1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/SemaInternal.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 32 //===----------------------------------------------------------------------===// 33 // Sema Initialization Checking 34 //===----------------------------------------------------------------------===// 35 36 /// Check whether T is compatible with a wide character type (wchar_t, 37 /// char16_t or char32_t). 38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 39 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 40 return true; 41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 42 return Context.typesAreCompatible(Context.Char16Ty, T) || 43 Context.typesAreCompatible(Context.Char32Ty, T); 44 } 45 return false; 46 } 47 48 enum StringInitFailureKind { 49 SIF_None, 50 SIF_NarrowStringIntoWideChar, 51 SIF_WideStringIntoChar, 52 SIF_IncompatWideStringIntoWideChar, 53 SIF_UTF8StringIntoPlainChar, 54 SIF_PlainStringIntoUTF8Char, 55 SIF_Other 56 }; 57 58 /// Check whether the array of type AT can be initialized by the Init 59 /// expression by means of string initialization. Returns SIF_None if so, 60 /// otherwise returns a StringInitFailureKind that describes why the 61 /// initialization would not work. 62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 63 ASTContext &Context) { 64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 65 return SIF_Other; 66 67 // See if this is a string literal or @encode. 68 Init = Init->IgnoreParens(); 69 70 // Handle @encode, which is a narrow string. 71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 72 return SIF_None; 73 74 // Otherwise we can only handle string literals. 75 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 76 if (!SL) 77 return SIF_Other; 78 79 const QualType ElemTy = 80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 81 82 switch (SL->getKind()) { 83 case StringLiteral::UTF8: 84 // char8_t array can be initialized with a UTF-8 string. 85 if (ElemTy->isChar8Type()) 86 return SIF_None; 87 LLVM_FALLTHROUGH; 88 case StringLiteral::Ascii: 89 // char array can be initialized with a narrow string. 90 // Only allow char x[] = "foo"; not char x[] = L"foo"; 91 if (ElemTy->isCharType()) 92 return (SL->getKind() == StringLiteral::UTF8 && 93 Context.getLangOpts().Char8) 94 ? SIF_UTF8StringIntoPlainChar 95 : SIF_None; 96 if (ElemTy->isChar8Type()) 97 return SIF_PlainStringIntoUTF8Char; 98 if (IsWideCharCompatible(ElemTy, Context)) 99 return SIF_NarrowStringIntoWideChar; 100 return SIF_Other; 101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 102 // "An array with element type compatible with a qualified or unqualified 103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 104 // string literal with the corresponding encoding prefix (L, u, or U, 105 // respectively), optionally enclosed in braces. 106 case StringLiteral::UTF16: 107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 108 return SIF_None; 109 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 110 return SIF_WideStringIntoChar; 111 if (IsWideCharCompatible(ElemTy, Context)) 112 return SIF_IncompatWideStringIntoWideChar; 113 return SIF_Other; 114 case StringLiteral::UTF32: 115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 116 return SIF_None; 117 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 118 return SIF_WideStringIntoChar; 119 if (IsWideCharCompatible(ElemTy, Context)) 120 return SIF_IncompatWideStringIntoWideChar; 121 return SIF_Other; 122 case StringLiteral::Wide: 123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 124 return SIF_None; 125 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 126 return SIF_WideStringIntoChar; 127 if (IsWideCharCompatible(ElemTy, Context)) 128 return SIF_IncompatWideStringIntoWideChar; 129 return SIF_Other; 130 } 131 132 llvm_unreachable("missed a StringLiteral kind?"); 133 } 134 135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 136 ASTContext &Context) { 137 const ArrayType *arrayType = Context.getAsArrayType(declType); 138 if (!arrayType) 139 return SIF_Other; 140 return IsStringInit(init, arrayType, Context); 141 } 142 143 /// Update the type of a string literal, including any surrounding parentheses, 144 /// to match the type of the object which it is initializing. 145 static void updateStringLiteralType(Expr *E, QualType Ty) { 146 while (true) { 147 E->setType(Ty); 148 E->setValueKind(VK_RValue); 149 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 150 break; 151 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 152 E = PE->getSubExpr(); 153 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 154 assert(UO->getOpcode() == UO_Extension); 155 E = UO->getSubExpr(); 156 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 157 E = GSE->getResultExpr(); 158 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 159 E = CE->getChosenSubExpr(); 160 } else { 161 llvm_unreachable("unexpected expr in string literal init"); 162 } 163 } 164 } 165 166 /// Fix a compound literal initializing an array so it's correctly marked 167 /// as an rvalue. 168 static void updateGNUCompoundLiteralRValue(Expr *E) { 169 while (true) { 170 E->setValueKind(VK_RValue); 171 if (isa<CompoundLiteralExpr>(E)) { 172 break; 173 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 174 E = PE->getSubExpr(); 175 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 176 assert(UO->getOpcode() == UO_Extension); 177 E = UO->getSubExpr(); 178 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 179 E = GSE->getResultExpr(); 180 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 181 E = CE->getChosenSubExpr(); 182 } else { 183 llvm_unreachable("unexpected expr in array compound literal init"); 184 } 185 } 186 } 187 188 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 189 Sema &S) { 190 // Get the length of the string as parsed. 191 auto *ConstantArrayTy = 192 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 193 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 194 195 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 196 // C99 6.7.8p14. We have an array of character type with unknown size 197 // being initialized to a string literal. 198 llvm::APInt ConstVal(32, StrLength); 199 // Return a new array type (C99 6.7.8p22). 200 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 201 ConstVal, nullptr, 202 ArrayType::Normal, 0); 203 updateStringLiteralType(Str, DeclT); 204 return; 205 } 206 207 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 208 209 // We have an array of character type with known size. However, 210 // the size may be smaller or larger than the string we are initializing. 211 // FIXME: Avoid truncation for 64-bit length strings. 212 if (S.getLangOpts().CPlusPlus) { 213 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 214 // For Pascal strings it's OK to strip off the terminating null character, 215 // so the example below is valid: 216 // 217 // unsigned char a[2] = "\pa"; 218 if (SL->isPascal()) 219 StrLength--; 220 } 221 222 // [dcl.init.string]p2 223 if (StrLength > CAT->getSize().getZExtValue()) 224 S.Diag(Str->getBeginLoc(), 225 diag::err_initializer_string_for_char_array_too_long) 226 << Str->getSourceRange(); 227 } else { 228 // C99 6.7.8p14. 229 if (StrLength-1 > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::ext_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } 234 235 // Set the type to the actual size that we are initializing. If we have 236 // something like: 237 // char x[1] = "foo"; 238 // then this will set the string literal's type to char[1]. 239 updateStringLiteralType(Str, DeclT); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Semantic checking for initializer lists. 244 //===----------------------------------------------------------------------===// 245 246 namespace { 247 248 /// Semantic checking for initializer lists. 249 /// 250 /// The InitListChecker class contains a set of routines that each 251 /// handle the initialization of a certain kind of entity, e.g., 252 /// arrays, vectors, struct/union types, scalars, etc. The 253 /// InitListChecker itself performs a recursive walk of the subobject 254 /// structure of the type to be initialized, while stepping through 255 /// the initializer list one element at a time. The IList and Index 256 /// parameters to each of the Check* routines contain the active 257 /// (syntactic) initializer list and the index into that initializer 258 /// list that represents the current initializer. Each routine is 259 /// responsible for moving that Index forward as it consumes elements. 260 /// 261 /// Each Check* routine also has a StructuredList/StructuredIndex 262 /// arguments, which contains the current "structured" (semantic) 263 /// initializer list and the index into that initializer list where we 264 /// are copying initializers as we map them over to the semantic 265 /// list. Once we have completed our recursive walk of the subobject 266 /// structure, we will have constructed a full semantic initializer 267 /// list. 268 /// 269 /// C99 designators cause changes in the initializer list traversal, 270 /// because they make the initialization "jump" into a specific 271 /// subobject and then continue the initialization from that 272 /// point. CheckDesignatedInitializer() recursively steps into the 273 /// designated subobject and manages backing out the recursion to 274 /// initialize the subobjects after the one designated. 275 /// 276 /// If an initializer list contains any designators, we build a placeholder 277 /// structured list even in 'verify only' mode, so that we can track which 278 /// elements need 'empty' initializtion. 279 class InitListChecker { 280 Sema &SemaRef; 281 bool hadError = false; 282 bool VerifyOnly; // No diagnostics. 283 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 284 bool InOverloadResolution; 285 InitListExpr *FullyStructuredList = nullptr; 286 NoInitExpr *DummyExpr = nullptr; 287 288 NoInitExpr *getDummyInit() { 289 if (!DummyExpr) 290 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 291 return DummyExpr; 292 } 293 294 void CheckImplicitInitList(const InitializedEntity &Entity, 295 InitListExpr *ParentIList, QualType T, 296 unsigned &Index, InitListExpr *StructuredList, 297 unsigned &StructuredIndex); 298 void CheckExplicitInitList(const InitializedEntity &Entity, 299 InitListExpr *IList, QualType &T, 300 InitListExpr *StructuredList, 301 bool TopLevelObject = false); 302 void CheckListElementTypes(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType &DeclType, 304 bool SubobjectIsDesignatorContext, 305 unsigned &Index, 306 InitListExpr *StructuredList, 307 unsigned &StructuredIndex, 308 bool TopLevelObject = false); 309 void CheckSubElementType(const InitializedEntity &Entity, 310 InitListExpr *IList, QualType ElemType, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex); 314 void CheckComplexType(const InitializedEntity &Entity, 315 InitListExpr *IList, QualType DeclType, 316 unsigned &Index, 317 InitListExpr *StructuredList, 318 unsigned &StructuredIndex); 319 void CheckScalarType(const InitializedEntity &Entity, 320 InitListExpr *IList, QualType DeclType, 321 unsigned &Index, 322 InitListExpr *StructuredList, 323 unsigned &StructuredIndex); 324 void CheckReferenceType(const InitializedEntity &Entity, 325 InitListExpr *IList, QualType DeclType, 326 unsigned &Index, 327 InitListExpr *StructuredList, 328 unsigned &StructuredIndex); 329 void CheckVectorType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType DeclType, unsigned &Index, 331 InitListExpr *StructuredList, 332 unsigned &StructuredIndex); 333 void CheckStructUnionTypes(const InitializedEntity &Entity, 334 InitListExpr *IList, QualType DeclType, 335 CXXRecordDecl::base_class_range Bases, 336 RecordDecl::field_iterator Field, 337 bool SubobjectIsDesignatorContext, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex, 340 bool TopLevelObject = false); 341 void CheckArrayType(const InitializedEntity &Entity, 342 InitListExpr *IList, QualType &DeclType, 343 llvm::APSInt elementIndex, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex); 347 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 348 InitListExpr *IList, DesignatedInitExpr *DIE, 349 unsigned DesigIdx, 350 QualType &CurrentObjectType, 351 RecordDecl::field_iterator *NextField, 352 llvm::APSInt *NextElementIndex, 353 unsigned &Index, 354 InitListExpr *StructuredList, 355 unsigned &StructuredIndex, 356 bool FinishSubobjectInit, 357 bool TopLevelObject); 358 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 359 QualType CurrentObjectType, 360 InitListExpr *StructuredList, 361 unsigned StructuredIndex, 362 SourceRange InitRange, 363 bool IsFullyOverwritten = false); 364 void UpdateStructuredListElement(InitListExpr *StructuredList, 365 unsigned &StructuredIndex, 366 Expr *expr); 367 InitListExpr *createInitListExpr(QualType CurrentObjectType, 368 SourceRange InitRange, 369 unsigned ExpectedNumInits); 370 int numArrayElements(QualType DeclType); 371 int numStructUnionElements(QualType DeclType); 372 373 ExprResult PerformEmptyInit(SourceLocation Loc, 374 const InitializedEntity &Entity); 375 376 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 377 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 378 bool FullyOverwritten = true) { 379 // Overriding an initializer via a designator is valid with C99 designated 380 // initializers, but ill-formed with C++20 designated initializers. 381 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 382 ? diag::ext_initializer_overrides 383 : diag::warn_initializer_overrides; 384 385 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 386 // In overload resolution, we have to strictly enforce the rules, and so 387 // don't allow any overriding of prior initializers. This matters for a 388 // case such as: 389 // 390 // union U { int a, b; }; 391 // struct S { int a, b; }; 392 // void f(U), f(S); 393 // 394 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 395 // consistency, we disallow all overriding of prior initializers in 396 // overload resolution, not only overriding of union members. 397 hadError = true; 398 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 399 // If we'll be keeping around the old initializer but overwriting part of 400 // the object it initialized, and that object is not trivially 401 // destructible, this can leak. Don't allow that, not even as an 402 // extension. 403 // 404 // FIXME: It might be reasonable to allow this in cases where the part of 405 // the initializer that we're overriding has trivial destruction. 406 DiagID = diag::err_initializer_overrides_destructed; 407 } else if (!OldInit->getSourceRange().isValid()) { 408 // We need to check on source range validity because the previous 409 // initializer does not have to be an explicit initializer. e.g., 410 // 411 // struct P { int a, b; }; 412 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 413 // 414 // There is an overwrite taking place because the first braced initializer 415 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 416 // 417 // Such overwrites are harmless, so we don't diagnose them. (Note that in 418 // C++, this cannot be reached unless we've already seen and diagnosed a 419 // different conformance issue, such as a mixture of designated and 420 // non-designated initializers or a multi-level designator.) 421 return; 422 } 423 424 if (!VerifyOnly) { 425 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 426 << NewInitRange << FullyOverwritten << OldInit->getType(); 427 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 428 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 429 << OldInit->getSourceRange(); 430 } 431 } 432 433 // Explanation on the "FillWithNoInit" mode: 434 // 435 // Assume we have the following definitions (Case#1): 436 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 437 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 438 // 439 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 440 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 441 // 442 // But if we have (Case#2): 443 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 444 // 445 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 446 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 447 // 448 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 449 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 450 // initializers but with special "NoInitExpr" place holders, which tells the 451 // CodeGen not to generate any initializers for these parts. 452 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 453 const InitializedEntity &ParentEntity, 454 InitListExpr *ILE, bool &RequiresSecondPass, 455 bool FillWithNoInit); 456 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 457 const InitializedEntity &ParentEntity, 458 InitListExpr *ILE, bool &RequiresSecondPass, 459 bool FillWithNoInit = false); 460 void FillInEmptyInitializations(const InitializedEntity &Entity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 InitListExpr *OuterILE, unsigned OuterIndex, 463 bool FillWithNoInit = false); 464 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 465 Expr *InitExpr, FieldDecl *Field, 466 bool TopLevelObject); 467 void CheckEmptyInitializable(const InitializedEntity &Entity, 468 SourceLocation Loc); 469 470 public: 471 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 472 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 473 bool InOverloadResolution = false); 474 bool HadError() { return hadError; } 475 476 // Retrieves the fully-structured initializer list used for 477 // semantic analysis and code generation. 478 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 479 }; 480 481 } // end anonymous namespace 482 483 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 484 const InitializedEntity &Entity) { 485 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 486 true); 487 MultiExprArg SubInit; 488 Expr *InitExpr; 489 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 490 491 // C++ [dcl.init.aggr]p7: 492 // If there are fewer initializer-clauses in the list than there are 493 // members in the aggregate, then each member not explicitly initialized 494 // ... 495 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 496 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 497 if (EmptyInitList) { 498 // C++1y / DR1070: 499 // shall be initialized [...] from an empty initializer list. 500 // 501 // We apply the resolution of this DR to C++11 but not C++98, since C++98 502 // does not have useful semantics for initialization from an init list. 503 // We treat this as copy-initialization, because aggregate initialization 504 // always performs copy-initialization on its elements. 505 // 506 // Only do this if we're initializing a class type, to avoid filling in 507 // the initializer list where possible. 508 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 509 InitListExpr(SemaRef.Context, Loc, None, Loc); 510 InitExpr->setType(SemaRef.Context.VoidTy); 511 SubInit = InitExpr; 512 Kind = InitializationKind::CreateCopy(Loc, Loc); 513 } else { 514 // C++03: 515 // shall be value-initialized. 516 } 517 518 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 519 // libstdc++4.6 marks the vector default constructor as explicit in 520 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 521 // stlport does so too. Look for std::__debug for libstdc++, and for 522 // std:: for stlport. This is effectively a compiler-side implementation of 523 // LWG2193. 524 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 525 InitializationSequence::FK_ExplicitConstructor) { 526 OverloadCandidateSet::iterator Best; 527 OverloadingResult O = 528 InitSeq.getFailedCandidateSet() 529 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 530 (void)O; 531 assert(O == OR_Success && "Inconsistent overload resolution"); 532 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 533 CXXRecordDecl *R = CtorDecl->getParent(); 534 535 if (CtorDecl->getMinRequiredArguments() == 0 && 536 CtorDecl->isExplicit() && R->getDeclName() && 537 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 538 bool IsInStd = false; 539 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 540 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 541 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 542 IsInStd = true; 543 } 544 545 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 546 .Cases("basic_string", "deque", "forward_list", true) 547 .Cases("list", "map", "multimap", "multiset", true) 548 .Cases("priority_queue", "queue", "set", "stack", true) 549 .Cases("unordered_map", "unordered_set", "vector", true) 550 .Default(false)) { 551 InitSeq.InitializeFrom( 552 SemaRef, Entity, 553 InitializationKind::CreateValue(Loc, Loc, Loc, true), 554 MultiExprArg(), /*TopLevelOfInitList=*/false, 555 TreatUnavailableAsInvalid); 556 // Emit a warning for this. System header warnings aren't shown 557 // by default, but people working on system headers should see it. 558 if (!VerifyOnly) { 559 SemaRef.Diag(CtorDecl->getLocation(), 560 diag::warn_invalid_initializer_from_system_header); 561 if (Entity.getKind() == InitializedEntity::EK_Member) 562 SemaRef.Diag(Entity.getDecl()->getLocation(), 563 diag::note_used_in_initialization_here); 564 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 565 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 566 } 567 } 568 } 569 } 570 if (!InitSeq) { 571 if (!VerifyOnly) { 572 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 573 if (Entity.getKind() == InitializedEntity::EK_Member) 574 SemaRef.Diag(Entity.getDecl()->getLocation(), 575 diag::note_in_omitted_aggregate_initializer) 576 << /*field*/1 << Entity.getDecl(); 577 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 578 bool IsTrailingArrayNewMember = 579 Entity.getParent() && 580 Entity.getParent()->isVariableLengthArrayNew(); 581 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 582 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 583 << Entity.getElementIndex(); 584 } 585 } 586 hadError = true; 587 return ExprError(); 588 } 589 590 return VerifyOnly ? ExprResult() 591 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 592 } 593 594 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 595 SourceLocation Loc) { 596 // If we're building a fully-structured list, we'll check this at the end 597 // once we know which elements are actually initialized. Otherwise, we know 598 // that there are no designators so we can just check now. 599 if (FullyStructuredList) 600 return; 601 PerformEmptyInit(Loc, Entity); 602 } 603 604 void InitListChecker::FillInEmptyInitForBase( 605 unsigned Init, const CXXBaseSpecifier &Base, 606 const InitializedEntity &ParentEntity, InitListExpr *ILE, 607 bool &RequiresSecondPass, bool FillWithNoInit) { 608 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 609 SemaRef.Context, &Base, false, &ParentEntity); 610 611 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 612 ExprResult BaseInit = FillWithNoInit 613 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 614 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 615 if (BaseInit.isInvalid()) { 616 hadError = true; 617 return; 618 } 619 620 if (!VerifyOnly) { 621 assert(Init < ILE->getNumInits() && "should have been expanded"); 622 ILE->setInit(Init, BaseInit.getAs<Expr>()); 623 } 624 } else if (InitListExpr *InnerILE = 625 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 626 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 627 ILE, Init, FillWithNoInit); 628 } else if (DesignatedInitUpdateExpr *InnerDIUE = 629 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 630 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 631 RequiresSecondPass, ILE, Init, 632 /*FillWithNoInit =*/true); 633 } 634 } 635 636 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 637 const InitializedEntity &ParentEntity, 638 InitListExpr *ILE, 639 bool &RequiresSecondPass, 640 bool FillWithNoInit) { 641 SourceLocation Loc = ILE->getEndLoc(); 642 unsigned NumInits = ILE->getNumInits(); 643 InitializedEntity MemberEntity 644 = InitializedEntity::InitializeMember(Field, &ParentEntity); 645 646 if (Init >= NumInits || !ILE->getInit(Init)) { 647 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 648 if (!RType->getDecl()->isUnion()) 649 assert((Init < NumInits || VerifyOnly) && 650 "This ILE should have been expanded"); 651 652 if (FillWithNoInit) { 653 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 654 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 655 if (Init < NumInits) 656 ILE->setInit(Init, Filler); 657 else 658 ILE->updateInit(SemaRef.Context, Init, Filler); 659 return; 660 } 661 // C++1y [dcl.init.aggr]p7: 662 // If there are fewer initializer-clauses in the list than there are 663 // members in the aggregate, then each member not explicitly initialized 664 // shall be initialized from its brace-or-equal-initializer [...] 665 if (Field->hasInClassInitializer()) { 666 if (VerifyOnly) 667 return; 668 669 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 670 if (DIE.isInvalid()) { 671 hadError = true; 672 return; 673 } 674 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 675 if (Init < NumInits) 676 ILE->setInit(Init, DIE.get()); 677 else { 678 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 679 RequiresSecondPass = true; 680 } 681 return; 682 } 683 684 if (Field->getType()->isReferenceType()) { 685 if (!VerifyOnly) { 686 // C++ [dcl.init.aggr]p9: 687 // If an incomplete or empty initializer-list leaves a 688 // member of reference type uninitialized, the program is 689 // ill-formed. 690 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 691 << Field->getType() 692 << ILE->getSyntacticForm()->getSourceRange(); 693 SemaRef.Diag(Field->getLocation(), 694 diag::note_uninit_reference_member); 695 } 696 hadError = true; 697 return; 698 } 699 700 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 701 if (MemberInit.isInvalid()) { 702 hadError = true; 703 return; 704 } 705 706 if (hadError || VerifyOnly) { 707 // Do nothing 708 } else if (Init < NumInits) { 709 ILE->setInit(Init, MemberInit.getAs<Expr>()); 710 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 711 // Empty initialization requires a constructor call, so 712 // extend the initializer list to include the constructor 713 // call and make a note that we'll need to take another pass 714 // through the initializer list. 715 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 716 RequiresSecondPass = true; 717 } 718 } else if (InitListExpr *InnerILE 719 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 720 FillInEmptyInitializations(MemberEntity, InnerILE, 721 RequiresSecondPass, ILE, Init, FillWithNoInit); 722 } else if (DesignatedInitUpdateExpr *InnerDIUE = 723 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 724 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 725 RequiresSecondPass, ILE, Init, 726 /*FillWithNoInit =*/true); 727 } 728 } 729 730 /// Recursively replaces NULL values within the given initializer list 731 /// with expressions that perform value-initialization of the 732 /// appropriate type, and finish off the InitListExpr formation. 733 void 734 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 735 InitListExpr *ILE, 736 bool &RequiresSecondPass, 737 InitListExpr *OuterILE, 738 unsigned OuterIndex, 739 bool FillWithNoInit) { 740 assert((ILE->getType() != SemaRef.Context.VoidTy) && 741 "Should not have void type"); 742 743 // We don't need to do any checks when just filling NoInitExprs; that can't 744 // fail. 745 if (FillWithNoInit && VerifyOnly) 746 return; 747 748 // If this is a nested initializer list, we might have changed its contents 749 // (and therefore some of its properties, such as instantiation-dependence) 750 // while filling it in. Inform the outer initializer list so that its state 751 // can be updated to match. 752 // FIXME: We should fully build the inner initializers before constructing 753 // the outer InitListExpr instead of mutating AST nodes after they have 754 // been used as subexpressions of other nodes. 755 struct UpdateOuterILEWithUpdatedInit { 756 InitListExpr *Outer; 757 unsigned OuterIndex; 758 ~UpdateOuterILEWithUpdatedInit() { 759 if (Outer) 760 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 761 } 762 } UpdateOuterRAII = {OuterILE, OuterIndex}; 763 764 // A transparent ILE is not performing aggregate initialization and should 765 // not be filled in. 766 if (ILE->isTransparent()) 767 return; 768 769 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 770 const RecordDecl *RDecl = RType->getDecl(); 771 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 772 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 773 Entity, ILE, RequiresSecondPass, FillWithNoInit); 774 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 775 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 776 for (auto *Field : RDecl->fields()) { 777 if (Field->hasInClassInitializer()) { 778 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 779 FillWithNoInit); 780 break; 781 } 782 } 783 } else { 784 // The fields beyond ILE->getNumInits() are default initialized, so in 785 // order to leave them uninitialized, the ILE is expanded and the extra 786 // fields are then filled with NoInitExpr. 787 unsigned NumElems = numStructUnionElements(ILE->getType()); 788 if (RDecl->hasFlexibleArrayMember()) 789 ++NumElems; 790 if (!VerifyOnly && ILE->getNumInits() < NumElems) 791 ILE->resizeInits(SemaRef.Context, NumElems); 792 793 unsigned Init = 0; 794 795 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 796 for (auto &Base : CXXRD->bases()) { 797 if (hadError) 798 return; 799 800 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 801 FillWithNoInit); 802 ++Init; 803 } 804 } 805 806 for (auto *Field : RDecl->fields()) { 807 if (Field->isUnnamedBitfield()) 808 continue; 809 810 if (hadError) 811 return; 812 813 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 814 FillWithNoInit); 815 if (hadError) 816 return; 817 818 ++Init; 819 820 // Only look at the first initialization of a union. 821 if (RDecl->isUnion()) 822 break; 823 } 824 } 825 826 return; 827 } 828 829 QualType ElementType; 830 831 InitializedEntity ElementEntity = Entity; 832 unsigned NumInits = ILE->getNumInits(); 833 unsigned NumElements = NumInits; 834 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 835 ElementType = AType->getElementType(); 836 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 837 NumElements = CAType->getSize().getZExtValue(); 838 // For an array new with an unknown bound, ask for one additional element 839 // in order to populate the array filler. 840 if (Entity.isVariableLengthArrayNew()) 841 ++NumElements; 842 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 843 0, Entity); 844 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 845 ElementType = VType->getElementType(); 846 NumElements = VType->getNumElements(); 847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 848 0, Entity); 849 } else 850 ElementType = ILE->getType(); 851 852 bool SkipEmptyInitChecks = false; 853 for (unsigned Init = 0; Init != NumElements; ++Init) { 854 if (hadError) 855 return; 856 857 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 858 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 859 ElementEntity.setElementIndex(Init); 860 861 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 862 return; 863 864 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 865 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 866 ILE->setInit(Init, ILE->getArrayFiller()); 867 else if (!InitExpr && !ILE->hasArrayFiller()) { 868 // In VerifyOnly mode, there's no point performing empty initialization 869 // more than once. 870 if (SkipEmptyInitChecks) 871 continue; 872 873 Expr *Filler = nullptr; 874 875 if (FillWithNoInit) 876 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 877 else { 878 ExprResult ElementInit = 879 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 880 if (ElementInit.isInvalid()) { 881 hadError = true; 882 return; 883 } 884 885 Filler = ElementInit.getAs<Expr>(); 886 } 887 888 if (hadError) { 889 // Do nothing 890 } else if (VerifyOnly) { 891 SkipEmptyInitChecks = true; 892 } else if (Init < NumInits) { 893 // For arrays, just set the expression used for value-initialization 894 // of the "holes" in the array. 895 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 896 ILE->setArrayFiller(Filler); 897 else 898 ILE->setInit(Init, Filler); 899 } else { 900 // For arrays, just set the expression used for value-initialization 901 // of the rest of elements and exit. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 903 ILE->setArrayFiller(Filler); 904 return; 905 } 906 907 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 908 // Empty initialization requires a constructor call, so 909 // extend the initializer list to include the constructor 910 // call and make a note that we'll need to take another pass 911 // through the initializer list. 912 ILE->updateInit(SemaRef.Context, Init, Filler); 913 RequiresSecondPass = true; 914 } 915 } 916 } else if (InitListExpr *InnerILE 917 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 918 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 919 ILE, Init, FillWithNoInit); 920 } else if (DesignatedInitUpdateExpr *InnerDIUE = 921 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 922 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 923 RequiresSecondPass, ILE, Init, 924 /*FillWithNoInit =*/true); 925 } 926 } 927 } 928 929 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 930 for (const Stmt *Init : *IL) 931 if (Init && isa<DesignatedInitExpr>(Init)) 932 return true; 933 return false; 934 } 935 936 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 937 InitListExpr *IL, QualType &T, bool VerifyOnly, 938 bool TreatUnavailableAsInvalid, 939 bool InOverloadResolution) 940 : SemaRef(S), VerifyOnly(VerifyOnly), 941 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 942 InOverloadResolution(InOverloadResolution) { 943 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 944 FullyStructuredList = 945 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 946 947 // FIXME: Check that IL isn't already the semantic form of some other 948 // InitListExpr. If it is, we'd create a broken AST. 949 if (!VerifyOnly) 950 FullyStructuredList->setSyntacticForm(IL); 951 } 952 953 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 954 /*TopLevelObject=*/true); 955 956 if (!hadError && FullyStructuredList) { 957 bool RequiresSecondPass = false; 958 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 959 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 960 if (RequiresSecondPass && !hadError) 961 FillInEmptyInitializations(Entity, FullyStructuredList, 962 RequiresSecondPass, nullptr, 0); 963 } 964 } 965 966 int InitListChecker::numArrayElements(QualType DeclType) { 967 // FIXME: use a proper constant 968 int maxElements = 0x7FFFFFFF; 969 if (const ConstantArrayType *CAT = 970 SemaRef.Context.getAsConstantArrayType(DeclType)) { 971 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 972 } 973 return maxElements; 974 } 975 976 int InitListChecker::numStructUnionElements(QualType DeclType) { 977 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 978 int InitializableMembers = 0; 979 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 980 InitializableMembers += CXXRD->getNumBases(); 981 for (const auto *Field : structDecl->fields()) 982 if (!Field->isUnnamedBitfield()) 983 ++InitializableMembers; 984 985 if (structDecl->isUnion()) 986 return std::min(InitializableMembers, 1); 987 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 988 } 989 990 /// Determine whether Entity is an entity for which it is idiomatic to elide 991 /// the braces in aggregate initialization. 992 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 993 // Recursive initialization of the one and only field within an aggregate 994 // class is considered idiomatic. This case arises in particular for 995 // initialization of std::array, where the C++ standard suggests the idiom of 996 // 997 // std::array<T, N> arr = {1, 2, 3}; 998 // 999 // (where std::array is an aggregate struct containing a single array field. 1000 1001 // FIXME: Should aggregate initialization of a struct with a single 1002 // base class and no members also suppress the warning? 1003 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1004 return false; 1005 1006 auto *ParentRD = 1007 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1008 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1009 if (CXXRD->getNumBases()) 1010 return false; 1011 1012 auto FieldIt = ParentRD->field_begin(); 1013 assert(FieldIt != ParentRD->field_end() && 1014 "no fields but have initializer for member?"); 1015 return ++FieldIt == ParentRD->field_end(); 1016 } 1017 1018 /// Check whether the range of the initializer \p ParentIList from element 1019 /// \p Index onwards can be used to initialize an object of type \p T. Update 1020 /// \p Index to indicate how many elements of the list were consumed. 1021 /// 1022 /// This also fills in \p StructuredList, from element \p StructuredIndex 1023 /// onwards, with the fully-braced, desugared form of the initialization. 1024 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1025 InitListExpr *ParentIList, 1026 QualType T, unsigned &Index, 1027 InitListExpr *StructuredList, 1028 unsigned &StructuredIndex) { 1029 int maxElements = 0; 1030 1031 if (T->isArrayType()) 1032 maxElements = numArrayElements(T); 1033 else if (T->isRecordType()) 1034 maxElements = numStructUnionElements(T); 1035 else if (T->isVectorType()) 1036 maxElements = T->castAs<VectorType>()->getNumElements(); 1037 else 1038 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1039 1040 if (maxElements == 0) { 1041 if (!VerifyOnly) 1042 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1043 diag::err_implicit_empty_initializer); 1044 ++Index; 1045 hadError = true; 1046 return; 1047 } 1048 1049 // Build a structured initializer list corresponding to this subobject. 1050 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1051 ParentIList, Index, T, StructuredList, StructuredIndex, 1052 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1053 ParentIList->getSourceRange().getEnd())); 1054 unsigned StructuredSubobjectInitIndex = 0; 1055 1056 // Check the element types and build the structural subobject. 1057 unsigned StartIndex = Index; 1058 CheckListElementTypes(Entity, ParentIList, T, 1059 /*SubobjectIsDesignatorContext=*/false, Index, 1060 StructuredSubobjectInitList, 1061 StructuredSubobjectInitIndex); 1062 1063 if (StructuredSubobjectInitList) { 1064 StructuredSubobjectInitList->setType(T); 1065 1066 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1067 // Update the structured sub-object initializer so that it's ending 1068 // range corresponds with the end of the last initializer it used. 1069 if (EndIndex < ParentIList->getNumInits() && 1070 ParentIList->getInit(EndIndex)) { 1071 SourceLocation EndLoc 1072 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1073 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1074 } 1075 1076 // Complain about missing braces. 1077 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1078 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1079 !isIdiomaticBraceElisionEntity(Entity)) { 1080 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1081 diag::warn_missing_braces) 1082 << StructuredSubobjectInitList->getSourceRange() 1083 << FixItHint::CreateInsertion( 1084 StructuredSubobjectInitList->getBeginLoc(), "{") 1085 << FixItHint::CreateInsertion( 1086 SemaRef.getLocForEndOfToken( 1087 StructuredSubobjectInitList->getEndLoc()), 1088 "}"); 1089 } 1090 1091 // Warn if this type won't be an aggregate in future versions of C++. 1092 auto *CXXRD = T->getAsCXXRecordDecl(); 1093 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1094 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1095 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1096 << StructuredSubobjectInitList->getSourceRange() << T; 1097 } 1098 } 1099 } 1100 1101 /// Warn that \p Entity was of scalar type and was initialized by a 1102 /// single-element braced initializer list. 1103 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1104 SourceRange Braces) { 1105 // Don't warn during template instantiation. If the initialization was 1106 // non-dependent, we warned during the initial parse; otherwise, the 1107 // type might not be scalar in some uses of the template. 1108 if (S.inTemplateInstantiation()) 1109 return; 1110 1111 unsigned DiagID = 0; 1112 1113 switch (Entity.getKind()) { 1114 case InitializedEntity::EK_VectorElement: 1115 case InitializedEntity::EK_ComplexElement: 1116 case InitializedEntity::EK_ArrayElement: 1117 case InitializedEntity::EK_Parameter: 1118 case InitializedEntity::EK_Parameter_CF_Audited: 1119 case InitializedEntity::EK_Result: 1120 // Extra braces here are suspicious. 1121 DiagID = diag::warn_braces_around_scalar_init; 1122 break; 1123 1124 case InitializedEntity::EK_Member: 1125 // Warn on aggregate initialization but not on ctor init list or 1126 // default member initializer. 1127 if (Entity.getParent()) 1128 DiagID = diag::warn_braces_around_scalar_init; 1129 break; 1130 1131 case InitializedEntity::EK_Variable: 1132 case InitializedEntity::EK_LambdaCapture: 1133 // No warning, might be direct-list-initialization. 1134 // FIXME: Should we warn for copy-list-initialization in these cases? 1135 break; 1136 1137 case InitializedEntity::EK_New: 1138 case InitializedEntity::EK_Temporary: 1139 case InitializedEntity::EK_CompoundLiteralInit: 1140 // No warning, braces are part of the syntax of the underlying construct. 1141 break; 1142 1143 case InitializedEntity::EK_RelatedResult: 1144 // No warning, we already warned when initializing the result. 1145 break; 1146 1147 case InitializedEntity::EK_Exception: 1148 case InitializedEntity::EK_Base: 1149 case InitializedEntity::EK_Delegating: 1150 case InitializedEntity::EK_BlockElement: 1151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1152 case InitializedEntity::EK_Binding: 1153 case InitializedEntity::EK_StmtExprResult: 1154 llvm_unreachable("unexpected braced scalar init"); 1155 } 1156 1157 if (DiagID) { 1158 S.Diag(Braces.getBegin(), DiagID) 1159 << Braces 1160 << FixItHint::CreateRemoval(Braces.getBegin()) 1161 << FixItHint::CreateRemoval(Braces.getEnd()); 1162 } 1163 } 1164 1165 /// Check whether the initializer \p IList (that was written with explicit 1166 /// braces) can be used to initialize an object of type \p T. 1167 /// 1168 /// This also fills in \p StructuredList with the fully-braced, desugared 1169 /// form of the initialization. 1170 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1171 InitListExpr *IList, QualType &T, 1172 InitListExpr *StructuredList, 1173 bool TopLevelObject) { 1174 unsigned Index = 0, StructuredIndex = 0; 1175 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1176 Index, StructuredList, StructuredIndex, TopLevelObject); 1177 if (StructuredList) { 1178 QualType ExprTy = T; 1179 if (!ExprTy->isArrayType()) 1180 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1181 if (!VerifyOnly) 1182 IList->setType(ExprTy); 1183 StructuredList->setType(ExprTy); 1184 } 1185 if (hadError) 1186 return; 1187 1188 // Don't complain for incomplete types, since we'll get an error elsewhere. 1189 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1190 // We have leftover initializers 1191 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1192 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1193 hadError = ExtraInitsIsError; 1194 if (VerifyOnly) { 1195 return; 1196 } else if (StructuredIndex == 1 && 1197 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1198 SIF_None) { 1199 unsigned DK = 1200 ExtraInitsIsError 1201 ? diag::err_excess_initializers_in_char_array_initializer 1202 : diag::ext_excess_initializers_in_char_array_initializer; 1203 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1204 << IList->getInit(Index)->getSourceRange(); 1205 } else { 1206 int initKind = T->isArrayType() ? 0 : 1207 T->isVectorType() ? 1 : 1208 T->isScalarType() ? 2 : 1209 T->isUnionType() ? 3 : 1210 4; 1211 1212 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1213 : diag::ext_excess_initializers; 1214 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1215 << initKind << IList->getInit(Index)->getSourceRange(); 1216 } 1217 } 1218 1219 if (!VerifyOnly) { 1220 if (T->isScalarType() && IList->getNumInits() == 1 && 1221 !isa<InitListExpr>(IList->getInit(0))) 1222 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1223 1224 // Warn if this is a class type that won't be an aggregate in future 1225 // versions of C++. 1226 auto *CXXRD = T->getAsCXXRecordDecl(); 1227 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1228 // Don't warn if there's an equivalent default constructor that would be 1229 // used instead. 