1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54 
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63 
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66 
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70 
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (!SL)
74     return SIF_Other;
75 
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78 
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119 
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122 
123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130 
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148 
149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   auto *ConstantArrayTy =
153       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155 
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167 
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169 
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182 
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::ext_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195 
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206 
207 /// @brief Semantic checking for initializer lists.
208 ///
209 /// The InitListChecker class contains a set of routines that each
210 /// handle the initialization of a certain kind of entity, e.g.,
211 /// arrays, vectors, struct/union types, scalars, etc. The
212 /// InitListChecker itself performs a recursive walk of the subobject
213 /// structure of the type to be initialized, while stepping through
214 /// the initializer list one element at a time. The IList and Index
215 /// parameters to each of the Check* routines contain the active
216 /// (syntactic) initializer list and the index into that initializer
217 /// list that represents the current initializer. Each routine is
218 /// responsible for moving that Index forward as it consumes elements.
219 ///
220 /// Each Check* routine also has a StructuredList/StructuredIndex
221 /// arguments, which contains the current "structured" (semantic)
222 /// initializer list and the index into that initializer list where we
223 /// are copying initializers as we map them over to the semantic
224 /// list. Once we have completed our recursive walk of the subobject
225 /// structure, we will have constructed a full semantic initializer
226 /// list.
227 ///
228 /// C99 designators cause changes in the initializer list traversal,
229 /// because they make the initialization "jump" into a specific
230 /// subobject and then continue the initialization from that
231 /// point. CheckDesignatedInitializer() recursively steps into the
232 /// designated subobject and manages backing out the recursion to
233 /// initialize the subobjects after the one designated.
234 namespace {
235 class InitListChecker {
236   Sema &SemaRef;
237   bool hadError;
238   bool VerifyOnly; // no diagnostics, no structure building
239   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240   InitListExpr *FullyStructuredList;
241 
242   void CheckImplicitInitList(const InitializedEntity &Entity,
243                              InitListExpr *ParentIList, QualType T,
244                              unsigned &Index, InitListExpr *StructuredList,
245                              unsigned &StructuredIndex);
246   void CheckExplicitInitList(const InitializedEntity &Entity,
247                              InitListExpr *IList, QualType &T,
248                              InitListExpr *StructuredList,
249                              bool TopLevelObject = false);
250   void CheckListElementTypes(const InitializedEntity &Entity,
251                              InitListExpr *IList, QualType &DeclType,
252                              bool SubobjectIsDesignatorContext,
253                              unsigned &Index,
254                              InitListExpr *StructuredList,
255                              unsigned &StructuredIndex,
256                              bool TopLevelObject = false);
257   void CheckSubElementType(const InitializedEntity &Entity,
258                            InitListExpr *IList, QualType ElemType,
259                            unsigned &Index,
260                            InitListExpr *StructuredList,
261                            unsigned &StructuredIndex);
262   void CheckComplexType(const InitializedEntity &Entity,
263                         InitListExpr *IList, QualType DeclType,
264                         unsigned &Index,
265                         InitListExpr *StructuredList,
266                         unsigned &StructuredIndex);
267   void CheckScalarType(const InitializedEntity &Entity,
268                        InitListExpr *IList, QualType DeclType,
269                        unsigned &Index,
270                        InitListExpr *StructuredList,
271                        unsigned &StructuredIndex);
272   void CheckReferenceType(const InitializedEntity &Entity,
273                           InitListExpr *IList, QualType DeclType,
274                           unsigned &Index,
275                           InitListExpr *StructuredList,
276                           unsigned &StructuredIndex);
277   void CheckVectorType(const InitializedEntity &Entity,
278                        InitListExpr *IList, QualType DeclType, unsigned &Index,
279                        InitListExpr *StructuredList,
280                        unsigned &StructuredIndex);
281   void CheckStructUnionTypes(const InitializedEntity &Entity,
282                              InitListExpr *IList, QualType DeclType,
283                              RecordDecl::field_iterator Field,
284                              bool SubobjectIsDesignatorContext, unsigned &Index,
285                              InitListExpr *StructuredList,
286                              unsigned &StructuredIndex,
287                              bool TopLevelObject = false);
288   void CheckArrayType(const InitializedEntity &Entity,
289                       InitListExpr *IList, QualType &DeclType,
290                       llvm::APSInt elementIndex,
291                       bool SubobjectIsDesignatorContext, unsigned &Index,
292                       InitListExpr *StructuredList,
293                       unsigned &StructuredIndex);
294   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295                                   InitListExpr *IList, DesignatedInitExpr *DIE,
296                                   unsigned DesigIdx,
297                                   QualType &CurrentObjectType,
298                                   RecordDecl::field_iterator *NextField,
299                                   llvm::APSInt *NextElementIndex,
300                                   unsigned &Index,
301                                   InitListExpr *StructuredList,
302                                   unsigned &StructuredIndex,
303                                   bool FinishSubobjectInit,
304                                   bool TopLevelObject);
305   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306                                            QualType CurrentObjectType,
307                                            InitListExpr *StructuredList,
308                                            unsigned StructuredIndex,
309                                            SourceRange InitRange,
310                                            bool IsFullyOverwritten = false);
311   void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                    unsigned &StructuredIndex,
313                                    Expr *expr);
314   int numArrayElements(QualType DeclType);
315   int numStructUnionElements(QualType DeclType);
316 
317   static ExprResult PerformEmptyInit(Sema &SemaRef,
318                                      SourceLocation Loc,
319                                      const InitializedEntity &Entity,
320                                      bool VerifyOnly);
321 
322   // Explanation on the "FillWithNoInit" mode:
323   //
324   // Assume we have the following definitions (Case#1):
325   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
326   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
327   //
328   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
329   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
330   //
331   // But if we have (Case#2):
332   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
333   //
334   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
335   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
336   //
337   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
338   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
339   // initializers but with special "NoInitExpr" place holders, which tells the
340   // CodeGen not to generate any initializers for these parts.
341   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
342                                const InitializedEntity &ParentEntity,
343                                InitListExpr *ILE, bool &RequiresSecondPass,
344                                bool FillWithNoInit = false);
345   void FillInEmptyInitializations(const InitializedEntity &Entity,
346                                   InitListExpr *ILE, bool &RequiresSecondPass,
347                                   bool FillWithNoInit = false);
348   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
349                               Expr *InitExpr, FieldDecl *Field,
350                               bool TopLevelObject);
351   void CheckEmptyInitializable(const InitializedEntity &Entity,
352                                SourceLocation Loc);
353 
354 public:
355   InitListChecker(Sema &S, const InitializedEntity &Entity,
356                   InitListExpr *IL, QualType &T, bool VerifyOnly);
357   bool HadError() { return hadError; }
358 
359   // @brief Retrieves the fully-structured initializer list used for
360   // semantic analysis and code generation.
361   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
362 };
363 } // end anonymous namespace
364 
365 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
366                                              SourceLocation Loc,
367                                              const InitializedEntity &Entity,
368                                              bool VerifyOnly) {
369   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
370                                                             true);
371   MultiExprArg SubInit;
372   Expr *InitExpr;
373   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
374 
375   // C++ [dcl.init.aggr]p7:
376   //   If there are fewer initializer-clauses in the list than there are
377   //   members in the aggregate, then each member not explicitly initialized
378   //   ...
379   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
380       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
381   if (EmptyInitList) {
382     // C++1y / DR1070:
383     //   shall be initialized [...] from an empty initializer list.
384     //
385     // We apply the resolution of this DR to C++11 but not C++98, since C++98
386     // does not have useful semantics for initialization from an init list.
387     // We treat this as copy-initialization, because aggregate initialization
388     // always performs copy-initialization on its elements.
389     //
390     // Only do this if we're initializing a class type, to avoid filling in
391     // the initializer list where possible.
392     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
393                    InitListExpr(SemaRef.Context, Loc, None, Loc);
394     InitExpr->setType(SemaRef.Context.VoidTy);
395     SubInit = InitExpr;
396     Kind = InitializationKind::CreateCopy(Loc, Loc);
397   } else {
398     // C++03:
399     //   shall be value-initialized.
400   }
401 
402   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
403   // libstdc++4.6 marks the vector default constructor as explicit in
404   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
405   // stlport does so too. Look for std::__debug for libstdc++, and for
406   // std:: for stlport.  This is effectively a compiler-side implementation of
407   // LWG2193.
408   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
409           InitializationSequence::FK_ExplicitConstructor) {
410     OverloadCandidateSet::iterator Best;
411     OverloadingResult O =
412         InitSeq.getFailedCandidateSet()
413             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
414     (void)O;
415     assert(O == OR_Success && "Inconsistent overload resolution");
416     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
417     CXXRecordDecl *R = CtorDecl->getParent();
418 
419     if (CtorDecl->getMinRequiredArguments() == 0 &&
420         CtorDecl->isExplicit() && R->getDeclName() &&
421         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
422 
423 
424       bool IsInStd = false;
425       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
426            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
427         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
428           IsInStd = true;
429       }
430 
431       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
432               .Cases("basic_string", "deque", "forward_list", true)
433               .Cases("list", "map", "multimap", "multiset", true)
434               .Cases("priority_queue", "queue", "set", "stack", true)
435               .Cases("unordered_map", "unordered_set", "vector", true)
436               .Default(false)) {
437         InitSeq.InitializeFrom(
438             SemaRef, Entity,
439             InitializationKind::CreateValue(Loc, Loc, Loc, true),
440             MultiExprArg(), /*TopLevelOfInitList=*/false);
441         // Emit a warning for this.  System header warnings aren't shown
442         // by default, but people working on system headers should see it.
443         if (!VerifyOnly) {
444           SemaRef.Diag(CtorDecl->getLocation(),
445                        diag::warn_invalid_initializer_from_system_header);
446           SemaRef.Diag(Entity.getDecl()->getLocation(),
447                        diag::note_used_in_initialization_here);
448         }
449       }
450     }
451   }
452   if (!InitSeq) {
453     if (!VerifyOnly) {
454       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
455       if (Entity.getKind() == InitializedEntity::EK_Member)
456         SemaRef.Diag(Entity.getDecl()->getLocation(),
457                      diag::note_in_omitted_aggregate_initializer)
458           << /*field*/1 << Entity.getDecl();
459       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
460         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
461           << /*array element*/0 << Entity.getElementIndex();
462     }
463     return ExprError();
464   }
465 
466   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
467                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
468 }
469 
470 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
471                                               SourceLocation Loc) {
472   assert(VerifyOnly &&
473          "CheckEmptyInitializable is only inteded for verification mode.");
474   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
475     hadError = true;
476 }
477 
478 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
479                                         const InitializedEntity &ParentEntity,
480                                               InitListExpr *ILE,
481                                               bool &RequiresSecondPass,
482                                               bool FillWithNoInit) {
483   SourceLocation Loc = ILE->getLocEnd();
484   unsigned NumInits = ILE->getNumInits();
485   InitializedEntity MemberEntity
486     = InitializedEntity::InitializeMember(Field, &ParentEntity);
487 
488   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
489     if (!RType->getDecl()->isUnion())
490       assert(Init < NumInits && "This ILE should have been expanded");
491 
492   if (Init >= NumInits || !ILE->getInit(Init)) {
493     if (FillWithNoInit) {
494       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
495       if (Init < NumInits)
496         ILE->setInit(Init, Filler);
497       else
498         ILE->updateInit(SemaRef.Context, Init, Filler);
499       return;
500     }
501     // C++1y [dcl.init.aggr]p7:
502     //   If there are fewer initializer-clauses in the list than there are
503     //   members in the aggregate, then each member not explicitly initialized
504     //   shall be initialized from its brace-or-equal-initializer [...]
505     if (Field->hasInClassInitializer()) {
506       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
507       if (DIE.isInvalid()) {
508         hadError = true;
509         return;
510       }
511       if (Init < NumInits)
512         ILE->setInit(Init, DIE.get());
513       else {
514         ILE->updateInit(SemaRef.Context, Init, DIE.get());
515         RequiresSecondPass = true;
516       }
517       return;
518     }
519 
520     if (Field->getType()->isReferenceType()) {
521       // C++ [dcl.init.aggr]p9:
522       //   If an incomplete or empty initializer-list leaves a
523       //   member of reference type uninitialized, the program is
524       //   ill-formed.
525       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
526         << Field->getType()
527         << ILE->getSyntacticForm()->getSourceRange();
528       SemaRef.Diag(Field->getLocation(),
529                    diag::note_uninit_reference_member);
530       hadError = true;
531       return;
532     }
533 
534     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
535                                              /*VerifyOnly*/false);
536     if (MemberInit.isInvalid()) {
537       hadError = true;
538       return;
539     }
540 
541     if (hadError) {
542       // Do nothing
543     } else if (Init < NumInits) {
544       ILE->setInit(Init, MemberInit.getAs<Expr>());
545     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
546       // Empty initialization requires a constructor call, so
547       // extend the initializer list to include the constructor
548       // call and make a note that we'll need to take another pass
549       // through the initializer list.
550       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
551       RequiresSecondPass = true;
552     }
553   } else if (InitListExpr *InnerILE
554                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
555     FillInEmptyInitializations(MemberEntity, InnerILE,
556                                RequiresSecondPass, FillWithNoInit);
557   else if (DesignatedInitUpdateExpr *InnerDIUE
558                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
559     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
560                                RequiresSecondPass, /*FillWithNoInit =*/ true);
561 }
562 
563 /// Recursively replaces NULL values within the given initializer list
564 /// with expressions that perform value-initialization of the
565 /// appropriate type.
566 void
567 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
568                                             InitListExpr *ILE,
569                                             bool &RequiresSecondPass,
570                                             bool FillWithNoInit) {
571   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
572          "Should not have void type");
573 
574   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
575     const RecordDecl *RDecl = RType->getDecl();
576     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
577       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
578                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
579     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
580              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
581       for (auto *Field : RDecl->fields()) {
582         if (Field->hasInClassInitializer()) {
583           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
584                                   FillWithNoInit);
585           break;
586         }
587       }
588     } else {
589       // The fields beyond ILE->getNumInits() are default initialized, so in
590       // order to leave them uninitialized, the ILE is expanded and the extra
591       // fields are then filled with NoInitExpr.
592       unsigned NumFields = 0;
593       for (auto *Field : RDecl->fields())
594         if (!Field->isUnnamedBitfield())
595           ++NumFields;
596       if (ILE->getNumInits() < NumFields)
597         ILE->resizeInits(SemaRef.Context, NumFields);
598 
599       unsigned Init = 0;
600       for (auto *Field : RDecl->fields()) {
601         if (Field->isUnnamedBitfield())
602           continue;
603 
604         if (hadError)
605           return;
606 
607         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
608                                 FillWithNoInit);
609         if (hadError)
610           return;
611 
612         ++Init;
613 
614         // Only look at the first initialization of a union.
615         if (RDecl->isUnion())
616           break;
617       }
618     }
619 
620     return;
621   }
622 
623   QualType ElementType;
624 
625   InitializedEntity ElementEntity = Entity;
626   unsigned NumInits = ILE->getNumInits();
627   unsigned NumElements = NumInits;
628   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
629     ElementType = AType->getElementType();
630     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
631       NumElements = CAType->getSize().getZExtValue();
632     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
633                                                          0, Entity);
634   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
635     ElementType = VType->getElementType();
636     NumElements = VType->getNumElements();
637     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
638                                                          0, Entity);
639   } else
640     ElementType = ILE->getType();
641 
642   for (unsigned Init = 0; Init != NumElements; ++Init) {
643     if (hadError)
644       return;
645 
646     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
647         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
648       ElementEntity.setElementIndex(Init);
649 
650     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
651     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
652       ILE->setInit(Init, ILE->getArrayFiller());
653     else if (!InitExpr && !ILE->hasArrayFiller()) {
654       Expr *Filler = nullptr;
655 
656       if (FillWithNoInit)
657         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
658       else {
659         ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
660                                                   ElementEntity,
661                                                   /*VerifyOnly*/false);
662         if (ElementInit.isInvalid()) {
663           hadError = true;
664           return;
665         }
666 
667         Filler = ElementInit.getAs<Expr>();
668       }
669 
670       if (hadError) {
671         // Do nothing
672       } else if (Init < NumInits) {
673         // For arrays, just set the expression used for value-initialization
674         // of the "holes" in the array.
675         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
676           ILE->setArrayFiller(Filler);
677         else
678           ILE->setInit(Init, Filler);
679       } else {
680         // For arrays, just set the expression used for value-initialization
681         // of the rest of elements and exit.
682         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
683           ILE->setArrayFiller(Filler);
684           return;
685         }
686 
687         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
688           // Empty initialization requires a constructor call, so
689           // extend the initializer list to include the constructor
690           // call and make a note that we'll need to take another pass
691           // through the initializer list.
692           ILE->updateInit(SemaRef.Context, Init, Filler);
693           RequiresSecondPass = true;
694         }
695       }
696     } else if (InitListExpr *InnerILE
697                  = dyn_cast_or_null<InitListExpr>(InitExpr))
698       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
699                                  FillWithNoInit);
700     else if (DesignatedInitUpdateExpr *InnerDIUE
701                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
702       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
703                                  RequiresSecondPass, /*FillWithNoInit =*/ true);
704   }
705 }
706 
707 
708 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
709                                  InitListExpr *IL, QualType &T,
710                                  bool VerifyOnly)
711   : SemaRef(S), VerifyOnly(VerifyOnly) {
712   // FIXME: Check that IL isn't already the semantic form of some other
713   // InitListExpr. If it is, we'd create a broken AST.
714 
715   hadError = false;
716 
717   FullyStructuredList =
718       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
719   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
720                         /*TopLevelObject=*/true);
721 
722   if (!hadError && !VerifyOnly) {
723     bool RequiresSecondPass = false;
724     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
725     if (RequiresSecondPass && !hadError)
726       FillInEmptyInitializations(Entity, FullyStructuredList,
727                                  RequiresSecondPass);
728   }
729 }
730 
731 int InitListChecker::numArrayElements(QualType DeclType) {
732   // FIXME: use a proper constant
733   int maxElements = 0x7FFFFFFF;
734   if (const ConstantArrayType *CAT =
735         SemaRef.Context.getAsConstantArrayType(DeclType)) {
736     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
737   }
738   return maxElements;
739 }
740 
741 int InitListChecker::numStructUnionElements(QualType DeclType) {
742   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
743   int InitializableMembers = 0;
744   for (const auto *Field : structDecl->fields())
745     if (!Field->isUnnamedBitfield())
746       ++InitializableMembers;
747 
748   if (structDecl->isUnion())
749     return std::min(InitializableMembers, 1);
750   return InitializableMembers - structDecl->hasFlexibleArrayMember();
751 }
752 
753 /// Check whether the range of the initializer \p ParentIList from element
754 /// \p Index onwards can be used to initialize an object of type \p T. Update
755 /// \p Index to indicate how many elements of the list were consumed.
756 ///
757 /// This also fills in \p StructuredList, from element \p StructuredIndex
758 /// onwards, with the fully-braced, desugared form of the initialization.
759 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
760                                             InitListExpr *ParentIList,
761                                             QualType T, unsigned &Index,
762                                             InitListExpr *StructuredList,
763                                             unsigned &StructuredIndex) {
764   int maxElements = 0;
765 
766   if (T->isArrayType())
767     maxElements = numArrayElements(T);
768   else if (T->isRecordType())
769     maxElements = numStructUnionElements(T);
770   else if (T->isVectorType())
771     maxElements = T->getAs<VectorType>()->getNumElements();
772   else
773     llvm_unreachable("CheckImplicitInitList(): Illegal type");
774 
775   if (maxElements == 0) {
776     if (!VerifyOnly)
777       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
778                    diag::err_implicit_empty_initializer);
779     ++Index;
780     hadError = true;
781     return;
782   }
783 
784   // Build a structured initializer list corresponding to this subobject.
785   InitListExpr *StructuredSubobjectInitList
786     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
787                                  StructuredIndex,
788           SourceRange(ParentIList->getInit(Index)->getLocStart(),
789                       ParentIList->getSourceRange().getEnd()));
790   unsigned StructuredSubobjectInitIndex = 0;
791 
792   // Check the element types and build the structural subobject.
793   unsigned StartIndex = Index;
794   CheckListElementTypes(Entity, ParentIList, T,
795                         /*SubobjectIsDesignatorContext=*/false, Index,
796                         StructuredSubobjectInitList,
797                         StructuredSubobjectInitIndex);
798 
799   if (!VerifyOnly) {
800     StructuredSubobjectInitList->setType(T);
801 
802     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
803     // Update the structured sub-object initializer so that it's ending
804     // range corresponds with the end of the last initializer it used.
805     if (EndIndex < ParentIList->getNumInits()) {
806       SourceLocation EndLoc
807         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
808       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
809     }
810 
811     // Complain about missing braces.
812     if (T->isArrayType() || T->isRecordType()) {
813       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
814                    diag::warn_missing_braces)
815           << StructuredSubobjectInitList->getSourceRange()
816           << FixItHint::CreateInsertion(
817                  StructuredSubobjectInitList->getLocStart(), "{")
818           << FixItHint::CreateInsertion(
819                  SemaRef.getLocForEndOfToken(
820                      StructuredSubobjectInitList->getLocEnd()),
821                  "}");
822     }
823   }
824 }
825 
826 /// Warn that \p Entity was of scalar type and was initialized by a
827 /// single-element braced initializer list.
828 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
829                                  SourceRange Braces) {
830   // Don't warn during template instantiation. If the initialization was
831   // non-dependent, we warned during the initial parse; otherwise, the
832   // type might not be scalar in some uses of the template.
833   if (!S.ActiveTemplateInstantiations.empty())
834     return;
835 
836   unsigned DiagID = 0;
837 
838   switch (Entity.getKind()) {
839   case InitializedEntity::EK_VectorElement:
840   case InitializedEntity::EK_ComplexElement:
841   case InitializedEntity::EK_ArrayElement:
842   case InitializedEntity::EK_Parameter:
843   case InitializedEntity::EK_Parameter_CF_Audited:
844   case InitializedEntity::EK_Result:
845     // Extra braces here are suspicious.
846     DiagID = diag::warn_braces_around_scalar_init;
847     break;
848 
849   case InitializedEntity::EK_Member:
850     // Warn on aggregate initialization but not on ctor init list or
851     // default member initializer.
852     if (Entity.getParent())
853       DiagID = diag::warn_braces_around_scalar_init;
854     break;
855 
856   case InitializedEntity::EK_Variable:
857   case InitializedEntity::EK_LambdaCapture:
858     // No warning, might be direct-list-initialization.
859     // FIXME: Should we warn for copy-list-initialization in these cases?
860     break;
861 
862   case InitializedEntity::EK_New:
863   case InitializedEntity::EK_Temporary:
864   case InitializedEntity::EK_CompoundLiteralInit:
865     // No warning, braces are part of the syntax of the underlying construct.
866     break;
867 
868   case InitializedEntity::EK_RelatedResult:
869     // No warning, we already warned when initializing the result.
870     break;
871 
872   case InitializedEntity::EK_Exception:
873   case InitializedEntity::EK_Base:
874   case InitializedEntity::EK_Delegating:
875   case InitializedEntity::EK_BlockElement:
876     llvm_unreachable("unexpected braced scalar init");
877   }
878 
879   if (DiagID) {
880     S.Diag(Braces.getBegin(), DiagID)
881       << Braces
882       << FixItHint::CreateRemoval(Braces.getBegin())
883       << FixItHint::CreateRemoval(Braces.getEnd());
884   }
885 }
886 
887 
888 /// Check whether the initializer \p IList (that was written with explicit
889 /// braces) can be used to initialize an object of type \p T.
890 ///
891 /// This also fills in \p StructuredList with the fully-braced, desugared
892 /// form of the initialization.
893 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
894                                             InitListExpr *IList, QualType &T,
895                                             InitListExpr *StructuredList,
896                                             bool TopLevelObject) {
897   if (!VerifyOnly) {
898     SyntacticToSemantic[IList] = StructuredList;
899     StructuredList->setSyntacticForm(IList);
900   }
901 
902   unsigned Index = 0, StructuredIndex = 0;
903   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
904                         Index, StructuredList, StructuredIndex, TopLevelObject);
905   if (!VerifyOnly) {
906     QualType ExprTy = T;
907     if (!ExprTy->isArrayType())
908       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
909     IList->setType(ExprTy);
910     StructuredList->setType(ExprTy);
911   }
912   if (hadError)
913     return;
914 
915   if (Index < IList->getNumInits()) {
916     // We have leftover initializers
917     if (VerifyOnly) {
918       if (SemaRef.getLangOpts().CPlusPlus ||
919           (SemaRef.getLangOpts().OpenCL &&
920            IList->getType()->isVectorType())) {
921         hadError = true;
922       }
923       return;
924     }
925 
926     if (StructuredIndex == 1 &&
927         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
928             SIF_None) {
929       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
930       if (SemaRef.getLangOpts().CPlusPlus) {
931         DK = diag::err_excess_initializers_in_char_array_initializer;
932         hadError = true;
933       }
934       // Special-case
935       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
936         << IList->getInit(Index)->getSourceRange();
937     } else if (!T->isIncompleteType()) {
938       // Don't complain for incomplete types, since we'll get an error
939       // elsewhere
940       QualType CurrentObjectType = StructuredList->getType();
941       int initKind =
942         CurrentObjectType->isArrayType()? 0 :
943         CurrentObjectType->isVectorType()? 1 :
944         CurrentObjectType->isScalarType()? 2 :
945         CurrentObjectType->isUnionType()? 3 :
946         4;
947 
948       unsigned DK = diag::ext_excess_initializers;
949       if (SemaRef.getLangOpts().CPlusPlus) {
950         DK = diag::err_excess_initializers;
951         hadError = true;
952       }
953       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
954         DK = diag::err_excess_initializers;
955         hadError = true;
956       }
957 
958       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
959         << initKind << IList->getInit(Index)->getSourceRange();
960     }
961   }
962 
963   if (!VerifyOnly && T->isScalarType() &&
964       IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
965     warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
966 }
967 
968 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
969                                             InitListExpr *IList,
970                                             QualType &DeclType,
971                                             bool SubobjectIsDesignatorContext,
972                                             unsigned &Index,
973                                             InitListExpr *StructuredList,
974                                             unsigned &StructuredIndex,
975                                             bool TopLevelObject) {
976   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
977     // Explicitly braced initializer for complex type can be real+imaginary
978     // parts.
979     CheckComplexType(Entity, IList, DeclType, Index,
980                      StructuredList, StructuredIndex);
981   } else if (DeclType->isScalarType()) {
982     CheckScalarType(Entity, IList, DeclType, Index,
983                     StructuredList, StructuredIndex);
984   } else if (DeclType->isVectorType()) {
985     CheckVectorType(Entity, IList, DeclType, Index,
986                     StructuredList, StructuredIndex);
987   } else if (DeclType->isRecordType()) {
988     assert(DeclType->isAggregateType() &&
989            "non-aggregate records should be handed in CheckSubElementType");
990     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
991     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
992                           SubobjectIsDesignatorContext, Index,
993                           StructuredList, StructuredIndex,
994                           TopLevelObject);
995   } else if (DeclType->isArrayType()) {
996     llvm::APSInt Zero(
997                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
998                     false);
999     CheckArrayType(Entity, IList, DeclType, Zero,
1000                    SubobjectIsDesignatorContext, Index,
1001                    StructuredList, StructuredIndex);
1002   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1003     // This type is invalid, issue a diagnostic.
1004     ++Index;
1005     if (!VerifyOnly)
1006       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1007         << DeclType;
1008     hadError = true;
1009   } else if (DeclType->isReferenceType()) {
1010     CheckReferenceType(Entity, IList, DeclType, Index,
1011                        StructuredList, StructuredIndex);
1012   } else if (DeclType->isObjCObjectType()) {
1013     if (!VerifyOnly)
1014       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1015         << DeclType;
1016     hadError = true;
1017   } else {
1018     if (!VerifyOnly)
1019       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1020         << DeclType;
1021     hadError = true;
1022   }
1023 }
1024 
1025 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1026                                           InitListExpr *IList,
1027                                           QualType ElemType,
1028                                           unsigned &Index,
1029                                           InitListExpr *StructuredList,
1030                                           unsigned &StructuredIndex) {
1031   Expr *expr = IList->getInit(Index);
1032 
1033   if (ElemType->isReferenceType())
1034     return CheckReferenceType(Entity, IList, ElemType, Index,
1035                               StructuredList, StructuredIndex);
1036 
1037   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1038     if (SubInitList->getNumInits() == 1 &&
1039         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1040         SIF_None) {
1041       expr = SubInitList->getInit(0);
1042     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1043       InitListExpr *InnerStructuredList
1044         = getStructuredSubobjectInit(IList, Index, ElemType,
1045                                      StructuredList, StructuredIndex,
1046                                      SubInitList->getSourceRange(), true);
1047       CheckExplicitInitList(Entity, SubInitList, ElemType,
1048                             InnerStructuredList);
1049 
1050       if (!hadError && !VerifyOnly) {
1051         bool RequiresSecondPass = false;
1052         FillInEmptyInitializations(Entity, InnerStructuredList,
1053                                    RequiresSecondPass);
1054         if (RequiresSecondPass && !hadError)
1055           FillInEmptyInitializations(Entity, InnerStructuredList,
1056                                      RequiresSecondPass);
1057       }
1058       ++StructuredIndex;
1059       ++Index;
1060       return;
1061     }
1062     // C++ initialization is handled later.
1063   } else if (isa<ImplicitValueInitExpr>(expr)) {
1064     // This happens during template instantiation when we see an InitListExpr
1065     // that we've already checked once.
1066     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1067            "found implicit initialization for the wrong type");
1068     if (!VerifyOnly)
1069       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1070     ++Index;
1071     return;
1072   }
1073 
1074   if (SemaRef.getLangOpts().CPlusPlus) {
1075     // C++ [dcl.init.aggr]p2:
1076     //   Each member is copy-initialized from the corresponding
1077     //   initializer-clause.
1078 
1079     // FIXME: Better EqualLoc?
1080     InitializationKind Kind =
1081       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1082     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1083                                /*TopLevelOfInitList*/ true);
1084 
1085     // C++14 [dcl.init.aggr]p13:
1086     //   If the assignment-expression can initialize a member, the member is
1087     //   initialized. Otherwise [...] brace elision is assumed
1088     //
1089     // Brace elision is never performed if the element is not an
1090     // assignment-expression.
1091     if (Seq || isa<InitListExpr>(expr)) {
1092       if (!VerifyOnly) {
1093         ExprResult Result =
1094           Seq.Perform(SemaRef, Entity, Kind, expr);
1095         if (Result.isInvalid())
1096           hadError = true;
1097 
1098         UpdateStructuredListElement(StructuredList, StructuredIndex,
1099                                     Result.getAs<Expr>());
1100       } else if (!Seq)
1101         hadError = true;
1102       ++Index;
1103       return;
1104     }
1105 
1106     // Fall through for subaggregate initialization
1107   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1108     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1109     return CheckScalarType(Entity, IList, ElemType, Index,
1110                            StructuredList, StructuredIndex);
1111   } else if (const ArrayType *arrayType =
1112                  SemaRef.Context.getAsArrayType(ElemType)) {
1113     // arrayType can be incomplete if we're initializing a flexible
1114     // array member.  There's nothing we can do with the completed
1115     // type here, though.
