as described below, or a single expression that has
1347     //   compatible structure or union type. In the latter case, the
1348     //   initial value of the object, including unnamed members, is
1349     //   that of the expression.
1350     ExprResult ExprRes = expr;
1351     if (SemaRef.CheckSingleAssignmentConstraints(
1352             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1353       if (ExprRes.isInvalid())
1354         hadError = true;
1355       else {
1356         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1357           if (ExprRes.isInvalid())
1358             hadError = true;
1359       }
1360       UpdateStructuredListElement(StructuredList, StructuredIndex,
1361                                   ExprRes.getAs<Expr>());
1362       ++Index;
1363       return;
1364     }
1365     ExprRes.get();
1366     // Fall through for subaggregate initialization
1367   }
1368 
1369   // C++ [dcl.init.aggr]p12:
1370   //
1371   //   [...] Otherwise, if the member is itself a non-empty
1372   //   subaggregate, brace elision is assumed and the initializer is
1373   //   considered for the initialization of the first member of
1374   //   the subaggregate.
1375   // OpenCL vector initializer is handled elsewhere.
1376   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1377       ElemType->isAggregateType()) {
1378     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1379                           StructuredIndex);
1380     ++StructuredIndex;
1381   } else {
1382     if (!VerifyOnly) {
1383       // We cannot initialize this element, so let
1384       // PerformCopyInitialization produce the appropriate diagnostic.
1385       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1386                                         /*TopLevelOfInitList=*/true);
1387     }
1388     hadError = true;
1389     ++Index;
1390     ++StructuredIndex;
1391   }
1392 }
1393 
1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1395                                        InitListExpr *IList, QualType DeclType,
1396                                        unsigned &Index,
1397                                        InitListExpr *StructuredList,
1398                                        unsigned &StructuredIndex) {
1399   assert(Index == 0 && "Index in explicit init list must be zero");
1400 
1401   // As an extension, clang supports complex initializers, which initialize
1402   // a complex number component-wise.  When an explicit initializer list for
1403   // a complex number contains two two initializers, this extension kicks in:
1404   // it exepcts the initializer list to contain two elements convertible to
1405   // the element type of the complex type. The first element initializes
1406   // the real part, and the second element intitializes the imaginary part.
1407 
1408   if (IList->getNumInits() != 2)
1409     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1410                            StructuredIndex);
1411 
1412   // This is an extension in C.  (The builtin _Complex type does not exist
1413   // in the C++ standard.)
1414   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1415     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1416         << IList->getSourceRange();
1417 
1418   // Initialize the complex number.
1419   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1420   InitializedEntity ElementEntity =
1421     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1422 
1423   for (unsigned i = 0; i < 2; ++i) {
1424     ElementEntity.setElementIndex(Index);
1425     CheckSubElementType(ElementEntity, IList, elementType, Index,
1426                         StructuredList, StructuredIndex);
1427   }
1428 }
1429 
1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1431                                       InitListExpr *IList, QualType DeclType,
1432                                       unsigned &Index,
1433                                       InitListExpr *StructuredList,
1434                                       unsigned &StructuredIndex) {
1435   if (Index >= IList->getNumInits()) {
1436     if (!VerifyOnly)
1437       SemaRef.Diag(IList->getBeginLoc(),
1438                    SemaRef.getLangOpts().CPlusPlus11
1439                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1440                        : diag::err_empty_scalar_initializer)
1441           << IList->getSourceRange();
1442     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1443     ++Index;
1444     ++StructuredIndex;
1445     return;
1446   }
1447 
1448   Expr *expr = IList->getInit(Index);
1449   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1450     // FIXME: This is invalid, and accepting it causes overload resolution
1451     // to pick the wrong overload in some corner cases.
1452     if (!VerifyOnly)
1453       SemaRef.Diag(SubIList->getBeginLoc(),
1454                    diag::ext_many_braces_around_scalar_init)
1455           << SubIList->getSourceRange();
1456 
1457     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1458                     StructuredIndex);
1459     return;
1460   } else if (isa<DesignatedInitExpr>(expr)) {
1461     if (!VerifyOnly)
1462       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1463           << DeclType << expr->getSourceRange();
1464     hadError = true;
1465     ++Index;
1466     ++StructuredIndex;
1467     return;
1468   }
1469 
1470   if (VerifyOnly) {
1471     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1472       hadError = true;
1473     ++Index;
1474     return;
1475   }
1476 
1477   ExprResult Result =
1478       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1479                                         /*TopLevelOfInitList=*/true);
1480 
1481   Expr *ResultExpr = nullptr;
1482 
1483   if (Result.isInvalid())
1484     hadError = true; // types weren't compatible.
1485   else {
1486     ResultExpr = Result.getAs<Expr>();
1487 
1488     if (ResultExpr != expr) {
1489       // The type was promoted, update initializer list.
1490       IList->setInit(Index, ResultExpr);
1491     }
1492   }
1493   if (hadError)
1494     ++StructuredIndex;
1495   else
1496     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1497   ++Index;
1498 }
1499 
1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1501                                          InitListExpr *IList, QualType DeclType,
1502                                          unsigned &Index,
1503                                          InitListExpr *StructuredList,
1504                                          unsigned &StructuredIndex) {
1505   if (Index >= IList->getNumInits()) {
1506     // FIXME: It would be wonderful if we could point at the actual member. In
1507     // general, it would be useful to pass location information down the stack,
1508     // so that we know the location (or decl) of the "current object" being
1509     // initialized.
1510     if (!VerifyOnly)
1511       SemaRef.Diag(IList->getBeginLoc(),
1512                    diag::err_init_reference_member_uninitialized)
1513           << DeclType << IList->getSourceRange();
1514     hadError = true;
1515     ++Index;
1516     ++StructuredIndex;
1517     return;
1518   }
1519 
1520   Expr *expr = IList->getInit(Index);
1521   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1522     if (!VerifyOnly)
1523       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1524           << DeclType << IList->getSourceRange();
1525     hadError = true;
1526     ++Index;
1527     ++StructuredIndex;
1528     return;
1529   }
1530 
1531   if (VerifyOnly) {
1532     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1533       hadError = true;
1534     ++Index;
1535     return;
1536   }
1537 
1538   ExprResult Result =
1539       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1540                                         /*TopLevelOfInitList=*/true);
1541 
1542   if (Result.isInvalid())
1543     hadError = true;
1544 
1545   expr = Result.getAs<Expr>();
1546   IList->setInit(Index, expr);
1547 
1548   if (hadError)
1549     ++StructuredIndex;
1550   else
1551     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1552   ++Index;
1553 }
1554 
1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1556                                       InitListExpr *IList, QualType DeclType,
1557                                       unsigned &Index,
1558                                       InitListExpr *StructuredList,
1559                                       unsigned &StructuredIndex) {
1560   const VectorType *VT = DeclType->getAs<VectorType>();
1561   unsigned maxElements = VT->getNumElements();
1562   unsigned numEltsInit = 0;
1563   QualType elementType = VT->getElementType();
1564 
1565   if (Index >= IList->getNumInits()) {
1566     // Make sure the element type can be value-initialized.
1567     if (VerifyOnly)
1568       CheckEmptyInitializable(
1569           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1570           IList->getEndLoc());
1571     return;
1572   }
1573 
1574   if (!SemaRef.getLangOpts().OpenCL) {
1575     // If the initializing element is a vector, try to copy-initialize
1576     // instead of breaking it apart (which is doomed to failure anyway).
1577     Expr *Init = IList->getInit(Index);
1578     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1579       if (VerifyOnly) {
1580         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1581           hadError = true;
1582         ++Index;
1583         return;
1584       }
1585 
1586       ExprResult Result =
1587           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1588                                             /*TopLevelOfInitList=*/true);
1589 
1590       Expr *ResultExpr = nullptr;
1591       if (Result.isInvalid())
1592         hadError = true; // types weren't compatible.
1593       else {
1594         ResultExpr = Result.getAs<Expr>();
1595 
1596         if (ResultExpr != Init) {
1597           // The type was promoted, update initializer list.
1598           IList->setInit(Index, ResultExpr);
1599         }
1600       }
1601       if (hadError)
1602         ++StructuredIndex;
1603       else
1604         UpdateStructuredListElement(StructuredList, StructuredIndex,
1605                                     ResultExpr);
1606       ++Index;
1607       return;
1608     }
1609 
1610     InitializedEntity ElementEntity =
1611       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612 
1613     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1614       // Don't attempt to go past the end of the init list
1615       if (Index >= IList->getNumInits()) {
1616         if (VerifyOnly)
1617           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1618         break;
1619       }
1620 
1621       ElementEntity.setElementIndex(Index);
1622       CheckSubElementType(ElementEntity, IList, elementType, Index,
1623                           StructuredList, StructuredIndex);
1624     }
1625 
1626     if (VerifyOnly)
1627       return;
1628 
1629     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1630     const VectorType *T = Entity.getType()->getAs<VectorType>();
1631     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1632                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1633       // The ability to use vector initializer lists is a GNU vector extension
1634       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1635       // endian machines it works fine, however on big endian machines it
1636       // exhibits surprising behaviour:
1637       //
1638       //   uint32x2_t x = {42, 64};
1639       //   return vget_lane_u32(x, 0); // Will return 64.
1640       //
1641       // Because of this, explicitly call out that it is non-portable.
1642       //
1643       SemaRef.Diag(IList->getBeginLoc(),
1644                    diag::warn_neon_vector_initializer_non_portable);
1645 
1646       const char *typeCode;
1647       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1648 
1649       if (elementType->isFloatingType())
1650         typeCode = "f";
1651       else if (elementType->isSignedIntegerType())
1652         typeCode = "s";
1653       else if (elementType->isUnsignedIntegerType())
1654         typeCode = "u";
1655       else
1656         llvm_unreachable("Invalid element type!");
1657 
1658       SemaRef.Diag(IList->getBeginLoc(),
1659                    SemaRef.Context.getTypeSize(VT) > 64
1660                        ? diag::note_neon_vector_initializer_non_portable_q
1661                        : diag::note_neon_vector_initializer_non_portable)
1662           << typeCode << typeSize;
1663     }
1664 
1665     return;
1666   }
1667 
1668   InitializedEntity ElementEntity =
1669     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1670 
1671   // OpenCL initializers allows vectors to be constructed from vectors.
1672   for (unsigned i = 0; i < maxElements; ++i) {
1673     // Don't attempt to go past the end of the init list
1674     if (Index >= IList->getNumInits())
1675       break;
1676 
1677     ElementEntity.setElementIndex(Index);
1678 
1679     QualType IType = IList->getInit(Index)->getType();
1680     if (!IType->isVectorType()) {
1681       CheckSubElementType(ElementEntity, IList, elementType, Index,
1682                           StructuredList, StructuredIndex);
1683       ++numEltsInit;
1684     } else {
1685       QualType VecType;
1686       const VectorType *IVT = IType->getAs<VectorType>();
1687       unsigned numIElts = IVT->getNumElements();
1688 
1689       if (IType->isExtVectorType())
1690         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1691       else
1692         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1693                                                 IVT->getVectorKind());
1694       CheckSubElementType(ElementEntity, IList, VecType, Index,
1695                           StructuredList, StructuredIndex);
1696       numEltsInit += numIElts;
1697     }
1698   }
1699 
1700   // OpenCL requires all elements to be initialized.
1701   if (numEltsInit != maxElements) {
1702     if (!VerifyOnly)
1703       SemaRef.Diag(IList->getBeginLoc(),
1704                    diag::err_vector_incorrect_num_initializers)
1705           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1706     hadError = true;
1707   }
1708 }
1709 
1710 /// Check if the type of a class element has an accessible destructor, and marks
1711 /// it referenced. Returns true if we shouldn't form a reference to the
1712 /// destructor.
1713 ///
1714 /// Aggregate initialization requires a class element's destructor be
1715 /// accessible per 11.6.1 [dcl.init.aggr]:
1716 ///
1717 /// The destructor for each element of class type is potentially invoked
1718 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1719 /// occurs.
1720 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1721                                      Sema &SemaRef) {
1722   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1723   if (!CXXRD)
1724     return false;
1725 
1726   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1727   SemaRef.CheckDestructorAccess(Loc, Destructor,
1728                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1729                                 << ElementType);
1730   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1731   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1732 }
1733 
1734 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1735                                      InitListExpr *IList, QualType &DeclType,
1736                                      llvm::APSInt elementIndex,
1737                                      bool SubobjectIsDesignatorContext,
1738                                      unsigned &Index,
1739                                      InitListExpr *StructuredList,
1740                                      unsigned &StructuredIndex) {
1741   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1742 
1743   if (!VerifyOnly) {
1744     if (checkDestructorReference(arrayType->getElementType(),
1745                                  IList->getEndLoc(), SemaRef)) {
1746       hadError = true;
1747       return;
1748     }
1749   }
1750 
1751   // Check for the special-case of initializing an array with a string.
1752   if (Index < IList->getNumInits()) {
1753     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1754         SIF_None) {
1755       // We place the string literal directly into the resulting
1756       // initializer list. This is the only place where the structure
1757       // of the structured initializer list doesn't match exactly,
1758       // because doing so would involve allocating one character
1759       // constant for each string.
1760       if (!VerifyOnly) {
1761         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1762         UpdateStructuredListElement(StructuredList, StructuredIndex,
1763                                     IList->getInit(Index));
1764         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1765       }
1766       ++Index;
1767       return;
1768     }
1769   }
1770   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1771     // Check for VLAs; in standard C it would be possible to check this
1772     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1773     // them in all sorts of strange places).
1774     if (!VerifyOnly)
1775       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1776                    diag::err_variable_object_no_init)
1777           << VAT->getSizeExpr()->getSourceRange();
1778     hadError = true;
1779     ++Index;
1780     ++StructuredIndex;
1781     return;
1782   }
1783 
1784   // We might know the maximum number of elements in advance.
1785   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1786                            elementIndex.isUnsigned());
1787   bool maxElementsKnown = false;
1788   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1789     maxElements = CAT->getSize();
1790     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1791     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1792     maxElementsKnown = true;
1793   }
1794 
1795   QualType elementType = arrayType->getElementType();
1796   while (Index < IList->getNumInits()) {
1797     Expr *Init = IList->getInit(Index);
1798     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1799       // If we're not the subobject that matches up with the '{' for
1800       // the designator, we shouldn't be handling the
1801       // designator. Return immediately.
1802       if (!SubobjectIsDesignatorContext)
1803         return;
1804 
1805       // Handle this designated initializer. elementIndex will be
1806       // updated to be the next array element we'll initialize.
1807       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1808                                      DeclType, nullptr, &elementIndex, Index,
1809                                      StructuredList, StructuredIndex, true,
1810                                      false)) {
1811         hadError = true;
1812         continue;
1813       }
1814 
1815       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1816         maxElements = maxElements.extend(elementIndex.getBitWidth());
1817       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1818         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1819       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1820 
1821       // If the array is of incomplete type, keep track of the number of
1822       // elements in the initializer.
1823       if (!maxElementsKnown && elementIndex > maxElements)
1824         maxElements = elementIndex;
1825 
1826       continue;
1827     }
1828 
1829     // If we know the maximum number of elements, and we've already
1830     // hit it, stop consuming elements in the initializer list.
1831     if (maxElementsKnown && elementIndex == maxElements)
1832       break;
1833 
1834     InitializedEntity ElementEntity =
1835       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1836                                            Entity);
1837     // Check this element.
1838     CheckSubElementType(ElementEntity, IList, elementType, Index,
1839                         StructuredList, StructuredIndex);
1840     ++elementIndex;
1841 
1842     // If the array is of incomplete type, keep track of the number of
1843     // elements in the initializer.
1844     if (!maxElementsKnown && elementIndex > maxElements)
1845       maxElements = elementIndex;
1846   }
1847   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1848     // If this is an incomplete array type, the actual type needs to
1849     // be calculated here.
1850     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1851     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1852       // Sizing an array implicitly to zero is not allowed by ISO C,
1853       // but is supported by GNU.
1854       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1855     }
1856 
1857     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1858                                                      ArrayType::Normal, 0);
1859   }
1860   if (!hadError && VerifyOnly) {
1861     // If there are any members of the array that get value-initialized, check
1862     // that is possible. That happens if we know the bound and don't have
1863     // enough elements, or if we're performing an array new with an unknown
1864     // bound.
1865     // FIXME: This needs to detect holes left by designated initializers too.
1866     if ((maxElementsKnown && elementIndex < maxElements) ||
1867         Entity.isVariableLengthArrayNew())
1868       CheckEmptyInitializable(
1869           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1870           IList->getEndLoc());
1871   }
1872 }
1873 
1874 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1875                                              Expr *InitExpr,
1876                                              FieldDecl *Field,
1877                                              bool TopLevelObject) {
1878   // Handle GNU flexible array initializers.
1879   unsigned FlexArrayDiag;
1880   if (isa<InitListExpr>(InitExpr) &&
1881       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1882     // Empty flexible array init always allowed as an extension
1883     FlexArrayDiag = diag::ext_flexible_array_init;
1884   } else if (SemaRef.getLangOpts().CPlusPlus) {
1885     // Disallow flexible array init in C++; it is not required for gcc
1886     // compatibility, and it needs work to IRGen correctly in general.
1887     FlexArrayDiag = diag::err_flexible_array_init;
1888   } else if (!TopLevelObject) {
1889     // Disallow flexible array init on non-top-level object
1890     FlexArrayDiag = diag::err_flexible_array_init;
1891   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1892     // Disallow flexible array init on anything which is not a variable.
1893     FlexArrayDiag = diag::err_flexible_array_init;
1894   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1895     // Disallow flexible array init on local variables.
1896     FlexArrayDiag = diag::err_flexible_array_init;
1897   } else {
1898     // Allow other cases.
1899     FlexArrayDiag = diag::ext_flexible_array_init;
1900   }
1901 
1902   if (!VerifyOnly) {
1903     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1904         << InitExpr->getBeginLoc();
1905     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1906       << Field;
1907   }
1908 
1909   return FlexArrayDiag != diag::ext_flexible_array_init;
1910 }
1911 
1912 void InitListChecker::CheckStructUnionTypes(
1913     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1914     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1915     bool SubobjectIsDesignatorContext, unsigned &Index,
1916     InitListExpr *StructuredList, unsigned &StructuredIndex,
1917     bool TopLevelObject) {
1918   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1919 
1920   // If the record is invalid, some of it's members are invalid. To avoid
1921   // confusion, we forgo checking the intializer for the entire record.
1922   if (structDecl->isInvalidDecl()) {
1923     // Assume it was supposed to consume a single initializer.
1924     ++Index;
1925     hadError = true;
1926     return;
1927   }
1928 
1929   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1930     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1931 
1932     if (!VerifyOnly)
1933       for (FieldDecl *FD : RD->fields()) {
1934         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1935         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
1936           hadError = true;
1937           return;
1938         }
1939       }
1940 
1941     // If there's a default initializer, use it.
1942     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1943       if (VerifyOnly)
1944         return;
1945       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1946            Field != FieldEnd; ++Field) {
1947         if (Field->hasInClassInitializer()) {
1948           StructuredList->setInitializedFieldInUnion(*Field);
1949           // FIXME: Actually build a CXXDefaultInitExpr?
1950           return;
1951         }
1952       }
1953     }
1954 
1955     // Value-initialize the first member of the union that isn't an unnamed
1956     // bitfield.
1957     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1958          Field != FieldEnd; ++Field) {
1959       if (!Field->isUnnamedBitfield()) {
1960         if (VerifyOnly)
1961           CheckEmptyInitializable(
1962               InitializedEntity::InitializeMember(*Field, &Entity),
1963               IList->getEndLoc());
1964         else
1965           StructuredList->setInitializedFieldInUnion(*Field);
1966         break;
1967       }
1968     }
1969     return;
1970   }
1971 
1972   bool InitializedSomething = false;
1973 
1974   // If we have any base classes, they are initialized prior to the fields.
1975   for (auto &Base : Bases) {
1976     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1977 
1978     // Designated inits always initialize fields, so if we see one, all
1979     // remaining base classes have no explicit initializer.
1980     if (Init && isa<DesignatedInitExpr>(Init))
1981       Init = nullptr;
1982 
1983     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1984     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1985         SemaRef.Context, &Base, false, &Entity);
1986     if (Init) {
1987       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1988                           StructuredList, StructuredIndex);
1989       InitializedSomething = true;
1990     } else if (VerifyOnly) {
1991       CheckEmptyInitializable(BaseEntity, InitLoc);
1992     }
1993 
1994     if (!VerifyOnly)
1995       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
1996         hadError = true;
1997         return;
1998       }
1999   }
2000 
2001   // If structDecl is a forward declaration, this loop won't do
2002   // anything except look at designated initializers; That's okay,
2003   // because an error should get printed out elsewhere. It might be
2004   // worthwhile to skip over the rest of the initializer, though.
2005   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
2006   RecordDecl::field_iterator FieldEnd = RD->field_end();
2007   bool CheckForMissingFields =
2008     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2009   bool HasDesignatedInit = false;
2010 
2011   while (Index < IList->getNumInits()) {
2012     Expr *Init = IList->getInit(Index);
2013     SourceLocation InitLoc = Init->getBeginLoc();
2014 
2015     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2016       // If we're not the subobject that matches up with the '{' for
2017       // the designator, we shouldn't be handling the
2018       // designator. Return immediately.
2019       if (!SubobjectIsDesignatorContext)
2020         return;
2021 
2022       HasDesignatedInit = true;
2023 
2024       // Handle this designated initializer. Field will be updated to
2025       // the next field that we'll be initializing.
2026       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2027                                      DeclType, &Field, nullptr, Index,
2028                                      StructuredList, StructuredIndex,
2029                                      true, TopLevelObject))
2030         hadError = true;
2031       else if (!VerifyOnly) {
2032         // Find the field named by the designated initializer.
2033         RecordDecl::field_iterator F = RD->field_begin();
2034         while (std::next(F) != Field)
2035           ++F;
2036         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2037         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2038           hadError = true;
2039           return;
2040         }
2041       }
2042 
2043       InitializedSomething = true;
2044 
2045       // Disable check for missing fields when designators are used.
2046       // This matches gcc behaviour.
2047       CheckForMissingFields = false;
2048       continue;
2049     }
2050 
2051     if (Field == FieldEnd) {
2052       // We've run out of fields. We're done.
2053       break;
2054     }
2055 
2056     // We've already initialized a member of a union. We're done.
2057     if (InitializedSomething && DeclType->isUnionType())
2058       break;
2059 
2060     // If we've hit the flexible array member at the end, we're done.
2061     if (Field->getType()->isIncompleteArrayType())
2062       break;
2063 
2064     if (Field->isUnnamedBitfield()) {
2065       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2066       ++Field;
2067       continue;
2068     }
2069 
2070     // Make sure we can use this declaration.
2071     bool InvalidUse;
2072     if (VerifyOnly)
2073       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2074     else
2075       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2076           *Field, IList->getInit(Index)->getBeginLoc());
2077     if (InvalidUse) {
2078       ++Index;
2079       ++Field;
2080       hadError = true;
2081       continue;
2082     }
2083 
2084     if (!VerifyOnly) {
2085       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2086       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2087         hadError = true;
2088         return;
2089       }
2090     }
2091 
2092     InitializedEntity MemberEntity =
2093       InitializedEntity::InitializeMember(*Field, &Entity);
2094     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2095                         StructuredList, StructuredIndex);
2096     InitializedSomething = true;
2097 
2098     if (DeclType->isUnionType() && !VerifyOnly) {
2099       // Initialize the first field within the union.
2100       StructuredList->setInitializedFieldInUnion(*Field);
2101     }
2102 
2103     ++Field;
2104   }
2105 
2106   // Emit warnings for missing struct field initializers.
2107   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2108       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2109       !DeclType->isUnionType()) {
2110     // It is possible we have one or more unnamed bitfields remaining.
2111     // Find first (if any) named field and emit warning.
2112     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2113          it != end; ++it) {
2114       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2115         SemaRef.Diag(IList->getSourceRange().getEnd(),
2116                      diag::warn_missing_field_initializers) << *it;
2117         break;
2118       }
2119     }
2120   }
2121 
2122   // Check that any remaining fields can be value-initialized.
2123   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2124       !Field->getType()->isIncompleteArrayType()) {
2125     // FIXME: Should check for holes left by designated initializers too.
2126     for (; Field != FieldEnd && !hadError; ++Field) {
2127       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2128         CheckEmptyInitializable(
2129             InitializedEntity::InitializeMember(*Field, &Entity),
2130             IList->getEndLoc());
2131     }
2132   }
2133 
2134   // Check that the types of the remaining fields have accessible destructors.
2135   if (!VerifyOnly) {
2136     // If the initializer expression has a designated initializer, check the
2137     // elements for which a designated initializer is not provided too.
2138     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2139                                                      : Field;
2140     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2141       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2142       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2143         hadError = true;
2144         return;
2145       }
2146     }
2147   }
2148 
2149   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2150       Index >= IList->getNumInits())
2151     return;
2152 
2153   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2154                              TopLevelObject)) {
2155     hadError = true;
2156     ++Index;
2157     return;
2158   }
2159 
2160   InitializedEntity MemberEntity =
2161     InitializedEntity::InitializeMember(*Field, &Entity);
2162 
2163   if (isa<InitListExpr>(IList->getInit(Index)))
2164     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2165                         StructuredList, StructuredIndex);
2166   else
2167     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2168                           StructuredList, StructuredIndex);
2169 }
2170 
2171 /// Expand a field designator that refers to a member of an
2172 /// anonymous struct or union into a series of field designators that
2173 /// refers to the field within the appropriate subobject.
2174 ///
2175 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2176                                            DesignatedInitExpr *DIE,
2177                                            unsigned DesigIdx,
2178                                            IndirectFieldDecl *IndirectField) {
2179   typedef DesignatedInitExpr::Designator Designator;
2180 
2181   // Build the replacement designators.
2182   SmallVector<Designator, 4> Replacements;
2183   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2184        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2185     if (PI + 1 == PE)
2186       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2187                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2188                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2189     else
2190       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2191                                         SourceLocation(), SourceLocation()));
2192     assert(isa<FieldDecl>(*PI));
2193     Replacements.back().setField(cast<FieldDecl>(*PI));
2194   }
2195 
2196   // Expand the current designator into the set of replacement
2197   // designators, so we have a full subobject path down to where the
2198   // member of the anonymous struct/union is actually stored.
2199   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2200                         &Replacements[0] + Replacements.size());
2201 }
2202 
2203 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2204                                                    DesignatedInitExpr *DIE) {
2205   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2206   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2207   for (unsigned I = 0; I < NumIndexExprs; ++I)
2208     IndexExprs[I] = DIE->getSubExpr(I + 1);
2209   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2210                                     IndexExprs,
2211                                     DIE->getEqualOrColonLoc(),
2212                                     DIE->usesGNUSyntax(), DIE->getInit());
2213 }
2214 
2215 namespace {
2216 
2217 // Callback to only accept typo corrections that are for field members of
2218 // the given struct or union.
2219 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2220  public:
2221   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2222       : Record(RD) {}
2223 
2224   bool ValidateCandidate(const TypoCorrection &candidate) override {
2225     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2226     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2227   }
2228 
2229   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2230     return llvm::make_unique<FieldInitializerValidatorCCC>(*this);
2231   }
2232 
2233  private:
2234   RecordDecl *Record;
2235 };
2236 
2237 } // end anonymous namespace
2238 
2239 /// Check the well-formedness of a C99 designated initializer.
2240 ///
2241 /// Determines whether the designated initializer @p DIE, which
2242 /// resides at the given @p Index within the initializer list @p
2243 /// IList, is well-formed for a current object of type @p DeclType
2244 /// (C99 6.7.8). The actual subobject that this designator refers to
2245 /// within the current subobject is returned in either
2246 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2247 ///
2248 /// @param IList  The initializer list in which this designated
2249 /// initializer occurs.
2250 ///
2251 /// @param DIE The designated initializer expression.
2252 ///
2253 /// @param DesigIdx  The index of the current designator.
2254 ///
2255 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2256 /// into which the designation in @p DIE should refer.
2257 ///
2258 /// @param NextField  If non-NULL and the first designator in @p DIE is
2259 /// a field, this will be set to the field declaration corresponding
2260 /// to the field named by the designator.
2261 ///
2262 /// @param NextElementIndex  If non-NULL and the first designator in @p
2263 /// DIE is an array designator or GNU array-range designator, this
2264 /// will be set to the last index initialized by this designator.
2265 ///
2266 /// @param Index  Index into @p IList where the designated initializer
2267 /// @p DIE occurs.
2268 ///
2269 /// @param StructuredList  The initializer list expression that
2270 /// describes all of the subobject initializers in the order they'll
2271 /// actually be initialized.
2272 ///
2273 /// @returns true if there was an error, false otherwise.
2274 bool
2275 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2276                                             InitListExpr *IList,
2277                                             DesignatedInitExpr *DIE,
2278                                             unsigned DesigIdx,
2279                                             QualType &CurrentObjectType,
2280                                           RecordDecl::field_iterator *NextField,
2281                                             llvm::APSInt *NextElementIndex,
2282                                             unsigned &Index,
2283                                             InitListExpr *StructuredList,
2284                                             unsigned &StructuredIndex,
2285                                             bool FinishSubobjectInit,
2286                                             bool TopLevelObject) {
2287   if (DesigIdx == DIE->size()) {
2288     // Check the actual initialization for the designated object type.
2289     bool prevHadError = hadError;
2290 
2291     // Temporarily remove the designator expression from the
2292     // initializer list that the child calls see, so that we don't try
2293     // to re-process the designator.
2294     unsigned OldIndex = Index;
2295     IList->setInit(OldIndex, DIE->getInit());
2296 
2297     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2298                         StructuredList, StructuredIndex);
2299 
2300     // Restore the designated initializer expression in the syntactic
2301     // form of the initializer list.
2302     if (IList->getInit(OldIndex) != DIE->getInit())
2303       DIE->setInit(IList->getInit(OldIndex));
2304     IList->setInit(OldIndex, DIE);
2305 
2306     return hadError && !prevHadError;
2307   }
2308 
2309   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2310   bool IsFirstDesignator = (DesigIdx == 0);
2311   if (!VerifyOnly) {
2312     assert((IsFirstDesignator || StructuredList) &&
2313            "Need a non-designated initializer list to start from");
2314 
2315     // Determine the structural initializer list that corresponds to the
2316     // current subobject.
2317     if (IsFirstDesignator)
2318       StructuredList = SyntacticToSemantic.lookup(IList);
2319     else {
2320       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2321           StructuredList->getInit(StructuredIndex) : nullptr;
2322       if (!ExistingInit && StructuredList->hasArrayFiller())
2323         ExistingInit = StructuredList->getArrayFiller();
2324 
2325       if (!ExistingInit)
2326         StructuredList = getStructuredSubobjectInit(
2327             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2328             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2329       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2330         StructuredList = Result;
2331       else {
2332         if (DesignatedInitUpdateExpr *E =
2333                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2334           StructuredList = E->getUpdater();
2335         else {
2336           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2337               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2338                                        ExistingInit, DIE->getEndLoc());
2339           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2340           StructuredList = DIUE->getUpdater();
2341         }
2342 
2343         // We need to check on source range validity because the previous
2344         // initializer does not have to be an explicit initializer. e.g.,
2345         //
2346         // struct P { int a, b; };
2347         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2348         //
2349         // There is an overwrite taking place because the first braced initializer
2350         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2351         if (ExistingInit->getSourceRange().isValid()) {
2352           // We are creating an initializer list that initializes the
2353           // subobjects of the current object, but there was already an
2354           // initialization that completely initialized the current
2355           // subobject, e.g., by a compound literal:
2356           //
2357           // struct X { int a, b; };
2358           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2359           //
2360           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2361           // designated initializer re-initializes the whole
2362           // subobject [0], overwriting previous initializers.
2363           SemaRef.Diag(D->getBeginLoc(),
2364                        diag::warn_subobject_initializer_overrides)
2365               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2366 
2367           SemaRef.Diag(ExistingInit->getBeginLoc(),
2368                        diag::note_previous_initializer)
2369               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2370         }
2371       }
2372     }
2373     assert(StructuredList && "Expected a structured initializer list");
2374   }
2375 
2376   if (D->isFieldDesignator()) {
2377     // C99 6.7.8p7:
2378     //
2379     //   If a designator has the form
2380     //
2381     //      . identifier
2382     //
2383     //   then the current object (defined below) shall have
2384     //   structure or union type and the identifier shall be the
2385     //   name of a member of that type.
2386     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2387     if (!RT) {
2388       SourceLocation Loc = D->getDotLoc();
2389       if (Loc.isInvalid())
2390         Loc = D->getFieldLoc();
2391       if (!VerifyOnly)
2392         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2393           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2394       ++Index;
2395       return true;
2396     }
2397 
2398     FieldDecl *KnownField = D->getField();
2399     if (!KnownField) {
2400       IdentifierInfo *FieldName = D->getFieldName();
2401       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2402       for (NamedDecl *ND : Lookup) {
2403         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2404           KnownField = FD;
2405           break;
2406         }
2407         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2408           // In verify mode, don't modify the original.
2409           if (VerifyOnly)
2410             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2411           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2412           D = DIE->getDesignator(DesigIdx);
2413           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2414           break;
2415         }
2416       }
2417       if (!KnownField) {
2418         if (VerifyOnly) {
2419           ++Index;
2420           return true;  // No typo correction when just trying this out.
2421         }
2422 
2423         // Name lookup found something, but it wasn't a field.
2424         if (!Lookup.empty()) {
2425           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2426             << FieldName;
2427           SemaRef.Diag(Lookup.front()->getLocation(),
2428                        diag::note_field_designator_found);
2429           ++Index;
2430           return true;
2431         }
2432 
2433         // Name lookup didn't find anything.