1230 bool HasEquivCtor = false; 1231 if (IList->getNumInits() == 0) { 1232 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1233 HasEquivCtor = CD && !CD->isDeleted(); 1234 } 1235 1236 if (!HasEquivCtor) { 1237 SemaRef.Diag(IList->getBeginLoc(), 1238 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1239 << IList->getSourceRange() << T; 1240 } 1241 } 1242 } 1243 } 1244 1245 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1246 InitListExpr *IList, 1247 QualType &DeclType, 1248 bool SubobjectIsDesignatorContext, 1249 unsigned &Index, 1250 InitListExpr *StructuredList, 1251 unsigned &StructuredIndex, 1252 bool TopLevelObject) { 1253 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1254 // Explicitly braced initializer for complex type can be real+imaginary 1255 // parts. 1256 CheckComplexType(Entity, IList, DeclType, Index, 1257 StructuredList, StructuredIndex); 1258 } else if (DeclType->isScalarType()) { 1259 CheckScalarType(Entity, IList, DeclType, Index, 1260 StructuredList, StructuredIndex); 1261 } else if (DeclType->isVectorType()) { 1262 CheckVectorType(Entity, IList, DeclType, Index, 1263 StructuredList, StructuredIndex); 1264 } else if (DeclType->isRecordType()) { 1265 assert(DeclType->isAggregateType() && 1266 "non-aggregate records should be handed in CheckSubElementType"); 1267 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1268 auto Bases = 1269 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1270 CXXRecordDecl::base_class_iterator()); 1271 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1272 Bases = CXXRD->bases(); 1273 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1274 SubobjectIsDesignatorContext, Index, StructuredList, 1275 StructuredIndex, TopLevelObject); 1276 } else if (DeclType->isArrayType()) { 1277 llvm::APSInt Zero( 1278 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1279 false); 1280 CheckArrayType(Entity, IList, DeclType, Zero, 1281 SubobjectIsDesignatorContext, Index, 1282 StructuredList, StructuredIndex); 1283 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1284 // This type is invalid, issue a diagnostic. 1285 ++Index; 1286 if (!VerifyOnly) 1287 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1288 << DeclType; 1289 hadError = true; 1290 } else if (DeclType->isReferenceType()) { 1291 CheckReferenceType(Entity, IList, DeclType, Index, 1292 StructuredList, StructuredIndex); 1293 } else if (DeclType->isObjCObjectType()) { 1294 if (!VerifyOnly) 1295 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1296 hadError = true; 1297 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1298 // Checks for scalar type are sufficient for these types too. 1299 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1300 StructuredIndex); 1301 } else { 1302 if (!VerifyOnly) 1303 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1304 << DeclType; 1305 hadError = true; 1306 } 1307 } 1308 1309 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1310 InitListExpr *IList, 1311 QualType ElemType, 1312 unsigned &Index, 1313 InitListExpr *StructuredList, 1314 unsigned &StructuredIndex) { 1315 Expr *expr = IList->getInit(Index); 1316 1317 if (ElemType->isReferenceType()) 1318 return CheckReferenceType(Entity, IList, ElemType, Index, 1319 StructuredList, StructuredIndex); 1320 1321 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1322 if (SubInitList->getNumInits() == 1 && 1323 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1324 SIF_None) { 1325 // FIXME: It would be more faithful and no less correct to include an 1326 // InitListExpr in the semantic form of the initializer list in this case. 1327 expr = SubInitList->getInit(0); 1328 } 1329 // Nested aggregate initialization and C++ initialization are handled later. 1330 } else if (isa<ImplicitValueInitExpr>(expr)) { 1331 // This happens during template instantiation when we see an InitListExpr 1332 // that we've already checked once. 1333 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1334 "found implicit initialization for the wrong type"); 1335 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1336 ++Index; 1337 return; 1338 } 1339 1340 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1341 // C++ [dcl.init.aggr]p2: 1342 // Each member is copy-initialized from the corresponding 1343 // initializer-clause. 1344 1345 // FIXME: Better EqualLoc? 1346 InitializationKind Kind = 1347 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1348 1349 // Vector elements can be initialized from other vectors in which case 1350 // we need initialization entity with a type of a vector (and not a vector 1351 // element!) initializing multiple vector elements. 1352 auto TmpEntity = 1353 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1354 ? InitializedEntity::InitializeTemporary(ElemType) 1355 : Entity; 1356 1357 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1358 /*TopLevelOfInitList*/ true); 1359 1360 // C++14 [dcl.init.aggr]p13: 1361 // If the assignment-expression can initialize a member, the member is 1362 // initialized. Otherwise [...] brace elision is assumed 1363 // 1364 // Brace elision is never performed if the element is not an 1365 // assignment-expression. 1366 if (Seq || isa<InitListExpr>(expr)) { 1367 if (!VerifyOnly) { 1368 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1369 if (Result.isInvalid()) 1370 hadError = true; 1371 1372 UpdateStructuredListElement(StructuredList, StructuredIndex, 1373 Result.getAs<Expr>()); 1374 } else if (!Seq) { 1375 hadError = true; 1376 } else if (StructuredList) { 1377 UpdateStructuredListElement(StructuredList, StructuredIndex, 1378 getDummyInit()); 1379 } 1380 ++Index; 1381 return; 1382 } 1383 1384 // Fall through for subaggregate initialization 1385 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1386 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1387 return CheckScalarType(Entity, IList, ElemType, Index, 1388 StructuredList, StructuredIndex); 1389 } else if (const ArrayType *arrayType = 1390 SemaRef.Context.getAsArrayType(ElemType)) { 1391 // arrayType can be incomplete if we're initializing a flexible 1392 // array member. There's nothing we can do with the completed 1393 // type here, though. 1394 1395 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1396 // FIXME: Should we do this checking in verify-only mode? 1397 if (!VerifyOnly) 1398 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1399 if (StructuredList) 1400 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1401 ++Index; 1402 return; 1403 } 1404 1405 // Fall through for subaggregate initialization. 1406 1407 } else { 1408 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1409 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1410 1411 // C99 6.7.8p13: 1412 // 1413 // The initializer for a structure or union object that has 1414 // automatic storage duration shall be either an initializer 1415 // list as described below, or a single expression that has 1416 // compatible structure or union type. In the latter case, the 1417 // initial value of the object, including unnamed members, is 1418 // that of the expression. 1419 ExprResult ExprRes = expr; 1420 if (SemaRef.CheckSingleAssignmentConstraints( 1421 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1422 if (ExprRes.isInvalid()) 1423 hadError = true; 1424 else { 1425 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1426 if (ExprRes.isInvalid()) 1427 hadError = true; 1428 } 1429 UpdateStructuredListElement(StructuredList, StructuredIndex, 1430 ExprRes.getAs<Expr>()); 1431 ++Index; 1432 return; 1433 } 1434 ExprRes.get(); 1435 // Fall through for subaggregate initialization 1436 } 1437 1438 // C++ [dcl.init.aggr]p12: 1439 // 1440 // [...] Otherwise, if the member is itself a non-empty 1441 // subaggregate, brace elision is assumed and the initializer is 1442 // considered for the initialization of the first member of 1443 // the subaggregate. 1444 // OpenCL vector initializer is handled elsewhere. 1445 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1446 ElemType->isAggregateType()) { 1447 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1448 StructuredIndex); 1449 ++StructuredIndex; 1450 } else { 1451 if (!VerifyOnly) { 1452 // We cannot initialize this element, so let PerformCopyInitialization 1453 // produce the appropriate diagnostic. We already checked that this 1454 // initialization will fail. 1455 ExprResult Copy = 1456 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1457 /*TopLevelOfInitList=*/true); 1458 (void)Copy; 1459 assert(Copy.isInvalid() && 1460 "expected non-aggregate initialization to fail"); 1461 } 1462 hadError = true; 1463 ++Index; 1464 ++StructuredIndex; 1465 } 1466 } 1467 1468 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1469 InitListExpr *IList, QualType DeclType, 1470 unsigned &Index, 1471 InitListExpr *StructuredList, 1472 unsigned &StructuredIndex) { 1473 assert(Index == 0 && "Index in explicit init list must be zero"); 1474 1475 // As an extension, clang supports complex initializers, which initialize 1476 // a complex number component-wise. When an explicit initializer list for 1477 // a complex number contains two two initializers, this extension kicks in: 1478 // it exepcts the initializer list to contain two elements convertible to 1479 // the element type of the complex type. The first element initializes 1480 // the real part, and the second element intitializes the imaginary part. 1481 1482 if (IList->getNumInits() != 2) 1483 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1484 StructuredIndex); 1485 1486 // This is an extension in C. (The builtin _Complex type does not exist 1487 // in the C++ standard.) 1488 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1489 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1490 << IList->getSourceRange(); 1491 1492 // Initialize the complex number. 1493 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1494 InitializedEntity ElementEntity = 1495 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1496 1497 for (unsigned i = 0; i < 2; ++i) { 1498 ElementEntity.setElementIndex(Index); 1499 CheckSubElementType(ElementEntity, IList, elementType, Index, 1500 StructuredList, StructuredIndex); 1501 } 1502 } 1503 1504 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1505 InitListExpr *IList, QualType DeclType, 1506 unsigned &Index, 1507 InitListExpr *StructuredList, 1508 unsigned &StructuredIndex) { 1509 if (Index >= IList->getNumInits()) { 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 SemaRef.getLangOpts().CPlusPlus11 1513 ? diag::warn_cxx98_compat_empty_scalar_initializer 1514 : diag::err_empty_scalar_initializer) 1515 << IList->getSourceRange(); 1516 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1517 ++Index; 1518 ++StructuredIndex; 1519 return; 1520 } 1521 1522 Expr *expr = IList->getInit(Index); 1523 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1524 // FIXME: This is invalid, and accepting it causes overload resolution 1525 // to pick the wrong overload in some corner cases. 1526 if (!VerifyOnly) 1527 SemaRef.Diag(SubIList->getBeginLoc(), 1528 diag::ext_many_braces_around_scalar_init) 1529 << SubIList->getSourceRange(); 1530 1531 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1532 StructuredIndex); 1533 return; 1534 } else if (isa<DesignatedInitExpr>(expr)) { 1535 if (!VerifyOnly) 1536 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1537 << DeclType << expr->getSourceRange(); 1538 hadError = true; 1539 ++Index; 1540 ++StructuredIndex; 1541 return; 1542 } 1543 1544 ExprResult Result; 1545 if (VerifyOnly) { 1546 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1547 Result = getDummyInit(); 1548 else 1549 Result = ExprError(); 1550 } else { 1551 Result = 1552 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1553 /*TopLevelOfInitList=*/true); 1554 } 1555 1556 Expr *ResultExpr = nullptr; 1557 1558 if (Result.isInvalid()) 1559 hadError = true; // types weren't compatible. 1560 else { 1561 ResultExpr = Result.getAs<Expr>(); 1562 1563 if (ResultExpr != expr && !VerifyOnly) { 1564 // The type was promoted, update initializer list. 1565 // FIXME: Why are we updating the syntactic init list? 1566 IList->setInit(Index, ResultExpr); 1567 } 1568 } 1569 if (hadError) 1570 ++StructuredIndex; 1571 else 1572 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1573 ++Index; 1574 } 1575 1576 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1577 InitListExpr *IList, QualType DeclType, 1578 unsigned &Index, 1579 InitListExpr *StructuredList, 1580 unsigned &StructuredIndex) { 1581 if (Index >= IList->getNumInits()) { 1582 // FIXME: It would be wonderful if we could point at the actual member. In 1583 // general, it would be useful to pass location information down the stack, 1584 // so that we know the location (or decl) of the "current object" being 1585 // initialized. 1586 if (!VerifyOnly) 1587 SemaRef.Diag(IList->getBeginLoc(), 1588 diag::err_init_reference_member_uninitialized) 1589 << DeclType << IList->getSourceRange(); 1590 hadError = true; 1591 ++Index; 1592 ++StructuredIndex; 1593 return; 1594 } 1595 1596 Expr *expr = IList->getInit(Index); 1597 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1598 if (!VerifyOnly) 1599 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1600 << DeclType << IList->getSourceRange(); 1601 hadError = true; 1602 ++Index; 1603 ++StructuredIndex; 1604 return; 1605 } 1606 1607 ExprResult Result; 1608 if (VerifyOnly) { 1609 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1610 Result = getDummyInit(); 1611 else 1612 Result = ExprError(); 1613 } else { 1614 Result = 1615 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1616 /*TopLevelOfInitList=*/true); 1617 } 1618 1619 if (Result.isInvalid()) 1620 hadError = true; 1621 1622 expr = Result.getAs<Expr>(); 1623 // FIXME: Why are we updating the syntactic init list? 1624 if (!VerifyOnly) 1625 IList->setInit(Index, expr); 1626 1627 if (hadError) 1628 ++StructuredIndex; 1629 else 1630 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1631 ++Index; 1632 } 1633 1634 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1635 InitListExpr *IList, QualType DeclType, 1636 unsigned &Index, 1637 InitListExpr *StructuredList, 1638 unsigned &StructuredIndex) { 1639 const VectorType *VT = DeclType->castAs<VectorType>(); 1640 unsigned maxElements = VT->getNumElements(); 1641 unsigned numEltsInit = 0; 1642 QualType elementType = VT->getElementType(); 1643 1644 if (Index >= IList->getNumInits()) { 1645 // Make sure the element type can be value-initialized. 1646 CheckEmptyInitializable( 1647 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1648 IList->getEndLoc()); 1649 return; 1650 } 1651 1652 if (!SemaRef.getLangOpts().OpenCL) { 1653 // If the initializing element is a vector, try to copy-initialize 1654 // instead of breaking it apart (which is doomed to failure anyway). 1655 Expr *Init = IList->getInit(Index); 1656 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 Expr *ResultExpr = nullptr; 1670 if (Result.isInvalid()) 1671 hadError = true; // types weren't compatible. 1672 else { 1673 ResultExpr = Result.getAs<Expr>(); 1674 1675 if (ResultExpr != Init && !VerifyOnly) { 1676 // The type was promoted, update initializer list. 1677 // FIXME: Why are we updating the syntactic init list? 1678 IList->setInit(Index, ResultExpr); 1679 } 1680 } 1681 if (hadError) 1682 ++StructuredIndex; 1683 else 1684 UpdateStructuredListElement(StructuredList, StructuredIndex, 1685 ResultExpr); 1686 ++Index; 1687 return; 1688 } 1689 1690 InitializedEntity ElementEntity = 1691 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1692 1693 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1694 // Don't attempt to go past the end of the init list 1695 if (Index >= IList->getNumInits()) { 1696 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1697 break; 1698 } 1699 1700 ElementEntity.setElementIndex(Index); 1701 CheckSubElementType(ElementEntity, IList, elementType, Index, 1702 StructuredList, StructuredIndex); 1703 } 1704 1705 if (VerifyOnly) 1706 return; 1707 1708 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1709 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1710 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1711 T->getVectorKind() == VectorType::NeonPolyVector)) { 1712 // The ability to use vector initializer lists is a GNU vector extension 1713 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1714 // endian machines it works fine, however on big endian machines it 1715 // exhibits surprising behaviour: 1716 // 1717 // uint32x2_t x = {42, 64}; 1718 // return vget_lane_u32(x, 0); // Will return 64. 1719 // 1720 // Because of this, explicitly call out that it is non-portable. 1721 // 1722 SemaRef.Diag(IList->getBeginLoc(), 1723 diag::warn_neon_vector_initializer_non_portable); 1724 1725 const char *typeCode; 1726 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1727 1728 if (elementType->isFloatingType()) 1729 typeCode = "f"; 1730 else if (elementType->isSignedIntegerType()) 1731 typeCode = "s"; 1732 else if (elementType->isUnsignedIntegerType()) 1733 typeCode = "u"; 1734 else 1735 llvm_unreachable("Invalid element type!"); 1736 1737 SemaRef.Diag(IList->getBeginLoc(), 1738 SemaRef.Context.getTypeSize(VT) > 64 1739 ? diag::note_neon_vector_initializer_non_portable_q 1740 : diag::note_neon_vector_initializer_non_portable) 1741 << typeCode << typeSize; 1742 } 1743 1744 return; 1745 } 1746 1747 InitializedEntity ElementEntity = 1748 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1749 1750 // OpenCL initializers allows vectors to be constructed from vectors. 1751 for (unsigned i = 0; i < maxElements; ++i) { 1752 // Don't attempt to go past the end of the init list 1753 if (Index >= IList->getNumInits()) 1754 break; 1755 1756 ElementEntity.setElementIndex(Index); 1757 1758 QualType IType = IList->getInit(Index)->getType(); 1759 if (!IType->isVectorType()) { 1760 CheckSubElementType(ElementEntity, IList, elementType, Index, 1761 StructuredList, StructuredIndex); 1762 ++numEltsInit; 1763 } else { 1764 QualType VecType; 1765 const VectorType *IVT = IType->castAs<VectorType>(); 1766 unsigned numIElts = IVT->getNumElements(); 1767 1768 if (IType->isExtVectorType()) 1769 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1770 else 1771 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1772 IVT->getVectorKind()); 1773 CheckSubElementType(ElementEntity, IList, VecType, Index, 1774 StructuredList, StructuredIndex); 1775 numEltsInit += numIElts; 1776 } 1777 } 1778 1779 // OpenCL requires all elements to be initialized. 1780 if (numEltsInit != maxElements) { 1781 if (!VerifyOnly) 1782 SemaRef.Diag(IList->getBeginLoc(), 1783 diag::err_vector_incorrect_num_initializers) 1784 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1785 hadError = true; 1786 } 1787 } 1788 1789 /// Check if the type of a class element has an accessible destructor, and marks 1790 /// it referenced. Returns true if we shouldn't form a reference to the 1791 /// destructor. 1792 /// 1793 /// Aggregate initialization requires a class element's destructor be 1794 /// accessible per 11.6.1 [dcl.init.aggr]: 1795 /// 1796 /// The destructor for each element of class type is potentially invoked 1797 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1798 /// occurs. 1799 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1800 Sema &SemaRef) { 1801 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1802 if (!CXXRD) 1803 return false; 1804 1805 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1806 SemaRef.CheckDestructorAccess(Loc, Destructor, 1807 SemaRef.PDiag(diag::err_access_dtor_temp) 1808 << ElementType); 1809 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1810 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1811 } 1812 1813 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1814 InitListExpr *IList, QualType &DeclType, 1815 llvm::APSInt elementIndex, 1816 bool SubobjectIsDesignatorContext, 1817 unsigned &Index, 1818 InitListExpr *StructuredList, 1819 unsigned &StructuredIndex) { 1820 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1821 1822 if (!VerifyOnly) { 1823 if (checkDestructorReference(arrayType->getElementType(), 1824 IList->getEndLoc(), SemaRef)) { 1825 hadError = true; 1826 return; 1827 } 1828 } 1829 1830 // Check for the special-case of initializing an array with a string. 1831 if (Index < IList->getNumInits()) { 1832 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1833 SIF_None) { 1834 // We place the string literal directly into the resulting 1835 // initializer list. This is the only place where the structure 1836 // of the structured initializer list doesn't match exactly, 1837 // because doing so would involve allocating one character 1838 // constant for each string. 1839 // FIXME: Should we do these checks in verify-only mode too? 1840 if (!VerifyOnly) 1841 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1842 if (StructuredList) { 1843 UpdateStructuredListElement(StructuredList, StructuredIndex, 1844 IList->getInit(Index)); 1845 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1846 } 1847 ++Index; 1848 return; 1849 } 1850 } 1851 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1852 // Check for VLAs; in standard C it would be possible to check this 1853 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1854 // them in all sorts of strange places). 1855 if (!VerifyOnly) 1856 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1857 diag::err_variable_object_no_init) 1858 << VAT->getSizeExpr()->getSourceRange(); 1859 hadError = true; 1860 ++Index; 1861 ++StructuredIndex; 1862 return; 1863 } 1864 1865 // We might know the maximum number of elements in advance. 1866 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1867 elementIndex.isUnsigned()); 1868 bool maxElementsKnown = false; 1869 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1870 maxElements = CAT->getSize(); 1871 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1872 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1873 maxElementsKnown = true; 1874 } 1875 1876 QualType elementType = arrayType->getElementType(); 1877 while (Index < IList->getNumInits()) { 1878 Expr *Init = IList->getInit(Index); 1879 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1880 // If we're not the subobject that matches up with the '{' for 1881 // the designator, we shouldn't be handling the 1882 // designator. Return immediately. 1883 if (!SubobjectIsDesignatorContext) 1884 return; 1885 1886 // Handle this designated initializer. elementIndex will be 1887 // updated to be the next array element we'll initialize. 1888 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1889 DeclType, nullptr, &elementIndex, Index, 1890 StructuredList, StructuredIndex, true, 1891 false)) { 1892 hadError = true; 1893 continue; 1894 } 1895 1896 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1897 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1898 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1899 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1900 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1901 1902 // If the array is of incomplete type, keep track of the number of 1903 // elements in the initializer. 1904 if (!maxElementsKnown && elementIndex > maxElements) 1905 maxElements = elementIndex; 1906 1907 continue; 1908 } 1909 1910 // If we know the maximum number of elements, and we've already 1911 // hit it, stop consuming elements in the initializer list. 1912 if (maxElementsKnown && elementIndex == maxElements) 1913 break; 1914 1915 InitializedEntity ElementEntity = 1916 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1917 Entity); 1918 // Check this element. 1919 CheckSubElementType(ElementEntity, IList, elementType, Index, 1920 StructuredList, StructuredIndex); 1921 ++elementIndex; 1922 1923 // If the array is of incomplete type, keep track of the number of 1924 // elements in the initializer. 1925 if (!maxElementsKnown && elementIndex > maxElements) 1926 maxElements = elementIndex; 1927 } 1928 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1929 // If this is an incomplete array type, the actual type needs to 1930 // be calculated here. 1931 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1932 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1933 // Sizing an array implicitly to zero is not allowed by ISO C, 1934 // but is supported by GNU. 1935 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1936 } 1937 1938 DeclType = SemaRef.Context.getConstantArrayType( 1939 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1940 } 1941 if (!hadError) { 1942 // If there are any members of the array that get value-initialized, check 1943 // that is possible. That happens if we know the bound and don't have 1944 // enough elements, or if we're performing an array new with an unknown 1945 // bound. 1946 if ((maxElementsKnown && elementIndex < maxElements) || 1947 Entity.isVariableLengthArrayNew()) 1948 CheckEmptyInitializable( 1949 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1950 IList->getEndLoc()); 1951 } 1952 } 1953 1954 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1955 Expr *InitExpr, 1956 FieldDecl *Field, 1957 bool TopLevelObject) { 1958 // Handle GNU flexible array initializers. 1959 unsigned FlexArrayDiag; 1960 if (isa<InitListExpr>(InitExpr) && 1961 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1962 // Empty flexible array init always allowed as an extension 1963 FlexArrayDiag = diag::ext_flexible_array_init; 1964 } else if (SemaRef.getLangOpts().CPlusPlus) { 1965 // Disallow flexible array init in C++; it is not required for gcc 1966 // compatibility, and it needs work to IRGen correctly in general. 1967 FlexArrayDiag = diag::err_flexible_array_init; 1968 } else if (!TopLevelObject) { 1969 // Disallow flexible array init on non-top-level object 1970 FlexArrayDiag = diag::err_flexible_array_init; 1971 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1972 // Disallow flexible array init on anything which is not a variable. 1973 FlexArrayDiag = diag::err_flexible_array_init; 1974 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1975 // Disallow flexible array init on local variables. 1976 FlexArrayDiag = diag::err_flexible_array_init; 1977 } else { 1978 // Allow other cases. 1979 FlexArrayDiag = diag::ext_flexible_array_init; 1980 } 1981 1982 if (!VerifyOnly) { 1983 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1984 << InitExpr->getBeginLoc(); 1985 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1986 << Field; 1987 } 1988 1989 return FlexArrayDiag != diag::ext_flexible_array_init; 1990 } 1991 1992 void InitListChecker::CheckStructUnionTypes( 1993 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1994 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1995 bool SubobjectIsDesignatorContext, unsigned &Index, 1996 InitListExpr *StructuredList, unsigned &StructuredIndex, 1997 bool TopLevelObject) { 1998 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 1999 2000 // If the record is invalid, some of it's members are invalid. To avoid 2001 // confusion, we forgo checking the intializer for the entire record. 2002 if (structDecl->isInvalidDecl()) { 2003 // Assume it was supposed to consume a single initializer. 2004 ++Index; 2005 hadError = true; 2006 return; 2007 } 2008 2009 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2010 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2011 2012 if (!VerifyOnly) 2013 for (FieldDecl *FD : RD->fields()) { 2014 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2015 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2016 hadError = true; 2017 return; 2018 } 2019 } 2020 2021 // If there's a default initializer, use it. 2022 if (isa<CXXRecordDecl>(RD) && 2023 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2024 if (!StructuredList) 2025 return; 2026 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2027 Field != FieldEnd; ++Field) { 2028 if (Field->hasInClassInitializer()) { 2029 StructuredList->setInitializedFieldInUnion(*Field); 2030 // FIXME: Actually build a CXXDefaultInitExpr? 2031 return; 2032 } 2033 } 2034 } 2035 2036 // Value-initialize the first member of the union that isn't an unnamed 2037 // bitfield. 2038 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2039 Field != FieldEnd; ++Field) { 2040 if (!Field->isUnnamedBitfield()) { 2041 CheckEmptyInitializable( 2042 InitializedEntity::InitializeMember(*Field, &Entity), 2043 IList->getEndLoc()); 2044 if (StructuredList) 2045 StructuredList->setInitializedFieldInUnion(*Field); 2046 break; 2047 } 2048 } 2049 return; 2050 } 2051 2052 bool InitializedSomething = false; 2053 2054 // If we have any base classes, they are initialized prior to the fields. 2055 for (auto &Base : Bases) { 2056 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2057 2058 // Designated inits always initialize fields, so if we see one, all 2059 // remaining base classes have no explicit initializer. 2060 if (Init && isa<DesignatedInitExpr>(Init)) 2061 Init = nullptr; 2062 2063 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2064 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2065 SemaRef.Context, &Base, false, &Entity); 2066 if (Init) { 2067 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2068 StructuredList, StructuredIndex); 2069 InitializedSomething = true; 2070 } else { 2071 CheckEmptyInitializable(BaseEntity, InitLoc); 2072 } 2073 2074 if (!VerifyOnly) 2075 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2076 hadError = true; 2077 return; 2078 } 2079 } 2080 2081 // If structDecl is a forward declaration, this loop won't do 2082 // anything except look at designated initializers; That's okay, 2083 // because an error should get printed out elsewhere. It might be 2084 // worthwhile to skip over the rest of the initializer, though. 2085 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2086 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2087 bool CheckForMissingFields = 2088 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2089 bool HasDesignatedInit = false; 2090 2091 while (Index < IList->getNumInits()) { 2092 Expr *Init = IList->getInit(Index); 2093 SourceLocation InitLoc = Init->getBeginLoc(); 2094 2095 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2096 // If we're not the subobject that matches up with the '{' for 2097 // the designator, we shouldn't be handling the 2098 // designator. Return immediately. 2099 if (!SubobjectIsDesignatorContext) 2100 return; 2101 2102 HasDesignatedInit = true; 2103 2104 // Handle this designated initializer. Field will be updated to 2105 // the next field that we'll be initializing. 2106 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2107 DeclType, &Field, nullptr, Index, 2108 StructuredList, StructuredIndex, 2109 true, TopLevelObject)) 2110 hadError = true; 2111 else if (!VerifyOnly) { 2112 // Find the field named by the designated initializer. 2113 RecordDecl::field_iterator F = RD->field_begin(); 2114 while (std::next(F) != Field) 2115 ++F; 2116 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2117 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2118 hadError = true; 2119 return; 2120 } 2121 } 2122 2123 InitializedSomething = true; 2124 2125 // Disable check for missing fields when designators are used. 2126 // This matches gcc behaviour. 2127 CheckForMissingFields = false; 2128 continue; 2129 } 2130 2131 if (Field == FieldEnd) { 2132 // We've run out of fields. We're done. 2133 break; 2134 } 2135 2136 // We've already initialized a member of a union. We're done. 2137 if (InitializedSomething && DeclType->isUnionType()) 2138 break; 2139 2140 // If we've hit the flexible array member at the end, we're done. 2141 if (Field->getType()->isIncompleteArrayType()) 2142 break; 2143 2144 if (Field->isUnnamedBitfield()) { 2145 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2146 ++Field; 2147 continue; 2148 } 2149 2150 // Make sure we can use this declaration. 2151 bool InvalidUse; 2152 if (VerifyOnly) 2153 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2154 else 2155 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2156 *Field, IList->getInit(Index)->getBeginLoc()); 2157 if (InvalidUse) { 2158 ++Index; 2159 ++Field; 2160 hadError = true; 2161 continue; 2162 } 2163 2164 if (!VerifyOnly) { 2165 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2166 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2167 hadError = true; 2168 return; 2169 } 2170 } 2171 2172 InitializedEntity MemberEntity = 2173 InitializedEntity::InitializeMember(*Field, &Entity); 2174 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2175 StructuredList, StructuredIndex); 2176 InitializedSomething = true; 2177 2178 if (DeclType->isUnionType() && StructuredList) { 2179 // Initialize the first field within the union. 2180 StructuredList->setInitializedFieldInUnion(*Field); 2181 } 2182 2183 ++Field; 2184 } 2185 2186 // Emit warnings for missing struct field initializers. 2187 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2188 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2189 !DeclType->isUnionType()) { 2190 // It is possible we have one or more unnamed bitfields remaining. 2191 // Find first (if any) named field and emit warning. 2192 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2193 it != end; ++it) { 2194 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2195 SemaRef.Diag(IList->getSourceRange().getEnd(), 2196 diag::warn_missing_field_initializers) << *it; 2197 break; 2198 } 2199 } 2200 } 2201 2202 // Check that any remaining fields can be value-initialized if we're not 2203 // building a structured list. (If we are, we'll check this later.) 2204 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2205 !Field->getType()->isIncompleteArrayType()) { 2206 for (; Field != FieldEnd && !hadError; ++Field) { 2207 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2208 CheckEmptyInitializable( 2209 InitializedEntity::InitializeMember(*Field, &Entity), 2210 IList->getEndLoc()); 2211 } 2212 } 2213 2214 // Check that the types of the remaining fields have accessible destructors. 2215 if (!VerifyOnly) { 2216 // If the initializer expression has a designated initializer, check the 2217 // elements for which a designated initializer is not provided too. 2218 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2219 : Field; 2220 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2221 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2222 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2223 hadError = true; 2224 return; 2225 } 2226 } 2227 } 2228 2229 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2230 Index >= IList->getNumInits()) 2231 return; 2232 2233 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2234 TopLevelObject)) { 2235 hadError = true; 2236 ++Index; 2237 return; 2238 } 2239 2240 InitializedEntity MemberEntity = 2241 InitializedEntity::InitializeMember(*Field, &Entity); 2242 2243 if (isa<InitListExpr>(IList->getInit(Index))) 2244 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2245 StructuredList, StructuredIndex); 2246 else 2247 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2248 StructuredList, StructuredIndex); 2249 } 2250 2251 /// Expand a field designator that refers to a member of an 2252 /// anonymous struct or union into a series of field designators that 2253 /// refers to the field within the appropriate subobject. 2254 /// 2255 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2256 DesignatedInitExpr *DIE, 2257 unsigned DesigIdx, 2258 IndirectFieldDecl *IndirectField) { 2259 typedef DesignatedInitExpr::Designator Designator; 2260 2261 // Build the replacement designators. 2262 SmallVector<Designator, 4> Replacements; 2263 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2264 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2265 if (PI + 1 == PE) 2266 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2267 DIE->getDesignator(DesigIdx)->getDotLoc(), 2268 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2269 else 2270 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2271 SourceLocation(), SourceLocation())); 2272 assert(isa<FieldDecl>(*PI)); 2273 Replacements.back().setField(cast<FieldDecl>(*PI)); 2274 } 2275 2276 // Expand the current designator into the set of replacement 2277 // designators, so we have a full subobject path down to where the 2278 // member of the anonymous struct/union is actually stored. 2279 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2280 &Replacements[0] + Replacements.size()); 2281 } 2282 2283 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2284 DesignatedInitExpr *DIE) { 2285 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2286 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2287 for (unsigned I = 0; I < NumIndexExprs; ++I) 2288 IndexExprs[I] = DIE->getSubExpr(I + 1); 2289 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2290 IndexExprs, 2291 DIE->getEqualOrColonLoc(), 2292 DIE->usesGNUSyntax(), DIE->getInit()); 2293 } 2294 2295 namespace { 2296 2297 // Callback to only accept typo corrections that are for field members of 2298 // the given struct or union. 2299 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2300 public: 2301 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2302 : Record(RD) {} 2303 2304 bool ValidateCandidate(const TypoCorrection &candidate) override { 2305 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2306 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2307 } 2308 2309 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2310 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2311 } 2312 2313 private: 2314 RecordDecl *Record; 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 /// Check the well-formedness of a C99 designated initializer. 2320 /// 2321 /// Determines whether the designated initializer @p DIE, which 2322 /// resides at the given @p Index within the initializer list @p 2323 /// IList, is well-formed for a current object of type @p DeclType 2324 /// (C99 6.7.8). The actual subobject that this designator refers to 2325 /// within the current subobject is returned in either 2326 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2327 /// 2328 /// @param IList The initializer list in which this designated 2329 /// initializer occurs. 2330 /// 2331 /// @param DIE The designated initializer expression. 2332 /// 2333 /// @param DesigIdx The index of the current designator. 2334 /// 2335 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2336 /// into which the designation in @p DIE should refer. 2337 /// 2338 /// @param NextField If non-NULL and the first designator in @p DIE is 2339 /// a field, this will be set to the field declaration corresponding 2340 /// to the field named by the designator. On input, this is expected to be 2341 /// the next field that would be initialized in the absence of designation, 2342 /// if the complete object being initialized is a struct. 2343 /// 2344 /// @param NextElementIndex If non-NULL and the first designator in @p 2345 /// DIE is an array designator or GNU array-range designator, this 2346 /// will be set to the last index initialized by this designator. 2347 /// 2348 /// @param Index Index into @p IList where the designated initializer 2349 /// @p DIE occurs. 2350 /// 2351 /// @param StructuredList The initializer list expression that 2352 /// describes all of the subobject initializers in the order they'll 2353 /// actually be initialized. 2354 /// 2355 /// @returns true if there was an error, false otherwise. 2356 bool 2357 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2358 InitListExpr *IList, 2359 DesignatedInitExpr *DIE, 2360 unsigned DesigIdx, 2361 QualType &CurrentObjectType, 2362 RecordDecl::field_iterator *NextField, 2363 llvm::APSInt *NextElementIndex, 2364 unsigned &Index, 2365 InitListExpr *StructuredList, 2366 unsigned &StructuredIndex, 2367 bool FinishSubobjectInit, 2368 bool TopLevelObject) { 2369 if (DesigIdx == DIE->size()) { 2370 // C++20 designated initialization can result in direct-list-initialization 2371 // of the designated subobject. This is the only way that we can end up 2372 // performing direct initialization as part of aggregate initialization, so 2373 // it needs special handling. 2374 if (DIE->isDirectInit()) { 2375 Expr *Init = DIE->getInit(); 2376 assert(isa<InitListExpr>(Init) && 2377 "designator result in direct non-list initialization?"); 2378 InitializationKind Kind = InitializationKind::CreateDirectList( 2379 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2380 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2381 /*TopLevelOfInitList*/ true); 2382 if (StructuredList) { 2383 ExprResult Result = VerifyOnly 2384 ? getDummyInit() 2385 : Seq.Perform(SemaRef, Entity, Kind, Init); 2386 UpdateStructuredListElement(StructuredList, StructuredIndex, 2387 Result.get()); 2388 } 2389 ++Index; 2390 return !Seq; 2391 } 2392 2393 // Check the actual initialization for the designated object type. 2394 bool prevHadError = hadError; 2395 2396 // Temporarily remove the designator expression from the 2397 // initializer list that the child calls see, so that we don't try 2398 // to re-process the designator. 2399 unsigned OldIndex = Index; 2400 IList->setInit(OldIndex, DIE->getInit()); 2401 2402 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2403 StructuredList, StructuredIndex); 2404 2405 // Restore the designated initializer expression in the syntactic 2406 // form of the initializer list. 2407 if (IList->getInit(OldIndex) != DIE->getInit()) 2408 DIE->setInit(IList->getInit(OldIndex)); 2409 IList->setInit(OldIndex, DIE); 2410 2411 return hadError && !prevHadError; 2412 } 2413 2414 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2415 bool IsFirstDesignator = (DesigIdx == 0); 2416 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2417 // Determine the structural initializer list that corresponds to the 2418 // current subobject. 2419 if (IsFirstDesignator) 2420 StructuredList = FullyStructuredList; 2421 else { 2422 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2423 StructuredList->getInit(StructuredIndex) : nullptr; 2424 if (!ExistingInit && StructuredList->hasArrayFiller()) 2425 ExistingInit = StructuredList->getArrayFiller(); 2426 2427 if (!ExistingInit) 2428 StructuredList = getStructuredSubobjectInit( 2429 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2430 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2431 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2432 StructuredList = Result; 2433 else { 2434 // We are creating an initializer list that initializes the 2435 // subobjects of the current object, but there was already an 2436 // initialization that completely initialized the current 2437 // subobject, e.g., by a compound literal: 2438 // 2439 // struct X { int a, b; }; 2440 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2441 // 2442 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2443 // designated initializer re-initializes only its current object 2444 // subobject [0].b. 2445 diagnoseInitOverride(ExistingInit, 2446 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2447 /*FullyOverwritten=*/false); 2448 2449 if (!VerifyOnly) { 2450 if (DesignatedInitUpdateExpr *E = 2451 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2452 StructuredList = E->getUpdater(); 2453 else { 2454 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2455 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2456 ExistingInit, DIE->getEndLoc()); 2457 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2458 StructuredList = DIUE->getUpdater(); 2459 } 2460 } else { 2461 // We don't need to track the structured representation of a 2462 // designated init update of an already-fully-initialized object in 2463 // verify-only mode. The only reason we would need the structure is 2464 // to determine where the uninitialized "holes" are, and in this 2465 // case, we know there aren't any and we can't introduce any. 2466 StructuredList = nullptr; 2467 } 2468 } 2469 } 2470 } 2471 2472 if (D->isFieldDesignator()) { 2473 // C99 6.7.8p7: 2474 // 2475 // If a designator has the form 2476 // 2477 // . identifier 2478 // 2479 // then the current object (defined below) shall have 2480 // structure or union type and the identifier shall be the 2481 // name of a member of that type. 2482 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2483 if (!RT) { 2484 SourceLocation Loc = D->getDotLoc(); 2485 if (Loc.isInvalid()) 2486 Loc = D->getFieldLoc(); 2487 if (!VerifyOnly) 2488 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2489 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2490 ++Index; 2491 return true; 2492 } 2493 2494 FieldDecl *KnownField = D->getField(); 2495 if (!KnownField) { 2496 IdentifierInfo *FieldName = D->getFieldName(); 2497 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2498 for (NamedDecl *ND : Lookup) { 2499 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2500 KnownField = FD; 2501 break; 2502 } 2503 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2504 // In verify mode, don't modify the original. 