1116 
1117     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1118       if (!VerifyOnly) {
1119         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1120         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1121       }
1122       ++Index;
1123       return;
1124     }
1125 
1126     // Fall through for subaggregate initialization.
1127 
1128   } else {
1129     assert((ElemType->isRecordType() || ElemType->isVectorType()) &&
1130            "Unexpected type");
1131 
1132     // C99 6.7.8p13:
1133     //
1134     //   The initializer for a structure or union object that has
1135     //   automatic storage duration shall be either an initializer
1136     //   list as described below, or a single expression that has
1137     //   compatible structure or union type. In the latter case, the
1138     //   initial value of the object, including unnamed members, is
1139     //   that of the expression.
1140     ExprResult ExprRes = expr;
1141     if (SemaRef.CheckSingleAssignmentConstraints(
1142             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1143       if (ExprRes.isInvalid())
1144         hadError = true;
1145       else {
1146         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1147           if (ExprRes.isInvalid())
1148             hadError = true;
1149       }
1150       UpdateStructuredListElement(StructuredList, StructuredIndex,
1151                                   ExprRes.getAs<Expr>());
1152       ++Index;
1153       return;
1154     }
1155     ExprRes.get();
1156     // Fall through for subaggregate initialization
1157   }
1158 
1159   // C++ [dcl.init.aggr]p12:
1160   //
1161   //   [...] Otherwise, if the member is itself a non-empty
1162   //   subaggregate, brace elision is assumed and the initializer is
1163   //   considered for the initialization of the first member of
1164   //   the subaggregate.
1165   if (!SemaRef.getLangOpts().OpenCL &&
1166       (ElemType->isAggregateType() || ElemType->isVectorType())) {
1167     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1168                           StructuredIndex);
1169     ++StructuredIndex;
1170   } else {
1171     if (!VerifyOnly) {
1172       // We cannot initialize this element, so let
1173       // PerformCopyInitialization produce the appropriate diagnostic.
1174       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1175                                         /*TopLevelOfInitList=*/true);
1176     }
1177     hadError = true;
1178     ++Index;
1179     ++StructuredIndex;
1180   }
1181 }
1182 
1183 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1184                                        InitListExpr *IList, QualType DeclType,
1185                                        unsigned &Index,
1186                                        InitListExpr *StructuredList,
1187                                        unsigned &StructuredIndex) {
1188   assert(Index == 0 && "Index in explicit init list must be zero");
1189 
1190   // As an extension, clang supports complex initializers, which initialize
1191   // a complex number component-wise.  When an explicit initializer list for
1192   // a complex number contains two two initializers, this extension kicks in:
1193   // it exepcts the initializer list to contain two elements convertible to
1194   // the element type of the complex type. The first element initializes
1195   // the real part, and the second element intitializes the imaginary part.
1196 
1197   if (IList->getNumInits() != 2)
1198     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1199                            StructuredIndex);
1200 
1201   // This is an extension in C.  (The builtin _Complex type does not exist
1202   // in the C++ standard.)
1203   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1204     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1205       << IList->getSourceRange();
1206 
1207   // Initialize the complex number.
1208   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1209   InitializedEntity ElementEntity =
1210     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1211 
1212   for (unsigned i = 0; i < 2; ++i) {
1213     ElementEntity.setElementIndex(Index);
1214     CheckSubElementType(ElementEntity, IList, elementType, Index,
1215                         StructuredList, StructuredIndex);
1216   }
1217 }
1218 
1219 
1220 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1221                                       InitListExpr *IList, QualType DeclType,
1222                                       unsigned &Index,
1223                                       InitListExpr *StructuredList,
1224                                       unsigned &StructuredIndex) {
1225   if (Index >= IList->getNumInits()) {
1226     if (!VerifyOnly)
1227       SemaRef.Diag(IList->getLocStart(),
1228                    SemaRef.getLangOpts().CPlusPlus11 ?
1229                      diag::warn_cxx98_compat_empty_scalar_initializer :
1230                      diag::err_empty_scalar_initializer)
1231         << IList->getSourceRange();
1232     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1233     ++Index;
1234     ++StructuredIndex;
1235     return;
1236   }
1237 
1238   Expr *expr = IList->getInit(Index);
1239   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1240     // FIXME: This is invalid, and accepting it causes overload resolution
1241     // to pick the wrong overload in some corner cases.
1242     if (!VerifyOnly)
1243       SemaRef.Diag(SubIList->getLocStart(),
1244                    diag::ext_many_braces_around_scalar_init)
1245         << SubIList->getSourceRange();
1246 
1247     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1248                     StructuredIndex);
1249     return;
1250   } else if (isa<DesignatedInitExpr>(expr)) {
1251     if (!VerifyOnly)
1252       SemaRef.Diag(expr->getLocStart(),
1253                    diag::err_designator_for_scalar_init)
1254         << DeclType << expr->getSourceRange();
1255     hadError = true;
1256     ++Index;
1257     ++StructuredIndex;
1258     return;
1259   }
1260 
1261   if (VerifyOnly) {
1262     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1263       hadError = true;
1264     ++Index;
1265     return;
1266   }
1267 
1268   ExprResult Result =
1269     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1270                                       /*TopLevelOfInitList=*/true);
1271 
1272   Expr *ResultExpr = nullptr;
1273 
1274   if (Result.isInvalid())
1275     hadError = true; // types weren't compatible.
1276   else {
1277     ResultExpr = Result.getAs<Expr>();
1278 
1279     if (ResultExpr != expr) {
1280       // The type was promoted, update initializer list.
1281       IList->setInit(Index, ResultExpr);
1282     }
1283   }
1284   if (hadError)
1285     ++StructuredIndex;
1286   else
1287     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1288   ++Index;
1289 }
1290 
1291 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1292                                          InitListExpr *IList, QualType DeclType,
1293                                          unsigned &Index,
1294                                          InitListExpr *StructuredList,
1295                                          unsigned &StructuredIndex) {
1296   if (Index >= IList->getNumInits()) {
1297     // FIXME: It would be wonderful if we could point at the actual member. In
1298     // general, it would be useful to pass location information down the stack,
1299     // so that we know the location (or decl) of the "current object" being
1300     // initialized.
1301     if (!VerifyOnly)
1302       SemaRef.Diag(IList->getLocStart(),
1303                     diag::err_init_reference_member_uninitialized)
1304         << DeclType
1305         << IList->getSourceRange();
1306     hadError = true;
1307     ++Index;
1308     ++StructuredIndex;
1309     return;
1310   }
1311 
1312   Expr *expr = IList->getInit(Index);
1313   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1314     if (!VerifyOnly)
1315       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1316         << DeclType << IList->getSourceRange();
1317     hadError = true;
1318     ++Index;
1319     ++StructuredIndex;
1320     return;
1321   }
1322 
1323   if (VerifyOnly) {
1324     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1325       hadError = true;
1326     ++Index;
1327     return;
1328   }
1329 
1330   ExprResult Result =
1331       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1332                                         /*TopLevelOfInitList=*/true);
1333 
1334   if (Result.isInvalid())
1335     hadError = true;
1336 
1337   expr = Result.getAs<Expr>();
1338   IList->setInit(Index, expr);
1339 
1340   if (hadError)
1341     ++StructuredIndex;
1342   else
1343     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1344   ++Index;
1345 }
1346 
1347 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1348                                       InitListExpr *IList, QualType DeclType,
1349                                       unsigned &Index,
1350                                       InitListExpr *StructuredList,
1351                                       unsigned &StructuredIndex) {
1352   const VectorType *VT = DeclType->getAs<VectorType>();
1353   unsigned maxElements = VT->getNumElements();
1354   unsigned numEltsInit = 0;
1355   QualType elementType = VT->getElementType();
1356 
1357   if (Index >= IList->getNumInits()) {
1358     // Make sure the element type can be value-initialized.
1359     if (VerifyOnly)
1360       CheckEmptyInitializable(
1361           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1362           IList->getLocEnd());
1363     return;
1364   }
1365 
1366   if (!SemaRef.getLangOpts().OpenCL) {
1367     // If the initializing element is a vector, try to copy-initialize
1368     // instead of breaking it apart (which is doomed to failure anyway).
1369     Expr *Init = IList->getInit(Index);
1370     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1371       if (VerifyOnly) {
1372         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1373           hadError = true;
1374         ++Index;
1375         return;
1376       }
1377 
1378   ExprResult Result =
1379       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1380                                         /*TopLevelOfInitList=*/true);
1381 
1382       Expr *ResultExpr = nullptr;
1383       if (Result.isInvalid())
1384         hadError = true; // types weren't compatible.
1385       else {
1386         ResultExpr = Result.getAs<Expr>();
1387 
1388         if (ResultExpr != Init) {
1389           // The type was promoted, update initializer list.
1390           IList->setInit(Index, ResultExpr);
1391         }
1392       }
1393       if (hadError)
1394         ++StructuredIndex;
1395       else
1396         UpdateStructuredListElement(StructuredList, StructuredIndex,
1397                                     ResultExpr);
1398       ++Index;
1399       return;
1400     }
1401 
1402     InitializedEntity ElementEntity =
1403       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1404 
1405     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1406       // Don't attempt to go past the end of the init list
1407       if (Index >= IList->getNumInits()) {
1408         if (VerifyOnly)
1409           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1410         break;
1411       }
1412 
1413       ElementEntity.setElementIndex(Index);
1414       CheckSubElementType(ElementEntity, IList, elementType, Index,
1415                           StructuredList, StructuredIndex);
1416     }
1417 
1418     if (VerifyOnly)
1419       return;
1420 
1421     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1422     const VectorType *T = Entity.getType()->getAs<VectorType>();
1423     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1424                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1425       // The ability to use vector initializer lists is a GNU vector extension
1426       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1427       // endian machines it works fine, however on big endian machines it
1428       // exhibits surprising behaviour:
1429       //
1430       //   uint32x2_t x = {42, 64};
1431       //   return vget_lane_u32(x, 0); // Will return 64.
1432       //
1433       // Because of this, explicitly call out that it is non-portable.
1434       //
1435       SemaRef.Diag(IList->getLocStart(),
1436                    diag::warn_neon_vector_initializer_non_portable);
1437 
1438       const char *typeCode;
1439       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1440 
1441       if (elementType->isFloatingType())
1442         typeCode = "f";
1443       else if (elementType->isSignedIntegerType())
1444         typeCode = "s";
1445       else if (elementType->isUnsignedIntegerType())
1446         typeCode = "u";
1447       else
1448         llvm_unreachable("Invalid element type!");
1449 
1450       SemaRef.Diag(IList->getLocStart(),
1451                    SemaRef.Context.getTypeSize(VT) > 64 ?
1452                    diag::note_neon_vector_initializer_non_portable_q :
1453                    diag::note_neon_vector_initializer_non_portable)
1454         << typeCode << typeSize;
1455     }
1456 
1457     return;
1458   }
1459 
1460   InitializedEntity ElementEntity =
1461     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1462 
1463   // OpenCL initializers allows vectors to be constructed from vectors.
1464   for (unsigned i = 0; i < maxElements; ++i) {
1465     // Don't attempt to go past the end of the init list
1466     if (Index >= IList->getNumInits())
1467       break;
1468 
1469     ElementEntity.setElementIndex(Index);
1470 
1471     QualType IType = IList->getInit(Index)->getType();
1472     if (!IType->isVectorType()) {
1473       CheckSubElementType(ElementEntity, IList, elementType, Index,
1474                           StructuredList, StructuredIndex);
1475       ++numEltsInit;
1476     } else {
1477       QualType VecType;
1478       const VectorType *IVT = IType->getAs<VectorType>();
1479       unsigned numIElts = IVT->getNumElements();
1480 
1481       if (IType->isExtVectorType())
1482         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1483       else
1484         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1485                                                 IVT->getVectorKind());
1486       CheckSubElementType(ElementEntity, IList, VecType, Index,
1487                           StructuredList, StructuredIndex);
1488       numEltsInit += numIElts;
1489     }
1490   }
1491 
1492   // OpenCL requires all elements to be initialized.
1493   if (numEltsInit != maxElements) {
1494     if (!VerifyOnly)
1495       SemaRef.Diag(IList->getLocStart(),
1496                    diag::err_vector_incorrect_num_initializers)
1497         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1498     hadError = true;
1499   }
1500 }
1501 
1502 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1503                                      InitListExpr *IList, QualType &DeclType,
1504                                      llvm::APSInt elementIndex,
1505                                      bool SubobjectIsDesignatorContext,
1506                                      unsigned &Index,
1507                                      InitListExpr *StructuredList,
1508                                      unsigned &StructuredIndex) {
1509   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1510 
1511   // Check for the special-case of initializing an array with a string.
1512   if (Index < IList->getNumInits()) {
1513     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1514         SIF_None) {
1515       // We place the string literal directly into the resulting
1516       // initializer list. This is the only place where the structure
1517       // of the structured initializer list doesn't match exactly,
1518       // because doing so would involve allocating one character
1519       // constant for each string.
1520       if (!VerifyOnly) {
1521         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1522         UpdateStructuredListElement(StructuredList, StructuredIndex,
1523                                     IList->getInit(Index));
1524         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1525       }
1526       ++Index;
1527       return;
1528     }
1529   }
1530   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1531     // Check for VLAs; in standard C it would be possible to check this
1532     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1533     // them in all sorts of strange places).
1534     if (!VerifyOnly)
1535       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1536                     diag::err_variable_object_no_init)
1537         << VAT->getSizeExpr()->getSourceRange();
1538     hadError = true;
1539     ++Index;
1540     ++StructuredIndex;
1541     return;
1542   }
1543 
1544   // We might know the maximum number of elements in advance.
1545   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1546                            elementIndex.isUnsigned());
1547   bool maxElementsKnown = false;
1548   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1549     maxElements = CAT->getSize();
1550     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1551     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1552     maxElementsKnown = true;
1553   }
1554 
1555   QualType elementType = arrayType->getElementType();
1556   while (Index < IList->getNumInits()) {
1557     Expr *Init = IList->getInit(Index);
1558     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1559       // If we're not the subobject that matches up with the '{' for
1560       // the designator, we shouldn't be handling the
1561       // designator. Return immediately.
1562       if (!SubobjectIsDesignatorContext)
1563         return;
1564 
1565       // Handle this designated initializer. elementIndex will be
1566       // updated to be the next array element we'll initialize.
1567       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1568                                      DeclType, nullptr, &elementIndex, Index,
1569                                      StructuredList, StructuredIndex, true,
1570                                      false)) {
1571         hadError = true;
1572         continue;
1573       }
1574 
1575       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1576         maxElements = maxElements.extend(elementIndex.getBitWidth());
1577       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1578         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1579       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1580 
1581       // If the array is of incomplete type, keep track of the number of
1582       // elements in the initializer.
1583       if (!maxElementsKnown && elementIndex > maxElements)
1584         maxElements = elementIndex;
1585 
1586       continue;
1587     }
1588 
1589     // If we know the maximum number of elements, and we've already
1590     // hit it, stop consuming elements in the initializer list.
1591     if (maxElementsKnown && elementIndex == maxElements)
1592       break;
1593 
1594     InitializedEntity ElementEntity =
1595       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1596                                            Entity);
1597     // Check this element.
1598     CheckSubElementType(ElementEntity, IList, elementType, Index,
1599                         StructuredList, StructuredIndex);
1600     ++elementIndex;
1601 
1602     // If the array is of incomplete type, keep track of the number of
1603     // elements in the initializer.
1604     if (!maxElementsKnown && elementIndex > maxElements)
1605       maxElements = elementIndex;
1606   }
1607   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1608     // If this is an incomplete array type, the actual type needs to
1609     // be calculated here.
1610     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1611     if (maxElements == Zero) {
1612       // Sizing an array implicitly to zero is not allowed by ISO C,
1613       // but is supported by GNU.
1614       SemaRef.Diag(IList->getLocStart(),
1615                     diag::ext_typecheck_zero_array_size);
1616     }
1617 
1618     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1619                                                      ArrayType::Normal, 0);
1620   }
1621   if (!hadError && VerifyOnly) {
1622     // Check if there are any members of the array that get value-initialized.
1623     // If so, check if doing that is possible.
1624     // FIXME: This needs to detect holes left by designated initializers too.
1625     if (maxElementsKnown && elementIndex < maxElements)
1626       CheckEmptyInitializable(InitializedEntity::InitializeElement(
1627                                                   SemaRef.Context, 0, Entity),
1628                               IList->getLocEnd());
1629   }
1630 }
1631 
1632 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1633                                              Expr *InitExpr,
1634                                              FieldDecl *Field,
1635                                              bool TopLevelObject) {
1636   // Handle GNU flexible array initializers.
1637   unsigned FlexArrayDiag;
1638   if (isa<InitListExpr>(InitExpr) &&
1639       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1640     // Empty flexible array init always allowed as an extension
1641     FlexArrayDiag = diag::ext_flexible_array_init;
1642   } else if (SemaRef.getLangOpts().CPlusPlus) {
1643     // Disallow flexible array init in C++; it is not required for gcc
1644     // compatibility, and it needs work to IRGen correctly in general.
1645     FlexArrayDiag = diag::err_flexible_array_init;
1646   } else if (!TopLevelObject) {
1647     // Disallow flexible array init on non-top-level object
1648     FlexArrayDiag = diag::err_flexible_array_init;
1649   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1650     // Disallow flexible array init on anything which is not a variable.
1651     FlexArrayDiag = diag::err_flexible_array_init;
1652   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1653     // Disallow flexible array init on local variables.
1654     FlexArrayDiag = diag::err_flexible_array_init;
1655   } else {
1656     // Allow other cases.
1657     FlexArrayDiag = diag::ext_flexible_array_init;
1658   }
1659 
1660   if (!VerifyOnly) {
1661     SemaRef.Diag(InitExpr->getLocStart(),
1662                  FlexArrayDiag)
1663       << InitExpr->getLocStart();
1664     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1665       << Field;
1666   }
1667 
1668   return FlexArrayDiag != diag::ext_flexible_array_init;
1669 }
1670 
1671 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1672                                             InitListExpr *IList,
1673                                             QualType DeclType,
1674                                             RecordDecl::field_iterator Field,
1675                                             bool SubobjectIsDesignatorContext,
1676                                             unsigned &Index,
1677                                             InitListExpr *StructuredList,
1678                                             unsigned &StructuredIndex,
1679                                             bool TopLevelObject) {
1680   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1681 
1682   // If the record is invalid, some of it's members are invalid. To avoid
1683   // confusion, we forgo checking the intializer for the entire record.
1684   if (structDecl->isInvalidDecl()) {
1685     // Assume it was supposed to consume a single initializer.
1686     ++Index;
1687     hadError = true;
1688     return;
1689   }
1690 
1691   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1692     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1693 
1694     // If there's a default initializer, use it.
1695     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1696       if (VerifyOnly)
1697         return;
1698       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1699            Field != FieldEnd; ++Field) {
1700         if (Field->hasInClassInitializer()) {
1701           StructuredList->setInitializedFieldInUnion(*Field);
1702           // FIXME: Actually build a CXXDefaultInitExpr?
1703           return;
1704         }
1705       }
1706     }
1707 
1708     // Value-initialize the first member of the union that isn't an unnamed
1709     // bitfield.
1710     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1711          Field != FieldEnd; ++Field) {
1712       if (!Field->isUnnamedBitfield()) {
1713         if (VerifyOnly)
1714           CheckEmptyInitializable(
1715               InitializedEntity::InitializeMember(*Field, &Entity),
1716               IList->getLocEnd());
1717         else
1718           StructuredList->setInitializedFieldInUnion(*Field);
1719         break;
1720       }
1721     }
1722     return;
1723   }
1724 
1725   // If structDecl is a forward declaration, this loop won't do
1726   // anything except look at designated initializers; That's okay,
1727   // because an error should get printed out elsewhere. It might be
1728   // worthwhile to skip over the rest of the initializer, though.
1729   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1730   RecordDecl::field_iterator FieldEnd = RD->field_end();
1731   bool InitializedSomething = false;
1732   bool CheckForMissingFields = true;
1733   while (Index < IList->getNumInits()) {
1734     Expr *Init = IList->getInit(Index);
1735 
1736     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1737       // If we're not the subobject that matches up with the '{' for
1738       // the designator, we shouldn't be handling the
1739       // designator. Return immediately.
1740       if (!SubobjectIsDesignatorContext)
1741         return;
1742 
1743       // Handle this designated initializer. Field will be updated to
1744       // the next field that we'll be initializing.
1745       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1746                                      DeclType, &Field, nullptr, Index,
1747                                      StructuredList, StructuredIndex,
1748                                      true, TopLevelObject))
1749         hadError = true;
1750 
1751       InitializedSomething = true;
1752 
1753       // Disable check for missing fields when designators are used.
1754       // This matches gcc behaviour.
1755       CheckForMissingFields = false;
1756       continue;
1757     }
1758 
1759     if (Field == FieldEnd) {
1760       // We've run out of fields. We're done.
1761       break;
1762     }
1763 
1764     // We've already initialized a member of a union. We're done.
1765     if (InitializedSomething && DeclType->isUnionType())
1766       break;
1767 
1768     // If we've hit the flexible array member at the end, we're done.
1769     if (Field->getType()->isIncompleteArrayType())
1770       break;
1771 
1772     if (Field->isUnnamedBitfield()) {
1773       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1774       ++Field;
1775       continue;
1776     }
1777 
1778     // Make sure we can use this declaration.
1779     bool InvalidUse;
1780     if (VerifyOnly)
1781       InvalidUse = !SemaRef.CanUseDecl(*Field);
1782     else
1783       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1784                                           IList->getInit(Index)->getLocStart());
1785     if (InvalidUse) {
1786       ++Index;
1787       ++Field;
1788       hadError = true;
1789       continue;
1790     }
1791 
1792     InitializedEntity MemberEntity =
1793       InitializedEntity::InitializeMember(*Field, &Entity);
1794     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1795                         StructuredList, StructuredIndex);
1796     InitializedSomething = true;
1797 
1798     if (DeclType->isUnionType() && !VerifyOnly) {
1799       // Initialize the first field within the union.
1800       StructuredList->setInitializedFieldInUnion(*Field);
1801     }
1802 
1803     ++Field;
1804   }
1805 
1806   // Emit warnings for missing struct field initializers.
1807   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1808       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1809       !DeclType->isUnionType()) {
1810     // It is possible we have one or more unnamed bitfields remaining.
1811     // Find first (if any) named field and emit warning.
1812     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1813          it != end; ++it) {
1814       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1815         SemaRef.Diag(IList->getSourceRange().getEnd(),
1816                      diag::warn_missing_field_initializers) << *it;
1817         break;
1818       }
1819     }
1820   }
1821 
1822   // Check that any remaining fields can be value-initialized.
1823   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1824       !Field->getType()->isIncompleteArrayType()) {
1825     // FIXME: Should check for holes left by designated initializers too.
1826     for (; Field != FieldEnd && !hadError; ++Field) {
1827       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1828         CheckEmptyInitializable(
1829             InitializedEntity::InitializeMember(*Field, &Entity),
1830             IList->getLocEnd());
1831     }
1832   }
1833 
1834   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1835       Index >= IList->getNumInits())
1836     return;
1837 
1838   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1839                              TopLevelObject)) {
1840     hadError = true;
1841     ++Index;
1842     return;
1843   }
1844 
1845   InitializedEntity MemberEntity =
1846     InitializedEntity::InitializeMember(*Field, &Entity);
1847 
1848   if (isa<InitListExpr>(IList->getInit(Index)))
1849     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1850                         StructuredList, StructuredIndex);
1851   else
1852     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1853                           StructuredList, StructuredIndex);
1854 }
1855 
1856 /// \brief Expand a field designator that refers to a member of an
1857 /// anonymous struct or union into a series of field designators that
1858 /// refers to the field within the appropriate subobject.
1859 ///
1860 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1861                                            DesignatedInitExpr *DIE,
1862                                            unsigned DesigIdx,
1863                                            IndirectFieldDecl *IndirectField) {
1864   typedef DesignatedInitExpr::Designator Designator;
1865 
1866   // Build the replacement designators.
1867   SmallVector<Designator, 4> Replacements;
1868   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1869        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1870     if (PI + 1 == PE)
1871       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1872                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1873                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1874     else
1875       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1876                                         SourceLocation(), SourceLocation()));
1877     assert(isa<FieldDecl>(*PI));
1878     Replacements.back().setField(cast<FieldDecl>(*PI));
1879   }
1880 
1881   // Expand the current designator into the set of replacement
1882   // designators, so we have a full subobject path down to where the
1883   // member of the anonymous struct/union is actually stored.
1884   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1885                         &Replacements[0] + Replacements.size());
1886 }
1887 
1888 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1889                                                    DesignatedInitExpr *DIE) {
1890   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1891   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1892   for (unsigned I = 0; I < NumIndexExprs; ++I)
1893     IndexExprs[I] = DIE->getSubExpr(I + 1);
1894   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1895                                     DIE->size(), IndexExprs,
1896                                     DIE->getEqualOrColonLoc(),
1897                                     DIE->usesGNUSyntax(), DIE->getInit());
1898 }
1899 
1900 namespace {
1901 
1902 // Callback to only accept typo corrections that are for field members of
1903 // the given struct or union.
1904 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1905  public:
1906   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1907       : Record(RD) {}
1908 
1909   bool ValidateCandidate(const TypoCorrection &candidate) override {
1910     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1911     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1912   }
1913 
1914  private:
1915   RecordDecl *Record;
1916 };
1917 
1918 }
1919 
1920 /// @brief Check the well-formedness of a C99 designated initializer.
1921 ///
1922 /// Determines whether the designated initializer @p DIE, which
1923 /// resides at the given @p Index within the initializer list @p
1924 /// IList, is well-formed for a current object of type @p DeclType
1925 /// (C99 6.7.8). The actual subobject that this designator refers to
1926 /// within the current subobject is returned in either
1927 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1928 ///
1929 /// @param IList  The initializer list in which this designated
1930 /// initializer occurs.
1931 ///
1932 /// @param DIE The designated initializer expression.
1933 ///
1934 /// @param DesigIdx  The index of the current designator.
1935 ///
1936 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1937 /// into which the designation in @p DIE should refer.
1938 ///
1939 /// @param NextField  If non-NULL and the first designator in @p DIE is
1940 /// a field, this will be set to the field declaration corresponding
1941 /// to the field named by the designator.
1942 ///
1943 /// @param NextElementIndex  If non-NULL and the first designator in @p
1944 /// DIE is an array designator or GNU array-range designator, this
1945 /// will be set to the last index initialized by this designator.
1946 ///
1947 /// @param Index  Index into @p IList where the designated initializer
1948 /// @p DIE occurs.
1949 ///
1950 /// @param StructuredList  The initializer list expression that
1951 /// describes all of the subobject initializers in the order they'll
1952 /// actually be initialized.
1953 ///
1954 /// @returns true if there was an error, false otherwise.
1955 bool
1956 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1957                                             InitListExpr *IList,
1958                                             DesignatedInitExpr *DIE,
1959                                             unsigned DesigIdx,
1960                                             QualType &CurrentObjectType,
1961                                           RecordDecl::field_iterator *NextField,
1962                                             llvm::APSInt *NextElementIndex,
1963                                             unsigned &Index,
1964                                             InitListExpr *StructuredList,
1965                                             unsigned &StructuredIndex,
1966                                             bool FinishSubobjectInit,
1967                                             bool TopLevelObject) {
1968   if (DesigIdx == DIE->size()) {
1969     // Check the actual initialization for the designated object type.
1970     bool prevHadError = hadError;
1971 
1972     // Temporarily remove the designator expression from the
1973     // initializer list that the child calls see, so that we don't try
1974     // to re-process the designator.
1975     unsigned OldIndex = Index;
1976     IList->setInit(OldIndex, DIE->getInit());
1977 
1978     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1979                         StructuredList, StructuredIndex);
1980 
1981     // Restore the designated initializer expression in the syntactic
1982     // form of the initializer list.
1983     if (IList->getInit(OldIndex) != DIE->getInit())
1984       DIE->setInit(IList->getInit(OldIndex));
1985     IList->setInit(OldIndex, DIE);
1986 
1987     return hadError && !prevHadError;
1988   }
1989 
1990   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1991   bool IsFirstDesignator = (DesigIdx == 0);
1992   if (!VerifyOnly) {
1993     assert((IsFirstDesignator || StructuredList) &&
1994            "Need a non-designated initializer list to start from");
1995 
1996     // Determine the structural initializer list that corresponds to the
1997     // current subobject.
1998     if (IsFirstDesignator)
1999       StructuredList = SyntacticToSemantic.lookup(IList);
2000     else {
2001       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2002           StructuredList->getInit(StructuredIndex) : nullptr;
2003       if (!ExistingInit && StructuredList->hasArrayFiller())
2004         ExistingInit = StructuredList->getArrayFiller();
2005 
2006       if (!ExistingInit)
2007         StructuredList =
2008           getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2009                                      StructuredList, StructuredIndex,
2010                                      SourceRange(D->getLocStart(),
2011                                                  DIE->getLocEnd()));
2012       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2013         StructuredList = Result;
2014       else {
2015         if (DesignatedInitUpdateExpr *E =
2016                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2017           StructuredList = E->getUpdater();
2018         else {
2019           DesignatedInitUpdateExpr *DIUE =
2020               new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2021                                         D->getLocStart(), ExistingInit,
2022                                         DIE->getLocEnd());
2023           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2024           StructuredList = DIUE->getUpdater();
2025         }
2026 
2027         // We need to check on source range validity because the previous
2028         // initializer does not have to be an explicit initializer. e.g.,
2029         //
2030         // struct P { int a, b; };
2031         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2032         //
2033         // There is an overwrite taking place because the first braced initializer
2034         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2035         if (ExistingInit->getSourceRange().isValid()) {
2036           // We are creating an initializer list that initializes the
2037           // subobjects of the current object, but there was already an
2038           // initialization that completely initialized the current
2039           // subobject, e.g., by a compound literal:
2040           //
2041           // struct X { int a, b; };
2042           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2043           //
2044           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2045           // designated initializer re-initializes the whole
2046           // subobject [0], overwriting previous initializers.
2047           SemaRef.Diag(D->getLocStart(),
2048                        diag::warn_subobject_initializer_overrides)
2049             << SourceRange(D->getLocStart(), DIE->getLocEnd());
2050 
2051           SemaRef.Diag(ExistingInit->getLocStart(),
2052                        diag::note_previous_initializer)
2053             << /*FIXME:has side effects=*/0
2054             << ExistingInit->getSourceRange();
2055         }
2056       }
2057     }
2058     assert(StructuredList && "Expected a structured initializer list");
2059   }
2060 
2061   if (D->isFieldDesignator()) {
2062     // C99 6.7.8p7:
2063     //
2064     //   If a designator has the form
2065     //
2066     //      . identifier
2067     //
2068     //   then the current object (defined below) shall have
2069     //   structure or union type and the identifier shall be the
2070     //   name of a member of that type.