2434         // Determine whether this was a typo for another field name.
2435         FieldInitializerValidatorCCC CCC(RT->getDecl());
2436         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2437                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2438                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2439                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2440           SemaRef.diagnoseTypo(
2441               Corrected,
2442               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2443                 << FieldName << CurrentObjectType);
2444           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2445           hadError = true;
2446         } else {
2447           // Typo correction didn't find anything.
2448           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2449             << FieldName << CurrentObjectType;
2450           ++Index;
2451           return true;
2452         }
2453       }
2454     }
2455 
2456     unsigned FieldIndex = 0;
2457 
2458     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2459       FieldIndex = CXXRD->getNumBases();
2460 
2461     for (auto *FI : RT->getDecl()->fields()) {
2462       if (FI->isUnnamedBitfield())
2463         continue;
2464       if (declaresSameEntity(KnownField, FI)) {
2465         KnownField = FI;
2466         break;
2467       }
2468       ++FieldIndex;
2469     }
2470 
2471     RecordDecl::field_iterator Field =
2472         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2473 
2474     // All of the fields of a union are located at the same place in
2475     // the initializer list.
2476     if (RT->getDecl()->isUnion()) {
2477       FieldIndex = 0;
2478       if (!VerifyOnly) {
2479         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2480         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2481           assert(StructuredList->getNumInits() == 1
2482                  && "A union should never have more than one initializer!");
2483 
2484           Expr *ExistingInit = StructuredList->getInit(0);
2485           if (ExistingInit) {
2486             // We're about to throw away an initializer, emit warning.
2487             SemaRef.Diag(D->getFieldLoc(),
2488                          diag::warn_initializer_overrides)
2489               << D->getSourceRange();
2490             SemaRef.Diag(ExistingInit->getBeginLoc(),
2491                          diag::note_previous_initializer)
2492                 << /*FIXME:has side effects=*/0
2493                 << ExistingInit->getSourceRange();
2494           }
2495 
2496           // remove existing initializer
2497           StructuredList->resizeInits(SemaRef.Context, 0);
2498           StructuredList->setInitializedFieldInUnion(nullptr);
2499         }
2500 
2501         StructuredList->setInitializedFieldInUnion(*Field);
2502       }
2503     }
2504 
2505     // Make sure we can use this declaration.
2506     bool InvalidUse;
2507     if (VerifyOnly)
2508       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2509     else
2510       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2511     if (InvalidUse) {
2512       ++Index;
2513       return true;
2514     }
2515 
2516     if (!VerifyOnly) {
2517       // Update the designator with the field declaration.
2518       D->setField(*Field);
2519 
2520       // Make sure that our non-designated initializer list has space
2521       // for a subobject corresponding to this field.
2522       if (FieldIndex >= StructuredList->getNumInits())
2523         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2524     }
2525 
2526     // This designator names a flexible array member.
2527     if (Field->getType()->isIncompleteArrayType()) {
2528       bool Invalid = false;
2529       if ((DesigIdx + 1) != DIE->size()) {
2530         // We can't designate an object within the flexible array
2531         // member (because GCC doesn't allow it).
2532         if (!VerifyOnly) {
2533           DesignatedInitExpr::Designator *NextD
2534             = DIE->getDesignator(DesigIdx + 1);
2535           SemaRef.Diag(NextD->getBeginLoc(),
2536                        diag::err_designator_into_flexible_array_member)
2537               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2538           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2539             << *Field;
2540         }
2541         Invalid = true;
2542       }
2543 
2544       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2545           !isa<StringLiteral>(DIE->getInit())) {
2546         // The initializer is not an initializer list.
2547         if (!VerifyOnly) {
2548           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2549                        diag::err_flexible_array_init_needs_braces)
2550               << DIE->getInit()->getSourceRange();
2551           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2552             << *Field;
2553         }
2554         Invalid = true;
2555       }
2556 
2557       // Check GNU flexible array initializer.
2558       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2559                                              TopLevelObject))
2560         Invalid = true;
2561 
2562       if (Invalid) {
2563         ++Index;
2564         return true;
2565       }
2566 
2567       // Initialize the array.
2568       bool prevHadError = hadError;
2569       unsigned newStructuredIndex = FieldIndex;
2570       unsigned OldIndex = Index;
2571       IList->setInit(Index, DIE->getInit());
2572 
2573       InitializedEntity MemberEntity =
2574         InitializedEntity::InitializeMember(*Field, &Entity);
2575       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2576                           StructuredList, newStructuredIndex);
2577 
2578       IList->setInit(OldIndex, DIE);
2579       if (hadError && !prevHadError) {
2580         ++Field;
2581         ++FieldIndex;
2582         if (NextField)
2583           *NextField = Field;
2584         StructuredIndex = FieldIndex;
2585         return true;
2586       }
2587     } else {
2588       // Recurse to check later designated subobjects.
2589       QualType FieldType = Field->getType();
2590       unsigned newStructuredIndex = FieldIndex;
2591 
2592       InitializedEntity MemberEntity =
2593         InitializedEntity::InitializeMember(*Field, &Entity);
2594       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2595                                      FieldType, nullptr, nullptr, Index,
2596                                      StructuredList, newStructuredIndex,
2597                                      FinishSubobjectInit, false))
2598         return true;
2599     }
2600 
2601     // Find the position of the next field to be initialized in this
2602     // subobject.
2603     ++Field;
2604     ++FieldIndex;
2605 
2606     // If this the first designator, our caller will continue checking
2607     // the rest of this struct/class/union subobject.
2608     if (IsFirstDesignator) {
2609       if (NextField)
2610         *NextField = Field;
2611       StructuredIndex = FieldIndex;
2612       return false;
2613     }
2614 
2615     if (!FinishSubobjectInit)
2616       return false;
2617 
2618     // We've already initialized something in the union; we're done.
2619     if (RT->getDecl()->isUnion())
2620       return hadError;
2621 
2622     // Check the remaining fields within this class/struct/union subobject.
2623     bool prevHadError = hadError;
2624 
2625     auto NoBases =
2626         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2627                                         CXXRecordDecl::base_class_iterator());
2628     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2629                           false, Index, StructuredList, FieldIndex);
2630     return hadError && !prevHadError;
2631   }
2632 
2633   // C99 6.7.8p6:
2634   //
2635   //   If a designator has the form
2636   //
2637   //      [ constant-expression ]
2638   //
2639   //   then the current object (defined below) shall have array
2640   //   type and the expression shall be an integer constant
2641   //   expression. If the array is of unknown size, any
2642   //   nonnegative value is valid.
2643   //
2644   // Additionally, cope with the GNU extension that permits
2645   // designators of the form
2646   //
2647   //      [ constant-expression ... constant-expression ]
2648   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2649   if (!AT) {
2650     if (!VerifyOnly)
2651       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2652         << CurrentObjectType;
2653     ++Index;
2654     return true;
2655   }
2656 
2657   Expr *IndexExpr = nullptr;
2658   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2659   if (D->isArrayDesignator()) {
2660     IndexExpr = DIE->getArrayIndex(*D);
2661     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2662     DesignatedEndIndex = DesignatedStartIndex;
2663   } else {
2664     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2665 
2666     DesignatedStartIndex =
2667       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2668     DesignatedEndIndex =
2669       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2670     IndexExpr = DIE->getArrayRangeEnd(*D);
2671 
2672     // Codegen can't handle evaluating array range designators that have side
2673     // effects, because we replicate the AST value for each initialized element.
2674     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2675     // elements with something that has a side effect, so codegen can emit an
2676     // "error unsupported" error instead of miscompiling the app.
2677     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2678         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2679       FullyStructuredList->sawArrayRangeDesignator();
2680   }
2681 
2682   if (isa<ConstantArrayType>(AT)) {
2683     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2684     DesignatedStartIndex
2685       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2686     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2687     DesignatedEndIndex
2688       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2689     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2690     if (DesignatedEndIndex >= MaxElements) {
2691       if (!VerifyOnly)
2692         SemaRef.Diag(IndexExpr->getBeginLoc(),
2693                      diag::err_array_designator_too_large)
2694             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2695             << IndexExpr->getSourceRange();
2696       ++Index;
2697       return true;
2698     }
2699   } else {
2700     unsigned DesignatedIndexBitWidth =
2701       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2702     DesignatedStartIndex =
2703       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2704     DesignatedEndIndex =
2705       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2706     DesignatedStartIndex.setIsUnsigned(true);
2707     DesignatedEndIndex.setIsUnsigned(true);
2708   }
2709 
2710   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2711     // We're modifying a string literal init; we have to decompose the string
2712     // so we can modify the individual characters.
2713     ASTContext &Context = SemaRef.Context;
2714     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2715 
2716     // Compute the character type
2717     QualType CharTy = AT->getElementType();
2718 
2719     // Compute the type of the integer literals.
2720     QualType PromotedCharTy = CharTy;
2721     if (CharTy->isPromotableIntegerType())
2722       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2723     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2724 
2725     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2726       // Get the length of the string.
2727       uint64_t StrLen = SL->getLength();
2728       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2729         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2730       StructuredList->resizeInits(Context, StrLen);
2731 
2732       // Build a literal for each character in the string, and put them into
2733       // the init list.
2734       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2735         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2736         Expr *Init = new (Context) IntegerLiteral(
2737             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2738         if (CharTy != PromotedCharTy)
2739           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2740                                           Init, nullptr, VK_RValue);
2741         StructuredList->updateInit(Context, i, Init);
2742       }
2743     } else {
2744       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2745       std::string Str;
2746       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2747 
2748       // Get the length of the string.
2749       uint64_t StrLen = Str.size();
2750       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2751         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2752       StructuredList->resizeInits(Context, StrLen);
2753 
2754       // Build a literal for each character in the string, and put them into
2755       // the init list.
2756       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2757         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2758         Expr *Init = new (Context) IntegerLiteral(
2759             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2760         if (CharTy != PromotedCharTy)
2761           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2762                                           Init, nullptr, VK_RValue);
2763         StructuredList->updateInit(Context, i, Init);
2764       }
2765     }
2766   }
2767 
2768   // Make sure that our non-designated initializer list has space
2769   // for a subobject corresponding to this array element.
2770   if (!VerifyOnly &&
2771       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2772     StructuredList->resizeInits(SemaRef.Context,
2773                                 DesignatedEndIndex.getZExtValue() + 1);
2774 
2775   // Repeatedly perform subobject initializations in the range
2776   // [DesignatedStartIndex, DesignatedEndIndex].
2777 
2778   // Move to the next designator
2779   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2780   unsigned OldIndex = Index;
2781 
2782   InitializedEntity ElementEntity =
2783     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2784 
2785   while (DesignatedStartIndex <= DesignatedEndIndex) {
2786     // Recurse to check later designated subobjects.
2787     QualType ElementType = AT->getElementType();
2788     Index = OldIndex;
2789 
2790     ElementEntity.setElementIndex(ElementIndex);
2791     if (CheckDesignatedInitializer(
2792             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2793             nullptr, Index, StructuredList, ElementIndex,
2794             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2795             false))
2796       return true;
2797 
2798     // Move to the next index in the array that we'll be initializing.
2799     ++DesignatedStartIndex;
2800     ElementIndex = DesignatedStartIndex.getZExtValue();
2801   }
2802 
2803   // If this the first designator, our caller will continue checking
2804   // the rest of this array subobject.
2805   if (IsFirstDesignator) {
2806     if (NextElementIndex)
2807       *NextElementIndex = DesignatedStartIndex;
2808     StructuredIndex = ElementIndex;
2809     return false;
2810   }
2811 
2812   if (!FinishSubobjectInit)
2813     return false;
2814 
2815   // Check the remaining elements within this array subobject.
2816   bool prevHadError = hadError;
2817   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2818                  /*SubobjectIsDesignatorContext=*/false, Index,
2819                  StructuredList, ElementIndex);
2820   return hadError && !prevHadError;
2821 }
2822 
2823 // Get the structured initializer list for a subobject of type
2824 // @p CurrentObjectType.
2825 InitListExpr *
2826 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2827                                             QualType CurrentObjectType,
2828                                             InitListExpr *StructuredList,
2829                                             unsigned StructuredIndex,
2830                                             SourceRange InitRange,
2831                                             bool IsFullyOverwritten) {
2832   if (VerifyOnly)
2833     return nullptr; // No structured list in verification-only mode.
2834   Expr *ExistingInit = nullptr;
2835   if (!StructuredList)
2836     ExistingInit = SyntacticToSemantic.lookup(IList);
2837   else if (StructuredIndex < StructuredList->getNumInits())
2838     ExistingInit = StructuredList->getInit(StructuredIndex);
2839 
2840   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2841     // There might have already been initializers for subobjects of the current
2842     // object, but a subsequent initializer list will overwrite the entirety
2843     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2844     //
2845     // struct P { char x[6]; };
2846     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2847     //
2848     // The first designated initializer is ignored, and l.x is just "f".
2849     if (!IsFullyOverwritten)
2850       return Result;
2851 
2852   if (ExistingInit) {
2853     // We are creating an initializer list that initializes the
2854     // subobjects of the current object, but there was already an
2855     // initialization that completely initialized the current
2856     // subobject, e.g., by a compound literal:
2857     //
2858     // struct X { int a, b; };
2859     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2860     //
2861     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2862     // designated initializer re-initializes the whole
2863     // subobject [0], overwriting previous initializers.
2864     SemaRef.Diag(InitRange.getBegin(),
2865                  diag::warn_subobject_initializer_overrides)
2866       << InitRange;
2867     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2868         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2869   }
2870 
2871   InitListExpr *Result
2872     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2873                                          InitRange.getBegin(), None,
2874                                          InitRange.getEnd());
2875 
2876   QualType ResultType = CurrentObjectType;
2877   if (!ResultType->isArrayType())
2878     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2879   Result->setType(ResultType);
2880 
2881   // Pre-allocate storage for the structured initializer list.
2882   unsigned NumElements = 0;
2883   unsigned NumInits = 0;
2884   bool GotNumInits = false;
2885   if (!StructuredList) {
2886     NumInits = IList->getNumInits();
2887     GotNumInits = true;
2888   } else if (Index < IList->getNumInits()) {
2889     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2890       NumInits = SubList->getNumInits();
2891       GotNumInits = true;
2892     }
2893   }
2894 
2895   if (const ArrayType *AType
2896       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2897     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2898       NumElements = CAType->getSize().getZExtValue();
2899       // Simple heuristic so that we don't allocate a very large
2900       // initializer with many empty entries at the end.
2901       if (GotNumInits && NumElements > NumInits)
2902         NumElements = 0;
2903     }
2904   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2905     NumElements = VType->getNumElements();
2906   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2907     RecordDecl *RDecl = RType->getDecl();
2908     if (RDecl->isUnion())
2909       NumElements = 1;
2910     else
2911       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2912   }
2913 
2914   Result->reserveInits(SemaRef.Context, NumElements);
2915 
2916   // Link this new initializer list into the structured initializer
2917   // lists.
2918   if (StructuredList)
2919     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2920   else {
2921     Result->setSyntacticForm(IList);
2922     SyntacticToSemantic[IList] = Result;
2923   }
2924 
2925   return Result;
2926 }
2927 
2928 /// Update the initializer at index @p StructuredIndex within the
2929 /// structured initializer list to the value @p expr.
2930 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2931                                                   unsigned &StructuredIndex,
2932                                                   Expr *expr) {
2933   // No structured initializer list to update
2934   if (!StructuredList)
2935     return;
2936 
2937   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2938                                                   StructuredIndex, expr)) {
2939     // This initializer overwrites a previous initializer. Warn.
2940     // We need to check on source range validity because the previous
2941     // initializer does not have to be an explicit initializer.
2942     // struct P { int a, b; };
2943     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2944     // There is an overwrite taking place because the first braced initializer
2945     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2946     if (PrevInit->getSourceRange().isValid()) {
2947       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2948           << expr->getSourceRange();
2949 
2950       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2951           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2952     }
2953   }
2954 
2955   ++StructuredIndex;
2956 }
2957 
2958 /// Check that the given Index expression is a valid array designator
2959 /// value. This is essentially just a wrapper around
2960 /// VerifyIntegerConstantExpression that also checks for negative values
2961 /// and produces a reasonable diagnostic if there is a
2962 /// failure. Returns the index expression, possibly with an implicit cast
2963 /// added, on success.  If everything went okay, Value will receive the
2964 /// value of the constant expression.
2965 static ExprResult
2966 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2967   SourceLocation Loc = Index->getBeginLoc();
2968 
2969   // Make sure this is an integer constant expression.
2970   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2971   if (Result.isInvalid())
2972     return Result;
2973 
2974   if (Value.isSigned() && Value.isNegative())
2975     return S.Diag(Loc, diag::err_array_designator_negative)
2976       << Value.toString(10) << Index->getSourceRange();
2977 
2978   Value.setIsUnsigned(true);
2979   return Result;
2980 }
2981 
2982 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2983                                             SourceLocation Loc,
2984                                             bool GNUSyntax,
2985                                             ExprResult Init) {
2986   typedef DesignatedInitExpr::Designator ASTDesignator;
2987 
2988   bool Invalid = false;
2989   SmallVector<ASTDesignator, 32> Designators;
2990   SmallVector<Expr *, 32> InitExpressions;
2991 
2992   // Build designators and check array designator expressions.
2993   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2994     const Designator &D = Desig.getDesignator(Idx);
2995     switch (D.getKind()) {
2996     case Designator::FieldDesignator:
2997       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2998                                           D.getFieldLoc()));
2999       break;
3000 
3001     case Designator::ArrayDesignator: {
3002       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3003       llvm::APSInt IndexValue;
3004       if (!Index->isTypeDependent() && !Index->isValueDependent())
3005         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3006       if (!Index)
3007         Invalid = true;
3008       else {
3009         Designators.push_back(ASTDesignator(InitExpressions.size(),
3010                                             D.getLBracketLoc(),
3011                                             D.getRBracketLoc()));
3012         InitExpressions.push_back(Index);
3013       }
3014       break;
3015     }
3016 
3017     case Designator::ArrayRangeDesignator: {
3018       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3019       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3020       llvm::APSInt StartValue;
3021       llvm::APSInt EndValue;
3022       bool StartDependent = StartIndex->isTypeDependent() ||
3023                             StartIndex->isValueDependent();
3024       bool EndDependent = EndIndex->isTypeDependent() ||
3025                           EndIndex->isValueDependent();
3026       if (!StartDependent)
3027         StartIndex =
3028             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3029       if (!EndDependent)
3030         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3031 
3032       if (!StartIndex || !EndIndex)
3033         Invalid = true;
3034       else {
3035         // Make sure we're comparing values with the same bit width.
3036         if (StartDependent || EndDependent) {
3037           // Nothing to compute.
3038         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3039           EndValue = EndValue.extend(StartValue.getBitWidth());
3040         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3041           StartValue = StartValue.extend(EndValue.getBitWidth());
3042 
3043         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3044           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3045             << StartValue.toString(10) << EndValue.toString(10)
3046             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3047           Invalid = true;
3048         } else {
3049           Designators.push_back(ASTDesignator(InitExpressions.size(),
3050                                               D.getLBracketLoc(),
3051                                               D.getEllipsisLoc(),
3052                                               D.getRBracketLoc()));
3053           InitExpressions.push_back(StartIndex);
3054           InitExpressions.push_back(EndIndex);
3055         }
3056       }
3057       break;
3058     }
3059     }
3060   }
3061 
3062   if (Invalid || Init.isInvalid())
3063     return ExprError();
3064 
3065   // Clear out the expressions within the designation.
3066   Desig.ClearExprs(*this);
3067 
3068   DesignatedInitExpr *DIE
3069     = DesignatedInitExpr::Create(Context,
3070                                  Designators,
3071                                  InitExpressions, Loc, GNUSyntax,
3072                                  Init.getAs<Expr>());
3073 
3074   if (!getLangOpts().C99)
3075     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3076         << DIE->getSourceRange();
3077 
3078   return DIE;
3079 }
3080 
3081 //===----------------------------------------------------------------------===//
3082 // Initialization entity
3083 //===----------------------------------------------------------------------===//
3084 
3085 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3086                                      const InitializedEntity &Parent)
3087   : Parent(&Parent), Index(Index)
3088 {
3089   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3090     Kind = EK_ArrayElement;
3091     Type = AT->getElementType();
3092   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3093     Kind = EK_VectorElement;
3094     Type = VT->getElementType();
3095   } else {
3096     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3097     assert(CT && "Unexpected type");
3098     Kind = EK_ComplexElement;
3099     Type = CT->getElementType();
3100   }
3101 }
3102 
3103 InitializedEntity
3104 InitializedEntity::InitializeBase(ASTContext &Context,
3105                                   const CXXBaseSpecifier *Base,
3106                                   bool IsInheritedVirtualBase,
3107                                   const InitializedEntity *Parent) {
3108   InitializedEntity Result;
3109   Result.Kind = EK_Base;
3110   Result.Parent = Parent;
3111   Result.Base = reinterpret_cast<uintptr_t>(Base);
3112   if (IsInheritedVirtualBase)
3113     Result.Base |= 0x01;
3114 
3115   Result.Type = Base->getType();
3116   return Result;
3117 }
3118 
3119 DeclarationName InitializedEntity::getName() const {
3120   switch (getKind()) {
3121   case EK_Parameter:
3122   case EK_Parameter_CF_Audited: {
3123     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3124     return (D ? D->getDeclName() : DeclarationName());
3125   }
3126 
3127   case EK_Variable:
3128   case EK_Member:
3129   case EK_Binding:
3130     return Variable.VariableOrMember->getDeclName();
3131 
3132   case EK_LambdaCapture:
3133     return DeclarationName(Capture.VarID);
3134 
3135   case EK_Result:
3136   case EK_StmtExprResult:
3137   case EK_Exception:
3138   case EK_New:
3139   case EK_Temporary:
3140   case EK_Base:
3141   case EK_Delegating:
3142   case EK_ArrayElement:
3143   case EK_VectorElement:
3144   case EK_ComplexElement:
3145   case EK_BlockElement:
3146   case EK_LambdaToBlockConversionBlockElement:
3147   case EK_CompoundLiteralInit:
3148   case EK_RelatedResult:
3149     return DeclarationName();
3150   }
3151 
3152   llvm_unreachable("Invalid EntityKind!");
3153 }
3154 
3155 ValueDecl *InitializedEntity::getDecl() const {
3156   switch (getKind()) {
3157   case EK_Variable:
3158   case EK_Member:
3159   case EK_Binding:
3160     return Variable.VariableOrMember;
3161 
3162   case EK_Parameter:
3163   case EK_Parameter_CF_Audited:
3164     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3165 
3166   case EK_Result:
3167   case EK_StmtExprResult:
3168   case EK_Exception:
3169   case EK_New:
3170   case EK_Temporary:
3171   case EK_Base:
3172   case EK_Delegating:
3173   case EK_ArrayElement:
3174   case EK_VectorElement:
3175   case EK_ComplexElement:
3176   case EK_BlockElement:
3177   case EK_LambdaToBlockConversionBlockElement:
3178   case EK_LambdaCapture:
3179   case EK_CompoundLiteralInit:
3180   case EK_RelatedResult:
3181     return nullptr;
3182   }
3183 
3184   llvm_unreachable("Invalid EntityKind!");
3185 }
3186 
3187 bool InitializedEntity::allowsNRVO() const {
3188   switch (getKind()) {
3189   case EK_Result:
3190   case EK_Exception:
3191     return LocAndNRVO.NRVO;
3192 
3193   case EK_StmtExprResult:
3194   case EK_Variable:
3195   case EK_Parameter:
3196   case EK_Parameter_CF_Audited:
3197   case EK_Member:
3198   case EK_Binding:
3199   case EK_New:
3200   case EK_Temporary:
3201   case EK_CompoundLiteralInit:
3202   case EK_Base:
3203   case EK_Delegating:
3204   case EK_ArrayElement:
3205   case EK_VectorElement:
3206   case EK_ComplexElement:
3207   case EK_BlockElement:
3208   case EK_LambdaToBlockConversionBlockElement:
3209   case EK_LambdaCapture:
3210   case EK_RelatedResult:
3211     break;
3212   }
3213 
3214   return false;
3215 }
3216 
3217 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3218   assert(getParent() != this);
3219   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3220   for (unsigned I = 0; I != Depth; ++I)
3221     OS << "`-";
3222 
3223   switch (getKind()) {
3224   case EK_Variable: OS << "Variable"; break;
3225   case EK_Parameter: OS << "Parameter"; break;
3226   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3227     break;
3228   case EK_Result: OS << "Result"; break;
3229   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3230   case EK_Exception: OS << "Exception"; break;
3231   case EK_Member: OS << "Member"; break;
3232   case EK_Binding: OS << "Binding"; break;
3233   case EK_New: OS << "New"; break;
3234   case EK_Temporary: OS << "Temporary"; break;
3235   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3236   case EK_RelatedResult: OS << "RelatedResult"; break;
3237   case EK_Base: OS << "Base"; break;
3238   case EK_Delegating: OS << "Delegating"; break;
3239   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3240   case EK_VectorElement: OS << "VectorElement " << Index; break;
3241   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3242   case EK_BlockElement: OS << "Block"; break;
3243   case EK_LambdaToBlockConversionBlockElement:
3244     OS << "Block (lambda)";
3245     break;
3246   case EK_LambdaCapture:
3247     OS << "LambdaCapture ";
3248     OS << DeclarationName(Capture.VarID);
3249     break;
3250   }
3251 
3252   if (auto *D = getDecl()) {
3253     OS << " ";
3254     D->printQualifiedName(OS);
3255   }
3256 
3257   OS << " '" << getType().getAsString() << "'\n";
3258 
3259   return Depth + 1;
3260 }
3261 
3262 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3263   dumpImpl(llvm::errs());
3264 }
3265 
3266 //===----------------------------------------------------------------------===//
3267 // Initialization sequence
3268 //===----------------------------------------------------------------------===//
3269 
3270 void InitializationSequence::Step::Destroy() {
3271   switch (Kind) {
3272   case SK_ResolveAddressOfOverloadedFunction:
3273   case SK_CastDerivedToBaseRValue:
3274   case SK_CastDerivedToBaseXValue:
3275   case SK_CastDerivedToBaseLValue:
3276   case SK_BindReference:
3277   case SK_BindReferenceToTemporary:
3278   case SK_FinalCopy:
3279   case SK_ExtraneousCopyToTemporary:
3280   case SK_UserConversion:
3281   case SK_QualificationConversionRValue:
3282   case SK_QualificationConversionXValue:
3283   case SK_QualificationConversionLValue:
3284   case SK_AtomicConversion:
3285   case SK_LValueToRValue:
3286   case SK_ListInitialization:
3287   case SK_UnwrapInitList:
3288   case SK_RewrapInitList:
3289   case SK_ConstructorInitialization:
3290   case SK_ConstructorInitializationFromList:
3291   case SK_ZeroInitialization:
3292   case SK_CAssignment:
3293   case SK_StringInit:
3294   case SK_ObjCObjectConversion:
3295   case SK_ArrayLoopIndex:
3296   case SK_ArrayLoopInit:
3297   case SK_ArrayInit:
3298   case SK_GNUArrayInit:
3299   case SK_ParenthesizedArrayInit:
3300   case SK_PassByIndirectCopyRestore:
3301   case SK_PassByIndirectRestore:
3302   case SK_ProduceObjCObject:
3303   case SK_StdInitializerList:
3304   case SK_StdInitializerListConstructorCall:
3305   case SK_OCLSamplerInit:
3306   case SK_OCLZeroOpaqueType:
3307     break;
3308 
3309   case SK_ConversionSequence:
3310   case SK_ConversionSequenceNoNarrowing:
3311     delete ICS;
3312   }
3313 }
3314 
3315 bool InitializationSequence::isDirectReferenceBinding() const {
3316   // There can be some lvalue adjustments after the SK_BindReference step.
3317   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3318     if (I->Kind == SK_BindReference)
3319       return true;
3320     if (I->Kind == SK_BindReferenceToTemporary)
3321       return false;
3322   }
3323   return false;
3324 }
3325 
3326 bool InitializationSequence::isAmbiguous() const {
3327   if (!Failed())
3328     return false;
3329 
3330   switch (getFailureKind()) {
3331   case FK_TooManyInitsForReference:
3332   case FK_ParenthesizedListInitForReference:
3333   case FK_ArrayNeedsInitList:
3334   case FK_ArrayNeedsInitListOrStringLiteral:
3335   case FK_ArrayNeedsInitListOrWideStringLiteral:
3336   case FK_NarrowStringIntoWideCharArray:
3337   case FK_WideStringIntoCharArray:
3338   case FK_IncompatWideStringIntoWideChar:
3339   case FK_PlainStringIntoUTF8Char:
3340   case FK_UTF8StringIntoPlainChar:
3341   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3342   case FK_NonConstLValueReferenceBindingToTemporary:
3343   case FK_NonConstLValueReferenceBindingToBitfield:
3344   case FK_NonConstLValueReferenceBindingToVectorElement:
3345   case FK_NonConstLValueReferenceBindingToUnrelated:
3346   case FK_RValueReferenceBindingToLValue:
3347   case FK_ReferenceAddrspaceMismatchTemporary:
3348   case FK_ReferenceInitDropsQualifiers:
3349   case FK_ReferenceInitFailed:
3350   case FK_ConversionFailed:
3351   case FK_ConversionFromPropertyFailed:
3352   case FK_TooManyInitsForScalar:
3353   case FK_ParenthesizedListInitForScalar:
3354   case FK_ReferenceBindingToInitList:
3355   case FK_InitListBadDestinationType:
3356   case FK_DefaultInitOfConst:
3357   case FK_Incomplete:
3358   case FK_ArrayTypeMismatch:
3359   case FK_NonConstantArrayInit:
3360   case FK_ListInitializationFailed:
3361   case FK_VariableLengthArrayHasInitializer:
3362   case FK_PlaceholderType:
3363   case FK_ExplicitConstructor:
3364   case FK_AddressOfUnaddressableFunction:
3365     return false;
3366 
3367   case FK_ReferenceInitOverloadFailed:
3368   case FK_UserConversionOverloadFailed:
3369   case FK_ConstructorOverloadFailed:
3370   case FK_ListConstructorOverloadFailed:
3371     return FailedOverloadResult == OR_Ambiguous;
3372   }
3373 
3374   llvm_unreachable("Invalid EntityKind!");
3375 }
3376 
3377 bool InitializationSequence::isConstructorInitialization() const {
3378   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3379 }
3380 
3381 void
3382 InitializationSequence
3383 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3384                                    DeclAccessPair Found,
3385                                    bool HadMultipleCandidates) {
3386   Step S;
3387   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3388   S.Type = Function->getType();
3389   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3390   S.Function.Function = Function;
3391   S.Function.FoundDecl = Found;
3392   Steps.push_back(S);
3393 }
3394 
3395 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3396                                                       ExprValueKind VK) {
3397   Step S;
3398   switch (VK) {
3399   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3400   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3401   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3402   }
3403   S.Type = BaseType;
3404   Steps.push_back(S);
3405 }
3406 
3407 void InitializationSequence::AddReferenceBindingStep(QualType T,
3408                                                      bool BindingTemporary) {
3409   Step S;
3410   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3411   S.Type = T;
3412   Steps.push_back(S);
3413 }
3414 
3415 void InitializationSequence::AddFinalCopy(QualType T) {
3416   Step S;
3417   S.Kind = SK_FinalCopy;
3418   S.Type = T;
3419   Steps.push_back(S);
3420 }
3421 
3422 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3423   Step S;
3424   S.Kind = SK_ExtraneousCopyToTemporary;
3425   S.Type = T;
3426   Steps.push_back(S);
3427 }
3428 
3429 void
3430 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3431                                               DeclAccessPair FoundDecl,
3432                                               QualType T,
3433                                               bool HadMultipleCandidates) {
3434   Step S;
3435   S.Kind = SK_UserConversion;
3436   S.Type = T;
3437   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3438   S.Function.Function = Function;
3439   S.Function.FoundDecl = FoundDecl;
3440   Steps.push_back(S);
3441 }
3442 
3443 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3444                                                             ExprValueKind VK) {
3445   Step S;
3446   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3447   switch (VK) {
3448   case VK_RValue:
3449     S.Kind = SK_QualificationConversionRValue;
3450     break;
3451   case VK_XValue:
3452     S.Kind = SK_QualificationConversionXValue;
3453     break;
3454   case VK_LValue:
3455     S.Kind = SK_QualificationConversionLValue;
3456     break;
3457   }
3458   S.Type = Ty;
3459   Steps.push_back(S);
3460 }
3461 
3462 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3463   Step S;
3464   S.Kind = SK_AtomicConversion;
3465   S.Type = Ty;
3466   Steps.push_back(S);
3467 }
3468 
3469 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3470   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3471 
3472   Step S;
3473   S.Kind = SK_LValueToRValue;
3474   S.Type = Ty;
3475   Steps.push_back(S);
3476 }
3477 
3478 void InitializationSequence::AddConversionSequenceStep(
3479     const ImplicitConversionSequence &ICS, QualType T,
3480     bool TopLevelOfInitList) {
3481   Step S;
3482   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3483                               : SK_ConversionSequence;
3484   S.Type = T;
3485   S.ICS = new ImplicitConversionSequence(ICS);
3486   Steps.push_back(S);
3487 }
3488 
3489 void InitializationSequence::AddListInitializationStep(QualType T) {
3490   Step S;
3491   S.Kind = SK_ListInitialization;
3492   S.Type = T;
3493   Steps.push_back(S);
3494 }
3495 
3496 void InitializationSequence::AddConstructorInitializationStep(
3497     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3498     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3499   Step S;
3500   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3501                                      : SK_ConstructorInitializationFromList
3502                         : SK_ConstructorInitialization;
3503   S.Type = T;
3504   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3505   S.Function.Function = Constructor;
3506   S.Function.FoundDecl = FoundDecl;
3507   Steps.push_back(S);
3508 }
3509 
3510 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3511   Step S;
3512   S.Kind = SK_ZeroInitialization;
3513   S.Type = T;
3514   Steps.push_back(S);
3515 }
3516 
3517 void InitializationSequence::AddCAssignmentStep(QualType T) {
3518   Step S;
3519   S.Kind = SK_CAssignment;
3520   S.Type = T;
3521   Steps.push_back(S);
3522 }
3523 
3524 void InitializationSequence::AddStringInitStep(QualType T) {
3525   Step S;
3526   S.Kind = SK_StringInit;
3527   S.Type = T;
3528   Steps.push_back(S);
3529 }
3530 
3531 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3532   Step S;
3533   S.Kind = SK_ObjCObjectConversion;
3534   S.Type = T;
3535   Steps.push_back(S);
3536 }
3537 
3538 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3539   Step S;
3540   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3541   S.Type = T;
3542   Steps.push_back(S);
3543 }
3544 
3545 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3546   Step S;
3547   S.Kind = SK_ArrayLoopIndex;
3548   S.Type = EltT;
3549   Steps.insert(Steps.begin(), S);
3550 
3551   S.Kind = SK_ArrayLoopInit;
3552   S.Type = T;
3553   Steps.push_back(S);
3554 }
3555 
3556 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3557   Step S;
3558   S.Kind = SK_ParenthesizedArrayInit;
3559   S.Type = T;
3560   Steps.push_back(S);
3561 }
3562 
3563 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3564                                                               bool shouldCopy) {
3565   Step s;
3566   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3567                        : SK_PassByIndirectRestore);
3568   s.Type = type;
3569   Steps.push_back(s);
3570 }
3571 
3572 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3573   Step S;
3574   S.Kind = SK_ProduceObjCObject;
3575   S.Type = T;
3576   Steps.push_back(S);
3577 }
3578 
3579 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3580   Step S;
3581   S.Kind = SK_StdInitializerList;
3582   S.Type = T;
3583   Steps.push_back(S);
3584 }
3585 
3586 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3587   Step S;
3588   S.Kind = SK_OCLSamplerInit;
3589   S.Type = T;
3590   Steps.push_back(S);
3591 }
3592 
3593 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3594   Step S;
3595   S.Kind = SK_OCLZeroOpaqueType;
3596   S.Type = T;
3597   Steps.push_back(S);
3598 }
3599 
3600 void InitializationSequence::RewrapReferenceInitList(QualType T,
3601                                                      InitListExpr *Syntactic) {
3602   assert(Syntactic->getNumInits() == 1 &&
3603          "Can only rewrap trivial init lists.");
3604   Step S;
3605   S.Kind = SK_UnwrapInitList;
3606   S.Type = Syntactic->getInit(0)->getType();
3607   Steps.insert(Steps.begin(), S);
3608 
3609   S.Kind = SK_RewrapInitList;
3610   S.Type = T;
3611   S.WrappingSyntacticList = Syntactic;
3612   Steps.push_back(S);
3613 }
3614 
3615 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3616                                                 OverloadingResult Result) {
3617   setSequenceKind(FailedSequence);
3618   this->Failure = Failure;
3619   this->FailedOverloadResult = Result;
3620 }
3621 
3622 //===----------------------------------------------------------------------===//
3623 // Attempt initialization
3624 //===----------------------------------------------------------------------===//
3625 
3626 /// Tries to add a zero initializer. Returns true if that worked.