2505 if (VerifyOnly) 2506 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2507 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2508 D = DIE->getDesignator(DesigIdx); 2509 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2510 break; 2511 } 2512 } 2513 if (!KnownField) { 2514 if (VerifyOnly) { 2515 ++Index; 2516 return true; // No typo correction when just trying this out. 2517 } 2518 2519 // Name lookup found something, but it wasn't a field. 2520 if (!Lookup.empty()) { 2521 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2522 << FieldName; 2523 SemaRef.Diag(Lookup.front()->getLocation(), 2524 diag::note_field_designator_found); 2525 ++Index; 2526 return true; 2527 } 2528 2529 // Name lookup didn't find anything. 2530 // Determine whether this was a typo for another field name. 2531 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2532 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2533 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2534 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2535 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2536 SemaRef.diagnoseTypo( 2537 Corrected, 2538 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2539 << FieldName << CurrentObjectType); 2540 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2541 hadError = true; 2542 } else { 2543 // Typo correction didn't find anything. 2544 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2545 << FieldName << CurrentObjectType; 2546 ++Index; 2547 return true; 2548 } 2549 } 2550 } 2551 2552 unsigned NumBases = 0; 2553 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2554 NumBases = CXXRD->getNumBases(); 2555 2556 unsigned FieldIndex = NumBases; 2557 2558 for (auto *FI : RT->getDecl()->fields()) { 2559 if (FI->isUnnamedBitfield()) 2560 continue; 2561 if (declaresSameEntity(KnownField, FI)) { 2562 KnownField = FI; 2563 break; 2564 } 2565 ++FieldIndex; 2566 } 2567 2568 RecordDecl::field_iterator Field = 2569 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2570 2571 // All of the fields of a union are located at the same place in 2572 // the initializer list. 2573 if (RT->getDecl()->isUnion()) { 2574 FieldIndex = 0; 2575 if (StructuredList) { 2576 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2577 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2578 assert(StructuredList->getNumInits() == 1 2579 && "A union should never have more than one initializer!"); 2580 2581 Expr *ExistingInit = StructuredList->getInit(0); 2582 if (ExistingInit) { 2583 // We're about to throw away an initializer, emit warning. 2584 diagnoseInitOverride( 2585 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2586 } 2587 2588 // remove existing initializer 2589 StructuredList->resizeInits(SemaRef.Context, 0); 2590 StructuredList->setInitializedFieldInUnion(nullptr); 2591 } 2592 2593 StructuredList->setInitializedFieldInUnion(*Field); 2594 } 2595 } 2596 2597 // Make sure we can use this declaration. 2598 bool InvalidUse; 2599 if (VerifyOnly) 2600 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2601 else 2602 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2603 if (InvalidUse) { 2604 ++Index; 2605 return true; 2606 } 2607 2608 // C++20 [dcl.init.list]p3: 2609 // The ordered identifiers in the designators of the designated- 2610 // initializer-list shall form a subsequence of the ordered identifiers 2611 // in the direct non-static data members of T. 2612 // 2613 // Note that this is not a condition on forming the aggregate 2614 // initialization, only on actually performing initialization, 2615 // so it is not checked in VerifyOnly mode. 2616 // 2617 // FIXME: This is the only reordering diagnostic we produce, and it only 2618 // catches cases where we have a top-level field designator that jumps 2619 // backwards. This is the only such case that is reachable in an 2620 // otherwise-valid C++20 program, so is the only case that's required for 2621 // conformance, but for consistency, we should diagnose all the other 2622 // cases where a designator takes us backwards too. 2623 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2624 NextField && 2625 (*NextField == RT->getDecl()->field_end() || 2626 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2627 // Find the field that we just initialized. 2628 FieldDecl *PrevField = nullptr; 2629 for (auto FI = RT->getDecl()->field_begin(); 2630 FI != RT->getDecl()->field_end(); ++FI) { 2631 if (FI->isUnnamedBitfield()) 2632 continue; 2633 if (*NextField != RT->getDecl()->field_end() && 2634 declaresSameEntity(*FI, **NextField)) 2635 break; 2636 PrevField = *FI; 2637 } 2638 2639 if (PrevField && 2640 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2641 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2642 << KnownField << PrevField << DIE->getSourceRange(); 2643 2644 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2645 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2646 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2647 SemaRef.Diag(PrevInit->getBeginLoc(), 2648 diag::note_previous_field_init) 2649 << PrevField << PrevInit->getSourceRange(); 2650 } 2651 } 2652 } 2653 } 2654 2655 2656 // Update the designator with the field declaration. 2657 if (!VerifyOnly) 2658 D->setField(*Field); 2659 2660 // Make sure that our non-designated initializer list has space 2661 // for a subobject corresponding to this field. 2662 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2663 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2664 2665 // This designator names a flexible array member. 2666 if (Field->getType()->isIncompleteArrayType()) { 2667 bool Invalid = false; 2668 if ((DesigIdx + 1) != DIE->size()) { 2669 // We can't designate an object within the flexible array 2670 // member (because GCC doesn't allow it). 2671 if (!VerifyOnly) { 2672 DesignatedInitExpr::Designator *NextD 2673 = DIE->getDesignator(DesigIdx + 1); 2674 SemaRef.Diag(NextD->getBeginLoc(), 2675 diag::err_designator_into_flexible_array_member) 2676 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2677 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2678 << *Field; 2679 } 2680 Invalid = true; 2681 } 2682 2683 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2684 !isa<StringLiteral>(DIE->getInit())) { 2685 // The initializer is not an initializer list. 2686 if (!VerifyOnly) { 2687 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2688 diag::err_flexible_array_init_needs_braces) 2689 << DIE->getInit()->getSourceRange(); 2690 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2691 << *Field; 2692 } 2693 Invalid = true; 2694 } 2695 2696 // Check GNU flexible array initializer. 2697 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2698 TopLevelObject)) 2699 Invalid = true; 2700 2701 if (Invalid) { 2702 ++Index; 2703 return true; 2704 } 2705 2706 // Initialize the array. 2707 bool prevHadError = hadError; 2708 unsigned newStructuredIndex = FieldIndex; 2709 unsigned OldIndex = Index; 2710 IList->setInit(Index, DIE->getInit()); 2711 2712 InitializedEntity MemberEntity = 2713 InitializedEntity::InitializeMember(*Field, &Entity); 2714 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2715 StructuredList, newStructuredIndex); 2716 2717 IList->setInit(OldIndex, DIE); 2718 if (hadError && !prevHadError) { 2719 ++Field; 2720 ++FieldIndex; 2721 if (NextField) 2722 *NextField = Field; 2723 StructuredIndex = FieldIndex; 2724 return true; 2725 } 2726 } else { 2727 // Recurse to check later designated subobjects. 2728 QualType FieldType = Field->getType(); 2729 unsigned newStructuredIndex = FieldIndex; 2730 2731 InitializedEntity MemberEntity = 2732 InitializedEntity::InitializeMember(*Field, &Entity); 2733 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2734 FieldType, nullptr, nullptr, Index, 2735 StructuredList, newStructuredIndex, 2736 FinishSubobjectInit, false)) 2737 return true; 2738 } 2739 2740 // Find the position of the next field to be initialized in this 2741 // subobject. 2742 ++Field; 2743 ++FieldIndex; 2744 2745 // If this the first designator, our caller will continue checking 2746 // the rest of this struct/class/union subobject. 2747 if (IsFirstDesignator) { 2748 if (NextField) 2749 *NextField = Field; 2750 StructuredIndex = FieldIndex; 2751 return false; 2752 } 2753 2754 if (!FinishSubobjectInit) 2755 return false; 2756 2757 // We've already initialized something in the union; we're done. 2758 if (RT->getDecl()->isUnion()) 2759 return hadError; 2760 2761 // Check the remaining fields within this class/struct/union subobject. 2762 bool prevHadError = hadError; 2763 2764 auto NoBases = 2765 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2766 CXXRecordDecl::base_class_iterator()); 2767 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2768 false, Index, StructuredList, FieldIndex); 2769 return hadError && !prevHadError; 2770 } 2771 2772 // C99 6.7.8p6: 2773 // 2774 // If a designator has the form 2775 // 2776 // [ constant-expression ] 2777 // 2778 // then the current object (defined below) shall have array 2779 // type and the expression shall be an integer constant 2780 // expression. If the array is of unknown size, any 2781 // nonnegative value is valid. 2782 // 2783 // Additionally, cope with the GNU extension that permits 2784 // designators of the form 2785 // 2786 // [ constant-expression ... constant-expression ] 2787 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2788 if (!AT) { 2789 if (!VerifyOnly) 2790 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2791 << CurrentObjectType; 2792 ++Index; 2793 return true; 2794 } 2795 2796 Expr *IndexExpr = nullptr; 2797 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2798 if (D->isArrayDesignator()) { 2799 IndexExpr = DIE->getArrayIndex(*D); 2800 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2801 DesignatedEndIndex = DesignatedStartIndex; 2802 } else { 2803 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2804 2805 DesignatedStartIndex = 2806 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2807 DesignatedEndIndex = 2808 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2809 IndexExpr = DIE->getArrayRangeEnd(*D); 2810 2811 // Codegen can't handle evaluating array range designators that have side 2812 // effects, because we replicate the AST value for each initialized element. 2813 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2814 // elements with something that has a side effect, so codegen can emit an 2815 // "error unsupported" error instead of miscompiling the app. 2816 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2817 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2818 FullyStructuredList->sawArrayRangeDesignator(); 2819 } 2820 2821 if (isa<ConstantArrayType>(AT)) { 2822 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2823 DesignatedStartIndex 2824 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2825 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2826 DesignatedEndIndex 2827 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2828 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2829 if (DesignatedEndIndex >= MaxElements) { 2830 if (!VerifyOnly) 2831 SemaRef.Diag(IndexExpr->getBeginLoc(), 2832 diag::err_array_designator_too_large) 2833 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2834 << IndexExpr->getSourceRange(); 2835 ++Index; 2836 return true; 2837 } 2838 } else { 2839 unsigned DesignatedIndexBitWidth = 2840 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2841 DesignatedStartIndex = 2842 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2843 DesignatedEndIndex = 2844 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2845 DesignatedStartIndex.setIsUnsigned(true); 2846 DesignatedEndIndex.setIsUnsigned(true); 2847 } 2848 2849 bool IsStringLiteralInitUpdate = 2850 StructuredList && StructuredList->isStringLiteralInit(); 2851 if (IsStringLiteralInitUpdate && VerifyOnly) { 2852 // We're just verifying an update to a string literal init. We don't need 2853 // to split the string up into individual characters to do that. 2854 StructuredList = nullptr; 2855 } else if (IsStringLiteralInitUpdate) { 2856 // We're modifying a string literal init; we have to decompose the string 2857 // so we can modify the individual characters. 2858 ASTContext &Context = SemaRef.Context; 2859 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2860 2861 // Compute the character type 2862 QualType CharTy = AT->getElementType(); 2863 2864 // Compute the type of the integer literals. 2865 QualType PromotedCharTy = CharTy; 2866 if (CharTy->isPromotableIntegerType()) 2867 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2868 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2869 2870 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2871 // Get the length of the string. 2872 uint64_t StrLen = SL->getLength(); 2873 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2874 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2875 StructuredList->resizeInits(Context, StrLen); 2876 2877 // Build a literal for each character in the string, and put them into 2878 // the init list. 2879 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2880 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2881 Expr *Init = new (Context) IntegerLiteral( 2882 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2883 if (CharTy != PromotedCharTy) 2884 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2885 Init, nullptr, VK_RValue); 2886 StructuredList->updateInit(Context, i, Init); 2887 } 2888 } else { 2889 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2890 std::string Str; 2891 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2892 2893 // Get the length of the string. 2894 uint64_t StrLen = Str.size(); 2895 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2896 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2897 StructuredList->resizeInits(Context, StrLen); 2898 2899 // Build a literal for each character in the string, and put them into 2900 // the init list. 2901 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2902 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2903 Expr *Init = new (Context) IntegerLiteral( 2904 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2905 if (CharTy != PromotedCharTy) 2906 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2907 Init, nullptr, VK_RValue); 2908 StructuredList->updateInit(Context, i, Init); 2909 } 2910 } 2911 } 2912 2913 // Make sure that our non-designated initializer list has space 2914 // for a subobject corresponding to this array element. 2915 if (StructuredList && 2916 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2917 StructuredList->resizeInits(SemaRef.Context, 2918 DesignatedEndIndex.getZExtValue() + 1); 2919 2920 // Repeatedly perform subobject initializations in the range 2921 // [DesignatedStartIndex, DesignatedEndIndex]. 2922 2923 // Move to the next designator 2924 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2925 unsigned OldIndex = Index; 2926 2927 InitializedEntity ElementEntity = 2928 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2929 2930 while (DesignatedStartIndex <= DesignatedEndIndex) { 2931 // Recurse to check later designated subobjects. 2932 QualType ElementType = AT->getElementType(); 2933 Index = OldIndex; 2934 2935 ElementEntity.setElementIndex(ElementIndex); 2936 if (CheckDesignatedInitializer( 2937 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2938 nullptr, Index, StructuredList, ElementIndex, 2939 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2940 false)) 2941 return true; 2942 2943 // Move to the next index in the array that we'll be initializing. 2944 ++DesignatedStartIndex; 2945 ElementIndex = DesignatedStartIndex.getZExtValue(); 2946 } 2947 2948 // If this the first designator, our caller will continue checking 2949 // the rest of this array subobject. 2950 if (IsFirstDesignator) { 2951 if (NextElementIndex) 2952 *NextElementIndex = DesignatedStartIndex; 2953 StructuredIndex = ElementIndex; 2954 return false; 2955 } 2956 2957 if (!FinishSubobjectInit) 2958 return false; 2959 2960 // Check the remaining elements within this array subobject. 2961 bool prevHadError = hadError; 2962 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2963 /*SubobjectIsDesignatorContext=*/false, Index, 2964 StructuredList, ElementIndex); 2965 return hadError && !prevHadError; 2966 } 2967 2968 // Get the structured initializer list for a subobject of type 2969 // @p CurrentObjectType. 2970 InitListExpr * 2971 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2972 QualType CurrentObjectType, 2973 InitListExpr *StructuredList, 2974 unsigned StructuredIndex, 2975 SourceRange InitRange, 2976 bool IsFullyOverwritten) { 2977 if (!StructuredList) 2978 return nullptr; 2979 2980 Expr *ExistingInit = nullptr; 2981 if (StructuredIndex < StructuredList->getNumInits()) 2982 ExistingInit = StructuredList->getInit(StructuredIndex); 2983 2984 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2985 // There might have already been initializers for subobjects of the current 2986 // object, but a subsequent initializer list will overwrite the entirety 2987 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2988 // 2989 // struct P { char x[6]; }; 2990 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2991 // 2992 // The first designated initializer is ignored, and l.x is just "f". 2993 if (!IsFullyOverwritten) 2994 return Result; 2995 2996 if (ExistingInit) { 2997 // We are creating an initializer list that initializes the 2998 // subobjects of the current object, but there was already an 2999 // initialization that completely initialized the current 3000 // subobject: 3001 // 3002 // struct X { int a, b; }; 3003 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3004 // 3005 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3006 // designated initializer overwrites the [0].b initializer 3007 // from the prior initialization. 3008 // 3009 // When the existing initializer is an expression rather than an 3010 // initializer list, we cannot decompose and update it in this way. 3011 // For example: 3012 // 3013 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3014 // 3015 // This case is handled by CheckDesignatedInitializer. 3016 diagnoseInitOverride(ExistingInit, InitRange); 3017 } 3018 3019 unsigned ExpectedNumInits = 0; 3020 if (Index < IList->getNumInits()) { 3021 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3022 ExpectedNumInits = Init->getNumInits(); 3023 else 3024 ExpectedNumInits = IList->getNumInits() - Index; 3025 } 3026 3027 InitListExpr *Result = 3028 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3029 3030 // Link this new initializer list into the structured initializer 3031 // lists. 3032 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3033 return Result; 3034 } 3035 3036 InitListExpr * 3037 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3038 SourceRange InitRange, 3039 unsigned ExpectedNumInits) { 3040 InitListExpr *Result 3041 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3042 InitRange.getBegin(), None, 3043 InitRange.getEnd()); 3044 3045 QualType ResultType = CurrentObjectType; 3046 if (!ResultType->isArrayType()) 3047 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3048 Result->setType(ResultType); 3049 3050 // Pre-allocate storage for the structured initializer list. 3051 unsigned NumElements = 0; 3052 3053 if (const ArrayType *AType 3054 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3055 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3056 NumElements = CAType->getSize().getZExtValue(); 3057 // Simple heuristic so that we don't allocate a very large 3058 // initializer with many empty entries at the end. 3059 if (NumElements > ExpectedNumInits) 3060 NumElements = 0; 3061 } 3062 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3063 NumElements = VType->getNumElements(); 3064 } else if (CurrentObjectType->isRecordType()) { 3065 NumElements = numStructUnionElements(CurrentObjectType); 3066 } 3067 3068 Result->reserveInits(SemaRef.Context, NumElements); 3069 3070 return Result; 3071 } 3072 3073 /// Update the initializer at index @p StructuredIndex within the 3074 /// structured initializer list to the value @p expr. 3075 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3076 unsigned &StructuredIndex, 3077 Expr *expr) { 3078 // No structured initializer list to update 3079 if (!StructuredList) 3080 return; 3081 3082 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3083 StructuredIndex, expr)) { 3084 // This initializer overwrites a previous initializer. Warn. 3085 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3086 } 3087 3088 ++StructuredIndex; 3089 } 3090 3091 /// Determine whether we can perform aggregate initialization for the purposes 3092 /// of overload resolution. 3093 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3094 const InitializedEntity &Entity, InitListExpr *From) { 3095 QualType Type = Entity.getType(); 3096 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3097 /*TreatUnavailableAsInvalid=*/false, 3098 /*InOverloadResolution=*/true); 3099 return !Check.HadError(); 3100 } 3101 3102 /// Check that the given Index expression is a valid array designator 3103 /// value. This is essentially just a wrapper around 3104 /// VerifyIntegerConstantExpression that also checks for negative values 3105 /// and produces a reasonable diagnostic if there is a 3106 /// failure. Returns the index expression, possibly with an implicit cast 3107 /// added, on success. If everything went okay, Value will receive the 3108 /// value of the constant expression. 3109 static ExprResult 3110 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3111 SourceLocation Loc = Index->getBeginLoc(); 3112 3113 // Make sure this is an integer constant expression. 3114 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 3115 if (Result.isInvalid()) 3116 return Result; 3117 3118 if (Value.isSigned() && Value.isNegative()) 3119 return S.Diag(Loc, diag::err_array_designator_negative) 3120 << Value.toString(10) << Index->getSourceRange(); 3121 3122 Value.setIsUnsigned(true); 3123 return Result; 3124 } 3125 3126 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3127 SourceLocation EqualOrColonLoc, 3128 bool GNUSyntax, 3129 ExprResult Init) { 3130 typedef DesignatedInitExpr::Designator ASTDesignator; 3131 3132 bool Invalid = false; 3133 SmallVector<ASTDesignator, 32> Designators; 3134 SmallVector<Expr *, 32> InitExpressions; 3135 3136 // Build designators and check array designator expressions. 3137 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3138 const Designator &D = Desig.getDesignator(Idx); 3139 switch (D.getKind()) { 3140 case Designator::FieldDesignator: 3141 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3142 D.getFieldLoc())); 3143 break; 3144 3145 case Designator::ArrayDesignator: { 3146 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3147 llvm::APSInt IndexValue; 3148 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3149 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3150 if (!Index) 3151 Invalid = true; 3152 else { 3153 Designators.push_back(ASTDesignator(InitExpressions.size(), 3154 D.getLBracketLoc(), 3155 D.getRBracketLoc())); 3156 InitExpressions.push_back(Index); 3157 } 3158 break; 3159 } 3160 3161 case Designator::ArrayRangeDesignator: { 3162 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3163 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3164 llvm::APSInt StartValue; 3165 llvm::APSInt EndValue; 3166 bool StartDependent = StartIndex->isTypeDependent() || 3167 StartIndex->isValueDependent(); 3168 bool EndDependent = EndIndex->isTypeDependent() || 3169 EndIndex->isValueDependent(); 3170 if (!StartDependent) 3171 StartIndex = 3172 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3173 if (!EndDependent) 3174 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3175 3176 if (!StartIndex || !EndIndex) 3177 Invalid = true; 3178 else { 3179 // Make sure we're comparing values with the same bit width. 3180 if (StartDependent || EndDependent) { 3181 // Nothing to compute. 3182 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3183 EndValue = EndValue.extend(StartValue.getBitWidth()); 3184 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3185 StartValue = StartValue.extend(EndValue.getBitWidth()); 3186 3187 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3188 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3189 << StartValue.toString(10) << EndValue.toString(10) 3190 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3191 Invalid = true; 3192 } else { 3193 Designators.push_back(ASTDesignator(InitExpressions.size(), 3194 D.getLBracketLoc(), 3195 D.getEllipsisLoc(), 3196 D.getRBracketLoc())); 3197 InitExpressions.push_back(StartIndex); 3198 InitExpressions.push_back(EndIndex); 3199 } 3200 } 3201 break; 3202 } 3203 } 3204 } 3205 3206 if (Invalid || Init.isInvalid()) 3207 return ExprError(); 3208 3209 // Clear out the expressions within the designation. 3210 Desig.ClearExprs(*this); 3211 3212 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3213 EqualOrColonLoc, GNUSyntax, 3214 Init.getAs<Expr>()); 3215 } 3216 3217 //===----------------------------------------------------------------------===// 3218 // Initialization entity 3219 //===----------------------------------------------------------------------===// 3220 3221 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3222 const InitializedEntity &Parent) 3223 : Parent(&Parent), Index(Index) 3224 { 3225 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3226 Kind = EK_ArrayElement; 3227 Type = AT->getElementType(); 3228 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3229 Kind = EK_VectorElement; 3230 Type = VT->getElementType(); 3231 } else { 3232 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3233 assert(CT && "Unexpected type"); 3234 Kind = EK_ComplexElement; 3235 Type = CT->getElementType(); 3236 } 3237 } 3238 3239 InitializedEntity 3240 InitializedEntity::InitializeBase(ASTContext &Context, 3241 const CXXBaseSpecifier *Base, 3242 bool IsInheritedVirtualBase, 3243 const InitializedEntity *Parent) { 3244 InitializedEntity Result; 3245 Result.Kind = EK_Base; 3246 Result.Parent = Parent; 3247 Result.Base = reinterpret_cast<uintptr_t>(Base); 3248 if (IsInheritedVirtualBase) 3249 Result.Base |= 0x01; 3250 3251 Result.Type = Base->getType(); 3252 return Result; 3253 } 3254 3255 DeclarationName InitializedEntity::getName() const { 3256 switch (getKind()) { 3257 case EK_Parameter: 3258 case EK_Parameter_CF_Audited: { 3259 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3260 return (D ? D->getDeclName() : DeclarationName()); 3261 } 3262 3263 case EK_Variable: 3264 case EK_Member: 3265 case EK_Binding: 3266 return Variable.VariableOrMember->getDeclName(); 3267 3268 case EK_LambdaCapture: 3269 return DeclarationName(Capture.VarID); 3270 3271 case EK_Result: 3272 case EK_StmtExprResult: 3273 case EK_Exception: 3274 case EK_New: 3275 case EK_Temporary: 3276 case EK_Base: 3277 case EK_Delegating: 3278 case EK_ArrayElement: 3279 case EK_VectorElement: 3280 case EK_ComplexElement: 3281 case EK_BlockElement: 3282 case EK_LambdaToBlockConversionBlockElement: 3283 case EK_CompoundLiteralInit: 3284 case EK_RelatedResult: 3285 return DeclarationName(); 3286 } 3287 3288 llvm_unreachable("Invalid EntityKind!"); 3289 } 3290 3291 ValueDecl *InitializedEntity::getDecl() const { 3292 switch (getKind()) { 3293 case EK_Variable: 3294 case EK_Member: 3295 case EK_Binding: 3296 return Variable.VariableOrMember; 3297 3298 case EK_Parameter: 3299 case EK_Parameter_CF_Audited: 3300 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3301 3302 case EK_Result: 3303 case EK_StmtExprResult: 3304 case EK_Exception: 3305 case EK_New: 3306 case EK_Temporary: 3307 case EK_Base: 3308 case EK_Delegating: 3309 case EK_ArrayElement: 3310 case EK_VectorElement: 3311 case EK_ComplexElement: 3312 case EK_BlockElement: 3313 case EK_LambdaToBlockConversionBlockElement: 3314 case EK_LambdaCapture: 3315 case EK_CompoundLiteralInit: 3316 case EK_RelatedResult: 3317 return nullptr; 3318 } 3319 3320 llvm_unreachable("Invalid EntityKind!"); 3321 } 3322 3323 bool InitializedEntity::allowsNRVO() const { 3324 switch (getKind()) { 3325 case EK_Result: 3326 case EK_Exception: 3327 return LocAndNRVO.NRVO; 3328 3329 case EK_StmtExprResult: 3330 case EK_Variable: 3331 case EK_Parameter: 3332 case EK_Parameter_CF_Audited: 3333 case EK_Member: 3334 case EK_Binding: 3335 case EK_New: 3336 case EK_Temporary: 3337 case EK_CompoundLiteralInit: 3338 case EK_Base: 3339 case EK_Delegating: 3340 case EK_ArrayElement: 3341 case EK_VectorElement: 3342 case EK_ComplexElement: 3343 case EK_BlockElement: 3344 case EK_LambdaToBlockConversionBlockElement: 3345 case EK_LambdaCapture: 3346 case EK_RelatedResult: 3347 break; 3348 } 3349 3350 return false; 3351 } 3352 3353 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3354 assert(getParent() != this); 3355 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3356 for (unsigned I = 0; I != Depth; ++I) 3357 OS << "`-"; 3358 3359 switch (getKind()) { 3360 case EK_Variable: OS << "Variable"; break; 3361 case EK_Parameter: OS << "Parameter"; break; 3362 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3363 break; 3364 case EK_Result: OS << "Result"; break; 3365 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3366 case EK_Exception: OS << "Exception"; break; 3367 case EK_Member: OS << "Member"; break; 3368 case EK_Binding: OS << "Binding"; break; 3369 case EK_New: OS << "New"; break; 3370 case EK_Temporary: OS << "Temporary"; break; 3371 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3372 case EK_RelatedResult: OS << "RelatedResult"; break; 3373 case EK_Base: OS << "Base"; break; 3374 case EK_Delegating: OS << "Delegating"; break; 3375 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3376 case EK_VectorElement: OS << "VectorElement " << Index; break; 3377 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3378 case EK_BlockElement: OS << "Block"; break; 3379 case EK_LambdaToBlockConversionBlockElement: 3380 OS << "Block (lambda)"; 3381 break; 3382 case EK_LambdaCapture: 3383 OS << "LambdaCapture "; 3384 OS << DeclarationName(Capture.VarID); 3385 break; 3386 } 3387 3388 if (auto *D = getDecl()) { 3389 OS << " "; 3390 D->printQualifiedName(OS); 3391 } 3392 3393 OS << " '" << getType().getAsString() << "'\n"; 3394 3395 return Depth + 1; 3396 } 3397 3398 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3399 dumpImpl(llvm::errs()); 3400 } 3401 3402 //===----------------------------------------------------------------------===// 3403 // Initialization sequence 3404 //===----------------------------------------------------------------------===// 3405 3406 void InitializationSequence::Step::Destroy() { 3407 switch (Kind) { 3408 case SK_ResolveAddressOfOverloadedFunction: 3409 case SK_CastDerivedToBaseRValue: 3410 case SK_CastDerivedToBaseXValue: 3411 case SK_CastDerivedToBaseLValue: 3412 case SK_BindReference: 3413 case SK_BindReferenceToTemporary: 3414 case SK_FinalCopy: 3415 case SK_ExtraneousCopyToTemporary: 3416 case SK_UserConversion: 3417 case SK_QualificationConversionRValue: 3418 case SK_QualificationConversionXValue: 3419 case SK_QualificationConversionLValue: 3420 case SK_AtomicConversion: 3421 case SK_ListInitialization: 3422 case SK_UnwrapInitList: 3423 case SK_RewrapInitList: 3424 case SK_ConstructorInitialization: 3425 case SK_ConstructorInitializationFromList: 3426 case SK_ZeroInitialization: 3427 case SK_CAssignment: 3428 case SK_StringInit: 3429 case SK_ObjCObjectConversion: 3430 case SK_ArrayLoopIndex: 3431 case SK_ArrayLoopInit: 3432 case SK_ArrayInit: 3433 case SK_GNUArrayInit: 3434 case SK_ParenthesizedArrayInit: 3435 case SK_PassByIndirectCopyRestore: 3436 case SK_PassByIndirectRestore: 3437 case SK_ProduceObjCObject: 3438 case SK_StdInitializerList: 3439 case SK_StdInitializerListConstructorCall: 3440 case SK_OCLSamplerInit: 3441 case SK_OCLZeroOpaqueType: 3442 break; 3443 3444 case SK_ConversionSequence: 3445 case SK_ConversionSequenceNoNarrowing: 3446 delete ICS; 3447 } 3448 } 3449 3450 bool InitializationSequence::isDirectReferenceBinding() const { 3451 // There can be some lvalue adjustments after the SK_BindReference step. 3452 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3453 if (I->Kind == SK_BindReference) 3454 return true; 3455 if (I->Kind == SK_BindReferenceToTemporary) 3456 return false; 3457 } 3458 return false; 3459 } 3460 3461 bool InitializationSequence::isAmbiguous() const { 3462 if (!Failed()) 3463 return false; 3464 3465 switch (getFailureKind()) { 3466 case FK_TooManyInitsForReference: 3467 case FK_ParenthesizedListInitForReference: 3468 case FK_ArrayNeedsInitList: 3469 case FK_ArrayNeedsInitListOrStringLiteral: 3470 case FK_ArrayNeedsInitListOrWideStringLiteral: 3471 case FK_NarrowStringIntoWideCharArray: 3472 case FK_WideStringIntoCharArray: 3473 case FK_IncompatWideStringIntoWideChar: 3474 case FK_PlainStringIntoUTF8Char: 3475 case FK_UTF8StringIntoPlainChar: 3476 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3477 case FK_NonConstLValueReferenceBindingToTemporary: 3478 case FK_NonConstLValueReferenceBindingToBitfield: 3479 case FK_NonConstLValueReferenceBindingToVectorElement: 3480 case FK_NonConstLValueReferenceBindingToUnrelated: 3481 case FK_RValueReferenceBindingToLValue: 3482 case FK_ReferenceAddrspaceMismatchTemporary: 3483 case FK_ReferenceInitDropsQualifiers: 3484 case FK_ReferenceInitFailed: 3485 case FK_ConversionFailed: 3486 case FK_ConversionFromPropertyFailed: 3487 case FK_TooManyInitsForScalar: 3488 case FK_ParenthesizedListInitForScalar: 3489 case FK_ReferenceBindingToInitList: 3490 case FK_InitListBadDestinationType: 3491 case FK_DefaultInitOfConst: 3492 case FK_Incomplete: 3493 case FK_ArrayTypeMismatch: 3494 case FK_NonConstantArrayInit: 3495 case FK_ListInitializationFailed: 3496 case FK_VariableLengthArrayHasInitializer: 3497 case FK_PlaceholderType: 3498 case FK_ExplicitConstructor: 3499 case FK_AddressOfUnaddressableFunction: 3500 return false; 3501 3502 case FK_ReferenceInitOverloadFailed: 3503 case FK_UserConversionOverloadFailed: 3504 case FK_ConstructorOverloadFailed: 3505 case FK_ListConstructorOverloadFailed: 3506 return FailedOverloadResult == OR_Ambiguous; 3507 } 3508 3509 llvm_unreachable("Invalid EntityKind!"); 3510 } 3511 3512 bool InitializationSequence::isConstructorInitialization() const { 3513 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3514 } 3515 3516 void 3517 InitializationSequence 3518 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3519 DeclAccessPair Found, 3520 bool HadMultipleCandidates) { 3521 Step S; 3522 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3523 S.Type = Function->getType(); 3524 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3525 S.Function.Function = Function; 3526 S.Function.FoundDecl = Found; 3527 Steps.push_back(S); 3528 } 3529 3530 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3531 ExprValueKind VK) { 3532 Step S; 3533 switch (VK) { 3534 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3535 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3536 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3537 } 3538 S.Type = BaseType; 3539 Steps.push_back(S); 3540 } 3541 3542 void InitializationSequence::AddReferenceBindingStep(QualType T, 3543 bool BindingTemporary) { 3544 Step S; 3545 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3546 S.Type = T; 3547 Steps.push_back(S); 3548 } 3549 3550 void InitializationSequence::AddFinalCopy(QualType T) { 3551 Step S; 3552 S.Kind = SK_FinalCopy; 3553 S.Type = T; 3554 Steps.push_back(S); 3555 } 3556 3557 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3558 Step S; 3559 S.Kind = SK_ExtraneousCopyToTemporary; 3560 S.Type = T; 3561 Steps.push_back(S); 3562 } 3563 3564 void 3565 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3566 DeclAccessPair FoundDecl, 3567 QualType T, 3568 bool HadMultipleCandidates) { 3569 Step S; 3570 S.Kind = SK_UserConversion; 3571 S.Type = T; 3572 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3573 S.Function.Function = Function; 3574 S.Function.FoundDecl = FoundDecl; 3575 Steps.push_back(S); 3576 } 3577 3578 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3579 ExprValueKind VK) { 3580 Step S; 3581 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3582 switch (VK) { 3583 case VK_RValue: 3584 S.Kind = SK_QualificationConversionRValue; 3585 break; 3586 case VK_XValue: 3587 S.Kind = SK_QualificationConversionXValue; 3588 break; 3589 case VK_LValue: 3590 S.Kind = SK_QualificationConversionLValue; 3591 break; 3592 } 3593 S.Type = Ty; 3594 Steps.push_back(S); 3595 } 3596 3597 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3598 Step S; 3599 S.Kind = SK_AtomicConversion; 3600 S.Type = Ty; 3601 Steps.push_back(S); 3602 } 3603 3604 void InitializationSequence::AddConversionSequenceStep( 3605 const ImplicitConversionSequence &ICS, QualType T, 3606 bool TopLevelOfInitList) { 3607 Step S; 3608 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3609 : SK_ConversionSequence; 3610 S.Type = T; 3611 S.ICS = new ImplicitConversionSequence(ICS); 3612 Steps.push_back(S); 3613 } 3614 3615 void InitializationSequence::AddListInitializationStep(QualType T) { 3616 Step S; 3617 S.Kind = SK_ListInitialization; 3618 S.Type = T; 3619 Steps.push_back(S); 3620 } 3621 3622 void InitializationSequence::AddConstructorInitializationStep( 3623 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3624 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3625 Step S; 3626 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3627 : SK_ConstructorInitializationFromList 3628 : SK_ConstructorInitialization; 3629 S.Type = T; 3630 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3631 S.Function.Function = Constructor; 3632 S.Function.FoundDecl = FoundDecl; 3633 Steps.push_back(S); 3634 } 3635 3636 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3637 Step S; 3638 S.Kind = SK_ZeroInitialization; 3639 S.Type = T; 3640 Steps.push_back(S); 3641 } 3642 3643 void InitializationSequence::AddCAssignmentStep(QualType T) { 3644 Step S; 3645 S.Kind = SK_CAssignment; 3646 S.Type = T; 3647 Steps.push_back(S); 3648 } 3649 3650 void InitializationSequence::AddStringInitStep(QualType T) { 3651 Step S; 3652 S.Kind = SK_StringInit; 3653 S.Type = T; 3654 Steps.push_back(S); 3655 } 3656 3657 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3658 Step S; 3659 S.Kind = SK_ObjCObjectConversion; 3660 S.Type = T; 3661 Steps.push_back(S); 3662 } 3663 3664 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3665 Step S; 3666 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3667 S.Type = T; 3668 Steps.push_back(S); 3669 } 3670 3671 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3672 Step S; 3673 S.Kind = SK_ArrayLoopIndex; 3674 S.Type = EltT; 3675 Steps.insert(Steps.begin(), S); 3676 3677 S.Kind = SK_ArrayLoopInit; 3678 S.Type = T; 3679 Steps.push_back(S); 3680 } 3681 3682 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3683 Step S; 3684 S.Kind = SK_ParenthesizedArrayInit; 3685 S.Type = T; 3686 Steps.push_back(S); 3687 } 3688 3689 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3690 bool shouldCopy) { 3691 Step s; 3692 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3693 : SK_PassByIndirectRestore); 3694 s.Type = type; 3695 Steps.push_back(s); 3696 } 3697 3698 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3699 Step S; 3700 S.Kind = SK_ProduceObjCObject; 3701 S.Type = T; 3702 Steps.push_back(S); 3703 } 3704 3705 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3706 Step S; 3707 S.Kind = SK_StdInitializerList; 3708 S.Type = T; 3709 Steps.push_back(S); 3710 } 3711 3712 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3713 Step S; 3714 S.Kind = SK_OCLSamplerInit; 3715 S.Type = T; 3716 Steps.push_back(S); 3717 } 3718 3719 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3720 Step S; 3721 S.Kind = SK_OCLZeroOpaqueType; 3722 S.Type = T; 3723 Steps.push_back(S); 3724 } 3725 3726 void InitializationSequence::RewrapReferenceInitList(QualType T, 3727 InitListExpr *Syntactic) { 3728 assert(Syntactic->getNumInits() == 1 && 3729 "Can only rewrap trivial init lists."); 3730 Step S; 3731 S.Kind = SK_UnwrapInitList; 3732 S.Type = Syntactic->getInit(0)->getType(); 3733 Steps.insert(Steps.begin(), S); 3734 3735 S.Kind = SK_RewrapInitList; 3736 S.Type = T; 3737 S.WrappingSyntacticList = Syntactic; 3738 Steps.push_back(S); 3739 } 3740 3741 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3742 OverloadingResult Result) { 3743 setSequenceKind(FailedSequence); 3744 this->Failure = Failure; 3745 this->FailedOverloadResult = Result; 3746 } 3747 3748 //===----------------------------------------------------------------------===// 3749 // Attempt initialization 3750 //===----------------------------------------------------------------------===// 3751 3752 /// Tries to add a zero initializer. Returns true if that worked. 3753 static bool 3754 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3755 const InitializedEntity &Entity) { 3756 if (Entity.getKind() != InitializedEntity::EK_Variable) 3757 return false; 3758 3759 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3760 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3761 return false; 3762 3763 QualType VariableTy = VD->getType().getCanonicalType(); 3764 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3765 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3766 if (!Init.empty()) { 3767 Sequence.AddZeroInitializationStep(Entity.getType()); 3768 Sequence.SetZeroInitializationFixit(Init, Loc); 3769 return true; 3770 } 3771 return false; 3772 } 3773 3774 static void MaybeProduceObjCObject(Sema &S, 3775 InitializationSequence &Sequence, 3776 const InitializedEntity &Entity) { 3777 if (!S.getLangOpts().ObjCAutoRefCount) return; 3778 3779 /// When initializing a parameter, produce the value if it's marked 3780 /// __attribute__((ns_consumed)). 3781 if (Entity.isParameterKind()) { 3782 if (!Entity.isParameterConsumed()) 3783 return; 3784 3785 assert(Entity.getType()->isObjCRetainableType() && 3786 "consuming an object of unretainable type?"); 3787 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3788 3789 /// When initializing a return value, if the return type is a 3790 /// retainable type, then returns need to immediately retain the 3791 /// object. If an autorelease is required, it will be done at the 3792 /// last instant. 3793 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3794 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3795 if (!Entity.getType()->isObjCRetainableType()) 3796 return; 3797 3798 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3799 } 3800 } 3801 3802 static void TryListInitialization(Sema &S, 3803 const InitializedEntity &Entity, 3804 const InitializationKind &Kind, 3805 InitListExpr *InitList, 3806 InitializationSequence &Sequence, 3807 bool TreatUnavailableAsInvalid); 3808 3809 /// When initializing from init list via constructor, handle 3810 /// initialization of an object of type std::initializer_list<T>. 3811 /// 3812 /// \return true if we have handled initialization of an object of type 3813 /// std::initializer_list<T>, false otherwise. 3814 static bool TryInitializerListConstruction(Sema &S, 3815 InitListExpr *List, 3816 QualType DestType, 3817 InitializationSequence &Sequence, 3818 bool TreatUnavailableAsInvalid) { 3819 QualType E; 3820 if (!S.isStdInitializerList(DestType, &E)) 3821 return false; 3822 3823 if (!S.isCompleteType(List->getExprLoc(), E)) { 3824 Sequence.setIncompleteTypeFailure(E); 3825 return true; 3826 } 3827 3828 // Try initializing a temporary array from the init list. 3829 QualType ArrayType = S.Context.getConstantArrayType( 3830 E.withConst(), 3831 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3832 List->getNumInits()), 3833 nullptr, clang::ArrayType::Normal, 0); 3834 InitializedEntity HiddenArray = 3835 InitializedEntity::InitializeTemporary(ArrayType); 3836 InitializationKind Kind = InitializationKind::CreateDirectList( 3837 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3838 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3839 TreatUnavailableAsInvalid); 3840 if (Sequence) 3841 Sequence.AddStdInitializerListConstructionStep(DestType); 3842 return true; 3843 } 3844 3845 /// Determine if the constructor has the signature of a copy or move 3846 /// constructor for the type T of the class in which it was found. That is, 3847 /// determine if its first parameter is of type T or reference to (possibly 3848 /// cv-qualified) T. 3849 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3850 const ConstructorInfo &Info) { 3851 if (Info.Constructor->getNumParams() == 0) 3852 return false; 3853 3854 QualType ParmT = 3855 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3856 QualType ClassT = 3857 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3858 3859 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3860 } 3861 3862 static OverloadingResult 3863 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3864 MultiExprArg Args, 3865 OverloadCandidateSet &CandidateSet, 3866 QualType DestType, 3867 DeclContext::lookup_result Ctors, 3868 OverloadCandidateSet::iterator &Best, 3869 bool CopyInitializing, bool AllowExplicit, 3870 bool OnlyListConstructors, bool IsListInit, 3871 bool SecondStepOfCopyInit = false) { 3872 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3873 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3874 3875 for (NamedDecl *D : Ctors) { 3876 auto Info = getConstructorInfo(D); 3877 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3878 continue; 3879 3880 if (!AllowExplicit && Info.Constructor->isExplicit()) 3881 continue; 3882 3883 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3884 continue; 3885 3886 // C++11 [over.best.ics]p4: 3887 // ... and the constructor or user-defined conversion function is a 3888 // candidate by 3889 // - 13.3.1.3, when the argument is the temporary in the second step 3890 // of a class copy-initialization, or 3891 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3892 // - the second phase of 13.3.1.7 when the initializer list has exactly 3893 // one element that is itself an initializer list, and the target is 3894 // the first parameter of a constructor of class X, and the conversion 3895 // is to X or reference to (possibly cv-qualified X), 3896 // user-defined conversion sequences are not considered. 