2071     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2072     if (!RT) {
2073       SourceLocation Loc = D->getDotLoc();
2074       if (Loc.isInvalid())
2075         Loc = D->getFieldLoc();
2076       if (!VerifyOnly)
2077         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2078           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2079       ++Index;
2080       return true;
2081     }
2082 
2083     FieldDecl *KnownField = D->getField();
2084     if (!KnownField) {
2085       IdentifierInfo *FieldName = D->getFieldName();
2086       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2087       for (NamedDecl *ND : Lookup) {
2088         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2089           KnownField = FD;
2090           break;
2091         }
2092         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2093           // In verify mode, don't modify the original.
2094           if (VerifyOnly)
2095             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2096           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2097           D = DIE->getDesignator(DesigIdx);
2098           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2099           break;
2100         }
2101       }
2102       if (!KnownField) {
2103         if (VerifyOnly) {
2104           ++Index;
2105           return true;  // No typo correction when just trying this out.
2106         }
2107 
2108         // Name lookup found something, but it wasn't a field.
2109         if (!Lookup.empty()) {
2110           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2111             << FieldName;
2112           SemaRef.Diag(Lookup.front()->getLocation(),
2113                        diag::note_field_designator_found);
2114           ++Index;
2115           return true;
2116         }
2117 
2118         // Name lookup didn't find anything.
2119         // Determine whether this was a typo for another field name.
2120         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2121                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2122                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2123                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2124                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2125           SemaRef.diagnoseTypo(
2126               Corrected,
2127               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2128                 << FieldName << CurrentObjectType);
2129           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2130           hadError = true;
2131         } else {
2132           // Typo correction didn't find anything.
2133           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2134             << FieldName << CurrentObjectType;
2135           ++Index;
2136           return true;
2137         }
2138       }
2139     }
2140 
2141     unsigned FieldIndex = 0;
2142     for (auto *FI : RT->getDecl()->fields()) {
2143       if (FI->isUnnamedBitfield())
2144         continue;
2145       if (KnownField == FI)
2146         break;
2147       ++FieldIndex;
2148     }
2149 
2150     RecordDecl::field_iterator Field =
2151         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2152 
2153     // All of the fields of a union are located at the same place in
2154     // the initializer list.
2155     if (RT->getDecl()->isUnion()) {
2156       FieldIndex = 0;
2157       if (!VerifyOnly) {
2158         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2159         if (CurrentField && CurrentField != *Field) {
2160           assert(StructuredList->getNumInits() == 1
2161                  && "A union should never have more than one initializer!");
2162 
2163           // we're about to throw away an initializer, emit warning
2164           SemaRef.Diag(D->getFieldLoc(),
2165                        diag::warn_initializer_overrides)
2166             << D->getSourceRange();
2167           Expr *ExistingInit = StructuredList->getInit(0);
2168           SemaRef.Diag(ExistingInit->getLocStart(),
2169                        diag::note_previous_initializer)
2170             << /*FIXME:has side effects=*/0
2171             << ExistingInit->getSourceRange();
2172 
2173           // remove existing initializer
2174           StructuredList->resizeInits(SemaRef.Context, 0);
2175           StructuredList->setInitializedFieldInUnion(nullptr);
2176         }
2177 
2178         StructuredList->setInitializedFieldInUnion(*Field);
2179       }
2180     }
2181 
2182     // Make sure we can use this declaration.
2183     bool InvalidUse;
2184     if (VerifyOnly)
2185       InvalidUse = !SemaRef.CanUseDecl(*Field);
2186     else
2187       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2188     if (InvalidUse) {
2189       ++Index;
2190       return true;
2191     }
2192 
2193     if (!VerifyOnly) {
2194       // Update the designator with the field declaration.
2195       D->setField(*Field);
2196 
2197       // Make sure that our non-designated initializer list has space
2198       // for a subobject corresponding to this field.
2199       if (FieldIndex >= StructuredList->getNumInits())
2200         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2201     }
2202 
2203     // This designator names a flexible array member.
2204     if (Field->getType()->isIncompleteArrayType()) {
2205       bool Invalid = false;
2206       if ((DesigIdx + 1) != DIE->size()) {
2207         // We can't designate an object within the flexible array
2208         // member (because GCC doesn't allow it).
2209         if (!VerifyOnly) {
2210           DesignatedInitExpr::Designator *NextD
2211             = DIE->getDesignator(DesigIdx + 1);
2212           SemaRef.Diag(NextD->getLocStart(),
2213                         diag::err_designator_into_flexible_array_member)
2214             << SourceRange(NextD->getLocStart(),
2215                            DIE->getLocEnd());
2216           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2217             << *Field;
2218         }
2219         Invalid = true;
2220       }
2221 
2222       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2223           !isa<StringLiteral>(DIE->getInit())) {
2224         // The initializer is not an initializer list.
2225         if (!VerifyOnly) {
2226           SemaRef.Diag(DIE->getInit()->getLocStart(),
2227                         diag::err_flexible_array_init_needs_braces)
2228             << DIE->getInit()->getSourceRange();
2229           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2230             << *Field;
2231         }
2232         Invalid = true;
2233       }
2234 
2235       // Check GNU flexible array initializer.
2236       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2237                                              TopLevelObject))
2238         Invalid = true;
2239 
2240       if (Invalid) {
2241         ++Index;
2242         return true;
2243       }
2244 
2245       // Initialize the array.
2246       bool prevHadError = hadError;
2247       unsigned newStructuredIndex = FieldIndex;
2248       unsigned OldIndex = Index;
2249       IList->setInit(Index, DIE->getInit());
2250 
2251       InitializedEntity MemberEntity =
2252         InitializedEntity::InitializeMember(*Field, &Entity);
2253       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2254                           StructuredList, newStructuredIndex);
2255 
2256       IList->setInit(OldIndex, DIE);
2257       if (hadError && !prevHadError) {
2258         ++Field;
2259         ++FieldIndex;
2260         if (NextField)
2261           *NextField = Field;
2262         StructuredIndex = FieldIndex;
2263         return true;
2264       }
2265     } else {
2266       // Recurse to check later designated subobjects.
2267       QualType FieldType = Field->getType();
2268       unsigned newStructuredIndex = FieldIndex;
2269 
2270       InitializedEntity MemberEntity =
2271         InitializedEntity::InitializeMember(*Field, &Entity);
2272       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2273                                      FieldType, nullptr, nullptr, Index,
2274                                      StructuredList, newStructuredIndex,
2275                                      true, false))
2276         return true;
2277     }
2278 
2279     // Find the position of the next field to be initialized in this
2280     // subobject.
2281     ++Field;
2282     ++FieldIndex;
2283 
2284     // If this the first designator, our caller will continue checking
2285     // the rest of this struct/class/union subobject.
2286     if (IsFirstDesignator) {
2287       if (NextField)
2288         *NextField = Field;
2289       StructuredIndex = FieldIndex;
2290       return false;
2291     }
2292 
2293     if (!FinishSubobjectInit)
2294       return false;
2295 
2296     // We've already initialized something in the union; we're done.
2297     if (RT->getDecl()->isUnion())
2298       return hadError;
2299 
2300     // Check the remaining fields within this class/struct/union subobject.
2301     bool prevHadError = hadError;
2302 
2303     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2304                           StructuredList, FieldIndex);
2305     return hadError && !prevHadError;
2306   }
2307 
2308   // C99 6.7.8p6:
2309   //
2310   //   If a designator has the form
2311   //
2312   //      [ constant-expression ]
2313   //
2314   //   then the current object (defined below) shall have array
2315   //   type and the expression shall be an integer constant
2316   //   expression. If the array is of unknown size, any
2317   //   nonnegative value is valid.
2318   //
2319   // Additionally, cope with the GNU extension that permits
2320   // designators of the form
2321   //
2322   //      [ constant-expression ... constant-expression ]
2323   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2324   if (!AT) {
2325     if (!VerifyOnly)
2326       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2327         << CurrentObjectType;
2328     ++Index;
2329     return true;
2330   }
2331 
2332   Expr *IndexExpr = nullptr;
2333   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2334   if (D->isArrayDesignator()) {
2335     IndexExpr = DIE->getArrayIndex(*D);
2336     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2337     DesignatedEndIndex = DesignatedStartIndex;
2338   } else {
2339     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2340 
2341     DesignatedStartIndex =
2342       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2343     DesignatedEndIndex =
2344       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2345     IndexExpr = DIE->getArrayRangeEnd(*D);
2346 
2347     // Codegen can't handle evaluating array range designators that have side
2348     // effects, because we replicate the AST value for each initialized element.
2349     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2350     // elements with something that has a side effect, so codegen can emit an
2351     // "error unsupported" error instead of miscompiling the app.
2352     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2353         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2354       FullyStructuredList->sawArrayRangeDesignator();
2355   }
2356 
2357   if (isa<ConstantArrayType>(AT)) {
2358     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2359     DesignatedStartIndex
2360       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2361     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2362     DesignatedEndIndex
2363       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2364     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2365     if (DesignatedEndIndex >= MaxElements) {
2366       if (!VerifyOnly)
2367         SemaRef.Diag(IndexExpr->getLocStart(),
2368                       diag::err_array_designator_too_large)
2369           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2370           << IndexExpr->getSourceRange();
2371       ++Index;
2372       return true;
2373     }
2374   } else {
2375     // Make sure the bit-widths and signedness match.
2376     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2377       DesignatedEndIndex
2378         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2379     else if (DesignatedStartIndex.getBitWidth() <
2380              DesignatedEndIndex.getBitWidth())
2381       DesignatedStartIndex
2382         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2383     DesignatedStartIndex.setIsUnsigned(true);
2384     DesignatedEndIndex.setIsUnsigned(true);
2385   }
2386 
2387   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2388     // We're modifying a string literal init; we have to decompose the string
2389     // so we can modify the individual characters.
2390     ASTContext &Context = SemaRef.Context;
2391     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2392 
2393     // Compute the character type
2394     QualType CharTy = AT->getElementType();
2395 
2396     // Compute the type of the integer literals.
2397     QualType PromotedCharTy = CharTy;
2398     if (CharTy->isPromotableIntegerType())
2399       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2400     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2401 
2402     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2403       // Get the length of the string.
2404       uint64_t StrLen = SL->getLength();
2405       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2406         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2407       StructuredList->resizeInits(Context, StrLen);
2408 
2409       // Build a literal for each character in the string, and put them into
2410       // the init list.
2411       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2412         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2413         Expr *Init = new (Context) IntegerLiteral(
2414             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2415         if (CharTy != PromotedCharTy)
2416           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2417                                           Init, nullptr, VK_RValue);
2418         StructuredList->updateInit(Context, i, Init);
2419       }
2420     } else {
2421       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2422       std::string Str;
2423       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2424 
2425       // Get the length of the string.
2426       uint64_t StrLen = Str.size();
2427       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2428         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2429       StructuredList->resizeInits(Context, StrLen);
2430 
2431       // Build a literal for each character in the string, and put them into
2432       // the init list.
2433       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2434         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2435         Expr *Init = new (Context) IntegerLiteral(
2436             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2437         if (CharTy != PromotedCharTy)
2438           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2439                                           Init, nullptr, VK_RValue);
2440         StructuredList->updateInit(Context, i, Init);
2441       }
2442     }
2443   }
2444 
2445   // Make sure that our non-designated initializer list has space
2446   // for a subobject corresponding to this array element.
2447   if (!VerifyOnly &&
2448       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2449     StructuredList->resizeInits(SemaRef.Context,
2450                                 DesignatedEndIndex.getZExtValue() + 1);
2451 
2452   // Repeatedly perform subobject initializations in the range
2453   // [DesignatedStartIndex, DesignatedEndIndex].
2454 
2455   // Move to the next designator
2456   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2457   unsigned OldIndex = Index;
2458 
2459   InitializedEntity ElementEntity =
2460     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2461 
2462   while (DesignatedStartIndex <= DesignatedEndIndex) {
2463     // Recurse to check later designated subobjects.
2464     QualType ElementType = AT->getElementType();
2465     Index = OldIndex;
2466 
2467     ElementEntity.setElementIndex(ElementIndex);
2468     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2469                                    ElementType, nullptr, nullptr, Index,
2470                                    StructuredList, ElementIndex,
2471                                    (DesignatedStartIndex == DesignatedEndIndex),
2472                                    false))
2473       return true;
2474 
2475     // Move to the next index in the array that we'll be initializing.
2476     ++DesignatedStartIndex;
2477     ElementIndex = DesignatedStartIndex.getZExtValue();
2478   }
2479 
2480   // If this the first designator, our caller will continue checking
2481   // the rest of this array subobject.
2482   if (IsFirstDesignator) {
2483     if (NextElementIndex)
2484       *NextElementIndex = DesignatedStartIndex;
2485     StructuredIndex = ElementIndex;
2486     return false;
2487   }
2488 
2489   if (!FinishSubobjectInit)
2490     return false;
2491 
2492   // Check the remaining elements within this array subobject.
2493   bool prevHadError = hadError;
2494   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2495                  /*SubobjectIsDesignatorContext=*/false, Index,
2496                  StructuredList, ElementIndex);
2497   return hadError && !prevHadError;
2498 }
2499 
2500 // Get the structured initializer list for a subobject of type
2501 // @p CurrentObjectType.
2502 InitListExpr *
2503 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2504                                             QualType CurrentObjectType,
2505                                             InitListExpr *StructuredList,
2506                                             unsigned StructuredIndex,
2507                                             SourceRange InitRange,
2508                                             bool IsFullyOverwritten) {
2509   if (VerifyOnly)
2510     return nullptr; // No structured list in verification-only mode.
2511   Expr *ExistingInit = nullptr;
2512   if (!StructuredList)
2513     ExistingInit = SyntacticToSemantic.lookup(IList);
2514   else if (StructuredIndex < StructuredList->getNumInits())
2515     ExistingInit = StructuredList->getInit(StructuredIndex);
2516 
2517   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2518     // There might have already been initializers for subobjects of the current
2519     // object, but a subsequent initializer list will overwrite the entirety
2520     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2521     //
2522     // struct P { char x[6]; };
2523     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2524     //
2525     // The first designated initializer is ignored, and l.x is just "f".
2526     if (!IsFullyOverwritten)
2527       return Result;
2528 
2529   if (ExistingInit) {
2530     // We are creating an initializer list that initializes the
2531     // subobjects of the current object, but there was already an
2532     // initialization that completely initialized the current
2533     // subobject, e.g., by a compound literal:
2534     //
2535     // struct X { int a, b; };
2536     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2537     //
2538     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2539     // designated initializer re-initializes the whole
2540     // subobject [0], overwriting previous initializers.
2541     SemaRef.Diag(InitRange.getBegin(),
2542                  diag::warn_subobject_initializer_overrides)
2543       << InitRange;
2544     SemaRef.Diag(ExistingInit->getLocStart(),
2545                   diag::note_previous_initializer)
2546       << /*FIXME:has side effects=*/0
2547       << ExistingInit->getSourceRange();
2548   }
2549 
2550   InitListExpr *Result
2551     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2552                                          InitRange.getBegin(), None,
2553                                          InitRange.getEnd());
2554 
2555   QualType ResultType = CurrentObjectType;
2556   if (!ResultType->isArrayType())
2557     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2558   Result->setType(ResultType);
2559 
2560   // Pre-allocate storage for the structured initializer list.
2561   unsigned NumElements = 0;
2562   unsigned NumInits = 0;
2563   bool GotNumInits = false;
2564   if (!StructuredList) {
2565     NumInits = IList->getNumInits();
2566     GotNumInits = true;
2567   } else if (Index < IList->getNumInits()) {
2568     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2569       NumInits = SubList->getNumInits();
2570       GotNumInits = true;
2571     }
2572   }
2573 
2574   if (const ArrayType *AType
2575       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2576     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2577       NumElements = CAType->getSize().getZExtValue();
2578       // Simple heuristic so that we don't allocate a very large
2579       // initializer with many empty entries at the end.
2580       if (GotNumInits && NumElements > NumInits)
2581         NumElements = 0;
2582     }
2583   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2584     NumElements = VType->getNumElements();
2585   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2586     RecordDecl *RDecl = RType->getDecl();
2587     if (RDecl->isUnion())
2588       NumElements = 1;
2589     else
2590       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2591   }
2592 
2593   Result->reserveInits(SemaRef.Context, NumElements);
2594 
2595   // Link this new initializer list into the structured initializer
2596   // lists.
2597   if (StructuredList)
2598     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2599   else {
2600     Result->setSyntacticForm(IList);
2601     SyntacticToSemantic[IList] = Result;
2602   }
2603 
2604   return Result;
2605 }
2606 
2607 /// Update the initializer at index @p StructuredIndex within the
2608 /// structured initializer list to the value @p expr.
2609 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2610                                                   unsigned &StructuredIndex,
2611                                                   Expr *expr) {
2612   // No structured initializer list to update
2613   if (!StructuredList)
2614     return;
2615 
2616   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2617                                                   StructuredIndex, expr)) {
2618     // This initializer overwrites a previous initializer. Warn.
2619     // We need to check on source range validity because the previous
2620     // initializer does not have to be an explicit initializer.
2621     // struct P { int a, b; };
2622     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2623     // There is an overwrite taking place because the first braced initializer
2624     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2625     if (PrevInit->getSourceRange().isValid()) {
2626       SemaRef.Diag(expr->getLocStart(),
2627                    diag::warn_initializer_overrides)
2628         << expr->getSourceRange();
2629 
2630       SemaRef.Diag(PrevInit->getLocStart(),
2631                    diag::note_previous_initializer)
2632         << /*FIXME:has side effects=*/0
2633         << PrevInit->getSourceRange();
2634     }
2635   }
2636 
2637   ++StructuredIndex;
2638 }
2639 
2640 /// Check that the given Index expression is a valid array designator
2641 /// value. This is essentially just a wrapper around
2642 /// VerifyIntegerConstantExpression that also checks for negative values
2643 /// and produces a reasonable diagnostic if there is a
2644 /// failure. Returns the index expression, possibly with an implicit cast
2645 /// added, on success.  If everything went okay, Value will receive the
2646 /// value of the constant expression.
2647 static ExprResult
2648 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2649   SourceLocation Loc = Index->getLocStart();
2650 
2651   // Make sure this is an integer constant expression.
2652   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2653   if (Result.isInvalid())
2654     return Result;
2655 
2656   if (Value.isSigned() && Value.isNegative())
2657     return S.Diag(Loc, diag::err_array_designator_negative)
2658       << Value.toString(10) << Index->getSourceRange();
2659 
2660   Value.setIsUnsigned(true);
2661   return Result;
2662 }
2663 
2664 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2665                                             SourceLocation Loc,
2666                                             bool GNUSyntax,
2667                                             ExprResult Init) {
2668   typedef DesignatedInitExpr::Designator ASTDesignator;
2669 
2670   bool Invalid = false;
2671   SmallVector<ASTDesignator, 32> Designators;
2672   SmallVector<Expr *, 32> InitExpressions;
2673 
2674   // Build designators and check array designator expressions.
2675   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2676     const Designator &D = Desig.getDesignator(Idx);
2677     switch (D.getKind()) {
2678     case Designator::FieldDesignator:
2679       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2680                                           D.getFieldLoc()));
2681       break;
2682 
2683     case Designator::ArrayDesignator: {
2684       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2685       llvm::APSInt IndexValue;
2686       if (!Index->isTypeDependent() && !Index->isValueDependent())
2687         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2688       if (!Index)
2689         Invalid = true;
2690       else {
2691         Designators.push_back(ASTDesignator(InitExpressions.size(),
2692                                             D.getLBracketLoc(),
2693                                             D.getRBracketLoc()));
2694         InitExpressions.push_back(Index);
2695       }
2696       break;
2697     }
2698 
2699     case Designator::ArrayRangeDesignator: {
2700       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2701       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2702       llvm::APSInt StartValue;
2703       llvm::APSInt EndValue;
2704       bool StartDependent = StartIndex->isTypeDependent() ||
2705                             StartIndex->isValueDependent();
2706       bool EndDependent = EndIndex->isTypeDependent() ||
2707                           EndIndex->isValueDependent();
2708       if (!StartDependent)
2709         StartIndex =
2710             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2711       if (!EndDependent)
2712         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2713 
2714       if (!StartIndex || !EndIndex)
2715         Invalid = true;
2716       else {
2717         // Make sure we're comparing values with the same bit width.
2718         if (StartDependent || EndDependent) {
2719           // Nothing to compute.
2720         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2721           EndValue = EndValue.extend(StartValue.getBitWidth());
2722         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2723           StartValue = StartValue.extend(EndValue.getBitWidth());
2724 
2725         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2726           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2727             << StartValue.toString(10) << EndValue.toString(10)
2728             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2729           Invalid = true;
2730         } else {
2731           Designators.push_back(ASTDesignator(InitExpressions.size(),
2732                                               D.getLBracketLoc(),
2733                                               D.getEllipsisLoc(),
2734                                               D.getRBracketLoc()));
2735           InitExpressions.push_back(StartIndex);
2736           InitExpressions.push_back(EndIndex);
2737         }
2738       }
2739       break;
2740     }
2741     }
2742   }
2743 
2744   if (Invalid || Init.isInvalid())
2745     return ExprError();
2746 
2747   // Clear out the expressions within the designation.
2748   Desig.ClearExprs(*this);
2749 
2750   DesignatedInitExpr *DIE
2751     = DesignatedInitExpr::Create(Context,
2752                                  Designators.data(), Designators.size(),
2753                                  InitExpressions, Loc, GNUSyntax,
2754                                  Init.getAs<Expr>());
2755 
2756   if (!getLangOpts().C99)
2757     Diag(DIE->getLocStart(), diag::ext_designated_init)
2758       << DIE->getSourceRange();
2759 
2760   return DIE;
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 // Initialization entity
2765 //===----------------------------------------------------------------------===//
2766 
2767 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2768                                      const InitializedEntity &Parent)
2769   : Parent(&Parent), Index(Index)
2770 {
2771   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2772     Kind = EK_ArrayElement;
2773     Type = AT->getElementType();
2774   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2775     Kind = EK_VectorElement;
2776     Type = VT->getElementType();
2777   } else {
2778     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2779     assert(CT && "Unexpected type");
2780     Kind = EK_ComplexElement;
2781     Type = CT->getElementType();
2782   }
2783 }
2784 
2785 InitializedEntity
2786 InitializedEntity::InitializeBase(ASTContext &Context,
2787                                   const CXXBaseSpecifier *Base,
2788                                   bool IsInheritedVirtualBase) {
2789   InitializedEntity Result;
2790   Result.Kind = EK_Base;
2791   Result.Parent = nullptr;
2792   Result.Base = reinterpret_cast<uintptr_t>(Base);
2793   if (IsInheritedVirtualBase)
2794     Result.Base |= 0x01;
2795 
2796   Result.Type = Base->getType();
2797   return Result;
2798 }
2799 
2800 DeclarationName InitializedEntity::getName() const {
2801   switch (getKind()) {
2802   case EK_Parameter:
2803   case EK_Parameter_CF_Audited: {
2804     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2805     return (D ? D->getDeclName() : DeclarationName());
2806   }
2807 
2808   case EK_Variable:
2809   case EK_Member:
2810     return VariableOrMember->getDeclName();
2811 
2812   case EK_LambdaCapture:
2813     return DeclarationName(Capture.VarID);
2814 
2815   case EK_Result:
2816   case EK_Exception:
2817   case EK_New:
2818   case EK_Temporary:
2819   case EK_Base:
2820   case EK_Delegating:
2821   case EK_ArrayElement:
2822   case EK_VectorElement:
2823   case EK_ComplexElement:
2824   case EK_BlockElement:
2825   case EK_CompoundLiteralInit:
2826   case EK_RelatedResult:
2827     return DeclarationName();
2828   }
2829 
2830   llvm_unreachable("Invalid EntityKind!");
2831 }
2832 
2833 DeclaratorDecl *InitializedEntity::getDecl() const {
2834   switch (getKind()) {
2835   case EK_Variable:
2836   case EK_Member:
2837     return VariableOrMember;
2838 
2839   case EK_Parameter:
2840   case EK_Parameter_CF_Audited:
2841     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2842 
2843   case EK_Result:
2844   case EK_Exception:
2845   case EK_New:
2846   case EK_Temporary:
2847   case EK_Base:
2848   case EK_Delegating:
2849   case EK_ArrayElement:
2850   case EK_VectorElement:
2851   case EK_ComplexElement:
2852   case EK_BlockElement:
2853   case EK_LambdaCapture:
2854   case EK_CompoundLiteralInit:
2855   case EK_RelatedResult:
2856     return nullptr;
2857   }
2858 
2859   llvm_unreachable("Invalid EntityKind!");
2860 }
2861 
2862 bool InitializedEntity::allowsNRVO() const {
2863   switch (getKind()) {
2864   case EK_Result:
2865   case EK_Exception:
2866     return LocAndNRVO.NRVO;
2867 
2868   case EK_Variable:
2869   case EK_Parameter:
2870   case EK_Parameter_CF_Audited:
2871   case EK_Member:
2872   case EK_New:
2873   case EK_Temporary:
2874   case EK_CompoundLiteralInit:
2875   case EK_Base:
2876   case EK_Delegating:
2877   case EK_ArrayElement:
2878   case EK_VectorElement:
2879   case EK_ComplexElement:
2880   case EK_BlockElement:
2881   case EK_LambdaCapture:
2882   case EK_RelatedResult:
2883     break;
2884   }
2885 
2886   return false;
2887 }
2888 
2889 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2890   assert(getParent() != this);
2891   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2892   for (unsigned I = 0; I != Depth; ++I)
2893     OS << "`-";
2894 
2895   switch (getKind()) {
2896   case EK_Variable: OS << "Variable"; break;
2897   case EK_Parameter: OS << "Parameter"; break;
2898   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2899     break;
2900   case EK_Result: OS << "Result"; break;
2901   case EK_Exception: OS << "Exception"; break;
2902   case EK_Member: OS << "Member"; break;
2903   case EK_New: OS << "New"; break;
2904   case EK_Temporary: OS << "Temporary"; break;
2905   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2906   case EK_RelatedResult: OS << "RelatedResult"; break;
2907   case EK_Base: OS << "Base"; break;
2908   case EK_Delegating: OS << "Delegating"; break;
2909   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2910   case EK_VectorElement: OS << "VectorElement " << Index; break;
2911   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2912   case EK_BlockElement: OS << "Block"; break;
2913   case EK_LambdaCapture:
2914     OS << "LambdaCapture ";
2915     OS << DeclarationName(Capture.VarID);
2916     break;
2917   }
2918 
2919   if (Decl *D = getDecl()) {
2920     OS << " ";
2921     cast<NamedDecl>(D)->printQualifiedName(OS);
2922   }
2923 
2924   OS << " '" << getType().getAsString() << "'\n";
2925 
2926   return Depth + 1;
2927 }
2928 
2929 void InitializedEntity::dump() const {
2930   dumpImpl(llvm::errs());
2931 }
2932 
2933 //===----------------------------------------------------------------------===//
2934 // Initialization sequence
2935 //===----------------------------------------------------------------------===//
2936 
2937 void InitializationSequence::Step::Destroy() {
2938   switch (Kind) {
2939   case SK_ResolveAddressOfOverloadedFunction:
2940   case SK_CastDerivedToBaseRValue:
2941   case SK_CastDerivedToBaseXValue:
2942   case SK_CastDerivedToBaseLValue:
2943   case SK_BindReference:
2944   case SK_BindReferenceToTemporary:
2945   case SK_ExtraneousCopyToTemporary:
2946   case SK_UserConversion:
2947   case SK_QualificationConversionRValue:
2948   case SK_QualificationConversionXValue:
2949   case SK_QualificationConversionLValue:
2950   case SK_AtomicConversion:
2951   case SK_LValueToRValue:
2952   case SK_ListInitialization:
2953   case SK_UnwrapInitList:
2954   case SK_RewrapInitList:
2955   case SK_ConstructorInitialization:
2956   case SK_ConstructorInitializationFromList:
2957   case SK_ZeroInitialization:
2958   case SK_CAssignment:
2959   case SK_StringInit:
2960   case SK_ObjCObjectConversion:
2961   case SK_ArrayInit:
2962   case SK_ParenthesizedArrayInit:
2963   case SK_PassByIndirectCopyRestore:
2964   case SK_PassByIndirectRestore:
2965   case SK_ProduceObjCObject:
2966   case SK_StdInitializerList:
2967   case SK_StdInitializerListConstructorCall:
2968   case SK_OCLSamplerInit:
2969   case SK_OCLZeroEvent:
2970     break;
2971 
2972   case SK_ConversionSequence:
2973   case SK_ConversionSequenceNoNarrowing:
2974     delete ICS;
2975   }
2976 }
2977 
2978 bool InitializationSequence::isDirectReferenceBinding() const {
2979   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2980 }
2981 
2982 bool InitializationSequence::isAmbiguous() const {
2983   if (!Failed())
2984     return false;
2985 
2986   switch (getFailureKind()) {
2987   case FK_TooManyInitsForReference:
2988   case FK_ArrayNeedsInitList:
2989   case FK_ArrayNeedsInitListOrStringLiteral:
2990   case FK_ArrayNeedsInitListOrWideStringLiteral:
2991   case FK_NarrowStringIntoWideCharArray:
2992   case FK_WideStringIntoCharArray:
2993   case FK_IncompatWideStringIntoWideChar:
2994   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2995   case FK_NonConstLValueReferenceBindingToTemporary:
2996   case FK_NonConstLValueReferenceBindingToUnrelated:
2997   case FK_RValueReferenceBindingToLValue:
2998   case FK_ReferenceInitDropsQualifiers:
2999   case FK_ReferenceInitFailed:
3000   case FK_ConversionFailed:
3001   case FK_ConversionFromPropertyFailed:
3002   case FK_TooManyInitsForScalar:
3003   case FK_ReferenceBindingToInitList:
3004   case FK_InitListBadDestinationType:
3005   case FK_DefaultInitOfConst:
3006   case FK_Incomplete:
3007   case FK_ArrayTypeMismatch:
3008   case FK_NonConstantArrayInit:
3009   case FK_ListInitializationFailed:
3010   case FK_VariableLengthArrayHasInitializer:
3011   case FK_PlaceholderType:
3012   case FK_ExplicitConstructor:
3013     return false;
3014 
3015   case FK_ReferenceInitOverloadFailed:
3016   case FK_UserConversionOverloadFailed:
3017   case FK_ConstructorOverloadFailed:
3018   case FK_ListConstructorOverloadFailed:
3019     return FailedOverloadResult == OR_Ambiguous;
3020   }
3021 
3022   llvm_unreachable("Invalid EntityKind!");
3023 }
3024 
3025 bool InitializationSequence::isConstructorInitialization() const {
3026   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3027 }
3028 
3029 void
3030 InitializationSequence
3031 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3032                                    DeclAccessPair Found,
3033                                    bool HadMultipleCandidates) {
3034   Step S;
3035   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3036   S.Type = Function->getType();
3037   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3038   S.Function.Function = Function;
3039   S.Function.FoundDecl = Found;
3040   Steps.push_back(S);
3041 }
3042 
3043 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3044                                                       ExprValueKind VK) {
3045   Step S;
3046   switch (VK) {
3047   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3048   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3049   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3050   }
3051   S.Type = BaseType;
3052   Steps.push_back(S);
3053 }
3054 
3055 void InitializationSequence::AddReferenceBindingStep(QualType T,
3056                                                      bool BindingTemporary) {
3057   Step S;
3058   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3059   S.Type = T;
3060   Steps.push_back(S);
3061 }
3062 
3063 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3064   Step S;
3065   S.Kind = SK_ExtraneousCopyToTemporary;
3066   S.Type = T;
3067   Steps.push_back(S);
3068 }
3069 
3070 void
3071 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3072                                               DeclAccessPair FoundDecl,
3073                                               QualType T,
3074                                               bool HadMultipleCandidates) {
3075   Step S;
3076   S.Kind = SK_UserConversion;
3077   S.Type = T;
3078   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3079   S.Function.Function = Function;
3080   S.Function.FoundDecl = FoundDecl;
3081   Steps.push_back(S);
3082 }
3083 
3084 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3085                                                             ExprValueKind VK) {
3086   Step S;
3087   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3088   switch (VK) {
3089   case VK_RValue:
3090     S.Kind = SK_QualificationConversionRValue;
3091     break;
3092   case VK_XValue:
3093     S.Kind = SK_QualificationConversionXValue;
3094     break;
3095   case VK_LValue:
3096     S.Kind = SK_QualificationConversionLValue;
3097     break;
3098   }
3099   S.Type = Ty;
3100   Steps.push_back(S);
3101 }
3102 
3103 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3104   Step S;
3105   S.Kind = SK_AtomicConversion;
3106   S.Type = Ty;
3107   Steps.push_back(S);
3108 }
3109 
3110 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3111   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3112 
3113   Step S;
3114   S.Kind = SK_LValueToRValue;
3115   S.Type = Ty;
3116   Steps.push_back(S);
3117 }
3118 
3119 void InitializationSequence::AddConversionSequenceStep(
3120     const ImplicitConversionSequence &ICS, QualType T,
3121     bool TopLevelOfInitList) {
3122   Step S;
3123   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3124                               : SK_ConversionSequence;
3125   S.Type = T;
3126   S.ICS = new ImplicitConversionSequence(ICS);
3127   Steps.push_back(S);
3128 }
3129 
3130 void InitializationSequence::AddListInitializationStep(QualType T) {
3131   Step S;
3132   S.Kind = SK_ListInitialization;
3133   S.Type = T;
3134   Steps.push_back(S);
3135 }
3136 
3137 void
3138 InitializationSequence
3139 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
3140                                    AccessSpecifier Access,
3141                                    QualType T,
3142                                    bool HadMultipleCandidates,
3143                                    bool FromInitList, bool AsInitList) {
3144   Step S;
3145   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3146                                      : SK_ConstructorInitializationFromList
3147                         : SK_ConstructorInitialization;
3148   S.Type = T;
3149   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3150   S.Function.Function = Constructor;
3151   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
3152   Steps.push_back(S);
3153 }
3154 
3155 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3156   Step S;
3157   S.Kind = SK_ZeroInitialization;
3158   S.Type = T;
3159   Steps.push_back(S);
3160 }
3161 
3162 void InitializationSequence::AddCAssignmentStep(QualType T) {
3163   Step S;
3164   S.Kind = SK_CAssignment;
3165   S.Type = T;
3166   Steps.push_back(S);
3167 }
3168 
3169 void InitializationSequence::AddStringInitStep(QualType T) {
3170   Step S;
3171   S.Kind = SK_StringInit;
3172   S.Type = T;
3173   Steps.push_back(S);
3174 }
3175 
3176 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3177   Step S;
3178   S.Kind = SK_ObjCObjectConversion;
3179   S.Type = T;
3180   Steps.push_back(S);
3181 }
3182 
3183 void InitializationSequence::AddArrayInitStep(QualType T) {
3184   Step S;
3185   S.Kind = SK_ArrayInit;
3186   S.Type = T;
3187   Steps.push_back(S);
3188 }
3189 
3190 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3191   Step S;
3192   S.Kind = SK_ParenthesizedArrayInit;
3193   S.Type = T;
3194   Steps.push_back(S);
3195 }
3196 
3197 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3198                                                               bool shouldCopy) {
3199   Step s;
3200   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3201                        : SK_PassByIndirectRestore);
3202   s.Type = type;
3203   Steps.push_back(s);
3204 }
3205 
3206 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3207   Step S;
3208   S.Kind = SK_ProduceObjCObject;
3209   S.Type = T;
3210   Steps.push_back(S);
3211 }
3212 
3213 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3214   Step S;
3215   S.Kind = SK_StdInitializerList;
3216   S.Type = T;
3217   Steps.push_back(S);
3218 }
3219 
3220 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3221   Step S;
3222   S.Kind = SK_OCLSamplerInit;
3223   S.Type = T;
3224   Steps.push_back(S);
3225 }
3226 
3227 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3228   Step S;
3229   S.Kind = SK_OCLZeroEvent;
3230   S.Type = T;
3231   Steps.push_back(S);
3232 }
3233 
3234 void InitializationSequence::RewrapReferenceInitList(QualType T,
3235                                                      InitListExpr *Syntactic) {
3236   assert(Syntactic->getNumInits() == 1 &&
3237          "Can only rewrap trivial init lists.");
3238   Step S;
3239   S.Kind = SK_UnwrapInitList;
3240   S.Type = Syntactic->getInit(0)->getType();
3241   Steps.insert(Steps.begin(), S);
3242 
3243   S.Kind = SK_RewrapInitList;
3244   S.Type = T;
3245   S.WrappingSyntacticList = Syntactic;
3246   Steps.push_back(S);
3247 }
3248 
3249 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3250                                                 OverloadingResult Result) {
3251   setSequenceKind(FailedSequence);
3252   this->Failure = Failure;
3253   this->FailedOverloadResult = Result;
3254 }
3255 
3256 //===----------------------------------------------------------------------===//
3257 // Attempt initialization
3258 //===----------------------------------------------------------------------===//
3259 
3260 /// Tries to add a zero initializer. Returns true if that worked.