3627 static bool
3628 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3629                                    const InitializedEntity &Entity) {
3630   if (Entity.getKind() != InitializedEntity::EK_Variable)
3631     return false;
3632 
3633   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3634   if (VD->getInit() || VD->getEndLoc().isMacroID())
3635     return false;
3636 
3637   QualType VariableTy = VD->getType().getCanonicalType();
3638   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3639   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3640   if (!Init.empty()) {
3641     Sequence.AddZeroInitializationStep(Entity.getType());
3642     Sequence.SetZeroInitializationFixit(Init, Loc);
3643     return true;
3644   }
3645   return false;
3646 }
3647 
3648 static void MaybeProduceObjCObject(Sema &S,
3649                                    InitializationSequence &Sequence,
3650                                    const InitializedEntity &Entity) {
3651   if (!S.getLangOpts().ObjCAutoRefCount) return;
3652 
3653   /// When initializing a parameter, produce the value if it's marked
3654   /// __attribute__((ns_consumed)).
3655   if (Entity.isParameterKind()) {
3656     if (!Entity.isParameterConsumed())
3657       return;
3658 
3659     assert(Entity.getType()->isObjCRetainableType() &&
3660            "consuming an object of unretainable type?");
3661     Sequence.AddProduceObjCObjectStep(Entity.getType());
3662 
3663   /// When initializing a return value, if the return type is a
3664   /// retainable type, then returns need to immediately retain the
3665   /// object.  If an autorelease is required, it will be done at the
3666   /// last instant.
3667   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3668              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3669     if (!Entity.getType()->isObjCRetainableType())
3670       return;
3671 
3672     Sequence.AddProduceObjCObjectStep(Entity.getType());
3673   }
3674 }
3675 
3676 static void TryListInitialization(Sema &S,
3677                                   const InitializedEntity &Entity,
3678                                   const InitializationKind &Kind,
3679                                   InitListExpr *InitList,
3680                                   InitializationSequence &Sequence,
3681                                   bool TreatUnavailableAsInvalid);
3682 
3683 /// When initializing from init list via constructor, handle
3684 /// initialization of an object of type std::initializer_list<T>.
3685 ///
3686 /// \return true if we have handled initialization of an object of type
3687 /// std::initializer_list<T>, false otherwise.
3688 static bool TryInitializerListConstruction(Sema &S,
3689                                            InitListExpr *List,
3690                                            QualType DestType,
3691                                            InitializationSequence &Sequence,
3692                                            bool TreatUnavailableAsInvalid) {
3693   QualType E;
3694   if (!S.isStdInitializerList(DestType, &E))
3695     return false;
3696 
3697   if (!S.isCompleteType(List->getExprLoc(), E)) {
3698     Sequence.setIncompleteTypeFailure(E);
3699     return true;
3700   }
3701 
3702   // Try initializing a temporary array from the init list.
3703   QualType ArrayType = S.Context.getConstantArrayType(
3704       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3705                                  List->getNumInits()),
3706       clang::ArrayType::Normal, 0);
3707   InitializedEntity HiddenArray =
3708       InitializedEntity::InitializeTemporary(ArrayType);
3709   InitializationKind Kind = InitializationKind::CreateDirectList(
3710       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3711   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3712                         TreatUnavailableAsInvalid);
3713   if (Sequence)
3714     Sequence.AddStdInitializerListConstructionStep(DestType);
3715   return true;
3716 }
3717 
3718 /// Determine if the constructor has the signature of a copy or move
3719 /// constructor for the type T of the class in which it was found. That is,
3720 /// determine if its first parameter is of type T or reference to (possibly
3721 /// cv-qualified) T.
3722 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3723                                    const ConstructorInfo &Info) {
3724   if (Info.Constructor->getNumParams() == 0)
3725     return false;
3726 
3727   QualType ParmT =
3728       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3729   QualType ClassT =
3730       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3731 
3732   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3733 }
3734 
3735 static OverloadingResult
3736 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3737                            MultiExprArg Args,
3738                            OverloadCandidateSet &CandidateSet,
3739                            QualType DestType,
3740                            DeclContext::lookup_result Ctors,
3741                            OverloadCandidateSet::iterator &Best,
3742                            bool CopyInitializing, bool AllowExplicit,
3743                            bool OnlyListConstructors, bool IsListInit,
3744                            bool SecondStepOfCopyInit = false) {
3745   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3746 
3747   for (NamedDecl *D : Ctors) {
3748     auto Info = getConstructorInfo(D);
3749     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3750       continue;
3751 
3752     if (!AllowExplicit && Info.Constructor->isExplicit())
3753       continue;
3754 
3755     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3756       continue;
3757 
3758     // C++11 [over.best.ics]p4:
3759     //   ... and the constructor or user-defined conversion function is a
3760     //   candidate by
3761     //   - 13.3.1.3, when the argument is the temporary in the second step
3762     //     of a class copy-initialization, or
3763     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3764     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3765     //     one element that is itself an initializer list, and the target is
3766     //     the first parameter of a constructor of class X, and the conversion
3767     //     is to X or reference to (possibly cv-qualified X),
3768     //   user-defined conversion sequences are not considered.
3769     bool SuppressUserConversions =
3770         SecondStepOfCopyInit ||
3771         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3772          hasCopyOrMoveCtorParam(S.Context, Info));
3773 
3774     if (Info.ConstructorTmpl)
3775       S.AddTemplateOverloadCandidate(
3776           Info.ConstructorTmpl, Info.FoundDecl,
3777           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3778           /*PartialOverloading=*/false, AllowExplicit);
3779     else {
3780       // C++ [over.match.copy]p1:
3781       //   - When initializing a temporary to be bound to the first parameter
3782       //     of a constructor [for type T] that takes a reference to possibly
3783       //     cv-qualified T as its first argument, called with a single
3784       //     argument in the context of direct-initialization, explicit
3785       //     conversion functions are also considered.
3786       // FIXME: What if a constructor template instantiates to such a signature?
3787       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3788                                Args.size() == 1 &&
3789                                hasCopyOrMoveCtorParam(S.Context, Info);
3790       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3791                              CandidateSet, SuppressUserConversions,
3792                              /*PartialOverloading=*/false, AllowExplicit,
3793                              AllowExplicitConv);
3794     }
3795   }
3796 
3797   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3798   //
3799   // When initializing an object of class type T by constructor
3800   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3801   // from a single expression of class type U, conversion functions of
3802   // U that convert to the non-reference type cv T are candidates.
3803   // Explicit conversion functions are only candidates during
3804   // direct-initialization.
3805   //
3806   // Note: SecondStepOfCopyInit is only ever true in this case when
3807   // evaluating whether to produce a C++98 compatibility warning.
3808   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3809       !SecondStepOfCopyInit) {
3810     Expr *Initializer = Args[0];
3811     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3812     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3813       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3814       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3815         NamedDecl *D = *I;
3816         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3817         D = D->getUnderlyingDecl();
3818 
3819         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3820         CXXConversionDecl *Conv;
3821         if (ConvTemplate)
3822           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3823         else
3824           Conv = cast<CXXConversionDecl>(D);
3825 
3826         if (AllowExplicit || !Conv->isExplicit()) {
3827           if (ConvTemplate)
3828             S.AddTemplateConversionCandidate(
3829                 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3830                 CandidateSet, AllowExplicit, AllowExplicit,
3831                 /*AllowResultConversion*/ false);
3832           else
3833             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3834                                      DestType, CandidateSet, AllowExplicit,
3835                                      AllowExplicit,
3836                                      /*AllowResultConversion*/ false);
3837         }
3838       }
3839     }
3840   }
3841 
3842   // Perform overload resolution and return the result.
3843   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3844 }
3845 
3846 /// Attempt initialization by constructor (C++ [dcl.init]), which
3847 /// enumerates the constructors of the initialized entity and performs overload
3848 /// resolution to select the best.
3849 /// \param DestType       The destination class type.
3850 /// \param DestArrayType  The destination type, which is either DestType or
3851 ///                       a (possibly multidimensional) array of DestType.
3852 /// \param IsListInit     Is this list-initialization?
3853 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3854 ///                       list-initialization from {x} where x is the same
3855 ///                       type as the entity?
3856 static void TryConstructorInitialization(Sema &S,
3857                                          const InitializedEntity &Entity,
3858                                          const InitializationKind &Kind,
3859                                          MultiExprArg Args, QualType DestType,
3860                                          QualType DestArrayType,
3861                                          InitializationSequence &Sequence,
3862                                          bool IsListInit = false,
3863                                          bool IsInitListCopy = false) {
3864   assert(((!IsListInit && !IsInitListCopy) ||
3865           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3866          "IsListInit/IsInitListCopy must come with a single initializer list "
3867          "argument.");
3868   InitListExpr *ILE =
3869       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3870   MultiExprArg UnwrappedArgs =
3871       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3872 
3873   // The type we're constructing needs to be complete.
3874   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3875     Sequence.setIncompleteTypeFailure(DestType);
3876     return;
3877   }
3878 
3879   // C++17 [dcl.init]p17:
3880   //     - If the initializer expression is a prvalue and the cv-unqualified
3881   //       version of the source type is the same class as the class of the
3882   //       destination, the initializer expression is used to initialize the
3883   //       destination object.
3884   // Per DR (no number yet), this does not apply when initializing a base
3885   // class or delegating to another constructor from a mem-initializer.
3886   // ObjC++: Lambda captured by the block in the lambda to block conversion
3887   // should avoid copy elision.
3888   if (S.getLangOpts().CPlusPlus17 &&
3889       Entity.getKind() != InitializedEntity::EK_Base &&
3890       Entity.getKind() != InitializedEntity::EK_Delegating &&
3891       Entity.getKind() !=
3892           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3893       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3894       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3895     // Convert qualifications if necessary.
3896     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3897     if (ILE)
3898       Sequence.RewrapReferenceInitList(DestType, ILE);
3899     return;
3900   }
3901 
3902   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3903   assert(DestRecordType && "Constructor initialization requires record type");
3904   CXXRecordDecl *DestRecordDecl
3905     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3906 
3907   // Build the candidate set directly in the initialization sequence
3908   // structure, so that it will persist if we fail.
3909   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3910 
3911   // Determine whether we are allowed to call explicit constructors or
3912   // explicit conversion operators.
3913   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3914   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3915 
3916   //   - Otherwise, if T is a class type, constructors are considered. The
3917   //     applicable constructors are enumerated, and the best one is chosen
3918   //     through overload resolution.
3919   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3920 
3921   OverloadingResult Result = OR_No_Viable_Function;
3922   OverloadCandidateSet::iterator Best;
3923   bool AsInitializerList = false;
3924 
3925   // C++11 [over.match.list]p1, per DR1467:
3926   //   When objects of non-aggregate type T are list-initialized, such that
3927   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3928   //   according to the rules in this section, overload resolution selects
3929   //   the constructor in two phases:
3930   //
3931   //   - Initially, the candidate functions are the initializer-list
3932   //     constructors of the class T and the argument list consists of the
3933   //     initializer list as a single argument.
3934   if (IsListInit) {
3935     AsInitializerList = true;
3936 
3937     // If the initializer list has no elements and T has a default constructor,
3938     // the first phase is omitted.
3939     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3940       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3941                                           CandidateSet, DestType, Ctors, Best,
3942                                           CopyInitialization, AllowExplicit,
3943                                           /*OnlyListConstructor=*/true,
3944                                           IsListInit);
3945   }
3946 
3947   // C++11 [over.match.list]p1:
3948   //   - If no viable initializer-list constructor is found, overload resolution
3949   //     is performed again, where the candidate functions are all the
3950   //     constructors of the class T and the argument list consists of the
3951   //     elements of the initializer list.
3952   if (Result == OR_No_Viable_Function) {
3953     AsInitializerList = false;
3954     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3955                                         CandidateSet, DestType, Ctors, Best,
3956                                         CopyInitialization, AllowExplicit,
3957                                         /*OnlyListConstructors=*/false,
3958                                         IsListInit);
3959   }
3960   if (Result) {
3961     Sequence.SetOverloadFailure(IsListInit ?
3962                       InitializationSequence::FK_ListConstructorOverloadFailed :
3963                       InitializationSequence::FK_ConstructorOverloadFailed,
3964                                 Result);
3965     return;
3966   }
3967 
3968   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3969 
3970   // In C++17, ResolveConstructorOverload can select a conversion function
3971   // instead of a constructor.
3972   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3973     // Add the user-defined conversion step that calls the conversion function.
3974     QualType ConvType = CD->getConversionType();
3975     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3976            "should not have selected this conversion function");
3977     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3978                                    HadMultipleCandidates);
3979     if (!S.Context.hasSameType(ConvType, DestType))
3980       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3981     if (IsListInit)
3982       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3983     return;
3984   }
3985 
3986   // C++11 [dcl.init]p6:
3987   //   If a program calls for the default initialization of an object
3988   //   of a const-qualified type T, T shall be a class type with a
3989   //   user-provided default constructor.
3990   // C++ core issue 253 proposal:
3991   //   If the implicit default constructor initializes all subobjects, no
3992   //   initializer should be required.
3993   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3994   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3995   if (Kind.getKind() == InitializationKind::IK_Default &&
3996       Entity.getType().isConstQualified()) {
3997     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3998       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3999         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4000       return;
4001     }
4002   }
4003 
4004   // C++11 [over.match.list]p1:
4005   //   In copy-list-initialization, if an explicit constructor is chosen, the
4006   //   initializer is ill-formed.
4007   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4008     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4009     return;
4010   }
4011 
4012   // Add the constructor initialization step. Any cv-qualification conversion is
4013   // subsumed by the initialization.
4014   Sequence.AddConstructorInitializationStep(
4015       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4016       IsListInit | IsInitListCopy, AsInitializerList);
4017 }
4018 
4019 static bool
4020 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4021                                              Expr *Initializer,
4022                                              QualType &SourceType,
4023                                              QualType &UnqualifiedSourceType,
4024                                              QualType UnqualifiedTargetType,
4025                                              InitializationSequence &Sequence) {
4026   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4027         S.Context.OverloadTy) {
4028     DeclAccessPair Found;
4029     bool HadMultipleCandidates = false;
4030     if (FunctionDecl *Fn
4031         = S.ResolveAddressOfOverloadedFunction(Initializer,
4032                                                UnqualifiedTargetType,
4033                                                false, Found,
4034                                                &HadMultipleCandidates)) {
4035       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4036                                                 HadMultipleCandidates);
4037       SourceType = Fn->getType();
4038       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4039     } else if (!UnqualifiedTargetType->isRecordType()) {
4040       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4041       return true;
4042     }
4043   }
4044   return false;
4045 }
4046 
4047 static void TryReferenceInitializationCore(Sema &S,
4048                                            const InitializedEntity &Entity,
4049                                            const InitializationKind &Kind,
4050                                            Expr *Initializer,
4051                                            QualType cv1T1, QualType T1,
4052                                            Qualifiers T1Quals,
4053                                            QualType cv2T2, QualType T2,
4054                                            Qualifiers T2Quals,
4055                                            InitializationSequence &Sequence);
4056 
4057 static void TryValueInitialization(Sema &S,
4058                                    const InitializedEntity &Entity,
4059                                    const InitializationKind &Kind,
4060                                    InitializationSequence &Sequence,
4061                                    InitListExpr *InitList = nullptr);
4062 
4063 /// Attempt list initialization of a reference.
4064 static void TryReferenceListInitialization(Sema &S,
4065                                            const InitializedEntity &Entity,
4066                                            const InitializationKind &Kind,
4067                                            InitListExpr *InitList,
4068                                            InitializationSequence &Sequence,
4069                                            bool TreatUnavailableAsInvalid) {
4070   // First, catch C++03 where this isn't possible.
4071   if (!S.getLangOpts().CPlusPlus11) {
4072     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4073     return;
4074   }
4075   // Can't reference initialize a compound literal.
4076   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4077     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4078     return;
4079   }
4080 
4081   QualType DestType = Entity.getType();
4082   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4083   Qualifiers T1Quals;
4084   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4085 
4086   // Reference initialization via an initializer list works thus:
4087   // If the initializer list consists of a single element that is
4088   // reference-related to the referenced type, bind directly to that element
4089   // (possibly creating temporaries).
4090   // Otherwise, initialize a temporary with the initializer list and
4091   // bind to that.
4092   if (InitList->getNumInits() == 1) {
4093     Expr *Initializer = InitList->getInit(0);
4094     QualType cv2T2 = Initializer->getType();
4095     Qualifiers T2Quals;
4096     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4097 
4098     // If this fails, creating a temporary wouldn't work either.
4099     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4100                                                      T1, Sequence))
4101       return;
4102 
4103     SourceLocation DeclLoc = Initializer->getBeginLoc();
4104     bool dummy1, dummy2, dummy3;
4105     Sema::ReferenceCompareResult RefRelationship
4106       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4107                                        dummy2, dummy3);
4108     if (RefRelationship >= Sema::Ref_Related) {
4109       // Try to bind the reference here.
4110       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4111                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4112       if (Sequence)
4113         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4114       return;
4115     }
4116 
4117     // Update the initializer if we've resolved an overloaded function.
4118     if (Sequence.step_begin() != Sequence.step_end())
4119       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4120   }
4121 
4122   // Not reference-related. Create a temporary and bind to that.
4123   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4124 
4125   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4126                         TreatUnavailableAsInvalid);
4127   if (Sequence) {
4128     if (DestType->isRValueReferenceType() ||
4129         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4130       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4131     else
4132       Sequence.SetFailed(
4133           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4134   }
4135 }
4136 
4137 /// Attempt list initialization (C++0x [dcl.init.list])
4138 static void TryListInitialization(Sema &S,
4139                                   const InitializedEntity &Entity,
4140                                   const InitializationKind &Kind,
4141                                   InitListExpr *InitList,
4142                                   InitializationSequence &Sequence,
4143                                   bool TreatUnavailableAsInvalid) {
4144   QualType DestType = Entity.getType();
4145 
4146   // C++ doesn't allow scalar initialization with more than one argument.
4147   // But C99 complex numbers are scalars and it makes sense there.
4148   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4149       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4150     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4151     return;
4152   }
4153   if (DestType->isReferenceType()) {
4154     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4155                                    TreatUnavailableAsInvalid);
4156     return;
4157   }
4158 
4159   if (DestType->isRecordType() &&
4160       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4161     Sequence.setIncompleteTypeFailure(DestType);
4162     return;
4163   }
4164 
4165   // C++11 [dcl.init.list]p3, per DR1467:
4166   // - If T is a class type and the initializer list has a single element of
4167   //   type cv U, where U is T or a class derived from T, the object is
4168   //   initialized from that element (by copy-initialization for
4169   //   copy-list-initialization, or by direct-initialization for
4170   //   direct-list-initialization).
4171   // - Otherwise, if T is a character array and the initializer list has a
4172   //   single element that is an appropriately-typed string literal
4173   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4174   //   in that section.
4175   // - Otherwise, if T is an aggregate, [...] (continue below).
4176   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4177     if (DestType->isRecordType()) {
4178       QualType InitType = InitList->getInit(0)->getType();
4179       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4180           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4181         Expr *InitListAsExpr = InitList;
4182         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4183                                      DestType, Sequence,
4184                                      /*InitListSyntax*/false,
4185                                      /*IsInitListCopy*/true);
4186         return;
4187       }
4188     }
4189     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4190       Expr *SubInit[1] = {InitList->getInit(0)};
4191       if (!isa<VariableArrayType>(DestAT) &&
4192           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4193         InitializationKind SubKind =
4194             Kind.getKind() == InitializationKind::IK_DirectList
4195                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4196                                                    InitList->getLBraceLoc(),
4197                                                    InitList->getRBraceLoc())
4198                 : Kind;
4199         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4200                                 /*TopLevelOfInitList*/ true,
4201                                 TreatUnavailableAsInvalid);
4202 
4203         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4204         // the element is not an appropriately-typed string literal, in which
4205         // case we should proceed as in C++11 (below).
4206         if (Sequence) {
4207           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4208           return;
4209         }
4210       }
4211     }
4212   }
4213 
4214   // C++11 [dcl.init.list]p3:
4215   //   - If T is an aggregate, aggregate initialization is performed.
4216   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4217       (S.getLangOpts().CPlusPlus11 &&
4218        S.isStdInitializerList(DestType, nullptr))) {
4219     if (S.getLangOpts().CPlusPlus11) {
4220       //   - Otherwise, if the initializer list has no elements and T is a
4221       //     class type with a default constructor, the object is
4222       //     value-initialized.
4223       if (InitList->getNumInits() == 0) {
4224         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4225         if (RD->hasDefaultConstructor()) {
4226           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4227           return;
4228         }
4229       }
4230 
4231       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4232       //     an initializer_list object constructed [...]
4233       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4234                                          TreatUnavailableAsInvalid))
4235         return;
4236 
4237       //   - Otherwise, if T is a class type, constructors are considered.
4238       Expr *InitListAsExpr = InitList;
4239       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4240                                    DestType, Sequence, /*InitListSyntax*/true);
4241     } else
4242       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4243     return;
4244   }
4245 
4246   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4247       InitList->getNumInits() == 1) {
4248     Expr *E = InitList->getInit(0);
4249 
4250     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4251     //     the initializer-list has a single element v, and the initialization
4252     //     is direct-list-initialization, the object is initialized with the
4253     //     value T(v); if a narrowing conversion is required to convert v to
4254     //     the underlying type of T, the program is ill-formed.
4255     auto *ET = DestType->getAs<EnumType>();
4256     if (S.getLangOpts().CPlusPlus17 &&
4257         Kind.getKind() == InitializationKind::IK_DirectList &&
4258         ET && ET->getDecl()->isFixed() &&
4259         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4260         (E->getType()->isIntegralOrEnumerationType() ||
4261          E->getType()->isFloatingType())) {
4262       // There are two ways that T(v) can work when T is an enumeration type.
4263       // If there is either an implicit conversion sequence from v to T or
4264       // a conversion function that can convert from v to T, then we use that.
4265       // Otherwise, if v is of integral, enumeration, or floating-point type,
4266       // it is converted to the enumeration type via its underlying type.
4267       // There is no overlap possible between these two cases (except when the
4268       // source value is already of the destination type), and the first
4269       // case is handled by the general case for single-element lists below.
4270       ImplicitConversionSequence ICS;
4271       ICS.setStandard();
4272       ICS.Standard.setAsIdentityConversion();
4273       if (!E->isRValue())
4274         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4275       // If E is of a floating-point type, then the conversion is ill-formed
4276       // due to narrowing, but go through the motions in order to produce the
4277       // right diagnostic.
4278       ICS.Standard.Second = E->getType()->isFloatingType()
4279                                 ? ICK_Floating_Integral
4280                                 : ICK_Integral_Conversion;
4281       ICS.Standard.setFromType(E->getType());
4282       ICS.Standard.setToType(0, E->getType());
4283       ICS.Standard.setToType(1, DestType);
4284       ICS.Standard.setToType(2, DestType);
4285       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4286                                          /*TopLevelOfInitList*/true);
4287       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4288       return;
4289     }
4290 
4291     //   - Otherwise, if the initializer list has a single element of type E
4292     //     [...references are handled above...], the object or reference is
4293     //     initialized from that element (by copy-initialization for
4294     //     copy-list-initialization, or by direct-initialization for
4295     //     direct-list-initialization); if a narrowing conversion is required
4296     //     to convert the element to T, the program is ill-formed.
4297     //
4298     // Per core-24034, this is direct-initialization if we were performing
4299     // direct-list-initialization and copy-initialization otherwise.
4300     // We can't use InitListChecker for this, because it always performs
4301     // copy-initialization. This only matters if we might use an 'explicit'
4302     // conversion operator, so we only need to handle the cases where the source
4303     // is of record type.
4304     if (InitList->getInit(0)->getType()->isRecordType()) {
4305       InitializationKind SubKind =
4306           Kind.getKind() == InitializationKind::IK_DirectList
4307               ? InitializationKind::CreateDirect(Kind.getLocation(),
4308                                                  InitList->getLBraceLoc(),
4309                                                  InitList->getRBraceLoc())
4310               : Kind;
4311       Expr *SubInit[1] = { InitList->getInit(0) };
4312       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4313                               /*TopLevelOfInitList*/true,
4314                               TreatUnavailableAsInvalid);
4315       if (Sequence)
4316         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4317       return;
4318     }
4319   }
4320 
4321   InitListChecker CheckInitList(S, Entity, InitList,
4322           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4323   if (CheckInitList.HadError()) {
4324     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4325     return;
4326   }
4327 
4328   // Add the list initialization step with the built init list.
4329   Sequence.AddListInitializationStep(DestType);
4330 }
4331 
4332 /// Try a reference initialization that involves calling a conversion
4333 /// function.
4334 static OverloadingResult TryRefInitWithConversionFunction(
4335     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4336     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4337     InitializationSequence &Sequence) {
4338   QualType DestType = Entity.getType();
4339   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4340   QualType T1 = cv1T1.getUnqualifiedType();
4341   QualType cv2T2 = Initializer->getType();
4342   QualType T2 = cv2T2.getUnqualifiedType();
4343 
4344   bool DerivedToBase;
4345   bool ObjCConversion;
4346   bool ObjCLifetimeConversion;
4347   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4348                                          DerivedToBase, ObjCConversion,
4349                                          ObjCLifetimeConversion) &&
4350          "Must have incompatible references when binding via conversion");
4351   (void)DerivedToBase;
4352   (void)ObjCConversion;
4353   (void)ObjCLifetimeConversion;
4354 
4355   // Build the candidate set directly in the initialization sequence
4356   // structure, so that it will persist if we fail.
4357   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4358   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4359 
4360   // Determine whether we are allowed to call explicit conversion operators.
4361   // Note that none of [over.match.copy], [over.match.conv], nor
4362   // [over.match.ref] permit an explicit constructor to be chosen when
4363   // initializing a reference, not even for direct-initialization.
4364   bool AllowExplicitCtors = false;
4365   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4366 
4367   const RecordType *T1RecordType = nullptr;
4368   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4369       S.isCompleteType(Kind.getLocation(), T1)) {
4370     // The type we're converting to is a class type. Enumerate its constructors
4371     // to see if there is a suitable conversion.
4372     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4373 
4374     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4375       auto Info = getConstructorInfo(D);
4376       if (!Info.Constructor)
4377         continue;
4378 
4379       if (!Info.Constructor->isInvalidDecl() &&
4380           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4381         if (Info.ConstructorTmpl)
4382           S.AddTemplateOverloadCandidate(
4383               Info.ConstructorTmpl, Info.FoundDecl,
4384               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4385               /*SuppressUserConversions=*/true,
4386               /*PartialOverloading*/ false, AllowExplicitCtors);
4387         else
4388           S.AddOverloadCandidate(
4389               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4390               /*SuppressUserConversions=*/true,
4391               /*PartialOverloading*/ false, AllowExplicitCtors);
4392       }
4393     }
4394   }
4395   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4396     return OR_No_Viable_Function;
4397 
4398   const RecordType *T2RecordType = nullptr;
4399   if ((T2RecordType = T2->getAs<RecordType>()) &&
4400       S.isCompleteType(Kind.getLocation(), T2)) {
4401     // The type we're converting from is a class type, enumerate its conversion
4402     // functions.
4403     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4404 
4405     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4406     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4407       NamedDecl *D = *I;
4408       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4409       if (isa<UsingShadowDecl>(D))
4410         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4411 
4412       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4413       CXXConversionDecl *Conv;
4414       if (ConvTemplate)
4415         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4416       else
4417         Conv = cast<CXXConversionDecl>(D);
4418 
4419       // If the conversion function doesn't return a reference type,
4420       // it can't be considered for this conversion unless we're allowed to
4421       // consider rvalues.
4422       // FIXME: Do we need to make sure that we only consider conversion
4423       // candidates with reference-compatible results? That might be needed to
4424       // break recursion.
4425       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4426           (AllowRValues ||
4427            Conv->getConversionType()->isLValueReferenceType())) {
4428         if (ConvTemplate)
4429           S.AddTemplateConversionCandidate(
4430               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4431               CandidateSet,
4432               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4433         else
4434           S.AddConversionCandidate(
4435               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4436               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4437       }
4438     }
4439   }
4440   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4441     return OR_No_Viable_Function;
4442 
4443   SourceLocation DeclLoc = Initializer->getBeginLoc();
4444 
4445   // Perform overload resolution. If it fails, return the failed result.
4446   OverloadCandidateSet::iterator Best;
4447   if (OverloadingResult Result
4448         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4449     return Result;
4450 
4451   FunctionDecl *Function = Best->Function;
4452   // This is the overload that will be used for this initialization step if we
4453   // use this initialization. Mark it as referenced.
4454   Function->setReferenced();
4455 
4456   // Compute the returned type and value kind of the conversion.
4457   QualType cv3T3;
4458   if (isa<CXXConversionDecl>(Function))
4459     cv3T3 = Function->getReturnType();
4460   else
4461     cv3T3 = T1;
4462 
4463   ExprValueKind VK = VK_RValue;
4464   if (cv3T3->isLValueReferenceType())
4465     VK = VK_LValue;
4466   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4467     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4468   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4469 
4470   // Add the user-defined conversion step.
4471   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4472   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4473                                  HadMultipleCandidates);
4474 
4475   // Determine whether we'll need to perform derived-to-base adjustments or
4476   // other conversions.
4477   bool NewDerivedToBase = false;
4478   bool NewObjCConversion = false;
4479   bool NewObjCLifetimeConversion = false;
4480   Sema::ReferenceCompareResult NewRefRelationship
4481     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4482                                      NewDerivedToBase, NewObjCConversion,
4483                                      NewObjCLifetimeConversion);
4484 
4485   // Add the final conversion sequence, if necessary.
4486   if (NewRefRelationship == Sema::Ref_Incompatible) {
4487     assert(!isa<CXXConstructorDecl>(Function) &&
4488            "should not have conversion after constructor");
4489 
4490     ImplicitConversionSequence ICS;
4491     ICS.setStandard();
4492     ICS.Standard = Best->FinalConversion;
4493     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4494 
4495     // Every implicit conversion results in a prvalue, except for a glvalue
4496     // derived-to-base conversion, which we handle below.
4497     cv3T3 = ICS.Standard.getToType(2);
4498     VK = VK_RValue;
4499   }
4500 
4501   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4502   //   type "cv1 T4" and the temporary materialization conversion is applied.
