1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39 
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42 
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46 
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50 
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52 
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71 
72     return 0;
73   }
74 
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77 
78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81 
82   return IsStringInit(init, arrayType, Context);
83 }
84 
85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                             Sema &S) {
87   // Get the length of the string as parsed.
88   uint64_t StrLength =
89     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90 
91 
92   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93     // C99 6.7.8p14. We have an array of character type with unknown size
94     // being initialized to a string literal.
95     llvm::APInt ConstVal(32, StrLength);
96     // Return a new array type (C99 6.7.8p22).
97     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98                                            ConstVal,
99                                            ArrayType::Normal, 0);
100     return;
101   }
102 
103   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104 
105   // We have an array of character type with known size.  However,
106   // the size may be smaller or larger than the string we are initializing.
107   // FIXME: Avoid truncation for 64-bit length strings.
108   if (S.getLangOpts().CPlusPlus) {
109     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
110       // For Pascal strings it's OK to strip off the terminating null character,
111       // so the example below is valid:
112       //
113       // unsigned char a[2] = "\pa";
114       if (SL->isPascal())
115         StrLength--;
116     }
117 
118     // [dcl.init.string]p2
119     if (StrLength > CAT->getSize().getZExtValue())
120       S.Diag(Str->getLocStart(),
121              diag::err_initializer_string_for_char_array_too_long)
122         << Str->getSourceRange();
123   } else {
124     // C99 6.7.8p14.
125     if (StrLength-1 > CAT->getSize().getZExtValue())
126       S.Diag(Str->getLocStart(),
127              diag::warn_initializer_string_for_char_array_too_long)
128         << Str->getSourceRange();
129   }
130 
131   // Set the type to the actual size that we are initializing.  If we have
132   // something like:
133   //   char x[1] = "foo";
134   // then this will set the string literal's type to char[1].
135   Str->setType(DeclT);
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // Semantic checking for initializer lists.
140 //===----------------------------------------------------------------------===//
141 
142 /// @brief Semantic checking for initializer lists.
143 ///
144 /// The InitListChecker class contains a set of routines that each
145 /// handle the initialization of a certain kind of entity, e.g.,
146 /// arrays, vectors, struct/union types, scalars, etc. The
147 /// InitListChecker itself performs a recursive walk of the subobject
148 /// structure of the type to be initialized, while stepping through
149 /// the initializer list one element at a time. The IList and Index
150 /// parameters to each of the Check* routines contain the active
151 /// (syntactic) initializer list and the index into that initializer
152 /// list that represents the current initializer. Each routine is
153 /// responsible for moving that Index forward as it consumes elements.
154 ///
155 /// Each Check* routine also has a StructuredList/StructuredIndex
156 /// arguments, which contains the current "structured" (semantic)
157 /// initializer list and the index into that initializer list where we
158 /// are copying initializers as we map them over to the semantic
159 /// list. Once we have completed our recursive walk of the subobject
160 /// structure, we will have constructed a full semantic initializer
161 /// list.
162 ///
163 /// C99 designators cause changes in the initializer list traversal,
164 /// because they make the initialization "jump" into a specific
165 /// subobject and then continue the initialization from that
166 /// point. CheckDesignatedInitializer() recursively steps into the
167 /// designated subobject and manages backing out the recursion to
168 /// initialize the subobjects after the one designated.