3261 static bool
3262 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3263                                    const InitializedEntity &Entity) {
3264   if (Entity.getKind() != InitializedEntity::EK_Variable)
3265     return false;
3266 
3267   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3268   if (VD->getInit() || VD->getLocEnd().isMacroID())
3269     return false;
3270 
3271   QualType VariableTy = VD->getType().getCanonicalType();
3272   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3273   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3274   if (!Init.empty()) {
3275     Sequence.AddZeroInitializationStep(Entity.getType());
3276     Sequence.SetZeroInitializationFixit(Init, Loc);
3277     return true;
3278   }
3279   return false;
3280 }
3281 
3282 static void MaybeProduceObjCObject(Sema &S,
3283                                    InitializationSequence &Sequence,
3284                                    const InitializedEntity &Entity) {
3285   if (!S.getLangOpts().ObjCAutoRefCount) return;
3286 
3287   /// When initializing a parameter, produce the value if it's marked
3288   /// __attribute__((ns_consumed)).
3289   if (Entity.isParameterKind()) {
3290     if (!Entity.isParameterConsumed())
3291       return;
3292 
3293     assert(Entity.getType()->isObjCRetainableType() &&
3294            "consuming an object of unretainable type?");
3295     Sequence.AddProduceObjCObjectStep(Entity.getType());
3296 
3297   /// When initializing a return value, if the return type is a
3298   /// retainable type, then returns need to immediately retain the
3299   /// object.  If an autorelease is required, it will be done at the
3300   /// last instant.
3301   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3302     if (!Entity.getType()->isObjCRetainableType())
3303       return;
3304 
3305     Sequence.AddProduceObjCObjectStep(Entity.getType());
3306   }
3307 }
3308 
3309 static void TryListInitialization(Sema &S,
3310                                   const InitializedEntity &Entity,
3311                                   const InitializationKind &Kind,
3312                                   InitListExpr *InitList,
3313                                   InitializationSequence &Sequence);
3314 
3315 /// \brief When initializing from init list via constructor, handle
3316 /// initialization of an object of type std::initializer_list<T>.
3317 ///
3318 /// \return true if we have handled initialization of an object of type
3319 /// std::initializer_list<T>, false otherwise.
3320 static bool TryInitializerListConstruction(Sema &S,
3321                                            InitListExpr *List,
3322                                            QualType DestType,
3323                                            InitializationSequence &Sequence) {
3324   QualType E;
3325   if (!S.isStdInitializerList(DestType, &E))
3326     return false;
3327 
3328   if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
3329     Sequence.setIncompleteTypeFailure(E);
3330     return true;
3331   }
3332 
3333   // Try initializing a temporary array from the init list.
3334   QualType ArrayType = S.Context.getConstantArrayType(
3335       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3336                                  List->getNumInits()),
3337       clang::ArrayType::Normal, 0);
3338   InitializedEntity HiddenArray =
3339       InitializedEntity::InitializeTemporary(ArrayType);
3340   InitializationKind Kind =
3341       InitializationKind::CreateDirectList(List->getExprLoc());
3342   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3343   if (Sequence)
3344     Sequence.AddStdInitializerListConstructionStep(DestType);
3345   return true;
3346 }
3347 
3348 static OverloadingResult
3349 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3350                            MultiExprArg Args,
3351                            OverloadCandidateSet &CandidateSet,
3352                            DeclContext::lookup_result Ctors,
3353                            OverloadCandidateSet::iterator &Best,
3354                            bool CopyInitializing, bool AllowExplicit,
3355                            bool OnlyListConstructors, bool IsListInit) {
3356   CandidateSet.clear();
3357 
3358   for (NamedDecl *D : Ctors) {
3359     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3360     bool SuppressUserConversions = false;
3361 
3362     // Find the constructor (which may be a template).
3363     CXXConstructorDecl *Constructor = nullptr;
3364     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3365     if (ConstructorTmpl)
3366       Constructor = cast<CXXConstructorDecl>(
3367                                            ConstructorTmpl->getTemplatedDecl());
3368     else {
3369       Constructor = cast<CXXConstructorDecl>(D);
3370 
3371       // C++11 [over.best.ics]p4:
3372       //   ... and the constructor or user-defined conversion function is a
3373       //   candidate by
3374       //   - 13.3.1.3, when the argument is the temporary in the second step
3375       //     of a class copy-initialization, or
3376       //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases),
3377       //   user-defined conversion sequences are not considered.
3378       // FIXME: This breaks backward compatibility, e.g. PR12117. As a
3379       //        temporary fix, let's re-instate the third bullet above until
3380       //        there is a resolution in the standard, i.e.,
3381       //   - 13.3.1.7 when the initializer list has exactly one element that is
3382       //     itself an initializer list and a conversion to some class X or
3383       //     reference to (possibly cv-qualified) X is considered for the first
3384       //     parameter of a constructor of X.
3385       if ((CopyInitializing ||
3386            (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3387           Constructor->isCopyOrMoveConstructor())
3388         SuppressUserConversions = true;
3389     }
3390 
3391     if (!Constructor->isInvalidDecl() &&
3392         (AllowExplicit || !Constructor->isExplicit()) &&
3393         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3394       if (ConstructorTmpl)
3395         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3396                                        /*ExplicitArgs*/ nullptr, Args,
3397                                        CandidateSet, SuppressUserConversions);
3398       else {
3399         // C++ [over.match.copy]p1:
3400         //   - When initializing a temporary to be bound to the first parameter
3401         //     of a constructor that takes a reference to possibly cv-qualified
3402         //     T as its first argument, called with a single argument in the
3403         //     context of direct-initialization, explicit conversion functions
3404         //     are also considered.
3405         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3406                                  Args.size() == 1 &&
3407                                  Constructor->isCopyOrMoveConstructor();
3408         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3409                                SuppressUserConversions,
3410                                /*PartialOverloading=*/false,
3411                                /*AllowExplicit=*/AllowExplicitConv);
3412       }
3413     }
3414   }
3415 
3416   // Perform overload resolution and return the result.
3417   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3418 }
3419 
3420 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3421 /// enumerates the constructors of the initialized entity and performs overload
3422 /// resolution to select the best.
3423 /// \param IsListInit     Is this list-initialization?
3424 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3425 ///                       list-initialization from {x} where x is the same
3426 ///                       type as the entity?
3427 static void TryConstructorInitialization(Sema &S,
3428                                          const InitializedEntity &Entity,
3429                                          const InitializationKind &Kind,
3430                                          MultiExprArg Args, QualType DestType,
3431                                          InitializationSequence &Sequence,
3432                                          bool IsListInit = false,
3433                                          bool IsInitListCopy = false) {
3434   assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3435          "IsListInit must come with a single initializer list argument.");
3436 
3437   // The type we're constructing needs to be complete.
3438   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3439     Sequence.setIncompleteTypeFailure(DestType);
3440     return;
3441   }
3442 
3443   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3444   assert(DestRecordType && "Constructor initialization requires record type");
3445   CXXRecordDecl *DestRecordDecl
3446     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3447 
3448   // Build the candidate set directly in the initialization sequence
3449   // structure, so that it will persist if we fail.
3450   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3451 
3452   // Determine whether we are allowed to call explicit constructors or
3453   // explicit conversion operators.
3454   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3455   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3456 
3457   //   - Otherwise, if T is a class type, constructors are considered. The
3458   //     applicable constructors are enumerated, and the best one is chosen
3459   //     through overload resolution.
3460   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3461 
3462   OverloadingResult Result = OR_No_Viable_Function;
3463   OverloadCandidateSet::iterator Best;
3464   bool AsInitializerList = false;
3465 
3466   // C++11 [over.match.list]p1, per DR1467:
3467   //   When objects of non-aggregate type T are list-initialized, such that
3468   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3469   //   according to the rules in this section, overload resolution selects
3470   //   the constructor in two phases:
3471   //
3472   //   - Initially, the candidate functions are the initializer-list
3473   //     constructors of the class T and the argument list consists of the
3474   //     initializer list as a single argument.
3475   if (IsListInit) {
3476     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3477     AsInitializerList = true;
3478 
3479     // If the initializer list has no elements and T has a default constructor,
3480     // the first phase is omitted.
3481     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3482       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3483                                           CandidateSet, Ctors, Best,
3484                                           CopyInitialization, AllowExplicit,
3485                                           /*OnlyListConstructor=*/true,
3486                                           IsListInit);
3487 
3488     // Time to unwrap the init list.
3489     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3490   }
3491 
3492   // C++11 [over.match.list]p1:
3493   //   - If no viable initializer-list constructor is found, overload resolution
3494   //     is performed again, where the candidate functions are all the
3495   //     constructors of the class T and the argument list consists of the
3496   //     elements of the initializer list.
3497   if (Result == OR_No_Viable_Function) {
3498     AsInitializerList = false;
3499     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3500                                         CandidateSet, Ctors, Best,
3501                                         CopyInitialization, AllowExplicit,
3502                                         /*OnlyListConstructors=*/false,
3503                                         IsListInit);
3504   }
3505   if (Result) {
3506     Sequence.SetOverloadFailure(IsListInit ?
3507                       InitializationSequence::FK_ListConstructorOverloadFailed :
3508                       InitializationSequence::FK_ConstructorOverloadFailed,
3509                                 Result);
3510     return;
3511   }
3512 
3513   // C++11 [dcl.init]p6:
3514   //   If a program calls for the default initialization of an object
3515   //   of a const-qualified type T, T shall be a class type with a
3516   //   user-provided default constructor.
3517   if (Kind.getKind() == InitializationKind::IK_Default &&
3518       Entity.getType().isConstQualified() &&
3519       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3520     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3521       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3522     return;
3523   }
3524 
3525   // C++11 [over.match.list]p1:
3526   //   In copy-list-initialization, if an explicit constructor is chosen, the
3527   //   initializer is ill-formed.
3528   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3529   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3530     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3531     return;
3532   }
3533 
3534   // Add the constructor initialization step. Any cv-qualification conversion is
3535   // subsumed by the initialization.
3536   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3537   Sequence.AddConstructorInitializationStep(
3538       CtorDecl, Best->FoundDecl.getAccess(), DestType, HadMultipleCandidates,
3539       IsListInit | IsInitListCopy, AsInitializerList);
3540 }
3541 
3542 static bool
3543 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3544                                              Expr *Initializer,
3545                                              QualType &SourceType,
3546                                              QualType &UnqualifiedSourceType,
3547                                              QualType UnqualifiedTargetType,
3548                                              InitializationSequence &Sequence) {
3549   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3550         S.Context.OverloadTy) {
3551     DeclAccessPair Found;
3552     bool HadMultipleCandidates = false;
3553     if (FunctionDecl *Fn
3554         = S.ResolveAddressOfOverloadedFunction(Initializer,
3555                                                UnqualifiedTargetType,
3556                                                false, Found,
3557                                                &HadMultipleCandidates)) {
3558       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3559                                                 HadMultipleCandidates);
3560       SourceType = Fn->getType();
3561       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3562     } else if (!UnqualifiedTargetType->isRecordType()) {
3563       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3564       return true;
3565     }
3566   }
3567   return false;
3568 }
3569 
3570 static void TryReferenceInitializationCore(Sema &S,
3571                                            const InitializedEntity &Entity,
3572                                            const InitializationKind &Kind,
3573                                            Expr *Initializer,
3574                                            QualType cv1T1, QualType T1,
3575                                            Qualifiers T1Quals,
3576                                            QualType cv2T2, QualType T2,
3577                                            Qualifiers T2Quals,
3578                                            InitializationSequence &Sequence);
3579 
3580 static void TryValueInitialization(Sema &S,
3581                                    const InitializedEntity &Entity,
3582                                    const InitializationKind &Kind,
3583                                    InitializationSequence &Sequence,
3584                                    InitListExpr *InitList = nullptr);
3585 
3586 /// \brief Attempt list initialization of a reference.
3587 static void TryReferenceListInitialization(Sema &S,
3588                                            const InitializedEntity &Entity,
3589                                            const InitializationKind &Kind,
3590                                            InitListExpr *InitList,
3591                                            InitializationSequence &Sequence) {
3592   // First, catch C++03 where this isn't possible.
3593   if (!S.getLangOpts().CPlusPlus11) {
3594     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3595     return;
3596   }
3597   // Can't reference initialize a compound literal.
3598   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3599     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3600     return;
3601   }
3602 
3603   QualType DestType = Entity.getType();
3604   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3605   Qualifiers T1Quals;
3606   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3607 
3608   // Reference initialization via an initializer list works thus:
3609   // If the initializer list consists of a single element that is
3610   // reference-related to the referenced type, bind directly to that element
3611   // (possibly creating temporaries).
3612   // Otherwise, initialize a temporary with the initializer list and
3613   // bind to that.
3614   if (InitList->getNumInits() == 1) {
3615     Expr *Initializer = InitList->getInit(0);
3616     QualType cv2T2 = Initializer->getType();
3617     Qualifiers T2Quals;
3618     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3619 
3620     // If this fails, creating a temporary wouldn't work either.
3621     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3622                                                      T1, Sequence))
3623       return;
3624 
3625     SourceLocation DeclLoc = Initializer->getLocStart();
3626     bool dummy1, dummy2, dummy3;
3627     Sema::ReferenceCompareResult RefRelationship
3628       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3629                                        dummy2, dummy3);
3630     if (RefRelationship >= Sema::Ref_Related) {
3631       // Try to bind the reference here.
3632       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3633                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3634       if (Sequence)
3635         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3636       return;
3637     }
3638 
3639     // Update the initializer if we've resolved an overloaded function.
3640     if (Sequence.step_begin() != Sequence.step_end())
3641       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3642   }
3643 
3644   // Not reference-related. Create a temporary and bind to that.
3645   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3646 
3647   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3648   if (Sequence) {
3649     if (DestType->isRValueReferenceType() ||
3650         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3651       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3652     else
3653       Sequence.SetFailed(
3654           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3655   }
3656 }
3657 
3658 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3659 static void TryListInitialization(Sema &S,
3660                                   const InitializedEntity &Entity,
3661                                   const InitializationKind &Kind,
3662                                   InitListExpr *InitList,
3663                                   InitializationSequence &Sequence) {
3664   QualType DestType = Entity.getType();
3665 
3666   // C++ doesn't allow scalar initialization with more than one argument.
3667   // But C99 complex numbers are scalars and it makes sense there.
3668   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3669       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3670     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3671     return;
3672   }
3673   if (DestType->isReferenceType()) {
3674     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3675     return;
3676   }
3677 
3678   if (DestType->isRecordType() &&
3679       S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3680     Sequence.setIncompleteTypeFailure(DestType);
3681     return;
3682   }
3683 
3684   // C++11 [dcl.init.list]p3, per DR1467:
3685   // - If T is a class type and the initializer list has a single element of
3686   //   type cv U, where U is T or a class derived from T, the object is
3687   //   initialized from that element (by copy-initialization for
3688   //   copy-list-initialization, or by direct-initialization for
3689   //   direct-list-initialization).
3690   // - Otherwise, if T is a character array and the initializer list has a
3691   //   single element that is an appropriately-typed string literal
3692   //   (8.5.2 [dcl.init.string]), initialization is performed as described
3693   //   in that section.
3694   // - Otherwise, if T is an aggregate, [...] (continue below).
3695   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3696     if (DestType->isRecordType()) {
3697       QualType InitType = InitList->getInit(0)->getType();
3698       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3699           S.IsDerivedFrom(InitType, DestType)) {
3700         Expr *InitAsExpr = InitList->getInit(0);
3701         TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType,
3702                                      Sequence, /*InitListSyntax*/ false,
3703                                      /*IsInitListCopy*/ true);
3704         return;
3705       }
3706     }
3707     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3708       Expr *SubInit[1] = {InitList->getInit(0)};
3709       if (!isa<VariableArrayType>(DestAT) &&
3710           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3711         InitializationKind SubKind =
3712             Kind.getKind() == InitializationKind::IK_DirectList
3713                 ? InitializationKind::CreateDirect(Kind.getLocation(),
3714                                                    InitList->getLBraceLoc(),
3715                                                    InitList->getRBraceLoc())
3716                 : Kind;
3717         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3718                                 /*TopLevelOfInitList*/ true);
3719 
3720         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3721         // the element is not an appropriately-typed string literal, in which
3722         // case we should proceed as in C++11 (below).
3723         if (Sequence) {
3724           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3725           return;
3726         }
3727       }
3728     }
3729   }
3730 
3731   // C++11 [dcl.init.list]p3:
3732   //   - If T is an aggregate, aggregate initialization is performed.
3733   if (DestType->isRecordType() && !DestType->isAggregateType()) {
3734     if (S.getLangOpts().CPlusPlus11) {
3735       //   - Otherwise, if the initializer list has no elements and T is a
3736       //     class type with a default constructor, the object is
3737       //     value-initialized.
3738       if (InitList->getNumInits() == 0) {
3739         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3740         if (RD->hasDefaultConstructor()) {
3741           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3742           return;
3743         }
3744       }
3745 
3746       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3747       //     an initializer_list object constructed [...]
3748       if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3749         return;
3750 
3751       //   - Otherwise, if T is a class type, constructors are considered.
3752       Expr *InitListAsExpr = InitList;
3753       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3754                                    Sequence, /*InitListSyntax*/ true);
3755     } else
3756       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3757     return;
3758   }
3759 
3760   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3761       InitList->getNumInits() == 1 &&
3762       InitList->getInit(0)->getType()->isRecordType()) {
3763     //   - Otherwise, if the initializer list has a single element of type E
3764     //     [...references are handled above...], the object or reference is
3765     //     initialized from that element (by copy-initialization for
3766     //     copy-list-initialization, or by direct-initialization for
3767     //     direct-list-initialization); if a narrowing conversion is required
3768     //     to convert the element to T, the program is ill-formed.
3769     //
3770     // Per core-24034, this is direct-initialization if we were performing
3771     // direct-list-initialization and copy-initialization otherwise.
3772     // We can't use InitListChecker for this, because it always performs
3773     // copy-initialization. This only matters if we might use an 'explicit'
3774     // conversion operator, so we only need to handle the cases where the source
3775     // is of record type.
3776     InitializationKind SubKind =
3777         Kind.getKind() == InitializationKind::IK_DirectList
3778             ? InitializationKind::CreateDirect(Kind.getLocation(),
3779                                                InitList->getLBraceLoc(),
3780                                                InitList->getRBraceLoc())
3781             : Kind;
3782     Expr *SubInit[1] = { InitList->getInit(0) };
3783     Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3784                             /*TopLevelOfInitList*/true);
3785     if (Sequence)
3786       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3787     return;
3788   }
3789 
3790   InitListChecker CheckInitList(S, Entity, InitList,
3791           DestType, /*VerifyOnly=*/true);
3792   if (CheckInitList.HadError()) {
3793     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3794     return;
3795   }
3796 
3797   // Add the list initialization step with the built init list.
3798   Sequence.AddListInitializationStep(DestType);
3799 }
3800 
3801 /// \brief Try a reference initialization that involves calling a conversion
3802 /// function.
3803 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3804                                              const InitializedEntity &Entity,
3805                                              const InitializationKind &Kind,
3806                                              Expr *Initializer,
3807                                              bool AllowRValues,
3808                                              InitializationSequence &Sequence) {
3809   QualType DestType = Entity.getType();
3810   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3811   QualType T1 = cv1T1.getUnqualifiedType();
3812   QualType cv2T2 = Initializer->getType();
3813   QualType T2 = cv2T2.getUnqualifiedType();
3814 
3815   bool DerivedToBase;
3816   bool ObjCConversion;
3817   bool ObjCLifetimeConversion;
3818   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3819                                          T1, T2, DerivedToBase,
3820                                          ObjCConversion,
3821                                          ObjCLifetimeConversion) &&
3822          "Must have incompatible references when binding via conversion");
3823   (void)DerivedToBase;
3824   (void)ObjCConversion;
3825   (void)ObjCLifetimeConversion;
3826 
3827   // Build the candidate set directly in the initialization sequence
3828   // structure, so that it will persist if we fail.
3829   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3830   CandidateSet.clear();
3831 
3832   // Determine whether we are allowed to call explicit constructors or
3833   // explicit conversion operators.
3834   bool AllowExplicit = Kind.AllowExplicit();
3835   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3836 
3837   const RecordType *T1RecordType = nullptr;
3838   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3839       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3840     // The type we're converting to is a class type. Enumerate its constructors
3841     // to see if there is a suitable conversion.
3842     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3843 
3844     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
3845       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3846 
3847       // Find the constructor (which may be a template).
3848       CXXConstructorDecl *Constructor = nullptr;
3849       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3850       if (ConstructorTmpl)
3851         Constructor = cast<CXXConstructorDecl>(
3852                                          ConstructorTmpl->getTemplatedDecl());
3853       else
3854         Constructor = cast<CXXConstructorDecl>(D);
3855 
3856       if (!Constructor->isInvalidDecl() &&
3857           Constructor->isConvertingConstructor(AllowExplicit)) {
3858         if (ConstructorTmpl)
3859           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3860                                          /*ExplicitArgs*/ nullptr,
3861                                          Initializer, CandidateSet,
3862                                          /*SuppressUserConversions=*/true);
3863         else
3864           S.AddOverloadCandidate(Constructor, FoundDecl,
3865                                  Initializer, CandidateSet,
3866                                  /*SuppressUserConversions=*/true);
3867       }
3868     }
3869   }
3870   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3871     return OR_No_Viable_Function;
3872 
3873   const RecordType *T2RecordType = nullptr;
3874   if ((T2RecordType = T2->getAs<RecordType>()) &&
3875       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3876     // The type we're converting from is a class type, enumerate its conversion
3877     // functions.
3878     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3879 
3880     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
3881     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3882       NamedDecl *D = *I;
3883       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3884       if (isa<UsingShadowDecl>(D))
3885         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3886 
3887       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3888       CXXConversionDecl *Conv;
3889       if (ConvTemplate)
3890         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3891       else
3892         Conv = cast<CXXConversionDecl>(D);
3893 
3894       // If the conversion function doesn't return a reference type,
3895       // it can't be considered for this conversion unless we're allowed to
3896       // consider rvalues.
3897       // FIXME: Do we need to make sure that we only consider conversion
3898       // candidates with reference-compatible results? That might be needed to
3899       // break recursion.
3900       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3901           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3902         if (ConvTemplate)
3903           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3904                                            ActingDC, Initializer,
3905                                            DestType, CandidateSet,
3906                                            /*AllowObjCConversionOnExplicit=*/
3907                                              false);
3908         else
3909           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3910                                    Initializer, DestType, CandidateSet,
3911                                    /*AllowObjCConversionOnExplicit=*/false);
3912       }
3913     }
3914   }
3915   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3916     return OR_No_Viable_Function;
3917 
3918   SourceLocation DeclLoc = Initializer->getLocStart();
3919 
3920   // Perform overload resolution. If it fails, return the failed result.
3921   OverloadCandidateSet::iterator Best;
3922   if (OverloadingResult Result
3923         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3924     return Result;
3925 
3926   FunctionDecl *Function = Best->Function;
3927   // This is the overload that will be used for this initialization step if we
3928   // use this initialization. Mark it as referenced.
3929   Function->setReferenced();
3930 
3931   // Compute the returned type of the conversion.
3932   if (isa<CXXConversionDecl>(Function))
3933     T2 = Function->getReturnType();
3934   else
3935     T2 = cv1T1;
3936 
3937   // Add the user-defined conversion step.
3938   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3939   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3940                                  T2.getNonLValueExprType(S.Context),
3941                                  HadMultipleCandidates);
3942 
3943   // Determine whether we need to perform derived-to-base or
3944   // cv-qualification adjustments.
3945   ExprValueKind VK = VK_RValue;
3946   if (T2->isLValueReferenceType())
3947     VK = VK_LValue;
3948   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3949     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3950 
3951   bool NewDerivedToBase = false;
3952   bool NewObjCConversion = false;
3953   bool NewObjCLifetimeConversion = false;
3954   Sema::ReferenceCompareResult NewRefRelationship
3955     = S.CompareReferenceRelationship(DeclLoc, T1,
3956                                      T2.getNonLValueExprType(S.Context),
3957                                      NewDerivedToBase, NewObjCConversion,
3958                                      NewObjCLifetimeConversion);
3959   if (NewRefRelationship == Sema::Ref_Incompatible) {
3960     // If the type we've converted to is not reference-related to the
3961     // type we're looking for, then there is another conversion step
3962     // we need to perform to produce a temporary of the right type
3963     // that we'll be binding to.