4503   //
4504   // We adjust the cv-qualifications to match the reference regardless of
4505   // whether we have a prvalue so that the AST records the change. In this
4506   // case, T4 is "cv3 T3".
4507   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4508   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4509     Sequence.AddQualificationConversionStep(cv1T4, VK);
4510   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4511   VK = IsLValueRef ? VK_LValue : VK_XValue;
4512 
4513   if (NewDerivedToBase)
4514     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4515   else if (NewObjCConversion)
4516     Sequence.AddObjCObjectConversionStep(cv1T1);
4517 
4518   return OR_Success;
4519 }
4520 
4521 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4522                                            const InitializedEntity &Entity,
4523                                            Expr *CurInitExpr);
4524 
4525 /// Attempt reference initialization (C++0x [dcl.init.ref])
4526 static void TryReferenceInitialization(Sema &S,
4527                                        const InitializedEntity &Entity,
4528                                        const InitializationKind &Kind,
4529                                        Expr *Initializer,
4530                                        InitializationSequence &Sequence) {
4531   QualType DestType = Entity.getType();
4532   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4533   Qualifiers T1Quals;
4534   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4535   QualType cv2T2 = Initializer->getType();
4536   Qualifiers T2Quals;
4537   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4538 
4539   // If the initializer is the address of an overloaded function, try
4540   // to resolve the overloaded function. If all goes well, T2 is the
4541   // type of the resulting function.
4542   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4543                                                    T1, Sequence))
4544     return;
4545 
4546   // Delegate everything else to a subfunction.
4547   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4548                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4549 }
4550 
4551 /// Determine whether an expression is a non-referenceable glvalue (one to
4552 /// which a reference can never bind). Attempting to bind a reference to
4553 /// such a glvalue will always create a temporary.
4554 static bool isNonReferenceableGLValue(Expr *E) {
4555   return E->refersToBitField() || E->refersToVectorElement();
4556 }
4557 
4558 /// Reference initialization without resolving overloaded functions.
4559 static void TryReferenceInitializationCore(Sema &S,
4560                                            const InitializedEntity &Entity,
4561                                            const InitializationKind &Kind,
4562                                            Expr *Initializer,
4563                                            QualType cv1T1, QualType T1,
4564                                            Qualifiers T1Quals,
4565                                            QualType cv2T2, QualType T2,
4566                                            Qualifiers T2Quals,
4567                                            InitializationSequence &Sequence) {
4568   QualType DestType = Entity.getType();
4569   SourceLocation DeclLoc = Initializer->getBeginLoc();
4570   // Compute some basic properties of the types and the initializer.
4571   bool isLValueRef = DestType->isLValueReferenceType();
4572   bool isRValueRef = !isLValueRef;
4573   bool DerivedToBase = false;
4574   bool ObjCConversion = false;
4575   bool ObjCLifetimeConversion = false;
4576   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4577   Sema::ReferenceCompareResult RefRelationship
4578     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4579                                      ObjCConversion, ObjCLifetimeConversion);
4580 
4581   // C++0x [dcl.init.ref]p5:
4582   //   A reference to type "cv1 T1" is initialized by an expression of type
4583   //   "cv2 T2" as follows:
4584   //
4585   //     - If the reference is an lvalue reference and the initializer
4586   //       expression
4587   // Note the analogous bullet points for rvalue refs to functions. Because
4588   // there are no function rvalues in C++, rvalue refs to functions are treated
4589   // like lvalue refs.
4590   OverloadingResult ConvOvlResult = OR_Success;
4591   bool T1Function = T1->isFunctionType();
4592   if (isLValueRef || T1Function) {
4593     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4594         (RefRelationship == Sema::Ref_Compatible ||
4595          (Kind.isCStyleOrFunctionalCast() &&
4596           RefRelationship == Sema::Ref_Related))) {
4597       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4598       //     reference-compatible with "cv2 T2," or
4599       if (T1Quals != T2Quals)
4600         // Convert to cv1 T2. This should only add qualifiers unless this is a
4601         // c-style cast. The removal of qualifiers in that case notionally
4602         // happens after the reference binding, but that doesn't matter.
4603         Sequence.AddQualificationConversionStep(
4604             S.Context.getQualifiedType(T2, T1Quals),
4605             Initializer->getValueKind());
4606       if (DerivedToBase)
4607         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4608       else if (ObjCConversion)
4609         Sequence.AddObjCObjectConversionStep(cv1T1);
4610 
4611       // We only create a temporary here when binding a reference to a
4612       // bit-field or vector element. Those cases are't supposed to be
4613       // handled by this bullet, but the outcome is the same either way.
4614       Sequence.AddReferenceBindingStep(cv1T1, false);
4615       return;
4616     }
4617 
4618     //     - has a class type (i.e., T2 is a class type), where T1 is not
4619     //       reference-related to T2, and can be implicitly converted to an
4620     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4621     //       with "cv3 T3" (this conversion is selected by enumerating the
4622     //       applicable conversion functions (13.3.1.6) and choosing the best
4623     //       one through overload resolution (13.3)),
4624     // If we have an rvalue ref to function type here, the rhs must be
4625     // an rvalue. DR1287 removed the "implicitly" here.
4626     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4627         (isLValueRef || InitCategory.isRValue())) {
4628       ConvOvlResult = TryRefInitWithConversionFunction(
4629           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4630           /*IsLValueRef*/ isLValueRef, Sequence);
4631       if (ConvOvlResult == OR_Success)
4632         return;
4633       if (ConvOvlResult != OR_No_Viable_Function)
4634         Sequence.SetOverloadFailure(
4635             InitializationSequence::FK_ReferenceInitOverloadFailed,
4636             ConvOvlResult);
4637     }
4638   }
4639 
4640   //     - Otherwise, the reference shall be an lvalue reference to a
4641   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4642   //       shall be an rvalue reference.
4643   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4644     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4645       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4646     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4647       Sequence.SetOverloadFailure(
4648                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4649                                   ConvOvlResult);
4650     else if (!InitCategory.isLValue())
4651       Sequence.SetFailed(
4652           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4653     else {
4654       InitializationSequence::FailureKind FK;
4655       switch (RefRelationship) {
4656       case Sema::Ref_Compatible:
4657         if (Initializer->refersToBitField())
4658           FK = InitializationSequence::
4659               FK_NonConstLValueReferenceBindingToBitfield;
4660         else if (Initializer->refersToVectorElement())
4661           FK = InitializationSequence::
4662               FK_NonConstLValueReferenceBindingToVectorElement;
4663         else
4664           llvm_unreachable("unexpected kind of compatible initializer");
4665         break;
4666       case Sema::Ref_Related:
4667         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4668         break;
4669       case Sema::Ref_Incompatible:
4670         FK = InitializationSequence::
4671             FK_NonConstLValueReferenceBindingToUnrelated;
4672         break;
4673       }
4674       Sequence.SetFailed(FK);
4675     }
4676     return;
4677   }
4678 
4679   //    - If the initializer expression
4680   //      - is an
4681   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4682   // [1z]   rvalue (but not a bit-field) or
4683   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4684   //
4685   // Note: functions are handled above and below rather than here...
4686   if (!T1Function &&
4687       (RefRelationship == Sema::Ref_Compatible ||
4688        (Kind.isCStyleOrFunctionalCast() &&
4689         RefRelationship == Sema::Ref_Related)) &&
4690       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4691        (InitCategory.isPRValue() &&
4692         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4693          T2->isArrayType())))) {
4694     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4695     if (InitCategory.isPRValue() && T2->isRecordType()) {
4696       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4697       // compiler the freedom to perform a copy here or bind to the
4698       // object, while C++0x requires that we bind directly to the
4699       // object. Hence, we always bind to the object without making an
4700       // extra copy. However, in C++03 requires that we check for the
4701       // presence of a suitable copy constructor:
4702       //
4703       //   The constructor that would be used to make the copy shall
4704       //   be callable whether or not the copy is actually done.
4705       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4706         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4707       else if (S.getLangOpts().CPlusPlus11)
4708         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4709     }
4710 
4711     // C++1z [dcl.init.ref]/5.2.1.2:
4712     //   If the converted initializer is a prvalue, its type T4 is adjusted
4713     //   to type "cv1 T4" and the temporary materialization conversion is
4714     //   applied.
4715     // Postpone address space conversions to after the temporary materialization
4716     // conversion to allow creating temporaries in the alloca address space.
4717     auto T1QualsIgnoreAS = T1Quals;
4718     auto T2QualsIgnoreAS = T2Quals;
4719     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4720       T1QualsIgnoreAS.removeAddressSpace();
4721       T2QualsIgnoreAS.removeAddressSpace();
4722     }
4723     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4724     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4725       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4726     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4727     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4728     // Add addr space conversion if required.
4729     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4730       auto T4Quals = cv1T4.getQualifiers();
4731       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4732       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4733       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4734     }
4735 
4736     //   In any case, the reference is bound to the resulting glvalue (or to
4737     //   an appropriate base class subobject).
4738     if (DerivedToBase)
4739       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4740     else if (ObjCConversion)
4741       Sequence.AddObjCObjectConversionStep(cv1T1);
4742     return;
4743   }
4744 
4745   //       - has a class type (i.e., T2 is a class type), where T1 is not
4746   //         reference-related to T2, and can be implicitly converted to an
4747   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4748   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4749   //
4750   // DR1287 removes the "implicitly" here.
4751   if (T2->isRecordType()) {
4752     if (RefRelationship == Sema::Ref_Incompatible) {
4753       ConvOvlResult = TryRefInitWithConversionFunction(
4754           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4755           /*IsLValueRef*/ isLValueRef, Sequence);
4756       if (ConvOvlResult)
4757         Sequence.SetOverloadFailure(
4758             InitializationSequence::FK_ReferenceInitOverloadFailed,
4759             ConvOvlResult);
4760 
4761       return;
4762     }
4763 
4764     if (RefRelationship == Sema::Ref_Compatible &&
4765         isRValueRef && InitCategory.isLValue()) {
4766       Sequence.SetFailed(
4767         InitializationSequence::FK_RValueReferenceBindingToLValue);
4768       return;
4769     }
4770 
4771     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4772     return;
4773   }
4774 
4775   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4776   //        from the initializer expression using the rules for a non-reference
4777   //        copy-initialization (8.5). The reference is then bound to the
4778   //        temporary. [...]
4779 
4780   // Ignore address space of reference type at this point and perform address
4781   // space conversion after the reference binding step.
4782   QualType cv1T1IgnoreAS =
4783       T1Quals.hasAddressSpace()
4784           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4785           : cv1T1;
4786 
4787   InitializedEntity TempEntity =
4788       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4789 
4790   // FIXME: Why do we use an implicit conversion here rather than trying
4791   // copy-initialization?
4792   ImplicitConversionSequence ICS
4793     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4794                               /*SuppressUserConversions=*/false,
4795                               /*AllowExplicit=*/false,
4796                               /*FIXME:InOverloadResolution=*/false,
4797                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4798                               /*AllowObjCWritebackConversion=*/false);
4799 
4800   if (ICS.isBad()) {
4801     // FIXME: Use the conversion function set stored in ICS to turn
4802     // this into an overloading ambiguity diagnostic. However, we need
4803     // to keep that set as an OverloadCandidateSet rather than as some
4804     // other kind of set.
4805     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4806       Sequence.SetOverloadFailure(
4807                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4808                                   ConvOvlResult);
4809     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4810       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4811     else
4812       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4813     return;
4814   } else {
4815     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4816   }
4817 
4818   //        [...] If T1 is reference-related to T2, cv1 must be the
4819   //        same cv-qualification as, or greater cv-qualification
4820   //        than, cv2; otherwise, the program is ill-formed.
4821   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4822   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4823   if ((RefRelationship == Sema::Ref_Related &&
4824        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4825       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4826     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4827     return;
4828   }
4829 
4830   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4831   //   reference, the initializer expression shall not be an lvalue.
4832   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4833       InitCategory.isLValue()) {
4834     Sequence.SetFailed(
4835                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4836     return;
4837   }
4838 
4839   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true);
4840 
4841   if (T1Quals.hasAddressSpace()) {
4842     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
4843                                               LangAS::Default)) {
4844       Sequence.SetFailed(
4845           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
4846       return;
4847     }
4848     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4849                                                                : VK_XValue);
4850   }
4851 }
4852 
4853 /// Attempt character array initialization from a string literal
4854 /// (C++ [dcl.init.string], C99 6.7.8).
4855 static void TryStringLiteralInitialization(Sema &S,
4856                                            const InitializedEntity &Entity,
4857                                            const InitializationKind &Kind,
4858                                            Expr *Initializer,
4859                                        InitializationSequence &Sequence) {
4860   Sequence.AddStringInitStep(Entity.getType());
4861 }
4862 
4863 /// Attempt value initialization (C++ [dcl.init]p7).
4864 static void TryValueInitialization(Sema &S,
4865                                    const InitializedEntity &Entity,
4866                                    const InitializationKind &Kind,
4867                                    InitializationSequence &Sequence,
4868                                    InitListExpr *InitList) {
4869   assert((!InitList || InitList->getNumInits() == 0) &&
4870          "Shouldn't use value-init for non-empty init lists");
4871 
4872   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4873   //
4874   //   To value-initialize an object of type T means:
4875   QualType T = Entity.getType();
4876 
4877   //     -- if T is an array type, then each element is value-initialized;
4878   T = S.Context.getBaseElementType(T);
4879 
4880   if (const RecordType *RT = T->getAs<RecordType>()) {
4881     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4882       bool NeedZeroInitialization = true;
4883       // C++98:
4884       // -- if T is a class type (clause 9) with a user-declared constructor
4885       //    (12.1), then the default constructor for T is called (and the
4886       //    initialization is ill-formed if T has no accessible default
4887       //    constructor);
4888       // C++11:
4889       // -- if T is a class type (clause 9) with either no default constructor
4890       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4891       //    or deleted, then the object is default-initialized;
4892       //
4893       // Note that the C++11 rule is the same as the C++98 rule if there are no
4894       // defaulted or deleted constructors, so we just use it unconditionally.
4895       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4896       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4897         NeedZeroInitialization = false;
4898 
4899       // -- if T is a (possibly cv-qualified) non-union class type without a
4900       //    user-provided or deleted default constructor, then the object is
4901       //    zero-initialized and, if T has a non-trivial default constructor,
4902       //    default-initialized;
4903       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4904       // constructor' part was removed by DR1507.
4905       if (NeedZeroInitialization)
4906         Sequence.AddZeroInitializationStep(Entity.getType());
4907 
4908       // C++03:
4909       // -- if T is a non-union class type without a user-declared constructor,
4910       //    then every non-static data member and base class component of T is
4911       //    value-initialized;
4912       // [...] A program that calls for [...] value-initialization of an
4913       // entity of reference type is ill-formed.
4914       //
4915       // C++11 doesn't need this handling, because value-initialization does not
4916       // occur recursively there, and the implicit default constructor is
4917       // defined as deleted in the problematic cases.
4918       if (!S.getLangOpts().CPlusPlus11 &&
4919           ClassDecl->hasUninitializedReferenceMember()) {
4920         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4921         return;
4922       }
4923 
4924       // If this is list-value-initialization, pass the empty init list on when
4925       // building the constructor call. This affects the semantics of a few
4926       // things (such as whether an explicit default constructor can be called).
4927       Expr *InitListAsExpr = InitList;
4928       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4929       bool InitListSyntax = InitList;
4930 
4931       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4932       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4933       return TryConstructorInitialization(
4934           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4935     }
4936   }
4937 
4938   Sequence.AddZeroInitializationStep(Entity.getType());
4939 }
4940 
4941 /// Attempt default initialization (C++ [dcl.init]p6).
4942 static void TryDefaultInitialization(Sema &S,
4943                                      const InitializedEntity &Entity,
4944                                      const InitializationKind &Kind,
4945                                      InitializationSequence &Sequence) {
4946   assert(Kind.getKind() == InitializationKind::IK_Default);
4947 
4948   // C++ [dcl.init]p6:
4949   //   To default-initialize an object of type T means:
4950   //     - if T is an array type, each element is default-initialized;
4951   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4952 
4953   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4954   //       constructor for T is called (and the initialization is ill-formed if
4955   //       T has no accessible default constructor);
4956   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4957     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4958                                  Entity.getType(), Sequence);
4959     return;
4960   }
4961 
4962   //     - otherwise, no initialization is performed.
4963 
4964   //   If a program calls for the default initialization of an object of
4965   //   a const-qualified type T, T shall be a class type with a user-provided
4966   //   default constructor.
4967   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4968     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4969       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4970     return;
4971   }
4972 
4973   // If the destination type has a lifetime property, zero-initialize it.
4974   if (DestType.getQualifiers().hasObjCLifetime()) {
4975     Sequence.AddZeroInitializationStep(Entity.getType());
4976     return;
4977   }
4978 }
4979 
4980 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4981 /// which enumerates all conversion functions and performs overload resolution
4982 /// to select the best.
4983 static void TryUserDefinedConversion(Sema &S,
4984                                      QualType DestType,
4985                                      const InitializationKind &Kind,
4986                                      Expr *Initializer,
4987                                      InitializationSequence &Sequence,
4988                                      bool TopLevelOfInitList) {
4989   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4990   QualType SourceType = Initializer->getType();
4991   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4992          "Must have a class type to perform a user-defined conversion");
4993 
4994   // Build the candidate set directly in the initialization sequence
4995   // structure, so that it will persist if we fail.
4996   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4997   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4998 
4999   // Determine whether we are allowed to call explicit constructors or
5000   // explicit conversion operators.
5001   bool AllowExplicit = Kind.AllowExplicit();
5002 
5003   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5004     // The type we're converting to is a class type. Enumerate its constructors
5005     // to see if there is a suitable conversion.
5006     CXXRecordDecl *DestRecordDecl
5007       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5008 
5009     // Try to complete the type we're converting to.
5010     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5011       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5012         auto Info = getConstructorInfo(D);
5013         if (!Info.Constructor)
5014           continue;
5015 
5016         if (!Info.Constructor->isInvalidDecl() &&
5017             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
5018           if (Info.ConstructorTmpl)
5019             S.AddTemplateOverloadCandidate(
5020                 Info.ConstructorTmpl, Info.FoundDecl,
5021                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5022                 /*SuppressUserConversions=*/true,
5023                 /*PartialOverloading*/ false, AllowExplicit);
5024           else
5025             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5026                                    Initializer, CandidateSet,
5027                                    /*SuppressUserConversions=*/true,
5028                                    /*PartialOverloading*/ false, AllowExplicit);
5029         }
5030       }
5031     }
5032   }
5033 
5034   SourceLocation DeclLoc = Initializer->getBeginLoc();
5035 
5036   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5037     // The type we're converting from is a class type, enumerate its conversion
5038     // functions.
5039 
5040     // We can only enumerate the conversion functions for a complete type; if
5041     // the type isn't complete, simply skip this step.
5042     if (S.isCompleteType(DeclLoc, SourceType)) {
5043       CXXRecordDecl *SourceRecordDecl
5044         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5045 
5046       const auto &Conversions =
5047           SourceRecordDecl->getVisibleConversionFunctions();
5048       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5049         NamedDecl *D = *I;
5050         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5051         if (isa<UsingShadowDecl>(D))
5052           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5053 
5054         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5055         CXXConversionDecl *Conv;
5056         if (ConvTemplate)
5057           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5058         else
5059           Conv = cast<CXXConversionDecl>(D);
5060 
5061         if (AllowExplicit || !Conv->isExplicit()) {
5062           if (ConvTemplate)
5063             S.AddTemplateConversionCandidate(
5064                 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5065                 CandidateSet, AllowExplicit, AllowExplicit);
5066           else
5067             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5068                                      DestType, CandidateSet, AllowExplicit,
5069                                      AllowExplicit);
5070         }
5071       }
5072     }
5073   }
5074 
5075   // Perform overload resolution. If it fails, return the failed result.
5076   OverloadCandidateSet::iterator Best;
5077   if (OverloadingResult Result
5078         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5079     Sequence.SetOverloadFailure(
5080                         InitializationSequence::FK_UserConversionOverloadFailed,
5081                                 Result);
5082     return;
5083   }
5084 
5085   FunctionDecl *Function = Best->Function;
5086   Function->setReferenced();
5087   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5088 
5089   if (isa<CXXConstructorDecl>(Function)) {
5090     // Add the user-defined conversion step. Any cv-qualification conversion is
5091     // subsumed by the initialization. Per DR5, the created temporary is of the
5092     // cv-unqualified type of the destination.
5093     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5094                                    DestType.getUnqualifiedType(),
5095                                    HadMultipleCandidates);
5096 
5097     // C++14 and before:
5098     //   - if the function is a constructor, the call initializes a temporary
5099     //     of the cv-unqualified version of the destination type. The [...]
5100     //     temporary [...] is then used to direct-initialize, according to the
5101     //     rules above, the object that is the destination of the
5102     //     copy-initialization.
5103     // Note that this just performs a simple object copy from the temporary.
5104     //
5105     // C++17:
5106     //   - if the function is a constructor, the call is a prvalue of the
5107     //     cv-unqualified version of the destination type whose return object
5108     //     is initialized by the constructor. The call is used to
5109     //     direct-initialize, according to the rules above, the object that
5110     //     is the destination of the copy-initialization.
5111     // Therefore we need to do nothing further.
5112     //
5113     // FIXME: Mark this copy as extraneous.
5114     if (!S.getLangOpts().CPlusPlus17)
5115       Sequence.AddFinalCopy(DestType);
5116     else if (DestType.hasQualifiers())
5117       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5118     return;
5119   }
5120 
5121   // Add the user-defined conversion step that calls the conversion function.
5122   QualType ConvType = Function->getCallResultType();
5123   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5124                                  HadMultipleCandidates);
5125 
5126   if (ConvType->getAs<RecordType>()) {
5127     //   The call is used to direct-initialize [...] the object that is the
5128     //   destination of the copy-initialization.
5129     //
5130     // In C++17, this does not call a constructor if we enter /17.6.1:
5131     //   - If the initializer expression is a prvalue and the cv-unqualified
5132     //     version of the source type is the same as the class of the
5133     //     destination [... do not make an extra copy]
5134     //
5135     // FIXME: Mark this copy as extraneous.
5136     if (!S.getLangOpts().CPlusPlus17 ||
5137         Function->getReturnType()->isReferenceType() ||
5138         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5139       Sequence.AddFinalCopy(DestType);
5140     else if (!S.Context.hasSameType(ConvType, DestType))
5141       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5142     return;
5143   }
5144 
5145   // If the conversion following the call to the conversion function
5146   // is interesting, add it as a separate step.
5147   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5148       Best->FinalConversion.Third) {
5149     ImplicitConversionSequence ICS;
5150     ICS.setStandard();
5151     ICS.Standard = Best->FinalConversion;
5152     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5153   }
5154 }
5155 
5156 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5157 /// a function with a pointer return type contains a 'return false;' statement.
5158 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5159 /// code using that header.
5160 ///
5161 /// Work around this by treating 'return false;' as zero-initializing the result
5162 /// if it's used in a pointer-returning function in a system header.
5163 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5164                                               const InitializedEntity &Entity,
5165                                               const Expr *Init) {
5166   return S.getLangOpts().CPlusPlus11 &&
5167          Entity.getKind() == InitializedEntity::EK_Result &&
5168          Entity.getType()->isPointerType() &&
5169          isa<CXXBoolLiteralExpr>(Init) &&
5170          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5171          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5172 }
5173 
5174 /// The non-zero enum values here are indexes into diagnostic alternatives.
5175 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5176 
5177 /// Determines whether this expression is an acceptable ICR source.
5178 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5179                                          bool isAddressOf, bool &isWeakAccess) {
5180   // Skip parens.
5181   e = e->IgnoreParens();
5182 
5183   // Skip address-of nodes.
5184   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5185     if (op->getOpcode() == UO_AddrOf)
5186       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5187                                 isWeakAccess);
5188 
5189   // Skip certain casts.
5190   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5191     switch (ce->getCastKind()) {
5192     case CK_Dependent:
5193     case CK_BitCast:
5194     case CK_LValueBitCast:
5195     case CK_NoOp:
5196       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5197 
5198     case CK_ArrayToPointerDecay:
5199       return IIK_nonscalar;
5200 
5201     case CK_NullToPointer:
5202       return IIK_okay;
5203 
5204     default:
5205       break;
5206     }
5207 
5208   // If we have a declaration reference, it had better be a local variable.
5209   } else if (isa<DeclRefExpr>(e)) {
5210     // set isWeakAccess to true, to mean that there will be an implicit
5211     // load which requires a cleanup.
5212     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5213       isWeakAccess = true;
5214 
5215     if (!isAddressOf) return IIK_nonlocal;
5216 
5217     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5218     if (!var) return IIK_nonlocal;
5219 
5220     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5221 
5222   // If we have a conditional operator, check both sides.
5223   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5224     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5225                                                 isWeakAccess))
5226       return iik;
5227 
5228     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5229 
5230   // These are never scalar.
5231   } else if (isa<ArraySubscriptExpr>(e)) {
5232     return IIK_nonscalar;
5233 
5234   // Otherwise, it needs to be a null pointer constant.
5235   } else {
5236     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5237             ? IIK_okay : IIK_nonlocal);
5238   }
5239 
5240   return IIK_nonlocal;
5241 }
5242 
5243 /// Check whether the given expression is a valid operand for an
5244 /// indirect copy/restore.
5245 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5246   assert(src->isRValue());
5247   bool isWeakAccess = false;
5248   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5249   // If isWeakAccess to true, there will be an implicit
5250   // load which requires a cleanup.
5251   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5252     S.Cleanup.setExprNeedsCleanups(true);
5253 
5254   if (iik == IIK_okay) return;
5255 
5256   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5257     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5258     << src->getSourceRange();
5259 }
5260 
5261 /// Determine whether we have compatible array types for the
5262 /// purposes of GNU by-copy array initialization.
5263 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5264                                     const ArrayType *Source) {
5265   // If the source and destination array types are equivalent, we're
5266   // done.
5267   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5268     return true;
5269 
5270   // Make sure that the element types are the same.
5271   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5272     return false;
5273 
5274   // The only mismatch we allow is when the destination is an
5275   // incomplete array type and the source is a constant array type.
5276   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5277 }
5278 
5279 static bool tryObjCWritebackConversion(Sema &S,
5280                                        InitializationSequence &Sequence,
5281                                        const InitializedEntity &Entity,
5282                                        Expr *Initializer) {
5283   bool ArrayDecay = false;
5284   QualType ArgType = Initializer->getType();
5285   QualType ArgPointee;
5286   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5287     ArrayDecay = true;
5288     ArgPointee = ArgArrayType->getElementType();
5289     ArgType = S.Context.getPointerType(ArgPointee);
5290   }
5291 
5292   // Handle write-back conversion.
5293   QualType ConvertedArgType;
5294   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5295                                    ConvertedArgType))
5296     return false;
5297 
5298   // We should copy unless we're passing to an argument explicitly
5299   // marked 'out'.
5300   bool ShouldCopy = true;
5301   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5302     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5303 
5304   // Do we need an lvalue conversion?
5305   if (ArrayDecay || Initializer->isGLValue()) {
5306     ImplicitConversionSequence ICS;
5307     ICS.setStandard();
5308     ICS.Standard.setAsIdentityConversion();
5309 
5310     QualType ResultType;
5311     if (ArrayDecay) {
5312       ICS.Standard.First = ICK_Array_To_Pointer;
5313       ResultType = S.Context.getPointerType(ArgPointee);
5314     } else {
5315       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5316       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5317     }
5318 
5319     Sequence.AddConversionSequenceStep(ICS, ResultType);
5320   }
5321 
5322   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5323   return true;
5324 }
5325 
5326 static bool TryOCLSamplerInitialization(Sema &S,
5327                                         InitializationSequence &Sequence,
5328                                         QualType DestType,
5329                                         Expr *Initializer) {
5330   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5331       (!Initializer->isIntegerConstantExpr(S.Context) &&
5332       !Initializer->getType()->isSamplerT()))
5333     return false;
5334 
5335   Sequence.AddOCLSamplerInitStep(DestType);
5336   return true;
5337 }
5338 
5339 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5340   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5341     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5342 }
5343 
5344 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5345                                                InitializationSequence &Sequence,
5346                                                QualType DestType,
5347                                                Expr *Initializer) {
5348   if (!S.getLangOpts().OpenCL)
5349     return false;
5350 
5351   //
5352   // OpenCL 1.2 spec, s6.12.10
5353   //
5354   // The event argument can also be used to associate the
5355   // async_work_group_copy with a previous async copy allowing
5356   // an event to be shared by multiple async copies; otherwise
5357   // event should be zero.
5358   //
5359   if (DestType->isEventT() || DestType->isQueueT()) {
5360     if (!IsZeroInitializer(Initializer, S))
5361       return false;
5362 
5363     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5364     return true;
5365   }
5366 
5367   // We should allow zero initialization for all types defined in the
5368   // cl_intel_device_side_avc_motion_estimation extension, except
5369   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5370   if (S.getOpenCLOptions().isEnabled(
5371           "cl_intel_device_side_avc_motion_estimation") &&
5372       DestType->isOCLIntelSubgroupAVCType()) {
5373     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5374         DestType->isOCLIntelSubgroupAVCMceResultType())
5375       return false;
5376     if (!IsZeroInitializer(Initializer, S))
5377       return false;
5378 
5379     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5380     return true;
5381   }
5382 
5383   return false;
5384 }
5385 
5386 InitializationSequence::InitializationSequence(Sema &S,
5387                                                const InitializedEntity &Entity,
5388                                                const InitializationKind &Kind,
5389                                                MultiExprArg Args,
5390                                                bool TopLevelOfInitList,
5391                                                bool TreatUnavailableAsInvalid)
5392     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5393   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5394                  TreatUnavailableAsInvalid);
5395 }
5396 
5397 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5398 /// address of that function, this returns true. Otherwise, it returns false.
5399 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5400   auto *DRE = dyn_cast<DeclRefExpr>(E);
5401   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5402     return false;
5403 
5404   return !S.checkAddressOfFunctionIsAvailable(
5405       cast<FunctionDecl>(DRE->getDecl()));
5406 }
5407 
5408 /// Determine whether we can perform an elementwise array copy for this kind
5409 /// of entity.
5410 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5411   switch (Entity.getKind()) {
5412   case InitializedEntity::EK_LambdaCapture:
5413     // C++ [expr.prim.lambda]p24:
5414     //   For array members, the array elements are direct-initialized in
5415     //   increasing subscript order.
5416     return true;
5417 
5418   case InitializedEntity::EK_Variable:
5419     // C++ [dcl.decomp]p1:
5420     //   [...] each element is copy-initialized or direct-initialized from the
5421     //   corresponding element of the assignment-expression [...]
5422     return isa<DecompositionDecl>(Entity.getDecl());
5423 
5424   case InitializedEntity::EK_Member:
5425     // C++ [class.copy.ctor]p14:
5426     //   - if the member is an array, each element is direct-initialized with
5427     //     the corresponding subobject of x
5428     return Entity.isImplicitMemberInitializer();
5429 
5430   case InitializedEntity::EK_ArrayElement:
5431     // All the above cases are intended to apply recursively, even though none
5432     // of them actually say that.
5433     if (auto *E = Entity.getParent())
5434       return canPerformArrayCopy(*E);
5435     break;
5436 
5437   default:
5438     break;
5439   }
5440 
5441   return false;
5442 }
5443 
5444 void InitializationSequence::InitializeFrom(Sema &S,
5445                                             const InitializedEntity &Entity,
5446                                             const InitializationKind &Kind,
5447                                             MultiExprArg Args,
5448                                             bool TopLevelOfInitList,
5449                                             bool TreatUnavailableAsInvalid) {
5450   ASTContext &Context = S.Context;
5451 
5452   // Eliminate non-overload placeholder types in the arguments.  We
5453   // need to do this before checking whether types are dependent
5454   // because lowering a pseudo-object expression might well give us
5455   // something of dependent type.
5456   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5457     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5458       // FIXME: should we be doing this here?
5459       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5460       if (result.isInvalid()) {
5461         SetFailed(FK_PlaceholderType);
5462         return;
5463       }
5464       Args[I] = result.get();
5465     }
5466 
5467   // C++0x [dcl.init]p16:
5468   //   The semantics of initializers are as follows. The destination type is
5469   //   the type of the object or reference being initialized and the source
5470   //   type is the type of the initializer expression. The source type is not
5471   //   defined when the initializer is a braced-init-list or when it is a
5472   //   parenthesized list of expressions.
5473   QualType DestType = Entity.getType();
5474 
5475   if (DestType->isDependentType() ||
5476       Expr::hasAnyTypeDependentArguments(Args)) {
5477     SequenceKind = DependentSequence;
5478     return;
5479   }
5480 
5481   // Almost everything is a normal sequence.
5482   setSequenceKind(NormalSequence);
5483 
5484   QualType SourceType;
5485   Expr *Initializer = nullptr;
5486   if (Args.size() == 1) {
5487     Initializer = Args[0];
5488     if (S.getLangOpts().ObjC) {
5489       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5490                                               DestType, Initializer->getType(),
5491                                               Initializer) ||
5492           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5493         Args[0] = Initializer;
5494     }
5495     if (!isa<InitListExpr>(Initializer))
5496       SourceType = Initializer->getType();
5497   }
5498 
5499   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5500   //       object is list-initialized (8.5.4).
5501   if (Kind.getKind() != InitializationKind::IK_Direct) {
5502     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5503       TryListInitialization(S, Entity, Kind, InitList, *this,
5504                             TreatUnavailableAsInvalid);
5505       return;
5506     }
5507   }
5508 
5509   //     - If the destination type is a reference type, see 8.5.3.
5510   if (DestType->isReferenceType()) {
5511     // C++0x [dcl.init.ref]p1:
5512     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5513     //   (8.3.2), shall be initialized by an object, or function, of type T or
5514     //   by an object that can be converted into a T.