3897 bool SuppressUserConversions = 3898 SecondStepOfCopyInit || 3899 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3900 hasCopyOrMoveCtorParam(S.Context, Info)); 3901 3902 if (Info.ConstructorTmpl) 3903 S.AddTemplateOverloadCandidate( 3904 Info.ConstructorTmpl, Info.FoundDecl, 3905 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3906 /*PartialOverloading=*/false, AllowExplicit); 3907 else { 3908 // C++ [over.match.copy]p1: 3909 // - When initializing a temporary to be bound to the first parameter 3910 // of a constructor [for type T] that takes a reference to possibly 3911 // cv-qualified T as its first argument, called with a single 3912 // argument in the context of direct-initialization, explicit 3913 // conversion functions are also considered. 3914 // FIXME: What if a constructor template instantiates to such a signature? 3915 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3916 Args.size() == 1 && 3917 hasCopyOrMoveCtorParam(S.Context, Info); 3918 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3919 CandidateSet, SuppressUserConversions, 3920 /*PartialOverloading=*/false, AllowExplicit, 3921 AllowExplicitConv); 3922 } 3923 } 3924 3925 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3926 // 3927 // When initializing an object of class type T by constructor 3928 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3929 // from a single expression of class type U, conversion functions of 3930 // U that convert to the non-reference type cv T are candidates. 3931 // Explicit conversion functions are only candidates during 3932 // direct-initialization. 3933 // 3934 // Note: SecondStepOfCopyInit is only ever true in this case when 3935 // evaluating whether to produce a C++98 compatibility warning. 3936 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3937 !SecondStepOfCopyInit) { 3938 Expr *Initializer = Args[0]; 3939 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3940 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3941 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3942 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3943 NamedDecl *D = *I; 3944 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3945 D = D->getUnderlyingDecl(); 3946 3947 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3948 CXXConversionDecl *Conv; 3949 if (ConvTemplate) 3950 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3951 else 3952 Conv = cast<CXXConversionDecl>(D); 3953 3954 if (AllowExplicit || !Conv->isExplicit()) { 3955 if (ConvTemplate) 3956 S.AddTemplateConversionCandidate( 3957 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3958 CandidateSet, AllowExplicit, AllowExplicit, 3959 /*AllowResultConversion*/ false); 3960 else 3961 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3962 DestType, CandidateSet, AllowExplicit, 3963 AllowExplicit, 3964 /*AllowResultConversion*/ false); 3965 } 3966 } 3967 } 3968 } 3969 3970 // Perform overload resolution and return the result. 3971 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3972 } 3973 3974 /// Attempt initialization by constructor (C++ [dcl.init]), which 3975 /// enumerates the constructors of the initialized entity and performs overload 3976 /// resolution to select the best. 3977 /// \param DestType The destination class type. 3978 /// \param DestArrayType The destination type, which is either DestType or 3979 /// a (possibly multidimensional) array of DestType. 3980 /// \param IsListInit Is this list-initialization? 3981 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3982 /// list-initialization from {x} where x is the same 3983 /// type as the entity? 3984 static void TryConstructorInitialization(Sema &S, 3985 const InitializedEntity &Entity, 3986 const InitializationKind &Kind, 3987 MultiExprArg Args, QualType DestType, 3988 QualType DestArrayType, 3989 InitializationSequence &Sequence, 3990 bool IsListInit = false, 3991 bool IsInitListCopy = false) { 3992 assert(((!IsListInit && !IsInitListCopy) || 3993 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3994 "IsListInit/IsInitListCopy must come with a single initializer list " 3995 "argument."); 3996 InitListExpr *ILE = 3997 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3998 MultiExprArg UnwrappedArgs = 3999 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4000 4001 // The type we're constructing needs to be complete. 4002 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4003 Sequence.setIncompleteTypeFailure(DestType); 4004 return; 4005 } 4006 4007 // C++17 [dcl.init]p17: 4008 // - If the initializer expression is a prvalue and the cv-unqualified 4009 // version of the source type is the same class as the class of the 4010 // destination, the initializer expression is used to initialize the 4011 // destination object. 4012 // Per DR (no number yet), this does not apply when initializing a base 4013 // class or delegating to another constructor from a mem-initializer. 4014 // ObjC++: Lambda captured by the block in the lambda to block conversion 4015 // should avoid copy elision. 4016 if (S.getLangOpts().CPlusPlus17 && 4017 Entity.getKind() != InitializedEntity::EK_Base && 4018 Entity.getKind() != InitializedEntity::EK_Delegating && 4019 Entity.getKind() != 4020 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4021 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4022 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4023 // Convert qualifications if necessary. 4024 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4025 if (ILE) 4026 Sequence.RewrapReferenceInitList(DestType, ILE); 4027 return; 4028 } 4029 4030 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4031 assert(DestRecordType && "Constructor initialization requires record type"); 4032 CXXRecordDecl *DestRecordDecl 4033 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4034 4035 // Build the candidate set directly in the initialization sequence 4036 // structure, so that it will persist if we fail. 4037 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4038 4039 // Determine whether we are allowed to call explicit constructors or 4040 // explicit conversion operators. 4041 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4042 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4043 4044 // - Otherwise, if T is a class type, constructors are considered. The 4045 // applicable constructors are enumerated, and the best one is chosen 4046 // through overload resolution. 4047 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4048 4049 OverloadingResult Result = OR_No_Viable_Function; 4050 OverloadCandidateSet::iterator Best; 4051 bool AsInitializerList = false; 4052 4053 // C++11 [over.match.list]p1, per DR1467: 4054 // When objects of non-aggregate type T are list-initialized, such that 4055 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4056 // according to the rules in this section, overload resolution selects 4057 // the constructor in two phases: 4058 // 4059 // - Initially, the candidate functions are the initializer-list 4060 // constructors of the class T and the argument list consists of the 4061 // initializer list as a single argument. 4062 if (IsListInit) { 4063 AsInitializerList = true; 4064 4065 // If the initializer list has no elements and T has a default constructor, 4066 // the first phase is omitted. 4067 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 4068 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4069 CandidateSet, DestType, Ctors, Best, 4070 CopyInitialization, AllowExplicit, 4071 /*OnlyListConstructors=*/true, 4072 IsListInit); 4073 } 4074 4075 // C++11 [over.match.list]p1: 4076 // - If no viable initializer-list constructor is found, overload resolution 4077 // is performed again, where the candidate functions are all the 4078 // constructors of the class T and the argument list consists of the 4079 // elements of the initializer list. 4080 if (Result == OR_No_Viable_Function) { 4081 AsInitializerList = false; 4082 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4083 CandidateSet, DestType, Ctors, Best, 4084 CopyInitialization, AllowExplicit, 4085 /*OnlyListConstructors=*/false, 4086 IsListInit); 4087 } 4088 if (Result) { 4089 Sequence.SetOverloadFailure(IsListInit ? 4090 InitializationSequence::FK_ListConstructorOverloadFailed : 4091 InitializationSequence::FK_ConstructorOverloadFailed, 4092 Result); 4093 return; 4094 } 4095 4096 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4097 4098 // In C++17, ResolveConstructorOverload can select a conversion function 4099 // instead of a constructor. 4100 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4101 // Add the user-defined conversion step that calls the conversion function. 4102 QualType ConvType = CD->getConversionType(); 4103 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4104 "should not have selected this conversion function"); 4105 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4106 HadMultipleCandidates); 4107 if (!S.Context.hasSameType(ConvType, DestType)) 4108 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4109 if (IsListInit) 4110 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4111 return; 4112 } 4113 4114 // C++11 [dcl.init]p6: 4115 // If a program calls for the default initialization of an object 4116 // of a const-qualified type T, T shall be a class type with a 4117 // user-provided default constructor. 4118 // C++ core issue 253 proposal: 4119 // If the implicit default constructor initializes all subobjects, no 4120 // initializer should be required. 4121 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4122 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4123 if (Kind.getKind() == InitializationKind::IK_Default && 4124 Entity.getType().isConstQualified()) { 4125 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4126 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4127 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4128 return; 4129 } 4130 } 4131 4132 // C++11 [over.match.list]p1: 4133 // In copy-list-initialization, if an explicit constructor is chosen, the 4134 // initializer is ill-formed. 4135 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4136 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4137 return; 4138 } 4139 4140 // Add the constructor initialization step. Any cv-qualification conversion is 4141 // subsumed by the initialization. 4142 Sequence.AddConstructorInitializationStep( 4143 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4144 IsListInit | IsInitListCopy, AsInitializerList); 4145 } 4146 4147 static bool 4148 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4149 Expr *Initializer, 4150 QualType &SourceType, 4151 QualType &UnqualifiedSourceType, 4152 QualType UnqualifiedTargetType, 4153 InitializationSequence &Sequence) { 4154 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4155 S.Context.OverloadTy) { 4156 DeclAccessPair Found; 4157 bool HadMultipleCandidates = false; 4158 if (FunctionDecl *Fn 4159 = S.ResolveAddressOfOverloadedFunction(Initializer, 4160 UnqualifiedTargetType, 4161 false, Found, 4162 &HadMultipleCandidates)) { 4163 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4164 HadMultipleCandidates); 4165 SourceType = Fn->getType(); 4166 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4167 } else if (!UnqualifiedTargetType->isRecordType()) { 4168 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4169 return true; 4170 } 4171 } 4172 return false; 4173 } 4174 4175 static void TryReferenceInitializationCore(Sema &S, 4176 const InitializedEntity &Entity, 4177 const InitializationKind &Kind, 4178 Expr *Initializer, 4179 QualType cv1T1, QualType T1, 4180 Qualifiers T1Quals, 4181 QualType cv2T2, QualType T2, 4182 Qualifiers T2Quals, 4183 InitializationSequence &Sequence); 4184 4185 static void TryValueInitialization(Sema &S, 4186 const InitializedEntity &Entity, 4187 const InitializationKind &Kind, 4188 InitializationSequence &Sequence, 4189 InitListExpr *InitList = nullptr); 4190 4191 /// Attempt list initialization of a reference. 4192 static void TryReferenceListInitialization(Sema &S, 4193 const InitializedEntity &Entity, 4194 const InitializationKind &Kind, 4195 InitListExpr *InitList, 4196 InitializationSequence &Sequence, 4197 bool TreatUnavailableAsInvalid) { 4198 // First, catch C++03 where this isn't possible. 4199 if (!S.getLangOpts().CPlusPlus11) { 4200 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4201 return; 4202 } 4203 // Can't reference initialize a compound literal. 4204 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4205 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4206 return; 4207 } 4208 4209 QualType DestType = Entity.getType(); 4210 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4211 Qualifiers T1Quals; 4212 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4213 4214 // Reference initialization via an initializer list works thus: 4215 // If the initializer list consists of a single element that is 4216 // reference-related to the referenced type, bind directly to that element 4217 // (possibly creating temporaries). 4218 // Otherwise, initialize a temporary with the initializer list and 4219 // bind to that. 4220 if (InitList->getNumInits() == 1) { 4221 Expr *Initializer = InitList->getInit(0); 4222 QualType cv2T2 = Initializer->getType(); 4223 Qualifiers T2Quals; 4224 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4225 4226 // If this fails, creating a temporary wouldn't work either. 4227 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4228 T1, Sequence)) 4229 return; 4230 4231 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4232 Sema::ReferenceCompareResult RefRelationship 4233 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4234 if (RefRelationship >= Sema::Ref_Related) { 4235 // Try to bind the reference here. 4236 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4237 T1Quals, cv2T2, T2, T2Quals, Sequence); 4238 if (Sequence) 4239 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4240 return; 4241 } 4242 4243 // Update the initializer if we've resolved an overloaded function. 4244 if (Sequence.step_begin() != Sequence.step_end()) 4245 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4246 } 4247 4248 // Not reference-related. Create a temporary and bind to that. 4249 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4250 4251 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4252 TreatUnavailableAsInvalid); 4253 if (Sequence) { 4254 if (DestType->isRValueReferenceType() || 4255 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4256 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4257 else 4258 Sequence.SetFailed( 4259 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4260 } 4261 } 4262 4263 /// Attempt list initialization (C++0x [dcl.init.list]) 4264 static void TryListInitialization(Sema &S, 4265 const InitializedEntity &Entity, 4266 const InitializationKind &Kind, 4267 InitListExpr *InitList, 4268 InitializationSequence &Sequence, 4269 bool TreatUnavailableAsInvalid) { 4270 QualType DestType = Entity.getType(); 4271 4272 // C++ doesn't allow scalar initialization with more than one argument. 4273 // But C99 complex numbers are scalars and it makes sense there. 4274 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4275 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4276 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4277 return; 4278 } 4279 if (DestType->isReferenceType()) { 4280 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4281 TreatUnavailableAsInvalid); 4282 return; 4283 } 4284 4285 if (DestType->isRecordType() && 4286 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4287 Sequence.setIncompleteTypeFailure(DestType); 4288 return; 4289 } 4290 4291 // C++11 [dcl.init.list]p3, per DR1467: 4292 // - If T is a class type and the initializer list has a single element of 4293 // type cv U, where U is T or a class derived from T, the object is 4294 // initialized from that element (by copy-initialization for 4295 // copy-list-initialization, or by direct-initialization for 4296 // direct-list-initialization). 4297 // - Otherwise, if T is a character array and the initializer list has a 4298 // single element that is an appropriately-typed string literal 4299 // (8.5.2 [dcl.init.string]), initialization is performed as described 4300 // in that section. 4301 // - Otherwise, if T is an aggregate, [...] (continue below). 4302 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4303 if (DestType->isRecordType()) { 4304 QualType InitType = InitList->getInit(0)->getType(); 4305 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4306 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4307 Expr *InitListAsExpr = InitList; 4308 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4309 DestType, Sequence, 4310 /*InitListSyntax*/false, 4311 /*IsInitListCopy*/true); 4312 return; 4313 } 4314 } 4315 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4316 Expr *SubInit[1] = {InitList->getInit(0)}; 4317 if (!isa<VariableArrayType>(DestAT) && 4318 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4319 InitializationKind SubKind = 4320 Kind.getKind() == InitializationKind::IK_DirectList 4321 ? InitializationKind::CreateDirect(Kind.getLocation(), 4322 InitList->getLBraceLoc(), 4323 InitList->getRBraceLoc()) 4324 : Kind; 4325 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4326 /*TopLevelOfInitList*/ true, 4327 TreatUnavailableAsInvalid); 4328 4329 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4330 // the element is not an appropriately-typed string literal, in which 4331 // case we should proceed as in C++11 (below). 4332 if (Sequence) { 4333 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4334 return; 4335 } 4336 } 4337 } 4338 } 4339 4340 // C++11 [dcl.init.list]p3: 4341 // - If T is an aggregate, aggregate initialization is performed. 4342 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4343 (S.getLangOpts().CPlusPlus11 && 4344 S.isStdInitializerList(DestType, nullptr))) { 4345 if (S.getLangOpts().CPlusPlus11) { 4346 // - Otherwise, if the initializer list has no elements and T is a 4347 // class type with a default constructor, the object is 4348 // value-initialized. 4349 if (InitList->getNumInits() == 0) { 4350 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4351 if (RD->hasDefaultConstructor()) { 4352 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4353 return; 4354 } 4355 } 4356 4357 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4358 // an initializer_list object constructed [...] 4359 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4360 TreatUnavailableAsInvalid)) 4361 return; 4362 4363 // - Otherwise, if T is a class type, constructors are considered. 4364 Expr *InitListAsExpr = InitList; 4365 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4366 DestType, Sequence, /*InitListSyntax*/true); 4367 } else 4368 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4369 return; 4370 } 4371 4372 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4373 InitList->getNumInits() == 1) { 4374 Expr *E = InitList->getInit(0); 4375 4376 // - Otherwise, if T is an enumeration with a fixed underlying type, 4377 // the initializer-list has a single element v, and the initialization 4378 // is direct-list-initialization, the object is initialized with the 4379 // value T(v); if a narrowing conversion is required to convert v to 4380 // the underlying type of T, the program is ill-formed. 4381 auto *ET = DestType->getAs<EnumType>(); 4382 if (S.getLangOpts().CPlusPlus17 && 4383 Kind.getKind() == InitializationKind::IK_DirectList && 4384 ET && ET->getDecl()->isFixed() && 4385 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4386 (E->getType()->isIntegralOrEnumerationType() || 4387 E->getType()->isFloatingType())) { 4388 // There are two ways that T(v) can work when T is an enumeration type. 4389 // If there is either an implicit conversion sequence from v to T or 4390 // a conversion function that can convert from v to T, then we use that. 4391 // Otherwise, if v is of integral, enumeration, or floating-point type, 4392 // it is converted to the enumeration type via its underlying type. 4393 // There is no overlap possible between these two cases (except when the 4394 // source value is already of the destination type), and the first 4395 // case is handled by the general case for single-element lists below. 4396 ImplicitConversionSequence ICS; 4397 ICS.setStandard(); 4398 ICS.Standard.setAsIdentityConversion(); 4399 if (!E->isRValue()) 4400 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4401 // If E is of a floating-point type, then the conversion is ill-formed 4402 // due to narrowing, but go through the motions in order to produce the 4403 // right diagnostic. 4404 ICS.Standard.Second = E->getType()->isFloatingType() 4405 ? ICK_Floating_Integral 4406 : ICK_Integral_Conversion; 4407 ICS.Standard.setFromType(E->getType()); 4408 ICS.Standard.setToType(0, E->getType()); 4409 ICS.Standard.setToType(1, DestType); 4410 ICS.Standard.setToType(2, DestType); 4411 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4412 /*TopLevelOfInitList*/true); 4413 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4414 return; 4415 } 4416 4417 // - Otherwise, if the initializer list has a single element of type E 4418 // [...references are handled above...], the object or reference is 4419 // initialized from that element (by copy-initialization for 4420 // copy-list-initialization, or by direct-initialization for 4421 // direct-list-initialization); if a narrowing conversion is required 4422 // to convert the element to T, the program is ill-formed. 4423 // 4424 // Per core-24034, this is direct-initialization if we were performing 4425 // direct-list-initialization and copy-initialization otherwise. 4426 // We can't use InitListChecker for this, because it always performs 4427 // copy-initialization. This only matters if we might use an 'explicit' 4428 // conversion operator, so we only need to handle the cases where the source 4429 // is of record type. 4430 if (InitList->getInit(0)->getType()->isRecordType()) { 4431 InitializationKind SubKind = 4432 Kind.getKind() == InitializationKind::IK_DirectList 4433 ? InitializationKind::CreateDirect(Kind.getLocation(), 4434 InitList->getLBraceLoc(), 4435 InitList->getRBraceLoc()) 4436 : Kind; 4437 Expr *SubInit[1] = { InitList->getInit(0) }; 4438 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4439 /*TopLevelOfInitList*/true, 4440 TreatUnavailableAsInvalid); 4441 if (Sequence) 4442 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4443 return; 4444 } 4445 } 4446 4447 InitListChecker CheckInitList(S, Entity, InitList, 4448 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4449 if (CheckInitList.HadError()) { 4450 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4451 return; 4452 } 4453 4454 // Add the list initialization step with the built init list. 4455 Sequence.AddListInitializationStep(DestType); 4456 } 4457 4458 /// Try a reference initialization that involves calling a conversion 4459 /// function. 4460 static OverloadingResult TryRefInitWithConversionFunction( 4461 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4462 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4463 InitializationSequence &Sequence) { 4464 QualType DestType = Entity.getType(); 4465 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4466 QualType T1 = cv1T1.getUnqualifiedType(); 4467 QualType cv2T2 = Initializer->getType(); 4468 QualType T2 = cv2T2.getUnqualifiedType(); 4469 4470 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4471 "Must have incompatible references when binding via conversion"); 4472 4473 // Build the candidate set directly in the initialization sequence 4474 // structure, so that it will persist if we fail. 4475 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4476 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4477 4478 // Determine whether we are allowed to call explicit conversion operators. 4479 // Note that none of [over.match.copy], [over.match.conv], nor 4480 // [over.match.ref] permit an explicit constructor to be chosen when 4481 // initializing a reference, not even for direct-initialization. 4482 bool AllowExplicitCtors = false; 4483 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4484 4485 const RecordType *T1RecordType = nullptr; 4486 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4487 S.isCompleteType(Kind.getLocation(), T1)) { 4488 // The type we're converting to is a class type. Enumerate its constructors 4489 // to see if there is a suitable conversion. 4490 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4491 4492 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4493 auto Info = getConstructorInfo(D); 4494 if (!Info.Constructor) 4495 continue; 4496 4497 if (!Info.Constructor->isInvalidDecl() && 4498 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4499 if (Info.ConstructorTmpl) 4500 S.AddTemplateOverloadCandidate( 4501 Info.ConstructorTmpl, Info.FoundDecl, 4502 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4503 /*SuppressUserConversions=*/true, 4504 /*PartialOverloading*/ false, AllowExplicitCtors); 4505 else 4506 S.AddOverloadCandidate( 4507 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4508 /*SuppressUserConversions=*/true, 4509 /*PartialOverloading*/ false, AllowExplicitCtors); 4510 } 4511 } 4512 } 4513 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4514 return OR_No_Viable_Function; 4515 4516 const RecordType *T2RecordType = nullptr; 4517 if ((T2RecordType = T2->getAs<RecordType>()) && 4518 S.isCompleteType(Kind.getLocation(), T2)) { 4519 // The type we're converting from is a class type, enumerate its conversion 4520 // functions. 4521 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4522 4523 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4524 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4525 NamedDecl *D = *I; 4526 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4527 if (isa<UsingShadowDecl>(D)) 4528 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4529 4530 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4531 CXXConversionDecl *Conv; 4532 if (ConvTemplate) 4533 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4534 else 4535 Conv = cast<CXXConversionDecl>(D); 4536 4537 // If the conversion function doesn't return a reference type, 4538 // it can't be considered for this conversion unless we're allowed to 4539 // consider rvalues. 4540 // FIXME: Do we need to make sure that we only consider conversion 4541 // candidates with reference-compatible results? That might be needed to 4542 // break recursion. 4543 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4544 (AllowRValues || 4545 Conv->getConversionType()->isLValueReferenceType())) { 4546 if (ConvTemplate) 4547 S.AddTemplateConversionCandidate( 4548 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4549 CandidateSet, 4550 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4551 else 4552 S.AddConversionCandidate( 4553 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4554 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4555 } 4556 } 4557 } 4558 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4559 return OR_No_Viable_Function; 4560 4561 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4562 4563 // Perform overload resolution. If it fails, return the failed result. 4564 OverloadCandidateSet::iterator Best; 4565 if (OverloadingResult Result 4566 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4567 return Result; 4568 4569 FunctionDecl *Function = Best->Function; 4570 // This is the overload that will be used for this initialization step if we 4571 // use this initialization. Mark it as referenced. 4572 Function->setReferenced(); 4573 4574 // Compute the returned type and value kind of the conversion. 4575 QualType cv3T3; 4576 if (isa<CXXConversionDecl>(Function)) 4577 cv3T3 = Function->getReturnType(); 4578 else 4579 cv3T3 = T1; 4580 4581 ExprValueKind VK = VK_RValue; 4582 if (cv3T3->isLValueReferenceType()) 4583 VK = VK_LValue; 4584 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4585 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4586 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4587 4588 // Add the user-defined conversion step. 4589 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4590 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4591 HadMultipleCandidates); 4592 4593 // Determine whether we'll need to perform derived-to-base adjustments or 4594 // other conversions. 4595 Sema::ReferenceConversions RefConv; 4596 Sema::ReferenceCompareResult NewRefRelationship = 4597 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4598 4599 // Add the final conversion sequence, if necessary. 4600 if (NewRefRelationship == Sema::Ref_Incompatible) { 4601 assert(!isa<CXXConstructorDecl>(Function) && 4602 "should not have conversion after constructor"); 4603 4604 ImplicitConversionSequence ICS; 4605 ICS.setStandard(); 4606 ICS.Standard = Best->FinalConversion; 4607 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4608 4609 // Every implicit conversion results in a prvalue, except for a glvalue 4610 // derived-to-base conversion, which we handle below. 4611 cv3T3 = ICS.Standard.getToType(2); 4612 VK = VK_RValue; 4613 } 4614 4615 // If the converted initializer is a prvalue, its type T4 is adjusted to 4616 // type "cv1 T4" and the temporary materialization conversion is applied. 4617 // 4618 // We adjust the cv-qualifications to match the reference regardless of 4619 // whether we have a prvalue so that the AST records the change. In this 4620 // case, T4 is "cv3 T3". 4621 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4622 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4623 Sequence.AddQualificationConversionStep(cv1T4, VK); 4624 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4625 VK = IsLValueRef ? VK_LValue : VK_XValue; 4626 4627 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4628 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4629 else if (RefConv & Sema::ReferenceConversions::ObjC) 4630 Sequence.AddObjCObjectConversionStep(cv1T1); 4631 else if (RefConv & Sema::ReferenceConversions::Function) 4632 Sequence.AddQualificationConversionStep(cv1T1, VK); 4633 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4634 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4635 Sequence.AddQualificationConversionStep(cv1T1, VK); 4636 } 4637 4638 return OR_Success; 4639 } 4640 4641 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4642 const InitializedEntity &Entity, 4643 Expr *CurInitExpr); 4644 4645 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4646 static void TryReferenceInitialization(Sema &S, 4647 const InitializedEntity &Entity, 4648 const InitializationKind &Kind, 4649 Expr *Initializer, 4650 InitializationSequence &Sequence) { 4651 QualType DestType = Entity.getType(); 4652 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4653 Qualifiers T1Quals; 4654 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4655 QualType cv2T2 = Initializer->getType(); 4656 Qualifiers T2Quals; 4657 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4658 4659 // If the initializer is the address of an overloaded function, try 4660 // to resolve the overloaded function. If all goes well, T2 is the 4661 // type of the resulting function. 4662 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4663 T1, Sequence)) 4664 return; 4665 4666 // Delegate everything else to a subfunction. 4667 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4668 T1Quals, cv2T2, T2, T2Quals, Sequence); 4669 } 4670 4671 /// Determine whether an expression is a non-referenceable glvalue (one to 4672 /// which a reference can never bind). Attempting to bind a reference to 4673 /// such a glvalue will always create a temporary. 4674 static bool isNonReferenceableGLValue(Expr *E) { 4675 return E->refersToBitField() || E->refersToVectorElement(); 4676 } 4677 4678 /// Reference initialization without resolving overloaded functions. 4679 static void TryReferenceInitializationCore(Sema &S, 4680 const InitializedEntity &Entity, 4681 const InitializationKind &Kind, 4682 Expr *Initializer, 4683 QualType cv1T1, QualType T1, 4684 Qualifiers T1Quals, 4685 QualType cv2T2, QualType T2, 4686 Qualifiers T2Quals, 4687 InitializationSequence &Sequence) { 4688 QualType DestType = Entity.getType(); 4689 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4690 4691 // Compute some basic properties of the types and the initializer. 4692 bool isLValueRef = DestType->isLValueReferenceType(); 4693 bool isRValueRef = !isLValueRef; 4694 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4695 4696 Sema::ReferenceConversions RefConv; 4697 Sema::ReferenceCompareResult RefRelationship = 4698 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4699 4700 // C++0x [dcl.init.ref]p5: 4701 // A reference to type "cv1 T1" is initialized by an expression of type 4702 // "cv2 T2" as follows: 4703 // 4704 // - If the reference is an lvalue reference and the initializer 4705 // expression 4706 // Note the analogous bullet points for rvalue refs to functions. Because 4707 // there are no function rvalues in C++, rvalue refs to functions are treated 4708 // like lvalue refs. 4709 OverloadingResult ConvOvlResult = OR_Success; 4710 bool T1Function = T1->isFunctionType(); 4711 if (isLValueRef || T1Function) { 4712 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4713 (RefRelationship == Sema::Ref_Compatible || 4714 (Kind.isCStyleOrFunctionalCast() && 4715 RefRelationship == Sema::Ref_Related))) { 4716 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4717 // reference-compatible with "cv2 T2," or 4718 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4719 Sema::ReferenceConversions::ObjC)) { 4720 // If we're converting the pointee, add any qualifiers first; 4721 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4722 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4723 Sequence.AddQualificationConversionStep( 4724 S.Context.getQualifiedType(T2, T1Quals), 4725 Initializer->getValueKind()); 4726 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4727 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4728 else 4729 Sequence.AddObjCObjectConversionStep(cv1T1); 4730 } else if (RefConv & (Sema::ReferenceConversions::Qualification | 4731 Sema::ReferenceConversions::Function)) { 4732 // Perform a (possibly multi-level) qualification conversion. 4733 // FIXME: Should we use a different step kind for function conversions? 4734 Sequence.AddQualificationConversionStep(cv1T1, 4735 Initializer->getValueKind()); 4736 } 4737 4738 // We only create a temporary here when binding a reference to a 4739 // bit-field or vector element. Those cases are't supposed to be 4740 // handled by this bullet, but the outcome is the same either way. 4741 Sequence.AddReferenceBindingStep(cv1T1, false); 4742 return; 4743 } 4744 4745 // - has a class type (i.e., T2 is a class type), where T1 is not 4746 // reference-related to T2, and can be implicitly converted to an 4747 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4748 // with "cv3 T3" (this conversion is selected by enumerating the 4749 // applicable conversion functions (13.3.1.6) and choosing the best 4750 // one through overload resolution (13.3)), 4751 // If we have an rvalue ref to function type here, the rhs must be 4752 // an rvalue. DR1287 removed the "implicitly" here. 4753 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4754 (isLValueRef || InitCategory.isRValue())) { 4755 ConvOvlResult = TryRefInitWithConversionFunction( 4756 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4757 /*IsLValueRef*/ isLValueRef, Sequence); 4758 if (ConvOvlResult == OR_Success) 4759 return; 4760 if (ConvOvlResult != OR_No_Viable_Function) 4761 Sequence.SetOverloadFailure( 4762 InitializationSequence::FK_ReferenceInitOverloadFailed, 4763 ConvOvlResult); 4764 } 4765 } 4766 4767 // - Otherwise, the reference shall be an lvalue reference to a 4768 // non-volatile const type (i.e., cv1 shall be const), or the reference 4769 // shall be an rvalue reference. 4770 // For address spaces, we interpret this to mean that an addr space 4771 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4772 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4773 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4774 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4775 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4776 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4777 Sequence.SetOverloadFailure( 4778 InitializationSequence::FK_ReferenceInitOverloadFailed, 4779 ConvOvlResult); 4780 else if (!InitCategory.isLValue()) 4781 Sequence.SetFailed( 4782 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4783 ? InitializationSequence:: 4784 FK_NonConstLValueReferenceBindingToTemporary 4785 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4786 else { 4787 InitializationSequence::FailureKind FK; 4788 switch (RefRelationship) { 4789 case Sema::Ref_Compatible: 4790 if (Initializer->refersToBitField()) 4791 FK = InitializationSequence:: 4792 FK_NonConstLValueReferenceBindingToBitfield; 4793 else if (Initializer->refersToVectorElement()) 4794 FK = InitializationSequence:: 4795 FK_NonConstLValueReferenceBindingToVectorElement; 4796 else 4797 llvm_unreachable("unexpected kind of compatible initializer"); 4798 break; 4799 case Sema::Ref_Related: 4800 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4801 break; 4802 case Sema::Ref_Incompatible: 4803 FK = InitializationSequence:: 4804 FK_NonConstLValueReferenceBindingToUnrelated; 4805 break; 4806 } 4807 Sequence.SetFailed(FK); 4808 } 4809 return; 4810 } 4811 4812 // - If the initializer expression 4813 // - is an 4814 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4815 // [1z] rvalue (but not a bit-field) or 4816 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4817 // 4818 // Note: functions are handled above and below rather than here... 4819 if (!T1Function && 4820 (RefRelationship == Sema::Ref_Compatible || 4821 (Kind.isCStyleOrFunctionalCast() && 4822 RefRelationship == Sema::Ref_Related)) && 4823 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4824 (InitCategory.isPRValue() && 4825 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4826 T2->isArrayType())))) { 4827 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4828 if (InitCategory.isPRValue() && T2->isRecordType()) { 4829 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4830 // compiler the freedom to perform a copy here or bind to the 4831 // object, while C++0x requires that we bind directly to the 4832 // object. Hence, we always bind to the object without making an 4833 // extra copy. However, in C++03 requires that we check for the 4834 // presence of a suitable copy constructor: 4835 // 4836 // The constructor that would be used to make the copy shall 4837 // be callable whether or not the copy is actually done. 4838 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4839 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4840 else if (S.getLangOpts().CPlusPlus11) 4841 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4842 } 4843 4844 // C++1z [dcl.init.ref]/5.2.1.2: 4845 // If the converted initializer is a prvalue, its type T4 is adjusted 4846 // to type "cv1 T4" and the temporary materialization conversion is 4847 // applied. 4848 // Postpone address space conversions to after the temporary materialization 4849 // conversion to allow creating temporaries in the alloca address space. 4850 auto T1QualsIgnoreAS = T1Quals; 4851 auto T2QualsIgnoreAS = T2Quals; 4852 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4853 T1QualsIgnoreAS.removeAddressSpace(); 4854 T2QualsIgnoreAS.removeAddressSpace(); 4855 } 4856 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4857 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4858 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4859 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4860 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4861 // Add addr space conversion if required. 4862 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4863 auto T4Quals = cv1T4.getQualifiers(); 4864 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4865 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4866 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4867 cv1T4 = cv1T4WithAS; 4868 } 4869 4870 // In any case, the reference is bound to the resulting glvalue (or to 4871 // an appropriate base class subobject). 4872 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4873 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4874 else if (RefConv & Sema::ReferenceConversions::ObjC) 4875 Sequence.AddObjCObjectConversionStep(cv1T1); 4876 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4877 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4878 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 4879 } 4880 return; 4881 } 4882 4883 // - has a class type (i.e., T2 is a class type), where T1 is not 4884 // reference-related to T2, and can be implicitly converted to an 4885 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4886 // where "cv1 T1" is reference-compatible with "cv3 T3", 4887 // 4888 // DR1287 removes the "implicitly" here. 4889 if (T2->isRecordType()) { 4890 if (RefRelationship == Sema::Ref_Incompatible) { 4891 ConvOvlResult = TryRefInitWithConversionFunction( 4892 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4893 /*IsLValueRef*/ isLValueRef, Sequence); 4894 if (ConvOvlResult) 4895 Sequence.SetOverloadFailure( 4896 InitializationSequence::FK_ReferenceInitOverloadFailed, 4897 ConvOvlResult); 4898 4899 return; 4900 } 4901 4902 if (RefRelationship == Sema::Ref_Compatible && 4903 isRValueRef && InitCategory.isLValue()) { 4904 Sequence.SetFailed( 4905 InitializationSequence::FK_RValueReferenceBindingToLValue); 4906 return; 4907 } 4908 4909 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4910 return; 4911 } 4912 4913 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4914 // from the initializer expression using the rules for a non-reference 4915 // copy-initialization (8.5). The reference is then bound to the 4916 // temporary. [...] 4917 4918 // Ignore address space of reference type at this point and perform address 4919 // space conversion after the reference binding step. 4920 QualType cv1T1IgnoreAS = 4921 T1Quals.hasAddressSpace() 4922 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4923 : cv1T1; 4924 4925 InitializedEntity TempEntity = 4926 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4927 4928 // FIXME: Why do we use an implicit conversion here rather than trying 4929 // copy-initialization? 4930 ImplicitConversionSequence ICS 4931 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4932 /*SuppressUserConversions=*/false, 4933 /*AllowExplicit=*/false, 4934 /*FIXME:InOverloadResolution=*/false, 4935 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4936 /*AllowObjCWritebackConversion=*/false); 4937 4938 if (ICS.isBad()) { 4939 // FIXME: Use the conversion function set stored in ICS to turn 4940 // this into an overloading ambiguity diagnostic. However, we need 4941 // to keep that set as an OverloadCandidateSet rather than as some 4942 // other kind of set. 4943 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4944 Sequence.SetOverloadFailure( 4945 InitializationSequence::FK_ReferenceInitOverloadFailed, 4946 ConvOvlResult); 4947 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4948 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4949 else 4950 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4951 return; 4952 } else { 4953 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4954 } 4955 4956 // [...] If T1 is reference-related to T2, cv1 must be the 4957 // same cv-qualification as, or greater cv-qualification 4958 // than, cv2; otherwise, the program is ill-formed. 