3964     ImplicitConversionSequence ICS;
3965     ICS.setStandard();
3966     ICS.Standard = Best->FinalConversion;
3967     T2 = ICS.Standard.getToType(2);
3968     Sequence.AddConversionSequenceStep(ICS, T2);
3969   } else if (NewDerivedToBase)
3970     Sequence.AddDerivedToBaseCastStep(
3971                                 S.Context.getQualifiedType(T1,
3972                                   T2.getNonReferenceType().getQualifiers()),
3973                                       VK);
3974   else if (NewObjCConversion)
3975     Sequence.AddObjCObjectConversionStep(
3976                                 S.Context.getQualifiedType(T1,
3977                                   T2.getNonReferenceType().getQualifiers()));
3978 
3979   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3980     Sequence.AddQualificationConversionStep(cv1T1, VK);
3981 
3982   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3983   return OR_Success;
3984 }
3985 
3986 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3987                                            const InitializedEntity &Entity,
3988                                            Expr *CurInitExpr);
3989 
3990 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3991 static void TryReferenceInitialization(Sema &S,
3992                                        const InitializedEntity &Entity,
3993                                        const InitializationKind &Kind,
3994                                        Expr *Initializer,
3995                                        InitializationSequence &Sequence) {
3996   QualType DestType = Entity.getType();
3997   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3998   Qualifiers T1Quals;
3999   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4000   QualType cv2T2 = Initializer->getType();
4001   Qualifiers T2Quals;
4002   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4003 
4004   // If the initializer is the address of an overloaded function, try
4005   // to resolve the overloaded function. If all goes well, T2 is the
4006   // type of the resulting function.
4007   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4008                                                    T1, Sequence))
4009     return;
4010 
4011   // Delegate everything else to a subfunction.
4012   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4013                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4014 }
4015 
4016 /// Converts the target of reference initialization so that it has the
4017 /// appropriate qualifiers and value kind.
4018 ///
4019 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
4020 /// \code
4021 ///   int x;
4022 ///   const int &r = x;
4023 /// \endcode
4024 ///
4025 /// In this case the reference is binding to a bitfield lvalue, which isn't
4026 /// valid. Perform a load to create a lifetime-extended temporary instead.
4027 /// \code
4028 ///   const int &r = someStruct.bitfield;
4029 /// \endcode
4030 static ExprValueKind
4031 convertQualifiersAndValueKindIfNecessary(Sema &S,
4032                                          InitializationSequence &Sequence,
4033                                          Expr *Initializer,
4034                                          QualType cv1T1,
4035                                          Qualifiers T1Quals,
4036                                          Qualifiers T2Quals,
4037                                          bool IsLValueRef) {
4038   bool IsNonAddressableType = Initializer->refersToBitField() ||
4039                               Initializer->refersToVectorElement();
4040 
4041   if (IsNonAddressableType) {
4042     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
4043     // lvalue reference to a non-volatile const type, or the reference shall be
4044     // an rvalue reference.
4045     //
4046     // If not, we can't make a temporary and bind to that. Give up and allow the
4047     // error to be diagnosed later.
4048     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
4049       assert(Initializer->isGLValue());
4050       return Initializer->getValueKind();
4051     }
4052 
4053     // Force a load so we can materialize a temporary.
4054     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
4055     return VK_RValue;
4056   }
4057 
4058   if (T1Quals != T2Quals) {
4059     Sequence.AddQualificationConversionStep(cv1T1,
4060                                             Initializer->getValueKind());
4061   }
4062 
4063   return Initializer->getValueKind();
4064 }
4065 
4066 
4067 /// \brief Reference initialization without resolving overloaded functions.
4068 static void TryReferenceInitializationCore(Sema &S,
4069                                            const InitializedEntity &Entity,
4070                                            const InitializationKind &Kind,
4071                                            Expr *Initializer,
4072                                            QualType cv1T1, QualType T1,
4073                                            Qualifiers T1Quals,
4074                                            QualType cv2T2, QualType T2,
4075                                            Qualifiers T2Quals,
4076                                            InitializationSequence &Sequence) {
4077   QualType DestType = Entity.getType();
4078   SourceLocation DeclLoc = Initializer->getLocStart();
4079   // Compute some basic properties of the types and the initializer.
4080   bool isLValueRef = DestType->isLValueReferenceType();
4081   bool isRValueRef = !isLValueRef;
4082   bool DerivedToBase = false;
4083   bool ObjCConversion = false;
4084   bool ObjCLifetimeConversion = false;
4085   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4086   Sema::ReferenceCompareResult RefRelationship
4087     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4088                                      ObjCConversion, ObjCLifetimeConversion);
4089 
4090   // C++0x [dcl.init.ref]p5:
4091   //   A reference to type "cv1 T1" is initialized by an expression of type
4092   //   "cv2 T2" as follows:
4093   //
4094   //     - If the reference is an lvalue reference and the initializer
4095   //       expression
4096   // Note the analogous bullet points for rvalue refs to functions. Because
4097   // there are no function rvalues in C++, rvalue refs to functions are treated
4098   // like lvalue refs.
4099   OverloadingResult ConvOvlResult = OR_Success;
4100   bool T1Function = T1->isFunctionType();
4101   if (isLValueRef || T1Function) {
4102     if (InitCategory.isLValue() &&
4103         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4104          (Kind.isCStyleOrFunctionalCast() &&
4105           RefRelationship == Sema::Ref_Related))) {
4106       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4107       //     reference-compatible with "cv2 T2," or
4108       //
4109       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
4110       // bit-field when we're determining whether the reference initialization
4111       // can occur. However, we do pay attention to whether it is a bit-field
4112       // to decide whether we're actually binding to a temporary created from
4113       // the bit-field.
4114       if (DerivedToBase)
4115         Sequence.AddDerivedToBaseCastStep(
4116                          S.Context.getQualifiedType(T1, T2Quals),
4117                          VK_LValue);
4118       else if (ObjCConversion)
4119         Sequence.AddObjCObjectConversionStep(
4120                                      S.Context.getQualifiedType(T1, T2Quals));
4121 
4122       ExprValueKind ValueKind =
4123         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
4124                                                  cv1T1, T1Quals, T2Quals,
4125                                                  isLValueRef);
4126       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4127       return;
4128     }
4129 
4130     //     - has a class type (i.e., T2 is a class type), where T1 is not
4131     //       reference-related to T2, and can be implicitly converted to an
4132     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4133     //       with "cv3 T3" (this conversion is selected by enumerating the
4134     //       applicable conversion functions (13.3.1.6) and choosing the best
4135     //       one through overload resolution (13.3)),
4136     // If we have an rvalue ref to function type here, the rhs must be
4137     // an rvalue. DR1287 removed the "implicitly" here.
4138     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4139         (isLValueRef || InitCategory.isRValue())) {
4140       ConvOvlResult = TryRefInitWithConversionFunction(
4141           S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
4142       if (ConvOvlResult == OR_Success)
4143         return;
4144       if (ConvOvlResult != OR_No_Viable_Function)
4145         Sequence.SetOverloadFailure(
4146             InitializationSequence::FK_ReferenceInitOverloadFailed,
4147             ConvOvlResult);
4148     }
4149   }
4150 
4151   //     - Otherwise, the reference shall be an lvalue reference to a
4152   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4153   //       shall be an rvalue reference.
4154   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4155     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4156       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4157     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4158       Sequence.SetOverloadFailure(
4159                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4160                                   ConvOvlResult);
4161     else
4162       Sequence.SetFailed(InitCategory.isLValue()
4163         ? (RefRelationship == Sema::Ref_Related
4164              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
4165              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
4166         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4167 
4168     return;
4169   }
4170 
4171   //    - If the initializer expression
4172   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
4173   //        "cv1 T1" is reference-compatible with "cv2 T2"
4174   // Note: functions are handled below.
4175   if (!T1Function &&
4176       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4177        (Kind.isCStyleOrFunctionalCast() &&
4178         RefRelationship == Sema::Ref_Related)) &&
4179       (InitCategory.isXValue() ||
4180        (InitCategory.isPRValue() && T2->isRecordType()) ||
4181        (InitCategory.isPRValue() && T2->isArrayType()))) {
4182     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
4183     if (InitCategory.isPRValue() && T2->isRecordType()) {
4184       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4185       // compiler the freedom to perform a copy here or bind to the
4186       // object, while C++0x requires that we bind directly to the
4187       // object. Hence, we always bind to the object without making an
4188       // extra copy. However, in C++03 requires that we check for the
4189       // presence of a suitable copy constructor:
4190       //
4191       //   The constructor that would be used to make the copy shall
4192       //   be callable whether or not the copy is actually done.
4193       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4194         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4195       else if (S.getLangOpts().CPlusPlus11)
4196         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4197     }
4198 
4199     if (DerivedToBase)
4200       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
4201                                         ValueKind);
4202     else if (ObjCConversion)
4203       Sequence.AddObjCObjectConversionStep(
4204                                        S.Context.getQualifiedType(T1, T2Quals));
4205 
4206     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
4207                                                          Initializer, cv1T1,
4208                                                          T1Quals, T2Quals,
4209                                                          isLValueRef);
4210 
4211     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4212     return;
4213   }
4214 
4215   //       - has a class type (i.e., T2 is a class type), where T1 is not
4216   //         reference-related to T2, and can be implicitly converted to an
4217   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4218   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4219   //
4220   // DR1287 removes the "implicitly" here.
4221   if (T2->isRecordType()) {
4222     if (RefRelationship == Sema::Ref_Incompatible) {
4223       ConvOvlResult = TryRefInitWithConversionFunction(
4224           S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
4225       if (ConvOvlResult)
4226         Sequence.SetOverloadFailure(
4227             InitializationSequence::FK_ReferenceInitOverloadFailed,
4228             ConvOvlResult);
4229 
4230       return;
4231     }
4232 
4233     if ((RefRelationship == Sema::Ref_Compatible ||
4234          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
4235         isRValueRef && InitCategory.isLValue()) {
4236       Sequence.SetFailed(
4237         InitializationSequence::FK_RValueReferenceBindingToLValue);
4238       return;
4239     }
4240 
4241     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4242     return;
4243   }
4244 
4245   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4246   //        from the initializer expression using the rules for a non-reference
4247   //        copy-initialization (8.5). The reference is then bound to the
4248   //        temporary. [...]
4249 
4250   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4251 
4252   // FIXME: Why do we use an implicit conversion here rather than trying
4253   // copy-initialization?
4254   ImplicitConversionSequence ICS
4255     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4256                               /*SuppressUserConversions=*/false,
4257                               /*AllowExplicit=*/false,
4258                               /*FIXME:InOverloadResolution=*/false,
4259                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4260                               /*AllowObjCWritebackConversion=*/false);
4261 
4262   if (ICS.isBad()) {
4263     // FIXME: Use the conversion function set stored in ICS to turn
4264     // this into an overloading ambiguity diagnostic. However, we need
4265     // to keep that set as an OverloadCandidateSet rather than as some
4266     // other kind of set.
4267     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4268       Sequence.SetOverloadFailure(
4269                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4270                                   ConvOvlResult);
4271     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4272       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4273     else
4274       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4275     return;
4276   } else {
4277     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4278   }
4279 
4280   //        [...] If T1 is reference-related to T2, cv1 must be the
4281   //        same cv-qualification as, or greater cv-qualification
4282   //        than, cv2; otherwise, the program is ill-formed.
4283   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4284   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4285   if (RefRelationship == Sema::Ref_Related &&
4286       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4287     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4288     return;
4289   }
4290 
4291   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4292   //   reference, the initializer expression shall not be an lvalue.
4293   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4294       InitCategory.isLValue()) {
4295     Sequence.SetFailed(
4296                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4297     return;
4298   }
4299 
4300   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4301   return;
4302 }
4303 
4304 /// \brief Attempt character array initialization from a string literal
4305 /// (C++ [dcl.init.string], C99 6.7.8).
4306 static void TryStringLiteralInitialization(Sema &S,
4307                                            const InitializedEntity &Entity,
4308                                            const InitializationKind &Kind,
4309                                            Expr *Initializer,
4310                                        InitializationSequence &Sequence) {
4311   Sequence.AddStringInitStep(Entity.getType());
4312 }
4313 
4314 /// \brief Attempt value initialization (C++ [dcl.init]p7).
4315 static void TryValueInitialization(Sema &S,
4316                                    const InitializedEntity &Entity,
4317                                    const InitializationKind &Kind,
4318                                    InitializationSequence &Sequence,
4319                                    InitListExpr *InitList) {
4320   assert((!InitList || InitList->getNumInits() == 0) &&
4321          "Shouldn't use value-init for non-empty init lists");
4322 
4323   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4324   //
4325   //   To value-initialize an object of type T means:
4326   QualType T = Entity.getType();
4327 
4328   //     -- if T is an array type, then each element is value-initialized;
4329   T = S.Context.getBaseElementType(T);
4330 
4331   if (const RecordType *RT = T->getAs<RecordType>()) {
4332     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4333       bool NeedZeroInitialization = true;
4334       if (!S.getLangOpts().CPlusPlus11) {
4335         // C++98:
4336         // -- if T is a class type (clause 9) with a user-declared constructor
4337         //    (12.1), then the default constructor for T is called (and the
4338         //    initialization is ill-formed if T has no accessible default
4339         //    constructor);
4340         if (ClassDecl->hasUserDeclaredConstructor())
4341           NeedZeroInitialization = false;
4342       } else {
4343         // C++11:
4344         // -- if T is a class type (clause 9) with either no default constructor
4345         //    (12.1 [class.ctor]) or a default constructor that is user-provided
4346         //    or deleted, then the object is default-initialized;
4347         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4348         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4349           NeedZeroInitialization = false;
4350       }
4351 
4352       // -- if T is a (possibly cv-qualified) non-union class type without a
4353       //    user-provided or deleted default constructor, then the object is
4354       //    zero-initialized and, if T has a non-trivial default constructor,
4355       //    default-initialized;
4356       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4357       // constructor' part was removed by DR1507.
4358       if (NeedZeroInitialization)
4359         Sequence.AddZeroInitializationStep(Entity.getType());
4360 
4361       // C++03:
4362       // -- if T is a non-union class type without a user-declared constructor,
4363       //    then every non-static data member and base class component of T is
4364       //    value-initialized;
4365       // [...] A program that calls for [...] value-initialization of an
4366       // entity of reference type is ill-formed.
4367       //
4368       // C++11 doesn't need this handling, because value-initialization does not
4369       // occur recursively there, and the implicit default constructor is
4370       // defined as deleted in the problematic cases.
4371       if (!S.getLangOpts().CPlusPlus11 &&
4372           ClassDecl->hasUninitializedReferenceMember()) {
4373         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4374         return;
4375       }
4376 
4377       // If this is list-value-initialization, pass the empty init list on when
4378       // building the constructor call. This affects the semantics of a few
4379       // things (such as whether an explicit default constructor can be called).
4380       Expr *InitListAsExpr = InitList;
4381       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4382       bool InitListSyntax = InitList;
4383 
4384       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4385                                           InitListSyntax);
4386     }
4387   }
4388 
4389   Sequence.AddZeroInitializationStep(Entity.getType());
4390 }
4391 
4392 /// \brief Attempt default initialization (C++ [dcl.init]p6).
4393 static void TryDefaultInitialization(Sema &S,
4394                                      const InitializedEntity &Entity,
4395                                      const InitializationKind &Kind,
4396                                      InitializationSequence &Sequence) {
4397   assert(Kind.getKind() == InitializationKind::IK_Default);
4398 
4399   // C++ [dcl.init]p6:
4400   //   To default-initialize an object of type T means:
4401   //     - if T is an array type, each element is default-initialized;
4402   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4403 
4404   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4405   //       constructor for T is called (and the initialization is ill-formed if
4406   //       T has no accessible default constructor);
4407   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4408     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4409     return;
4410   }
4411 
4412   //     - otherwise, no initialization is performed.
4413 
4414   //   If a program calls for the default initialization of an object of
4415   //   a const-qualified type T, T shall be a class type with a user-provided
4416   //   default constructor.
4417   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4418     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4419       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4420     return;
4421   }
4422 
4423   // If the destination type has a lifetime property, zero-initialize it.
4424   if (DestType.getQualifiers().hasObjCLifetime()) {
4425     Sequence.AddZeroInitializationStep(Entity.getType());
4426     return;
4427   }
4428 }
4429 
4430 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4431 /// which enumerates all conversion functions and performs overload resolution
4432 /// to select the best.
4433 static void TryUserDefinedConversion(Sema &S,
4434                                      QualType DestType,
4435                                      const InitializationKind &Kind,
4436                                      Expr *Initializer,
4437                                      InitializationSequence &Sequence,
4438                                      bool TopLevelOfInitList) {
4439   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4440   QualType SourceType = Initializer->getType();
4441   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4442          "Must have a class type to perform a user-defined conversion");
4443 
4444   // Build the candidate set directly in the initialization sequence
4445   // structure, so that it will persist if we fail.
4446   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4447   CandidateSet.clear();
4448 
4449   // Determine whether we are allowed to call explicit constructors or
4450   // explicit conversion operators.
4451   bool AllowExplicit = Kind.AllowExplicit();
4452 
4453   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4454     // The type we're converting to is a class type. Enumerate its constructors
4455     // to see if there is a suitable conversion.
4456     CXXRecordDecl *DestRecordDecl
4457       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4458 
4459     // Try to complete the type we're converting to.
4460     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4461       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4462       // The container holding the constructors can under certain conditions
4463       // be changed while iterating. To be safe we copy the lookup results
4464       // to a new container.
4465       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4466       for (SmallVectorImpl<NamedDecl *>::iterator
4467              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4468            Con != ConEnd; ++Con) {
4469         NamedDecl *D = *Con;
4470         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4471 
4472         // Find the constructor (which may be a template).
4473         CXXConstructorDecl *Constructor = nullptr;
4474         FunctionTemplateDecl *ConstructorTmpl
4475           = dyn_cast<FunctionTemplateDecl>(D);
4476         if (ConstructorTmpl)
4477           Constructor = cast<CXXConstructorDecl>(
4478                                            ConstructorTmpl->getTemplatedDecl());
4479         else
4480           Constructor = cast<CXXConstructorDecl>(D);
4481 
4482         if (!Constructor->isInvalidDecl() &&
4483             Constructor->isConvertingConstructor(AllowExplicit)) {
4484           if (ConstructorTmpl)
4485             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4486                                            /*ExplicitArgs*/ nullptr,
4487                                            Initializer, CandidateSet,
4488                                            /*SuppressUserConversions=*/true);
4489           else
4490             S.AddOverloadCandidate(Constructor, FoundDecl,
4491                                    Initializer, CandidateSet,
4492                                    /*SuppressUserConversions=*/true);
4493         }
4494       }
4495     }
4496   }
4497 
4498   SourceLocation DeclLoc = Initializer->getLocStart();
4499 
4500   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4501     // The type we're converting from is a class type, enumerate its conversion
4502     // functions.
4503 
4504     // We can only enumerate the conversion functions for a complete type; if
4505     // the type isn't complete, simply skip this step.
4506     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4507       CXXRecordDecl *SourceRecordDecl
4508         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4509 
4510       const auto &Conversions =
4511           SourceRecordDecl->getVisibleConversionFunctions();
4512       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4513         NamedDecl *D = *I;
4514         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4515         if (isa<UsingShadowDecl>(D))
4516           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4517 
4518         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4519         CXXConversionDecl *Conv;
4520         if (ConvTemplate)
4521           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4522         else
4523           Conv = cast<CXXConversionDecl>(D);
4524 
4525         if (AllowExplicit || !Conv->isExplicit()) {
4526           if (ConvTemplate)
4527             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4528                                              ActingDC, Initializer, DestType,
4529                                              CandidateSet, AllowExplicit);
4530           else
4531             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4532                                      Initializer, DestType, CandidateSet,
4533                                      AllowExplicit);
4534         }
4535       }
4536     }
4537   }
4538 
4539   // Perform overload resolution. If it fails, return the failed result.
4540   OverloadCandidateSet::iterator Best;
4541   if (OverloadingResult Result
4542         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4543     Sequence.SetOverloadFailure(
4544                         InitializationSequence::FK_UserConversionOverloadFailed,
4545                                 Result);
4546     return;
4547   }
4548 
4549   FunctionDecl *Function = Best->Function;
4550   Function->setReferenced();
4551   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4552 
4553   if (isa<CXXConstructorDecl>(Function)) {
4554     // Add the user-defined conversion step. Any cv-qualification conversion is
4555     // subsumed by the initialization. Per DR5, the created temporary is of the
4556     // cv-unqualified type of the destination.
4557     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4558                                    DestType.getUnqualifiedType(),
4559                                    HadMultipleCandidates);
4560     return;
4561   }
4562 
4563   // Add the user-defined conversion step that calls the conversion function.
4564   QualType ConvType = Function->getCallResultType();
4565   if (ConvType->getAs<RecordType>()) {
4566     // If we're converting to a class type, there may be an copy of
4567     // the resulting temporary object (possible to create an object of
4568     // a base class type). That copy is not a separate conversion, so
4569     // we just make a note of the actual destination type (possibly a
4570     // base class of the type returned by the conversion function) and
4571     // let the user-defined conversion step handle the conversion.
4572     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4573                                    HadMultipleCandidates);
4574     return;
4575   }
4576 
4577   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4578                                  HadMultipleCandidates);
4579 
4580   // If the conversion following the call to the conversion function
4581   // is interesting, add it as a separate step.
4582   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4583       Best->FinalConversion.Third) {
4584     ImplicitConversionSequence ICS;
4585     ICS.setStandard();
4586     ICS.Standard = Best->FinalConversion;
4587     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4588   }
4589 }
4590 
4591 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4592 /// a function with a pointer return type contains a 'return false;' statement.
4593 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4594 /// code using that header.
4595 ///
4596 /// Work around this by treating 'return false;' as zero-initializing the result
4597 /// if it's used in a pointer-returning function in a system header.
4598 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4599                                               const InitializedEntity &Entity,
4600                                               const Expr *Init) {
4601   return S.getLangOpts().CPlusPlus11 &&
4602          Entity.getKind() == InitializedEntity::EK_Result &&
4603          Entity.getType()->isPointerType() &&
4604          isa<CXXBoolLiteralExpr>(Init) &&
4605          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4606          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4607 }
4608 
4609 /// The non-zero enum values here are indexes into diagnostic alternatives.
4610 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4611 
4612 /// Determines whether this expression is an acceptable ICR source.
4613 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4614                                          bool isAddressOf, bool &isWeakAccess) {
4615   // Skip parens.
4616   e = e->IgnoreParens();
4617 
4618   // Skip address-of nodes.
4619   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4620     if (op->getOpcode() == UO_AddrOf)
4621       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4622                                 isWeakAccess);
4623 
4624   // Skip certain casts.
4625   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4626     switch (ce->getCastKind()) {
4627     case CK_Dependent:
4628     case CK_BitCast:
4629     case CK_LValueBitCast:
4630     case CK_NoOp:
4631       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4632 
4633     case CK_ArrayToPointerDecay:
4634       return IIK_nonscalar;
4635 
4636     case CK_NullToPointer:
4637       return IIK_okay;
4638 
4639     default:
4640       break;
4641     }
4642 
4643   // If we have a declaration reference, it had better be a local variable.
4644   } else if (isa<DeclRefExpr>(e)) {
4645     // set isWeakAccess to true, to mean that there will be an implicit
4646     // load which requires a cleanup.
4647     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4648       isWeakAccess = true;
4649 
4650     if (!isAddressOf) return IIK_nonlocal;
4651 
4652     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4653     if (!var) return IIK_nonlocal;
4654 
4655     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4656 
4657   // If we have a conditional operator, check both sides.
4658   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4659     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4660                                                 isWeakAccess))
4661       return iik;
4662 
4663     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4664 
4665   // These are never scalar.
4666   } else if (isa<ArraySubscriptExpr>(e)) {
4667     return IIK_nonscalar;
4668 
4669   // Otherwise, it needs to be a null pointer constant.
4670   } else {
4671     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4672             ? IIK_okay : IIK_nonlocal);
4673   }
4674 
4675   return IIK_nonlocal;
4676 }
4677 
4678 /// Check whether the given expression is a valid operand for an
4679 /// indirect copy/restore.
4680 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4681   assert(src->isRValue());
4682   bool isWeakAccess = false;
4683   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4684   // If isWeakAccess to true, there will be an implicit
4685   // load which requires a cleanup.
4686   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4687     S.ExprNeedsCleanups = true;
4688 
4689   if (iik == IIK_okay) return;
4690 
4691   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4692     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4693     << src->getSourceRange();
4694 }
4695 
4696 /// \brief Determine whether we have compatible array types for the
4697 /// purposes of GNU by-copy array initialization.
4698 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4699                                     const ArrayType *Source) {
4700   // If the source and destination array types are equivalent, we're
4701   // done.
4702   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4703     return true;
4704 
4705   // Make sure that the element types are the same.
4706   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4707     return false;
4708 
4709   // The only mismatch we allow is when the destination is an
4710   // incomplete array type and the source is a constant array type.
4711   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4712 }
4713 
4714 static bool tryObjCWritebackConversion(Sema &S,
4715                                        InitializationSequence &Sequence,
4716                                        const InitializedEntity &Entity,
4717                                        Expr *Initializer) {
4718   bool ArrayDecay = false;
4719   QualType ArgType = Initializer->getType();
4720   QualType ArgPointee;
4721   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4722     ArrayDecay = true;
4723     ArgPointee = ArgArrayType->getElementType();
4724     ArgType = S.Context.getPointerType(ArgPointee);
4725   }
4726 
4727   // Handle write-back conversion.
4728   QualType ConvertedArgType;
4729   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4730                                    ConvertedArgType))
4731     return false;
4732 
4733   // We should copy unless we're passing to an argument explicitly
4734   // marked 'out'.
4735   bool ShouldCopy = true;
4736   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4737     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4738 
4739   // Do we need an lvalue conversion?
4740   if (ArrayDecay || Initializer->isGLValue()) {
4741     ImplicitConversionSequence ICS;
4742     ICS.setStandard();
4743     ICS.Standard.setAsIdentityConversion();
4744 
4745     QualType ResultType;
4746     if (ArrayDecay) {
4747       ICS.Standard.First = ICK_Array_To_Pointer;
4748       ResultType = S.Context.getPointerType(ArgPointee);
4749     } else {
4750       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4751       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4752     }
4753 
4754     Sequence.AddConversionSequenceStep(ICS, ResultType);
4755   }
4756 
4757   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4758   return true;
4759 }
4760 
4761 static bool TryOCLSamplerInitialization(Sema &S,
4762                                         InitializationSequence &Sequence,
4763                                         QualType DestType,
4764                                         Expr *Initializer) {
4765   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4766     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4767     return false;
4768 
4769   Sequence.AddOCLSamplerInitStep(DestType);
4770   return true;
4771 }
4772 
4773 //
4774 // OpenCL 1.2 spec, s6.12.10
4775 //
4776 // The event argument can also be used to associate the
4777 // async_work_group_copy with a previous async copy allowing
4778 // an event to be shared by multiple async copies; otherwise
4779 // event should be zero.
4780 //
4781 static bool TryOCLZeroEventInitialization(Sema &S,
4782                                           InitializationSequence &Sequence,
4783                                           QualType DestType,
4784                                           Expr *Initializer) {
4785   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4786       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4787       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4788     return false;
4789 
4790   Sequence.AddOCLZeroEventStep(DestType);
4791   return true;
4792 }
4793 
4794 InitializationSequence::InitializationSequence(Sema &S,
4795                                                const InitializedEntity &Entity,
4796                                                const InitializationKind &Kind,
4797                                                MultiExprArg Args,
4798                                                bool TopLevelOfInitList)
4799     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
4800   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4801 }
4802 
4803 void InitializationSequence::InitializeFrom(Sema &S,
4804                                             const InitializedEntity &Entity,
4805                                             const InitializationKind &Kind,
4806                                             MultiExprArg Args,
4807                                             bool TopLevelOfInitList) {
4808   ASTContext &Context = S.Context;
4809 
4810   // Eliminate non-overload placeholder types in the arguments.  We
4811   // need to do this before checking whether types are dependent
4812   // because lowering a pseudo-object expression might well give us
4813   // something of dependent type.
4814   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4815     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4816       // FIXME: should we be doing this here?
4817       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4818       if (result.isInvalid()) {
4819         SetFailed(FK_PlaceholderType);
4820         return;
4821       }
4822       Args[I] = result.get();
4823     }
4824 
4825   // C++0x [dcl.init]p16:
4826   //   The semantics of initializers are as follows. The destination type is
4827   //   the type of the object or reference being initialized and the source
4828   //   type is the type of the initializer expression. The source type is not
4829   //   defined when the initializer is a braced-init-list or when it is a
4830   //   parenthesized list of expressions.
4831   QualType DestType = Entity.getType();
4832 
4833   if (DestType->isDependentType() ||
4834       Expr::hasAnyTypeDependentArguments(Args)) {
4835     SequenceKind = DependentSequence;
4836     return;
4837   }
4838 
4839   // Almost everything is a normal sequence.
4840   setSequenceKind(NormalSequence);
4841 
4842   QualType SourceType;
4843   Expr *Initializer = nullptr;
4844   if (Args.size() == 1) {
4845     Initializer = Args[0];
4846     if (S.getLangOpts().ObjC1) {
4847       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4848                                               DestType, Initializer->getType(),
4849                                               Initializer) ||
4850           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4851         Args[0] = Initializer;
4852     }
4853     if (!isa<InitListExpr>(Initializer))
4854       SourceType = Initializer->getType();
4855   }
4856 
4857   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4858   //       object is list-initialized (8.5.4).
4859   if (Kind.getKind() != InitializationKind::IK_Direct) {
4860     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4861       TryListInitialization(S, Entity, Kind, InitList, *this);
4862       return;
4863     }
4864   }
4865 
4866   //     - If the destination type is a reference type, see 8.5.3.
4867   if (DestType->isReferenceType()) {
4868     // C++0x [dcl.init.ref]p1:
4869     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4870     //   (8.3.2), shall be initialized by an object, or function, of type T or
4871     //   by an object that can be converted into a T.
4872     // (Therefore, multiple arguments are not permitted.)
4873     if (Args.size() != 1)
4874       SetFailed(FK_TooManyInitsForReference);
4875     else
4876       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4877     return;
4878   }
4879 
4880   //     - If the initializer is (), the object is value-initialized.
4881   if (Kind.getKind() == InitializationKind::IK_Value ||
4882       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4883     TryValueInitialization(S, Entity, Kind, *this);
4884     return;
4885   }
4886 
4887   // Handle default initialization.
4888   if (Kind.getKind() == InitializationKind::IK_Default) {
4889     TryDefaultInitialization(S, Entity, Kind, *this);
4890     return;
4891   }
4892 
4893   //     - If the destination type is an array of characters, an array of
4894   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4895   //       initializer is a string literal, see 8.5.2.
4896   //     - Otherwise, if the destination type is an array, the program is
4897   //       ill-formed.
4898   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4899     if (Initializer && isa<VariableArrayType>(DestAT)) {
4900       SetFailed(FK_VariableLengthArrayHasInitializer);
4901       return;
4902     }
4903 
4904     if (Initializer) {
4905       switch (IsStringInit(Initializer, DestAT, Context)) {
4906       case SIF_None:
4907         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4908         return;
4909       case SIF_NarrowStringIntoWideChar:
4910         SetFailed(FK_NarrowStringIntoWideCharArray);
4911         return;
4912       case SIF_WideStringIntoChar:
4913         SetFailed(FK_WideStringIntoCharArray);
4914         return;
4915       case SIF_IncompatWideStringIntoWideChar:
4916         SetFailed(FK_IncompatWideStringIntoWideChar);
4917         return;
4918       case SIF_Other:
4919         break;
4920       }
4921     }
4922 
4923     // Note: as an GNU C extension, we allow initialization of an
4924     // array from a compound literal that creates an array of the same
4925     // type, so long as the initializer has no side effects.