5515     // (Therefore, multiple arguments are not permitted.)
5516     if (Args.size() != 1)
5517       SetFailed(FK_TooManyInitsForReference);
5518     // C++17 [dcl.init.ref]p5:
5519     //   A reference [...] is initialized by an expression [...] as follows:
5520     // If the initializer is not an expression, presumably we should reject,
5521     // but the standard fails to actually say so.
5522     else if (isa<InitListExpr>(Args[0]))
5523       SetFailed(FK_ParenthesizedListInitForReference);
5524     else
5525       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5526     return;
5527   }
5528 
5529   //     - If the initializer is (), the object is value-initialized.
5530   if (Kind.getKind() == InitializationKind::IK_Value ||
5531       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5532     TryValueInitialization(S, Entity, Kind, *this);
5533     return;
5534   }
5535 
5536   // Handle default initialization.
5537   if (Kind.getKind() == InitializationKind::IK_Default) {
5538     TryDefaultInitialization(S, Entity, Kind, *this);
5539     return;
5540   }
5541 
5542   //     - If the destination type is an array of characters, an array of
5543   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5544   //       initializer is a string literal, see 8.5.2.
5545   //     - Otherwise, if the destination type is an array, the program is
5546   //       ill-formed.
5547   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5548     if (Initializer && isa<VariableArrayType>(DestAT)) {
5549       SetFailed(FK_VariableLengthArrayHasInitializer);
5550       return;
5551     }
5552 
5553     if (Initializer) {
5554       switch (IsStringInit(Initializer, DestAT, Context)) {
5555       case SIF_None:
5556         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5557         return;
5558       case SIF_NarrowStringIntoWideChar:
5559         SetFailed(FK_NarrowStringIntoWideCharArray);
5560         return;
5561       case SIF_WideStringIntoChar:
5562         SetFailed(FK_WideStringIntoCharArray);
5563         return;
5564       case SIF_IncompatWideStringIntoWideChar:
5565         SetFailed(FK_IncompatWideStringIntoWideChar);
5566         return;
5567       case SIF_PlainStringIntoUTF8Char:
5568         SetFailed(FK_PlainStringIntoUTF8Char);
5569         return;
5570       case SIF_UTF8StringIntoPlainChar:
5571         SetFailed(FK_UTF8StringIntoPlainChar);
5572         return;
5573       case SIF_Other:
5574         break;
5575       }
5576     }
5577 
5578     // Some kinds of initialization permit an array to be initialized from
5579     // another array of the same type, and perform elementwise initialization.
5580     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5581         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5582                                          Entity.getType()) &&
5583         canPerformArrayCopy(Entity)) {
5584       // If source is a prvalue, use it directly.
5585       if (Initializer->getValueKind() == VK_RValue) {
5586         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5587         return;
5588       }
5589 
5590       // Emit element-at-a-time copy loop.
5591       InitializedEntity Element =
5592           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5593       QualType InitEltT =
5594           Context.getAsArrayType(Initializer->getType())->getElementType();
5595       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5596                           Initializer->getValueKind(),
5597                           Initializer->getObjectKind());
5598       Expr *OVEAsExpr = &OVE;
5599       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5600                      TreatUnavailableAsInvalid);
5601       if (!Failed())
5602         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5603       return;
5604     }
5605 
5606     // Note: as an GNU C extension, we allow initialization of an
5607     // array from a compound literal that creates an array of the same
5608     // type, so long as the initializer has no side effects.
5609     if (!S.getLangOpts().CPlusPlus && Initializer &&
5610         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5611         Initializer->getType()->isArrayType()) {
5612       const ArrayType *SourceAT
5613         = Context.getAsArrayType(Initializer->getType());
5614       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5615         SetFailed(FK_ArrayTypeMismatch);
5616       else if (Initializer->HasSideEffects(S.Context))
5617         SetFailed(FK_NonConstantArrayInit);
5618       else {
5619         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5620       }
5621     }
5622     // Note: as a GNU C++ extension, we allow list-initialization of a
5623     // class member of array type from a parenthesized initializer list.
5624     else if (S.getLangOpts().CPlusPlus &&
5625              Entity.getKind() == InitializedEntity::EK_Member &&
5626              Initializer && isa<InitListExpr>(Initializer)) {
5627       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5628                             *this, TreatUnavailableAsInvalid);
5629       AddParenthesizedArrayInitStep(DestType);
5630     } else if (DestAT->getElementType()->isCharType())
5631       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5632     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5633       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5634     else
5635       SetFailed(FK_ArrayNeedsInitList);
5636 
5637     return;
5638   }
5639 
5640   // Determine whether we should consider writeback conversions for
5641   // Objective-C ARC.
5642   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5643          Entity.isParameterKind();
5644 
5645   // We're at the end of the line for C: it's either a write-back conversion
5646   // or it's a C assignment. There's no need to check anything else.
5647   if (!S.getLangOpts().CPlusPlus) {
5648     // If allowed, check whether this is an Objective-C writeback conversion.
5649     if (allowObjCWritebackConversion &&
5650         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5651       return;
5652     }
5653 
5654     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5655       return;
5656 
5657     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5658       return;
5659 
5660     // Handle initialization in C
5661     AddCAssignmentStep(DestType);
5662     MaybeProduceObjCObject(S, *this, Entity);
5663     return;
5664   }
5665 
5666   assert(S.getLangOpts().CPlusPlus);
5667 
5668   //     - If the destination type is a (possibly cv-qualified) class type:
5669   if (DestType->isRecordType()) {
5670     //     - If the initialization is direct-initialization, or if it is
5671     //       copy-initialization where the cv-unqualified version of the
5672     //       source type is the same class as, or a derived class of, the
5673     //       class of the destination, constructors are considered. [...]
5674     if (Kind.getKind() == InitializationKind::IK_Direct ||
5675         (Kind.getKind() == InitializationKind::IK_Copy &&
5676          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5677           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5678       TryConstructorInitialization(S, Entity, Kind, Args,
5679                                    DestType, DestType, *this);
5680     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5681     //       user-defined conversion sequences that can convert from the source
5682     //       type to the destination type or (when a conversion function is
5683     //       used) to a derived class thereof are enumerated as described in
5684     //       13.3.1.4, and the best one is chosen through overload resolution
5685     //       (13.3).
5686     else
5687       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5688                                TopLevelOfInitList);
5689     return;
5690   }
5691 
5692   assert(Args.size() >= 1 && "Zero-argument case handled above");
5693 
5694   // The remaining cases all need a source type.
5695   if (Args.size() > 1) {
5696     SetFailed(FK_TooManyInitsForScalar);
5697     return;
5698   } else if (isa<InitListExpr>(Args[0])) {
5699     SetFailed(FK_ParenthesizedListInitForScalar);
5700     return;
5701   }
5702 
5703   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5704   //      type, conversion functions are considered.
5705   if (!SourceType.isNull() && SourceType->isRecordType()) {
5706     // For a conversion to _Atomic(T) from either T or a class type derived
5707     // from T, initialize the T object then convert to _Atomic type.
5708     bool NeedAtomicConversion = false;
5709     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5710       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5711           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5712                           Atomic->getValueType())) {
5713         DestType = Atomic->getValueType();
5714         NeedAtomicConversion = true;
5715       }
5716     }
5717 
5718     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5719                              TopLevelOfInitList);
5720     MaybeProduceObjCObject(S, *this, Entity);
5721     if (!Failed() && NeedAtomicConversion)
5722       AddAtomicConversionStep(Entity.getType());
5723     return;
5724   }
5725 
5726   //    - Otherwise, the initial value of the object being initialized is the
5727   //      (possibly converted) value of the initializer expression. Standard
5728   //      conversions (Clause 4) will be used, if necessary, to convert the
5729   //      initializer expression to the cv-unqualified version of the
5730   //      destination type; no user-defined conversions are considered.
5731 
5732   ImplicitConversionSequence ICS
5733     = S.TryImplicitConversion(Initializer, DestType,
5734                               /*SuppressUserConversions*/true,
5735                               /*AllowExplicitConversions*/ false,
5736                               /*InOverloadResolution*/ false,
5737                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5738                               allowObjCWritebackConversion);
5739 
5740   if (ICS.isStandard() &&
5741       ICS.Standard.Second == ICK_Writeback_Conversion) {
5742     // Objective-C ARC writeback conversion.
5743 
5744     // We should copy unless we're passing to an argument explicitly
5745     // marked 'out'.
5746     bool ShouldCopy = true;
5747     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5748       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5749 
5750     // If there was an lvalue adjustment, add it as a separate conversion.
5751     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5752         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5753       ImplicitConversionSequence LvalueICS;
5754       LvalueICS.setStandard();
5755       LvalueICS.Standard.setAsIdentityConversion();
5756       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5757       LvalueICS.Standard.First = ICS.Standard.First;
5758       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5759     }
5760 
5761     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5762   } else if (ICS.isBad()) {
5763     DeclAccessPair dap;
5764     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5765       AddZeroInitializationStep(Entity.getType());
5766     } else if (Initializer->getType() == Context.OverloadTy &&
5767                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5768                                                      false, dap))
5769       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5770     else if (Initializer->getType()->isFunctionType() &&
5771              isExprAnUnaddressableFunction(S, Initializer))
5772       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5773     else
5774       SetFailed(InitializationSequence::FK_ConversionFailed);
5775   } else {
5776     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5777 
5778     MaybeProduceObjCObject(S, *this, Entity);
5779   }
5780 }
5781 
5782 InitializationSequence::~InitializationSequence() {
5783   for (auto &S : Steps)
5784     S.Destroy();
5785 }
5786 
5787 //===----------------------------------------------------------------------===//
5788 // Perform initialization
5789 //===----------------------------------------------------------------------===//
5790 static Sema::AssignmentAction
5791 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5792   switch(Entity.getKind()) {
5793   case InitializedEntity::EK_Variable:
5794   case InitializedEntity::EK_New:
5795   case InitializedEntity::EK_Exception:
5796   case InitializedEntity::EK_Base:
5797   case InitializedEntity::EK_Delegating:
5798     return Sema::AA_Initializing;
5799 
5800   case InitializedEntity::EK_Parameter:
5801     if (Entity.getDecl() &&
5802         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5803       return Sema::AA_Sending;
5804 
5805     return Sema::AA_Passing;
5806 
5807   case InitializedEntity::EK_Parameter_CF_Audited:
5808     if (Entity.getDecl() &&
5809       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5810       return Sema::AA_Sending;
5811 
5812     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5813 
5814   case InitializedEntity::EK_Result:
5815   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5816     return Sema::AA_Returning;
5817 
5818   case InitializedEntity::EK_Temporary:
5819   case InitializedEntity::EK_RelatedResult:
5820     // FIXME: Can we tell apart casting vs. converting?
5821     return Sema::AA_Casting;
5822 
5823   case InitializedEntity::EK_Member:
5824   case InitializedEntity::EK_Binding:
5825   case InitializedEntity::EK_ArrayElement:
5826   case InitializedEntity::EK_VectorElement:
5827   case InitializedEntity::EK_ComplexElement:
5828   case InitializedEntity::EK_BlockElement:
5829   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5830   case InitializedEntity::EK_LambdaCapture:
5831   case InitializedEntity::EK_CompoundLiteralInit:
5832     return Sema::AA_Initializing;
5833   }
5834 
5835   llvm_unreachable("Invalid EntityKind!");
5836 }
5837 
5838 /// Whether we should bind a created object as a temporary when
5839 /// initializing the given entity.
5840 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5841   switch (Entity.getKind()) {
5842   case InitializedEntity::EK_ArrayElement:
5843   case InitializedEntity::EK_Member:
5844   case InitializedEntity::EK_Result:
5845   case InitializedEntity::EK_StmtExprResult:
5846   case InitializedEntity::EK_New:
5847   case InitializedEntity::EK_Variable:
5848   case InitializedEntity::EK_Base:
5849   case InitializedEntity::EK_Delegating:
5850   case InitializedEntity::EK_VectorElement:
5851   case InitializedEntity::EK_ComplexElement:
5852   case InitializedEntity::EK_Exception:
5853   case InitializedEntity::EK_BlockElement:
5854   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5855   case InitializedEntity::EK_LambdaCapture:
5856   case InitializedEntity::EK_CompoundLiteralInit:
5857     return false;
5858 
5859   case InitializedEntity::EK_Parameter:
5860   case InitializedEntity::EK_Parameter_CF_Audited:
5861   case InitializedEntity::EK_Temporary:
5862   case InitializedEntity::EK_RelatedResult:
5863   case InitializedEntity::EK_Binding:
5864     return true;
5865   }
5866 
5867   llvm_unreachable("missed an InitializedEntity kind?");
5868 }
5869 
5870 /// Whether the given entity, when initialized with an object
5871 /// created for that initialization, requires destruction.
5872 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5873   switch (Entity.getKind()) {
5874     case InitializedEntity::EK_Result:
5875     case InitializedEntity::EK_StmtExprResult:
5876     case InitializedEntity::EK_New:
5877     case InitializedEntity::EK_Base:
5878     case InitializedEntity::EK_Delegating:
5879     case InitializedEntity::EK_VectorElement:
5880     case InitializedEntity::EK_ComplexElement:
5881     case InitializedEntity::EK_BlockElement:
5882     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5883     case InitializedEntity::EK_LambdaCapture:
5884       return false;
5885 
5886     case InitializedEntity::EK_Member:
5887     case InitializedEntity::EK_Binding:
5888     case InitializedEntity::EK_Variable:
5889     case InitializedEntity::EK_Parameter:
5890     case InitializedEntity::EK_Parameter_CF_Audited:
5891     case InitializedEntity::EK_Temporary:
5892     case InitializedEntity::EK_ArrayElement:
5893     case InitializedEntity::EK_Exception:
5894     case InitializedEntity::EK_CompoundLiteralInit:
5895     case InitializedEntity::EK_RelatedResult:
5896       return true;
5897   }
5898 
5899   llvm_unreachable("missed an InitializedEntity kind?");
5900 }
5901 
5902 /// Get the location at which initialization diagnostics should appear.
5903 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5904                                            Expr *Initializer) {
5905   switch (Entity.getKind()) {
5906   case InitializedEntity::EK_Result:
5907   case InitializedEntity::EK_StmtExprResult:
5908     return Entity.getReturnLoc();
5909 
5910   case InitializedEntity::EK_Exception:
5911     return Entity.getThrowLoc();
5912 
5913   case InitializedEntity::EK_Variable:
5914   case InitializedEntity::EK_Binding:
5915     return Entity.getDecl()->getLocation();
5916 
5917   case InitializedEntity::EK_LambdaCapture:
5918     return Entity.getCaptureLoc();
5919 
5920   case InitializedEntity::EK_ArrayElement:
5921   case InitializedEntity::EK_Member:
5922   case InitializedEntity::EK_Parameter:
5923   case InitializedEntity::EK_Parameter_CF_Audited:
5924   case InitializedEntity::EK_Temporary:
5925   case InitializedEntity::EK_New:
5926   case InitializedEntity::EK_Base:
5927   case InitializedEntity::EK_Delegating:
5928   case InitializedEntity::EK_VectorElement:
5929   case InitializedEntity::EK_ComplexElement:
5930   case InitializedEntity::EK_BlockElement:
5931   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5932   case InitializedEntity::EK_CompoundLiteralInit:
5933   case InitializedEntity::EK_RelatedResult:
5934     return Initializer->getBeginLoc();
5935   }
5936   llvm_unreachable("missed an InitializedEntity kind?");
5937 }
5938 
5939 /// Make a (potentially elidable) temporary copy of the object
5940 /// provided by the given initializer by calling the appropriate copy
5941 /// constructor.
5942 ///
5943 /// \param S The Sema object used for type-checking.
5944 ///
5945 /// \param T The type of the temporary object, which must either be
5946 /// the type of the initializer expression or a superclass thereof.
5947 ///
5948 /// \param Entity The entity being initialized.
5949 ///
5950 /// \param CurInit The initializer expression.
5951 ///
5952 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5953 /// is permitted in C++03 (but not C++0x) when binding a reference to
5954 /// an rvalue.
5955 ///
5956 /// \returns An expression that copies the initializer expression into
5957 /// a temporary object, or an error expression if a copy could not be
5958 /// created.
5959 static ExprResult CopyObject(Sema &S,
5960                              QualType T,
5961                              const InitializedEntity &Entity,
5962                              ExprResult CurInit,
5963                              bool IsExtraneousCopy) {
5964   if (CurInit.isInvalid())
5965     return CurInit;
5966   // Determine which class type we're copying to.
5967   Expr *CurInitExpr = (Expr *)CurInit.get();
5968   CXXRecordDecl *Class = nullptr;
5969   if (const RecordType *Record = T->getAs<RecordType>())
5970     Class = cast<CXXRecordDecl>(Record->getDecl());
5971   if (!Class)
5972     return CurInit;
5973 
5974   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5975 
5976   // Make sure that the type we are copying is complete.
5977   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5978     return CurInit;
5979 
5980   // Perform overload resolution using the class's constructors. Per
5981   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5982   // is direct-initialization.
5983   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5984   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5985 
5986   OverloadCandidateSet::iterator Best;
5987   switch (ResolveConstructorOverload(
5988       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5989       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5990       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5991       /*SecondStepOfCopyInit=*/true)) {
5992   case OR_Success:
5993     break;
5994 
5995   case OR_No_Viable_Function:
5996     CandidateSet.NoteCandidates(
5997         PartialDiagnosticAt(
5998             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
5999                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6000                              : diag::err_temp_copy_no_viable)
6001                      << (int)Entity.getKind() << CurInitExpr->getType()
6002                      << CurInitExpr->getSourceRange()),
6003         S, OCD_AllCandidates, CurInitExpr);
6004     if (!IsExtraneousCopy || S.isSFINAEContext())
6005       return ExprError();
6006     return CurInit;
6007 
6008   case OR_Ambiguous:
6009     CandidateSet.NoteCandidates(
6010         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6011                                      << (int)Entity.getKind()
6012                                      << CurInitExpr->getType()
6013                                      << CurInitExpr->getSourceRange()),
6014         S, OCD_ViableCandidates, CurInitExpr);
6015     return ExprError();
6016 
6017   case OR_Deleted:
6018     S.Diag(Loc, diag::err_temp_copy_deleted)
6019       << (int)Entity.getKind() << CurInitExpr->getType()
6020       << CurInitExpr->getSourceRange();
6021     S.NoteDeletedFunction(Best->Function);
6022     return ExprError();
6023   }
6024 
6025   bool HadMultipleCandidates = CandidateSet.size() > 1;
6026 
6027   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6028   SmallVector<Expr*, 8> ConstructorArgs;
6029   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6030 
6031   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6032                            IsExtraneousCopy);
6033 
6034   if (IsExtraneousCopy) {
6035     // If this is a totally extraneous copy for C++03 reference
6036     // binding purposes, just return the original initialization
6037     // expression. We don't generate an (elided) copy operation here
6038     // because doing so would require us to pass down a flag to avoid
6039     // infinite recursion, where each step adds another extraneous,
6040     // elidable copy.
6041 
6042     // Instantiate the default arguments of any extra parameters in
6043     // the selected copy constructor, as if we were going to create a
6044     // proper call to the copy constructor.
6045     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6046       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6047       if (S.RequireCompleteType(Loc, Parm->getType(),
6048                                 diag::err_call_incomplete_argument))
6049         break;
6050 
6051       // Build the default argument expression; we don't actually care
6052       // if this succeeds or not, because this routine will complain
6053       // if there was a problem.
6054       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6055     }
6056 
6057     return CurInitExpr;
6058   }
6059 
6060   // Determine the arguments required to actually perform the
6061   // constructor call (we might have derived-to-base conversions, or
6062   // the copy constructor may have default arguments).
6063   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6064     return ExprError();
6065 
6066   // C++0x [class.copy]p32:
6067   //   When certain criteria are met, an implementation is allowed to
6068   //   omit the copy/move construction of a class object, even if the
6069   //   copy/move constructor and/or destructor for the object have
6070   //   side effects. [...]
6071   //     - when a temporary class object that has not been bound to a
6072   //       reference (12.2) would be copied/moved to a class object
6073   //       with the same cv-unqualified type, the copy/move operation
6074   //       can be omitted by constructing the temporary object
6075   //       directly into the target of the omitted copy/move
6076   //
6077   // Note that the other three bullets are handled elsewhere. Copy
6078   // elision for return statements and throw expressions are handled as part
6079   // of constructor initialization, while copy elision for exception handlers
6080   // is handled by the run-time.
6081   //
6082   // FIXME: If the function parameter is not the same type as the temporary, we
6083   // should still be able to elide the copy, but we don't have a way to
6084   // represent in the AST how much should be elided in this case.
6085   bool Elidable =
6086       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6087       S.Context.hasSameUnqualifiedType(
6088           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6089           CurInitExpr->getType());
6090 
6091   // Actually perform the constructor call.
6092   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6093                                     Elidable,
6094                                     ConstructorArgs,
6095                                     HadMultipleCandidates,
6096                                     /*ListInit*/ false,
6097                                     /*StdInitListInit*/ false,
6098                                     /*ZeroInit*/ false,
6099                                     CXXConstructExpr::CK_Complete,
6100                                     SourceRange());
6101 
6102   // If we're supposed to bind temporaries, do so.
6103   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6104     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6105   return CurInit;
6106 }
6107 
6108 /// Check whether elidable copy construction for binding a reference to
6109 /// a temporary would have succeeded if we were building in C++98 mode, for
6110 /// -Wc++98-compat.
6111 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6112                                            const InitializedEntity &Entity,
6113                                            Expr *CurInitExpr) {
6114   assert(S.getLangOpts().CPlusPlus11);
6115 
6116   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6117   if (!Record)
6118     return;
6119 
6120   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6121   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6122     return;
6123 
6124   // Find constructors which would have been considered.
6125   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6126   DeclContext::lookup_result Ctors =
6127       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6128 
6129   // Perform overload resolution.
6130   OverloadCandidateSet::iterator Best;
6131   OverloadingResult OR = ResolveConstructorOverload(
6132       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6133       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6134       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6135       /*SecondStepOfCopyInit=*/true);
6136 
6137   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6138     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6139     << CurInitExpr->getSourceRange();
6140 
6141   switch (OR) {
6142   case OR_Success:
6143     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6144                              Best->FoundDecl, Entity, Diag);
6145     // FIXME: Check default arguments as far as that's possible.
6146     break;
6147 
6148   case OR_No_Viable_Function:
6149     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6150                                 OCD_AllCandidates, CurInitExpr);
6151     break;
6152 
6153   case OR_Ambiguous:
6154     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6155                                 OCD_ViableCandidates, CurInitExpr);
6156     break;
6157 
6158   case OR_Deleted:
6159     S.Diag(Loc, Diag);
6160     S.NoteDeletedFunction(Best->Function);
6161     break;
6162   }
6163 }
6164 
6165 void InitializationSequence::PrintInitLocationNote(Sema &S,
6166                                               const InitializedEntity &Entity) {
6167   if (Entity.isParameterKind() && Entity.getDecl()) {
6168     if (Entity.getDecl()->getLocation().isInvalid())
6169       return;
6170 
6171     if (Entity.getDecl()->getDeclName())
6172       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6173         << Entity.getDecl()->getDeclName();
6174     else
6175       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6176   }
6177   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6178            Entity.getMethodDecl())
6179     S.Diag(Entity.getMethodDecl()->getLocation(),
6180            diag::note_method_return_type_change)
6181       << Entity.getMethodDecl()->getDeclName();
6182 }
6183 
6184 /// Returns true if the parameters describe a constructor initialization of
6185 /// an explicit temporary object, e.g. "Point(x, y)".
6186 static bool isExplicitTemporary(const InitializedEntity &Entity,
6187                                 const InitializationKind &Kind,
6188                                 unsigned NumArgs) {
6189   switch (Entity.getKind()) {
6190   case InitializedEntity::EK_Temporary:
6191   case InitializedEntity::EK_CompoundLiteralInit:
6192   case InitializedEntity::EK_RelatedResult:
6193     break;
6194   default:
6195     return false;
6196   }
6197 
6198   switch (Kind.getKind()) {
6199   case InitializationKind::IK_DirectList:
6200     return true;
6201   // FIXME: Hack to work around cast weirdness.
6202   case InitializationKind::IK_Direct:
6203   case InitializationKind::IK_Value:
6204     return NumArgs != 1;
6205   default:
6206     return false;
6207   }
6208 }
6209 
6210 static ExprResult
6211 PerformConstructorInitialization(Sema &S,
6212                                  const InitializedEntity &Entity,
6213                                  const InitializationKind &Kind,
6214                                  MultiExprArg Args,
6215                                  const InitializationSequence::Step& Step,
6216                                  bool &ConstructorInitRequiresZeroInit,
6217                                  bool IsListInitialization,
6218                                  bool IsStdInitListInitialization,
6219                                  SourceLocation LBraceLoc,
6220                                  SourceLocation RBraceLoc) {
6221   unsigned NumArgs = Args.size();
6222   CXXConstructorDecl *Constructor
6223     = cast<CXXConstructorDecl>(Step.Function.Function);
6224   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6225 
6226   // Build a call to the selected constructor.
6227   SmallVector<Expr*, 8> ConstructorArgs;
6228   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6229                          ? Kind.getEqualLoc()
6230                          : Kind.getLocation();
6231 
6232   if (Kind.getKind() == InitializationKind::IK_Default) {
6233     // Force even a trivial, implicit default constructor to be
6234     // semantically checked. We do this explicitly because we don't build
6235     // the definition for completely trivial constructors.
6236     assert(Constructor->getParent() && "No parent class for constructor.");
6237     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6238         Constructor->isTrivial() && !Constructor->isUsed(false))
6239       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6240   }
6241 
6242   ExprResult CurInit((Expr *)nullptr);
6243 
6244   // C++ [over.match.copy]p1:
6245   //   - When initializing a temporary to be bound to the first parameter
6246   //     of a constructor that takes a reference to possibly cv-qualified
6247   //     T as its first argument, called with a single argument in the
6248   //     context of direct-initialization, explicit conversion functions
6249   //     are also considered.
6250   bool AllowExplicitConv =
6251       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6252       hasCopyOrMoveCtorParam(S.Context,
6253                              getConstructorInfo(Step.Function.FoundDecl));
6254 
6255   // Determine the arguments required to actually perform the constructor
6256   // call.
6257   if (S.CompleteConstructorCall(Constructor, Args,
6258                                 Loc, ConstructorArgs,
6259                                 AllowExplicitConv,
6260                                 IsListInitialization))
6261     return ExprError();
6262 
6263 
6264   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6265     // An explicitly-constructed temporary, e.g., X(1, 2).
6266     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6267       return ExprError();
6268 
6269     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6270     if (!TSInfo)
6271       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6272     SourceRange ParenOrBraceRange =
6273         (Kind.getKind() == InitializationKind::IK_DirectList)
6274         ? SourceRange(LBraceLoc, RBraceLoc)
6275         : Kind.getParenOrBraceRange();
6276 
6277     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6278             Step.Function.FoundDecl.getDecl())) {
6279       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6280       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6281         return ExprError();
6282     }
6283     S.MarkFunctionReferenced(Loc, Constructor);
6284 
6285     CurInit = CXXTemporaryObjectExpr::Create(
6286         S.Context, Constructor,
6287         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6288         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6289         IsListInitialization, IsStdInitListInitialization,
6290         ConstructorInitRequiresZeroInit);
6291   } else {
6292     CXXConstructExpr::ConstructionKind ConstructKind =
6293       CXXConstructExpr::CK_Complete;
6294 
6295     if (Entity.getKind() == InitializedEntity::EK_Base) {
6296       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6297         CXXConstructExpr::CK_VirtualBase :
6298         CXXConstructExpr::CK_NonVirtualBase;
6299     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6300       ConstructKind = CXXConstructExpr::CK_Delegating;
6301     }
6302 
6303     // Only get the parenthesis or brace range if it is a list initialization or
6304     // direct construction.
6305     SourceRange ParenOrBraceRange;
6306     if (IsListInitialization)
6307       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6308     else if (Kind.getKind() == InitializationKind::IK_Direct)
6309       ParenOrBraceRange = Kind.getParenOrBraceRange();
6310 
6311     // If the entity allows NRVO, mark the construction as elidable
6312     // unconditionally.
6313     if (Entity.allowsNRVO())
6314       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6315                                         Step.Function.FoundDecl,
6316                                         Constructor, /*Elidable=*/true,
6317                                         ConstructorArgs,
6318                                         HadMultipleCandidates,
6319                                         IsListInitialization,
6320                                         IsStdInitListInitialization,
6321                                         ConstructorInitRequiresZeroInit,
6322                                         ConstructKind,
6323                                         ParenOrBraceRange);
6324     else
6325       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6326                                         Step.Function.FoundDecl,
6327                                         Constructor,
6328                                         ConstructorArgs,
6329                                         HadMultipleCandidates,
6330                                         IsListInitialization,
6331                                         IsStdInitListInitialization,
6332                                         ConstructorInitRequiresZeroInit,
6333                                         ConstructKind,
6334                                         ParenOrBraceRange);
6335   }
6336   if (CurInit.isInvalid())
6337     return ExprError();
6338 
6339   // Only check access if all of that succeeded.
6340   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6341   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6342     return ExprError();
6343 
6344   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6345     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6346       return ExprError();
6347 
6348   if (shouldBindAsTemporary(Entity))
6349     CurInit = S.MaybeBindToTemporary(CurInit.get());
6350 
6351   return CurInit;
6352 }
6353 
6354 namespace {
6355 enum LifetimeKind {
6356   /// The lifetime of a temporary bound to this entity ends at the end of the
6357   /// full-expression, and that's (probably) fine.
6358   LK_FullExpression,
6359 
6360   /// The lifetime of a temporary bound to this entity is extended to the
6361   /// lifeitme of the entity itself.
6362   LK_Extended,
6363 
6364   /// The lifetime of a temporary bound to this entity probably ends too soon,
6365   /// because the entity is allocated in a new-expression.
6366   LK_New,
6367 
6368   /// The lifetime of a temporary bound to this entity ends too soon, because
6369   /// the entity is a return object.
6370   LK_Return,
6371 
6372   /// The lifetime of a temporary bound to this entity ends too soon, because
6373   /// the entity is the result of a statement expression.
6374   LK_StmtExprResult,
6375 
6376   /// This is a mem-initializer: if it would extend a temporary (other than via
6377   /// a default member initializer), the program is ill-formed.
6378   LK_MemInitializer,
6379 };
6380 using LifetimeResult =
6381     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6382 }
6383 
6384 /// Determine the declaration which an initialized entity ultimately refers to,
6385 /// for the purpose of lifetime-extending a temporary bound to a reference in
6386 /// the initialization of \p Entity.
6387 static LifetimeResult getEntityLifetime(
6388     const InitializedEntity *Entity,
6389     const InitializedEntity *InitField = nullptr) {
6390   // C++11 [class.temporary]p5:
6391   switch (Entity->getKind()) {
6392   case InitializedEntity::EK_Variable:
6393     //   The temporary [...] persists for the lifetime of the reference
6394     return {Entity, LK_Extended};
6395 
6396   case InitializedEntity::EK_Member:
6397     // For subobjects, we look at the complete object.
6398     if (Entity->getParent())
6399       return getEntityLifetime(Entity->getParent(), Entity);
6400 
6401     //   except:
6402     // C++17 [class.base.init]p8:
6403     //   A temporary expression bound to a reference member in a
6404     //   mem-initializer is ill-formed.
6405     // C++17 [class.base.init]p11:
6406     //   A temporary expression bound to a reference member from a
6407     //   default member initializer is ill-formed.
6408     //
6409     // The context of p11 and its example suggest that it's only the use of a
6410     // default member initializer from a constructor that makes the program
6411     // ill-formed, not its mere existence, and that it can even be used by
6412     // aggregate initialization.
6413     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6414                                                          : LK_MemInitializer};
6415 
6416   case InitializedEntity::EK_Binding:
6417     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6418     // type.
6419     return {Entity, LK_Extended};
6420 
6421   case InitializedEntity::EK_Parameter:
6422   case InitializedEntity::EK_Parameter_CF_Audited:
6423     //   -- A temporary bound to a reference parameter in a function call
6424     //      persists until the completion of the full-expression containing
6425     //      the call.
6426     return {nullptr, LK_FullExpression};
6427 
6428   case InitializedEntity::EK_Result:
6429     //   -- The lifetime of a temporary bound to the returned value in a
6430     //      function return statement is not extended; the temporary is
6431     //      destroyed at the end of the full-expression in the return statement.
6432     return {nullptr, LK_Return};
6433 
6434   case InitializedEntity::EK_StmtExprResult:
6435     // FIXME: Should we lifetime-extend through the result of a statement
6436     // expression?
6437     return {nullptr, LK_StmtExprResult};
6438 
6439   case InitializedEntity::EK_New:
6440     //   -- A temporary bound to a reference in a new-initializer persists
6441     //      until the completion of the full-expression containing the
6442     //      new-initializer.
6443     return {nullptr, LK_New};
6444 
6445   case InitializedEntity::EK_Temporary:
6446   case InitializedEntity::EK_CompoundLiteralInit:
6447   case InitializedEntity::EK_RelatedResult:
6448     // We don't yet know the storage duration of the surrounding temporary.
6449     // Assume it's got full-expression duration for now, it will patch up our
6450     // storage duration if that's not correct.
6451     return {nullptr, LK_FullExpression};
6452 
6453   case InitializedEntity::EK_ArrayElement:
6454     // For subobjects, we look at the complete object.
6455     return getEntityLifetime(Entity->getParent(), InitField);
6456 
6457   case InitializedEntity::EK_Base:
6458     // For subobjects, we look at the complete object.