4959 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4960 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4961 if ((RefRelationship == Sema::Ref_Related && 4962 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4963 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4964 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4965 return; 4966 } 4967 4968 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4969 // reference, the initializer expression shall not be an lvalue. 4970 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4971 InitCategory.isLValue()) { 4972 Sequence.SetFailed( 4973 InitializationSequence::FK_RValueReferenceBindingToLValue); 4974 return; 4975 } 4976 4977 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 4978 4979 if (T1Quals.hasAddressSpace()) { 4980 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4981 LangAS::Default)) { 4982 Sequence.SetFailed( 4983 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4984 return; 4985 } 4986 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4987 : VK_XValue); 4988 } 4989 } 4990 4991 /// Attempt character array initialization from a string literal 4992 /// (C++ [dcl.init.string], C99 6.7.8). 4993 static void TryStringLiteralInitialization(Sema &S, 4994 const InitializedEntity &Entity, 4995 const InitializationKind &Kind, 4996 Expr *Initializer, 4997 InitializationSequence &Sequence) { 4998 Sequence.AddStringInitStep(Entity.getType()); 4999 } 5000 5001 /// Attempt value initialization (C++ [dcl.init]p7). 5002 static void TryValueInitialization(Sema &S, 5003 const InitializedEntity &Entity, 5004 const InitializationKind &Kind, 5005 InitializationSequence &Sequence, 5006 InitListExpr *InitList) { 5007 assert((!InitList || InitList->getNumInits() == 0) && 5008 "Shouldn't use value-init for non-empty init lists"); 5009 5010 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5011 // 5012 // To value-initialize an object of type T means: 5013 QualType T = Entity.getType(); 5014 5015 // -- if T is an array type, then each element is value-initialized; 5016 T = S.Context.getBaseElementType(T); 5017 5018 if (const RecordType *RT = T->getAs<RecordType>()) { 5019 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5020 bool NeedZeroInitialization = true; 5021 // C++98: 5022 // -- if T is a class type (clause 9) with a user-declared constructor 5023 // (12.1), then the default constructor for T is called (and the 5024 // initialization is ill-formed if T has no accessible default 5025 // constructor); 5026 // C++11: 5027 // -- if T is a class type (clause 9) with either no default constructor 5028 // (12.1 [class.ctor]) or a default constructor that is user-provided 5029 // or deleted, then the object is default-initialized; 5030 // 5031 // Note that the C++11 rule is the same as the C++98 rule if there are no 5032 // defaulted or deleted constructors, so we just use it unconditionally. 5033 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5034 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5035 NeedZeroInitialization = false; 5036 5037 // -- if T is a (possibly cv-qualified) non-union class type without a 5038 // user-provided or deleted default constructor, then the object is 5039 // zero-initialized and, if T has a non-trivial default constructor, 5040 // default-initialized; 5041 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5042 // constructor' part was removed by DR1507. 5043 if (NeedZeroInitialization) 5044 Sequence.AddZeroInitializationStep(Entity.getType()); 5045 5046 // C++03: 5047 // -- if T is a non-union class type without a user-declared constructor, 5048 // then every non-static data member and base class component of T is 5049 // value-initialized; 5050 // [...] A program that calls for [...] value-initialization of an 5051 // entity of reference type is ill-formed. 5052 // 5053 // C++11 doesn't need this handling, because value-initialization does not 5054 // occur recursively there, and the implicit default constructor is 5055 // defined as deleted in the problematic cases. 5056 if (!S.getLangOpts().CPlusPlus11 && 5057 ClassDecl->hasUninitializedReferenceMember()) { 5058 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5059 return; 5060 } 5061 5062 // If this is list-value-initialization, pass the empty init list on when 5063 // building the constructor call. This affects the semantics of a few 5064 // things (such as whether an explicit default constructor can be called). 5065 Expr *InitListAsExpr = InitList; 5066 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5067 bool InitListSyntax = InitList; 5068 5069 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5070 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5071 return TryConstructorInitialization( 5072 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5073 } 5074 } 5075 5076 Sequence.AddZeroInitializationStep(Entity.getType()); 5077 } 5078 5079 /// Attempt default initialization (C++ [dcl.init]p6). 5080 static void TryDefaultInitialization(Sema &S, 5081 const InitializedEntity &Entity, 5082 const InitializationKind &Kind, 5083 InitializationSequence &Sequence) { 5084 assert(Kind.getKind() == InitializationKind::IK_Default); 5085 5086 // C++ [dcl.init]p6: 5087 // To default-initialize an object of type T means: 5088 // - if T is an array type, each element is default-initialized; 5089 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5090 5091 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5092 // constructor for T is called (and the initialization is ill-formed if 5093 // T has no accessible default constructor); 5094 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5095 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5096 Entity.getType(), Sequence); 5097 return; 5098 } 5099 5100 // - otherwise, no initialization is performed. 5101 5102 // If a program calls for the default initialization of an object of 5103 // a const-qualified type T, T shall be a class type with a user-provided 5104 // default constructor. 5105 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5106 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5107 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5108 return; 5109 } 5110 5111 // If the destination type has a lifetime property, zero-initialize it. 5112 if (DestType.getQualifiers().hasObjCLifetime()) { 5113 Sequence.AddZeroInitializationStep(Entity.getType()); 5114 return; 5115 } 5116 } 5117 5118 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5119 /// which enumerates all conversion functions and performs overload resolution 5120 /// to select the best. 5121 static void TryUserDefinedConversion(Sema &S, 5122 QualType DestType, 5123 const InitializationKind &Kind, 5124 Expr *Initializer, 5125 InitializationSequence &Sequence, 5126 bool TopLevelOfInitList) { 5127 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5128 QualType SourceType = Initializer->getType(); 5129 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5130 "Must have a class type to perform a user-defined conversion"); 5131 5132 // Build the candidate set directly in the initialization sequence 5133 // structure, so that it will persist if we fail. 5134 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5135 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5136 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5137 5138 // Determine whether we are allowed to call explicit constructors or 5139 // explicit conversion operators. 5140 bool AllowExplicit = Kind.AllowExplicit(); 5141 5142 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5143 // The type we're converting to is a class type. Enumerate its constructors 5144 // to see if there is a suitable conversion. 5145 CXXRecordDecl *DestRecordDecl 5146 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5147 5148 // Try to complete the type we're converting to. 5149 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5150 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5151 auto Info = getConstructorInfo(D); 5152 if (!Info.Constructor) 5153 continue; 5154 5155 if (!Info.Constructor->isInvalidDecl() && 5156 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 5157 if (Info.ConstructorTmpl) 5158 S.AddTemplateOverloadCandidate( 5159 Info.ConstructorTmpl, Info.FoundDecl, 5160 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5161 /*SuppressUserConversions=*/true, 5162 /*PartialOverloading*/ false, AllowExplicit); 5163 else 5164 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5165 Initializer, CandidateSet, 5166 /*SuppressUserConversions=*/true, 5167 /*PartialOverloading*/ false, AllowExplicit); 5168 } 5169 } 5170 } 5171 } 5172 5173 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5174 5175 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5176 // The type we're converting from is a class type, enumerate its conversion 5177 // functions. 5178 5179 // We can only enumerate the conversion functions for a complete type; if 5180 // the type isn't complete, simply skip this step. 5181 if (S.isCompleteType(DeclLoc, SourceType)) { 5182 CXXRecordDecl *SourceRecordDecl 5183 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5184 5185 const auto &Conversions = 5186 SourceRecordDecl->getVisibleConversionFunctions(); 5187 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5188 NamedDecl *D = *I; 5189 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5190 if (isa<UsingShadowDecl>(D)) 5191 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5192 5193 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5194 CXXConversionDecl *Conv; 5195 if (ConvTemplate) 5196 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5197 else 5198 Conv = cast<CXXConversionDecl>(D); 5199 5200 if (AllowExplicit || !Conv->isExplicit()) { 5201 if (ConvTemplate) 5202 S.AddTemplateConversionCandidate( 5203 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5204 CandidateSet, AllowExplicit, AllowExplicit); 5205 else 5206 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5207 DestType, CandidateSet, AllowExplicit, 5208 AllowExplicit); 5209 } 5210 } 5211 } 5212 } 5213 5214 // Perform overload resolution. If it fails, return the failed result. 5215 OverloadCandidateSet::iterator Best; 5216 if (OverloadingResult Result 5217 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5218 Sequence.SetOverloadFailure( 5219 InitializationSequence::FK_UserConversionOverloadFailed, 5220 Result); 5221 return; 5222 } 5223 5224 FunctionDecl *Function = Best->Function; 5225 Function->setReferenced(); 5226 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5227 5228 if (isa<CXXConstructorDecl>(Function)) { 5229 // Add the user-defined conversion step. Any cv-qualification conversion is 5230 // subsumed by the initialization. Per DR5, the created temporary is of the 5231 // cv-unqualified type of the destination. 5232 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5233 DestType.getUnqualifiedType(), 5234 HadMultipleCandidates); 5235 5236 // C++14 and before: 5237 // - if the function is a constructor, the call initializes a temporary 5238 // of the cv-unqualified version of the destination type. The [...] 5239 // temporary [...] is then used to direct-initialize, according to the 5240 // rules above, the object that is the destination of the 5241 // copy-initialization. 5242 // Note that this just performs a simple object copy from the temporary. 5243 // 5244 // C++17: 5245 // - if the function is a constructor, the call is a prvalue of the 5246 // cv-unqualified version of the destination type whose return object 5247 // is initialized by the constructor. The call is used to 5248 // direct-initialize, according to the rules above, the object that 5249 // is the destination of the copy-initialization. 5250 // Therefore we need to do nothing further. 5251 // 5252 // FIXME: Mark this copy as extraneous. 5253 if (!S.getLangOpts().CPlusPlus17) 5254 Sequence.AddFinalCopy(DestType); 5255 else if (DestType.hasQualifiers()) 5256 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5257 return; 5258 } 5259 5260 // Add the user-defined conversion step that calls the conversion function. 5261 QualType ConvType = Function->getCallResultType(); 5262 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5263 HadMultipleCandidates); 5264 5265 if (ConvType->getAs<RecordType>()) { 5266 // The call is used to direct-initialize [...] the object that is the 5267 // destination of the copy-initialization. 5268 // 5269 // In C++17, this does not call a constructor if we enter /17.6.1: 5270 // - If the initializer expression is a prvalue and the cv-unqualified 5271 // version of the source type is the same as the class of the 5272 // destination [... do not make an extra copy] 5273 // 5274 // FIXME: Mark this copy as extraneous. 5275 if (!S.getLangOpts().CPlusPlus17 || 5276 Function->getReturnType()->isReferenceType() || 5277 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5278 Sequence.AddFinalCopy(DestType); 5279 else if (!S.Context.hasSameType(ConvType, DestType)) 5280 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5281 return; 5282 } 5283 5284 // If the conversion following the call to the conversion function 5285 // is interesting, add it as a separate step. 5286 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5287 Best->FinalConversion.Third) { 5288 ImplicitConversionSequence ICS; 5289 ICS.setStandard(); 5290 ICS.Standard = Best->FinalConversion; 5291 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5292 } 5293 } 5294 5295 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5296 /// a function with a pointer return type contains a 'return false;' statement. 5297 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5298 /// code using that header. 5299 /// 5300 /// Work around this by treating 'return false;' as zero-initializing the result 5301 /// if it's used in a pointer-returning function in a system header. 5302 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5303 const InitializedEntity &Entity, 5304 const Expr *Init) { 5305 return S.getLangOpts().CPlusPlus11 && 5306 Entity.getKind() == InitializedEntity::EK_Result && 5307 Entity.getType()->isPointerType() && 5308 isa<CXXBoolLiteralExpr>(Init) && 5309 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5310 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5311 } 5312 5313 /// The non-zero enum values here are indexes into diagnostic alternatives. 5314 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5315 5316 /// Determines whether this expression is an acceptable ICR source. 5317 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5318 bool isAddressOf, bool &isWeakAccess) { 5319 // Skip parens. 5320 e = e->IgnoreParens(); 5321 5322 // Skip address-of nodes. 5323 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5324 if (op->getOpcode() == UO_AddrOf) 5325 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5326 isWeakAccess); 5327 5328 // Skip certain casts. 5329 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5330 switch (ce->getCastKind()) { 5331 case CK_Dependent: 5332 case CK_BitCast: 5333 case CK_LValueBitCast: 5334 case CK_NoOp: 5335 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5336 5337 case CK_ArrayToPointerDecay: 5338 return IIK_nonscalar; 5339 5340 case CK_NullToPointer: 5341 return IIK_okay; 5342 5343 default: 5344 break; 5345 } 5346 5347 // If we have a declaration reference, it had better be a local variable. 5348 } else if (isa<DeclRefExpr>(e)) { 5349 // set isWeakAccess to true, to mean that there will be an implicit 5350 // load which requires a cleanup. 5351 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5352 isWeakAccess = true; 5353 5354 if (!isAddressOf) return IIK_nonlocal; 5355 5356 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5357 if (!var) return IIK_nonlocal; 5358 5359 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5360 5361 // If we have a conditional operator, check both sides. 5362 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5363 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5364 isWeakAccess)) 5365 return iik; 5366 5367 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5368 5369 // These are never scalar. 5370 } else if (isa<ArraySubscriptExpr>(e)) { 5371 return IIK_nonscalar; 5372 5373 // Otherwise, it needs to be a null pointer constant. 5374 } else { 5375 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5376 ? IIK_okay : IIK_nonlocal); 5377 } 5378 5379 return IIK_nonlocal; 5380 } 5381 5382 /// Check whether the given expression is a valid operand for an 5383 /// indirect copy/restore. 5384 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5385 assert(src->isRValue()); 5386 bool isWeakAccess = false; 5387 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5388 // If isWeakAccess to true, there will be an implicit 5389 // load which requires a cleanup. 5390 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5391 S.Cleanup.setExprNeedsCleanups(true); 5392 5393 if (iik == IIK_okay) return; 5394 5395 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5396 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5397 << src->getSourceRange(); 5398 } 5399 5400 /// Determine whether we have compatible array types for the 5401 /// purposes of GNU by-copy array initialization. 5402 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5403 const ArrayType *Source) { 5404 // If the source and destination array types are equivalent, we're 5405 // done. 5406 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5407 return true; 5408 5409 // Make sure that the element types are the same. 5410 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5411 return false; 5412 5413 // The only mismatch we allow is when the destination is an 5414 // incomplete array type and the source is a constant array type. 5415 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5416 } 5417 5418 static bool tryObjCWritebackConversion(Sema &S, 5419 InitializationSequence &Sequence, 5420 const InitializedEntity &Entity, 5421 Expr *Initializer) { 5422 bool ArrayDecay = false; 5423 QualType ArgType = Initializer->getType(); 5424 QualType ArgPointee; 5425 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5426 ArrayDecay = true; 5427 ArgPointee = ArgArrayType->getElementType(); 5428 ArgType = S.Context.getPointerType(ArgPointee); 5429 } 5430 5431 // Handle write-back conversion. 5432 QualType ConvertedArgType; 5433 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5434 ConvertedArgType)) 5435 return false; 5436 5437 // We should copy unless we're passing to an argument explicitly 5438 // marked 'out'. 5439 bool ShouldCopy = true; 5440 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5441 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5442 5443 // Do we need an lvalue conversion? 5444 if (ArrayDecay || Initializer->isGLValue()) { 5445 ImplicitConversionSequence ICS; 5446 ICS.setStandard(); 5447 ICS.Standard.setAsIdentityConversion(); 5448 5449 QualType ResultType; 5450 if (ArrayDecay) { 5451 ICS.Standard.First = ICK_Array_To_Pointer; 5452 ResultType = S.Context.getPointerType(ArgPointee); 5453 } else { 5454 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5455 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5456 } 5457 5458 Sequence.AddConversionSequenceStep(ICS, ResultType); 5459 } 5460 5461 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5462 return true; 5463 } 5464 5465 static bool TryOCLSamplerInitialization(Sema &S, 5466 InitializationSequence &Sequence, 5467 QualType DestType, 5468 Expr *Initializer) { 5469 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5470 (!Initializer->isIntegerConstantExpr(S.Context) && 5471 !Initializer->getType()->isSamplerT())) 5472 return false; 5473 5474 Sequence.AddOCLSamplerInitStep(DestType); 5475 return true; 5476 } 5477 5478 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5479 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5480 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5481 } 5482 5483 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5484 InitializationSequence &Sequence, 5485 QualType DestType, 5486 Expr *Initializer) { 5487 if (!S.getLangOpts().OpenCL) 5488 return false; 5489 5490 // 5491 // OpenCL 1.2 spec, s6.12.10 5492 // 5493 // The event argument can also be used to associate the 5494 // async_work_group_copy with a previous async copy allowing 5495 // an event to be shared by multiple async copies; otherwise 5496 // event should be zero. 5497 // 5498 if (DestType->isEventT() || DestType->isQueueT()) { 5499 if (!IsZeroInitializer(Initializer, S)) 5500 return false; 5501 5502 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5503 return true; 5504 } 5505 5506 // We should allow zero initialization for all types defined in the 5507 // cl_intel_device_side_avc_motion_estimation extension, except 5508 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5509 if (S.getOpenCLOptions().isEnabled( 5510 "cl_intel_device_side_avc_motion_estimation") && 5511 DestType->isOCLIntelSubgroupAVCType()) { 5512 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5513 DestType->isOCLIntelSubgroupAVCMceResultType()) 5514 return false; 5515 if (!IsZeroInitializer(Initializer, S)) 5516 return false; 5517 5518 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5519 return true; 5520 } 5521 5522 return false; 5523 } 5524 5525 InitializationSequence::InitializationSequence(Sema &S, 5526 const InitializedEntity &Entity, 5527 const InitializationKind &Kind, 5528 MultiExprArg Args, 5529 bool TopLevelOfInitList, 5530 bool TreatUnavailableAsInvalid) 5531 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5532 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5533 TreatUnavailableAsInvalid); 5534 } 5535 5536 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5537 /// address of that function, this returns true. Otherwise, it returns false. 5538 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5539 auto *DRE = dyn_cast<DeclRefExpr>(E); 5540 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5541 return false; 5542 5543 return !S.checkAddressOfFunctionIsAvailable( 5544 cast<FunctionDecl>(DRE->getDecl())); 5545 } 5546 5547 /// Determine whether we can perform an elementwise array copy for this kind 5548 /// of entity. 5549 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5550 switch (Entity.getKind()) { 5551 case InitializedEntity::EK_LambdaCapture: 5552 // C++ [expr.prim.lambda]p24: 5553 // For array members, the array elements are direct-initialized in 5554 // increasing subscript order. 5555 return true; 5556 5557 case InitializedEntity::EK_Variable: 5558 // C++ [dcl.decomp]p1: 5559 // [...] each element is copy-initialized or direct-initialized from the 5560 // corresponding element of the assignment-expression [...] 5561 return isa<DecompositionDecl>(Entity.getDecl()); 5562 5563 case InitializedEntity::EK_Member: 5564 // C++ [class.copy.ctor]p14: 5565 // - if the member is an array, each element is direct-initialized with 5566 // the corresponding subobject of x 5567 return Entity.isImplicitMemberInitializer(); 5568 5569 case InitializedEntity::EK_ArrayElement: 5570 // All the above cases are intended to apply recursively, even though none 5571 // of them actually say that. 5572 if (auto *E = Entity.getParent()) 5573 return canPerformArrayCopy(*E); 5574 break; 5575 5576 default: 5577 break; 5578 } 5579 5580 return false; 5581 } 5582 5583 void InitializationSequence::InitializeFrom(Sema &S, 5584 const InitializedEntity &Entity, 5585 const InitializationKind &Kind, 5586 MultiExprArg Args, 5587 bool TopLevelOfInitList, 5588 bool TreatUnavailableAsInvalid) { 5589 ASTContext &Context = S.Context; 5590 5591 // Eliminate non-overload placeholder types in the arguments. We 5592 // need to do this before checking whether types are dependent 5593 // because lowering a pseudo-object expression might well give us 5594 // something of dependent type. 5595 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5596 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5597 // FIXME: should we be doing this here? 5598 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5599 if (result.isInvalid()) { 5600 SetFailed(FK_PlaceholderType); 5601 return; 5602 } 5603 Args[I] = result.get(); 5604 } 5605 5606 // C++0x [dcl.init]p16: 5607 // The semantics of initializers are as follows. The destination type is 5608 // the type of the object or reference being initialized and the source 5609 // type is the type of the initializer expression. The source type is not 5610 // defined when the initializer is a braced-init-list or when it is a 5611 // parenthesized list of expressions. 5612 QualType DestType = Entity.getType(); 5613 5614 if (DestType->isDependentType() || 5615 Expr::hasAnyTypeDependentArguments(Args)) { 5616 SequenceKind = DependentSequence; 5617 return; 5618 } 5619 5620 // Almost everything is a normal sequence. 5621 setSequenceKind(NormalSequence); 5622 5623 QualType SourceType; 5624 Expr *Initializer = nullptr; 5625 if (Args.size() == 1) { 5626 Initializer = Args[0]; 5627 if (S.getLangOpts().ObjC) { 5628 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5629 DestType, Initializer->getType(), 5630 Initializer) || 5631 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5632 Args[0] = Initializer; 5633 } 5634 if (!isa<InitListExpr>(Initializer)) 5635 SourceType = Initializer->getType(); 5636 } 5637 5638 // - If the initializer is a (non-parenthesized) braced-init-list, the 5639 // object is list-initialized (8.5.4). 5640 if (Kind.getKind() != InitializationKind::IK_Direct) { 5641 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5642 TryListInitialization(S, Entity, Kind, InitList, *this, 5643 TreatUnavailableAsInvalid); 5644 return; 5645 } 5646 } 5647 5648 // - If the destination type is a reference type, see 8.5.3. 5649 if (DestType->isReferenceType()) { 5650 // C++0x [dcl.init.ref]p1: 5651 // A variable declared to be a T& or T&&, that is, "reference to type T" 5652 // (8.3.2), shall be initialized by an object, or function, of type T or 5653 // by an object that can be converted into a T. 5654 // (Therefore, multiple arguments are not permitted.) 5655 if (Args.size() != 1) 5656 SetFailed(FK_TooManyInitsForReference); 5657 // C++17 [dcl.init.ref]p5: 5658 // A reference [...] is initialized by an expression [...] as follows: 5659 // If the initializer is not an expression, presumably we should reject, 5660 // but the standard fails to actually say so. 5661 else if (isa<InitListExpr>(Args[0])) 5662 SetFailed(FK_ParenthesizedListInitForReference); 5663 else 5664 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5665 return; 5666 } 5667 5668 // - If the initializer is (), the object is value-initialized. 5669 if (Kind.getKind() == InitializationKind::IK_Value || 5670 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5671 TryValueInitialization(S, Entity, Kind, *this); 5672 return; 5673 } 5674 5675 // Handle default initialization. 5676 if (Kind.getKind() == InitializationKind::IK_Default) { 5677 TryDefaultInitialization(S, Entity, Kind, *this); 5678 return; 5679 } 5680 5681 // - If the destination type is an array of characters, an array of 5682 // char16_t, an array of char32_t, or an array of wchar_t, and the 5683 // initializer is a string literal, see 8.5.2. 5684 // - Otherwise, if the destination type is an array, the program is 5685 // ill-formed. 5686 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5687 if (Initializer && isa<VariableArrayType>(DestAT)) { 5688 SetFailed(FK_VariableLengthArrayHasInitializer); 5689 return; 5690 } 5691 5692 if (Initializer) { 5693 switch (IsStringInit(Initializer, DestAT, Context)) { 5694 case SIF_None: 5695 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5696 return; 5697 case SIF_NarrowStringIntoWideChar: 5698 SetFailed(FK_NarrowStringIntoWideCharArray); 5699 return; 5700 case SIF_WideStringIntoChar: 5701 SetFailed(FK_WideStringIntoCharArray); 5702 return; 5703 case SIF_IncompatWideStringIntoWideChar: 5704 SetFailed(FK_IncompatWideStringIntoWideChar); 5705 return; 5706 case SIF_PlainStringIntoUTF8Char: 5707 SetFailed(FK_PlainStringIntoUTF8Char); 5708 return; 5709 case SIF_UTF8StringIntoPlainChar: 5710 SetFailed(FK_UTF8StringIntoPlainChar); 5711 return; 5712 case SIF_Other: 5713 break; 5714 } 5715 } 5716 5717 // Some kinds of initialization permit an array to be initialized from 5718 // another array of the same type, and perform elementwise initialization. 5719 if (Initializer && isa<ConstantArrayType>(DestAT) && 5720 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5721 Entity.getType()) && 5722 canPerformArrayCopy(Entity)) { 5723 // If source is a prvalue, use it directly. 5724 if (Initializer->getValueKind() == VK_RValue) { 5725 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5726 return; 5727 } 5728 5729 // Emit element-at-a-time copy loop. 5730 InitializedEntity Element = 5731 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5732 QualType InitEltT = 5733 Context.getAsArrayType(Initializer->getType())->getElementType(); 5734 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5735 Initializer->getValueKind(), 5736 Initializer->getObjectKind()); 5737 Expr *OVEAsExpr = &OVE; 5738 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5739 TreatUnavailableAsInvalid); 5740 if (!Failed()) 5741 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5742 return; 5743 } 5744 5745 // Note: as an GNU C extension, we allow initialization of an 5746 // array from a compound literal that creates an array of the same 5747 // type, so long as the initializer has no side effects. 5748 if (!S.getLangOpts().CPlusPlus && Initializer && 5749 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5750 Initializer->getType()->isArrayType()) { 5751 const ArrayType *SourceAT 5752 = Context.getAsArrayType(Initializer->getType()); 5753 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5754 SetFailed(FK_ArrayTypeMismatch); 5755 else if (Initializer->HasSideEffects(S.Context)) 5756 SetFailed(FK_NonConstantArrayInit); 5757 else { 5758 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5759 } 5760 } 5761 // Note: as a GNU C++ extension, we allow list-initialization of a 5762 // class member of array type from a parenthesized initializer list. 5763 else if (S.getLangOpts().CPlusPlus && 5764 Entity.getKind() == InitializedEntity::EK_Member && 5765 Initializer && isa<InitListExpr>(Initializer)) { 5766 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5767 *this, TreatUnavailableAsInvalid); 5768 AddParenthesizedArrayInitStep(DestType); 5769 } else if (DestAT->getElementType()->isCharType()) 5770 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5771 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5772 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5773 else 5774 SetFailed(FK_ArrayNeedsInitList); 5775 5776 return; 5777 } 5778 5779 // Determine whether we should consider writeback conversions for 5780 // Objective-C ARC. 5781 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5782 Entity.isParameterKind(); 5783 5784 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5785 return; 5786 5787 // We're at the end of the line for C: it's either a write-back conversion 5788 // or it's a C assignment. There's no need to check anything else. 5789 if (!S.getLangOpts().CPlusPlus) { 5790 // If allowed, check whether this is an Objective-C writeback conversion. 5791 if (allowObjCWritebackConversion && 5792 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5793 return; 5794 } 5795 5796 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5797 return; 5798 5799 // Handle initialization in C 5800 AddCAssignmentStep(DestType); 5801 MaybeProduceObjCObject(S, *this, Entity); 5802 return; 5803 } 5804 5805 assert(S.getLangOpts().CPlusPlus); 5806 5807 // - If the destination type is a (possibly cv-qualified) class type: 5808 if (DestType->isRecordType()) { 5809 // - If the initialization is direct-initialization, or if it is 5810 // copy-initialization where the cv-unqualified version of the 5811 // source type is the same class as, or a derived class of, the 5812 // class of the destination, constructors are considered. [...] 5813 if (Kind.getKind() == InitializationKind::IK_Direct || 5814 (Kind.getKind() == InitializationKind::IK_Copy && 5815 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5816 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5817 TryConstructorInitialization(S, Entity, Kind, Args, 5818 DestType, DestType, *this); 5819 // - Otherwise (i.e., for the remaining copy-initialization cases), 5820 // user-defined conversion sequences that can convert from the source 5821 // type to the destination type or (when a conversion function is 5822 // used) to a derived class thereof are enumerated as described in 5823 // 13.3.1.4, and the best one is chosen through overload resolution 5824 // (13.3). 5825 else 5826 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5827 TopLevelOfInitList); 5828 return; 5829 } 5830 5831 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5832 5833 // The remaining cases all need a source type. 5834 if (Args.size() > 1) { 5835 SetFailed(FK_TooManyInitsForScalar); 5836 return; 5837 } else if (isa<InitListExpr>(Args[0])) { 5838 SetFailed(FK_ParenthesizedListInitForScalar); 5839 return; 5840 } 5841 5842 // - Otherwise, if the source type is a (possibly cv-qualified) class 5843 // type, conversion functions are considered. 5844 if (!SourceType.isNull() && SourceType->isRecordType()) { 5845 // For a conversion to _Atomic(T) from either T or a class type derived 5846 // from T, initialize the T object then convert to _Atomic type. 5847 bool NeedAtomicConversion = false; 5848 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5849 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5850 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5851 Atomic->getValueType())) { 5852 DestType = Atomic->getValueType(); 5853 NeedAtomicConversion = true; 5854 } 5855 } 5856 5857 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5858 TopLevelOfInitList); 5859 MaybeProduceObjCObject(S, *this, Entity); 5860 if (!Failed() && NeedAtomicConversion) 5861 AddAtomicConversionStep(Entity.getType()); 5862 return; 5863 } 5864 5865 // - Otherwise, the initial value of the object being initialized is the 5866 // (possibly converted) value of the initializer expression. Standard 5867 // conversions (Clause 4) will be used, if necessary, to convert the 5868 // initializer expression to the cv-unqualified version of the 5869 // destination type; no user-defined conversions are considered. 5870 5871 ImplicitConversionSequence ICS 5872 = S.TryImplicitConversion(Initializer, DestType, 5873 /*SuppressUserConversions*/true, 5874 /*AllowExplicitConversions*/ false, 5875 /*InOverloadResolution*/ false, 5876 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5877 allowObjCWritebackConversion); 5878 5879 if (ICS.isStandard() && 5880 ICS.Standard.Second == ICK_Writeback_Conversion) { 5881 // Objective-C ARC writeback conversion. 5882 5883 // We should copy unless we're passing to an argument explicitly 5884 // marked 'out'. 5885 bool ShouldCopy = true; 5886 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5887 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5888 5889 // If there was an lvalue adjustment, add it as a separate conversion. 5890 if (ICS.Standard.First == ICK_Array_To_Pointer || 5891 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5892 ImplicitConversionSequence LvalueICS; 5893 LvalueICS.setStandard(); 5894 LvalueICS.Standard.setAsIdentityConversion(); 5895 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5896 LvalueICS.Standard.First = ICS.Standard.First; 5897 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5898 } 5899 5900 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5901 } else if (ICS.isBad()) { 5902 DeclAccessPair dap; 5903 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5904 AddZeroInitializationStep(Entity.getType()); 5905 } else if (Initializer->getType() == Context.OverloadTy && 5906 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5907 false, dap)) 5908 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5909 else if (Initializer->getType()->isFunctionType() && 5910 isExprAnUnaddressableFunction(S, Initializer)) 5911 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5912 else 5913 SetFailed(InitializationSequence::FK_ConversionFailed); 5914 } else { 5915 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5916 5917 MaybeProduceObjCObject(S, *this, Entity); 5918 } 5919 } 5920 5921 InitializationSequence::~InitializationSequence() { 5922 for (auto &S : Steps) 5923 S.Destroy(); 5924 } 5925 5926 //===----------------------------------------------------------------------===// 5927 // Perform initialization 5928 //===----------------------------------------------------------------------===// 5929 static Sema::AssignmentAction 5930 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5931 switch(Entity.getKind()) { 5932 case InitializedEntity::EK_Variable: 5933 case InitializedEntity::EK_New: 5934 case InitializedEntity::EK_Exception: 5935 case InitializedEntity::EK_Base: 5936 case InitializedEntity::EK_Delegating: 5937 return Sema::AA_Initializing; 5938 5939 case InitializedEntity::EK_Parameter: 5940 if (Entity.getDecl() && 5941 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5942 return Sema::AA_Sending; 5943 5944 return Sema::AA_Passing; 5945 5946 case InitializedEntity::EK_Parameter_CF_Audited: 5947 if (Entity.getDecl() && 5948 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5949 return Sema::AA_Sending; 5950 5951 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5952 5953 case InitializedEntity::EK_Result: 5954 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5955 return Sema::AA_Returning; 5956 5957 case InitializedEntity::EK_Temporary: 5958 case InitializedEntity::EK_RelatedResult: 5959 // FIXME: Can we tell apart casting vs. converting? 5960 return Sema::AA_Casting; 5961 5962 case InitializedEntity::EK_Member: 5963 case InitializedEntity::EK_Binding: 5964 case InitializedEntity::EK_ArrayElement: 5965 case InitializedEntity::EK_VectorElement: 5966 case InitializedEntity::EK_ComplexElement: 5967 case InitializedEntity::EK_BlockElement: 5968 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5969 case InitializedEntity::EK_LambdaCapture: 5970 case InitializedEntity::EK_CompoundLiteralInit: 5971 return Sema::AA_Initializing; 5972 } 5973 5974 llvm_unreachable("Invalid EntityKind!"); 5975 } 5976 5977 /// Whether we should bind a created object as a temporary when 5978 /// initializing the given entity. 5979 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5980 switch (Entity.getKind()) { 5981 case InitializedEntity::EK_ArrayElement: 5982 case InitializedEntity::EK_Member: 5983 case InitializedEntity::EK_Result: 5984 case InitializedEntity::EK_StmtExprResult: 5985 case InitializedEntity::EK_New: 5986 case InitializedEntity::EK_Variable: 5987 case InitializedEntity::EK_Base: 5988 case InitializedEntity::EK_Delegating: 5989 case InitializedEntity::EK_VectorElement: 5990 case InitializedEntity::EK_ComplexElement: 5991 case InitializedEntity::EK_Exception: 5992 case InitializedEntity::EK_BlockElement: 5993 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5994 case InitializedEntity::EK_LambdaCapture: 5995 case InitializedEntity::EK_CompoundLiteralInit: 5996 return false; 5997 5998 case InitializedEntity::EK_Parameter: 5999 case InitializedEntity::EK_Parameter_CF_Audited: 6000 case InitializedEntity::EK_Temporary: 6001 case InitializedEntity::EK_RelatedResult: 6002 case InitializedEntity::EK_Binding: 6003 return true; 6004 } 6005 6006 llvm_unreachable("missed an InitializedEntity kind?"); 6007 } 6008 6009 /// Whether the given entity, when initialized with an object 6010 /// created for that initialization, requires destruction. 6011 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6012 switch (Entity.getKind()) { 6013 case InitializedEntity::EK_Result: 6014 case InitializedEntity::EK_StmtExprResult: 6015 case InitializedEntity::EK_New: 6016 case InitializedEntity::EK_Base: 6017 case InitializedEntity::EK_Delegating: 6018 case InitializedEntity::EK_VectorElement: 6019 case InitializedEntity::EK_ComplexElement: 6020 case InitializedEntity::EK_BlockElement: 6021 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6022 case InitializedEntity::EK_LambdaCapture: 6023 return false; 6024 6025 case InitializedEntity::EK_Member: 6026 case InitializedEntity::EK_Binding: 6027 case InitializedEntity::EK_Variable: 6028 case InitializedEntity::EK_Parameter: 6029 case InitializedEntity::EK_Parameter_CF_Audited: 6030 case InitializedEntity::EK_Temporary: 6031 case InitializedEntity::EK_ArrayElement: 6032 case InitializedEntity::EK_Exception: 6033 case InitializedEntity::EK_CompoundLiteralInit: 6034 case InitializedEntity::EK_RelatedResult: 6035 return true; 6036 } 6037 6038 llvm_unreachable("missed an InitializedEntity kind?"); 6039 } 6040 6041 /// Get the location at which initialization diagnostics should appear. 6042 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6043 Expr *Initializer) { 6044 switch (Entity.getKind()) { 6045 case InitializedEntity::EK_Result: 6046 case InitializedEntity::EK_StmtExprResult: 6047 return Entity.getReturnLoc(); 6048 6049 case InitializedEntity::EK_Exception: 6050 return Entity.getThrowLoc(); 6051 6052 case InitializedEntity::EK_Variable: 6053 case InitializedEntity::EK_Binding: 6054 return Entity.getDecl()->getLocation(); 6055 6056 case InitializedEntity::EK_LambdaCapture: 6057 return Entity.getCaptureLoc(); 6058 6059 case InitializedEntity::EK_ArrayElement: 6060 case InitializedEntity::EK_Member: 6061 case InitializedEntity::EK_Parameter: 6062 case InitializedEntity::EK_Parameter_CF_Audited: 6063 case InitializedEntity::EK_Temporary: 6064 case InitializedEntity::EK_New: 6065 case InitializedEntity::EK_Base: 6066 case InitializedEntity::EK_Delegating: 6067 case InitializedEntity::EK_VectorElement: 6068 case InitializedEntity::EK_ComplexElement: 6069 case InitializedEntity::EK_BlockElement: 6070 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6071 case InitializedEntity::EK_CompoundLiteralInit: 6072 case InitializedEntity::EK_RelatedResult: 6073 return Initializer->getBeginLoc(); 6074 } 6075 llvm_unreachable("missed an InitializedEntity kind?"); 6076 } 6077 6078 /// Make a (potentially elidable) temporary copy of the object 6079 /// provided by the given initializer by calling the appropriate copy 6080 /// constructor. 6081 /// 6082 /// \param S The Sema object used for type-checking. 6083 /// 6084 /// \param T The type of the temporary object, which must either be 6085 /// the type of the initializer expression or a superclass thereof. 6086 /// 6087 /// \param Entity The entity being initialized. 6088 /// 6089 /// \param CurInit The initializer expression. 6090 /// 6091 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6092 /// is permitted in C++03 (but not C++0x) when binding a reference to 6093 /// an rvalue. 6094 /// 6095 /// \returns An expression that copies the initializer expression into 6096 /// a temporary object, or an error expression if a copy could not be 6097 /// created. 6098 static ExprResult CopyObject(Sema &S, 6099 QualType T, 6100 const InitializedEntity &Entity, 6101 ExprResult CurInit, 6102 bool IsExtraneousCopy) { 6103 if (CurInit.isInvalid()) 6104 return CurInit; 6105 // Determine which class type we're copying to. 6106 Expr *CurInitExpr = (Expr *)CurInit.get(); 6107 CXXRecordDecl *Class = nullptr; 6108 if (const RecordType *Record = T->getAs<RecordType>()) 6109 Class = cast<CXXRecordDecl>(Record->getDecl()); 6110 if (!Class) 6111 return CurInit; 6112 6113 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6114 6115 // Make sure that the type we are copying is complete. 6116 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6117 return CurInit; 6118 6119 // Perform overload resolution using the class's constructors. Per 6120 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6121 // is direct-initialization. 