4926     if (!S.getLangOpts().CPlusPlus && Initializer &&
4927         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4928         Initializer->getType()->isArrayType()) {
4929       const ArrayType *SourceAT
4930         = Context.getAsArrayType(Initializer->getType());
4931       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4932         SetFailed(FK_ArrayTypeMismatch);
4933       else if (Initializer->HasSideEffects(S.Context))
4934         SetFailed(FK_NonConstantArrayInit);
4935       else {
4936         AddArrayInitStep(DestType);
4937       }
4938     }
4939     // Note: as a GNU C++ extension, we allow list-initialization of a
4940     // class member of array type from a parenthesized initializer list.
4941     else if (S.getLangOpts().CPlusPlus &&
4942              Entity.getKind() == InitializedEntity::EK_Member &&
4943              Initializer && isa<InitListExpr>(Initializer)) {
4944       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4945                             *this);
4946       AddParenthesizedArrayInitStep(DestType);
4947     } else if (DestAT->getElementType()->isCharType())
4948       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4949     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4950       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4951     else
4952       SetFailed(FK_ArrayNeedsInitList);
4953 
4954     return;
4955   }
4956 
4957   // Determine whether we should consider writeback conversions for
4958   // Objective-C ARC.
4959   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4960          Entity.isParameterKind();
4961 
4962   // We're at the end of the line for C: it's either a write-back conversion
4963   // or it's a C assignment. There's no need to check anything else.
4964   if (!S.getLangOpts().CPlusPlus) {
4965     // If allowed, check whether this is an Objective-C writeback conversion.
4966     if (allowObjCWritebackConversion &&
4967         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4968       return;
4969     }
4970 
4971     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4972       return;
4973 
4974     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4975       return;
4976 
4977     // Handle initialization in C
4978     AddCAssignmentStep(DestType);
4979     MaybeProduceObjCObject(S, *this, Entity);
4980     return;
4981   }
4982 
4983   assert(S.getLangOpts().CPlusPlus);
4984 
4985   //     - If the destination type is a (possibly cv-qualified) class type:
4986   if (DestType->isRecordType()) {
4987     //     - If the initialization is direct-initialization, or if it is
4988     //       copy-initialization where the cv-unqualified version of the
4989     //       source type is the same class as, or a derived class of, the
4990     //       class of the destination, constructors are considered. [...]
4991     if (Kind.getKind() == InitializationKind::IK_Direct ||
4992         (Kind.getKind() == InitializationKind::IK_Copy &&
4993          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4994           S.IsDerivedFrom(SourceType, DestType))))
4995       TryConstructorInitialization(S, Entity, Kind, Args,
4996                                    DestType, *this);
4997     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4998     //       user-defined conversion sequences that can convert from the source
4999     //       type to the destination type or (when a conversion function is
5000     //       used) to a derived class thereof are enumerated as described in
5001     //       13.3.1.4, and the best one is chosen through overload resolution
5002     //       (13.3).
5003     else
5004       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5005                                TopLevelOfInitList);
5006     return;
5007   }
5008 
5009   if (Args.size() > 1) {
5010     SetFailed(FK_TooManyInitsForScalar);
5011     return;
5012   }
5013   assert(Args.size() == 1 && "Zero-argument case handled above");
5014 
5015   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5016   //      type, conversion functions are considered.
5017   if (!SourceType.isNull() && SourceType->isRecordType()) {
5018     // For a conversion to _Atomic(T) from either T or a class type derived
5019     // from T, initialize the T object then convert to _Atomic type.
5020     bool NeedAtomicConversion = false;
5021     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5022       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5023           S.IsDerivedFrom(SourceType, Atomic->getValueType())) {
5024         DestType = Atomic->getValueType();
5025         NeedAtomicConversion = true;
5026       }
5027     }
5028 
5029     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5030                              TopLevelOfInitList);
5031     MaybeProduceObjCObject(S, *this, Entity);
5032     if (!Failed() && NeedAtomicConversion)
5033       AddAtomicConversionStep(Entity.getType());
5034     return;
5035   }
5036 
5037   //    - Otherwise, the initial value of the object being initialized is the
5038   //      (possibly converted) value of the initializer expression. Standard
5039   //      conversions (Clause 4) will be used, if necessary, to convert the
5040   //      initializer expression to the cv-unqualified version of the
5041   //      destination type; no user-defined conversions are considered.
5042 
5043   ImplicitConversionSequence ICS
5044     = S.TryImplicitConversion(Initializer, DestType,
5045                               /*SuppressUserConversions*/true,
5046                               /*AllowExplicitConversions*/ false,
5047                               /*InOverloadResolution*/ false,
5048                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5049                               allowObjCWritebackConversion);
5050 
5051   if (ICS.isStandard() &&
5052       ICS.Standard.Second == ICK_Writeback_Conversion) {
5053     // Objective-C ARC writeback conversion.
5054 
5055     // We should copy unless we're passing to an argument explicitly
5056     // marked 'out'.
5057     bool ShouldCopy = true;
5058     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5059       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5060 
5061     // If there was an lvalue adjustment, add it as a separate conversion.
5062     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5063         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5064       ImplicitConversionSequence LvalueICS;
5065       LvalueICS.setStandard();
5066       LvalueICS.Standard.setAsIdentityConversion();
5067       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5068       LvalueICS.Standard.First = ICS.Standard.First;
5069       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5070     }
5071 
5072     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5073   } else if (ICS.isBad()) {
5074     DeclAccessPair dap;
5075     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5076       AddZeroInitializationStep(Entity.getType());
5077     } else if (Initializer->getType() == Context.OverloadTy &&
5078                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5079                                                      false, dap))
5080       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5081     else
5082       SetFailed(InitializationSequence::FK_ConversionFailed);
5083   } else {
5084     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5085 
5086     MaybeProduceObjCObject(S, *this, Entity);
5087   }
5088 }
5089 
5090 InitializationSequence::~InitializationSequence() {
5091   for (auto &S : Steps)
5092     S.Destroy();
5093 }
5094 
5095 //===----------------------------------------------------------------------===//
5096 // Perform initialization
5097 //===----------------------------------------------------------------------===//
5098 static Sema::AssignmentAction
5099 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5100   switch(Entity.getKind()) {
5101   case InitializedEntity::EK_Variable:
5102   case InitializedEntity::EK_New:
5103   case InitializedEntity::EK_Exception:
5104   case InitializedEntity::EK_Base:
5105   case InitializedEntity::EK_Delegating:
5106     return Sema::AA_Initializing;
5107 
5108   case InitializedEntity::EK_Parameter:
5109     if (Entity.getDecl() &&
5110         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5111       return Sema::AA_Sending;
5112 
5113     return Sema::AA_Passing;
5114 
5115   case InitializedEntity::EK_Parameter_CF_Audited:
5116     if (Entity.getDecl() &&
5117       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5118       return Sema::AA_Sending;
5119 
5120     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5121 
5122   case InitializedEntity::EK_Result:
5123     return Sema::AA_Returning;
5124 
5125   case InitializedEntity::EK_Temporary:
5126   case InitializedEntity::EK_RelatedResult:
5127     // FIXME: Can we tell apart casting vs. converting?
5128     return Sema::AA_Casting;
5129 
5130   case InitializedEntity::EK_Member:
5131   case InitializedEntity::EK_ArrayElement:
5132   case InitializedEntity::EK_VectorElement:
5133   case InitializedEntity::EK_ComplexElement:
5134   case InitializedEntity::EK_BlockElement:
5135   case InitializedEntity::EK_LambdaCapture:
5136   case InitializedEntity::EK_CompoundLiteralInit:
5137     return Sema::AA_Initializing;
5138   }
5139 
5140   llvm_unreachable("Invalid EntityKind!");
5141 }
5142 
5143 /// \brief Whether we should bind a created object as a temporary when
5144 /// initializing the given entity.
5145 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5146   switch (Entity.getKind()) {
5147   case InitializedEntity::EK_ArrayElement:
5148   case InitializedEntity::EK_Member:
5149   case InitializedEntity::EK_Result:
5150   case InitializedEntity::EK_New:
5151   case InitializedEntity::EK_Variable:
5152   case InitializedEntity::EK_Base:
5153   case InitializedEntity::EK_Delegating:
5154   case InitializedEntity::EK_VectorElement:
5155   case InitializedEntity::EK_ComplexElement:
5156   case InitializedEntity::EK_Exception:
5157   case InitializedEntity::EK_BlockElement:
5158   case InitializedEntity::EK_LambdaCapture:
5159   case InitializedEntity::EK_CompoundLiteralInit:
5160     return false;
5161 
5162   case InitializedEntity::EK_Parameter:
5163   case InitializedEntity::EK_Parameter_CF_Audited:
5164   case InitializedEntity::EK_Temporary:
5165   case InitializedEntity::EK_RelatedResult:
5166     return true;
5167   }
5168 
5169   llvm_unreachable("missed an InitializedEntity kind?");
5170 }
5171 
5172 /// \brief Whether the given entity, when initialized with an object
5173 /// created for that initialization, requires destruction.
5174 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
5175   switch (Entity.getKind()) {
5176     case InitializedEntity::EK_Result:
5177     case InitializedEntity::EK_New:
5178     case InitializedEntity::EK_Base:
5179     case InitializedEntity::EK_Delegating:
5180     case InitializedEntity::EK_VectorElement:
5181     case InitializedEntity::EK_ComplexElement:
5182     case InitializedEntity::EK_BlockElement:
5183     case InitializedEntity::EK_LambdaCapture:
5184       return false;
5185 
5186     case InitializedEntity::EK_Member:
5187     case InitializedEntity::EK_Variable:
5188     case InitializedEntity::EK_Parameter:
5189     case InitializedEntity::EK_Parameter_CF_Audited:
5190     case InitializedEntity::EK_Temporary:
5191     case InitializedEntity::EK_ArrayElement:
5192     case InitializedEntity::EK_Exception:
5193     case InitializedEntity::EK_CompoundLiteralInit:
5194     case InitializedEntity::EK_RelatedResult:
5195       return true;
5196   }
5197 
5198   llvm_unreachable("missed an InitializedEntity kind?");
5199 }
5200 
5201 /// \brief Look for copy and move constructors and constructor templates, for
5202 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
5203 static void LookupCopyAndMoveConstructors(Sema &S,
5204                                           OverloadCandidateSet &CandidateSet,
5205                                           CXXRecordDecl *Class,
5206                                           Expr *CurInitExpr) {
5207   DeclContext::lookup_result R = S.LookupConstructors(Class);
5208   // The container holding the constructors can under certain conditions
5209   // be changed while iterating (e.g. because of deserialization).
5210   // To be safe we copy the lookup results to a new container.
5211   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
5212   for (SmallVectorImpl<NamedDecl *>::iterator
5213          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
5214     NamedDecl *D = *CI;
5215     CXXConstructorDecl *Constructor = nullptr;
5216 
5217     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
5218       // Handle copy/moveconstructors, only.
5219       if (!Constructor || Constructor->isInvalidDecl() ||
5220           !Constructor->isCopyOrMoveConstructor() ||
5221           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5222         continue;
5223 
5224       DeclAccessPair FoundDecl
5225         = DeclAccessPair::make(Constructor, Constructor->getAccess());
5226       S.AddOverloadCandidate(Constructor, FoundDecl,
5227                              CurInitExpr, CandidateSet);
5228       continue;
5229     }
5230 
5231     // Handle constructor templates.
5232     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
5233     if (ConstructorTmpl->isInvalidDecl())
5234       continue;
5235 
5236     Constructor = cast<CXXConstructorDecl>(
5237                                          ConstructorTmpl->getTemplatedDecl());
5238     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5239       continue;
5240 
5241     // FIXME: Do we need to limit this to copy-constructor-like
5242     // candidates?
5243     DeclAccessPair FoundDecl
5244       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
5245     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
5246                                    CurInitExpr, CandidateSet, true);
5247   }
5248 }
5249 
5250 /// \brief Get the location at which initialization diagnostics should appear.
5251 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5252                                            Expr *Initializer) {
5253   switch (Entity.getKind()) {
5254   case InitializedEntity::EK_Result:
5255     return Entity.getReturnLoc();
5256 
5257   case InitializedEntity::EK_Exception:
5258     return Entity.getThrowLoc();
5259 
5260   case InitializedEntity::EK_Variable:
5261     return Entity.getDecl()->getLocation();
5262 
5263   case InitializedEntity::EK_LambdaCapture:
5264     return Entity.getCaptureLoc();
5265 
5266   case InitializedEntity::EK_ArrayElement:
5267   case InitializedEntity::EK_Member:
5268   case InitializedEntity::EK_Parameter:
5269   case InitializedEntity::EK_Parameter_CF_Audited:
5270   case InitializedEntity::EK_Temporary:
5271   case InitializedEntity::EK_New:
5272   case InitializedEntity::EK_Base:
5273   case InitializedEntity::EK_Delegating:
5274   case InitializedEntity::EK_VectorElement:
5275   case InitializedEntity::EK_ComplexElement:
5276   case InitializedEntity::EK_BlockElement:
5277   case InitializedEntity::EK_CompoundLiteralInit:
5278   case InitializedEntity::EK_RelatedResult:
5279     return Initializer->getLocStart();
5280   }
5281   llvm_unreachable("missed an InitializedEntity kind?");
5282 }
5283 
5284 /// \brief Make a (potentially elidable) temporary copy of the object
5285 /// provided by the given initializer by calling the appropriate copy
5286 /// constructor.
5287 ///
5288 /// \param S The Sema object used for type-checking.
5289 ///
5290 /// \param T The type of the temporary object, which must either be
5291 /// the type of the initializer expression or a superclass thereof.
5292 ///
5293 /// \param Entity The entity being initialized.
5294 ///
5295 /// \param CurInit The initializer expression.
5296 ///
5297 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5298 /// is permitted in C++03 (but not C++0x) when binding a reference to
5299 /// an rvalue.
5300 ///
5301 /// \returns An expression that copies the initializer expression into
5302 /// a temporary object, or an error expression if a copy could not be
5303 /// created.
5304 static ExprResult CopyObject(Sema &S,
5305                              QualType T,
5306                              const InitializedEntity &Entity,
5307                              ExprResult CurInit,
5308                              bool IsExtraneousCopy) {
5309   if (CurInit.isInvalid())
5310     return CurInit;
5311   // Determine which class type we're copying to.
5312   Expr *CurInitExpr = (Expr *)CurInit.get();
5313   CXXRecordDecl *Class = nullptr;
5314   if (const RecordType *Record = T->getAs<RecordType>())
5315     Class = cast<CXXRecordDecl>(Record->getDecl());
5316   if (!Class)
5317     return CurInit;
5318 
5319   // C++0x [class.copy]p32:
5320   //   When certain criteria are met, an implementation is allowed to
5321   //   omit the copy/move construction of a class object, even if the
5322   //   copy/move constructor and/or destructor for the object have
5323   //   side effects. [...]
5324   //     - when a temporary class object that has not been bound to a
5325   //       reference (12.2) would be copied/moved to a class object
5326   //       with the same cv-unqualified type, the copy/move operation
5327   //       can be omitted by constructing the temporary object
5328   //       directly into the target of the omitted copy/move
5329   //
5330   // Note that the other three bullets are handled elsewhere. Copy
5331   // elision for return statements and throw expressions are handled as part
5332   // of constructor initialization, while copy elision for exception handlers
5333   // is handled by the run-time.
5334   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
5335   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5336 
5337   // Make sure that the type we are copying is complete.
5338   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5339     return CurInit;
5340 
5341   // Perform overload resolution using the class's copy/move constructors.
5342   // Only consider constructors and constructor templates. Per
5343   // C++0x [dcl.init]p16, second bullet to class types, this initialization
5344   // is direct-initialization.
5345   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5346   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
5347 
5348   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5349 
5350   OverloadCandidateSet::iterator Best;
5351   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
5352   case OR_Success:
5353     break;
5354 
5355   case OR_No_Viable_Function:
5356     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5357            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5358            : diag::err_temp_copy_no_viable)
5359       << (int)Entity.getKind() << CurInitExpr->getType()
5360       << CurInitExpr->getSourceRange();
5361     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5362     if (!IsExtraneousCopy || S.isSFINAEContext())
5363       return ExprError();
5364     return CurInit;
5365 
5366   case OR_Ambiguous:
5367     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5368       << (int)Entity.getKind() << CurInitExpr->getType()
5369       << CurInitExpr->getSourceRange();
5370     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5371     return ExprError();
5372 
5373   case OR_Deleted:
5374     S.Diag(Loc, diag::err_temp_copy_deleted)
5375       << (int)Entity.getKind() << CurInitExpr->getType()
5376       << CurInitExpr->getSourceRange();
5377     S.NoteDeletedFunction(Best->Function);
5378     return ExprError();
5379   }
5380 
5381   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5382   SmallVector<Expr*, 8> ConstructorArgs;
5383   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5384 
5385   S.CheckConstructorAccess(Loc, Constructor, Entity,
5386                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
5387 
5388   if (IsExtraneousCopy) {
5389     // If this is a totally extraneous copy for C++03 reference
5390     // binding purposes, just return the original initialization
5391     // expression. We don't generate an (elided) copy operation here
5392     // because doing so would require us to pass down a flag to avoid
5393     // infinite recursion, where each step adds another extraneous,
5394     // elidable copy.
5395 
5396     // Instantiate the default arguments of any extra parameters in
5397     // the selected copy constructor, as if we were going to create a
5398     // proper call to the copy constructor.
5399     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5400       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5401       if (S.RequireCompleteType(Loc, Parm->getType(),
5402                                 diag::err_call_incomplete_argument))
5403         break;
5404 
5405       // Build the default argument expression; we don't actually care
5406       // if this succeeds or not, because this routine will complain
5407       // if there was a problem.
5408       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5409     }
5410 
5411     return CurInitExpr;
5412   }
5413 
5414   // Determine the arguments required to actually perform the
5415   // constructor call (we might have derived-to-base conversions, or
5416   // the copy constructor may have default arguments).
5417   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5418     return ExprError();
5419 
5420   // Actually perform the constructor call.
5421   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5422                                     ConstructorArgs,
5423                                     HadMultipleCandidates,
5424                                     /*ListInit*/ false,
5425                                     /*StdInitListInit*/ false,
5426                                     /*ZeroInit*/ false,
5427                                     CXXConstructExpr::CK_Complete,
5428                                     SourceRange());
5429 
5430   // If we're supposed to bind temporaries, do so.
5431   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5432     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5433   return CurInit;
5434 }
5435 
5436 /// \brief Check whether elidable copy construction for binding a reference to
5437 /// a temporary would have succeeded if we were building in C++98 mode, for
5438 /// -Wc++98-compat.
5439 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5440                                            const InitializedEntity &Entity,
5441                                            Expr *CurInitExpr) {
5442   assert(S.getLangOpts().CPlusPlus11);
5443 
5444   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5445   if (!Record)
5446     return;
5447 
5448   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5449   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5450     return;
5451 
5452   // Find constructors which would have been considered.
5453   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5454   LookupCopyAndMoveConstructors(
5455       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5456 
5457   // Perform overload resolution.
5458   OverloadCandidateSet::iterator Best;
5459   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5460 
5461   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5462     << OR << (int)Entity.getKind() << CurInitExpr->getType()
5463     << CurInitExpr->getSourceRange();
5464 
5465   switch (OR) {
5466   case OR_Success:
5467     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5468                              Entity, Best->FoundDecl.getAccess(), Diag);
5469     // FIXME: Check default arguments as far as that's possible.
5470     break;
5471 
5472   case OR_No_Viable_Function:
5473     S.Diag(Loc, Diag);
5474     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5475     break;
5476 
5477   case OR_Ambiguous:
5478     S.Diag(Loc, Diag);
5479     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5480     break;
5481 
5482   case OR_Deleted:
5483     S.Diag(Loc, Diag);
5484     S.NoteDeletedFunction(Best->Function);
5485     break;
5486   }
5487 }
5488 
5489 void InitializationSequence::PrintInitLocationNote(Sema &S,
5490                                               const InitializedEntity &Entity) {
5491   if (Entity.isParameterKind() && Entity.getDecl()) {
5492     if (Entity.getDecl()->getLocation().isInvalid())
5493       return;
5494 
5495     if (Entity.getDecl()->getDeclName())
5496       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5497         << Entity.getDecl()->getDeclName();
5498     else
5499       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5500   }
5501   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5502            Entity.getMethodDecl())
5503     S.Diag(Entity.getMethodDecl()->getLocation(),
5504            diag::note_method_return_type_change)
5505       << Entity.getMethodDecl()->getDeclName();
5506 }
5507 
5508 static bool isReferenceBinding(const InitializationSequence::Step &s) {
5509   return s.Kind == InitializationSequence::SK_BindReference ||
5510          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5511 }
5512 
5513 /// Returns true if the parameters describe a constructor initialization of
5514 /// an explicit temporary object, e.g. "Point(x, y)".
5515 static bool isExplicitTemporary(const InitializedEntity &Entity,
5516                                 const InitializationKind &Kind,
5517                                 unsigned NumArgs) {
5518   switch (Entity.getKind()) {
5519   case InitializedEntity::EK_Temporary:
5520   case InitializedEntity::EK_CompoundLiteralInit:
5521   case InitializedEntity::EK_RelatedResult:
5522     break;
5523   default:
5524     return false;
5525   }
5526 
5527   switch (Kind.getKind()) {
5528   case InitializationKind::IK_DirectList:
5529     return true;
5530   // FIXME: Hack to work around cast weirdness.
5531   case InitializationKind::IK_Direct:
5532   case InitializationKind::IK_Value:
5533     return NumArgs != 1;
5534   default:
5535     return false;
5536   }
5537 }
5538 
5539 static ExprResult
5540 PerformConstructorInitialization(Sema &S,
5541                                  const InitializedEntity &Entity,
5542                                  const InitializationKind &Kind,
5543                                  MultiExprArg Args,
5544                                  const InitializationSequence::Step& Step,
5545                                  bool &ConstructorInitRequiresZeroInit,
5546                                  bool IsListInitialization,
5547                                  bool IsStdInitListInitialization,
5548                                  SourceLocation LBraceLoc,
5549                                  SourceLocation RBraceLoc) {
5550   unsigned NumArgs = Args.size();
5551   CXXConstructorDecl *Constructor
5552     = cast<CXXConstructorDecl>(Step.Function.Function);
5553   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5554 
5555   // Build a call to the selected constructor.
5556   SmallVector<Expr*, 8> ConstructorArgs;
5557   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5558                          ? Kind.getEqualLoc()
5559                          : Kind.getLocation();
5560 
5561   if (Kind.getKind() == InitializationKind::IK_Default) {
5562     // Force even a trivial, implicit default constructor to be
5563     // semantically checked. We do this explicitly because we don't build
5564     // the definition for completely trivial constructors.
5565     assert(Constructor->getParent() && "No parent class for constructor.");
5566     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5567         Constructor->isTrivial() && !Constructor->isUsed(false))
5568       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5569   }
5570 
5571   ExprResult CurInit((Expr *)nullptr);
5572 
5573   // C++ [over.match.copy]p1:
5574   //   - When initializing a temporary to be bound to the first parameter
5575   //     of a constructor that takes a reference to possibly cv-qualified
5576   //     T as its first argument, called with a single argument in the
5577   //     context of direct-initialization, explicit conversion functions
5578   //     are also considered.
5579   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5580                            Args.size() == 1 &&
5581                            Constructor->isCopyOrMoveConstructor();
5582 
5583   // Determine the arguments required to actually perform the constructor
5584   // call.
5585   if (S.CompleteConstructorCall(Constructor, Args,
5586                                 Loc, ConstructorArgs,
5587                                 AllowExplicitConv,
5588                                 IsListInitialization))
5589     return ExprError();
5590 
5591 
5592   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5593     // An explicitly-constructed temporary, e.g., X(1, 2).
5594     S.MarkFunctionReferenced(Loc, Constructor);
5595     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5596       return ExprError();
5597 
5598     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5599     if (!TSInfo)
5600       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5601     SourceRange ParenOrBraceRange =
5602       (Kind.getKind() == InitializationKind::IK_DirectList)
5603       ? SourceRange(LBraceLoc, RBraceLoc)
5604       : Kind.getParenRange();
5605 
5606     CurInit = new (S.Context) CXXTemporaryObjectExpr(
5607         S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
5608         HadMultipleCandidates, IsListInitialization,
5609         IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
5610   } else {
5611     CXXConstructExpr::ConstructionKind ConstructKind =
5612       CXXConstructExpr::CK_Complete;
5613 
5614     if (Entity.getKind() == InitializedEntity::EK_Base) {
5615       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5616         CXXConstructExpr::CK_VirtualBase :
5617         CXXConstructExpr::CK_NonVirtualBase;
5618     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5619       ConstructKind = CXXConstructExpr::CK_Delegating;
5620     }
5621 
5622     // Only get the parenthesis or brace range if it is a list initialization or
5623     // direct construction.
5624     SourceRange ParenOrBraceRange;
5625     if (IsListInitialization)
5626       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5627     else if (Kind.getKind() == InitializationKind::IK_Direct)
5628       ParenOrBraceRange = Kind.getParenRange();
5629 
5630     // If the entity allows NRVO, mark the construction as elidable
5631     // unconditionally.
5632     if (Entity.allowsNRVO())
5633       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5634                                         Constructor, /*Elidable=*/true,
5635                                         ConstructorArgs,
5636                                         HadMultipleCandidates,
5637                                         IsListInitialization,
5638                                         IsStdInitListInitialization,
5639                                         ConstructorInitRequiresZeroInit,
5640                                         ConstructKind,
5641                                         ParenOrBraceRange);
5642     else
5643       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5644                                         Constructor,
5645                                         ConstructorArgs,
5646                                         HadMultipleCandidates,
5647                                         IsListInitialization,
5648                                         IsStdInitListInitialization,
5649                                         ConstructorInitRequiresZeroInit,
5650                                         ConstructKind,
5651                                         ParenOrBraceRange);
5652   }
5653   if (CurInit.isInvalid())
5654     return ExprError();
5655 
5656   // Only check access if all of that succeeded.
5657   S.CheckConstructorAccess(Loc, Constructor, Entity,
5658                            Step.Function.FoundDecl.getAccess());
5659   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5660     return ExprError();
5661 
5662   if (shouldBindAsTemporary(Entity))
5663     CurInit = S.MaybeBindToTemporary(CurInit.get());
5664 
5665   return CurInit;
5666 }
5667 
5668 /// Determine whether the specified InitializedEntity definitely has a lifetime
5669 /// longer than the current full-expression. Conservatively returns false if
5670 /// it's unclear.
5671 static bool
5672 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5673   const InitializedEntity *Top = &Entity;
5674   while (Top->getParent())
5675     Top = Top->getParent();
5676 
5677   switch (Top->getKind()) {
5678   case InitializedEntity::EK_Variable:
5679   case InitializedEntity::EK_Result:
5680   case InitializedEntity::EK_Exception:
5681   case InitializedEntity::EK_Member:
5682   case InitializedEntity::EK_New:
5683   case InitializedEntity::EK_Base:
5684   case InitializedEntity::EK_Delegating:
5685     return true;
5686 
5687   case InitializedEntity::EK_ArrayElement:
5688   case InitializedEntity::EK_VectorElement:
5689   case InitializedEntity::EK_BlockElement:
5690   case InitializedEntity::EK_ComplexElement:
5691     // Could not determine what the full initialization is. Assume it might not
5692     // outlive the full-expression.
5693     return false;
5694 
5695   case InitializedEntity::EK_Parameter:
5696   case InitializedEntity::EK_Parameter_CF_Audited:
5697   case InitializedEntity::EK_Temporary:
5698   case InitializedEntity::EK_LambdaCapture:
5699   case InitializedEntity::EK_CompoundLiteralInit:
5700   case InitializedEntity::EK_RelatedResult:
5701     // The entity being initialized might not outlive the full-expression.
5702     return false;
5703   }
5704 
5705   llvm_unreachable("unknown entity kind");
5706 }
5707 
5708 /// Determine the declaration which an initialized entity ultimately refers to,
5709 /// for the purpose of lifetime-extending a temporary bound to a reference in
5710 /// the initialization of \p Entity.
5711 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
5712     const InitializedEntity *Entity,
5713     const InitializedEntity *FallbackDecl = nullptr) {
5714   // C++11 [class.temporary]p5:
5715   switch (Entity->getKind()) {
5716   case InitializedEntity::EK_Variable:
5717     //   The temporary [...] persists for the lifetime of the reference
5718     return Entity;
5719 
5720   case InitializedEntity::EK_Member:
5721     // For subobjects, we look at the complete object.
5722     if (Entity->getParent())
5723       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5724                                                     Entity);
5725 
5726     //   except:
5727     //   -- A temporary bound to a reference member in a constructor's
5728     //      ctor-initializer persists until the constructor exits.
5729     return Entity;
5730 
5731   case InitializedEntity::EK_Parameter:
5732   case InitializedEntity::EK_Parameter_CF_Audited:
5733     //   -- A temporary bound to a reference parameter in a function call
5734     //      persists until the completion of the full-expression containing
5735     //      the call.
5736   case InitializedEntity::EK_Result:
5737     //   -- The lifetime of a temporary bound to the returned value in a
5738     //      function return statement is not extended; the temporary is
5739     //      destroyed at the end of the full-expression in the return statement.
5740   case InitializedEntity::EK_New:
5741     //   -- A temporary bound to a reference in a new-initializer persists
5742     //      until the completion of the full-expression containing the
5743     //      new-initializer.
5744     return nullptr;
5745 
5746   case InitializedEntity::EK_Temporary:
5747   case InitializedEntity::EK_CompoundLiteralInit:
5748   case InitializedEntity::EK_RelatedResult:
5749     // We don't yet know the storage duration of the surrounding temporary.
5750     // Assume it's got full-expression duration for now, it will patch up our
5751     // storage duration if that's not correct.
5752     return nullptr;
5753 
5754   case InitializedEntity::EK_ArrayElement:
5755     // For subobjects, we look at the complete object.
5756     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5757                                                   FallbackDecl);
5758 
5759   case InitializedEntity::EK_Base:
5760   case InitializedEntity::EK_Delegating:
5761     // We can reach this case for aggregate initialization in a constructor:
5762     //   struct A { int &&r; };
5763     //   struct B : A { B() : A{0} {} };
5764     // In this case, use the innermost field decl as the context.
5765     return FallbackDecl;
5766 
5767   case InitializedEntity::EK_BlockElement:
5768   case InitializedEntity::EK_LambdaCapture:
5769   case InitializedEntity::EK_Exception:
5770   case InitializedEntity::EK_VectorElement:
5771   case InitializedEntity::EK_ComplexElement:
5772     return nullptr;
5773   }
5774   llvm_unreachable("unknown entity kind");
5775 }
5776 
5777 static void performLifetimeExtension(Expr *Init,
5778                                      const InitializedEntity *ExtendingEntity);
5779 
5780 /// Update a glvalue expression that is used as the initializer of a reference
5781 /// to note that its lifetime is extended.