6459     if (Entity->getParent())
6460       return getEntityLifetime(Entity->getParent(), InitField);
6461     return {InitField, LK_MemInitializer};
6462 
6463   case InitializedEntity::EK_Delegating:
6464     // We can reach this case for aggregate initialization in a constructor:
6465     //   struct A { int &&r; };
6466     //   struct B : A { B() : A{0} {} };
6467     // In this case, use the outermost field decl as the context.
6468     return {InitField, LK_MemInitializer};
6469 
6470   case InitializedEntity::EK_BlockElement:
6471   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6472   case InitializedEntity::EK_LambdaCapture:
6473   case InitializedEntity::EK_VectorElement:
6474   case InitializedEntity::EK_ComplexElement:
6475     return {nullptr, LK_FullExpression};
6476 
6477   case InitializedEntity::EK_Exception:
6478     // FIXME: Can we diagnose lifetime problems with exceptions?
6479     return {nullptr, LK_FullExpression};
6480   }
6481   llvm_unreachable("unknown entity kind");
6482 }
6483 
6484 namespace {
6485 enum ReferenceKind {
6486   /// Lifetime would be extended by a reference binding to a temporary.
6487   RK_ReferenceBinding,
6488   /// Lifetime would be extended by a std::initializer_list object binding to
6489   /// its backing array.
6490   RK_StdInitializerList,
6491 };
6492 
6493 /// A temporary or local variable. This will be one of:
6494 ///  * A MaterializeTemporaryExpr.
6495 ///  * A DeclRefExpr whose declaration is a local.
6496 ///  * An AddrLabelExpr.
6497 ///  * A BlockExpr for a block with captures.
6498 using Local = Expr*;
6499 
6500 /// Expressions we stepped over when looking for the local state. Any steps
6501 /// that would inhibit lifetime extension or take us out of subexpressions of
6502 /// the initializer are included.
6503 struct IndirectLocalPathEntry {
6504   enum EntryKind {
6505     DefaultInit,
6506     AddressOf,
6507     VarInit,
6508     LValToRVal,
6509     LifetimeBoundCall,
6510   } Kind;
6511   Expr *E;
6512   const Decl *D = nullptr;
6513   IndirectLocalPathEntry() {}
6514   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6515   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6516       : Kind(K), E(E), D(D) {}
6517 };
6518 
6519 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6520 
6521 struct RevertToOldSizeRAII {
6522   IndirectLocalPath &Path;
6523   unsigned OldSize = Path.size();
6524   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6525   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6526 };
6527 
6528 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6529                                              ReferenceKind RK)>;
6530 }
6531 
6532 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6533   for (auto E : Path)
6534     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6535       return true;
6536   return false;
6537 }
6538 
6539 static bool pathContainsInit(IndirectLocalPath &Path) {
6540   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6541     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6542            E.Kind == IndirectLocalPathEntry::VarInit;
6543   });
6544 }
6545 
6546 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6547                                              Expr *Init, LocalVisitor Visit,
6548                                              bool RevisitSubinits);
6549 
6550 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6551                                                   Expr *Init, ReferenceKind RK,
6552                                                   LocalVisitor Visit);
6553 
6554 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6555   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6556   if (!TSI)
6557     return false;
6558   // Don't declare this variable in the second operand of the for-statement;
6559   // GCC miscompiles that by ending its lifetime before evaluating the
6560   // third operand. See gcc.gnu.org/PR86769.
6561   AttributedTypeLoc ATL;
6562   for (TypeLoc TL = TSI->getTypeLoc();
6563        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6564        TL = ATL.getModifiedLoc()) {
6565     if (ATL.getAttrAs<LifetimeBoundAttr>())
6566       return true;
6567   }
6568   return false;
6569 }
6570 
6571 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6572                                         LocalVisitor Visit) {
6573   const FunctionDecl *Callee;
6574   ArrayRef<Expr*> Args;
6575 
6576   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6577     Callee = CE->getDirectCallee();
6578     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6579   } else {
6580     auto *CCE = cast<CXXConstructExpr>(Call);
6581     Callee = CCE->getConstructor();
6582     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6583   }
6584   if (!Callee)
6585     return;
6586 
6587   Expr *ObjectArg = nullptr;
6588   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6589     ObjectArg = Args[0];
6590     Args = Args.slice(1);
6591   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6592     ObjectArg = MCE->getImplicitObjectArgument();
6593   }
6594 
6595   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6596     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6597     if (Arg->isGLValue())
6598       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6599                                             Visit);
6600     else
6601       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6602     Path.pop_back();
6603   };
6604 
6605   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6606     VisitLifetimeBoundArg(Callee, ObjectArg);
6607 
6608   for (unsigned I = 0,
6609                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6610        I != N; ++I) {
6611     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6612       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6613   }
6614 }
6615 
6616 /// Visit the locals that would be reachable through a reference bound to the
6617 /// glvalue expression \c Init.
6618 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6619                                                   Expr *Init, ReferenceKind RK,
6620                                                   LocalVisitor Visit) {
6621   RevertToOldSizeRAII RAII(Path);
6622 
6623   // Walk past any constructs which we can lifetime-extend across.
6624   Expr *Old;
6625   do {
6626     Old = Init;
6627 
6628     if (auto *FE = dyn_cast<FullExpr>(Init))
6629       Init = FE->getSubExpr();
6630 
6631     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6632       // If this is just redundant braces around an initializer, step over it.
6633       if (ILE->isTransparent())
6634         Init = ILE->getInit(0);
6635     }
6636 
6637     // Step over any subobject adjustments; we may have a materialized
6638     // temporary inside them.
6639     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6640 
6641     // Per current approach for DR1376, look through casts to reference type
6642     // when performing lifetime extension.
6643     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6644       if (CE->getSubExpr()->isGLValue())
6645         Init = CE->getSubExpr();
6646 
6647     // Per the current approach for DR1299, look through array element access
6648     // on array glvalues when performing lifetime extension.
6649     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6650       Init = ASE->getBase();
6651       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6652       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6653         Init = ICE->getSubExpr();
6654       else
6655         // We can't lifetime extend through this but we might still find some
6656         // retained temporaries.
6657         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6658     }
6659 
6660     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6661     // constructor inherits one as an implicit mem-initializer.
6662     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6663       Path.push_back(
6664           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6665       Init = DIE->getExpr();
6666     }
6667   } while (Init != Old);
6668 
6669   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6670     if (Visit(Path, Local(MTE), RK))
6671       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6672                                        true);
6673   }
6674 
6675   if (isa<CallExpr>(Init))
6676     return visitLifetimeBoundArguments(Path, Init, Visit);
6677 
6678   switch (Init->getStmtClass()) {
6679   case Stmt::DeclRefExprClass: {
6680     // If we find the name of a local non-reference parameter, we could have a
6681     // lifetime problem.
6682     auto *DRE = cast<DeclRefExpr>(Init);
6683     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6684     if (VD && VD->hasLocalStorage() &&
6685         !DRE->refersToEnclosingVariableOrCapture()) {
6686       if (!VD->getType()->isReferenceType()) {
6687         Visit(Path, Local(DRE), RK);
6688       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6689         // The lifetime of a reference parameter is unknown; assume it's OK
6690         // for now.
6691         break;
6692       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6693         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6694         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6695                                               RK_ReferenceBinding, Visit);
6696       }
6697     }
6698     break;
6699   }
6700 
6701   case Stmt::UnaryOperatorClass: {
6702     // The only unary operator that make sense to handle here
6703     // is Deref.  All others don't resolve to a "name."  This includes
6704     // handling all sorts of rvalues passed to a unary operator.
6705     const UnaryOperator *U = cast<UnaryOperator>(Init);
6706     if (U->getOpcode() == UO_Deref)
6707       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6708     break;
6709   }
6710 
6711   case Stmt::OMPArraySectionExprClass: {
6712     visitLocalsRetainedByInitializer(
6713         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6714     break;
6715   }
6716 
6717   case Stmt::ConditionalOperatorClass:
6718   case Stmt::BinaryConditionalOperatorClass: {
6719     auto *C = cast<AbstractConditionalOperator>(Init);
6720     if (!C->getTrueExpr()->getType()->isVoidType())
6721       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6722     if (!C->getFalseExpr()->getType()->isVoidType())
6723       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6724     break;
6725   }
6726 
6727   // FIXME: Visit the left-hand side of an -> or ->*.
6728 
6729   default:
6730     break;
6731   }
6732 }
6733 
6734 /// Visit the locals that would be reachable through an object initialized by
6735 /// the prvalue expression \c Init.
6736 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6737                                              Expr *Init, LocalVisitor Visit,
6738                                              bool RevisitSubinits) {
6739   RevertToOldSizeRAII RAII(Path);
6740 
6741   Expr *Old;
6742   do {
6743     Old = Init;
6744 
6745     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6746     // constructor inherits one as an implicit mem-initializer.
6747     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6748       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6749       Init = DIE->getExpr();
6750     }
6751 
6752     if (auto *FE = dyn_cast<FullExpr>(Init))
6753       Init = FE->getSubExpr();
6754 
6755     // Dig out the expression which constructs the extended temporary.
6756     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6757 
6758     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6759       Init = BTE->getSubExpr();
6760 
6761     Init = Init->IgnoreParens();
6762 
6763     // Step over value-preserving rvalue casts.
6764     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6765       switch (CE->getCastKind()) {
6766       case CK_LValueToRValue:
6767         // If we can match the lvalue to a const object, we can look at its
6768         // initializer.
6769         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6770         return visitLocalsRetainedByReferenceBinding(
6771             Path, Init, RK_ReferenceBinding,
6772             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6773           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6774             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6775             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6776                 !isVarOnPath(Path, VD)) {
6777               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6778               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6779             }
6780           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6781             if (MTE->getType().isConstQualified())
6782               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6783                                                Visit, true);
6784           }
6785           return false;
6786         });
6787 
6788         // We assume that objects can be retained by pointers cast to integers,
6789         // but not if the integer is cast to floating-point type or to _Complex.
6790         // We assume that casts to 'bool' do not preserve enough information to
6791         // retain a local object.
6792       case CK_NoOp:
6793       case CK_BitCast:
6794       case CK_BaseToDerived:
6795       case CK_DerivedToBase:
6796       case CK_UncheckedDerivedToBase:
6797       case CK_Dynamic:
6798       case CK_ToUnion:
6799       case CK_UserDefinedConversion:
6800       case CK_ConstructorConversion:
6801       case CK_IntegralToPointer:
6802       case CK_PointerToIntegral:
6803       case CK_VectorSplat:
6804       case CK_IntegralCast:
6805       case CK_CPointerToObjCPointerCast:
6806       case CK_BlockPointerToObjCPointerCast:
6807       case CK_AnyPointerToBlockPointerCast:
6808       case CK_AddressSpaceConversion:
6809         break;
6810 
6811       case CK_ArrayToPointerDecay:
6812         // Model array-to-pointer decay as taking the address of the array
6813         // lvalue.
6814         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6815         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6816                                                      RK_ReferenceBinding, Visit);
6817 
6818       default:
6819         return;
6820       }
6821 
6822       Init = CE->getSubExpr();
6823     }
6824   } while (Old != Init);
6825 
6826   // C++17 [dcl.init.list]p6:
6827   //   initializing an initializer_list object from the array extends the
6828   //   lifetime of the array exactly like binding a reference to a temporary.
6829   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6830     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6831                                                  RK_StdInitializerList, Visit);
6832 
6833   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6834     // We already visited the elements of this initializer list while
6835     // performing the initialization. Don't visit them again unless we've
6836     // changed the lifetime of the initialized entity.
6837     if (!RevisitSubinits)
6838       return;
6839 
6840     if (ILE->isTransparent())
6841       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6842                                               RevisitSubinits);
6843 
6844     if (ILE->getType()->isArrayType()) {
6845       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6846         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6847                                          RevisitSubinits);
6848       return;
6849     }
6850 
6851     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6852       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6853 
6854       // If we lifetime-extend a braced initializer which is initializing an
6855       // aggregate, and that aggregate contains reference members which are
6856       // bound to temporaries, those temporaries are also lifetime-extended.
6857       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6858           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6859         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6860                                               RK_ReferenceBinding, Visit);
6861       else {
6862         unsigned Index = 0;
6863         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
6864           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
6865                                            RevisitSubinits);
6866         for (const auto *I : RD->fields()) {
6867           if (Index >= ILE->getNumInits())
6868             break;
6869           if (I->isUnnamedBitfield())
6870             continue;
6871           Expr *SubInit = ILE->getInit(Index);
6872           if (I->getType()->isReferenceType())
6873             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6874                                                   RK_ReferenceBinding, Visit);
6875           else
6876             // This might be either aggregate-initialization of a member or
6877             // initialization of a std::initializer_list object. Regardless,
6878             // we should recursively lifetime-extend that initializer.
6879             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6880                                              RevisitSubinits);
6881           ++Index;
6882         }
6883       }
6884     }
6885     return;
6886   }
6887 
6888   // The lifetime of an init-capture is that of the closure object constructed
6889   // by a lambda-expression.
6890   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6891     for (Expr *E : LE->capture_inits()) {
6892       if (!E)
6893         continue;
6894       if (E->isGLValue())
6895         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6896                                               Visit);
6897       else
6898         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6899     }
6900   }
6901 
6902   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6903     return visitLifetimeBoundArguments(Path, Init, Visit);
6904 
6905   switch (Init->getStmtClass()) {
6906   case Stmt::UnaryOperatorClass: {
6907     auto *UO = cast<UnaryOperator>(Init);
6908     // If the initializer is the address of a local, we could have a lifetime
6909     // problem.
6910     if (UO->getOpcode() == UO_AddrOf) {
6911       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6912       // it. Don't produce a redundant warning about the lifetime of the
6913       // temporary.
6914       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6915         return;
6916 
6917       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6918       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6919                                             RK_ReferenceBinding, Visit);
6920     }
6921     break;
6922   }
6923 
6924   case Stmt::BinaryOperatorClass: {
6925     // Handle pointer arithmetic.
6926     auto *BO = cast<BinaryOperator>(Init);
6927     BinaryOperatorKind BOK = BO->getOpcode();
6928     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6929       break;
6930 
6931     if (BO->getLHS()->getType()->isPointerType())
6932       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6933     else if (BO->getRHS()->getType()->isPointerType())
6934       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6935     break;
6936   }
6937 
6938   case Stmt::ConditionalOperatorClass:
6939   case Stmt::BinaryConditionalOperatorClass: {
6940     auto *C = cast<AbstractConditionalOperator>(Init);
6941     // In C++, we can have a throw-expression operand, which has 'void' type
6942     // and isn't interesting from a lifetime perspective.
6943     if (!C->getTrueExpr()->getType()->isVoidType())
6944       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6945     if (!C->getFalseExpr()->getType()->isVoidType())
6946       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6947     break;
6948   }
6949 
6950   case Stmt::BlockExprClass:
6951     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6952       // This is a local block, whose lifetime is that of the function.
6953       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6954     }
6955     break;
6956 
6957   case Stmt::AddrLabelExprClass:
6958     // We want to warn if the address of a label would escape the function.
6959     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6960     break;
6961 
6962   default:
6963     break;
6964   }
6965 }
6966 
6967 /// Determine whether this is an indirect path to a temporary that we are
6968 /// supposed to lifetime-extend along (but don't).
6969 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6970   for (auto Elem : Path) {
6971     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6972       return false;
6973   }
6974   return true;
6975 }
6976 
6977 /// Find the range for the first interesting entry in the path at or after I.
6978 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6979                                       Expr *E) {
6980   for (unsigned N = Path.size(); I != N; ++I) {
6981     switch (Path[I].Kind) {
6982     case IndirectLocalPathEntry::AddressOf:
6983     case IndirectLocalPathEntry::LValToRVal:
6984     case IndirectLocalPathEntry::LifetimeBoundCall:
6985       // These exist primarily to mark the path as not permitting or
6986       // supporting lifetime extension.
6987       break;
6988 
6989     case IndirectLocalPathEntry::DefaultInit:
6990     case IndirectLocalPathEntry::VarInit:
6991       return Path[I].E->getSourceRange();
6992     }
6993   }
6994   return E->getSourceRange();
6995 }
6996 
6997 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6998                                     Expr *Init) {
6999   LifetimeResult LR = getEntityLifetime(&Entity);
7000   LifetimeKind LK = LR.getInt();
7001   const InitializedEntity *ExtendingEntity = LR.getPointer();
7002 
7003   // If this entity doesn't have an interesting lifetime, don't bother looking
7004   // for temporaries within its initializer.
7005   if (LK == LK_FullExpression)
7006     return;
7007 
7008   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7009                               ReferenceKind RK) -> bool {
7010     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7011     SourceLocation DiagLoc = DiagRange.getBegin();
7012 
7013     switch (LK) {
7014     case LK_FullExpression:
7015       llvm_unreachable("already handled this");
7016 
7017     case LK_Extended: {
7018       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7019       if (!MTE) {
7020         // The initialized entity has lifetime beyond the full-expression,
7021         // and the local entity does too, so don't warn.
7022         //
7023         // FIXME: We should consider warning if a static / thread storage
7024         // duration variable retains an automatic storage duration local.
7025         return false;
7026       }
7027 
7028       // Lifetime-extend the temporary.
7029       if (Path.empty()) {
7030         // Update the storage duration of the materialized temporary.
7031         // FIXME: Rebuild the expression instead of mutating it.
7032         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7033                               ExtendingEntity->allocateManglingNumber());
7034         // Also visit the temporaries lifetime-extended by this initializer.
7035         return true;
7036       }
7037 
7038       if (shouldLifetimeExtendThroughPath(Path)) {
7039         // We're supposed to lifetime-extend the temporary along this path (per
7040         // the resolution of DR1815), but we don't support that yet.
7041         //
7042         // FIXME: Properly handle this situation. Perhaps the easiest approach
7043         // would be to clone the initializer expression on each use that would
7044         // lifetime extend its temporaries.
7045         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7046             << RK << DiagRange;
7047       } else {
7048         // If the path goes through the initialization of a variable or field,
7049         // it can't possibly reach a temporary created in this full-expression.
7050         // We will have already diagnosed any problems with the initializer.
7051         if (pathContainsInit(Path))
7052           return false;
7053 
7054         Diag(DiagLoc, diag::warn_dangling_variable)
7055             << RK << !Entity.getParent()
7056             << ExtendingEntity->getDecl()->isImplicit()
7057             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7058       }
7059       break;
7060     }
7061 
7062     case LK_MemInitializer: {
7063       if (isa<MaterializeTemporaryExpr>(L)) {
7064         // Under C++ DR1696, if a mem-initializer (or a default member
7065         // initializer used by the absence of one) would lifetime-extend a
7066         // temporary, the program is ill-formed.
7067         if (auto *ExtendingDecl =
7068                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7069           bool IsSubobjectMember = ExtendingEntity != &Entity;
7070           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7071                             ? diag::err_dangling_member
7072                             : diag::warn_dangling_member)
7073               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7074           // Don't bother adding a note pointing to the field if we're inside
7075           // its default member initializer; our primary diagnostic points to
7076           // the same place in that case.
7077           if (Path.empty() ||
7078               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7079             Diag(ExtendingDecl->getLocation(),
7080                  diag::note_lifetime_extending_member_declared_here)
7081                 << RK << IsSubobjectMember;
7082           }
7083         } else {
7084           // We have a mem-initializer but no particular field within it; this
7085           // is either a base class or a delegating initializer directly
7086           // initializing the base-class from something that doesn't live long
7087           // enough.
7088           //
7089           // FIXME: Warn on this.
7090           return false;
7091         }
7092       } else {
7093         // Paths via a default initializer can only occur during error recovery
7094         // (there's no other way that a default initializer can refer to a
7095         // local). Don't produce a bogus warning on those cases.
7096         if (pathContainsInit(Path))
7097           return false;
7098 
7099         auto *DRE = dyn_cast<DeclRefExpr>(L);
7100         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7101         if (!VD) {
7102           // A member was initialized to a local block.
7103           // FIXME: Warn on this.
7104           return false;
7105         }
7106 
7107         if (auto *Member =
7108                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7109           bool IsPointer = Member->getType()->isAnyPointerType();
7110           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7111                                   : diag::warn_bind_ref_member_to_parameter)
7112               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7113           Diag(Member->getLocation(),
7114                diag::note_ref_or_ptr_member_declared_here)
7115               << (unsigned)IsPointer;
7116         }
7117       }
7118       break;
7119     }
7120 
7121     case LK_New:
7122       if (isa<MaterializeTemporaryExpr>(L)) {
7123         Diag(DiagLoc, RK == RK_ReferenceBinding
7124                           ? diag::warn_new_dangling_reference
7125                           : diag::warn_new_dangling_initializer_list)
7126             << !Entity.getParent() << DiagRange;
7127       } else {
7128         // We can't determine if the allocation outlives the local declaration.
7129         return false;
7130       }
7131       break;
7132 
7133     case LK_Return:
7134     case LK_StmtExprResult:
7135       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7136         // We can't determine if the local variable outlives the statement
7137         // expression.
7138         if (LK == LK_StmtExprResult)
7139           return false;
7140         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7141             << Entity.getType()->isReferenceType() << DRE->getDecl()
7142             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7143       } else if (isa<BlockExpr>(L)) {
7144         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7145       } else if (isa<AddrLabelExpr>(L)) {
7146         // Don't warn when returning a label from a statement expression.
7147         // Leaving the scope doesn't end its lifetime.
7148         if (LK == LK_StmtExprResult)
7149           return false;
7150         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7151       } else {
7152         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7153          << Entity.getType()->isReferenceType() << DiagRange;
7154       }
7155       break;
7156     }
7157 
7158     for (unsigned I = 0; I != Path.size(); ++I) {
7159       auto Elem = Path[I];
7160 
7161       switch (Elem.Kind) {
7162       case IndirectLocalPathEntry::AddressOf:
7163       case IndirectLocalPathEntry::LValToRVal:
7164         // These exist primarily to mark the path as not permitting or
7165         // supporting lifetime extension.
7166         break;
7167 
7168       case IndirectLocalPathEntry::LifetimeBoundCall:
7169         // FIXME: Consider adding a note for this.
7170         break;
7171 
7172       case IndirectLocalPathEntry::DefaultInit: {
7173         auto *FD = cast<FieldDecl>(Elem.D);
7174         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7175             << FD << nextPathEntryRange(Path, I + 1, L);
7176         break;
7177       }
7178 
7179       case IndirectLocalPathEntry::VarInit:
7180         const VarDecl *VD = cast<VarDecl>(Elem.D);
7181         Diag(VD->getLocation(), diag::note_local_var_initializer)
7182             << VD->getType()->isReferenceType()
7183             << VD->isImplicit() << VD->getDeclName()
7184             << nextPathEntryRange(Path, I + 1, L);
7185         break;
7186       }
7187     }
7188 
7189     // We didn't lifetime-extend, so don't go any further; we don't need more
7190     // warnings or errors on inner temporaries within this one's initializer.
7191     return false;
7192   };
7193 
7194   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7195   if (Init->isGLValue())
7196     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7197                                           TemporaryVisitor);
7198   else
7199     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7200 }
7201 
7202 static void DiagnoseNarrowingInInitList(Sema &S,
7203                                         const ImplicitConversionSequence &ICS,
7204                                         QualType PreNarrowingType,
7205                                         QualType EntityType,
7206                                         const Expr *PostInit);
7207 
7208 /// Provide warnings when std::move is used on construction.
7209 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7210                                     bool IsReturnStmt) {
7211   if (!InitExpr)
7212     return;
7213 
7214   if (S.inTemplateInstantiation())
7215     return;
7216 
7217   QualType DestType = InitExpr->getType();
7218   if (!DestType->isRecordType())
7219     return;
7220 
7221   unsigned DiagID = 0;
7222   if (IsReturnStmt) {
7223     const CXXConstructExpr *CCE =
7224         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7225     if (!CCE || CCE->getNumArgs() != 1)
7226       return;
7227 
7228     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7229       return;
7230 
7231     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7232   }
7233 
7234   // Find the std::move call and get the argument.
7235   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7236   if (!CE || !CE->isCallToStdMove())
7237     return;
7238 
7239   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7240 
7241   if (IsReturnStmt) {
7242     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7243     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7244       return;
7245 
7246     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7247     if (!VD || !VD->hasLocalStorage())
7248       return;
7249 
7250     // __block variables are not moved implicitly.
7251     if (VD->hasAttr<BlocksAttr>())
7252       return;
7253 
7254     QualType SourceType = VD->getType();
7255     if (!SourceType->isRecordType())
7256       return;
7257 
7258     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7259       return;
7260     }
7261 
7262     // If we're returning a function parameter, copy elision
7263     // is not possible.
7264     if (isa<ParmVarDecl>(VD))
7265       DiagID = diag::warn_redundant_move_on_return;
7266     else
7267       DiagID = diag::warn_pessimizing_move_on_return;
7268   } else {
7269     DiagID = diag::warn_pessimizing_move_on_initialization;
7270     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7271     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7272       return;
7273   }
7274 
7275   S.Diag(CE->getBeginLoc(), DiagID);
7276 
7277   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7278   // is within a macro.
7279   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7280   if (CallBegin.isMacroID())
7281     return;
7282   SourceLocation RParen = CE->getRParenLoc();
7283   if (RParen.isMacroID())
7284     return;
7285   SourceLocation LParen;
7286   SourceLocation ArgLoc = Arg->getBeginLoc();
7287 
7288   // Special testing for the argument location.  Since the fix-it needs the
7289   // location right before the argument, the argument location can be in a
7290   // macro only if it is at the beginning of the macro.
7291   while (ArgLoc.isMacroID() &&
7292          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7293     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7294   }
7295 
7296   if (LParen.isMacroID())
7297     return;
7298 
7299   LParen = ArgLoc.getLocWithOffset(-1);
7300 
7301   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7302       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7303       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7304 }
7305 
7306 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7307   // Check to see if we are dereferencing a null pointer.  If so, this is
7308   // undefined behavior, so warn about it.  This only handles the pattern
7309   // "*null", which is a very syntactic check.
7310   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7311     if (UO->getOpcode() == UO_Deref &&
7312         UO->getSubExpr()->IgnoreParenCasts()->
7313         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7314     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7315                           S.PDiag(diag::warn_binding_null_to_reference)
7316                             << UO->getSubExpr()->getSourceRange());
7317   }
7318 }
7319 
7320 MaterializeTemporaryExpr *
7321 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7322                                      bool BoundToLvalueReference) {
7323   auto MTE = new (Context)
7324       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7325 
7326   // Order an ExprWithCleanups for lifetime marks.
7327   //
7328   // TODO: It'll be good to have a single place to check the access of the
7329   // destructor and generate ExprWithCleanups for various uses. Currently these
7330   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7331   // but there may be a chance to merge them.
7332   Cleanup.setExprNeedsCleanups(false);
7333   return MTE;
7334 }
7335 
7336 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7337   // In C++98, we don't want to implicitly create an xvalue.
7338   // FIXME: This means that AST consumers need to deal with "prvalues" that
7339   // denote materialized temporaries. Maybe we should add another ValueKind
7340   // for "xvalue pretending to be a prvalue" for C++98 support.
7341   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7342     return E;
7343 
7344   // C++1z [conv.rval]/1: T shall be a complete type.
7345   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7346   // If so, we should check for a non-abstract class type here too.
7347   QualType T = E->getType();
7348   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7349     return ExprError();
7350 
7351   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7352 }
7353 
7354 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7355                                                 ExprValueKind VK,
7356                                                 CheckedConversionKind CCK) {
7357 
7358   CastKind CK = CK_NoOp;
7359 
7360   if (VK == VK_RValue) {
7361     auto PointeeTy = Ty->getPointeeType();
7362     auto ExprPointeeTy = E->getType()->getPointeeType();
7363     if (!PointeeTy.isNull() &&
7364         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7365       CK = CK_AddressSpaceConversion;
7366   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7367     CK = CK_AddressSpaceConversion;
7368   }
7369 
7370   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7371 }
7372 
7373 ExprResult InitializationSequence::Perform(Sema &S,
7374                                            const InitializedEntity &Entity,
7375                                            const InitializationKind &Kind,
7376                                            MultiExprArg Args,
7377                                            QualType *ResultType) {
7378   if (Failed()) {
7379     Diagnose(S, Entity, Kind, Args);
7380     return ExprError();
7381   }
7382   if (!ZeroInitializationFixit.empty()) {
7383     unsigned DiagID = diag::err_default_init_const;
7384     if (Decl *D = Entity.getDecl())
7385       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7386         DiagID = diag::ext_default_init_const;
7387 
7388     // The initialization would have succeeded with this fixit. Since the fixit
7389     // is on the error, we need to build a valid AST in this case, so this isn't
7390     // handled in the Failed() branch above.
7391     QualType DestType = Entity.getType();
7392     S.Diag(Kind.getLocation(), DiagID)
7393         << DestType << (bool)DestType->getAs<RecordType>()
7394         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7395                                       ZeroInitializationFixit);
7396   }
7397 
7398   if (getKind() == DependentSequence) {
7399     // If the declaration is a non-dependent, incomplete array type
7400     // that has an initializer, then its type will be completed once
7401     // the initializer is instantiated.
7402     if (ResultType && !Entity.getType()->isDependentType() &&
7403         Args.size() == 1) {
7404       QualType DeclType = Entity.getType();
7405       if (const IncompleteArrayType *ArrayT
7406                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7407         // FIXME: We don't currently have the ability to accurately
7408         // compute the length of an initializer list without
7409         // performing full type-checking of the initializer list
7410         // (since we have to determine where braces are implicitly
7411         // introduced and such).  So, we fall back to making the array
7412         // type a dependently-sized array type with no specified
7413         // bound.
7414         if (isa<InitListExpr>((Expr *)Args[0])) {
7415           SourceRange Brackets;
7416 
7417           // Scavange the location of the brackets from the entity, if we can.
7418           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7419             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7420               TypeLoc TL = TInfo->getTypeLoc();
7421               if (IncompleteArrayTypeLoc ArrayLoc =
7422                       TL.getAs<IncompleteArrayTypeLoc>())
7423                 Brackets = ArrayLoc.getBracketsRange();
7424             }
7425           }
7426 
7427           *ResultType
7428             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7429                                                    /*NumElts=*/nullptr,
7430                                                    ArrayT->getSizeModifier(),
7431                                        ArrayT->getIndexTypeCVRQualifiers(),
7432                                                    Brackets);
7433         }
7434 
7435       }
7436     }
7437     if (Kind.getKind() == InitializationKind::IK_Direct &&
7438         !Kind.isExplicitCast()) {
7439       // Rebuild the ParenListExpr.
7440       SourceRange ParenRange = Kind.getParenOrBraceRange();
7441       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7442                                   Args);
7443     }
7444     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7445            Kind.isExplicitCast() ||
7446            Kind.getKind() == InitializationKind::IK_DirectList);
7447     return ExprResult(Args[0]);
7448   }
7449 
7450   // No steps means no initialization.
7451   if (Steps.empty())
7452     return ExprResult((Expr *)nullptr);
7453 
7454   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7455       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7456       !Entity.isParameterKind()) {
7457     // Produce a C++98 compatibility warning if we are initializing a reference
7458     // from an initializer list. For parameters, we produce a better warning
7459     // elsewhere.
7460     Expr *Init = Args[0];
7461     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7462         << Init->getSourceRange();
7463   }
7464 
7465   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7466   QualType ETy = Entity.getType();
7467   Qualifiers TyQualifiers = ETy.getQualifiers();
7468   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7469                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7470 
7471   if (S.getLangOpts().OpenCLVersion >= 200 &&
7472       ETy->isAtomicType() && !HasGlobalAS &&
7473       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7474     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7475         << 1
7476         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7477     return ExprError();
7478   }
7479 
7480   QualType DestType = Entity.getType().getNonReferenceType();
7481   // FIXME: Ugly hack around the fact that Entity.getType() is not
7482   // the same as Entity.getDecl()->getType() in cases involving type merging,
7483   //  and we want latter when it makes sense.
7484   if (ResultType)
7485     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7486                                      Entity.getType();
7487 
7488   ExprResult CurInit((Expr *)nullptr);
7489   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7490 
7491   // For initialization steps that start with a single initializer,
7492   // grab the only argument out the Args and place it into the "current"
7493   // initializer.
7494   switch (Steps.front().Kind) {
7495   case SK_ResolveAddressOfOverloadedFunction:
7496   case SK_CastDerivedToBaseRValue:
7497   case SK_CastDerivedToBaseXValue:
7498   case SK_CastDerivedToBaseLValue:
7499   case SK_BindReference:
7500   case SK_BindReferenceToTemporary:
7501   case SK_FinalCopy:
7502   case SK_ExtraneousCopyToTemporary:
7503   case SK_UserConversion:
7504   case SK_QualificationConversionLValue:
7505   case SK_QualificationConversionXValue:
7506   case SK_QualificationConversionRValue:
7507   case SK_AtomicConversion:
7508   case SK_LValueToRValue:
7509   case SK_ConversionSequence:
7510   case SK_ConversionSequenceNoNarrowing:
7511   case SK_ListInitialization:
7512   case SK_UnwrapInitList:
7513   case SK_RewrapInitList:
7514   case SK_CAssignment:
7515   case SK_StringInit:
7516   case SK_ObjCObjectConversion:
7517   case SK_ArrayLoopIndex:
7518   case SK_ArrayLoopInit:
7519   case SK_ArrayInit:
7520   case SK_GNUArrayInit:
7521   case SK_ParenthesizedArrayInit:
7522   case SK_PassByIndirectCopyRestore:
7523   case SK_PassByIndirectRestore:
7524   case SK_ProduceObjCObject:
7525   case SK_StdInitializerList:
7526   case SK_OCLSamplerInit:
7527   case SK_OCLZeroOpaqueType: {
7528     assert(Args.size() == 1);
7529     CurInit = Args[0];
7530     if (!CurInit.get()) return ExprError();
7531     break;
7532   }
7533 
7534   case SK_ConstructorInitialization:
7535   case SK_ConstructorInitializationFromList:
7536   case SK_StdInitializerListConstructorCall:
7537   case SK_ZeroInitialization:
7538     break;
7539   }
7540 
7541   // Promote from an unevaluated context to an unevaluated list context in
7542   // C++11 list-initialization; we need to instantiate entities usable in
7543   // constant expressions here in order to perform narrowing checks =(
7544   EnterExpressionEvaluationContext Evaluated(
7545       S, EnterExpressionEvaluationContext::InitList,
7546       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7547 
7548   // C++ [class.abstract]p2:
7549   //   no objects of an abstract class can be created except as subobjects
7550   //   of a class derived from it
7551   auto checkAbstractType = [&](QualType T) -> bool {
7552     if (Entity.getKind() == InitializedEntity::EK_Base ||
7553         Entity.getKind() == InitializedEntity::EK_Delegating)
7554       return false;
7555     return S.RequireNonAbstractType(Kind.getLocation(), T,
7556                                     diag::err_allocation_of_abstract_type);
7557   };
7558 
7559   // Walk through the computed steps for the initialization sequence,
7560   // performing the specified conversions along the way.