169 namespace {
170 class InitListChecker {
171   Sema &SemaRef;
172   bool hadError;
173   bool VerifyOnly; // no diagnostics, no structure building
174   bool AllowBraceElision;
175   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
176   InitListExpr *FullyStructuredList;
177 
178   void CheckImplicitInitList(const InitializedEntity &Entity,
179                              InitListExpr *ParentIList, QualType T,
180                              unsigned &Index, InitListExpr *StructuredList,
181                              unsigned &StructuredIndex);
182   void CheckExplicitInitList(const InitializedEntity &Entity,
183                              InitListExpr *IList, QualType &T,
184                              unsigned &Index, InitListExpr *StructuredList,
185                              unsigned &StructuredIndex,
186                              bool TopLevelObject = false);
187   void CheckListElementTypes(const InitializedEntity &Entity,
188                              InitListExpr *IList, QualType &DeclType,
189                              bool SubobjectIsDesignatorContext,
190                              unsigned &Index,
191                              InitListExpr *StructuredList,
192                              unsigned &StructuredIndex,
193                              bool TopLevelObject = false);
194   void CheckSubElementType(const InitializedEntity &Entity,
195                            InitListExpr *IList, QualType ElemType,
196                            unsigned &Index,
197                            InitListExpr *StructuredList,
198                            unsigned &StructuredIndex);
199   void CheckComplexType(const InitializedEntity &Entity,
200                         InitListExpr *IList, QualType DeclType,
201                         unsigned &Index,
202                         InitListExpr *StructuredList,
203                         unsigned &StructuredIndex);
204   void CheckScalarType(const InitializedEntity &Entity,
205                        InitListExpr *IList, QualType DeclType,
206                        unsigned &Index,
207                        InitListExpr *StructuredList,
208                        unsigned &StructuredIndex);
209   void CheckReferenceType(const InitializedEntity &Entity,
210                           InitListExpr *IList, QualType DeclType,
211                           unsigned &Index,
212                           InitListExpr *StructuredList,
213                           unsigned &StructuredIndex);
214   void CheckVectorType(const InitializedEntity &Entity,
215                        InitListExpr *IList, QualType DeclType, unsigned &Index,
216                        InitListExpr *StructuredList,
217                        unsigned &StructuredIndex);
218   void CheckStructUnionTypes(const InitializedEntity &Entity,
219                              InitListExpr *IList, QualType DeclType,
220                              RecordDecl::field_iterator Field,
221                              bool SubobjectIsDesignatorContext, unsigned &Index,
222                              InitListExpr *StructuredList,
223                              unsigned &StructuredIndex,
224                              bool TopLevelObject = false);
225   void CheckArrayType(const InitializedEntity &Entity,
226                       InitListExpr *IList, QualType &DeclType,
227                       llvm::APSInt elementIndex,
228                       bool SubobjectIsDesignatorContext, unsigned &Index,
229                       InitListExpr *StructuredList,
230                       unsigned &StructuredIndex);
231   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
232                                   InitListExpr *IList, DesignatedInitExpr *DIE,
233                                   unsigned DesigIdx,
234                                   QualType &CurrentObjectType,
235                                   RecordDecl::field_iterator *NextField,
236                                   llvm::APSInt *NextElementIndex,
237                                   unsigned &Index,
238                                   InitListExpr *StructuredList,
239                                   unsigned &StructuredIndex,
240                                   bool FinishSubobjectInit,
241                                   bool TopLevelObject);
242   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
243                                            QualType CurrentObjectType,
244                                            InitListExpr *StructuredList,
245                                            unsigned StructuredIndex,
246                                            SourceRange InitRange);
247   void UpdateStructuredListElement(InitListExpr *StructuredList,
248                                    unsigned &StructuredIndex,
249                                    Expr *expr);
250   int numArrayElements(QualType DeclType);
251   int numStructUnionElements(QualType DeclType);
252 
253   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
254                                const InitializedEntity &ParentEntity,
255                                InitListExpr *ILE, bool &RequiresSecondPass);
256   void FillInValueInitializations(const InitializedEntity &Entity,
257                                   InitListExpr *ILE, bool &RequiresSecondPass);
258   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
259                               Expr *InitExpr, FieldDecl *Field,
260                               bool TopLevelObject);
261   void CheckValueInitializable(const InitializedEntity &Entity);
262 
263 public:
264   InitListChecker(Sema &S, const InitializedEntity &Entity,
265                   InitListExpr *IL, QualType &T, bool VerifyOnly,
266                   bool AllowBraceElision);
267   bool HadError() { return hadError; }
268 
269   // @brief Retrieves the fully-structured initializer list used for
270   // semantic analysis and code generation.
271   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
272 };
273 } // end anonymous namespace
274 
275 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
276   assert(VerifyOnly &&
277          "CheckValueInitializable is only inteded for verification mode.");
278 
279   SourceLocation Loc;
280   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
281                                                             true);
282   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
283   if (InitSeq.Failed())
284     hadError = true;
285 }
286 
287 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288                                         const InitializedEntity &ParentEntity,
289                                               InitListExpr *ILE,
290                                               bool &RequiresSecondPass) {
291   SourceLocation Loc = ILE->getLocStart();
292   unsigned NumInits = ILE->getNumInits();
293   InitializedEntity MemberEntity
294     = InitializedEntity::InitializeMember(Field, &ParentEntity);
295   if (Init >= NumInits || !ILE->getInit(Init)) {
296     // FIXME: We probably don't need to handle references
297     // specially here, since value-initialization of references is
298     // handled in InitializationSequence.
299     if (Field->getType()->isReferenceType()) {
300       // C++ [dcl.init.aggr]p9:
301       //   If an incomplete or empty initializer-list leaves a
302       //   member of reference type uninitialized, the program is
303       //   ill-formed.