6122 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6123 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6124 6125 OverloadCandidateSet::iterator Best; 6126 switch (ResolveConstructorOverload( 6127 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6128 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6129 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6130 /*SecondStepOfCopyInit=*/true)) { 6131 case OR_Success: 6132 break; 6133 6134 case OR_No_Viable_Function: 6135 CandidateSet.NoteCandidates( 6136 PartialDiagnosticAt( 6137 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6138 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6139 : diag::err_temp_copy_no_viable) 6140 << (int)Entity.getKind() << CurInitExpr->getType() 6141 << CurInitExpr->getSourceRange()), 6142 S, OCD_AllCandidates, CurInitExpr); 6143 if (!IsExtraneousCopy || S.isSFINAEContext()) 6144 return ExprError(); 6145 return CurInit; 6146 6147 case OR_Ambiguous: 6148 CandidateSet.NoteCandidates( 6149 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6150 << (int)Entity.getKind() 6151 << CurInitExpr->getType() 6152 << CurInitExpr->getSourceRange()), 6153 S, OCD_AmbiguousCandidates, CurInitExpr); 6154 return ExprError(); 6155 6156 case OR_Deleted: 6157 S.Diag(Loc, diag::err_temp_copy_deleted) 6158 << (int)Entity.getKind() << CurInitExpr->getType() 6159 << CurInitExpr->getSourceRange(); 6160 S.NoteDeletedFunction(Best->Function); 6161 return ExprError(); 6162 } 6163 6164 bool HadMultipleCandidates = CandidateSet.size() > 1; 6165 6166 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6167 SmallVector<Expr*, 8> ConstructorArgs; 6168 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6169 6170 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6171 IsExtraneousCopy); 6172 6173 if (IsExtraneousCopy) { 6174 // If this is a totally extraneous copy for C++03 reference 6175 // binding purposes, just return the original initialization 6176 // expression. We don't generate an (elided) copy operation here 6177 // because doing so would require us to pass down a flag to avoid 6178 // infinite recursion, where each step adds another extraneous, 6179 // elidable copy. 6180 6181 // Instantiate the default arguments of any extra parameters in 6182 // the selected copy constructor, as if we were going to create a 6183 // proper call to the copy constructor. 6184 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6185 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6186 if (S.RequireCompleteType(Loc, Parm->getType(), 6187 diag::err_call_incomplete_argument)) 6188 break; 6189 6190 // Build the default argument expression; we don't actually care 6191 // if this succeeds or not, because this routine will complain 6192 // if there was a problem. 6193 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6194 } 6195 6196 return CurInitExpr; 6197 } 6198 6199 // Determine the arguments required to actually perform the 6200 // constructor call (we might have derived-to-base conversions, or 6201 // the copy constructor may have default arguments). 6202 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6203 return ExprError(); 6204 6205 // C++0x [class.copy]p32: 6206 // When certain criteria are met, an implementation is allowed to 6207 // omit the copy/move construction of a class object, even if the 6208 // copy/move constructor and/or destructor for the object have 6209 // side effects. [...] 6210 // - when a temporary class object that has not been bound to a 6211 // reference (12.2) would be copied/moved to a class object 6212 // with the same cv-unqualified type, the copy/move operation 6213 // can be omitted by constructing the temporary object 6214 // directly into the target of the omitted copy/move 6215 // 6216 // Note that the other three bullets are handled elsewhere. Copy 6217 // elision for return statements and throw expressions are handled as part 6218 // of constructor initialization, while copy elision for exception handlers 6219 // is handled by the run-time. 6220 // 6221 // FIXME: If the function parameter is not the same type as the temporary, we 6222 // should still be able to elide the copy, but we don't have a way to 6223 // represent in the AST how much should be elided in this case. 6224 bool Elidable = 6225 CurInitExpr->isTemporaryObject(S.Context, Class) && 6226 S.Context.hasSameUnqualifiedType( 6227 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6228 CurInitExpr->getType()); 6229 6230 // Actually perform the constructor call. 6231 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6232 Elidable, 6233 ConstructorArgs, 6234 HadMultipleCandidates, 6235 /*ListInit*/ false, 6236 /*StdInitListInit*/ false, 6237 /*ZeroInit*/ false, 6238 CXXConstructExpr::CK_Complete, 6239 SourceRange()); 6240 6241 // If we're supposed to bind temporaries, do so. 6242 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6243 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6244 return CurInit; 6245 } 6246 6247 /// Check whether elidable copy construction for binding a reference to 6248 /// a temporary would have succeeded if we were building in C++98 mode, for 6249 /// -Wc++98-compat. 6250 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6251 const InitializedEntity &Entity, 6252 Expr *CurInitExpr) { 6253 assert(S.getLangOpts().CPlusPlus11); 6254 6255 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6256 if (!Record) 6257 return; 6258 6259 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6260 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6261 return; 6262 6263 // Find constructors which would have been considered. 6264 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6265 DeclContext::lookup_result Ctors = 6266 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6267 6268 // Perform overload resolution. 6269 OverloadCandidateSet::iterator Best; 6270 OverloadingResult OR = ResolveConstructorOverload( 6271 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6272 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6273 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6274 /*SecondStepOfCopyInit=*/true); 6275 6276 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6277 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6278 << CurInitExpr->getSourceRange(); 6279 6280 switch (OR) { 6281 case OR_Success: 6282 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6283 Best->FoundDecl, Entity, Diag); 6284 // FIXME: Check default arguments as far as that's possible. 6285 break; 6286 6287 case OR_No_Viable_Function: 6288 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6289 OCD_AllCandidates, CurInitExpr); 6290 break; 6291 6292 case OR_Ambiguous: 6293 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6294 OCD_AmbiguousCandidates, CurInitExpr); 6295 break; 6296 6297 case OR_Deleted: 6298 S.Diag(Loc, Diag); 6299 S.NoteDeletedFunction(Best->Function); 6300 break; 6301 } 6302 } 6303 6304 void InitializationSequence::PrintInitLocationNote(Sema &S, 6305 const InitializedEntity &Entity) { 6306 if (Entity.isParameterKind() && Entity.getDecl()) { 6307 if (Entity.getDecl()->getLocation().isInvalid()) 6308 return; 6309 6310 if (Entity.getDecl()->getDeclName()) 6311 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6312 << Entity.getDecl()->getDeclName(); 6313 else 6314 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6315 } 6316 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6317 Entity.getMethodDecl()) 6318 S.Diag(Entity.getMethodDecl()->getLocation(), 6319 diag::note_method_return_type_change) 6320 << Entity.getMethodDecl()->getDeclName(); 6321 } 6322 6323 /// Returns true if the parameters describe a constructor initialization of 6324 /// an explicit temporary object, e.g. "Point(x, y)". 6325 static bool isExplicitTemporary(const InitializedEntity &Entity, 6326 const InitializationKind &Kind, 6327 unsigned NumArgs) { 6328 switch (Entity.getKind()) { 6329 case InitializedEntity::EK_Temporary: 6330 case InitializedEntity::EK_CompoundLiteralInit: 6331 case InitializedEntity::EK_RelatedResult: 6332 break; 6333 default: 6334 return false; 6335 } 6336 6337 switch (Kind.getKind()) { 6338 case InitializationKind::IK_DirectList: 6339 return true; 6340 // FIXME: Hack to work around cast weirdness. 6341 case InitializationKind::IK_Direct: 6342 case InitializationKind::IK_Value: 6343 return NumArgs != 1; 6344 default: 6345 return false; 6346 } 6347 } 6348 6349 static ExprResult 6350 PerformConstructorInitialization(Sema &S, 6351 const InitializedEntity &Entity, 6352 const InitializationKind &Kind, 6353 MultiExprArg Args, 6354 const InitializationSequence::Step& Step, 6355 bool &ConstructorInitRequiresZeroInit, 6356 bool IsListInitialization, 6357 bool IsStdInitListInitialization, 6358 SourceLocation LBraceLoc, 6359 SourceLocation RBraceLoc) { 6360 unsigned NumArgs = Args.size(); 6361 CXXConstructorDecl *Constructor 6362 = cast<CXXConstructorDecl>(Step.Function.Function); 6363 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6364 6365 // Build a call to the selected constructor. 6366 SmallVector<Expr*, 8> ConstructorArgs; 6367 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6368 ? Kind.getEqualLoc() 6369 : Kind.getLocation(); 6370 6371 if (Kind.getKind() == InitializationKind::IK_Default) { 6372 // Force even a trivial, implicit default constructor to be 6373 // semantically checked. We do this explicitly because we don't build 6374 // the definition for completely trivial constructors. 6375 assert(Constructor->getParent() && "No parent class for constructor."); 6376 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6377 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6378 S.runWithSufficientStackSpace(Loc, [&] { 6379 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6380 }); 6381 } 6382 } 6383 6384 ExprResult CurInit((Expr *)nullptr); 6385 6386 // C++ [over.match.copy]p1: 6387 // - When initializing a temporary to be bound to the first parameter 6388 // of a constructor that takes a reference to possibly cv-qualified 6389 // T as its first argument, called with a single argument in the 6390 // context of direct-initialization, explicit conversion functions 6391 // are also considered. 6392 bool AllowExplicitConv = 6393 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6394 hasCopyOrMoveCtorParam(S.Context, 6395 getConstructorInfo(Step.Function.FoundDecl)); 6396 6397 // Determine the arguments required to actually perform the constructor 6398 // call. 6399 if (S.CompleteConstructorCall(Constructor, Args, 6400 Loc, ConstructorArgs, 6401 AllowExplicitConv, 6402 IsListInitialization)) 6403 return ExprError(); 6404 6405 6406 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6407 // An explicitly-constructed temporary, e.g., X(1, 2). 6408 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6409 return ExprError(); 6410 6411 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6412 if (!TSInfo) 6413 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6414 SourceRange ParenOrBraceRange = 6415 (Kind.getKind() == InitializationKind::IK_DirectList) 6416 ? SourceRange(LBraceLoc, RBraceLoc) 6417 : Kind.getParenOrBraceRange(); 6418 6419 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6420 Step.Function.FoundDecl.getDecl())) { 6421 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6422 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6423 return ExprError(); 6424 } 6425 S.MarkFunctionReferenced(Loc, Constructor); 6426 6427 CurInit = CXXTemporaryObjectExpr::Create( 6428 S.Context, Constructor, 6429 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6430 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6431 IsListInitialization, IsStdInitListInitialization, 6432 ConstructorInitRequiresZeroInit); 6433 } else { 6434 CXXConstructExpr::ConstructionKind ConstructKind = 6435 CXXConstructExpr::CK_Complete; 6436 6437 if (Entity.getKind() == InitializedEntity::EK_Base) { 6438 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6439 CXXConstructExpr::CK_VirtualBase : 6440 CXXConstructExpr::CK_NonVirtualBase; 6441 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6442 ConstructKind = CXXConstructExpr::CK_Delegating; 6443 } 6444 6445 // Only get the parenthesis or brace range if it is a list initialization or 6446 // direct construction. 6447 SourceRange ParenOrBraceRange; 6448 if (IsListInitialization) 6449 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6450 else if (Kind.getKind() == InitializationKind::IK_Direct) 6451 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6452 6453 // If the entity allows NRVO, mark the construction as elidable 6454 // unconditionally. 6455 if (Entity.allowsNRVO()) 6456 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6457 Step.Function.FoundDecl, 6458 Constructor, /*Elidable=*/true, 6459 ConstructorArgs, 6460 HadMultipleCandidates, 6461 IsListInitialization, 6462 IsStdInitListInitialization, 6463 ConstructorInitRequiresZeroInit, 6464 ConstructKind, 6465 ParenOrBraceRange); 6466 else 6467 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6468 Step.Function.FoundDecl, 6469 Constructor, 6470 ConstructorArgs, 6471 HadMultipleCandidates, 6472 IsListInitialization, 6473 IsStdInitListInitialization, 6474 ConstructorInitRequiresZeroInit, 6475 ConstructKind, 6476 ParenOrBraceRange); 6477 } 6478 if (CurInit.isInvalid()) 6479 return ExprError(); 6480 6481 // Only check access if all of that succeeded. 6482 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6483 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6484 return ExprError(); 6485 6486 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6487 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6488 return ExprError(); 6489 6490 if (shouldBindAsTemporary(Entity)) 6491 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6492 6493 return CurInit; 6494 } 6495 6496 namespace { 6497 enum LifetimeKind { 6498 /// The lifetime of a temporary bound to this entity ends at the end of the 6499 /// full-expression, and that's (probably) fine. 6500 LK_FullExpression, 6501 6502 /// The lifetime of a temporary bound to this entity is extended to the 6503 /// lifeitme of the entity itself. 6504 LK_Extended, 6505 6506 /// The lifetime of a temporary bound to this entity probably ends too soon, 6507 /// because the entity is allocated in a new-expression. 6508 LK_New, 6509 6510 /// The lifetime of a temporary bound to this entity ends too soon, because 6511 /// the entity is a return object. 6512 LK_Return, 6513 6514 /// The lifetime of a temporary bound to this entity ends too soon, because 6515 /// the entity is the result of a statement expression. 6516 LK_StmtExprResult, 6517 6518 /// This is a mem-initializer: if it would extend a temporary (other than via 6519 /// a default member initializer), the program is ill-formed. 6520 LK_MemInitializer, 6521 }; 6522 using LifetimeResult = 6523 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6524 } 6525 6526 /// Determine the declaration which an initialized entity ultimately refers to, 6527 /// for the purpose of lifetime-extending a temporary bound to a reference in 6528 /// the initialization of \p Entity. 6529 static LifetimeResult getEntityLifetime( 6530 const InitializedEntity *Entity, 6531 const InitializedEntity *InitField = nullptr) { 6532 // C++11 [class.temporary]p5: 6533 switch (Entity->getKind()) { 6534 case InitializedEntity::EK_Variable: 6535 // The temporary [...] persists for the lifetime of the reference 6536 return {Entity, LK_Extended}; 6537 6538 case InitializedEntity::EK_Member: 6539 // For subobjects, we look at the complete object. 6540 if (Entity->getParent()) 6541 return getEntityLifetime(Entity->getParent(), Entity); 6542 6543 // except: 6544 // C++17 [class.base.init]p8: 6545 // A temporary expression bound to a reference member in a 6546 // mem-initializer is ill-formed. 6547 // C++17 [class.base.init]p11: 6548 // A temporary expression bound to a reference member from a 6549 // default member initializer is ill-formed. 6550 // 6551 // The context of p11 and its example suggest that it's only the use of a 6552 // default member initializer from a constructor that makes the program 6553 // ill-formed, not its mere existence, and that it can even be used by 6554 // aggregate initialization. 6555 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6556 : LK_MemInitializer}; 6557 6558 case InitializedEntity::EK_Binding: 6559 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6560 // type. 6561 return {Entity, LK_Extended}; 6562 6563 case InitializedEntity::EK_Parameter: 6564 case InitializedEntity::EK_Parameter_CF_Audited: 6565 // -- A temporary bound to a reference parameter in a function call 6566 // persists until the completion of the full-expression containing 6567 // the call. 6568 return {nullptr, LK_FullExpression}; 6569 6570 case InitializedEntity::EK_Result: 6571 // -- The lifetime of a temporary bound to the returned value in a 6572 // function return statement is not extended; the temporary is 6573 // destroyed at the end of the full-expression in the return statement. 6574 return {nullptr, LK_Return}; 6575 6576 case InitializedEntity::EK_StmtExprResult: 6577 // FIXME: Should we lifetime-extend through the result of a statement 6578 // expression? 6579 return {nullptr, LK_StmtExprResult}; 6580 6581 case InitializedEntity::EK_New: 6582 // -- A temporary bound to a reference in a new-initializer persists 6583 // until the completion of the full-expression containing the 6584 // new-initializer. 6585 return {nullptr, LK_New}; 6586 6587 case InitializedEntity::EK_Temporary: 6588 case InitializedEntity::EK_CompoundLiteralInit: 6589 case InitializedEntity::EK_RelatedResult: 6590 // We don't yet know the storage duration of the surrounding temporary. 6591 // Assume it's got full-expression duration for now, it will patch up our 6592 // storage duration if that's not correct. 6593 return {nullptr, LK_FullExpression}; 6594 6595 case InitializedEntity::EK_ArrayElement: 6596 // For subobjects, we look at the complete object. 6597 return getEntityLifetime(Entity->getParent(), InitField); 6598 6599 case InitializedEntity::EK_Base: 6600 // For subobjects, we look at the complete object. 6601 if (Entity->getParent()) 6602 return getEntityLifetime(Entity->getParent(), InitField); 6603 return {InitField, LK_MemInitializer}; 6604 6605 case InitializedEntity::EK_Delegating: 6606 // We can reach this case for aggregate initialization in a constructor: 6607 // struct A { int &&r; }; 6608 // struct B : A { B() : A{0} {} }; 6609 // In this case, use the outermost field decl as the context. 6610 return {InitField, LK_MemInitializer}; 6611 6612 case InitializedEntity::EK_BlockElement: 6613 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6614 case InitializedEntity::EK_LambdaCapture: 6615 case InitializedEntity::EK_VectorElement: 6616 case InitializedEntity::EK_ComplexElement: 6617 return {nullptr, LK_FullExpression}; 6618 6619 case InitializedEntity::EK_Exception: 6620 // FIXME: Can we diagnose lifetime problems with exceptions? 6621 return {nullptr, LK_FullExpression}; 6622 } 6623 llvm_unreachable("unknown entity kind"); 6624 } 6625 6626 namespace { 6627 enum ReferenceKind { 6628 /// Lifetime would be extended by a reference binding to a temporary. 6629 RK_ReferenceBinding, 6630 /// Lifetime would be extended by a std::initializer_list object binding to 6631 /// its backing array. 6632 RK_StdInitializerList, 6633 }; 6634 6635 /// A temporary or local variable. This will be one of: 6636 /// * A MaterializeTemporaryExpr. 6637 /// * A DeclRefExpr whose declaration is a local. 6638 /// * An AddrLabelExpr. 6639 /// * A BlockExpr for a block with captures. 6640 using Local = Expr*; 6641 6642 /// Expressions we stepped over when looking for the local state. Any steps 6643 /// that would inhibit lifetime extension or take us out of subexpressions of 6644 /// the initializer are included. 6645 struct IndirectLocalPathEntry { 6646 enum EntryKind { 6647 DefaultInit, 6648 AddressOf, 6649 VarInit, 6650 LValToRVal, 6651 LifetimeBoundCall, 6652 GslReferenceInit, 6653 GslPointerInit 6654 } Kind; 6655 Expr *E; 6656 const Decl *D = nullptr; 6657 IndirectLocalPathEntry() {} 6658 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6659 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6660 : Kind(K), E(E), D(D) {} 6661 }; 6662 6663 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6664 6665 struct RevertToOldSizeRAII { 6666 IndirectLocalPath &Path; 6667 unsigned OldSize = Path.size(); 6668 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6669 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6670 }; 6671 6672 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6673 ReferenceKind RK)>; 6674 } 6675 6676 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6677 for (auto E : Path) 6678 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6679 return true; 6680 return false; 6681 } 6682 6683 static bool pathContainsInit(IndirectLocalPath &Path) { 6684 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6685 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6686 E.Kind == IndirectLocalPathEntry::VarInit; 6687 }); 6688 } 6689 6690 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6691 Expr *Init, LocalVisitor Visit, 6692 bool RevisitSubinits, 6693 bool EnableLifetimeWarnings); 6694 6695 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6696 Expr *Init, ReferenceKind RK, 6697 LocalVisitor Visit, 6698 bool EnableLifetimeWarnings); 6699 6700 template <typename T> static bool isRecordWithAttr(QualType Type) { 6701 if (auto *RD = Type->getAsCXXRecordDecl()) 6702 return RD->hasAttr<T>(); 6703 return false; 6704 } 6705 6706 // Decl::isInStdNamespace will return false for iterators in some STL 6707 // implementations due to them being defined in a namespace outside of the std 6708 // namespace. 6709 static bool isInStlNamespace(const Decl *D) { 6710 const DeclContext *DC = D->getDeclContext(); 6711 if (!DC) 6712 return false; 6713 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6714 if (const IdentifierInfo *II = ND->getIdentifier()) { 6715 StringRef Name = II->getName(); 6716 if (Name.size() >= 2 && Name.front() == '_' && 6717 (Name[1] == '_' || isUppercase(Name[1]))) 6718 return true; 6719 } 6720 6721 return DC->isStdNamespace(); 6722 } 6723 6724 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6725 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6726 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6727 return true; 6728 if (!isInStlNamespace(Callee->getParent())) 6729 return false; 6730 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6731 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6732 return false; 6733 if (Callee->getReturnType()->isPointerType() || 6734 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6735 if (!Callee->getIdentifier()) 6736 return false; 6737 return llvm::StringSwitch<bool>(Callee->getName()) 6738 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6739 .Cases("end", "rend", "cend", "crend", true) 6740 .Cases("c_str", "data", "get", true) 6741 // Map and set types. 6742 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6743 .Default(false); 6744 } else if (Callee->getReturnType()->isReferenceType()) { 6745 if (!Callee->getIdentifier()) { 6746 auto OO = Callee->getOverloadedOperator(); 6747 return OO == OverloadedOperatorKind::OO_Subscript || 6748 OO == OverloadedOperatorKind::OO_Star; 6749 } 6750 return llvm::StringSwitch<bool>(Callee->getName()) 6751 .Cases("front", "back", "at", "top", "value", true) 6752 .Default(false); 6753 } 6754 return false; 6755 } 6756 6757 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6758 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6759 return false; 6760 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6761 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6762 return false; 6763 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6764 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6765 return false; 6766 if (FD->getReturnType()->isPointerType() || 6767 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6768 return llvm::StringSwitch<bool>(FD->getName()) 6769 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6770 .Cases("end", "rend", "cend", "crend", true) 6771 .Case("data", true) 6772 .Default(false); 6773 } else if (FD->getReturnType()->isReferenceType()) { 6774 return llvm::StringSwitch<bool>(FD->getName()) 6775 .Cases("get", "any_cast", true) 6776 .Default(false); 6777 } 6778 return false; 6779 } 6780 6781 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6782 LocalVisitor Visit) { 6783 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6784 // We are not interested in the temporary base objects of gsl Pointers: 6785 // Temp().ptr; // Here ptr might not dangle. 6786 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6787 return; 6788 // Once we initialized a value with a reference, it can no longer dangle. 6789 if (!Value) { 6790 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6791 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6792 continue; 6793 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6794 return; 6795 break; 6796 } 6797 } 6798 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6799 : IndirectLocalPathEntry::GslReferenceInit, 6800 Arg, D}); 6801 if (Arg->isGLValue()) 6802 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6803 Visit, 6804 /*EnableLifetimeWarnings=*/true); 6805 else 6806 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6807 /*EnableLifetimeWarnings=*/true); 6808 Path.pop_back(); 6809 }; 6810 6811 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6812 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6813 if (MD && shouldTrackImplicitObjectArg(MD)) 6814 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6815 !MD->getReturnType()->isReferenceType()); 6816 return; 6817 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6818 FunctionDecl *Callee = OCE->getDirectCallee(); 6819 if (Callee && Callee->isCXXInstanceMember() && 6820 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6821 VisitPointerArg(Callee, OCE->getArg(0), 6822 !Callee->getReturnType()->isReferenceType()); 6823 return; 6824 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6825 FunctionDecl *Callee = CE->getDirectCallee(); 6826 if (Callee && shouldTrackFirstArgument(Callee)) 6827 VisitPointerArg(Callee, CE->getArg(0), 6828 !Callee->getReturnType()->isReferenceType()); 6829 return; 6830 } 6831 6832 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6833 const auto *Ctor = CCE->getConstructor(); 6834 const CXXRecordDecl *RD = Ctor->getParent(); 6835 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6836 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6837 } 6838 } 6839 6840 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6841 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6842 if (!TSI) 6843 return false; 6844 // Don't declare this variable in the second operand of the for-statement; 6845 // GCC miscompiles that by ending its lifetime before evaluating the 6846 // third operand. See gcc.gnu.org/PR86769. 6847 AttributedTypeLoc ATL; 6848 for (TypeLoc TL = TSI->getTypeLoc(); 6849 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6850 TL = ATL.getModifiedLoc()) { 6851 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6852 return true; 6853 } 6854 return false; 6855 } 6856 6857 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6858 LocalVisitor Visit) { 6859 const FunctionDecl *Callee; 6860 ArrayRef<Expr*> Args; 6861 6862 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6863 Callee = CE->getDirectCallee(); 6864 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6865 } else { 6866 auto *CCE = cast<CXXConstructExpr>(Call); 6867 Callee = CCE->getConstructor(); 6868 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6869 } 6870 if (!Callee) 6871 return; 6872 6873 Expr *ObjectArg = nullptr; 6874 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6875 ObjectArg = Args[0]; 6876 Args = Args.slice(1); 6877 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6878 ObjectArg = MCE->getImplicitObjectArgument(); 6879 } 6880 6881 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6882 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6883 if (Arg->isGLValue()) 6884 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6885 Visit, 6886 /*EnableLifetimeWarnings=*/false); 6887 else 6888 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6889 /*EnableLifetimeWarnings=*/false); 6890 Path.pop_back(); 6891 }; 6892 6893 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6894 VisitLifetimeBoundArg(Callee, ObjectArg); 6895 6896 for (unsigned I = 0, 6897 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6898 I != N; ++I) { 6899 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6900 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6901 } 6902 } 6903 6904 /// Visit the locals that would be reachable through a reference bound to the 6905 /// glvalue expression \c Init. 6906 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6907 Expr *Init, ReferenceKind RK, 6908 LocalVisitor Visit, 6909 bool EnableLifetimeWarnings) { 6910 RevertToOldSizeRAII RAII(Path); 6911 6912 // Walk past any constructs which we can lifetime-extend across. 6913 Expr *Old; 6914 do { 6915 Old = Init; 6916 6917 if (auto *FE = dyn_cast<FullExpr>(Init)) 6918 Init = FE->getSubExpr(); 6919 6920 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6921 // If this is just redundant braces around an initializer, step over it. 6922 if (ILE->isTransparent()) 6923 Init = ILE->getInit(0); 6924 } 6925 6926 // Step over any subobject adjustments; we may have a materialized 6927 // temporary inside them. 6928 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6929 6930 // Per current approach for DR1376, look through casts to reference type 6931 // when performing lifetime extension. 6932 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6933 if (CE->getSubExpr()->isGLValue()) 6934 Init = CE->getSubExpr(); 6935 6936 // Per the current approach for DR1299, look through array element access 6937 // on array glvalues when performing lifetime extension. 6938 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6939 Init = ASE->getBase(); 6940 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6941 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6942 Init = ICE->getSubExpr(); 6943 else 6944 // We can't lifetime extend through this but we might still find some 6945 // retained temporaries. 6946 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 6947 EnableLifetimeWarnings); 6948 } 6949 6950 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6951 // constructor inherits one as an implicit mem-initializer. 6952 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6953 Path.push_back( 6954 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6955 Init = DIE->getExpr(); 6956 } 6957 } while (Init != Old); 6958 6959 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6960 if (Visit(Path, Local(MTE), RK)) 6961 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 6962 EnableLifetimeWarnings); 6963 } 6964 6965 if (isa<CallExpr>(Init)) { 6966 if (EnableLifetimeWarnings) 6967 handleGslAnnotatedTypes(Path, Init, Visit); 6968 return visitLifetimeBoundArguments(Path, Init, Visit); 6969 } 6970 6971 switch (Init->getStmtClass()) { 6972 case Stmt::DeclRefExprClass: { 6973 // If we find the name of a local non-reference parameter, we could have a 6974 // lifetime problem. 6975 auto *DRE = cast<DeclRefExpr>(Init); 6976 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6977 if (VD && VD->hasLocalStorage() && 6978 !DRE->refersToEnclosingVariableOrCapture()) { 6979 if (!VD->getType()->isReferenceType()) { 6980 Visit(Path, Local(DRE), RK); 6981 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6982 // The lifetime of a reference parameter is unknown; assume it's OK 6983 // for now. 6984 break; 6985 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6986 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6987 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6988 RK_ReferenceBinding, Visit, 6989 EnableLifetimeWarnings); 6990 } 6991 } 6992 break; 6993 } 6994 6995 case Stmt::UnaryOperatorClass: { 6996 // The only unary operator that make sense to handle here 6997 // is Deref. All others don't resolve to a "name." This includes 6998 // handling all sorts of rvalues passed to a unary operator. 6999 const UnaryOperator *U = cast<UnaryOperator>(Init); 7000 if (U->getOpcode() == UO_Deref) 7001 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7002 EnableLifetimeWarnings); 7003 break; 7004 } 7005 7006 case Stmt::OMPArraySectionExprClass: { 7007 visitLocalsRetainedByInitializer(Path, 7008 cast<OMPArraySectionExpr>(Init)->getBase(), 7009 Visit, true, EnableLifetimeWarnings); 7010 break; 7011 } 7012 7013 case Stmt::ConditionalOperatorClass: 7014 case Stmt::BinaryConditionalOperatorClass: { 7015 auto *C = cast<AbstractConditionalOperator>(Init); 7016 if (!C->getTrueExpr()->getType()->isVoidType()) 7017 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7018 EnableLifetimeWarnings); 7019 if (!C->getFalseExpr()->getType()->isVoidType()) 7020 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7021 EnableLifetimeWarnings); 7022 break; 7023 } 7024 7025 // FIXME: Visit the left-hand side of an -> or ->*. 7026 7027 default: 7028 break; 7029 } 7030 } 7031 7032 /// Visit the locals that would be reachable through an object initialized by 7033 /// the prvalue expression \c Init. 7034 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7035 Expr *Init, LocalVisitor Visit, 7036 bool RevisitSubinits, 7037 bool EnableLifetimeWarnings) { 7038 RevertToOldSizeRAII RAII(Path); 7039 7040 Expr *Old; 7041 do { 7042 Old = Init; 7043 7044 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7045 // constructor inherits one as an implicit mem-initializer. 7046 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7047 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7048 Init = DIE->getExpr(); 7049 } 7050 7051 if (auto *FE = dyn_cast<FullExpr>(Init)) 7052 Init = FE->getSubExpr(); 7053 7054 // Dig out the expression which constructs the extended temporary. 7055 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7056 7057 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7058 Init = BTE->getSubExpr(); 7059 7060 Init = Init->IgnoreParens(); 7061 7062 // Step over value-preserving rvalue casts. 7063 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7064 switch (CE->getCastKind()) { 7065 case CK_LValueToRValue: 7066 // If we can match the lvalue to a const object, we can look at its 7067 // initializer. 7068 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7069 return visitLocalsRetainedByReferenceBinding( 7070 Path, Init, RK_ReferenceBinding, 7071 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7072 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7073 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7074 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7075 !isVarOnPath(Path, VD)) { 7076 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7077 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7078 EnableLifetimeWarnings); 7079 } 7080 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7081 if (MTE->getType().isConstQualified()) 7082 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7083 true, EnableLifetimeWarnings); 7084 } 7085 return false; 7086 }, EnableLifetimeWarnings); 7087 7088 // We assume that objects can be retained by pointers cast to integers, 7089 // but not if the integer is cast to floating-point type or to _Complex. 7090 // We assume that casts to 'bool' do not preserve enough information to 7091 // retain a local object. 7092 case CK_NoOp: 7093 case CK_BitCast: 7094 case CK_BaseToDerived: 7095 case CK_DerivedToBase: 7096 case CK_UncheckedDerivedToBase: 7097 case CK_Dynamic: 7098 case CK_ToUnion: 7099 case CK_UserDefinedConversion: 7100 case CK_ConstructorConversion: 7101 case CK_IntegralToPointer: 7102 case CK_PointerToIntegral: 7103 case CK_VectorSplat: 7104 case CK_IntegralCast: 7105 case CK_CPointerToObjCPointerCast: 7106 case CK_BlockPointerToObjCPointerCast: 7107 case CK_AnyPointerToBlockPointerCast: 7108 case CK_AddressSpaceConversion: 7109 break; 7110 7111 case CK_ArrayToPointerDecay: 7112 // Model array-to-pointer decay as taking the address of the array 7113 // lvalue. 7114 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7115 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7116 RK_ReferenceBinding, Visit, 7117 EnableLifetimeWarnings); 7118 7119 default: 7120 return; 7121 } 7122 7123 Init = CE->getSubExpr(); 7124 } 7125 } while (Old != Init); 7126 7127 // C++17 [dcl.init.list]p6: 7128 // initializing an initializer_list object from the array extends the 7129 // lifetime of the array exactly like binding a reference to a temporary. 7130 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7131 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7132 RK_StdInitializerList, Visit, 7133 EnableLifetimeWarnings); 7134 7135 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7136 // We already visited the elements of this initializer list while 7137 // performing the initialization. Don't visit them again unless we've 7138 // changed the lifetime of the initialized entity. 7139 if (!RevisitSubinits) 7140 return; 7141 7142 if (ILE->isTransparent()) 7143 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7144 RevisitSubinits, 7145 EnableLifetimeWarnings); 7146 7147 if (ILE->getType()->isArrayType()) { 7148 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7149 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7150 RevisitSubinits, 7151 EnableLifetimeWarnings); 7152 return; 7153 } 7154 7155 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7156 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7157 7158 // If we lifetime-extend a braced initializer which is initializing an 7159 // aggregate, and that aggregate contains reference members which are 7160 // bound to temporaries, those temporaries are also lifetime-extended. 7161 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7162 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7163 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7164 RK_ReferenceBinding, Visit, 7165 EnableLifetimeWarnings); 7166 else { 7167 unsigned Index = 0; 7168 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7169 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7170 RevisitSubinits, 7171 EnableLifetimeWarnings); 7172 for (const auto *I : RD->fields()) { 7173 if (Index >= ILE->getNumInits()) 7174 break; 7175 if (I->isUnnamedBitfield()) 7176 continue; 7177 Expr *SubInit = ILE->getInit(Index); 7178 if (I->getType()->isReferenceType()) 7179 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7180 RK_ReferenceBinding, Visit, 7181 EnableLifetimeWarnings); 7182 else 7183 // This might be either aggregate-initialization of a member or 7184 // initialization of a std::initializer_list object. Regardless, 7185 // we should recursively lifetime-extend that initializer. 7186 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7187 RevisitSubinits, 7188 EnableLifetimeWarnings); 7189 ++Index; 7190 } 7191 } 7192 } 7193 return; 7194 } 7195 7196 // The lifetime of an init-capture is that of the closure object constructed 7197 // by a lambda-expression. 7198 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7199 for (Expr *E : LE->capture_inits()) { 7200 if (!E) 7201 continue; 7202 if (E->isGLValue()) 7203 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7204 Visit, EnableLifetimeWarnings); 7205 else 7206 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7207 EnableLifetimeWarnings); 7208 } 7209 } 7210 7211 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7212 if (EnableLifetimeWarnings) 7213 handleGslAnnotatedTypes(Path, Init, Visit); 7214 return visitLifetimeBoundArguments(Path, Init, Visit); 7215 } 7216 7217 switch (Init->getStmtClass()) { 7218 case Stmt::UnaryOperatorClass: { 7219 auto *UO = cast<UnaryOperator>(Init); 7220 // If the initializer is the address of a local, we could have a lifetime 7221 // problem. 7222 if (UO->getOpcode() == UO_AddrOf) { 7223 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7224 // it. Don't produce a redundant warning about the lifetime of the 7225 // temporary. 7226 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7227 return; 7228 7229 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7230 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7231 RK_ReferenceBinding, Visit, 7232 EnableLifetimeWarnings); 7233 } 7234 break; 7235 } 7236 7237 case Stmt::BinaryOperatorClass: { 7238 // Handle pointer arithmetic. 7239 auto *BO = cast<BinaryOperator>(Init); 7240 BinaryOperatorKind BOK = BO->getOpcode(); 7241 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7242 break; 7243 7244 if (BO->getLHS()->getType()->isPointerType()) 7245 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7246 EnableLifetimeWarnings); 7247 else if (BO->getRHS()->getType()->isPointerType()) 7248 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7249 EnableLifetimeWarnings); 7250 break; 7251 } 7252 7253 case Stmt::ConditionalOperatorClass: 7254 case Stmt::BinaryConditionalOperatorClass: { 7255 auto *C = cast<AbstractConditionalOperator>(Init); 7256 // In C++, we can have a throw-expression operand, which has 'void' type 7257 // and isn't interesting from a lifetime perspective. 7258 if (!C->getTrueExpr()->getType()->isVoidType()) 7259 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7260 EnableLifetimeWarnings); 7261 if (!C->getFalseExpr()->getType()->isVoidType()) 7262 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7263 EnableLifetimeWarnings); 7264 break; 7265 } 7266 7267 case Stmt::BlockExprClass: 7268 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7269 // This is a local block, whose lifetime is that of the function. 7270 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7271 } 7272 break; 7273 7274 case Stmt::AddrLabelExprClass: 7275 // We want to warn if the address of a label would escape the function. 7276 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7277 break; 7278 7279 default: 7280 break; 7281 } 7282 } 7283 7284 /// Determine whether this is an indirect path to a temporary that we are 7285 /// supposed to lifetime-extend along (but don't). 7286 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7287 for (auto Elem : Path) { 7288 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7289 return false; 7290 } 7291 return true; 7292 } 7293 7294 /// Find the range for the first interesting entry in the path at or after I. 7295 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7296 Expr *E) { 7297 for (unsigned N = Path.size(); I != N; ++I) { 7298 switch (Path[I].Kind) { 7299 case IndirectLocalPathEntry::AddressOf: 7300 case IndirectLocalPathEntry::LValToRVal: 7301 case IndirectLocalPathEntry::LifetimeBoundCall: 7302 case IndirectLocalPathEntry::GslReferenceInit: 7303 case IndirectLocalPathEntry::GslPointerInit: 7304 // These exist primarily to mark the path as not permitting or 7305 // supporting lifetime extension. 7306 break; 7307 7308 case IndirectLocalPathEntry::VarInit: 7309 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7310 return SourceRange(); 7311 LLVM_FALLTHROUGH; 7312 case IndirectLocalPathEntry::DefaultInit: 7313 return Path[I].E->getSourceRange(); 7314 } 7315 } 7316 return E->getSourceRange(); 7317 } 7318 7319 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7320 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7321 if (It->Kind == IndirectLocalPathEntry::VarInit) 7322 continue; 7323 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7324 continue; 7325 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7326 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7327 } 7328 return false; 7329 } 7330 7331 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7332 Expr *Init) { 7333 LifetimeResult LR = getEntityLifetime(&Entity); 7334 LifetimeKind LK = LR.getInt(); 7335 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7336 7337 // If this entity doesn't have an interesting lifetime, don't bother looking 7338 // for temporaries within its initializer. 7339 if (LK == LK_FullExpression) 7340 return; 7341 7342 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7343 ReferenceKind RK) -> bool { 7344 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7345 SourceLocation DiagLoc = DiagRange.getBegin(); 7346 7347 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7348 7349 bool IsGslPtrInitWithGslTempOwner = false; 7350 bool IsLocalGslOwner = false; 7351 if (pathOnlyInitializesGslPointer(Path)) { 7352 if (isa<DeclRefExpr>(L)) { 7353 // We do not want to follow the references when returning a pointer originating 7354 // from a local owner to avoid the following false positive: 7355 // int &p = *localUniquePtr; 7356 // someContainer.add(std::move(localUniquePtr)); 7357 // return p; 7358 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7359 if (pathContainsInit(Path) || !IsLocalGslOwner) 7360 return false; 7361 } else { 7362 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7363 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7364 // Skipping a chain of initializing gsl::Pointer annotated objects. 7365 // We are looking only for the final source to find out if it was 7366 // a local or temporary owner or the address of a local variable/param. 