7561   bool ConstructorInitRequiresZeroInit = false;
7562   for (step_iterator Step = step_begin(), StepEnd = step_end();
7563        Step != StepEnd; ++Step) {
7564     if (CurInit.isInvalid())
7565       return ExprError();
7566 
7567     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7568 
7569     switch (Step->Kind) {
7570     case SK_ResolveAddressOfOverloadedFunction:
7571       // Overload resolution determined which function invoke; update the
7572       // initializer to reflect that choice.
7573       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7574       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7575         return ExprError();
7576       CurInit = S.FixOverloadedFunctionReference(CurInit,
7577                                                  Step->Function.FoundDecl,
7578                                                  Step->Function.Function);
7579       break;
7580 
7581     case SK_CastDerivedToBaseRValue:
7582     case SK_CastDerivedToBaseXValue:
7583     case SK_CastDerivedToBaseLValue: {
7584       // We have a derived-to-base cast that produces either an rvalue or an
7585       // lvalue. Perform that cast.
7586 
7587       CXXCastPath BasePath;
7588 
7589       // Casts to inaccessible base classes are allowed with C-style casts.
7590       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7591       if (S.CheckDerivedToBaseConversion(
7592               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7593               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7594         return ExprError();
7595 
7596       ExprValueKind VK =
7597           Step->Kind == SK_CastDerivedToBaseLValue ?
7598               VK_LValue :
7599               (Step->Kind == SK_CastDerivedToBaseXValue ?
7600                    VK_XValue :
7601                    VK_RValue);
7602       CurInit =
7603           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7604                                    CurInit.get(), &BasePath, VK);
7605       break;
7606     }
7607 
7608     case SK_BindReference:
7609       // Reference binding does not have any corresponding ASTs.
7610 
7611       // Check exception specifications
7612       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7613         return ExprError();
7614 
7615       // We don't check for e.g. function pointers here, since address
7616       // availability checks should only occur when the function first decays
7617       // into a pointer or reference.
7618       if (CurInit.get()->getType()->isFunctionProtoType()) {
7619         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7620           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7621             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7622                                                      DRE->getBeginLoc()))
7623               return ExprError();
7624           }
7625         }
7626       }
7627 
7628       CheckForNullPointerDereference(S, CurInit.get());
7629       break;
7630 
7631     case SK_BindReferenceToTemporary: {
7632       // Make sure the "temporary" is actually an rvalue.
7633       assert(CurInit.get()->isRValue() && "not a temporary");
7634 
7635       // Check exception specifications
7636       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7637         return ExprError();
7638 
7639       // Materialize the temporary into memory.
7640       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7641           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7642       CurInit = MTE;
7643 
7644       // If we're extending this temporary to automatic storage duration -- we
7645       // need to register its cleanup during the full-expression's cleanups.
7646       if (MTE->getStorageDuration() == SD_Automatic &&
7647           MTE->getType().isDestructedType())
7648         S.Cleanup.setExprNeedsCleanups(true);
7649       break;
7650     }
7651 
7652     case SK_FinalCopy:
7653       if (checkAbstractType(Step->Type))
7654         return ExprError();
7655 
7656       // If the overall initialization is initializing a temporary, we already
7657       // bound our argument if it was necessary to do so. If not (if we're
7658       // ultimately initializing a non-temporary), our argument needs to be
7659       // bound since it's initializing a function parameter.
7660       // FIXME: This is a mess. Rationalize temporary destruction.
7661       if (!shouldBindAsTemporary(Entity))
7662         CurInit = S.MaybeBindToTemporary(CurInit.get());
7663       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7664                            /*IsExtraneousCopy=*/false);
7665       break;
7666 
7667     case SK_ExtraneousCopyToTemporary:
7668       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7669                            /*IsExtraneousCopy=*/true);
7670       break;
7671 
7672     case SK_UserConversion: {
7673       // We have a user-defined conversion that invokes either a constructor
7674       // or a conversion function.
7675       CastKind CastKind;
7676       FunctionDecl *Fn = Step->Function.Function;
7677       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7678       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7679       bool CreatedObject = false;
7680       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7681         // Build a call to the selected constructor.
7682         SmallVector<Expr*, 8> ConstructorArgs;
7683         SourceLocation Loc = CurInit.get()->getBeginLoc();
7684 
7685         // Determine the arguments required to actually perform the constructor
7686         // call.
7687         Expr *Arg = CurInit.get();
7688         if (S.CompleteConstructorCall(Constructor,
7689                                       MultiExprArg(&Arg, 1),
7690                                       Loc, ConstructorArgs))
7691           return ExprError();
7692 
7693         // Build an expression that constructs a temporary.
7694         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7695                                           FoundFn, Constructor,
7696                                           ConstructorArgs,
7697                                           HadMultipleCandidates,
7698                                           /*ListInit*/ false,
7699                                           /*StdInitListInit*/ false,
7700                                           /*ZeroInit*/ false,
7701                                           CXXConstructExpr::CK_Complete,
7702                                           SourceRange());
7703         if (CurInit.isInvalid())
7704           return ExprError();
7705 
7706         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7707                                  Entity);
7708         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7709           return ExprError();
7710 
7711         CastKind = CK_ConstructorConversion;
7712         CreatedObject = true;
7713       } else {
7714         // Build a call to the conversion function.
7715         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7716         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7717                                     FoundFn);
7718         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7719           return ExprError();
7720 
7721         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7722                                            HadMultipleCandidates);
7723         if (CurInit.isInvalid())
7724           return ExprError();
7725 
7726         CastKind = CK_UserDefinedConversion;
7727         CreatedObject = Conversion->getReturnType()->isRecordType();
7728       }
7729 
7730       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7731         return ExprError();
7732 
7733       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7734                                          CastKind, CurInit.get(), nullptr,
7735                                          CurInit.get()->getValueKind());
7736 
7737       if (shouldBindAsTemporary(Entity))
7738         // The overall entity is temporary, so this expression should be
7739         // destroyed at the end of its full-expression.
7740         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7741       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7742         // The object outlasts the full-expression, but we need to prepare for
7743         // a destructor being run on it.
7744         // FIXME: It makes no sense to do this here. This should happen
7745         // regardless of how we initialized the entity.
7746         QualType T = CurInit.get()->getType();
7747         if (const RecordType *Record = T->getAs<RecordType>()) {
7748           CXXDestructorDecl *Destructor
7749             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7750           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7751                                   S.PDiag(diag::err_access_dtor_temp) << T);
7752           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7753           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7754             return ExprError();
7755         }
7756       }
7757       break;
7758     }
7759 
7760     case SK_QualificationConversionLValue:
7761     case SK_QualificationConversionXValue:
7762     case SK_QualificationConversionRValue: {
7763       // Perform a qualification conversion; these can never go wrong.
7764       ExprValueKind VK =
7765           Step->Kind == SK_QualificationConversionLValue
7766               ? VK_LValue
7767               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7768                                                                 : VK_RValue);
7769       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7770       break;
7771     }
7772 
7773     case SK_AtomicConversion: {
7774       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7775       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7776                                     CK_NonAtomicToAtomic, VK_RValue);
7777       break;
7778     }
7779 
7780     case SK_LValueToRValue: {
7781       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7782       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7783                                          CK_LValueToRValue, CurInit.get(),
7784                                          /*BasePath=*/nullptr, VK_RValue);
7785       break;
7786     }
7787 
7788     case SK_ConversionSequence:
7789     case SK_ConversionSequenceNoNarrowing: {
7790       if (const auto *FromPtrType =
7791               CurInit.get()->getType()->getAs<PointerType>()) {
7792         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7793           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7794               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7795             S.Diag(CurInit.get()->getExprLoc(),
7796                    diag::warn_noderef_to_dereferenceable_pointer)
7797                 << CurInit.get()->getSourceRange();
7798           }
7799         }
7800       }
7801 
7802       Sema::CheckedConversionKind CCK
7803         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7804         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7805         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7806         : Sema::CCK_ImplicitConversion;
7807       ExprResult CurInitExprRes =
7808         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7809                                     getAssignmentAction(Entity), CCK);
7810       if (CurInitExprRes.isInvalid())
7811         return ExprError();
7812 
7813       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7814 
7815       CurInit = CurInitExprRes;
7816 
7817       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7818           S.getLangOpts().CPlusPlus)
7819         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7820                                     CurInit.get());
7821 
7822       break;
7823     }
7824 
7825     case SK_ListInitialization: {
7826       if (checkAbstractType(Step->Type))
7827         return ExprError();
7828 
7829       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7830       // If we're not initializing the top-level entity, we need to create an
7831       // InitializeTemporary entity for our target type.
7832       QualType Ty = Step->Type;
7833       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7834       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7835       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7836       InitListChecker PerformInitList(S, InitEntity,
7837           InitList, Ty, /*VerifyOnly=*/false,
7838           /*TreatUnavailableAsInvalid=*/false);
7839       if (PerformInitList.HadError())
7840         return ExprError();
7841 
7842       // Hack: We must update *ResultType if available in order to set the
7843       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7844       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7845       if (ResultType &&
7846           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7847         if ((*ResultType)->isRValueReferenceType())
7848           Ty = S.Context.getRValueReferenceType(Ty);
7849         else if ((*ResultType)->isLValueReferenceType())
7850           Ty = S.Context.getLValueReferenceType(Ty,
7851             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7852         *ResultType = Ty;
7853       }
7854 
7855       InitListExpr *StructuredInitList =
7856           PerformInitList.getFullyStructuredList();
7857       CurInit.get();
7858       CurInit = shouldBindAsTemporary(InitEntity)
7859           ? S.MaybeBindToTemporary(StructuredInitList)
7860           : StructuredInitList;
7861       break;
7862     }
7863 
7864     case SK_ConstructorInitializationFromList: {
7865       if (checkAbstractType(Step->Type))
7866         return ExprError();
7867 
7868       // When an initializer list is passed for a parameter of type "reference
7869       // to object", we don't get an EK_Temporary entity, but instead an
7870       // EK_Parameter entity with reference type.
7871       // FIXME: This is a hack. What we really should do is create a user
7872       // conversion step for this case, but this makes it considerably more
7873       // complicated. For now, this will do.
7874       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7875                                         Entity.getType().getNonReferenceType());
7876       bool UseTemporary = Entity.getType()->isReferenceType();
7877       assert(Args.size() == 1 && "expected a single argument for list init");
7878       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7879       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7880         << InitList->getSourceRange();
7881       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7882       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7883                                                                    Entity,
7884                                                  Kind, Arg, *Step,
7885                                                ConstructorInitRequiresZeroInit,
7886                                                /*IsListInitialization*/true,
7887                                                /*IsStdInitListInit*/false,
7888                                                InitList->getLBraceLoc(),
7889                                                InitList->getRBraceLoc());
7890       break;
7891     }
7892 
7893     case SK_UnwrapInitList:
7894       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7895       break;
7896 
7897     case SK_RewrapInitList: {
7898       Expr *E = CurInit.get();
7899       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7900       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7901           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7902       ILE->setSyntacticForm(Syntactic);
7903       ILE->setType(E->getType());
7904       ILE->setValueKind(E->getValueKind());
7905       CurInit = ILE;
7906       break;
7907     }
7908 
7909     case SK_ConstructorInitialization:
7910     case SK_StdInitializerListConstructorCall: {
7911       if (checkAbstractType(Step->Type))
7912         return ExprError();
7913 
7914       // When an initializer list is passed for a parameter of type "reference
7915       // to object", we don't get an EK_Temporary entity, but instead an
7916       // EK_Parameter entity with reference type.
7917       // FIXME: This is a hack. What we really should do is create a user
7918       // conversion step for this case, but this makes it considerably more
7919       // complicated. For now, this will do.
7920       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7921                                         Entity.getType().getNonReferenceType());
7922       bool UseTemporary = Entity.getType()->isReferenceType();
7923       bool IsStdInitListInit =
7924           Step->Kind == SK_StdInitializerListConstructorCall;
7925       Expr *Source = CurInit.get();
7926       SourceRange Range = Kind.hasParenOrBraceRange()
7927                               ? Kind.getParenOrBraceRange()
7928                               : SourceRange();
7929       CurInit = PerformConstructorInitialization(
7930           S, UseTemporary ? TempEntity : Entity, Kind,
7931           Source ? MultiExprArg(Source) : Args, *Step,
7932           ConstructorInitRequiresZeroInit,
7933           /*IsListInitialization*/ IsStdInitListInit,
7934           /*IsStdInitListInitialization*/ IsStdInitListInit,
7935           /*LBraceLoc*/ Range.getBegin(),
7936           /*RBraceLoc*/ Range.getEnd());
7937       break;
7938     }
7939 
7940     case SK_ZeroInitialization: {
7941       step_iterator NextStep = Step;
7942       ++NextStep;
7943       if (NextStep != StepEnd &&
7944           (NextStep->Kind == SK_ConstructorInitialization ||
7945            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7946         // The need for zero-initialization is recorded directly into
7947         // the call to the object's constructor within the next step.
7948         ConstructorInitRequiresZeroInit = true;
7949       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7950                  S.getLangOpts().CPlusPlus &&
7951                  !Kind.isImplicitValueInit()) {
7952         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7953         if (!TSInfo)
7954           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7955                                                     Kind.getRange().getBegin());
7956 
7957         CurInit = new (S.Context) CXXScalarValueInitExpr(
7958             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7959             Kind.getRange().getEnd());
7960       } else {
7961         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7962       }
7963       break;
7964     }
7965 
7966     case SK_CAssignment: {
7967       QualType SourceType = CurInit.get()->getType();
7968 
7969       // Save off the initial CurInit in case we need to emit a diagnostic
7970       ExprResult InitialCurInit = CurInit;
7971       ExprResult Result = CurInit;
7972       Sema::AssignConvertType ConvTy =
7973         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7974             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7975       if (Result.isInvalid())
7976         return ExprError();
7977       CurInit = Result;
7978 
7979       // If this is a call, allow conversion to a transparent union.
7980       ExprResult CurInitExprRes = CurInit;
7981       if (ConvTy != Sema::Compatible &&
7982           Entity.isParameterKind() &&
7983           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7984             == Sema::Compatible)
7985         ConvTy = Sema::Compatible;
7986       if (CurInitExprRes.isInvalid())
7987         return ExprError();
7988       CurInit = CurInitExprRes;
7989 
7990       bool Complained;
7991       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7992                                      Step->Type, SourceType,
7993                                      InitialCurInit.get(),
7994                                      getAssignmentAction(Entity, true),
7995                                      &Complained)) {
7996         PrintInitLocationNote(S, Entity);
7997         return ExprError();
7998       } else if (Complained)
7999         PrintInitLocationNote(S, Entity);
8000       break;
8001     }
8002 
8003     case SK_StringInit: {
8004       QualType Ty = Step->Type;
8005       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
8006                       S.Context.getAsArrayType(Ty), S);
8007       break;
8008     }
8009 
8010     case SK_ObjCObjectConversion:
8011       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8012                           CK_ObjCObjectLValueCast,
8013                           CurInit.get()->getValueKind());
8014       break;
8015 
8016     case SK_ArrayLoopIndex: {
8017       Expr *Cur = CurInit.get();
8018       Expr *BaseExpr = new (S.Context)
8019           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8020                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8021       Expr *IndexExpr =
8022           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8023       CurInit = S.CreateBuiltinArraySubscriptExpr(
8024           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8025       ArrayLoopCommonExprs.push_back(BaseExpr);
8026       break;
8027     }
8028 
8029     case SK_ArrayLoopInit: {
8030       assert(!ArrayLoopCommonExprs.empty() &&
8031              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8032       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8033       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8034                                                   CurInit.get());
8035       break;
8036     }
8037 
8038     case SK_GNUArrayInit:
8039       // Okay: we checked everything before creating this step. Note that
8040       // this is a GNU extension.
8041       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8042         << Step->Type << CurInit.get()->getType()
8043         << CurInit.get()->getSourceRange();
8044       updateGNUCompoundLiteralRValue(CurInit.get());
8045       LLVM_FALLTHROUGH;
8046     case SK_ArrayInit:
8047       // If the destination type is an incomplete array type, update the
8048       // type accordingly.
8049       if (ResultType) {
8050         if (const IncompleteArrayType *IncompleteDest
8051                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8052           if (const ConstantArrayType *ConstantSource
8053                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8054             *ResultType = S.Context.getConstantArrayType(
8055                                              IncompleteDest->getElementType(),
8056                                              ConstantSource->getSize(),
8057                                              ArrayType::Normal, 0);
8058           }
8059         }
8060       }
8061       break;
8062 
8063     case SK_ParenthesizedArrayInit:
8064       // Okay: we checked everything before creating this step. Note that
8065       // this is a GNU extension.
8066       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8067         << CurInit.get()->getSourceRange();
8068       break;
8069 
8070     case SK_PassByIndirectCopyRestore:
8071     case SK_PassByIndirectRestore:
8072       checkIndirectCopyRestoreSource(S, CurInit.get());
8073       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8074           CurInit.get(), Step->Type,
8075           Step->Kind == SK_PassByIndirectCopyRestore);
8076       break;
8077 
8078     case SK_ProduceObjCObject:
8079       CurInit =
8080           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8081                                    CurInit.get(), nullptr, VK_RValue);
8082       break;
8083 
8084     case SK_StdInitializerList: {
8085       S.Diag(CurInit.get()->getExprLoc(),
8086              diag::warn_cxx98_compat_initializer_list_init)
8087         << CurInit.get()->getSourceRange();
8088 
8089       // Materialize the temporary into memory.
8090       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8091           CurInit.get()->getType(), CurInit.get(),
8092           /*BoundToLvalueReference=*/false);
8093 
8094       // Wrap it in a construction of a std::initializer_list<T>.
8095       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8096 
8097       // Bind the result, in case the library has given initializer_list a
8098       // non-trivial destructor.
8099       if (shouldBindAsTemporary(Entity))
8100         CurInit = S.MaybeBindToTemporary(CurInit.get());
8101       break;
8102     }
8103 
8104     case SK_OCLSamplerInit: {
8105       // Sampler initialization have 5 cases:
8106       //   1. function argument passing
8107       //      1a. argument is a file-scope variable
8108       //      1b. argument is a function-scope variable
8109       //      1c. argument is one of caller function's parameters
8110       //   2. variable initialization
8111       //      2a. initializing a file-scope variable
8112       //      2b. initializing a function-scope variable
8113       //
8114       // For file-scope variables, since they cannot be initialized by function
8115       // call of __translate_sampler_initializer in LLVM IR, their references
8116       // need to be replaced by a cast from their literal initializers to
8117       // sampler type. Since sampler variables can only be used in function
8118       // calls as arguments, we only need to replace them when handling the
8119       // argument passing.
8120       assert(Step->Type->isSamplerT() &&
8121              "Sampler initialization on non-sampler type.");
8122       Expr *Init = CurInit.get();
8123       QualType SourceType = Init->getType();
8124       // Case 1
8125       if (Entity.isParameterKind()) {
8126         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8127           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8128             << SourceType;
8129           break;
8130         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8131           auto Var = cast<VarDecl>(DRE->getDecl());
8132           // Case 1b and 1c
8133           // No cast from integer to sampler is needed.
8134           if (!Var->hasGlobalStorage()) {
8135             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8136                                                CK_LValueToRValue, Init,
8137                                                /*BasePath=*/nullptr, VK_RValue);
8138             break;
8139           }
8140           // Case 1a
8141           // For function call with a file-scope sampler variable as argument,
8142           // get the integer literal.
8143           // Do not diagnose if the file-scope variable does not have initializer
8144           // since this has already been diagnosed when parsing the variable
8145           // declaration.
8146           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8147             break;
8148           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8149             Var->getInit()))->getSubExpr();
8150           SourceType = Init->getType();
8151         }
8152       } else {
8153         // Case 2
8154         // Check initializer is 32 bit integer constant.
8155         // If the initializer is taken from global variable, do not diagnose since
8156         // this has already been done when parsing the variable declaration.
8157         if (!Init->isConstantInitializer(S.Context, false))
8158           break;
8159 
8160         if (!SourceType->isIntegerType() ||
8161             32 != S.Context.getIntWidth(SourceType)) {
8162           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8163             << SourceType;
8164           break;
8165         }
8166 
8167         Expr::EvalResult EVResult;
8168         Init->EvaluateAsInt(EVResult, S.Context);
8169         llvm::APSInt Result = EVResult.Val.getInt();
8170         const uint64_t SamplerValue = Result.getLimitedValue();
8171         // 32-bit value of sampler's initializer is interpreted as
8172         // bit-field with the following structure:
8173         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8174         // |31        6|5    4|3             1|                 0|
8175         // This structure corresponds to enum values of sampler properties
8176         // defined in SPIR spec v1.2 and also opencl-c.h
8177         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8178         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8179         if (FilterMode != 1 && FilterMode != 2 &&
8180             !S.getOpenCLOptions().isEnabled(
8181                 "cl_intel_device_side_avc_motion_estimation"))
8182           S.Diag(Kind.getLocation(),
8183                  diag::warn_sampler_initializer_invalid_bits)
8184                  << "Filter Mode";
8185         if (AddressingMode > 4)
8186           S.Diag(Kind.getLocation(),
8187                  diag::warn_sampler_initializer_invalid_bits)
8188                  << "Addressing Mode";
8189       }
8190 
8191       // Cases 1a, 2a and 2b
8192       // Insert cast from integer to sampler.
8193       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8194                                       CK_IntToOCLSampler);
8195       break;
8196     }
8197     case SK_OCLZeroOpaqueType: {
8198       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8199               Step->Type->isOCLIntelSubgroupAVCType()) &&
8200              "Wrong type for initialization of OpenCL opaque type.");
8201 
8202       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8203                                     CK_ZeroToOCLOpaqueType,
8204                                     CurInit.get()->getValueKind());
8205       break;
8206     }
8207     }
8208   }
8209 
8210   // Check whether the initializer has a shorter lifetime than the initialized
8211   // entity, and if not, either lifetime-extend or warn as appropriate.
8212   if (auto *Init = CurInit.get())
8213     S.checkInitializerLifetime(Entity, Init);
8214 
8215   // Diagnose non-fatal problems with the completed initialization.
8216   if (Entity.getKind() == InitializedEntity::EK_Member &&
8217       cast<FieldDecl>(Entity.getDecl())->isBitField())
8218     S.CheckBitFieldInitialization(Kind.getLocation(),
8219                                   cast<FieldDecl>(Entity.getDecl()),
8220                                   CurInit.get());
8221 
8222   // Check for std::move on construction.
8223   if (const Expr *E = CurInit.get()) {
8224     CheckMoveOnConstruction(S, E,
8225                             Entity.getKind() == InitializedEntity::EK_Result);
8226   }
8227 
8228   return CurInit;
8229 }
8230 
8231 /// Somewhere within T there is an uninitialized reference subobject.
8232 /// Dig it out and diagnose it.
8233 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8234                                            QualType T) {
8235   if (T->isReferenceType()) {
8236     S.Diag(Loc, diag::err_reference_without_init)
8237       << T.getNonReferenceType();
8238     return true;
8239   }
8240 
8241   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8242   if (!RD || !RD->hasUninitializedReferenceMember())
8243     return false;
8244 
8245   for (const auto *FI : RD->fields()) {
8246     if (FI->isUnnamedBitfield())
8247       continue;
8248 
8249     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8250       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8251       return true;
8252     }
8253   }
8254 
8255   for (const auto &BI : RD->bases()) {
8256     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8257       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8258       return true;
8259     }
8260   }
8261 
8262   return false;
8263 }
8264 
8265 
8266 //===----------------------------------------------------------------------===//
8267 // Diagnose initialization failures
8268 //===----------------------------------------------------------------------===//
8269 
8270 /// Emit notes associated with an initialization that failed due to a
8271 /// "simple" conversion failure.
8272 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8273                                    Expr *op) {
8274   QualType destType = entity.getType();
8275   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8276       op->getType()->isObjCObjectPointerType()) {
8277 
8278     // Emit a possible note about the conversion failing because the
8279     // operand is a message send with a related result type.
8280     S.EmitRelatedResultTypeNote(op);
8281 
8282     // Emit a possible note about a return failing because we're
8283     // expecting a related result type.
8284     if (entity.getKind() == InitializedEntity::EK_Result)
8285       S.EmitRelatedResultTypeNoteForReturn(destType);
8286   }
8287 }
8288 
8289 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8290                              InitListExpr *InitList) {
8291   QualType DestType = Entity.getType();
8292 
8293   QualType E;
8294   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8295     QualType ArrayType = S.Context.getConstantArrayType(
8296         E.withConst(),
8297         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8298                     InitList->getNumInits()),
8299         clang::ArrayType::Normal, 0);
8300     InitializedEntity HiddenArray =
8301         InitializedEntity::InitializeTemporary(ArrayType);
8302     return diagnoseListInit(S, HiddenArray, InitList);
8303   }
8304 
8305   if (DestType->isReferenceType()) {
8306     // A list-initialization failure for a reference means that we tried to
8307     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8308     // inner initialization failed.
8309     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8310     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8311     SourceLocation Loc = InitList->getBeginLoc();
8312     if (auto *D = Entity.getDecl())
8313       Loc = D->getLocation();
8314     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8315     return;
8316   }
8317 
8318   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8319                                    /*VerifyOnly=*/false,
8320                                    /*TreatUnavailableAsInvalid=*/false);
8321   assert(DiagnoseInitList.HadError() &&
8322          "Inconsistent init list check result.");
8323 }
8324 
8325 bool InitializationSequence::Diagnose(Sema &S,
8326                                       const InitializedEntity &Entity,
8327                                       const InitializationKind &Kind,
8328                                       ArrayRef<Expr *> Args) {
8329   if (!Failed())
8330     return false;
8331 
8332   // When we want to diagnose only one element of a braced-init-list,
8333   // we need to factor it out.
8334   Expr *OnlyArg;
8335   if (Args.size() == 1) {
8336     auto *List = dyn_cast<InitListExpr>(Args[0]);
8337     if (List && List->getNumInits() == 1)
8338       OnlyArg = List->getInit(0);
8339     else
8340       OnlyArg = Args[0];
8341   }
8342   else
8343     OnlyArg = nullptr;
8344 
8345   QualType DestType = Entity.getType();
8346   switch (Failure) {
8347   case FK_TooManyInitsForReference:
8348     // FIXME: Customize for the initialized entity?
8349     if (Args.empty()) {
8350       // Dig out the reference subobject which is uninitialized and diagnose it.
8351       // If this is value-initialization, this could be nested some way within
8352       // the target type.
8353       assert(Kind.getKind() == InitializationKind::IK_Value ||
8354              DestType->isReferenceType());
8355       bool Diagnosed =
8356         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8357       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8358       (void)Diagnosed;
8359     } else  // FIXME: diagnostic below could be better!
8360       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8361           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8362     break;
8363   case FK_ParenthesizedListInitForReference:
8364     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8365       << 1 << Entity.getType() << Args[0]->getSourceRange();
8366     break;
8367 
8368   case FK_ArrayNeedsInitList:
8369     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8370     break;
8371   case FK_ArrayNeedsInitListOrStringLiteral:
8372     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8373     break;
8374   case FK_ArrayNeedsInitListOrWideStringLiteral:
8375     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8376     break;
8377   case FK_NarrowStringIntoWideCharArray:
8378     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8379     break;
8380   case FK_WideStringIntoCharArray:
8381     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8382     break;
8383   case FK_IncompatWideStringIntoWideChar:
8384     S.Diag(Kind.getLocation(),
8385            diag::err_array_init_incompat_wide_string_into_wchar);
8386     break;
8387   case FK_PlainStringIntoUTF8Char:
8388     S.Diag(Kind.getLocation(),
8389            diag::err_array_init_plain_string_into_char8_t);
8390     S.Diag(Args.front()->getBeginLoc(),
8391            diag::note_array_init_plain_string_into_char8_t)
8392         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8393     break;
8394   case FK_UTF8StringIntoPlainChar:
8395     S.Diag(Kind.getLocation(),
8396            diag::err_array_init_utf8_string_into_char)
8397       << S.getLangOpts().CPlusPlus2a;
8398     break;
8399   case FK_ArrayTypeMismatch:
8400   case FK_NonConstantArrayInit:
8401     S.Diag(Kind.getLocation(),
8402            (Failure == FK_ArrayTypeMismatch
8403               ? diag::err_array_init_different_type
8404               : diag::err_array_init_non_constant_array))
8405       << DestType.getNonReferenceType()
8406       << OnlyArg->getType()
8407       << Args[0]->getSourceRange();
8408     break;
8409 
8410   case FK_VariableLengthArrayHasInitializer:
8411     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8412       << Args[0]->getSourceRange();
8413     break;
8414 
8415   case FK_AddressOfOverloadFailed: {
8416     DeclAccessPair Found;
8417     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8418                                          DestType.getNonReferenceType(),
8419                                          true,
8420                                          Found);
8421     break;
8422   }
8423 
8424   case FK_AddressOfUnaddressableFunction: {
8425     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8426     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8427                                         OnlyArg->getBeginLoc());
8428     break;
8429   }
8430 
8431   case FK_ReferenceInitOverloadFailed:
8432   case FK_UserConversionOverloadFailed:
8433     switch (FailedOverloadResult) {
8434     case OR_Ambiguous:
8435 
8436       FailedCandidateSet.NoteCandidates(
8437           PartialDiagnosticAt(
8438               Kind.getLocation(),
8439               Failure == FK_UserConversionOverloadFailed
8440                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8441                      << OnlyArg->getType() << DestType
8442                      << Args[0]->getSourceRange())
8443                   : (S.PDiag(diag::err_ref_init_ambiguous)
8444                      << DestType << OnlyArg->getType()
8445                      << Args[0]->getSourceRange())),
8446           S, OCD_ViableCandidates, Args);
8447       break;
8448 
8449     case OR_No_Viable_Function: {
8450       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8451       if (!S.RequireCompleteType(Kind.getLocation(),
8452                                  DestType.getNonReferenceType(),
8453                           diag::err_typecheck_nonviable_condition_incomplete,
8454                                OnlyArg->getType(), Args[0]->getSourceRange()))
8455         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8456           << (Entity.getKind() == InitializedEntity::EK_Result)
8457           << OnlyArg->getType() << Args[0]->getSourceRange()
8458           << DestType.getNonReferenceType();
8459 
8460       FailedCandidateSet.NoteCandidates(S, Args, Cands);
8461       break;
8462     }
8463     case OR_Deleted: {
8464       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8465         << OnlyArg->getType() << DestType.getNonReferenceType()
8466         << Args[0]->getSourceRange();
8467       OverloadCandidateSet::iterator Best;
8468       OverloadingResult Ovl
8469         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8470       if (Ovl == OR_Deleted) {
8471         S.NoteDeletedFunction(Best->Function);
8472       } else {
8473         llvm_unreachable("Inconsistent overload resolution?");
8474       }
8475       break;
8476     }
8477 
8478     case OR_Success:
8479       llvm_unreachable("Conversion did not fail!");
8480     }
8481     break;
8482 
8483   case FK_NonConstLValueReferenceBindingToTemporary:
8484     if (isa<InitListExpr>(Args[0])) {
8485       S.Diag(Kind.getLocation(),
8486              diag::err_lvalue_reference_bind_to_initlist)
8487       << DestType.getNonReferenceType().isVolatileQualified()
8488       << DestType.getNonReferenceType()
8489       << Args[0]->getSourceRange();
8490       break;
8491     }
8492     LLVM_FALLTHROUGH;
8493 
8494   case FK_NonConstLValueReferenceBindingToUnrelated:
8495     S.Diag(Kind.getLocation(),
8496            Failure == FK_NonConstLValueReferenceBindingToTemporary
8497              ? diag::err_lvalue_reference_bind_to_temporary
8498              : diag::err_lvalue_reference_bind_to_unrelated)
8499       << DestType.getNonReferenceType().isVolatileQualified()
8500       << DestType.getNonReferenceType()
8501       << OnlyArg->getType()
8502       << Args[0]->getSourceRange();
8503     break;
8504 
8505   case FK_NonConstLValueReferenceBindingToBitfield: {
8506     // We don't necessarily have an unambiguous source bit-field.