5782 /// \return \c true if any temporary had its lifetime extended.
5783 static bool
5784 performReferenceExtension(Expr *Init,
5785                           const InitializedEntity *ExtendingEntity) {
5786   // Walk past any constructs which we can lifetime-extend across.
5787   Expr *Old;
5788   do {
5789     Old = Init;
5790 
5791     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5792       if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5793         // This is just redundant braces around an initializer. Step over it.
5794         Init = ILE->getInit(0);
5795       }
5796     }
5797 
5798     // Step over any subobject adjustments; we may have a materialized
5799     // temporary inside them.
5800     SmallVector<const Expr *, 2> CommaLHSs;
5801     SmallVector<SubobjectAdjustment, 2> Adjustments;
5802     Init = const_cast<Expr *>(
5803         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5804 
5805     // Per current approach for DR1376, look through casts to reference type
5806     // when performing lifetime extension.
5807     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5808       if (CE->getSubExpr()->isGLValue())
5809         Init = CE->getSubExpr();
5810 
5811     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5812     // It's unclear if binding a reference to that xvalue extends the array
5813     // temporary.
5814   } while (Init != Old);
5815 
5816   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5817     // Update the storage duration of the materialized temporary.
5818     // FIXME: Rebuild the expression instead of mutating it.
5819     ME->setExtendingDecl(ExtendingEntity->getDecl(),
5820                          ExtendingEntity->allocateManglingNumber());
5821     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
5822     return true;
5823   }
5824 
5825   return false;
5826 }
5827 
5828 /// Update a prvalue expression that is going to be materialized as a
5829 /// lifetime-extended temporary.
5830 static void performLifetimeExtension(Expr *Init,
5831                                      const InitializedEntity *ExtendingEntity) {
5832   // Dig out the expression which constructs the extended temporary.
5833   SmallVector<const Expr *, 2> CommaLHSs;
5834   SmallVector<SubobjectAdjustment, 2> Adjustments;
5835   Init = const_cast<Expr *>(
5836       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5837 
5838   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5839     Init = BTE->getSubExpr();
5840 
5841   if (CXXStdInitializerListExpr *ILE =
5842           dyn_cast<CXXStdInitializerListExpr>(Init)) {
5843     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
5844     return;
5845   }
5846 
5847   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5848     if (ILE->getType()->isArrayType()) {
5849       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5850         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
5851       return;
5852     }
5853 
5854     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5855       assert(RD->isAggregate() && "aggregate init on non-aggregate");
5856 
5857       // If we lifetime-extend a braced initializer which is initializing an
5858       // aggregate, and that aggregate contains reference members which are
5859       // bound to temporaries, those temporaries are also lifetime-extended.
5860       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5861           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5862         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
5863       else {
5864         unsigned Index = 0;
5865         for (const auto *I : RD->fields()) {
5866           if (Index >= ILE->getNumInits())
5867             break;
5868           if (I->isUnnamedBitfield())
5869             continue;
5870           Expr *SubInit = ILE->getInit(Index);
5871           if (I->getType()->isReferenceType())
5872             performReferenceExtension(SubInit, ExtendingEntity);
5873           else if (isa<InitListExpr>(SubInit) ||
5874                    isa<CXXStdInitializerListExpr>(SubInit))
5875             // This may be either aggregate-initialization of a member or
5876             // initialization of a std::initializer_list object. Either way,
5877             // we should recursively lifetime-extend that initializer.
5878             performLifetimeExtension(SubInit, ExtendingEntity);
5879           ++Index;
5880         }
5881       }
5882     }
5883   }
5884 }
5885 
5886 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5887                                     const Expr *Init, bool IsInitializerList,
5888                                     const ValueDecl *ExtendingDecl) {
5889   // Warn if a field lifetime-extends a temporary.
5890   if (isa<FieldDecl>(ExtendingDecl)) {
5891     if (IsInitializerList) {
5892       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5893         << /*at end of constructor*/true;
5894       return;
5895     }
5896 
5897     bool IsSubobjectMember = false;
5898     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5899          Ent = Ent->getParent()) {
5900       if (Ent->getKind() != InitializedEntity::EK_Base) {
5901         IsSubobjectMember = true;
5902         break;
5903       }
5904     }
5905     S.Diag(Init->getExprLoc(),
5906            diag::warn_bind_ref_member_to_temporary)
5907       << ExtendingDecl << Init->getSourceRange()
5908       << IsSubobjectMember << IsInitializerList;
5909     if (IsSubobjectMember)
5910       S.Diag(ExtendingDecl->getLocation(),
5911              diag::note_ref_subobject_of_member_declared_here);
5912     else
5913       S.Diag(ExtendingDecl->getLocation(),
5914              diag::note_ref_or_ptr_member_declared_here)
5915         << /*is pointer*/false;
5916   }
5917 }
5918 
5919 static void DiagnoseNarrowingInInitList(Sema &S,
5920                                         const ImplicitConversionSequence &ICS,
5921                                         QualType PreNarrowingType,
5922                                         QualType EntityType,
5923                                         const Expr *PostInit);
5924 
5925 /// Provide warnings when std::move is used on construction.
5926 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
5927                                     bool IsReturnStmt) {
5928   if (!InitExpr)
5929     return;
5930 
5931   QualType DestType = InitExpr->getType();
5932   if (!DestType->isRecordType())
5933     return;
5934 
5935   unsigned DiagID = 0;
5936   if (IsReturnStmt) {
5937     const CXXConstructExpr *CCE =
5938         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
5939     if (!CCE || CCE->getNumArgs() != 1)
5940       return;
5941 
5942     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
5943       return;
5944 
5945     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
5946 
5947     // Remove implicit temporary and constructor nodes.
5948     if (const MaterializeTemporaryExpr *MTE =
5949             dyn_cast<MaterializeTemporaryExpr>(InitExpr)) {
5950       InitExpr = MTE->GetTemporaryExpr()->IgnoreImpCasts();
5951       while (const CXXConstructExpr *CCE =
5952                  dyn_cast<CXXConstructExpr>(InitExpr)) {
5953         if (isa<CXXTemporaryObjectExpr>(CCE))
5954           return;
5955         if (CCE->getNumArgs() == 0)
5956           return;
5957         if (CCE->getNumArgs() > 1 && !isa<CXXDefaultArgExpr>(CCE->getArg(1)))
5958           return;
5959         InitExpr = CCE->getArg(0);
5960       }
5961       InitExpr = InitExpr->IgnoreImpCasts();
5962       DiagID = diag::warn_redundant_move_on_return;
5963     }
5964   }
5965 
5966   // Find the std::move call and get the argument.
5967   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
5968   if (!CE || CE->getNumArgs() != 1)
5969     return;
5970 
5971   const FunctionDecl *MoveFunction = CE->getDirectCallee();
5972   if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
5973       !MoveFunction->getIdentifier() ||
5974       !MoveFunction->getIdentifier()->isStr("move"))
5975     return;
5976 
5977   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
5978 
5979   if (IsReturnStmt) {
5980     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
5981     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
5982       return;
5983 
5984     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
5985     if (!VD || !VD->hasLocalStorage())
5986       return;
5987 
5988     if (!VD->getType()->isRecordType())
5989       return;
5990 
5991     if (DiagID == 0) {
5992       DiagID = S.Context.hasSameUnqualifiedType(DestType, VD->getType())
5993                    ? diag::warn_pessimizing_move_on_return
5994                    : diag::warn_redundant_move_on_return;
5995     }
5996   } else {
5997     DiagID = diag::warn_pessimizing_move_on_initialization;
5998     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
5999     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6000       return;
6001   }
6002 
6003   S.Diag(CE->getLocStart(), DiagID);
6004 
6005   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
6006   // is within a macro.
6007   SourceLocation CallBegin = CE->getCallee()->getLocStart();
6008   if (CallBegin.isMacroID())
6009     return;
6010   SourceLocation RParen = CE->getRParenLoc();
6011   if (RParen.isMacroID())
6012     return;
6013   SourceLocation LParen;
6014   SourceLocation ArgLoc = Arg->getLocStart();
6015 
6016   // Special testing for the argument location.  Since the fix-it needs the
6017   // location right before the argument, the argument location can be in a
6018   // macro only if it is at the beginning of the macro.
6019   while (ArgLoc.isMacroID() &&
6020          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6021     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6022   }
6023 
6024   if (LParen.isMacroID())
6025     return;
6026 
6027   LParen = ArgLoc.getLocWithOffset(-1);
6028 
6029   S.Diag(CE->getLocStart(), diag::note_remove_move)
6030       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6031       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6032 }
6033 
6034 ExprResult
6035 InitializationSequence::Perform(Sema &S,
6036                                 const InitializedEntity &Entity,
6037                                 const InitializationKind &Kind,
6038                                 MultiExprArg Args,
6039                                 QualType *ResultType) {
6040   if (Failed()) {
6041     Diagnose(S, Entity, Kind, Args);
6042     return ExprError();
6043   }
6044   if (!ZeroInitializationFixit.empty()) {
6045     unsigned DiagID = diag::err_default_init_const;
6046     if (Decl *D = Entity.getDecl())
6047       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6048         DiagID = diag::ext_default_init_const;
6049 
6050     // The initialization would have succeeded with this fixit. Since the fixit
6051     // is on the error, we need to build a valid AST in this case, so this isn't
6052     // handled in the Failed() branch above.
6053     QualType DestType = Entity.getType();
6054     S.Diag(Kind.getLocation(), DiagID)
6055         << DestType << (bool)DestType->getAs<RecordType>()
6056         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6057                                       ZeroInitializationFixit);
6058   }
6059 
6060   if (getKind() == DependentSequence) {
6061     // If the declaration is a non-dependent, incomplete array type
6062     // that has an initializer, then its type will be completed once
6063     // the initializer is instantiated.
6064     if (ResultType && !Entity.getType()->isDependentType() &&
6065         Args.size() == 1) {
6066       QualType DeclType = Entity.getType();
6067       if (const IncompleteArrayType *ArrayT
6068                            = S.Context.getAsIncompleteArrayType(DeclType)) {
6069         // FIXME: We don't currently have the ability to accurately
6070         // compute the length of an initializer list without
6071         // performing full type-checking of the initializer list
6072         // (since we have to determine where braces are implicitly
6073         // introduced and such).  So, we fall back to making the array
6074         // type a dependently-sized array type with no specified
6075         // bound.
6076         if (isa<InitListExpr>((Expr *)Args[0])) {
6077           SourceRange Brackets;
6078 
6079           // Scavange the location of the brackets from the entity, if we can.
6080           if (DeclaratorDecl *DD = Entity.getDecl()) {
6081             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6082               TypeLoc TL = TInfo->getTypeLoc();
6083               if (IncompleteArrayTypeLoc ArrayLoc =
6084                       TL.getAs<IncompleteArrayTypeLoc>())
6085                 Brackets = ArrayLoc.getBracketsRange();
6086             }
6087           }
6088 
6089           *ResultType
6090             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6091                                                    /*NumElts=*/nullptr,
6092                                                    ArrayT->getSizeModifier(),
6093                                        ArrayT->getIndexTypeCVRQualifiers(),
6094                                                    Brackets);
6095         }
6096 
6097       }
6098     }
6099     if (Kind.getKind() == InitializationKind::IK_Direct &&
6100         !Kind.isExplicitCast()) {
6101       // Rebuild the ParenListExpr.
6102       SourceRange ParenRange = Kind.getParenRange();
6103       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6104                                   Args);
6105     }
6106     assert(Kind.getKind() == InitializationKind::IK_Copy ||
6107            Kind.isExplicitCast() ||
6108            Kind.getKind() == InitializationKind::IK_DirectList);
6109     return ExprResult(Args[0]);
6110   }
6111 
6112   // No steps means no initialization.
6113   if (Steps.empty())
6114     return ExprResult((Expr *)nullptr);
6115 
6116   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6117       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6118       !Entity.isParameterKind()) {
6119     // Produce a C++98 compatibility warning if we are initializing a reference
6120     // from an initializer list. For parameters, we produce a better warning
6121     // elsewhere.
6122     Expr *Init = Args[0];
6123     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6124       << Init->getSourceRange();
6125   }
6126 
6127   // Diagnose cases where we initialize a pointer to an array temporary, and the
6128   // pointer obviously outlives the temporary.
6129   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6130       Entity.getType()->isPointerType() &&
6131       InitializedEntityOutlivesFullExpression(Entity)) {
6132     Expr *Init = Args[0];
6133     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6134     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6135       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6136         << Init->getSourceRange();
6137   }
6138 
6139   QualType DestType = Entity.getType().getNonReferenceType();
6140   // FIXME: Ugly hack around the fact that Entity.getType() is not
6141   // the same as Entity.getDecl()->getType() in cases involving type merging,
6142   //  and we want latter when it makes sense.
6143   if (ResultType)
6144     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6145                                      Entity.getType();
6146 
6147   ExprResult CurInit((Expr *)nullptr);
6148 
6149   // For initialization steps that start with a single initializer,
6150   // grab the only argument out the Args and place it into the "current"
6151   // initializer.
6152   switch (Steps.front().Kind) {
6153   case SK_ResolveAddressOfOverloadedFunction:
6154   case SK_CastDerivedToBaseRValue:
6155   case SK_CastDerivedToBaseXValue:
6156   case SK_CastDerivedToBaseLValue:
6157   case SK_BindReference:
6158   case SK_BindReferenceToTemporary:
6159   case SK_ExtraneousCopyToTemporary:
6160   case SK_UserConversion:
6161   case SK_QualificationConversionLValue:
6162   case SK_QualificationConversionXValue:
6163   case SK_QualificationConversionRValue:
6164   case SK_AtomicConversion:
6165   case SK_LValueToRValue:
6166   case SK_ConversionSequence:
6167   case SK_ConversionSequenceNoNarrowing:
6168   case SK_ListInitialization:
6169   case SK_UnwrapInitList:
6170   case SK_RewrapInitList:
6171   case SK_CAssignment:
6172   case SK_StringInit:
6173   case SK_ObjCObjectConversion:
6174   case SK_ArrayInit:
6175   case SK_ParenthesizedArrayInit:
6176   case SK_PassByIndirectCopyRestore:
6177   case SK_PassByIndirectRestore:
6178   case SK_ProduceObjCObject:
6179   case SK_StdInitializerList:
6180   case SK_OCLSamplerInit:
6181   case SK_OCLZeroEvent: {
6182     assert(Args.size() == 1);
6183     CurInit = Args[0];
6184     if (!CurInit.get()) return ExprError();
6185     break;
6186   }
6187 
6188   case SK_ConstructorInitialization:
6189   case SK_ConstructorInitializationFromList:
6190   case SK_StdInitializerListConstructorCall:
6191   case SK_ZeroInitialization:
6192     break;
6193   }
6194 
6195   // Walk through the computed steps for the initialization sequence,
6196   // performing the specified conversions along the way.
6197   bool ConstructorInitRequiresZeroInit = false;
6198   for (step_iterator Step = step_begin(), StepEnd = step_end();
6199        Step != StepEnd; ++Step) {
6200     if (CurInit.isInvalid())
6201       return ExprError();
6202 
6203     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6204 
6205     switch (Step->Kind) {
6206     case SK_ResolveAddressOfOverloadedFunction:
6207       // Overload resolution determined which function invoke; update the
6208       // initializer to reflect that choice.
6209       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6210       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6211         return ExprError();
6212       CurInit = S.FixOverloadedFunctionReference(CurInit,
6213                                                  Step->Function.FoundDecl,
6214                                                  Step->Function.Function);
6215       break;
6216 
6217     case SK_CastDerivedToBaseRValue:
6218     case SK_CastDerivedToBaseXValue:
6219     case SK_CastDerivedToBaseLValue: {
6220       // We have a derived-to-base cast that produces either an rvalue or an
6221       // lvalue. Perform that cast.
6222 
6223       CXXCastPath BasePath;
6224 
6225       // Casts to inaccessible base classes are allowed with C-style casts.
6226       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6227       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6228                                          CurInit.get()->getLocStart(),
6229                                          CurInit.get()->getSourceRange(),
6230                                          &BasePath, IgnoreBaseAccess))
6231         return ExprError();
6232 
6233       ExprValueKind VK =
6234           Step->Kind == SK_CastDerivedToBaseLValue ?
6235               VK_LValue :
6236               (Step->Kind == SK_CastDerivedToBaseXValue ?
6237                    VK_XValue :
6238                    VK_RValue);
6239       CurInit =
6240           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6241                                    CurInit.get(), &BasePath, VK);
6242       break;
6243     }
6244 
6245     case SK_BindReference:
6246       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
6247       if (CurInit.get()->refersToBitField()) {
6248         // We don't necessarily have an unambiguous source bit-field.
6249         FieldDecl *BitField = CurInit.get()->getSourceBitField();
6250         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
6251           << Entity.getType().isVolatileQualified()
6252           << (BitField ? BitField->getDeclName() : DeclarationName())
6253           << (BitField != nullptr)
6254           << CurInit.get()->getSourceRange();
6255         if (BitField)
6256           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
6257 
6258         return ExprError();
6259       }
6260 
6261       if (CurInit.get()->refersToVectorElement()) {
6262         // References cannot bind to vector elements.
6263         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
6264           << Entity.getType().isVolatileQualified()
6265           << CurInit.get()->getSourceRange();
6266         PrintInitLocationNote(S, Entity);
6267         return ExprError();
6268       }
6269 
6270       // Reference binding does not have any corresponding ASTs.
6271 
6272       // Check exception specifications
6273       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6274         return ExprError();
6275 
6276       // Even though we didn't materialize a temporary, the binding may still
6277       // extend the lifetime of a temporary. This happens if we bind a reference
6278       // to the result of a cast to reference type.
6279       if (const InitializedEntity *ExtendingEntity =
6280               getEntityForTemporaryLifetimeExtension(&Entity))
6281         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6282           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6283                                   /*IsInitializerList=*/false,
6284                                   ExtendingEntity->getDecl());
6285 
6286       break;
6287 
6288     case SK_BindReferenceToTemporary: {
6289       // Make sure the "temporary" is actually an rvalue.
6290       assert(CurInit.get()->isRValue() && "not a temporary");
6291 
6292       // Check exception specifications
6293       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6294         return ExprError();
6295 
6296       // Materialize the temporary into memory.
6297       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
6298           Entity.getType().getNonReferenceType(), CurInit.get(),
6299           Entity.getType()->isLValueReferenceType());
6300 
6301       // Maybe lifetime-extend the temporary's subobjects to match the
6302       // entity's lifetime.
6303       if (const InitializedEntity *ExtendingEntity =
6304               getEntityForTemporaryLifetimeExtension(&Entity))
6305         if (performReferenceExtension(MTE, ExtendingEntity))
6306           warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
6307                                   ExtendingEntity->getDecl());
6308 
6309       // If we're binding to an Objective-C object that has lifetime, we
6310       // need cleanups. Likewise if we're extending this temporary to automatic
6311       // storage duration -- we need to register its cleanup during the
6312       // full-expression's cleanups.
6313       if ((S.getLangOpts().ObjCAutoRefCount &&
6314            MTE->getType()->isObjCLifetimeType()) ||
6315           (MTE->getStorageDuration() == SD_Automatic &&
6316            MTE->getType().isDestructedType()))
6317         S.ExprNeedsCleanups = true;
6318 
6319       CurInit = MTE;
6320       break;
6321     }
6322 
6323     case SK_ExtraneousCopyToTemporary:
6324       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6325                            /*IsExtraneousCopy=*/true);
6326       break;
6327 
6328     case SK_UserConversion: {
6329       // We have a user-defined conversion that invokes either a constructor
6330       // or a conversion function.
6331       CastKind CastKind;
6332       bool IsCopy = false;
6333       FunctionDecl *Fn = Step->Function.Function;
6334       DeclAccessPair FoundFn = Step->Function.FoundDecl;
6335       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6336       bool CreatedObject = false;
6337       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6338         // Build a call to the selected constructor.
6339         SmallVector<Expr*, 8> ConstructorArgs;
6340         SourceLocation Loc = CurInit.get()->getLocStart();
6341         CurInit.get(); // Ownership transferred into MultiExprArg, below.
6342 
6343         // Determine the arguments required to actually perform the constructor
6344         // call.
6345         Expr *Arg = CurInit.get();
6346         if (S.CompleteConstructorCall(Constructor,
6347                                       MultiExprArg(&Arg, 1),
6348                                       Loc, ConstructorArgs))
6349           return ExprError();
6350 
6351         // Build an expression that constructs a temporary.
6352         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
6353                                           ConstructorArgs,
6354                                           HadMultipleCandidates,
6355                                           /*ListInit*/ false,
6356                                           /*StdInitListInit*/ false,
6357                                           /*ZeroInit*/ false,
6358                                           CXXConstructExpr::CK_Complete,
6359                                           SourceRange());
6360         if (CurInit.isInvalid())
6361           return ExprError();
6362 
6363         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
6364                                  FoundFn.getAccess());
6365         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6366           return ExprError();
6367 
6368         CastKind = CK_ConstructorConversion;
6369         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
6370         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
6371             S.IsDerivedFrom(SourceType, Class))
6372           IsCopy = true;
6373 
6374         CreatedObject = true;
6375       } else {
6376         // Build a call to the conversion function.
6377         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6378         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6379                                     FoundFn);
6380         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6381           return ExprError();
6382 
6383         // FIXME: Should we move this initialization into a separate
6384         // derived-to-base conversion? I believe the answer is "no", because
6385         // we don't want to turn off access control here for c-style casts.
6386         ExprResult CurInitExprRes =
6387           S.PerformObjectArgumentInitialization(CurInit.get(),
6388                                                 /*Qualifier=*/nullptr,
6389                                                 FoundFn, Conversion);
6390         if(CurInitExprRes.isInvalid())
6391           return ExprError();
6392         CurInit = CurInitExprRes;
6393 
6394         // Build the actual call to the conversion function.
6395         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6396                                            HadMultipleCandidates);
6397         if (CurInit.isInvalid() || !CurInit.get())
6398           return ExprError();
6399 
6400         CastKind = CK_UserDefinedConversion;
6401 
6402         CreatedObject = Conversion->getReturnType()->isRecordType();
6403       }
6404 
6405       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
6406       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
6407 
6408       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
6409         QualType T = CurInit.get()->getType();
6410         if (const RecordType *Record = T->getAs<RecordType>()) {
6411           CXXDestructorDecl *Destructor
6412             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6413           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6414                                   S.PDiag(diag::err_access_dtor_temp) << T);
6415           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6416           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6417             return ExprError();
6418         }
6419       }
6420 
6421       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6422                                          CastKind, CurInit.get(), nullptr,
6423                                          CurInit.get()->getValueKind());
6424       if (MaybeBindToTemp)
6425         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6426       if (RequiresCopy)
6427         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
6428                              CurInit, /*IsExtraneousCopy=*/false);
6429       break;
6430     }
6431 
6432     case SK_QualificationConversionLValue:
6433     case SK_QualificationConversionXValue:
6434     case SK_QualificationConversionRValue: {
6435       // Perform a qualification conversion; these can never go wrong.
6436       ExprValueKind VK =
6437           Step->Kind == SK_QualificationConversionLValue ?
6438               VK_LValue :
6439               (Step->Kind == SK_QualificationConversionXValue ?
6440                    VK_XValue :
6441                    VK_RValue);
6442       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6443       break;
6444     }
6445 
6446     case SK_AtomicConversion: {
6447       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
6448       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6449                                     CK_NonAtomicToAtomic, VK_RValue);
6450       break;
6451     }
6452 
6453     case SK_LValueToRValue: {
6454       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6455       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6456                                          CK_LValueToRValue, CurInit.get(),
6457                                          /*BasePath=*/nullptr, VK_RValue);
6458       break;
6459     }
6460 
6461     case SK_ConversionSequence:
6462     case SK_ConversionSequenceNoNarrowing: {
6463       Sema::CheckedConversionKind CCK
6464         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6465         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6466         : Kind.isExplicitCast()? Sema::CCK_OtherCast
6467         : Sema::CCK_ImplicitConversion;
6468       ExprResult CurInitExprRes =
6469         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6470                                     getAssignmentAction(Entity), CCK);
6471       if (CurInitExprRes.isInvalid())
6472         return ExprError();
6473       CurInit = CurInitExprRes;
6474 
6475       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6476           S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
6477         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6478                                     CurInit.get());
6479       break;
6480     }
6481 
6482     case SK_ListInitialization: {
6483       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6484       // If we're not initializing the top-level entity, we need to create an
6485       // InitializeTemporary entity for our target type.
6486       QualType Ty = Step->Type;
6487       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6488       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6489       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6490       InitListChecker PerformInitList(S, InitEntity,
6491           InitList, Ty, /*VerifyOnly=*/false);
6492       if (PerformInitList.HadError())
6493         return ExprError();
6494 
6495       // Hack: We must update *ResultType if available in order to set the
6496       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6497       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6498       if (ResultType &&
6499           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6500         if ((*ResultType)->isRValueReferenceType())
6501           Ty = S.Context.getRValueReferenceType(Ty);
6502         else if ((*ResultType)->isLValueReferenceType())
6503           Ty = S.Context.getLValueReferenceType(Ty,
6504             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6505         *ResultType = Ty;
6506       }
6507 
6508       InitListExpr *StructuredInitList =
6509           PerformInitList.getFullyStructuredList();
6510       CurInit.get();
6511       CurInit = shouldBindAsTemporary(InitEntity)
6512           ? S.MaybeBindToTemporary(StructuredInitList)
6513           : StructuredInitList;
6514       break;
6515     }
6516 
6517     case SK_ConstructorInitializationFromList: {
6518       // When an initializer list is passed for a parameter of type "reference
6519       // to object", we don't get an EK_Temporary entity, but instead an
6520       // EK_Parameter entity with reference type.
6521       // FIXME: This is a hack. What we really should do is create a user
6522       // conversion step for this case, but this makes it considerably more
6523       // complicated. For now, this will do.
6524       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6525                                         Entity.getType().getNonReferenceType());
6526       bool UseTemporary = Entity.getType()->isReferenceType();
6527       assert(Args.size() == 1 && "expected a single argument for list init");
6528       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6529       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6530         << InitList->getSourceRange();
6531       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6532       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6533                                                                    Entity,
6534                                                  Kind, Arg, *Step,
6535                                                ConstructorInitRequiresZeroInit,
6536                                                /*IsListInitialization*/true,
6537                                                /*IsStdInitListInit*/false,
6538                                                InitList->getLBraceLoc(),
6539                                                InitList->getRBraceLoc());
6540       break;
6541     }
6542 
6543     case SK_UnwrapInitList:
6544       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6545       break;
6546 
6547     case SK_RewrapInitList: {
6548       Expr *E = CurInit.get();
6549       InitListExpr *Syntactic = Step->WrappingSyntacticList;
6550       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6551           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6552       ILE->setSyntacticForm(Syntactic);
6553       ILE->setType(E->getType());
6554       ILE->setValueKind(E->getValueKind());
6555       CurInit = ILE;
6556       break;
6557     }
6558 
6559     case SK_ConstructorInitialization:
6560     case SK_StdInitializerListConstructorCall: {
6561       // When an initializer list is passed for a parameter of type "reference
6562       // to object", we don't get an EK_Temporary entity, but instead an
6563       // EK_Parameter entity with reference type.
6564       // FIXME: This is a hack. What we really should do is create a user
6565       // conversion step for this case, but this makes it considerably more
6566       // complicated. For now, this will do.
6567       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6568                                         Entity.getType().getNonReferenceType());
6569       bool UseTemporary = Entity.getType()->isReferenceType();
6570       bool IsStdInitListInit =
6571           Step->Kind == SK_StdInitializerListConstructorCall;
6572       CurInit = PerformConstructorInitialization(
6573           S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
6574           ConstructorInitRequiresZeroInit,
6575           /*IsListInitialization*/IsStdInitListInit,
6576           /*IsStdInitListInitialization*/IsStdInitListInit,
6577           /*LBraceLoc*/SourceLocation(),
6578           /*RBraceLoc*/SourceLocation());
6579       break;
6580     }
6581 
6582     case SK_ZeroInitialization: {
6583       step_iterator NextStep = Step;
6584       ++NextStep;
6585       if (NextStep != StepEnd &&
6586           (NextStep->Kind == SK_ConstructorInitialization ||
6587            NextStep->Kind == SK_ConstructorInitializationFromList)) {
6588         // The need for zero-initialization is recorded directly into
6589         // the call to the object's constructor within the next step.
6590         ConstructorInitRequiresZeroInit = true;
6591       } else if (Kind.getKind() == InitializationKind::IK_Value &&
6592                  S.getLangOpts().CPlusPlus &&
6593                  !Kind.isImplicitValueInit()) {
6594         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6595         if (!TSInfo)
6596           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6597                                                     Kind.getRange().getBegin());
6598 
6599         CurInit = new (S.Context) CXXScalarValueInitExpr(
6600             TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6601             Kind.getRange().getEnd());
6602       } else {
6603         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6604       }
6605       break;
6606     }
6607 
6608     case SK_CAssignment: {
6609       QualType SourceType = CurInit.get()->getType();
6610       ExprResult Result = CurInit;
6611       Sema::AssignConvertType ConvTy =
6612         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6613             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6614       if (Result.isInvalid())
6615         return ExprError();
6616       CurInit = Result;
6617 
6618       // If this is a call, allow conversion to a transparent union.
6619       ExprResult CurInitExprRes = CurInit;
6620       if (ConvTy != Sema::Compatible &&
6621           Entity.isParameterKind() &&
6622           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6623             == Sema::Compatible)
6624         ConvTy = Sema::Compatible;
6625       if (CurInitExprRes.isInvalid())
6626         return ExprError();
6627       CurInit = CurInitExprRes;
6628 
6629       bool Complained;
6630       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6631                                      Step->Type, SourceType,
6632                                      CurInit.get(),
6633                                      getAssignmentAction(Entity, true),
6634                                      &Complained)) {
6635         PrintInitLocationNote(S, Entity);
6636         return ExprError();
6637       } else if (Complained)
6638         PrintInitLocationNote(S, Entity);
6639       break;
6640     }
6641 
6642     case SK_StringInit: {
6643       QualType Ty = Step->Type;
6644       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6645                       S.Context.getAsArrayType(Ty), S);
6646       break;
6647     }
6648 
6649     case SK_ObjCObjectConversion:
6650       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6651                           CK_ObjCObjectLValueCast,
6652                           CurInit.get()->getValueKind());
6653       break;
6654 
6655     case SK_ArrayInit:
6656       // Okay: we checked everything before creating this step. Note that
6657       // this is a GNU extension.
6658       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6659         << Step->Type << CurInit.get()->getType()
6660         << CurInit.get()->getSourceRange();
6661 
6662       // If the destination type is an incomplete array type, update the
6663       // type accordingly.
6664       if (ResultType) {
6665         if (const IncompleteArrayType *IncompleteDest
6666                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
6667           if (const ConstantArrayType *ConstantSource
6668                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6669             *ResultType = S.Context.getConstantArrayType(
6670                                              IncompleteDest->getElementType(),
6671                                              ConstantSource->getSize(),
6672                                              ArrayType::Normal, 0);
6673           }
6674         }
6675       }
6676       break;
6677 
6678     case SK_ParenthesizedArrayInit:
6679       // Okay: we checked everything before creating this step. Note that
6680       // this is a GNU extension.