7367 if (!IsGslPtrInitWithGslTempOwner) 7368 return true; 7369 } 7370 } 7371 7372 switch (LK) { 7373 case LK_FullExpression: 7374 llvm_unreachable("already handled this"); 7375 7376 case LK_Extended: { 7377 if (!MTE) { 7378 // The initialized entity has lifetime beyond the full-expression, 7379 // and the local entity does too, so don't warn. 7380 // 7381 // FIXME: We should consider warning if a static / thread storage 7382 // duration variable retains an automatic storage duration local. 7383 return false; 7384 } 7385 7386 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7387 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7388 return false; 7389 } 7390 7391 // Lifetime-extend the temporary. 7392 if (Path.empty()) { 7393 // Update the storage duration of the materialized temporary. 7394 // FIXME: Rebuild the expression instead of mutating it. 7395 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7396 ExtendingEntity->allocateManglingNumber()); 7397 // Also visit the temporaries lifetime-extended by this initializer. 7398 return true; 7399 } 7400 7401 if (shouldLifetimeExtendThroughPath(Path)) { 7402 // We're supposed to lifetime-extend the temporary along this path (per 7403 // the resolution of DR1815), but we don't support that yet. 7404 // 7405 // FIXME: Properly handle this situation. Perhaps the easiest approach 7406 // would be to clone the initializer expression on each use that would 7407 // lifetime extend its temporaries. 7408 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7409 << RK << DiagRange; 7410 } else { 7411 // If the path goes through the initialization of a variable or field, 7412 // it can't possibly reach a temporary created in this full-expression. 7413 // We will have already diagnosed any problems with the initializer. 7414 if (pathContainsInit(Path)) 7415 return false; 7416 7417 Diag(DiagLoc, diag::warn_dangling_variable) 7418 << RK << !Entity.getParent() 7419 << ExtendingEntity->getDecl()->isImplicit() 7420 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7421 } 7422 break; 7423 } 7424 7425 case LK_MemInitializer: { 7426 if (isa<MaterializeTemporaryExpr>(L)) { 7427 // Under C++ DR1696, if a mem-initializer (or a default member 7428 // initializer used by the absence of one) would lifetime-extend a 7429 // temporary, the program is ill-formed. 7430 if (auto *ExtendingDecl = 7431 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7432 if (IsGslPtrInitWithGslTempOwner) { 7433 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7434 << ExtendingDecl << DiagRange; 7435 Diag(ExtendingDecl->getLocation(), 7436 diag::note_ref_or_ptr_member_declared_here) 7437 << true; 7438 return false; 7439 } 7440 bool IsSubobjectMember = ExtendingEntity != &Entity; 7441 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7442 ? diag::err_dangling_member 7443 : diag::warn_dangling_member) 7444 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7445 // Don't bother adding a note pointing to the field if we're inside 7446 // its default member initializer; our primary diagnostic points to 7447 // the same place in that case. 7448 if (Path.empty() || 7449 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7450 Diag(ExtendingDecl->getLocation(), 7451 diag::note_lifetime_extending_member_declared_here) 7452 << RK << IsSubobjectMember; 7453 } 7454 } else { 7455 // We have a mem-initializer but no particular field within it; this 7456 // is either a base class or a delegating initializer directly 7457 // initializing the base-class from something that doesn't live long 7458 // enough. 7459 // 7460 // FIXME: Warn on this. 7461 return false; 7462 } 7463 } else { 7464 // Paths via a default initializer can only occur during error recovery 7465 // (there's no other way that a default initializer can refer to a 7466 // local). Don't produce a bogus warning on those cases. 7467 if (pathContainsInit(Path)) 7468 return false; 7469 7470 // Suppress false positives for code like the one below: 7471 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7472 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7473 return false; 7474 7475 auto *DRE = dyn_cast<DeclRefExpr>(L); 7476 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7477 if (!VD) { 7478 // A member was initialized to a local block. 7479 // FIXME: Warn on this. 7480 return false; 7481 } 7482 7483 if (auto *Member = 7484 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7485 bool IsPointer = !Member->getType()->isReferenceType(); 7486 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7487 : diag::warn_bind_ref_member_to_parameter) 7488 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7489 Diag(Member->getLocation(), 7490 diag::note_ref_or_ptr_member_declared_here) 7491 << (unsigned)IsPointer; 7492 } 7493 } 7494 break; 7495 } 7496 7497 case LK_New: 7498 if (isa<MaterializeTemporaryExpr>(L)) { 7499 if (IsGslPtrInitWithGslTempOwner) 7500 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7501 else 7502 Diag(DiagLoc, RK == RK_ReferenceBinding 7503 ? diag::warn_new_dangling_reference 7504 : diag::warn_new_dangling_initializer_list) 7505 << !Entity.getParent() << DiagRange; 7506 } else { 7507 // We can't determine if the allocation outlives the local declaration. 7508 return false; 7509 } 7510 break; 7511 7512 case LK_Return: 7513 case LK_StmtExprResult: 7514 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7515 // We can't determine if the local variable outlives the statement 7516 // expression. 7517 if (LK == LK_StmtExprResult) 7518 return false; 7519 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7520 << Entity.getType()->isReferenceType() << DRE->getDecl() 7521 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7522 } else if (isa<BlockExpr>(L)) { 7523 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7524 } else if (isa<AddrLabelExpr>(L)) { 7525 // Don't warn when returning a label from a statement expression. 7526 // Leaving the scope doesn't end its lifetime. 7527 if (LK == LK_StmtExprResult) 7528 return false; 7529 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7530 } else { 7531 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7532 << Entity.getType()->isReferenceType() << DiagRange; 7533 } 7534 break; 7535 } 7536 7537 for (unsigned I = 0; I != Path.size(); ++I) { 7538 auto Elem = Path[I]; 7539 7540 switch (Elem.Kind) { 7541 case IndirectLocalPathEntry::AddressOf: 7542 case IndirectLocalPathEntry::LValToRVal: 7543 // These exist primarily to mark the path as not permitting or 7544 // supporting lifetime extension. 7545 break; 7546 7547 case IndirectLocalPathEntry::LifetimeBoundCall: 7548 case IndirectLocalPathEntry::GslPointerInit: 7549 case IndirectLocalPathEntry::GslReferenceInit: 7550 // FIXME: Consider adding a note for these. 7551 break; 7552 7553 case IndirectLocalPathEntry::DefaultInit: { 7554 auto *FD = cast<FieldDecl>(Elem.D); 7555 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7556 << FD << nextPathEntryRange(Path, I + 1, L); 7557 break; 7558 } 7559 7560 case IndirectLocalPathEntry::VarInit: 7561 const VarDecl *VD = cast<VarDecl>(Elem.D); 7562 Diag(VD->getLocation(), diag::note_local_var_initializer) 7563 << VD->getType()->isReferenceType() 7564 << VD->isImplicit() << VD->getDeclName() 7565 << nextPathEntryRange(Path, I + 1, L); 7566 break; 7567 } 7568 } 7569 7570 // We didn't lifetime-extend, so don't go any further; we don't need more 7571 // warnings or errors on inner temporaries within this one's initializer. 7572 return false; 7573 }; 7574 7575 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7576 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7577 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7578 if (Init->isGLValue()) 7579 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7580 TemporaryVisitor, 7581 EnableLifetimeWarnings); 7582 else 7583 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7584 EnableLifetimeWarnings); 7585 } 7586 7587 static void DiagnoseNarrowingInInitList(Sema &S, 7588 const ImplicitConversionSequence &ICS, 7589 QualType PreNarrowingType, 7590 QualType EntityType, 7591 const Expr *PostInit); 7592 7593 /// Provide warnings when std::move is used on construction. 7594 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7595 bool IsReturnStmt) { 7596 if (!InitExpr) 7597 return; 7598 7599 if (S.inTemplateInstantiation()) 7600 return; 7601 7602 QualType DestType = InitExpr->getType(); 7603 if (!DestType->isRecordType()) 7604 return; 7605 7606 unsigned DiagID = 0; 7607 if (IsReturnStmt) { 7608 const CXXConstructExpr *CCE = 7609 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7610 if (!CCE || CCE->getNumArgs() != 1) 7611 return; 7612 7613 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7614 return; 7615 7616 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7617 } 7618 7619 // Find the std::move call and get the argument. 7620 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7621 if (!CE || !CE->isCallToStdMove()) 7622 return; 7623 7624 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7625 7626 if (IsReturnStmt) { 7627 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7628 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7629 return; 7630 7631 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7632 if (!VD || !VD->hasLocalStorage()) 7633 return; 7634 7635 // __block variables are not moved implicitly. 7636 if (VD->hasAttr<BlocksAttr>()) 7637 return; 7638 7639 QualType SourceType = VD->getType(); 7640 if (!SourceType->isRecordType()) 7641 return; 7642 7643 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7644 return; 7645 } 7646 7647 // If we're returning a function parameter, copy elision 7648 // is not possible. 7649 if (isa<ParmVarDecl>(VD)) 7650 DiagID = diag::warn_redundant_move_on_return; 7651 else 7652 DiagID = diag::warn_pessimizing_move_on_return; 7653 } else { 7654 DiagID = diag::warn_pessimizing_move_on_initialization; 7655 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7656 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7657 return; 7658 } 7659 7660 S.Diag(CE->getBeginLoc(), DiagID); 7661 7662 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7663 // is within a macro. 7664 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7665 if (CallBegin.isMacroID()) 7666 return; 7667 SourceLocation RParen = CE->getRParenLoc(); 7668 if (RParen.isMacroID()) 7669 return; 7670 SourceLocation LParen; 7671 SourceLocation ArgLoc = Arg->getBeginLoc(); 7672 7673 // Special testing for the argument location. Since the fix-it needs the 7674 // location right before the argument, the argument location can be in a 7675 // macro only if it is at the beginning of the macro. 7676 while (ArgLoc.isMacroID() && 7677 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7678 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7679 } 7680 7681 if (LParen.isMacroID()) 7682 return; 7683 7684 LParen = ArgLoc.getLocWithOffset(-1); 7685 7686 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7687 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7688 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7689 } 7690 7691 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7692 // Check to see if we are dereferencing a null pointer. If so, this is 7693 // undefined behavior, so warn about it. This only handles the pattern 7694 // "*null", which is a very syntactic check. 7695 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7696 if (UO->getOpcode() == UO_Deref && 7697 UO->getSubExpr()->IgnoreParenCasts()-> 7698 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7699 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7700 S.PDiag(diag::warn_binding_null_to_reference) 7701 << UO->getSubExpr()->getSourceRange()); 7702 } 7703 } 7704 7705 MaterializeTemporaryExpr * 7706 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7707 bool BoundToLvalueReference) { 7708 auto MTE = new (Context) 7709 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7710 7711 // Order an ExprWithCleanups for lifetime marks. 7712 // 7713 // TODO: It'll be good to have a single place to check the access of the 7714 // destructor and generate ExprWithCleanups for various uses. Currently these 7715 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7716 // but there may be a chance to merge them. 7717 Cleanup.setExprNeedsCleanups(false); 7718 return MTE; 7719 } 7720 7721 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7722 // In C++98, we don't want to implicitly create an xvalue. 7723 // FIXME: This means that AST consumers need to deal with "prvalues" that 7724 // denote materialized temporaries. Maybe we should add another ValueKind 7725 // for "xvalue pretending to be a prvalue" for C++98 support. 7726 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7727 return E; 7728 7729 // C++1z [conv.rval]/1: T shall be a complete type. 7730 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7731 // If so, we should check for a non-abstract class type here too. 7732 QualType T = E->getType(); 7733 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7734 return ExprError(); 7735 7736 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7737 } 7738 7739 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7740 ExprValueKind VK, 7741 CheckedConversionKind CCK) { 7742 7743 CastKind CK = CK_NoOp; 7744 7745 if (VK == VK_RValue) { 7746 auto PointeeTy = Ty->getPointeeType(); 7747 auto ExprPointeeTy = E->getType()->getPointeeType(); 7748 if (!PointeeTy.isNull() && 7749 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7750 CK = CK_AddressSpaceConversion; 7751 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7752 CK = CK_AddressSpaceConversion; 7753 } 7754 7755 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7756 } 7757 7758 ExprResult InitializationSequence::Perform(Sema &S, 7759 const InitializedEntity &Entity, 7760 const InitializationKind &Kind, 7761 MultiExprArg Args, 7762 QualType *ResultType) { 7763 if (Failed()) { 7764 Diagnose(S, Entity, Kind, Args); 7765 return ExprError(); 7766 } 7767 if (!ZeroInitializationFixit.empty()) { 7768 unsigned DiagID = diag::err_default_init_const; 7769 if (Decl *D = Entity.getDecl()) 7770 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7771 DiagID = diag::ext_default_init_const; 7772 7773 // The initialization would have succeeded with this fixit. Since the fixit 7774 // is on the error, we need to build a valid AST in this case, so this isn't 7775 // handled in the Failed() branch above. 7776 QualType DestType = Entity.getType(); 7777 S.Diag(Kind.getLocation(), DiagID) 7778 << DestType << (bool)DestType->getAs<RecordType>() 7779 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7780 ZeroInitializationFixit); 7781 } 7782 7783 if (getKind() == DependentSequence) { 7784 // If the declaration is a non-dependent, incomplete array type 7785 // that has an initializer, then its type will be completed once 7786 // the initializer is instantiated. 7787 if (ResultType && !Entity.getType()->isDependentType() && 7788 Args.size() == 1) { 7789 QualType DeclType = Entity.getType(); 7790 if (const IncompleteArrayType *ArrayT 7791 = S.Context.getAsIncompleteArrayType(DeclType)) { 7792 // FIXME: We don't currently have the ability to accurately 7793 // compute the length of an initializer list without 7794 // performing full type-checking of the initializer list 7795 // (since we have to determine where braces are implicitly 7796 // introduced and such). So, we fall back to making the array 7797 // type a dependently-sized array type with no specified 7798 // bound. 7799 if (isa<InitListExpr>((Expr *)Args[0])) { 7800 SourceRange Brackets; 7801 7802 // Scavange the location of the brackets from the entity, if we can. 7803 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7804 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7805 TypeLoc TL = TInfo->getTypeLoc(); 7806 if (IncompleteArrayTypeLoc ArrayLoc = 7807 TL.getAs<IncompleteArrayTypeLoc>()) 7808 Brackets = ArrayLoc.getBracketsRange(); 7809 } 7810 } 7811 7812 *ResultType 7813 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7814 /*NumElts=*/nullptr, 7815 ArrayT->getSizeModifier(), 7816 ArrayT->getIndexTypeCVRQualifiers(), 7817 Brackets); 7818 } 7819 7820 } 7821 } 7822 if (Kind.getKind() == InitializationKind::IK_Direct && 7823 !Kind.isExplicitCast()) { 7824 // Rebuild the ParenListExpr. 7825 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7826 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7827 Args); 7828 } 7829 assert(Kind.getKind() == InitializationKind::IK_Copy || 7830 Kind.isExplicitCast() || 7831 Kind.getKind() == InitializationKind::IK_DirectList); 7832 return ExprResult(Args[0]); 7833 } 7834 7835 // No steps means no initialization. 7836 if (Steps.empty()) 7837 return ExprResult((Expr *)nullptr); 7838 7839 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7840 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7841 !Entity.isParameterKind()) { 7842 // Produce a C++98 compatibility warning if we are initializing a reference 7843 // from an initializer list. For parameters, we produce a better warning 7844 // elsewhere. 7845 Expr *Init = Args[0]; 7846 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7847 << Init->getSourceRange(); 7848 } 7849 7850 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7851 QualType ETy = Entity.getType(); 7852 bool HasGlobalAS = ETy.hasAddressSpace() && 7853 ETy.getAddressSpace() == LangAS::opencl_global; 7854 7855 if (S.getLangOpts().OpenCLVersion >= 200 && 7856 ETy->isAtomicType() && !HasGlobalAS && 7857 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7858 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7859 << 1 7860 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7861 return ExprError(); 7862 } 7863 7864 QualType DestType = Entity.getType().getNonReferenceType(); 7865 // FIXME: Ugly hack around the fact that Entity.getType() is not 7866 // the same as Entity.getDecl()->getType() in cases involving type merging, 7867 // and we want latter when it makes sense. 7868 if (ResultType) 7869 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7870 Entity.getType(); 7871 7872 ExprResult CurInit((Expr *)nullptr); 7873 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7874 7875 // For initialization steps that start with a single initializer, 7876 // grab the only argument out the Args and place it into the "current" 7877 // initializer. 7878 switch (Steps.front().Kind) { 7879 case SK_ResolveAddressOfOverloadedFunction: 7880 case SK_CastDerivedToBaseRValue: 7881 case SK_CastDerivedToBaseXValue: 7882 case SK_CastDerivedToBaseLValue: 7883 case SK_BindReference: 7884 case SK_BindReferenceToTemporary: 7885 case SK_FinalCopy: 7886 case SK_ExtraneousCopyToTemporary: 7887 case SK_UserConversion: 7888 case SK_QualificationConversionLValue: 7889 case SK_QualificationConversionXValue: 7890 case SK_QualificationConversionRValue: 7891 case SK_AtomicConversion: 7892 case SK_ConversionSequence: 7893 case SK_ConversionSequenceNoNarrowing: 7894 case SK_ListInitialization: 7895 case SK_UnwrapInitList: 7896 case SK_RewrapInitList: 7897 case SK_CAssignment: 7898 case SK_StringInit: 7899 case SK_ObjCObjectConversion: 7900 case SK_ArrayLoopIndex: 7901 case SK_ArrayLoopInit: 7902 case SK_ArrayInit: 7903 case SK_GNUArrayInit: 7904 case SK_ParenthesizedArrayInit: 7905 case SK_PassByIndirectCopyRestore: 7906 case SK_PassByIndirectRestore: 7907 case SK_ProduceObjCObject: 7908 case SK_StdInitializerList: 7909 case SK_OCLSamplerInit: 7910 case SK_OCLZeroOpaqueType: { 7911 assert(Args.size() == 1); 7912 CurInit = Args[0]; 7913 if (!CurInit.get()) return ExprError(); 7914 break; 7915 } 7916 7917 case SK_ConstructorInitialization: 7918 case SK_ConstructorInitializationFromList: 7919 case SK_StdInitializerListConstructorCall: 7920 case SK_ZeroInitialization: 7921 break; 7922 } 7923 7924 // Promote from an unevaluated context to an unevaluated list context in 7925 // C++11 list-initialization; we need to instantiate entities usable in 7926 // constant expressions here in order to perform narrowing checks =( 7927 EnterExpressionEvaluationContext Evaluated( 7928 S, EnterExpressionEvaluationContext::InitList, 7929 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7930 7931 // C++ [class.abstract]p2: 7932 // no objects of an abstract class can be created except as subobjects 7933 // of a class derived from it 7934 auto checkAbstractType = [&](QualType T) -> bool { 7935 if (Entity.getKind() == InitializedEntity::EK_Base || 7936 Entity.getKind() == InitializedEntity::EK_Delegating) 7937 return false; 7938 return S.RequireNonAbstractType(Kind.getLocation(), T, 7939 diag::err_allocation_of_abstract_type); 7940 }; 7941 7942 // Walk through the computed steps for the initialization sequence, 7943 // performing the specified conversions along the way. 7944 bool ConstructorInitRequiresZeroInit = false; 7945 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7946 Step != StepEnd; ++Step) { 7947 if (CurInit.isInvalid()) 7948 return ExprError(); 7949 7950 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7951 7952 switch (Step->Kind) { 7953 case SK_ResolveAddressOfOverloadedFunction: 7954 // Overload resolution determined which function invoke; update the 7955 // initializer to reflect that choice. 7956 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7957 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7958 return ExprError(); 7959 CurInit = S.FixOverloadedFunctionReference(CurInit, 7960 Step->Function.FoundDecl, 7961 Step->Function.Function); 7962 break; 7963 7964 case SK_CastDerivedToBaseRValue: 7965 case SK_CastDerivedToBaseXValue: 7966 case SK_CastDerivedToBaseLValue: { 7967 // We have a derived-to-base cast that produces either an rvalue or an 7968 // lvalue. Perform that cast. 7969 7970 CXXCastPath BasePath; 7971 7972 // Casts to inaccessible base classes are allowed with C-style casts. 7973 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7974 if (S.CheckDerivedToBaseConversion( 7975 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7976 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7977 return ExprError(); 7978 7979 ExprValueKind VK = 7980 Step->Kind == SK_CastDerivedToBaseLValue ? 7981 VK_LValue : 7982 (Step->Kind == SK_CastDerivedToBaseXValue ? 7983 VK_XValue : 7984 VK_RValue); 7985 CurInit = 7986 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7987 CurInit.get(), &BasePath, VK); 7988 break; 7989 } 7990 7991 case SK_BindReference: 7992 // Reference binding does not have any corresponding ASTs. 7993 7994 // Check exception specifications 7995 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7996 return ExprError(); 7997 7998 // We don't check for e.g. function pointers here, since address 7999 // availability checks should only occur when the function first decays 8000 // into a pointer or reference. 8001 if (CurInit.get()->getType()->isFunctionProtoType()) { 8002 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8003 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8004 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8005 DRE->getBeginLoc())) 8006 return ExprError(); 8007 } 8008 } 8009 } 8010 8011 CheckForNullPointerDereference(S, CurInit.get()); 8012 break; 8013 8014 case SK_BindReferenceToTemporary: { 8015 // Make sure the "temporary" is actually an rvalue. 8016 assert(CurInit.get()->isRValue() && "not a temporary"); 8017 8018 // Check exception specifications 8019 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8020 return ExprError(); 8021 8022 // Materialize the temporary into memory. 8023 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8024 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8025 CurInit = MTE; 8026 8027 // If we're extending this temporary to automatic storage duration -- we 8028 // need to register its cleanup during the full-expression's cleanups. 8029 if (MTE->getStorageDuration() == SD_Automatic && 8030 MTE->getType().isDestructedType()) 8031 S.Cleanup.setExprNeedsCleanups(true); 8032 break; 8033 } 8034 8035 case SK_FinalCopy: 8036 if (checkAbstractType(Step->Type)) 8037 return ExprError(); 8038 8039 // If the overall initialization is initializing a temporary, we already 8040 // bound our argument if it was necessary to do so. If not (if we're 8041 // ultimately initializing a non-temporary), our argument needs to be 8042 // bound since it's initializing a function parameter. 8043 // FIXME: This is a mess. Rationalize temporary destruction. 8044 if (!shouldBindAsTemporary(Entity)) 8045 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8046 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8047 /*IsExtraneousCopy=*/false); 8048 break; 8049 8050 case SK_ExtraneousCopyToTemporary: 8051 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8052 /*IsExtraneousCopy=*/true); 8053 break; 8054 8055 case SK_UserConversion: { 8056 // We have a user-defined conversion that invokes either a constructor 8057 // or a conversion function. 8058 CastKind CastKind; 8059 FunctionDecl *Fn = Step->Function.Function; 8060 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8061 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8062 bool CreatedObject = false; 8063 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8064 // Build a call to the selected constructor. 8065 SmallVector<Expr*, 8> ConstructorArgs; 8066 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8067 8068 // Determine the arguments required to actually perform the constructor 8069 // call. 8070 Expr *Arg = CurInit.get(); 8071 if (S.CompleteConstructorCall(Constructor, 8072 MultiExprArg(&Arg, 1), 8073 Loc, ConstructorArgs)) 8074 return ExprError(); 8075 8076 // Build an expression that constructs a temporary. 8077 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8078 FoundFn, Constructor, 8079 ConstructorArgs, 8080 HadMultipleCandidates, 8081 /*ListInit*/ false, 8082 /*StdInitListInit*/ false, 8083 /*ZeroInit*/ false, 8084 CXXConstructExpr::CK_Complete, 8085 SourceRange()); 8086 if (CurInit.isInvalid()) 8087 return ExprError(); 8088 8089 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8090 Entity); 8091 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8092 return ExprError(); 8093 8094 CastKind = CK_ConstructorConversion; 8095 CreatedObject = true; 8096 } else { 8097 // Build a call to the conversion function. 8098 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8099 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8100 FoundFn); 8101 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8102 return ExprError(); 8103 8104 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8105 HadMultipleCandidates); 8106 if (CurInit.isInvalid()) 8107 return ExprError(); 8108 8109 CastKind = CK_UserDefinedConversion; 8110 CreatedObject = Conversion->getReturnType()->isRecordType(); 8111 } 8112 8113 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8114 return ExprError(); 8115 8116 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 8117 CastKind, CurInit.get(), nullptr, 8118 CurInit.get()->getValueKind()); 8119 8120 if (shouldBindAsTemporary(Entity)) 8121 // The overall entity is temporary, so this expression should be 8122 // destroyed at the end of its full-expression. 8123 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8124 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8125 // The object outlasts the full-expression, but we need to prepare for 8126 // a destructor being run on it. 8127 // FIXME: It makes no sense to do this here. This should happen 8128 // regardless of how we initialized the entity. 8129 QualType T = CurInit.get()->getType(); 8130 if (const RecordType *Record = T->getAs<RecordType>()) { 8131 CXXDestructorDecl *Destructor 8132 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8133 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8134 S.PDiag(diag::err_access_dtor_temp) << T); 8135 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8136 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8137 return ExprError(); 8138 } 8139 } 8140 break; 8141 } 8142 8143 case SK_QualificationConversionLValue: 8144 case SK_QualificationConversionXValue: 8145 case SK_QualificationConversionRValue: { 8146 // Perform a qualification conversion; these can never go wrong. 8147 ExprValueKind VK = 8148 Step->Kind == SK_QualificationConversionLValue 8149 ? VK_LValue 8150 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8151 : VK_RValue); 8152 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8153 break; 8154 } 8155 8156 case SK_AtomicConversion: { 8157 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8158 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8159 CK_NonAtomicToAtomic, VK_RValue); 8160 break; 8161 } 8162 8163 case SK_ConversionSequence: 8164 case SK_ConversionSequenceNoNarrowing: { 8165 if (const auto *FromPtrType = 8166 CurInit.get()->getType()->getAs<PointerType>()) { 8167 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8168 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8169 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8170 S.Diag(CurInit.get()->getExprLoc(), 8171 diag::warn_noderef_to_dereferenceable_pointer) 8172 << CurInit.get()->getSourceRange(); 8173 } 8174 } 8175 } 8176 8177 Sema::CheckedConversionKind CCK 8178 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8179 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8180 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8181 : Sema::CCK_ImplicitConversion; 8182 ExprResult CurInitExprRes = 8183 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8184 getAssignmentAction(Entity), CCK); 8185 if (CurInitExprRes.isInvalid()) 8186 return ExprError(); 8187 8188 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8189 8190 CurInit = CurInitExprRes; 8191 8192 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8193 S.getLangOpts().CPlusPlus) 8194 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8195 CurInit.get()); 8196 8197 break; 8198 } 8199 8200 case SK_ListInitialization: { 8201 if (checkAbstractType(Step->Type)) 8202 return ExprError(); 8203 8204 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8205 // If we're not initializing the top-level entity, we need to create an 8206 // InitializeTemporary entity for our target type. 8207 QualType Ty = Step->Type; 8208 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8209 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8210 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8211 InitListChecker PerformInitList(S, InitEntity, 8212 InitList, Ty, /*VerifyOnly=*/false, 8213 /*TreatUnavailableAsInvalid=*/false); 8214 if (PerformInitList.HadError()) 8215 return ExprError(); 8216 8217 // Hack: We must update *ResultType if available in order to set the 8218 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8219 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8220 if (ResultType && 8221 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8222 if ((*ResultType)->isRValueReferenceType()) 8223 Ty = S.Context.getRValueReferenceType(Ty); 8224 else if ((*ResultType)->isLValueReferenceType()) 8225 Ty = S.Context.getLValueReferenceType(Ty, 8226 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8227 *ResultType = Ty; 8228 } 8229 8230 InitListExpr *StructuredInitList = 8231 PerformInitList.getFullyStructuredList(); 8232 CurInit.get(); 8233 CurInit = shouldBindAsTemporary(InitEntity) 8234 ? S.MaybeBindToTemporary(StructuredInitList) 8235 : StructuredInitList; 8236 break; 8237 } 8238 8239 case SK_ConstructorInitializationFromList: { 8240 if (checkAbstractType(Step->Type)) 8241 return ExprError(); 8242 8243 // When an initializer list is passed for a parameter of type "reference 8244 // to object", we don't get an EK_Temporary entity, but instead an 8245 // EK_Parameter entity with reference type. 8246 // FIXME: This is a hack. What we really should do is create a user 8247 // conversion step for this case, but this makes it considerably more 8248 // complicated. For now, this will do. 8249 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8250 Entity.getType().getNonReferenceType()); 8251 bool UseTemporary = Entity.getType()->isReferenceType(); 8252 assert(Args.size() == 1 && "expected a single argument for list init"); 8253 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8254 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8255 << InitList->getSourceRange(); 8256 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8257 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8258 Entity, 8259 Kind, Arg, *Step, 8260 ConstructorInitRequiresZeroInit, 8261 /*IsListInitialization*/true, 8262 /*IsStdInitListInit*/false, 8263 InitList->getLBraceLoc(), 8264 InitList->getRBraceLoc()); 8265 break; 8266 } 8267 8268 case SK_UnwrapInitList: 8269 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8270 break; 8271 8272 case SK_RewrapInitList: { 8273 Expr *E = CurInit.get(); 8274 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8275 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8276 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8277 ILE->setSyntacticForm(Syntactic); 8278 ILE->setType(E->getType()); 8279 ILE->setValueKind(E->getValueKind()); 8280 CurInit = ILE; 8281 break; 8282 } 8283 8284 case SK_ConstructorInitialization: 8285 case SK_StdInitializerListConstructorCall: { 8286 if (checkAbstractType(Step->Type)) 8287 return ExprError(); 8288 8289 // When an initializer list is passed for a parameter of type "reference 8290 // to object", we don't get an EK_Temporary entity, but instead an 8291 // EK_Parameter entity with reference type. 8292 // FIXME: This is a hack. What we really should do is create a user 8293 // conversion step for this case, but this makes it considerably more 8294 // complicated. For now, this will do. 8295 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8296 Entity.getType().getNonReferenceType()); 8297 bool UseTemporary = Entity.getType()->isReferenceType(); 8298 bool IsStdInitListInit = 8299 Step->Kind == SK_StdInitializerListConstructorCall; 8300 Expr *Source = CurInit.get(); 8301 SourceRange Range = Kind.hasParenOrBraceRange() 8302 ? Kind.getParenOrBraceRange() 8303 : SourceRange(); 8304 CurInit = PerformConstructorInitialization( 8305 S, UseTemporary ? TempEntity : Entity, Kind, 8306 Source ? MultiExprArg(Source) : Args, *Step, 8307 ConstructorInitRequiresZeroInit, 8308 /*IsListInitialization*/ IsStdInitListInit, 8309 /*IsStdInitListInitialization*/ IsStdInitListInit, 8310 /*LBraceLoc*/ Range.getBegin(), 8311 /*RBraceLoc*/ Range.getEnd()); 8312 break; 8313 } 8314 8315 case SK_ZeroInitialization: { 8316 step_iterator NextStep = Step; 8317 ++NextStep; 8318 if (NextStep != StepEnd && 8319 (NextStep->Kind == SK_ConstructorInitialization || 8320 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8321 // The need for zero-initialization is recorded directly into 8322 // the call to the object's constructor within the next step. 8323 ConstructorInitRequiresZeroInit = true; 8324 } else if (Kind.getKind() == InitializationKind::IK_Value && 8325 S.getLangOpts().CPlusPlus && 8326 !Kind.isImplicitValueInit()) { 8327 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8328 if (!TSInfo) 8329 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8330 Kind.getRange().getBegin()); 8331 8332 CurInit = new (S.Context) CXXScalarValueInitExpr( 8333 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8334 Kind.getRange().getEnd()); 8335 } else { 8336 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8337 } 8338 break; 8339 } 8340 8341 case SK_CAssignment: { 8342 QualType SourceType = CurInit.get()->getType(); 8343 8344 // Save off the initial CurInit in case we need to emit a diagnostic 8345 ExprResult InitialCurInit = CurInit; 8346 ExprResult Result = CurInit; 8347 Sema::AssignConvertType ConvTy = 8348 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8349 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8350 if (Result.isInvalid()) 8351 return ExprError(); 8352 CurInit = Result; 8353 8354 // If this is a call, allow conversion to a transparent union. 8355 ExprResult CurInitExprRes = CurInit; 8356 if (ConvTy != Sema::Compatible && 8357 Entity.isParameterKind() && 8358 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8359 == Sema::Compatible) 8360 ConvTy = Sema::Compatible; 8361 if (CurInitExprRes.isInvalid()) 8362 return ExprError(); 8363 CurInit = CurInitExprRes; 8364 8365 bool Complained; 8366 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8367 Step->Type, SourceType, 8368 InitialCurInit.get(), 8369 getAssignmentAction(Entity, true), 8370 &Complained)) { 8371 PrintInitLocationNote(S, Entity); 8372 return ExprError(); 8373 } else if (Complained) 8374 PrintInitLocationNote(S, Entity); 8375 break; 8376 } 8377 8378 case SK_StringInit: { 8379 QualType Ty = Step->Type; 8380 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8381 S.Context.getAsArrayType(Ty), S); 8382 break; 8383 } 8384 8385 case SK_ObjCObjectConversion: 8386 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8387 CK_ObjCObjectLValueCast, 8388 CurInit.get()->getValueKind()); 8389 break; 8390 8391 case SK_ArrayLoopIndex: { 8392 Expr *Cur = CurInit.get(); 8393 Expr *BaseExpr = new (S.Context) 8394 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8395 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8396 Expr *IndexExpr = 8397 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8398 CurInit = S.CreateBuiltinArraySubscriptExpr( 8399 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8400 ArrayLoopCommonExprs.push_back(BaseExpr); 8401 break; 8402 } 8403 8404 case SK_ArrayLoopInit: { 8405 assert(!ArrayLoopCommonExprs.empty() && 8406 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8407 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8408 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8409 CurInit.get()); 8410 break; 8411 } 8412 8413 case SK_GNUArrayInit: 8414 // Okay: we checked everything before creating this step. Note that 8415 // this is a GNU extension. 8416 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8417 << Step->Type << CurInit.get()->getType() 8418 << CurInit.get()->getSourceRange(); 8419 updateGNUCompoundLiteralRValue(CurInit.get()); 8420 LLVM_FALLTHROUGH; 8421 case SK_ArrayInit: 8422 // If the destination type is an incomplete array type, update the 8423 // type accordingly. 8424 if (ResultType) { 8425 if (const IncompleteArrayType *IncompleteDest 8426 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8427 if (const ConstantArrayType *ConstantSource 8428 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8429 *ResultType = S.Context.getConstantArrayType( 8430 IncompleteDest->getElementType(), 8431 ConstantSource->getSize(), 8432 ConstantSource->getSizeExpr(), 8433 ArrayType::Normal, 0); 8434 } 8435 } 8436 } 8437 break; 8438 8439 case SK_ParenthesizedArrayInit: 8440 // Okay: we checked everything before creating this step. Note that 8441 // this is a GNU extension. 8442 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8443 << CurInit.get()->getSourceRange(); 8444 break; 8445 8446 case SK_PassByIndirectCopyRestore: 8447 case SK_PassByIndirectRestore: 8448 checkIndirectCopyRestoreSource(S, CurInit.get()); 8449 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8450 CurInit.get(), Step->Type, 8451 Step->Kind == SK_PassByIndirectCopyRestore); 8452 break; 8453 8454 case SK_ProduceObjCObject: 8455 CurInit = 8456 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8457 CurInit.get(), nullptr, VK_RValue); 8458 break; 8459 8460 case SK_StdInitializerList: { 8461 S.Diag(CurInit.get()->getExprLoc(), 8462 diag::warn_cxx98_compat_initializer_list_init) 8463 << CurInit.get()->getSourceRange(); 8464 8465 // Materialize the temporary into memory. 8466 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8467 CurInit.get()->getType(), CurInit.get(), 8468 /*BoundToLvalueReference=*/false); 8469 8470 // Wrap it in a construction of a std::initializer_list<T>. 8471 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8472 8473 // Bind the result, in case the library has given initializer_list a 8474 // non-trivial destructor. 8475 if (shouldBindAsTemporary(Entity)) 8476 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8477 break; 8478 } 8479 8480 case SK_OCLSamplerInit: { 8481 // Sampler initialization have 5 cases: 8482 // 1. function argument passing 8483 // 1a. argument is a file-scope variable 8484 // 1b. argument is a function-scope variable 8485 // 1c. argument is one of caller function's parameters 8486 // 2. variable initialization 8487 // 2a. initializing a file-scope variable 8488 // 2b. initializing a function-scope variable 8489 // 8490 // For file-scope variables, since they cannot be initialized by function 8491 // call of __translate_sampler_initializer in LLVM IR, their references 8492 // need to be replaced by a cast from their literal initializers to 8493 // sampler type. Since sampler variables can only be used in function 8494 // calls as arguments, we only need to replace them when handling the 8495 // argument passing. 8496 assert(Step->Type->isSamplerT() && 8497 "Sampler initialization on non-sampler type."); 8498 Expr *Init = CurInit.get()->IgnoreParens(); 8499 QualType SourceType = Init->getType(); 8500 // Case 1 8501 if (Entity.isParameterKind()) { 8502 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8503 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8504 << SourceType; 8505 break; 8506 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8507 auto Var = cast<VarDecl>(DRE->getDecl()); 8508 // Case 1b and 1c 8509 // No cast from integer to sampler is needed. 8510 if (!Var->hasGlobalStorage()) { 8511 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8512 CK_LValueToRValue, Init, 8513 /*BasePath=*/nullptr, VK_RValue); 8514 break; 8515 } 8516 // Case 1a 8517 // For function call with a file-scope sampler variable as argument, 8518 // get the integer literal. 8519 // Do not diagnose if the file-scope variable does not have initializer 8520 // since this has already been diagnosed when parsing the variable 8521 // declaration. 8522 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8523 break; 8524 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8525 Var->getInit()))->getSubExpr(); 8526 SourceType = Init->getType(); 8527 } 8528 } else { 8529 // Case 2 8530 // Check initializer is 32 bit integer constant. 8531 // If the initializer is taken from global variable, do not diagnose since 8532 // this has already been done when parsing the variable declaration. 8533 if (!Init->isConstantInitializer(S.Context, false)) 8534 break; 8535 8536 if (!SourceType->isIntegerType() || 8537 32 != S.Context.getIntWidth(SourceType)) { 8538 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8539 << SourceType; 8540 break; 8541 } 8542 8543 Expr::EvalResult EVResult; 8544 Init->EvaluateAsInt(EVResult, S.Context); 8545 llvm::APSInt Result = EVResult.Val.getInt(); 8546 const uint64_t SamplerValue = Result.getLimitedValue(); 8547 // 32-bit value of sampler's initializer is interpreted as 8548 // bit-field with the following structure: 8549 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8550 // |31 6|5 4|3 1| 0| 8551 // This structure corresponds to enum values of sampler properties 8552 // defined in SPIR spec v1.2 and also opencl-c.h 8553 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8554 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8555 if (FilterMode != 1 && FilterMode != 2 && 8556 !S.getOpenCLOptions().isEnabled( 8557 "cl_intel_device_side_avc_motion_estimation")) 8558 S.Diag(Kind.getLocation(), 8559 diag::warn_sampler_initializer_invalid_bits) 8560 << "Filter Mode"; 8561 if (AddressingMode > 4) 8562 S.Diag(Kind.getLocation(), 8563 diag::warn_sampler_initializer_invalid_bits) 8564 << "Addressing Mode"; 8565 } 8566 8567 // Cases 1a, 2a and 2b 8568 // Insert cast from integer to sampler. 8569 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8570 CK_IntToOCLSampler); 8571 break; 8572 } 8573 case SK_OCLZeroOpaqueType: { 8574 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8575 Step->Type->isOCLIntelSubgroupAVCType()) && 8576 "Wrong type for initialization of OpenCL opaque type."); 8577 8578 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8579 CK_ZeroToOCLOpaqueType, 8580 CurInit.get()->getValueKind()); 8581 break; 8582 } 8583 } 8584 } 8585 8586 // Check whether the initializer has a shorter lifetime than the initialized 8587 // entity, and if not, either lifetime-extend or warn as appropriate. 8588 if (auto *Init = CurInit.get()) 8589 S.checkInitializerLifetime(Entity, Init); 8590 8591 // Diagnose non-fatal problems with the completed initialization. 8592 if (Entity.getKind() == InitializedEntity::EK_Member && 8593 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8594 S.CheckBitFieldInitialization(Kind.getLocation(), 8595 cast<FieldDecl>(Entity.getDecl()), 8596 CurInit.get()); 8597 8598 // Check for std::move on construction. 8599 if (const Expr *E = CurInit.get()) { 8600 CheckMoveOnConstruction(S, E, 8601 Entity.getKind() == InitializedEntity::EK_Result); 8602 } 8603 8604 return CurInit; 8605 } 8606 8607 /// Somewhere within T there is an uninitialized reference subobject. 