8507     FieldDecl *BitField = Args[0]->getSourceBitField();
8508     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8509       << DestType.isVolatileQualified()
8510       << (BitField ? BitField->getDeclName() : DeclarationName())
8511       << (BitField != nullptr)
8512       << Args[0]->getSourceRange();
8513     if (BitField)
8514       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8515     break;
8516   }
8517 
8518   case FK_NonConstLValueReferenceBindingToVectorElement:
8519     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8520       << DestType.isVolatileQualified()
8521       << Args[0]->getSourceRange();
8522     break;
8523 
8524   case FK_RValueReferenceBindingToLValue:
8525     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8526       << DestType.getNonReferenceType() << OnlyArg->getType()
8527       << Args[0]->getSourceRange();
8528     break;
8529 
8530   case FK_ReferenceAddrspaceMismatchTemporary:
8531     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
8532         << DestType << Args[0]->getSourceRange();
8533     break;
8534 
8535   case FK_ReferenceInitDropsQualifiers: {
8536     QualType SourceType = OnlyArg->getType();
8537     QualType NonRefType = DestType.getNonReferenceType();
8538     Qualifiers DroppedQualifiers =
8539         SourceType.getQualifiers() - NonRefType.getQualifiers();
8540 
8541     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8542       << SourceType
8543       << NonRefType
8544       << DroppedQualifiers.getCVRQualifiers()
8545       << Args[0]->getSourceRange();
8546     break;
8547   }
8548 
8549   case FK_ReferenceInitFailed:
8550     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8551       << DestType.getNonReferenceType()
8552       << DestType.getNonReferenceType()->isIncompleteType()
8553       << OnlyArg->isLValue()
8554       << OnlyArg->getType()
8555       << Args[0]->getSourceRange();
8556     emitBadConversionNotes(S, Entity, Args[0]);
8557     break;
8558 
8559   case FK_ConversionFailed: {
8560     QualType FromType = OnlyArg->getType();
8561     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8562       << (int)Entity.getKind()
8563       << DestType
8564       << OnlyArg->isLValue()
8565       << FromType
8566       << Args[0]->getSourceRange();
8567     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8568     S.Diag(Kind.getLocation(), PDiag);
8569     emitBadConversionNotes(S, Entity, Args[0]);
8570     break;
8571   }
8572 
8573   case FK_ConversionFromPropertyFailed:
8574     // No-op. This error has already been reported.
8575     break;
8576 
8577   case FK_TooManyInitsForScalar: {
8578     SourceRange R;
8579 
8580     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8581     if (InitList && InitList->getNumInits() >= 1) {
8582       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8583     } else {
8584       assert(Args.size() > 1 && "Expected multiple initializers!");
8585       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8586     }
8587 
8588     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8589     if (Kind.isCStyleOrFunctionalCast())
8590       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8591         << R;
8592     else
8593       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8594         << /*scalar=*/2 << R;
8595     break;
8596   }
8597 
8598   case FK_ParenthesizedListInitForScalar:
8599     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8600       << 0 << Entity.getType() << Args[0]->getSourceRange();
8601     break;
8602 
8603   case FK_ReferenceBindingToInitList:
8604     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8605       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8606     break;
8607 
8608   case FK_InitListBadDestinationType:
8609     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8610       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8611     break;
8612 
8613   case FK_ListConstructorOverloadFailed:
8614   case FK_ConstructorOverloadFailed: {
8615     SourceRange ArgsRange;
8616     if (Args.size())
8617       ArgsRange =
8618           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8619 
8620     if (Failure == FK_ListConstructorOverloadFailed) {
8621       assert(Args.size() == 1 &&
8622              "List construction from other than 1 argument.");
8623       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8624       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8625     }
8626 
8627     // FIXME: Using "DestType" for the entity we're printing is probably
8628     // bad.
8629     switch (FailedOverloadResult) {
8630       case OR_Ambiguous:
8631         FailedCandidateSet.NoteCandidates(
8632             PartialDiagnosticAt(Kind.getLocation(),
8633                                 S.PDiag(diag::err_ovl_ambiguous_init)
8634                                     << DestType << ArgsRange),
8635             S, OCD_ViableCandidates, Args);
8636         break;
8637 
8638       case OR_No_Viable_Function:
8639         if (Kind.getKind() == InitializationKind::IK_Default &&
8640             (Entity.getKind() == InitializedEntity::EK_Base ||
8641              Entity.getKind() == InitializedEntity::EK_Member) &&
8642             isa<CXXConstructorDecl>(S.CurContext)) {
8643           // This is implicit default initialization of a member or
8644           // base within a constructor. If no viable function was
8645           // found, notify the user that they need to explicitly
8646           // initialize this base/member.
8647           CXXConstructorDecl *Constructor
8648             = cast<CXXConstructorDecl>(S.CurContext);
8649           const CXXRecordDecl *InheritedFrom = nullptr;
8650           if (auto Inherited = Constructor->getInheritedConstructor())
8651             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8652           if (Entity.getKind() == InitializedEntity::EK_Base) {
8653             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8654               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8655               << S.Context.getTypeDeclType(Constructor->getParent())
8656               << /*base=*/0
8657               << Entity.getType()
8658               << InheritedFrom;
8659 
8660             RecordDecl *BaseDecl
8661               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8662                                                                   ->getDecl();
8663             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8664               << S.Context.getTagDeclType(BaseDecl);
8665           } else {
8666             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8667               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8668               << S.Context.getTypeDeclType(Constructor->getParent())
8669               << /*member=*/1
8670               << Entity.getName()
8671               << InheritedFrom;
8672             S.Diag(Entity.getDecl()->getLocation(),
8673                    diag::note_member_declared_at);
8674 
8675             if (const RecordType *Record
8676                                  = Entity.getType()->getAs<RecordType>())
8677               S.Diag(Record->getDecl()->getLocation(),
8678                      diag::note_previous_decl)
8679                 << S.Context.getTagDeclType(Record->getDecl());
8680           }
8681           break;
8682         }
8683 
8684         FailedCandidateSet.NoteCandidates(
8685             PartialDiagnosticAt(
8686                 Kind.getLocation(),
8687                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
8688                     << DestType << ArgsRange),
8689             S, OCD_AllCandidates, Args);
8690         break;
8691 
8692       case OR_Deleted: {
8693         OverloadCandidateSet::iterator Best;
8694         OverloadingResult Ovl
8695           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8696         if (Ovl != OR_Deleted) {
8697           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8698               << DestType << ArgsRange;
8699           llvm_unreachable("Inconsistent overload resolution?");
8700           break;
8701         }
8702 
8703         // If this is a defaulted or implicitly-declared function, then
8704         // it was implicitly deleted. Make it clear that the deletion was
8705         // implicit.
8706         if (S.isImplicitlyDeleted(Best->Function))
8707           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8708             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8709             << DestType << ArgsRange;
8710         else
8711           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8712               << DestType << ArgsRange;
8713 
8714         S.NoteDeletedFunction(Best->Function);
8715         break;
8716       }
8717 
8718       case OR_Success:
8719         llvm_unreachable("Conversion did not fail!");
8720     }
8721   }
8722   break;
8723 
8724   case FK_DefaultInitOfConst:
8725     if (Entity.getKind() == InitializedEntity::EK_Member &&
8726         isa<CXXConstructorDecl>(S.CurContext)) {
8727       // This is implicit default-initialization of a const member in
8728       // a constructor. Complain that it needs to be explicitly
8729       // initialized.
8730       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8731       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8732         << (Constructor->getInheritedConstructor() ? 2 :
8733             Constructor->isImplicit() ? 1 : 0)
8734         << S.Context.getTypeDeclType(Constructor->getParent())
8735         << /*const=*/1
8736         << Entity.getName();
8737       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8738         << Entity.getName();
8739     } else {
8740       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8741           << DestType << (bool)DestType->getAs<RecordType>();
8742     }
8743     break;
8744 
8745   case FK_Incomplete:
8746     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8747                           diag::err_init_incomplete_type);
8748     break;
8749 
8750   case FK_ListInitializationFailed: {
8751     // Run the init list checker again to emit diagnostics.
8752     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8753     diagnoseListInit(S, Entity, InitList);
8754     break;
8755   }
8756 
8757   case FK_PlaceholderType: {
8758     // FIXME: Already diagnosed!
8759     break;
8760   }
8761 
8762   case FK_ExplicitConstructor: {
8763     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8764       << Args[0]->getSourceRange();
8765     OverloadCandidateSet::iterator Best;
8766     OverloadingResult Ovl
8767       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8768     (void)Ovl;
8769     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8770     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8771     S.Diag(CtorDecl->getLocation(),
8772            diag::note_explicit_ctor_deduction_guide_here) << false;
8773     break;
8774   }
8775   }
8776 
8777   PrintInitLocationNote(S, Entity);
8778   return true;
8779 }
8780 
8781 void InitializationSequence::dump(raw_ostream &OS) const {
8782   switch (SequenceKind) {
8783   case FailedSequence: {
8784     OS << "Failed sequence: ";
8785     switch (Failure) {
8786     case FK_TooManyInitsForReference:
8787       OS << "too many initializers for reference";
8788       break;
8789 
8790     case FK_ParenthesizedListInitForReference:
8791       OS << "parenthesized list init for reference";
8792       break;
8793 
8794     case FK_ArrayNeedsInitList:
8795       OS << "array requires initializer list";
8796       break;
8797 
8798     case FK_AddressOfUnaddressableFunction:
8799       OS << "address of unaddressable function was taken";
8800       break;
8801 
8802     case FK_ArrayNeedsInitListOrStringLiteral:
8803       OS << "array requires initializer list or string literal";
8804       break;
8805 
8806     case FK_ArrayNeedsInitListOrWideStringLiteral:
8807       OS << "array requires initializer list or wide string literal";
8808       break;
8809 
8810     case FK_NarrowStringIntoWideCharArray:
8811       OS << "narrow string into wide char array";
8812       break;
8813 
8814     case FK_WideStringIntoCharArray:
8815       OS << "wide string into char array";
8816       break;
8817 
8818     case FK_IncompatWideStringIntoWideChar:
8819       OS << "incompatible wide string into wide char array";
8820       break;
8821 
8822     case FK_PlainStringIntoUTF8Char:
8823       OS << "plain string literal into char8_t array";
8824       break;
8825 
8826     case FK_UTF8StringIntoPlainChar:
8827       OS << "u8 string literal into char array";
8828       break;
8829 
8830     case FK_ArrayTypeMismatch:
8831       OS << "array type mismatch";
8832       break;
8833 
8834     case FK_NonConstantArrayInit:
8835       OS << "non-constant array initializer";
8836       break;
8837 
8838     case FK_AddressOfOverloadFailed:
8839       OS << "address of overloaded function failed";
8840       break;
8841 
8842     case FK_ReferenceInitOverloadFailed:
8843       OS << "overload resolution for reference initialization failed";
8844       break;
8845 
8846     case FK_NonConstLValueReferenceBindingToTemporary:
8847       OS << "non-const lvalue reference bound to temporary";
8848       break;
8849 
8850     case FK_NonConstLValueReferenceBindingToBitfield:
8851       OS << "non-const lvalue reference bound to bit-field";
8852       break;
8853 
8854     case FK_NonConstLValueReferenceBindingToVectorElement:
8855       OS << "non-const lvalue reference bound to vector element";
8856       break;
8857 
8858     case FK_NonConstLValueReferenceBindingToUnrelated:
8859       OS << "non-const lvalue reference bound to unrelated type";
8860       break;
8861 
8862     case FK_RValueReferenceBindingToLValue:
8863       OS << "rvalue reference bound to an lvalue";
8864       break;
8865 
8866     case FK_ReferenceInitDropsQualifiers:
8867       OS << "reference initialization drops qualifiers";
8868       break;
8869 
8870     case FK_ReferenceAddrspaceMismatchTemporary:
8871       OS << "reference with mismatching address space bound to temporary";
8872       break;
8873 
8874     case FK_ReferenceInitFailed:
8875       OS << "reference initialization failed";
8876       break;
8877 
8878     case FK_ConversionFailed:
8879       OS << "conversion failed";
8880       break;
8881 
8882     case FK_ConversionFromPropertyFailed:
8883       OS << "conversion from property failed";
8884       break;
8885 
8886     case FK_TooManyInitsForScalar:
8887       OS << "too many initializers for scalar";
8888       break;
8889 
8890     case FK_ParenthesizedListInitForScalar:
8891       OS << "parenthesized list init for reference";
8892       break;
8893 
8894     case FK_ReferenceBindingToInitList:
8895       OS << "referencing binding to initializer list";
8896       break;
8897 
8898     case FK_InitListBadDestinationType:
8899       OS << "initializer list for non-aggregate, non-scalar type";
8900       break;
8901 
8902     case FK_UserConversionOverloadFailed:
8903       OS << "overloading failed for user-defined conversion";
8904       break;
8905 
8906     case FK_ConstructorOverloadFailed:
8907       OS << "constructor overloading failed";
8908       break;
8909 
8910     case FK_DefaultInitOfConst:
8911       OS << "default initialization of a const variable";
8912       break;
8913 
8914     case FK_Incomplete:
8915       OS << "initialization of incomplete type";
8916       break;
8917 
8918     case FK_ListInitializationFailed:
8919       OS << "list initialization checker failure";
8920       break;
8921 
8922     case FK_VariableLengthArrayHasInitializer:
8923       OS << "variable length array has an initializer";
8924       break;
8925 
8926     case FK_PlaceholderType:
8927       OS << "initializer expression isn't contextually valid";
8928       break;
8929 
8930     case FK_ListConstructorOverloadFailed:
8931       OS << "list constructor overloading failed";
8932       break;
8933 
8934     case FK_ExplicitConstructor:
8935       OS << "list copy initialization chose explicit constructor";
8936       break;
8937     }
8938     OS << '\n';
8939     return;
8940   }
8941 
8942   case DependentSequence:
8943     OS << "Dependent sequence\n";
8944     return;
8945 
8946   case NormalSequence:
8947     OS << "Normal sequence: ";
8948     break;
8949   }
8950 
8951   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8952     if (S != step_begin()) {
8953       OS << " -> ";
8954     }
8955 
8956     switch (S->Kind) {
8957     case SK_ResolveAddressOfOverloadedFunction:
8958       OS << "resolve address of overloaded function";
8959       break;
8960 
8961     case SK_CastDerivedToBaseRValue:
8962       OS << "derived-to-base (rvalue)";
8963       break;
8964 
8965     case SK_CastDerivedToBaseXValue:
8966       OS << "derived-to-base (xvalue)";
8967       break;
8968 
8969     case SK_CastDerivedToBaseLValue:
8970       OS << "derived-to-base (lvalue)";
8971       break;
8972 
8973     case SK_BindReference:
8974       OS << "bind reference to lvalue";
8975       break;
8976 
8977     case SK_BindReferenceToTemporary:
8978       OS << "bind reference to a temporary";
8979       break;
8980 
8981     case SK_FinalCopy:
8982       OS << "final copy in class direct-initialization";
8983       break;
8984 
8985     case SK_ExtraneousCopyToTemporary:
8986       OS << "extraneous C++03 copy to temporary";
8987       break;
8988 
8989     case SK_UserConversion:
8990       OS << "user-defined conversion via " << *S->Function.Function;
8991       break;
8992 
8993     case SK_QualificationConversionRValue:
8994       OS << "qualification conversion (rvalue)";
8995       break;
8996 
8997     case SK_QualificationConversionXValue:
8998       OS << "qualification conversion (xvalue)";
8999       break;
9000 
9001     case SK_QualificationConversionLValue:
9002       OS << "qualification conversion (lvalue)";
9003       break;
9004 
9005     case SK_AtomicConversion:
9006       OS << "non-atomic-to-atomic conversion";
9007       break;
9008 
9009     case SK_LValueToRValue:
9010       OS << "load (lvalue to rvalue)";
9011       break;
9012 
9013     case SK_ConversionSequence:
9014       OS << "implicit conversion sequence (";
9015       S->ICS->dump(); // FIXME: use OS
9016       OS << ")";
9017       break;
9018 
9019     case SK_ConversionSequenceNoNarrowing:
9020       OS << "implicit conversion sequence with narrowing prohibited (";
9021       S->ICS->dump(); // FIXME: use OS
9022       OS << ")";
9023       break;
9024 
9025     case SK_ListInitialization:
9026       OS << "list aggregate initialization";
9027       break;
9028 
9029     case SK_UnwrapInitList:
9030       OS << "unwrap reference initializer list";
9031       break;
9032 
9033     case SK_RewrapInitList:
9034       OS << "rewrap reference initializer list";
9035       break;
9036 
9037     case SK_ConstructorInitialization:
9038       OS << "constructor initialization";
9039       break;
9040 
9041     case SK_ConstructorInitializationFromList:
9042       OS << "list initialization via constructor";
9043       break;
9044 
9045     case SK_ZeroInitialization:
9046       OS << "zero initialization";
9047       break;
9048 
9049     case SK_CAssignment:
9050       OS << "C assignment";
9051       break;
9052 
9053     case SK_StringInit:
9054       OS << "string initialization";
9055       break;
9056 
9057     case SK_ObjCObjectConversion:
9058       OS << "Objective-C object conversion";
9059       break;
9060 
9061     case SK_ArrayLoopIndex:
9062       OS << "indexing for array initialization loop";
9063       break;
9064 
9065     case SK_ArrayLoopInit:
9066       OS << "array initialization loop";
9067       break;
9068 
9069     case SK_ArrayInit:
9070       OS << "array initialization";
9071       break;
9072 
9073     case SK_GNUArrayInit:
9074       OS << "array initialization (GNU extension)";
9075       break;
9076 
9077     case SK_ParenthesizedArrayInit:
9078       OS << "parenthesized array initialization";
9079       break;
9080 
9081     case SK_PassByIndirectCopyRestore:
9082       OS << "pass by indirect copy and restore";
9083       break;
9084 
9085     case SK_PassByIndirectRestore:
9086       OS << "pass by indirect restore";
9087       break;
9088 
9089     case SK_ProduceObjCObject:
9090       OS << "Objective-C object retension";
9091       break;
9092 
9093     case SK_StdInitializerList:
9094       OS << "std::initializer_list from initializer list";
9095       break;
9096 
9097     case SK_StdInitializerListConstructorCall:
9098       OS << "list initialization from std::initializer_list";
9099       break;
9100 
9101     case SK_OCLSamplerInit:
9102       OS << "OpenCL sampler_t from integer constant";
9103       break;
9104 
9105     case SK_OCLZeroOpaqueType:
9106       OS << "OpenCL opaque type from zero";
9107       break;
9108     }
9109 
9110     OS << " [" << S->Type.getAsString() << ']';
9111   }
9112 
9113   OS << '\n';
9114 }
9115 
9116 void InitializationSequence::dump() const {
9117   dump(llvm::errs());
9118 }
9119 
9120 static bool NarrowingErrs(const LangOptions &L) {
9121   return L.CPlusPlus11 &&
9122          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9123 }
9124 
9125 static void DiagnoseNarrowingInInitList(Sema &S,
9126                                         const ImplicitConversionSequence &ICS,
9127                                         QualType PreNarrowingType,
9128                                         QualType EntityType,
9129                                         const Expr *PostInit) {
9130   const StandardConversionSequence *SCS = nullptr;
9131   switch (ICS.getKind()) {
9132   case ImplicitConversionSequence::StandardConversion:
9133     SCS = &ICS.Standard;
9134     break;
9135   case ImplicitConversionSequence::UserDefinedConversion:
9136     SCS = &ICS.UserDefined.After;
9137     break;
9138   case ImplicitConversionSequence::AmbiguousConversion:
9139   case ImplicitConversionSequence::EllipsisConversion:
9140   case ImplicitConversionSequence::BadConversion:
9141     return;
9142   }
9143 
9144   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9145   APValue ConstantValue;
9146   QualType ConstantType;
9147   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9148                                 ConstantType)) {
9149   case NK_Not_Narrowing:
9150   case NK_Dependent_Narrowing:
9151     // No narrowing occurred.
9152     return;
9153 
9154   case NK_Type_Narrowing:
9155     // This was a floating-to-integer conversion, which is always considered a
9156     // narrowing conversion even if the value is a constant and can be
9157     // represented exactly as an integer.
9158     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9159                                         ? diag::ext_init_list_type_narrowing
9160                                         : diag::warn_init_list_type_narrowing)
9161         << PostInit->getSourceRange()
9162         << PreNarrowingType.getLocalUnqualifiedType()
9163         << EntityType.getLocalUnqualifiedType();
9164     break;
9165 
9166   case NK_Constant_Narrowing:
9167     // A constant value was narrowed.
9168     S.Diag(PostInit->getBeginLoc(),
9169            NarrowingErrs(S.getLangOpts())
9170                ? diag::ext_init_list_constant_narrowing
9171                : diag::warn_init_list_constant_narrowing)
9172         << PostInit->getSourceRange()
9173         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9174         << EntityType.getLocalUnqualifiedType();
9175     break;
9176 
9177   case NK_Variable_Narrowing:
9178     // A variable's value may have been narrowed.
9179     S.Diag(PostInit->getBeginLoc(),
9180            NarrowingErrs(S.getLangOpts())
9181                ? diag::ext_init_list_variable_narrowing
9182                : diag::warn_init_list_variable_narrowing)
9183         << PostInit->getSourceRange()
9184         << PreNarrowingType.getLocalUnqualifiedType()
9185         << EntityType.getLocalUnqualifiedType();
9186     break;
9187   }
9188 
9189   SmallString<128> StaticCast;
9190   llvm::raw_svector_ostream OS(StaticCast);
9191   OS << "static_cast<";
9192   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9193     // It's important to use the typedef's name if there is one so that the
9194     // fixit doesn't break code using types like int64_t.
9195     //
9196     // FIXME: This will break if the typedef requires qualification.  But
9197     // getQualifiedNameAsString() includes non-machine-parsable components.
9198     OS << *TT->getDecl();
9199   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9200     OS << BT->getName(S.getLangOpts());
9201   else {
9202     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9203     // with a broken cast.
9204     return;
9205   }
9206   OS << ">(";
9207   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9208       << PostInit->getSourceRange()
9209       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9210       << FixItHint::CreateInsertion(
9211              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9212 }
9213 
9214 //===----------------------------------------------------------------------===//
9215 // Initialization helper functions
9216 //===----------------------------------------------------------------------===//
9217 bool
9218 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9219                                    ExprResult Init) {
9220   if (Init.isInvalid())
9221     return false;
9222 
9223   Expr *InitE = Init.get();
9224   assert(InitE && "No initialization expression");
9225 
9226   InitializationKind Kind =
9227       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9228   InitializationSequence Seq(*this, Entity, Kind, InitE);
9229   return !Seq.Failed();
9230 }
9231 
9232 ExprResult
9233 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9234                                 SourceLocation EqualLoc,
9235                                 ExprResult Init,
9236                                 bool TopLevelOfInitList,
9237                                 bool AllowExplicit) {
9238   if (Init.isInvalid())
9239     return ExprError();
9240 
9241   Expr *InitE = Init.get();
9242   assert(InitE && "No initialization expression?");
9243 
9244   if (EqualLoc.isInvalid())
9245     EqualLoc = InitE->getBeginLoc();
9246 
9247   InitializationKind Kind = InitializationKind::CreateCopy(
9248       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9249   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9250 
9251   // Prevent infinite recursion when performing parameter copy-initialization.
9252   const bool ShouldTrackCopy =
9253       Entity.isParameterKind() && Seq.isConstructorInitialization();
9254   if (ShouldTrackCopy) {
9255     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9256         CurrentParameterCopyTypes.end()) {
9257       Seq.SetOverloadFailure(
9258           InitializationSequence::FK_ConstructorOverloadFailed,
9259           OR_No_Viable_Function);
9260 
9261       // Try to give a meaningful diagnostic note for the problematic
9262       // constructor.
9263       const auto LastStep = Seq.step_end() - 1;
9264       assert(LastStep->Kind ==
9265              InitializationSequence::SK_ConstructorInitialization);
9266       const FunctionDecl *Function = LastStep->Function.Function;
9267       auto Candidate =
9268           llvm::find_if(Seq.getFailedCandidateSet(),
9269                         [Function](const OverloadCandidate &Candidate) -> bool {
9270                           return Candidate.Viable &&
9271                                  Candidate.Function == Function &&
9272                                  Candidate.Conversions.size() > 0;
9273                         });
9274       if (Candidate != Seq.getFailedCandidateSet().end() &&
9275           Function->getNumParams() > 0) {
9276         Candidate->Viable = false;
9277         Candidate->FailureKind = ovl_fail_bad_conversion;
9278         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9279                                          InitE,
9280                                          Function->getParamDecl(0)->getType());
9281       }
9282     }
9283     CurrentParameterCopyTypes.push_back(Entity.getType());
9284   }
9285 
9286   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9287 
9288   if (ShouldTrackCopy)
9289     CurrentParameterCopyTypes.pop_back();
9290 
9291   return Result;
9292 }
9293 
9294 /// Determine whether RD is, or is derived from, a specialization of CTD.
9295 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9296                                               ClassTemplateDecl *CTD) {
9297   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9298     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9299     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9300   };
9301   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9302 }
9303 
9304 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9305     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9306     const InitializationKind &Kind, MultiExprArg Inits) {
9307   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9308       TSInfo->getType()->getContainedDeducedType());
9309   assert(DeducedTST && "not a deduced template specialization type");
9310 
9311   auto TemplateName = DeducedTST->getTemplateName();
9312   if (TemplateName.isDependent())
9313     return Context.DependentTy;
9314 
9315   // We can only perform deduction for class templates.
9316   auto *Template =
9317       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9318   if (!Template) {
9319     Diag(Kind.getLocation(),
9320          diag::err_deduced_non_class_template_specialization_type)
9321       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9322     if (auto *TD = TemplateName.getAsTemplateDecl())
9323       Diag(TD->getLocation(), diag::note_template_decl_here);
9324     return QualType();
9325   }
9326 
9327   // Can't deduce from dependent arguments.
9328   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9329     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9330          diag::warn_cxx14_compat_class_template_argument_deduction)
9331         << TSInfo->getTypeLoc().getSourceRange() << 0;
9332     return Context.DependentTy;
9333   }
9334 
9335   // FIXME: Perform "exact type" matching first, per CWG discussion?
9336   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9337 
9338   // FIXME: Do we need/want a std::initializer_list<T> special case?
9339 
9340   // Look up deduction guides, including those synthesized from constructors.
9341   //
9342   // C++1z [over.match.class.deduct]p1:
9343   //   A set of functions and function templates is formed comprising:
9344   //   - For each constructor of the class template designated by the
9345   //     template-name, a function template [...]
9346   //  - For each deduction-guide, a function or function template [...]
9347   DeclarationNameInfo NameInfo(
9348       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9349       TSInfo->getTypeLoc().getEndLoc());
9350   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9351   LookupQualifiedName(Guides, Template->getDeclContext());
9352 
9353   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9354   // clear on this, but they're not found by name so access does not apply.
9355   Guides.suppressDiagnostics();
9356 
9357   // Figure out if this is list-initialization.
9358   InitListExpr *ListInit =
9359       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9360           ? dyn_cast<InitListExpr>(Inits[0])
9361           : nullptr;
9362 
9363   // C++1z [over.match.class.deduct]p1:
9364   //   Initialization and overload resolution are performed as described in
9365   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9366   //   (as appropriate for the type of initialization performed) for an object
9367   //   of a hypothetical class type, where the selected functions and function
9368   //   templates are considered to be the constructors of that class type
9369   //
9370   // Since we know we're initializing a class type of a type unrelated to that
9371   // of the initializer, this reduces to something fairly reasonable.
9372   OverloadCandidateSet Candidates(Kind.getLocation(),
9373                                   OverloadCandidateSet::CSK_Normal);
9374   OverloadCandidateSet::iterator Best;
9375 
9376   bool HasAnyDeductionGuide = false;
9377   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9378 
9379   auto tryToResolveOverload =
9380       [&](bool OnlyListConstructors) -> OverloadingResult {
9381     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9382     HasAnyDeductionGuide = false;
9383 
9384     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9385       NamedDecl *D = (*I)->getUnderlyingDecl();
9386       if (D->isInvalidDecl())
9387         continue;
9388 
9389       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9390       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9391           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9392       if (!GD)
9393         continue;
9394 
9395       if (!GD->isImplicit())
9396         HasAnyDeductionGuide = true;
9397 
9398       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9399       //   For copy-initialization, the candidate functions are all the
9400       //   converting constructors (12.3.1) of that class.
9401       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9402       //   The converting constructors of T are candidate functions.
9403       if (!AllowExplicit) {
9404         // Only consider converting constructors.
9405         if (GD->isExplicit())
9406           continue;
9407 
9408         // When looking for a converting constructor, deduction guides that
9409         // could never be called with one argument are not interesting to
9410         // check or note.
9411         if (GD->getMinRequiredArguments() > 1 ||
9412             (GD->getNumParams() == 0 && !GD->isVariadic()))
9413           continue;
9414       }
9415 
9416       // C++ [over.match.list]p1.1: (first phase list initialization)
9417       //   Initially, the candidate functions are the initializer-list
9418       //   constructors of the class T
9419       if (OnlyListConstructors && !isInitListConstructor(GD))
9420         continue;
9421 
9422       // C++ [over.match.list]p1.2: (second phase list initialization)
9423       //   the candidate functions are all the constructors of the class T
9424       // C++ [over.match.ctor]p1: (all other cases)
9425       //   the candidate functions are all the constructors of the class of
9426       //   the object being initialized
9427 
9428       // C++ [over.best.ics]p4:
9429       //   When [...] the constructor [...] is a candidate by
9430       //    - [over.match.copy] (in all cases)
9431       // FIXME: The "second phase of [over.match.list] case can also
9432       // theoretically happen here, but it's not clear whether we can
9433       // ever have a parameter of the right type.
9434       bool SuppressUserConversions = Kind.isCopyInit();
9435 
9436       if (TD)
9437         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9438                                      Inits, Candidates, SuppressUserConversions,
9439                                      /*PartialOverloading*/ false,
9440                                      AllowExplicit);
9441       else
9442         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9443                              SuppressUserConversions,
9444                              /*PartialOverloading*/ false, AllowExplicit);
9445     }
9446     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9447   };
9448 
9449   OverloadingResult Result = OR_No_Viable_Function;
9450 
9451   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9452   // try initializer-list constructors.
9453   if (ListInit) {
9454     bool TryListConstructors = true;
9455 
9456     // Try list constructors unless the list is empty and the class has one or
9457     // more default constructors, in which case those constructors win.
9458     if (!ListInit->getNumInits()) {
9459       for (NamedDecl *D : Guides) {
9460         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9461         if (FD && FD->getMinRequiredArguments() == 0) {
9462           TryListConstructors = false;
9463           break;
9464         }
9465       }
9466     } else if (ListInit->getNumInits() == 1) {
9467       // C++ [over.match.class.deduct]:
9468       //   As an exception, the first phase in [over.match.list] (considering
9469       //   initializer-list constructors) is omitted if the initializer list
9470       //   consists of a single expression of type cv U, where U is a
9471       //   specialization of C or a class derived from a specialization of C.
9472       Expr *E = ListInit->getInit(0);
9473       auto *RD = E->getType()->getAsCXXRecordDecl();
9474       if (!isa<InitListExpr>(E) && RD &&
9475           isCompleteType(Kind.getLocation(), E->getType()) &&
9476           isOrIsDerivedFromSpecializationOf(RD, Template))
9477         TryListConstructors = false;
9478     }
9479 
9480     if (TryListConstructors)
9481       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9482     // Then unwrap the initializer list and try again considering all
9483     // constructors.
9484     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9485   }
9486 
9487   // If list-initialization fails, or if we're doing any other kind of
9488   // initialization, we (eventually) consider constructors.
9489   if (Result == OR_No_Viable_Function)
9490     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9491 
9492   switch (Result) {
9493   case OR_Ambiguous:
9494     // FIXME: For list-initialization candidates, it'd usually be better to
9495     // list why they were not viable when given the initializer list itself as
9496     // an argument.
9497     Candidates.NoteCandidates(
9498         PartialDiagnosticAt(
9499             Kind.getLocation(),
9500             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9501                 << TemplateName),
9502         *this, OCD_ViableCandidates, Inits);
9503     return QualType();
9504 
9505   case OR_No_Viable_Function: {
9506     CXXRecordDecl *Primary =
9507         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9508     bool Complete =
9509         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9510     Candidates.NoteCandidates(
9511         PartialDiagnosticAt(
9512             Kind.getLocation(),
9513             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9514                            : diag::err_deduced_class_template_incomplete)
9515                 << TemplateName << !Guides.empty()),
9516         *this, OCD_AllCandidates, Inits);
9517     return QualType();
9518   }
9519 
9520   case OR_Deleted: {
9521     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9522       << TemplateName;
9523     NoteDeletedFunction(Best->Function);
9524     return QualType();
9525   }
9526 
9527   case OR_Success:
9528     // C++ [over.match.list]p1:
9529     //   In copy-list-initialization, if an explicit constructor is chosen, the
9530     //   initialization is ill-formed.
9531     if (Kind.isCopyInit() && ListInit &&
9532         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9533       bool IsDeductionGuide = !Best->Function->isImplicit();
9534       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9535           << TemplateName << IsDeductionGuide;
9536       Diag(Best->Function->getLocation(),
9537            diag::note_explicit_ctor_deduction_guide_here)
9538           << IsDeductionGuide;
9539       return QualType();
9540     }
9541 
9542     // Make sure we didn't select an unusable deduction guide, and mark it
9543     // as referenced.
9544     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9545     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9546     break;
9547   }
9548 
9549   // C++ [dcl.type.class.deduct]p1:
9550   //  The placeholder is replaced by the return type of the function selected
9551   //  by overload resolution for class template deduction.
9552   QualType DeducedType =
9553       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9554   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9555        diag::warn_cxx14_compat_class_template_argument_deduction)
9556       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9557 
9558   // Warn if CTAD was used on a type that does not have any user-defined
9559   // deduction guides.
9560   if (!HasAnyDeductionGuide) {
9561     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9562          diag::warn_ctad_maybe_unsupported)
9563         << TemplateName;
9564     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9565   }
9566 
9567   return DeducedType;
9568 }
9569