6681       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6682         << CurInit.get()->getSourceRange();
6683       break;
6684 
6685     case SK_PassByIndirectCopyRestore:
6686     case SK_PassByIndirectRestore:
6687       checkIndirectCopyRestoreSource(S, CurInit.get());
6688       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
6689           CurInit.get(), Step->Type,
6690           Step->Kind == SK_PassByIndirectCopyRestore);
6691       break;
6692 
6693     case SK_ProduceObjCObject:
6694       CurInit =
6695           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
6696                                    CurInit.get(), nullptr, VK_RValue);
6697       break;
6698 
6699     case SK_StdInitializerList: {
6700       S.Diag(CurInit.get()->getExprLoc(),
6701              diag::warn_cxx98_compat_initializer_list_init)
6702         << CurInit.get()->getSourceRange();
6703 
6704       // Materialize the temporary into memory.
6705       MaterializeTemporaryExpr *MTE = new (S.Context)
6706           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6707                                    /*BoundToLvalueReference=*/false);
6708 
6709       // Maybe lifetime-extend the array temporary's subobjects to match the
6710       // entity's lifetime.
6711       if (const InitializedEntity *ExtendingEntity =
6712               getEntityForTemporaryLifetimeExtension(&Entity))
6713         if (performReferenceExtension(MTE, ExtendingEntity))
6714           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6715                                   /*IsInitializerList=*/true,
6716                                   ExtendingEntity->getDecl());
6717 
6718       // Wrap it in a construction of a std::initializer_list<T>.
6719       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
6720 
6721       // Bind the result, in case the library has given initializer_list a
6722       // non-trivial destructor.
6723       if (shouldBindAsTemporary(Entity))
6724         CurInit = S.MaybeBindToTemporary(CurInit.get());
6725       break;
6726     }
6727 
6728     case SK_OCLSamplerInit: {
6729       assert(Step->Type->isSamplerT() &&
6730              "Sampler initialization on non-sampler type.");
6731 
6732       QualType SourceType = CurInit.get()->getType();
6733 
6734       if (Entity.isParameterKind()) {
6735         if (!SourceType->isSamplerT())
6736           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6737             << SourceType;
6738       } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6739         llvm_unreachable("Invalid EntityKind!");
6740       }
6741 
6742       break;
6743     }
6744     case SK_OCLZeroEvent: {
6745       assert(Step->Type->isEventT() &&
6746              "Event initialization on non-event type.");
6747 
6748       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6749                                     CK_ZeroToOCLEvent,
6750                                     CurInit.get()->getValueKind());
6751       break;
6752     }
6753     }
6754   }
6755 
6756   // Diagnose non-fatal problems with the completed initialization.
6757   if (Entity.getKind() == InitializedEntity::EK_Member &&
6758       cast<FieldDecl>(Entity.getDecl())->isBitField())
6759     S.CheckBitFieldInitialization(Kind.getLocation(),
6760                                   cast<FieldDecl>(Entity.getDecl()),
6761                                   CurInit.get());
6762 
6763   // Check for std::move on construction.
6764   if (const Expr *E = CurInit.get()) {
6765     CheckMoveOnConstruction(S, E,
6766                             Entity.getKind() == InitializedEntity::EK_Result);
6767   }
6768 
6769   return CurInit;
6770 }
6771 
6772 /// Somewhere within T there is an uninitialized reference subobject.
6773 /// Dig it out and diagnose it.
6774 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6775                                            QualType T) {
6776   if (T->isReferenceType()) {
6777     S.Diag(Loc, diag::err_reference_without_init)
6778       << T.getNonReferenceType();
6779     return true;
6780   }
6781 
6782   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6783   if (!RD || !RD->hasUninitializedReferenceMember())
6784     return false;
6785 
6786   for (const auto *FI : RD->fields()) {
6787     if (FI->isUnnamedBitfield())
6788       continue;
6789 
6790     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6791       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6792       return true;
6793     }
6794   }
6795 
6796   for (const auto &BI : RD->bases()) {
6797     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6798       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6799       return true;
6800     }
6801   }
6802 
6803   return false;
6804 }
6805 
6806 
6807 //===----------------------------------------------------------------------===//
6808 // Diagnose initialization failures
6809 //===----------------------------------------------------------------------===//
6810 
6811 /// Emit notes associated with an initialization that failed due to a
6812 /// "simple" conversion failure.
6813 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6814                                    Expr *op) {
6815   QualType destType = entity.getType();
6816   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6817       op->getType()->isObjCObjectPointerType()) {
6818 
6819     // Emit a possible note about the conversion failing because the
6820     // operand is a message send with a related result type.
6821     S.EmitRelatedResultTypeNote(op);
6822 
6823     // Emit a possible note about a return failing because we're
6824     // expecting a related result type.
6825     if (entity.getKind() == InitializedEntity::EK_Result)
6826       S.EmitRelatedResultTypeNoteForReturn(destType);
6827   }
6828 }
6829 
6830 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6831                              InitListExpr *InitList) {
6832   QualType DestType = Entity.getType();
6833 
6834   QualType E;
6835   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6836     QualType ArrayType = S.Context.getConstantArrayType(
6837         E.withConst(),
6838         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6839                     InitList->getNumInits()),
6840         clang::ArrayType::Normal, 0);
6841     InitializedEntity HiddenArray =
6842         InitializedEntity::InitializeTemporary(ArrayType);
6843     return diagnoseListInit(S, HiddenArray, InitList);
6844   }
6845 
6846   if (DestType->isReferenceType()) {
6847     // A list-initialization failure for a reference means that we tried to
6848     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
6849     // inner initialization failed.
6850     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
6851     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
6852     SourceLocation Loc = InitList->getLocStart();
6853     if (auto *D = Entity.getDecl())
6854       Loc = D->getLocation();
6855     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
6856     return;
6857   }
6858 
6859   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6860                                    /*VerifyOnly=*/false);
6861   assert(DiagnoseInitList.HadError() &&
6862          "Inconsistent init list check result.");
6863 }
6864 
6865 bool InitializationSequence::Diagnose(Sema &S,
6866                                       const InitializedEntity &Entity,
6867                                       const InitializationKind &Kind,
6868                                       ArrayRef<Expr *> Args) {
6869   if (!Failed())
6870     return false;
6871 
6872   QualType DestType = Entity.getType();
6873   switch (Failure) {
6874   case FK_TooManyInitsForReference:
6875     // FIXME: Customize for the initialized entity?
6876     if (Args.empty()) {
6877       // Dig out the reference subobject which is uninitialized and diagnose it.
6878       // If this is value-initialization, this could be nested some way within
6879       // the target type.
6880       assert(Kind.getKind() == InitializationKind::IK_Value ||
6881              DestType->isReferenceType());
6882       bool Diagnosed =
6883         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6884       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6885       (void)Diagnosed;
6886     } else  // FIXME: diagnostic below could be better!
6887       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6888         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6889     break;
6890 
6891   case FK_ArrayNeedsInitList:
6892     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6893     break;
6894   case FK_ArrayNeedsInitListOrStringLiteral:
6895     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6896     break;
6897   case FK_ArrayNeedsInitListOrWideStringLiteral:
6898     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6899     break;
6900   case FK_NarrowStringIntoWideCharArray:
6901     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6902     break;
6903   case FK_WideStringIntoCharArray:
6904     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6905     break;
6906   case FK_IncompatWideStringIntoWideChar:
6907     S.Diag(Kind.getLocation(),
6908            diag::err_array_init_incompat_wide_string_into_wchar);
6909     break;
6910   case FK_ArrayTypeMismatch:
6911   case FK_NonConstantArrayInit:
6912     S.Diag(Kind.getLocation(),
6913            (Failure == FK_ArrayTypeMismatch
6914               ? diag::err_array_init_different_type
6915               : diag::err_array_init_non_constant_array))
6916       << DestType.getNonReferenceType()
6917       << Args[0]->getType()
6918       << Args[0]->getSourceRange();
6919     break;
6920 
6921   case FK_VariableLengthArrayHasInitializer:
6922     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6923       << Args[0]->getSourceRange();
6924     break;
6925 
6926   case FK_AddressOfOverloadFailed: {
6927     DeclAccessPair Found;
6928     S.ResolveAddressOfOverloadedFunction(Args[0],
6929                                          DestType.getNonReferenceType(),
6930                                          true,
6931                                          Found);
6932     break;
6933   }
6934 
6935   case FK_ReferenceInitOverloadFailed:
6936   case FK_UserConversionOverloadFailed:
6937     switch (FailedOverloadResult) {
6938     case OR_Ambiguous:
6939       if (Failure == FK_UserConversionOverloadFailed)
6940         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6941           << Args[0]->getType() << DestType
6942           << Args[0]->getSourceRange();
6943       else
6944         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6945           << DestType << Args[0]->getType()
6946           << Args[0]->getSourceRange();
6947 
6948       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6949       break;
6950 
6951     case OR_No_Viable_Function:
6952       if (!S.RequireCompleteType(Kind.getLocation(),
6953                                  DestType.getNonReferenceType(),
6954                           diag::err_typecheck_nonviable_condition_incomplete,
6955                                Args[0]->getType(), Args[0]->getSourceRange()))
6956         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6957           << Args[0]->getType() << Args[0]->getSourceRange()
6958           << DestType.getNonReferenceType();
6959 
6960       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6961       break;
6962 
6963     case OR_Deleted: {
6964       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6965         << Args[0]->getType() << DestType.getNonReferenceType()
6966         << Args[0]->getSourceRange();
6967       OverloadCandidateSet::iterator Best;
6968       OverloadingResult Ovl
6969         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6970                                                 true);
6971       if (Ovl == OR_Deleted) {
6972         S.NoteDeletedFunction(Best->Function);
6973       } else {
6974         llvm_unreachable("Inconsistent overload resolution?");
6975       }
6976       break;
6977     }
6978 
6979     case OR_Success:
6980       llvm_unreachable("Conversion did not fail!");
6981     }
6982     break;
6983 
6984   case FK_NonConstLValueReferenceBindingToTemporary:
6985     if (isa<InitListExpr>(Args[0])) {
6986       S.Diag(Kind.getLocation(),
6987              diag::err_lvalue_reference_bind_to_initlist)
6988       << DestType.getNonReferenceType().isVolatileQualified()
6989       << DestType.getNonReferenceType()
6990       << Args[0]->getSourceRange();
6991       break;
6992     }
6993     // Intentional fallthrough
6994 
6995   case FK_NonConstLValueReferenceBindingToUnrelated:
6996     S.Diag(Kind.getLocation(),
6997            Failure == FK_NonConstLValueReferenceBindingToTemporary
6998              ? diag::err_lvalue_reference_bind_to_temporary
6999              : diag::err_lvalue_reference_bind_to_unrelated)
7000       << DestType.getNonReferenceType().isVolatileQualified()
7001       << DestType.getNonReferenceType()
7002       << Args[0]->getType()
7003       << Args[0]->getSourceRange();
7004     break;
7005 
7006   case FK_RValueReferenceBindingToLValue:
7007     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7008       << DestType.getNonReferenceType() << Args[0]->getType()
7009       << Args[0]->getSourceRange();
7010     break;
7011 
7012   case FK_ReferenceInitDropsQualifiers: {
7013     QualType SourceType = Args[0]->getType();
7014     QualType NonRefType = DestType.getNonReferenceType();
7015     Qualifiers DroppedQualifiers =
7016         SourceType.getQualifiers() - NonRefType.getQualifiers();
7017 
7018     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7019       << SourceType
7020       << NonRefType
7021       << DroppedQualifiers.getCVRQualifiers()
7022       << Args[0]->getSourceRange();
7023     break;
7024   }
7025 
7026   case FK_ReferenceInitFailed:
7027     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7028       << DestType.getNonReferenceType()
7029       << Args[0]->isLValue()
7030       << Args[0]->getType()
7031       << Args[0]->getSourceRange();
7032     emitBadConversionNotes(S, Entity, Args[0]);
7033     break;
7034 
7035   case FK_ConversionFailed: {
7036     QualType FromType = Args[0]->getType();
7037     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7038       << (int)Entity.getKind()
7039       << DestType
7040       << Args[0]->isLValue()
7041       << FromType
7042       << Args[0]->getSourceRange();
7043     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7044     S.Diag(Kind.getLocation(), PDiag);
7045     emitBadConversionNotes(S, Entity, Args[0]);
7046     break;
7047   }
7048 
7049   case FK_ConversionFromPropertyFailed:
7050     // No-op. This error has already been reported.
7051     break;
7052 
7053   case FK_TooManyInitsForScalar: {
7054     SourceRange R;
7055 
7056     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7057     if (InitList && InitList->getNumInits() == 1)
7058       R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7059     else
7060       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7061 
7062     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7063     if (Kind.isCStyleOrFunctionalCast())
7064       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7065         << R;
7066     else
7067       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7068         << /*scalar=*/2 << R;
7069     break;
7070   }
7071 
7072   case FK_ReferenceBindingToInitList:
7073     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7074       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7075     break;
7076 
7077   case FK_InitListBadDestinationType:
7078     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7079       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7080     break;
7081 
7082   case FK_ListConstructorOverloadFailed:
7083   case FK_ConstructorOverloadFailed: {
7084     SourceRange ArgsRange;
7085     if (Args.size())
7086       ArgsRange = SourceRange(Args.front()->getLocStart(),
7087                               Args.back()->getLocEnd());
7088 
7089     if (Failure == FK_ListConstructorOverloadFailed) {
7090       assert(Args.size() == 1 &&
7091              "List construction from other than 1 argument.");
7092       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7093       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7094     }
7095 
7096     // FIXME: Using "DestType" for the entity we're printing is probably
7097     // bad.
7098     switch (FailedOverloadResult) {
7099       case OR_Ambiguous:
7100         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7101           << DestType << ArgsRange;
7102         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7103         break;
7104 
7105       case OR_No_Viable_Function:
7106         if (Kind.getKind() == InitializationKind::IK_Default &&
7107             (Entity.getKind() == InitializedEntity::EK_Base ||
7108              Entity.getKind() == InitializedEntity::EK_Member) &&
7109             isa<CXXConstructorDecl>(S.CurContext)) {
7110           // This is implicit default initialization of a member or
7111           // base within a constructor. If no viable function was
7112           // found, notify the user that she needs to explicitly
7113           // initialize this base/member.
7114           CXXConstructorDecl *Constructor
7115             = cast<CXXConstructorDecl>(S.CurContext);
7116           if (Entity.getKind() == InitializedEntity::EK_Base) {
7117             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7118               << (Constructor->getInheritedConstructor() ? 2 :
7119                   Constructor->isImplicit() ? 1 : 0)
7120               << S.Context.getTypeDeclType(Constructor->getParent())
7121               << /*base=*/0
7122               << Entity.getType();
7123 
7124             RecordDecl *BaseDecl
7125               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7126                                                                   ->getDecl();
7127             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7128               << S.Context.getTagDeclType(BaseDecl);
7129           } else {
7130             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7131               << (Constructor->getInheritedConstructor() ? 2 :
7132                   Constructor->isImplicit() ? 1 : 0)
7133               << S.Context.getTypeDeclType(Constructor->getParent())
7134               << /*member=*/1
7135               << Entity.getName();
7136             S.Diag(Entity.getDecl()->getLocation(),
7137                    diag::note_member_declared_at);
7138 
7139             if (const RecordType *Record
7140                                  = Entity.getType()->getAs<RecordType>())
7141               S.Diag(Record->getDecl()->getLocation(),
7142                      diag::note_previous_decl)
7143                 << S.Context.getTagDeclType(Record->getDecl());
7144           }
7145           break;
7146         }
7147 
7148         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7149           << DestType << ArgsRange;
7150         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7151         break;
7152 
7153       case OR_Deleted: {
7154         OverloadCandidateSet::iterator Best;
7155         OverloadingResult Ovl
7156           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7157         if (Ovl != OR_Deleted) {
7158           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7159             << true << DestType << ArgsRange;
7160           llvm_unreachable("Inconsistent overload resolution?");
7161           break;
7162         }
7163 
7164         // If this is a defaulted or implicitly-declared function, then
7165         // it was implicitly deleted. Make it clear that the deletion was
7166         // implicit.
7167         if (S.isImplicitlyDeleted(Best->Function))
7168           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7169             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7170             << DestType << ArgsRange;
7171         else
7172           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7173             << true << DestType << ArgsRange;
7174 
7175         S.NoteDeletedFunction(Best->Function);
7176         break;
7177       }
7178 
7179       case OR_Success:
7180         llvm_unreachable("Conversion did not fail!");
7181     }
7182   }
7183   break;
7184 
7185   case FK_DefaultInitOfConst:
7186     if (Entity.getKind() == InitializedEntity::EK_Member &&
7187         isa<CXXConstructorDecl>(S.CurContext)) {
7188       // This is implicit default-initialization of a const member in
7189       // a constructor. Complain that it needs to be explicitly
7190       // initialized.
7191       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7192       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7193         << (Constructor->getInheritedConstructor() ? 2 :
7194             Constructor->isImplicit() ? 1 : 0)
7195         << S.Context.getTypeDeclType(Constructor->getParent())
7196         << /*const=*/1
7197         << Entity.getName();
7198       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7199         << Entity.getName();
7200     } else {
7201       S.Diag(Kind.getLocation(), diag::err_default_init_const)
7202           << DestType << (bool)DestType->getAs<RecordType>();
7203     }
7204     break;
7205 
7206   case FK_Incomplete:
7207     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7208                           diag::err_init_incomplete_type);
7209     break;
7210 
7211   case FK_ListInitializationFailed: {
7212     // Run the init list checker again to emit diagnostics.
7213     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7214     diagnoseListInit(S, Entity, InitList);
7215     break;
7216   }
7217 
7218   case FK_PlaceholderType: {
7219     // FIXME: Already diagnosed!
7220     break;
7221   }
7222 
7223   case FK_ExplicitConstructor: {
7224     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7225       << Args[0]->getSourceRange();
7226     OverloadCandidateSet::iterator Best;
7227     OverloadingResult Ovl
7228       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7229     (void)Ovl;
7230     assert(Ovl == OR_Success && "Inconsistent overload resolution");
7231     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7232     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
7233     break;
7234   }
7235   }
7236 
7237   PrintInitLocationNote(S, Entity);
7238   return true;
7239 }
7240 
7241 void InitializationSequence::dump(raw_ostream &OS) const {
7242   switch (SequenceKind) {
7243   case FailedSequence: {
7244     OS << "Failed sequence: ";
7245     switch (Failure) {
7246     case FK_TooManyInitsForReference:
7247       OS << "too many initializers for reference";
7248       break;
7249 
7250     case FK_ArrayNeedsInitList:
7251       OS << "array requires initializer list";
7252       break;
7253 
7254     case FK_ArrayNeedsInitListOrStringLiteral:
7255       OS << "array requires initializer list or string literal";
7256       break;
7257 
7258     case FK_ArrayNeedsInitListOrWideStringLiteral:
7259       OS << "array requires initializer list or wide string literal";
7260       break;
7261 
7262     case FK_NarrowStringIntoWideCharArray:
7263       OS << "narrow string into wide char array";
7264       break;
7265 
7266     case FK_WideStringIntoCharArray:
7267       OS << "wide string into char array";
7268       break;
7269 
7270     case FK_IncompatWideStringIntoWideChar:
7271       OS << "incompatible wide string into wide char array";
7272       break;
7273 
7274     case FK_ArrayTypeMismatch:
7275       OS << "array type mismatch";
7276       break;
7277 
7278     case FK_NonConstantArrayInit:
7279       OS << "non-constant array initializer";
7280       break;
7281 
7282     case FK_AddressOfOverloadFailed:
7283       OS << "address of overloaded function failed";
7284       break;
7285 
7286     case FK_ReferenceInitOverloadFailed:
7287       OS << "overload resolution for reference initialization failed";
7288       break;
7289 
7290     case FK_NonConstLValueReferenceBindingToTemporary:
7291       OS << "non-const lvalue reference bound to temporary";
7292       break;
7293 
7294     case FK_NonConstLValueReferenceBindingToUnrelated:
7295       OS << "non-const lvalue reference bound to unrelated type";
7296       break;
7297 
7298     case FK_RValueReferenceBindingToLValue:
7299       OS << "rvalue reference bound to an lvalue";
7300       break;
7301 
7302     case FK_ReferenceInitDropsQualifiers:
7303       OS << "reference initialization drops qualifiers";
7304       break;
7305 
7306     case FK_ReferenceInitFailed:
7307       OS << "reference initialization failed";
7308       break;
7309 
7310     case FK_ConversionFailed:
7311       OS << "conversion failed";
7312       break;
7313 
7314     case FK_ConversionFromPropertyFailed:
7315       OS << "conversion from property failed";
7316       break;
7317 
7318     case FK_TooManyInitsForScalar:
7319       OS << "too many initializers for scalar";
7320       break;
7321 
7322     case FK_ReferenceBindingToInitList:
7323       OS << "referencing binding to initializer list";
7324       break;
7325 
7326     case FK_InitListBadDestinationType:
7327       OS << "initializer list for non-aggregate, non-scalar type";
7328       break;
7329 
7330     case FK_UserConversionOverloadFailed:
7331       OS << "overloading failed for user-defined conversion";
7332       break;
7333 
7334     case FK_ConstructorOverloadFailed:
7335       OS << "constructor overloading failed";
7336       break;
7337 
7338     case FK_DefaultInitOfConst:
7339       OS << "default initialization of a const variable";
7340       break;
7341 
7342     case FK_Incomplete:
7343       OS << "initialization of incomplete type";
7344       break;
7345 
7346     case FK_ListInitializationFailed:
7347       OS << "list initialization checker failure";
7348       break;
7349 
7350     case FK_VariableLengthArrayHasInitializer:
7351       OS << "variable length array has an initializer";
7352       break;
7353 
7354     case FK_PlaceholderType:
7355       OS << "initializer expression isn't contextually valid";
7356       break;
7357 
7358     case FK_ListConstructorOverloadFailed:
7359       OS << "list constructor overloading failed";
7360       break;
7361 
7362     case FK_ExplicitConstructor:
7363       OS << "list copy initialization chose explicit constructor";
7364       break;
7365     }
7366     OS << '\n';
7367     return;
7368   }
7369 
7370   case DependentSequence:
7371     OS << "Dependent sequence\n";
7372     return;
7373 
7374   case NormalSequence:
7375     OS << "Normal sequence: ";
7376     break;
7377   }
7378 
7379   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
7380     if (S != step_begin()) {
7381       OS << " -> ";
7382     }
7383 
7384     switch (S->Kind) {
7385     case SK_ResolveAddressOfOverloadedFunction:
7386       OS << "resolve address of overloaded function";
7387       break;
7388 
7389     case SK_CastDerivedToBaseRValue:
7390       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
7391       break;
7392 
7393     case SK_CastDerivedToBaseXValue:
7394       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
7395       break;
7396 
7397     case SK_CastDerivedToBaseLValue:
7398       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
7399       break;
7400 
7401     case SK_BindReference:
7402       OS << "bind reference to lvalue";
7403       break;
7404 
7405     case SK_BindReferenceToTemporary:
7406       OS << "bind reference to a temporary";
7407       break;
7408 
7409     case SK_ExtraneousCopyToTemporary:
7410       OS << "extraneous C++03 copy to temporary";
7411       break;
7412 
7413     case SK_UserConversion:
7414       OS << "user-defined conversion via " << *S->Function.Function;
7415       break;
7416 
7417     case SK_QualificationConversionRValue:
7418       OS << "qualification conversion (rvalue)";
7419       break;
7420 
7421     case SK_QualificationConversionXValue:
7422       OS << "qualification conversion (xvalue)";
7423       break;
7424 
7425     case SK_QualificationConversionLValue:
7426       OS << "qualification conversion (lvalue)";
7427       break;
7428 
7429     case SK_AtomicConversion:
7430       OS << "non-atomic-to-atomic conversion";
7431       break;
7432 
7433     case SK_LValueToRValue:
7434       OS << "load (lvalue to rvalue)";
7435       break;
7436 
7437     case SK_ConversionSequence:
7438       OS << "implicit conversion sequence (";
7439       S->ICS->dump(); // FIXME: use OS
7440       OS << ")";
7441       break;
7442 
7443     case SK_ConversionSequenceNoNarrowing:
7444       OS << "implicit conversion sequence with narrowing prohibited (";
7445       S->ICS->dump(); // FIXME: use OS
7446       OS << ")";
7447       break;
7448 
7449     case SK_ListInitialization:
7450       OS << "list aggregate initialization";
7451       break;
7452 
7453     case SK_UnwrapInitList:
7454       OS << "unwrap reference initializer list";
7455       break;
7456 
7457     case SK_RewrapInitList:
7458       OS << "rewrap reference initializer list";
7459       break;
7460 
7461     case SK_ConstructorInitialization:
7462       OS << "constructor initialization";
7463       break;
7464 
7465     case SK_ConstructorInitializationFromList:
7466       OS << "list initialization via constructor";
7467       break;
7468 
7469     case SK_ZeroInitialization:
7470       OS << "zero initialization";
7471       break;
7472 
7473     case SK_CAssignment:
7474       OS << "C assignment";
7475       break;
7476 
7477     case SK_StringInit:
7478       OS << "string initialization";
7479       break;
7480 
7481     case SK_ObjCObjectConversion:
7482       OS << "Objective-C object conversion";
7483       break;
7484 
7485     case SK_ArrayInit:
7486       OS << "array initialization";
7487       break;
7488 
7489     case SK_ParenthesizedArrayInit:
7490       OS << "parenthesized array initialization";
7491       break;
7492 
7493     case SK_PassByIndirectCopyRestore:
7494       OS << "pass by indirect copy and restore";
7495       break;
7496 
7497     case SK_PassByIndirectRestore:
7498       OS << "pass by indirect restore";
7499       break;
7500 
7501     case SK_ProduceObjCObject:
7502       OS << "Objective-C object retension";
7503       break;
7504 
7505     case SK_StdInitializerList:
7506       OS << "std::initializer_list from initializer list";
7507       break;
7508 
7509     case SK_StdInitializerListConstructorCall:
7510       OS << "list initialization from std::initializer_list";
7511       break;
7512 
7513     case SK_OCLSamplerInit:
7514       OS << "OpenCL sampler_t from integer constant";
7515       break;
7516 
7517     case SK_OCLZeroEvent:
7518       OS << "OpenCL event_t from zero";
7519       break;
7520     }
7521 
7522     OS << " [" << S->Type.getAsString() << ']';
7523   }
7524 
7525   OS << '\n';
7526 }
7527 
7528 void InitializationSequence::dump() const {
7529   dump(llvm::errs());
7530 }
7531 
7532 static void DiagnoseNarrowingInInitList(Sema &S,
7533                                         const ImplicitConversionSequence &ICS,
7534                                         QualType PreNarrowingType,
7535                                         QualType EntityType,
7536                                         const Expr *PostInit) {
7537   const StandardConversionSequence *SCS = nullptr;
7538   switch (ICS.getKind()) {
7539   case ImplicitConversionSequence::StandardConversion:
7540     SCS = &ICS.Standard;
7541     break;
7542   case ImplicitConversionSequence::UserDefinedConversion:
7543     SCS = &ICS.UserDefined.After;
7544     break;
7545   case ImplicitConversionSequence::AmbiguousConversion:
7546   case ImplicitConversionSequence::EllipsisConversion:
7547   case ImplicitConversionSequence::BadConversion:
7548     return;
7549   }
7550 
7551   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
7552   APValue ConstantValue;
7553   QualType ConstantType;
7554   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
7555                                 ConstantType)) {
7556   case NK_Not_Narrowing:
7557     // No narrowing occurred.
7558     return;
7559 
7560   case NK_Type_Narrowing:
7561     // This was a floating-to-integer conversion, which is always considered a
7562     // narrowing conversion even if the value is a constant and can be
7563     // represented exactly as an integer.
7564     S.Diag(PostInit->getLocStart(),
7565            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7566                ? diag::warn_init_list_type_narrowing
7567                : diag::ext_init_list_type_narrowing)
7568       << PostInit->getSourceRange()
7569       << PreNarrowingType.getLocalUnqualifiedType()
7570       << EntityType.getLocalUnqualifiedType();
7571     break;
7572 
7573   case NK_Constant_Narrowing:
7574     // A constant value was narrowed.
7575     S.Diag(PostInit->getLocStart(),
7576            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7577                ? diag::warn_init_list_constant_narrowing
7578                : diag::ext_init_list_constant_narrowing)
7579       << PostInit->getSourceRange()
7580       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7581       << EntityType.getLocalUnqualifiedType();
7582     break;
7583 
7584   case NK_Variable_Narrowing:
7585     // A variable's value may have been narrowed.
7586     S.Diag(PostInit->getLocStart(),
7587            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7588                ? diag::warn_init_list_variable_narrowing
7589                : diag::ext_init_list_variable_narrowing)
7590       << PostInit->getSourceRange()
7591       << PreNarrowingType.getLocalUnqualifiedType()
7592       << EntityType.getLocalUnqualifiedType();
7593     break;
7594   }
7595 
7596   SmallString<128> StaticCast;
7597   llvm::raw_svector_ostream OS(StaticCast);
7598   OS << "static_cast<";
7599   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7600     // It's important to use the typedef's name if there is one so that the
7601     // fixit doesn't break code using types like int64_t.
7602     //
7603     // FIXME: This will break if the typedef requires qualification.  But
7604     // getQualifiedNameAsString() includes non-machine-parsable components.
7605     OS << *TT->getDecl();
7606   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7607     OS << BT->getName(S.getLangOpts());
7608   else {
7609     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
7610     // with a broken cast.
7611     return;
7612   }
7613   OS << ">(";
7614   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
7615       << PostInit->getSourceRange()
7616       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7617       << FixItHint::CreateInsertion(
7618              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
7619 }
7620 
7621 //===----------------------------------------------------------------------===//
7622 // Initialization helper functions
7623 //===----------------------------------------------------------------------===//
7624 bool
7625 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7626                                    ExprResult Init) {
7627   if (Init.isInvalid())
7628     return false;
7629 
7630   Expr *InitE = Init.get();
7631   assert(InitE && "No initialization expression");
7632 
7633   InitializationKind Kind
7634     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7635   InitializationSequence Seq(*this, Entity, Kind, InitE);
7636   return !Seq.Failed();
7637 }
7638 
7639 ExprResult
7640 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7641                                 SourceLocation EqualLoc,
7642                                 ExprResult Init,
7643                                 bool TopLevelOfInitList,
7644                                 bool AllowExplicit) {
7645   if (Init.isInvalid())
7646     return ExprError();
7647 
7648   Expr *InitE = Init.get();
7649   assert(InitE && "No initialization expression?");
7650 
7651   if (EqualLoc.isInvalid())
7652     EqualLoc = InitE->getLocStart();
7653 
7654   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7655                                                            EqualLoc,
7656                                                            AllowExplicit);
7657   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7658 
7659   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7660 
7661   return Result;
7662 }
7663