8608 /// Dig it out and diagnose it. 8609 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8610 QualType T) { 8611 if (T->isReferenceType()) { 8612 S.Diag(Loc, diag::err_reference_without_init) 8613 << T.getNonReferenceType(); 8614 return true; 8615 } 8616 8617 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8618 if (!RD || !RD->hasUninitializedReferenceMember()) 8619 return false; 8620 8621 for (const auto *FI : RD->fields()) { 8622 if (FI->isUnnamedBitfield()) 8623 continue; 8624 8625 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8626 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8627 return true; 8628 } 8629 } 8630 8631 for (const auto &BI : RD->bases()) { 8632 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8633 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8634 return true; 8635 } 8636 } 8637 8638 return false; 8639 } 8640 8641 8642 //===----------------------------------------------------------------------===// 8643 // Diagnose initialization failures 8644 //===----------------------------------------------------------------------===// 8645 8646 /// Emit notes associated with an initialization that failed due to a 8647 /// "simple" conversion failure. 8648 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8649 Expr *op) { 8650 QualType destType = entity.getType(); 8651 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8652 op->getType()->isObjCObjectPointerType()) { 8653 8654 // Emit a possible note about the conversion failing because the 8655 // operand is a message send with a related result type. 8656 S.EmitRelatedResultTypeNote(op); 8657 8658 // Emit a possible note about a return failing because we're 8659 // expecting a related result type. 8660 if (entity.getKind() == InitializedEntity::EK_Result) 8661 S.EmitRelatedResultTypeNoteForReturn(destType); 8662 } 8663 } 8664 8665 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8666 InitListExpr *InitList) { 8667 QualType DestType = Entity.getType(); 8668 8669 QualType E; 8670 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8671 QualType ArrayType = S.Context.getConstantArrayType( 8672 E.withConst(), 8673 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8674 InitList->getNumInits()), 8675 nullptr, clang::ArrayType::Normal, 0); 8676 InitializedEntity HiddenArray = 8677 InitializedEntity::InitializeTemporary(ArrayType); 8678 return diagnoseListInit(S, HiddenArray, InitList); 8679 } 8680 8681 if (DestType->isReferenceType()) { 8682 // A list-initialization failure for a reference means that we tried to 8683 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8684 // inner initialization failed. 8685 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8686 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8687 SourceLocation Loc = InitList->getBeginLoc(); 8688 if (auto *D = Entity.getDecl()) 8689 Loc = D->getLocation(); 8690 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8691 return; 8692 } 8693 8694 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8695 /*VerifyOnly=*/false, 8696 /*TreatUnavailableAsInvalid=*/false); 8697 assert(DiagnoseInitList.HadError() && 8698 "Inconsistent init list check result."); 8699 } 8700 8701 bool InitializationSequence::Diagnose(Sema &S, 8702 const InitializedEntity &Entity, 8703 const InitializationKind &Kind, 8704 ArrayRef<Expr *> Args) { 8705 if (!Failed()) 8706 return false; 8707 8708 // When we want to diagnose only one element of a braced-init-list, 8709 // we need to factor it out. 8710 Expr *OnlyArg; 8711 if (Args.size() == 1) { 8712 auto *List = dyn_cast<InitListExpr>(Args[0]); 8713 if (List && List->getNumInits() == 1) 8714 OnlyArg = List->getInit(0); 8715 else 8716 OnlyArg = Args[0]; 8717 } 8718 else 8719 OnlyArg = nullptr; 8720 8721 QualType DestType = Entity.getType(); 8722 switch (Failure) { 8723 case FK_TooManyInitsForReference: 8724 // FIXME: Customize for the initialized entity? 8725 if (Args.empty()) { 8726 // Dig out the reference subobject which is uninitialized and diagnose it. 8727 // If this is value-initialization, this could be nested some way within 8728 // the target type. 8729 assert(Kind.getKind() == InitializationKind::IK_Value || 8730 DestType->isReferenceType()); 8731 bool Diagnosed = 8732 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8733 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8734 (void)Diagnosed; 8735 } else // FIXME: diagnostic below could be better! 8736 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8737 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8738 break; 8739 case FK_ParenthesizedListInitForReference: 8740 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8741 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8742 break; 8743 8744 case FK_ArrayNeedsInitList: 8745 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8746 break; 8747 case FK_ArrayNeedsInitListOrStringLiteral: 8748 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8749 break; 8750 case FK_ArrayNeedsInitListOrWideStringLiteral: 8751 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8752 break; 8753 case FK_NarrowStringIntoWideCharArray: 8754 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8755 break; 8756 case FK_WideStringIntoCharArray: 8757 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8758 break; 8759 case FK_IncompatWideStringIntoWideChar: 8760 S.Diag(Kind.getLocation(), 8761 diag::err_array_init_incompat_wide_string_into_wchar); 8762 break; 8763 case FK_PlainStringIntoUTF8Char: 8764 S.Diag(Kind.getLocation(), 8765 diag::err_array_init_plain_string_into_char8_t); 8766 S.Diag(Args.front()->getBeginLoc(), 8767 diag::note_array_init_plain_string_into_char8_t) 8768 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8769 break; 8770 case FK_UTF8StringIntoPlainChar: 8771 S.Diag(Kind.getLocation(), 8772 diag::err_array_init_utf8_string_into_char) 8773 << S.getLangOpts().CPlusPlus2a; 8774 break; 8775 case FK_ArrayTypeMismatch: 8776 case FK_NonConstantArrayInit: 8777 S.Diag(Kind.getLocation(), 8778 (Failure == FK_ArrayTypeMismatch 8779 ? diag::err_array_init_different_type 8780 : diag::err_array_init_non_constant_array)) 8781 << DestType.getNonReferenceType() 8782 << OnlyArg->getType() 8783 << Args[0]->getSourceRange(); 8784 break; 8785 8786 case FK_VariableLengthArrayHasInitializer: 8787 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8788 << Args[0]->getSourceRange(); 8789 break; 8790 8791 case FK_AddressOfOverloadFailed: { 8792 DeclAccessPair Found; 8793 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8794 DestType.getNonReferenceType(), 8795 true, 8796 Found); 8797 break; 8798 } 8799 8800 case FK_AddressOfUnaddressableFunction: { 8801 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8802 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8803 OnlyArg->getBeginLoc()); 8804 break; 8805 } 8806 8807 case FK_ReferenceInitOverloadFailed: 8808 case FK_UserConversionOverloadFailed: 8809 switch (FailedOverloadResult) { 8810 case OR_Ambiguous: 8811 8812 FailedCandidateSet.NoteCandidates( 8813 PartialDiagnosticAt( 8814 Kind.getLocation(), 8815 Failure == FK_UserConversionOverloadFailed 8816 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8817 << OnlyArg->getType() << DestType 8818 << Args[0]->getSourceRange()) 8819 : (S.PDiag(diag::err_ref_init_ambiguous) 8820 << DestType << OnlyArg->getType() 8821 << Args[0]->getSourceRange())), 8822 S, OCD_AmbiguousCandidates, Args); 8823 break; 8824 8825 case OR_No_Viable_Function: { 8826 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8827 if (!S.RequireCompleteType(Kind.getLocation(), 8828 DestType.getNonReferenceType(), 8829 diag::err_typecheck_nonviable_condition_incomplete, 8830 OnlyArg->getType(), Args[0]->getSourceRange())) 8831 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8832 << (Entity.getKind() == InitializedEntity::EK_Result) 8833 << OnlyArg->getType() << Args[0]->getSourceRange() 8834 << DestType.getNonReferenceType(); 8835 8836 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8837 break; 8838 } 8839 case OR_Deleted: { 8840 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8841 << OnlyArg->getType() << DestType.getNonReferenceType() 8842 << Args[0]->getSourceRange(); 8843 OverloadCandidateSet::iterator Best; 8844 OverloadingResult Ovl 8845 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8846 if (Ovl == OR_Deleted) { 8847 S.NoteDeletedFunction(Best->Function); 8848 } else { 8849 llvm_unreachable("Inconsistent overload resolution?"); 8850 } 8851 break; 8852 } 8853 8854 case OR_Success: 8855 llvm_unreachable("Conversion did not fail!"); 8856 } 8857 break; 8858 8859 case FK_NonConstLValueReferenceBindingToTemporary: 8860 if (isa<InitListExpr>(Args[0])) { 8861 S.Diag(Kind.getLocation(), 8862 diag::err_lvalue_reference_bind_to_initlist) 8863 << DestType.getNonReferenceType().isVolatileQualified() 8864 << DestType.getNonReferenceType() 8865 << Args[0]->getSourceRange(); 8866 break; 8867 } 8868 LLVM_FALLTHROUGH; 8869 8870 case FK_NonConstLValueReferenceBindingToUnrelated: 8871 S.Diag(Kind.getLocation(), 8872 Failure == FK_NonConstLValueReferenceBindingToTemporary 8873 ? diag::err_lvalue_reference_bind_to_temporary 8874 : diag::err_lvalue_reference_bind_to_unrelated) 8875 << DestType.getNonReferenceType().isVolatileQualified() 8876 << DestType.getNonReferenceType() 8877 << OnlyArg->getType() 8878 << Args[0]->getSourceRange(); 8879 break; 8880 8881 case FK_NonConstLValueReferenceBindingToBitfield: { 8882 // We don't necessarily have an unambiguous source bit-field. 8883 FieldDecl *BitField = Args[0]->getSourceBitField(); 8884 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8885 << DestType.isVolatileQualified() 8886 << (BitField ? BitField->getDeclName() : DeclarationName()) 8887 << (BitField != nullptr) 8888 << Args[0]->getSourceRange(); 8889 if (BitField) 8890 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8891 break; 8892 } 8893 8894 case FK_NonConstLValueReferenceBindingToVectorElement: 8895 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8896 << DestType.isVolatileQualified() 8897 << Args[0]->getSourceRange(); 8898 break; 8899 8900 case FK_RValueReferenceBindingToLValue: 8901 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8902 << DestType.getNonReferenceType() << OnlyArg->getType() 8903 << Args[0]->getSourceRange(); 8904 break; 8905 8906 case FK_ReferenceAddrspaceMismatchTemporary: 8907 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8908 << DestType << Args[0]->getSourceRange(); 8909 break; 8910 8911 case FK_ReferenceInitDropsQualifiers: { 8912 QualType SourceType = OnlyArg->getType(); 8913 QualType NonRefType = DestType.getNonReferenceType(); 8914 Qualifiers DroppedQualifiers = 8915 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8916 8917 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8918 SourceType.getQualifiers())) 8919 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8920 << NonRefType << SourceType << 1 /*addr space*/ 8921 << Args[0]->getSourceRange(); 8922 else if (DroppedQualifiers.hasQualifiers()) 8923 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8924 << NonRefType << SourceType << 0 /*cv quals*/ 8925 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8926 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8927 else 8928 // FIXME: Consider decomposing the type and explaining which qualifiers 8929 // were dropped where, or on which level a 'const' is missing, etc. 8930 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8931 << NonRefType << SourceType << 2 /*incompatible quals*/ 8932 << Args[0]->getSourceRange(); 8933 break; 8934 } 8935 8936 case FK_ReferenceInitFailed: 8937 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8938 << DestType.getNonReferenceType() 8939 << DestType.getNonReferenceType()->isIncompleteType() 8940 << OnlyArg->isLValue() 8941 << OnlyArg->getType() 8942 << Args[0]->getSourceRange(); 8943 emitBadConversionNotes(S, Entity, Args[0]); 8944 break; 8945 8946 case FK_ConversionFailed: { 8947 QualType FromType = OnlyArg->getType(); 8948 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8949 << (int)Entity.getKind() 8950 << DestType 8951 << OnlyArg->isLValue() 8952 << FromType 8953 << Args[0]->getSourceRange(); 8954 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8955 S.Diag(Kind.getLocation(), PDiag); 8956 emitBadConversionNotes(S, Entity, Args[0]); 8957 break; 8958 } 8959 8960 case FK_ConversionFromPropertyFailed: 8961 // No-op. This error has already been reported. 8962 break; 8963 8964 case FK_TooManyInitsForScalar: { 8965 SourceRange R; 8966 8967 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8968 if (InitList && InitList->getNumInits() >= 1) { 8969 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8970 } else { 8971 assert(Args.size() > 1 && "Expected multiple initializers!"); 8972 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8973 } 8974 8975 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8976 if (Kind.isCStyleOrFunctionalCast()) 8977 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8978 << R; 8979 else 8980 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8981 << /*scalar=*/2 << R; 8982 break; 8983 } 8984 8985 case FK_ParenthesizedListInitForScalar: 8986 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8987 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8988 break; 8989 8990 case FK_ReferenceBindingToInitList: 8991 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8992 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8993 break; 8994 8995 case FK_InitListBadDestinationType: 8996 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8997 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8998 break; 8999 9000 case FK_ListConstructorOverloadFailed: 9001 case FK_ConstructorOverloadFailed: { 9002 SourceRange ArgsRange; 9003 if (Args.size()) 9004 ArgsRange = 9005 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9006 9007 if (Failure == FK_ListConstructorOverloadFailed) { 9008 assert(Args.size() == 1 && 9009 "List construction from other than 1 argument."); 9010 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9011 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9012 } 9013 9014 // FIXME: Using "DestType" for the entity we're printing is probably 9015 // bad. 9016 switch (FailedOverloadResult) { 9017 case OR_Ambiguous: 9018 FailedCandidateSet.NoteCandidates( 9019 PartialDiagnosticAt(Kind.getLocation(), 9020 S.PDiag(diag::err_ovl_ambiguous_init) 9021 << DestType << ArgsRange), 9022 S, OCD_AmbiguousCandidates, Args); 9023 break; 9024 9025 case OR_No_Viable_Function: 9026 if (Kind.getKind() == InitializationKind::IK_Default && 9027 (Entity.getKind() == InitializedEntity::EK_Base || 9028 Entity.getKind() == InitializedEntity::EK_Member) && 9029 isa<CXXConstructorDecl>(S.CurContext)) { 9030 // This is implicit default initialization of a member or 9031 // base within a constructor. If no viable function was 9032 // found, notify the user that they need to explicitly 9033 // initialize this base/member. 9034 CXXConstructorDecl *Constructor 9035 = cast<CXXConstructorDecl>(S.CurContext); 9036 const CXXRecordDecl *InheritedFrom = nullptr; 9037 if (auto Inherited = Constructor->getInheritedConstructor()) 9038 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9039 if (Entity.getKind() == InitializedEntity::EK_Base) { 9040 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9041 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9042 << S.Context.getTypeDeclType(Constructor->getParent()) 9043 << /*base=*/0 9044 << Entity.getType() 9045 << InheritedFrom; 9046 9047 RecordDecl *BaseDecl 9048 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9049 ->getDecl(); 9050 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9051 << S.Context.getTagDeclType(BaseDecl); 9052 } else { 9053 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9054 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9055 << S.Context.getTypeDeclType(Constructor->getParent()) 9056 << /*member=*/1 9057 << Entity.getName() 9058 << InheritedFrom; 9059 S.Diag(Entity.getDecl()->getLocation(), 9060 diag::note_member_declared_at); 9061 9062 if (const RecordType *Record 9063 = Entity.getType()->getAs<RecordType>()) 9064 S.Diag(Record->getDecl()->getLocation(), 9065 diag::note_previous_decl) 9066 << S.Context.getTagDeclType(Record->getDecl()); 9067 } 9068 break; 9069 } 9070 9071 FailedCandidateSet.NoteCandidates( 9072 PartialDiagnosticAt( 9073 Kind.getLocation(), 9074 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9075 << DestType << ArgsRange), 9076 S, OCD_AllCandidates, Args); 9077 break; 9078 9079 case OR_Deleted: { 9080 OverloadCandidateSet::iterator Best; 9081 OverloadingResult Ovl 9082 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9083 if (Ovl != OR_Deleted) { 9084 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9085 << DestType << ArgsRange; 9086 llvm_unreachable("Inconsistent overload resolution?"); 9087 break; 9088 } 9089 9090 // If this is a defaulted or implicitly-declared function, then 9091 // it was implicitly deleted. Make it clear that the deletion was 9092 // implicit. 9093 if (S.isImplicitlyDeleted(Best->Function)) 9094 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9095 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9096 << DestType << ArgsRange; 9097 else 9098 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9099 << DestType << ArgsRange; 9100 9101 S.NoteDeletedFunction(Best->Function); 9102 break; 9103 } 9104 9105 case OR_Success: 9106 llvm_unreachable("Conversion did not fail!"); 9107 } 9108 } 9109 break; 9110 9111 case FK_DefaultInitOfConst: 9112 if (Entity.getKind() == InitializedEntity::EK_Member && 9113 isa<CXXConstructorDecl>(S.CurContext)) { 9114 // This is implicit default-initialization of a const member in 9115 // a constructor. Complain that it needs to be explicitly 9116 // initialized. 9117 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9118 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9119 << (Constructor->getInheritedConstructor() ? 2 : 9120 Constructor->isImplicit() ? 1 : 0) 9121 << S.Context.getTypeDeclType(Constructor->getParent()) 9122 << /*const=*/1 9123 << Entity.getName(); 9124 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9125 << Entity.getName(); 9126 } else { 9127 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9128 << DestType << (bool)DestType->getAs<RecordType>(); 9129 } 9130 break; 9131 9132 case FK_Incomplete: 9133 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9134 diag::err_init_incomplete_type); 9135 break; 9136 9137 case FK_ListInitializationFailed: { 9138 // Run the init list checker again to emit diagnostics. 9139 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9140 diagnoseListInit(S, Entity, InitList); 9141 break; 9142 } 9143 9144 case FK_PlaceholderType: { 9145 // FIXME: Already diagnosed! 9146 break; 9147 } 9148 9149 case FK_ExplicitConstructor: { 9150 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9151 << Args[0]->getSourceRange(); 9152 OverloadCandidateSet::iterator Best; 9153 OverloadingResult Ovl 9154 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9155 (void)Ovl; 9156 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9157 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9158 S.Diag(CtorDecl->getLocation(), 9159 diag::note_explicit_ctor_deduction_guide_here) << false; 9160 break; 9161 } 9162 } 9163 9164 PrintInitLocationNote(S, Entity); 9165 return true; 9166 } 9167 9168 void InitializationSequence::dump(raw_ostream &OS) const { 9169 switch (SequenceKind) { 9170 case FailedSequence: { 9171 OS << "Failed sequence: "; 9172 switch (Failure) { 9173 case FK_TooManyInitsForReference: 9174 OS << "too many initializers for reference"; 9175 break; 9176 9177 case FK_ParenthesizedListInitForReference: 9178 OS << "parenthesized list init for reference"; 9179 break; 9180 9181 case FK_ArrayNeedsInitList: 9182 OS << "array requires initializer list"; 9183 break; 9184 9185 case FK_AddressOfUnaddressableFunction: 9186 OS << "address of unaddressable function was taken"; 9187 break; 9188 9189 case FK_ArrayNeedsInitListOrStringLiteral: 9190 OS << "array requires initializer list or string literal"; 9191 break; 9192 9193 case FK_ArrayNeedsInitListOrWideStringLiteral: 9194 OS << "array requires initializer list or wide string literal"; 9195 break; 9196 9197 case FK_NarrowStringIntoWideCharArray: 9198 OS << "narrow string into wide char array"; 9199 break; 9200 9201 case FK_WideStringIntoCharArray: 9202 OS << "wide string into char array"; 9203 break; 9204 9205 case FK_IncompatWideStringIntoWideChar: 9206 OS << "incompatible wide string into wide char array"; 9207 break; 9208 9209 case FK_PlainStringIntoUTF8Char: 9210 OS << "plain string literal into char8_t array"; 9211 break; 9212 9213 case FK_UTF8StringIntoPlainChar: 9214 OS << "u8 string literal into char array"; 9215 break; 9216 9217 case FK_ArrayTypeMismatch: 9218 OS << "array type mismatch"; 9219 break; 9220 9221 case FK_NonConstantArrayInit: 9222 OS << "non-constant array initializer"; 9223 break; 9224 9225 case FK_AddressOfOverloadFailed: 9226 OS << "address of overloaded function failed"; 9227 break; 9228 9229 case FK_ReferenceInitOverloadFailed: 9230 OS << "overload resolution for reference initialization failed"; 9231 break; 9232 9233 case FK_NonConstLValueReferenceBindingToTemporary: 9234 OS << "non-const lvalue reference bound to temporary"; 9235 break; 9236 9237 case FK_NonConstLValueReferenceBindingToBitfield: 9238 OS << "non-const lvalue reference bound to bit-field"; 9239 break; 9240 9241 case FK_NonConstLValueReferenceBindingToVectorElement: 9242 OS << "non-const lvalue reference bound to vector element"; 9243 break; 9244 9245 case FK_NonConstLValueReferenceBindingToUnrelated: 9246 OS << "non-const lvalue reference bound to unrelated type"; 9247 break; 9248 9249 case FK_RValueReferenceBindingToLValue: 9250 OS << "rvalue reference bound to an lvalue"; 9251 break; 9252 9253 case FK_ReferenceInitDropsQualifiers: 9254 OS << "reference initialization drops qualifiers"; 9255 break; 9256 9257 case FK_ReferenceAddrspaceMismatchTemporary: 9258 OS << "reference with mismatching address space bound to temporary"; 9259 break; 9260 9261 case FK_ReferenceInitFailed: 9262 OS << "reference initialization failed"; 9263 break; 9264 9265 case FK_ConversionFailed: 9266 OS << "conversion failed"; 9267 break; 9268 9269 case FK_ConversionFromPropertyFailed: 9270 OS << "conversion from property failed"; 9271 break; 9272 9273 case FK_TooManyInitsForScalar: 9274 OS << "too many initializers for scalar"; 9275 break; 9276 9277 case FK_ParenthesizedListInitForScalar: 9278 OS << "parenthesized list init for reference"; 9279 break; 9280 9281 case FK_ReferenceBindingToInitList: 9282 OS << "referencing binding to initializer list"; 9283 break; 9284 9285 case FK_InitListBadDestinationType: 9286 OS << "initializer list for non-aggregate, non-scalar type"; 9287 break; 9288 9289 case FK_UserConversionOverloadFailed: 9290 OS << "overloading failed for user-defined conversion"; 9291 break; 9292 9293 case FK_ConstructorOverloadFailed: 9294 OS << "constructor overloading failed"; 9295 break; 9296 9297 case FK_DefaultInitOfConst: 9298 OS << "default initialization of a const variable"; 9299 break; 9300 9301 case FK_Incomplete: 9302 OS << "initialization of incomplete type"; 9303 break; 9304 9305 case FK_ListInitializationFailed: 9306 OS << "list initialization checker failure"; 9307 break; 9308 9309 case FK_VariableLengthArrayHasInitializer: 9310 OS << "variable length array has an initializer"; 9311 break; 9312 9313 case FK_PlaceholderType: 9314 OS << "initializer expression isn't contextually valid"; 9315 break; 9316 9317 case FK_ListConstructorOverloadFailed: 9318 OS << "list constructor overloading failed"; 9319 break; 9320 9321 case FK_ExplicitConstructor: 9322 OS << "list copy initialization chose explicit constructor"; 9323 break; 9324 } 9325 OS << '\n'; 9326 return; 9327 } 9328 9329 case DependentSequence: 9330 OS << "Dependent sequence\n"; 9331 return; 9332 9333 case NormalSequence: 9334 OS << "Normal sequence: "; 9335 break; 9336 } 9337 9338 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9339 if (S != step_begin()) { 9340 OS << " -> "; 9341 } 9342 9343 switch (S->Kind) { 9344 case SK_ResolveAddressOfOverloadedFunction: 9345 OS << "resolve address of overloaded function"; 9346 break; 9347 9348 case SK_CastDerivedToBaseRValue: 9349 OS << "derived-to-base (rvalue)"; 9350 break; 9351 9352 case SK_CastDerivedToBaseXValue: 9353 OS << "derived-to-base (xvalue)"; 9354 break; 9355 9356 case SK_CastDerivedToBaseLValue: 9357 OS << "derived-to-base (lvalue)"; 9358 break; 9359 9360 case SK_BindReference: 9361 OS << "bind reference to lvalue"; 9362 break; 9363 9364 case SK_BindReferenceToTemporary: 9365 OS << "bind reference to a temporary"; 9366 break; 9367 9368 case SK_FinalCopy: 9369 OS << "final copy in class direct-initialization"; 9370 break; 9371 9372 case SK_ExtraneousCopyToTemporary: 9373 OS << "extraneous C++03 copy to temporary"; 9374 break; 9375 9376 case SK_UserConversion: 9377 OS << "user-defined conversion via " << *S->Function.Function; 9378 break; 9379 9380 case SK_QualificationConversionRValue: 9381 OS << "qualification conversion (rvalue)"; 9382 break; 9383 9384 case SK_QualificationConversionXValue: 9385 OS << "qualification conversion (xvalue)"; 9386 break; 9387 9388 case SK_QualificationConversionLValue: 9389 OS << "qualification conversion (lvalue)"; 9390 break; 9391 9392 case SK_AtomicConversion: 9393 OS << "non-atomic-to-atomic conversion"; 9394 break; 9395 9396 case SK_ConversionSequence: 9397 OS << "implicit conversion sequence ("; 9398 S->ICS->dump(); // FIXME: use OS 9399 OS << ")"; 9400 break; 9401 9402 case SK_ConversionSequenceNoNarrowing: 9403 OS << "implicit conversion sequence with narrowing prohibited ("; 9404 S->ICS->dump(); // FIXME: use OS 9405 OS << ")"; 9406 break; 9407 9408 case SK_ListInitialization: 9409 OS << "list aggregate initialization"; 9410 break; 9411 9412 case SK_UnwrapInitList: 9413 OS << "unwrap reference initializer list"; 9414 break; 9415 9416 case SK_RewrapInitList: 9417 OS << "rewrap reference initializer list"; 9418 break; 9419 9420 case SK_ConstructorInitialization: 9421 OS << "constructor initialization"; 9422 break; 9423 9424 case SK_ConstructorInitializationFromList: 9425 OS << "list initialization via constructor"; 9426 break; 9427 9428 case SK_ZeroInitialization: 9429 OS << "zero initialization"; 9430 break; 9431 9432 case SK_CAssignment: 9433 OS << "C assignment"; 9434 break; 9435 9436 case SK_StringInit: 9437 OS << "string initialization"; 9438 break; 9439 9440 case SK_ObjCObjectConversion: 9441 OS << "Objective-C object conversion"; 9442 break; 9443 9444 case SK_ArrayLoopIndex: 9445 OS << "indexing for array initialization loop"; 9446 break; 9447 9448 case SK_ArrayLoopInit: 9449 OS << "array initialization loop"; 9450 break; 9451 9452 case SK_ArrayInit: 9453 OS << "array initialization"; 9454 break; 9455 9456 case SK_GNUArrayInit: 9457 OS << "array initialization (GNU extension)"; 9458 break; 9459 9460 case SK_ParenthesizedArrayInit: 9461 OS << "parenthesized array initialization"; 9462 break; 9463 9464 case SK_PassByIndirectCopyRestore: 9465 OS << "pass by indirect copy and restore"; 9466 break; 9467 9468 case SK_PassByIndirectRestore: 9469 OS << "pass by indirect restore"; 9470 break; 9471 9472 case SK_ProduceObjCObject: 9473 OS << "Objective-C object retension"; 9474 break; 9475 9476 case SK_StdInitializerList: 9477 OS << "std::initializer_list from initializer list"; 9478 break; 9479 9480 case SK_StdInitializerListConstructorCall: 9481 OS << "list initialization from std::initializer_list"; 9482 break; 9483 9484 case SK_OCLSamplerInit: 9485 OS << "OpenCL sampler_t from integer constant"; 9486 break; 9487 9488 case SK_OCLZeroOpaqueType: 9489 OS << "OpenCL opaque type from zero"; 9490 break; 9491 } 9492 9493 OS << " [" << S->Type.getAsString() << ']'; 9494 } 9495 9496 OS << '\n'; 9497 } 9498 9499 void InitializationSequence::dump() const { 9500 dump(llvm::errs()); 9501 } 9502 9503 static bool NarrowingErrs(const LangOptions &L) { 9504 return L.CPlusPlus11 && 9505 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9506 } 9507 9508 static void DiagnoseNarrowingInInitList(Sema &S, 9509 const ImplicitConversionSequence &ICS, 9510 QualType PreNarrowingType, 9511 QualType EntityType, 9512 const Expr *PostInit) { 9513 const StandardConversionSequence *SCS = nullptr; 9514 switch (ICS.getKind()) { 9515 case ImplicitConversionSequence::StandardConversion: 9516 SCS = &ICS.Standard; 9517 break; 9518 case ImplicitConversionSequence::UserDefinedConversion: 9519 SCS = &ICS.UserDefined.After; 9520 break; 9521 case ImplicitConversionSequence::AmbiguousConversion: 9522 case ImplicitConversionSequence::EllipsisConversion: 9523 case ImplicitConversionSequence::BadConversion: 9524 return; 9525 } 9526 9527 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9528 APValue ConstantValue; 9529 QualType ConstantType; 9530 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9531 ConstantType)) { 9532 case NK_Not_Narrowing: 9533 case NK_Dependent_Narrowing: 9534 // No narrowing occurred. 9535 return; 9536 9537 case NK_Type_Narrowing: 9538 // This was a floating-to-integer conversion, which is always considered a 9539 // narrowing conversion even if the value is a constant and can be 9540 // represented exactly as an integer. 9541 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9542 ? diag::ext_init_list_type_narrowing 9543 : diag::warn_init_list_type_narrowing) 9544 << PostInit->getSourceRange() 9545 << PreNarrowingType.getLocalUnqualifiedType() 9546 << EntityType.getLocalUnqualifiedType(); 9547 break; 9548 9549 case NK_Constant_Narrowing: 9550 // A constant value was narrowed. 9551 S.Diag(PostInit->getBeginLoc(), 9552 NarrowingErrs(S.getLangOpts()) 9553 ? diag::ext_init_list_constant_narrowing 9554 : diag::warn_init_list_constant_narrowing) 9555 << PostInit->getSourceRange() 9556 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9557 << EntityType.getLocalUnqualifiedType(); 9558 break; 9559 9560 case NK_Variable_Narrowing: 9561 // A variable's value may have been narrowed. 9562 S.Diag(PostInit->getBeginLoc(), 9563 NarrowingErrs(S.getLangOpts()) 9564 ? diag::ext_init_list_variable_narrowing 9565 : diag::warn_init_list_variable_narrowing) 9566 << PostInit->getSourceRange() 9567 << PreNarrowingType.getLocalUnqualifiedType() 9568 << EntityType.getLocalUnqualifiedType(); 9569 break; 9570 } 9571 9572 SmallString<128> StaticCast; 9573 llvm::raw_svector_ostream OS(StaticCast); 9574 OS << "static_cast<"; 9575 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9576 // It's important to use the typedef's name if there is one so that the 9577 // fixit doesn't break code using types like int64_t. 9578 // 9579 // FIXME: This will break if the typedef requires qualification. But 9580 // getQualifiedNameAsString() includes non-machine-parsable components. 9581 OS << *TT->getDecl(); 9582 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9583 OS << BT->getName(S.getLangOpts()); 9584 else { 9585 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9586 // with a broken cast. 9587 return; 9588 } 9589 OS << ">("; 9590 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9591 << PostInit->getSourceRange() 9592 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9593 << FixItHint::CreateInsertion( 9594 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9595 } 9596 9597 //===----------------------------------------------------------------------===// 9598 // Initialization helper functions 9599 //===----------------------------------------------------------------------===// 9600 bool 9601 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9602 ExprResult Init) { 9603 if (Init.isInvalid()) 9604 return false; 9605 9606 Expr *InitE = Init.get(); 9607 assert(InitE && "No initialization expression"); 9608 9609 InitializationKind Kind = 9610 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9611 InitializationSequence Seq(*this, Entity, Kind, InitE); 9612 return !Seq.Failed(); 9613 } 9614 9615 ExprResult 9616 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9617 SourceLocation EqualLoc, 9618 ExprResult Init, 9619 bool TopLevelOfInitList, 9620 bool AllowExplicit) { 9621 if (Init.isInvalid()) 9622 return ExprError(); 9623 9624 Expr *InitE = Init.get(); 9625 assert(InitE && "No initialization expression?"); 9626 9627 if (EqualLoc.isInvalid()) 9628 EqualLoc = InitE->getBeginLoc(); 9629 9630 InitializationKind Kind = InitializationKind::CreateCopy( 9631 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9632 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9633 9634 // Prevent infinite recursion when performing parameter copy-initialization. 9635 const bool ShouldTrackCopy = 9636 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9637 if (ShouldTrackCopy) { 9638 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9639 CurrentParameterCopyTypes.end()) { 9640 Seq.SetOverloadFailure( 9641 InitializationSequence::FK_ConstructorOverloadFailed, 9642 OR_No_Viable_Function); 9643 9644 // Try to give a meaningful diagnostic note for the problematic 9645 // constructor. 9646 const auto LastStep = Seq.step_end() - 1; 9647 assert(LastStep->Kind == 9648 InitializationSequence::SK_ConstructorInitialization); 9649 const FunctionDecl *Function = LastStep->Function.Function; 9650 auto Candidate = 9651 llvm::find_if(Seq.getFailedCandidateSet(), 9652 [Function](const OverloadCandidate &Candidate) -> bool { 9653 return Candidate.Viable && 9654 Candidate.Function == Function && 9655 Candidate.Conversions.size() > 0; 9656 }); 9657 if (Candidate != Seq.getFailedCandidateSet().end() && 9658 Function->getNumParams() > 0) { 9659 Candidate->Viable = false; 9660 Candidate->FailureKind = ovl_fail_bad_conversion; 9661 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9662 InitE, 9663 Function->getParamDecl(0)->getType()); 9664 } 9665 } 9666 CurrentParameterCopyTypes.push_back(Entity.getType()); 9667 } 9668 9669 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9670 9671 if (ShouldTrackCopy) 9672 CurrentParameterCopyTypes.pop_back(); 9673 9674 return Result; 9675 } 9676 9677 /// Determine whether RD is, or is derived from, a specialization of CTD. 9678 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9679 ClassTemplateDecl *CTD) { 9680 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9681 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9682 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9683 }; 9684 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9685 } 9686 9687 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9688 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9689 const InitializationKind &Kind, MultiExprArg Inits) { 9690 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9691 TSInfo->getType()->getContainedDeducedType()); 9692 assert(DeducedTST && "not a deduced template specialization type"); 9693 9694 auto TemplateName = DeducedTST->getTemplateName(); 9695 if (TemplateName.isDependent()) 9696 return Context.DependentTy; 9697 9698 // We can only perform deduction for class templates. 9699 auto *Template = 9700 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9701 if (!Template) { 9702 Diag(Kind.getLocation(), 9703 diag::err_deduced_non_class_template_specialization_type) 9704 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9705 if (auto *TD = TemplateName.getAsTemplateDecl()) 9706 Diag(TD->getLocation(), diag::note_template_decl_here); 9707 return QualType(); 9708 } 9709 9710 // Can't deduce from dependent arguments. 9711 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9712 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9713 diag::warn_cxx14_compat_class_template_argument_deduction) 9714 << TSInfo->getTypeLoc().getSourceRange() << 0; 9715 return Context.DependentTy; 9716 } 9717 9718 // FIXME: Perform "exact type" matching first, per CWG discussion? 9719 // Or implement this via an implied 'T(T) -> T' deduction guide? 9720 9721 // FIXME: Do we need/want a std::initializer_list<T> special case? 9722 9723 // Look up deduction guides, including those synthesized from constructors. 9724 // 9725 // C++1z [over.match.class.deduct]p1: 9726 // A set of functions and function templates is formed comprising: 9727 // - For each constructor of the class template designated by the 9728 // template-name, a function template [...] 9729 // - For each deduction-guide, a function or function template [...] 9730 DeclarationNameInfo NameInfo( 9731 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9732 TSInfo->getTypeLoc().getEndLoc()); 9733 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9734 LookupQualifiedName(Guides, Template->getDeclContext()); 9735 9736 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9737 // clear on this, but they're not found by name so access does not apply. 9738 Guides.suppressDiagnostics(); 9739 9740 // Figure out if this is list-initialization. 9741 InitListExpr *ListInit = 9742 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9743 ? dyn_cast<InitListExpr>(Inits[0]) 9744 : nullptr; 9745 9746 // C++1z [over.match.class.deduct]p1: 9747 // Initialization and overload resolution are performed as described in 9748 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9749 // (as appropriate for the type of initialization performed) for an object 9750 // of a hypothetical class type, where the selected functions and function 9751 // templates are considered to be the constructors of that class type 9752 // 9753 // Since we know we're initializing a class type of a type unrelated to that 9754 // of the initializer, this reduces to something fairly reasonable. 9755 OverloadCandidateSet Candidates(Kind.getLocation(), 9756 OverloadCandidateSet::CSK_Normal); 9757 OverloadCandidateSet::iterator Best; 9758 9759 bool HasAnyDeductionGuide = false; 9760 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9761 9762 auto tryToResolveOverload = 9763 [&](bool OnlyListConstructors) -> OverloadingResult { 9764 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9765 HasAnyDeductionGuide = false; 9766 9767 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9768 NamedDecl *D = (*I)->getUnderlyingDecl(); 9769 if (D->isInvalidDecl()) 9770 continue; 9771 9772 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9773 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9774 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9775 if (!GD) 9776 continue; 9777 9778 if (!GD->isImplicit()) 9779 HasAnyDeductionGuide = true; 9780 9781 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9782 // For copy-initialization, the candidate functions are all the 9783 // converting constructors (12.3.1) of that class. 9784 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9785 // The converting constructors of T are candidate functions. 9786 if (!AllowExplicit) { 9787 // Only consider converting constructors. 9788 if (GD->isExplicit()) 9789 continue; 9790 9791 // When looking for a converting constructor, deduction guides that 9792 // could never be called with one argument are not interesting to 9793 // check or note. 9794 if (GD->getMinRequiredArguments() > 1 || 9795 (GD->getNumParams() == 0 && !GD->isVariadic())) 9796 continue; 9797 } 9798 9799 // C++ [over.match.list]p1.1: (first phase list initialization) 9800 // Initially, the candidate functions are the initializer-list 9801 // constructors of the class T 9802 if (OnlyListConstructors && !isInitListConstructor(GD)) 9803 continue; 9804 9805 // C++ [over.match.list]p1.2: (second phase list initialization) 9806 // the candidate functions are all the constructors of the class T 9807 // C++ [over.match.ctor]p1: (all other cases) 9808 // the candidate functions are all the constructors of the class of 9809 // the object being initialized 9810 9811 // C++ [over.best.ics]p4: 9812 // When [...] the constructor [...] is a candidate by 9813 // - [over.match.copy] (in all cases) 9814 // FIXME: The "second phase of [over.match.list] case can also 9815 // theoretically happen here, but it's not clear whether we can 9816 // ever have a parameter of the right type. 9817 bool SuppressUserConversions = Kind.isCopyInit(); 9818 9819 if (TD) 9820 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9821 Inits, Candidates, SuppressUserConversions, 9822 /*PartialOverloading*/ false, 9823 AllowExplicit); 9824 else 9825 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9826 SuppressUserConversions, 9827 /*PartialOverloading*/ false, AllowExplicit); 9828 } 9829 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9830 }; 9831 9832 OverloadingResult Result = OR_No_Viable_Function; 9833 9834 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9835 // try initializer-list constructors. 9836 if (ListInit) { 9837 bool TryListConstructors = true; 9838 9839 // Try list constructors unless the list is empty and the class has one or 9840 // more default constructors, in which case those constructors win. 9841 if (!ListInit->getNumInits()) { 9842 for (NamedDecl *D : Guides) { 9843 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9844 if (FD && FD->getMinRequiredArguments() == 0) { 9845 TryListConstructors = false; 9846 break; 9847 } 9848 } 9849 } else if (ListInit->getNumInits() == 1) { 9850 // C++ [over.match.class.deduct]: 9851 // As an exception, the first phase in [over.match.list] (considering 9852 // initializer-list constructors) is omitted if the initializer list 9853 // consists of a single expression of type cv U, where U is a 9854 // specialization of C or a class derived from a specialization of C. 9855 Expr *E = ListInit->getInit(0); 9856 auto *RD = E->getType()->getAsCXXRecordDecl(); 9857 if (!isa<InitListExpr>(E) && RD && 9858 isCompleteType(Kind.getLocation(), E->getType()) && 9859 isOrIsDerivedFromSpecializationOf(RD, Template)) 9860 TryListConstructors = false; 9861 } 9862 9863 if (TryListConstructors) 9864 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9865 // Then unwrap the initializer list and try again considering all 9866 // constructors. 9867 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9868 } 9869 9870 // If list-initialization fails, or if we're doing any other kind of 9871 // initialization, we (eventually) consider constructors. 9872 if (Result == OR_No_Viable_Function) 9873 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9874 9875 switch (Result) { 9876 case OR_Ambiguous: 9877 // FIXME: For list-initialization candidates, it'd usually be better to 9878 // list why they were not viable when given the initializer list itself as 9879 // an argument. 9880 Candidates.NoteCandidates( 9881 PartialDiagnosticAt( 9882 Kind.getLocation(), 9883 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9884 << TemplateName), 9885 *this, OCD_AmbiguousCandidates, Inits); 9886 return QualType(); 9887 9888 case OR_No_Viable_Function: { 9889 CXXRecordDecl *Primary = 9890 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9891 bool Complete = 9892 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9893 Candidates.NoteCandidates( 9894 PartialDiagnosticAt( 9895 Kind.getLocation(), 9896 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9897 : diag::err_deduced_class_template_incomplete) 9898 << TemplateName << !Guides.empty()), 9899 *this, OCD_AllCandidates, Inits); 9900 return QualType(); 9901 } 9902 9903 case OR_Deleted: { 9904 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9905 << TemplateName; 9906 NoteDeletedFunction(Best->Function); 9907 return QualType(); 9908 } 9909 9910 case OR_Success: 9911 // C++ [over.match.list]p1: 9912 // In copy-list-initialization, if an explicit constructor is chosen, the 9913 // initialization is ill-formed. 9914 if (Kind.isCopyInit() && ListInit && 9915 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9916 bool IsDeductionGuide = !Best->Function->isImplicit(); 9917 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9918 << TemplateName << IsDeductionGuide; 9919 Diag(Best->Function->getLocation(), 9920 diag::note_explicit_ctor_deduction_guide_here) 9921 << IsDeductionGuide; 9922 return QualType(); 9923 } 9924 9925 // Make sure we didn't select an unusable deduction guide, and mark it 9926 // as referenced. 9927 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9928 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9929 break; 9930 } 9931 9932 // C++ [dcl.type.class.deduct]p1: 9933 // The placeholder is replaced by the return type of the function selected 9934 // by overload resolution for class template deduction. 9935 QualType DeducedType = 9936 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9937 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9938 diag::warn_cxx14_compat_class_template_argument_deduction) 9939 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9940 9941 // Warn if CTAD was used on a type that does not have any user-defined 9942 // deduction guides. 9943 if (!HasAnyDeductionGuide) { 9944 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9945 diag::warn_ctad_maybe_unsupported) 9946 << TemplateName; 9947 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9948 } 9949 9950 return DeducedType; 9951 } 9952