304       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305         << Field->getType()
306         << ILE->getSyntacticForm()->getSourceRange();
307       SemaRef.Diag(Field->getLocation(),
308                    diag::note_uninit_reference_member);
309       hadError = true;
310       return;
311     }
312 
313     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314                                                               true);
315     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316     if (!InitSeq) {
317       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318       hadError = true;
319       return;
320     }
321 
322     ExprResult MemberInit
323       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
324     if (MemberInit.isInvalid()) {
325       hadError = true;
326       return;
327     }
328 
329     if (hadError) {
330       // Do nothing
331     } else if (Init < NumInits) {
332       ILE->setInit(Init, MemberInit.takeAs<Expr>());
333     } else if (InitSeq.isConstructorInitialization()) {
334       // Value-initialization requires a constructor call, so
335       // extend the initializer list to include the constructor
336       // call and make a note that we'll need to take another pass
337       // through the initializer list.
338       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
339       RequiresSecondPass = true;
340     }
341   } else if (InitListExpr *InnerILE
342                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
343     FillInValueInitializations(MemberEntity, InnerILE,
344                                RequiresSecondPass);
345 }
346 
347 /// Recursively replaces NULL values within the given initializer list
348 /// with expressions that perform value-initialization of the
349 /// appropriate type.
350 void
351 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
352                                             InitListExpr *ILE,
353                                             bool &RequiresSecondPass) {
354   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
355          "Should not have void type");
356   SourceLocation Loc = ILE->getLocStart();
357   if (ILE->getSyntacticForm())
358     Loc = ILE->getSyntacticForm()->getLocStart();
359 
360   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
361     if (RType->getDecl()->isUnion() &&
362         ILE->getInitializedFieldInUnion())
363       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
364                               Entity, ILE, RequiresSecondPass);
365     else {
366       unsigned Init = 0;
367       for (RecordDecl::field_iterator
368              Field = RType->getDecl()->field_begin(),
369              FieldEnd = RType->getDecl()->field_end();
370            Field != FieldEnd; ++Field) {
371         if (Field->isUnnamedBitfield())
372           continue;
373 
374         if (hadError)
375           return;
376 
377         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
378         if (hadError)
379           return;
380 
381         ++Init;
382 
383         // Only look at the first initialization of a union.
384         if (RType->getDecl()->isUnion())
385           break;
386       }
387     }
388 
389     return;
390   }
391 
392   QualType ElementType;
393 
394   InitializedEntity ElementEntity = Entity;
395   unsigned NumInits = ILE->getNumInits();
396   unsigned NumElements = NumInits;
397   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
398     ElementType = AType->getElementType();
399     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
400       NumElements = CAType->getSize().getZExtValue();
401     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
402                                                          0, Entity);
403   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
404     ElementType = VType->getElementType();
405     NumElements = VType->getNumElements();
406     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
407                                                          0, Entity);
408   } else
409     ElementType = ILE->getType();
410 
411 
412   for (unsigned Init = 0; Init != NumElements; ++Init) {
413     if (hadError)
414       return;
415 
416     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
417         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
418       ElementEntity.setElementIndex(Init);
419 
420     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
421     if (!InitExpr && !ILE->hasArrayFiller()) {
422       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
423                                                                 true);
424       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
425       if (!InitSeq) {
426         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
427         hadError = true;
428         return;
429       }
430 
431       ExprResult ElementInit
432         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
433       if (ElementInit.isInvalid()) {
434         hadError = true;
435         return;
436       }
437 
438       if (hadError) {
439         // Do nothing
440       } else if (Init < NumInits) {
441         // For arrays, just set the expression used for value-initialization
442         // of the "holes" in the array.
443         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
444           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
445         else
446           ILE->setInit(Init, ElementInit.takeAs<Expr>());
447       } else {
448         // For arrays, just set the expression used for value-initialization
449         // of the rest of elements and exit.
450         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
451           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
452           return;
453         }
454 
455         if (InitSeq.isConstructorInitialization()) {
456           // Value-initialization requires a constructor call, so
457           // extend the initializer list to include the constructor
458           // call and make a note that we'll need to take another pass
459           // through the initializer list.
460           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
461           RequiresSecondPass = true;
462         }
463       }
464     } else if (InitListExpr *InnerILE
465                  = dyn_cast_or_null<InitListExpr>(InitExpr))
466       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
467   }
468 }
469 
470 
471 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
472                                  InitListExpr *IL, QualType &T,
473                                  bool VerifyOnly, bool AllowBraceElision)
474   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
475   hadError = false;
476 
477   unsigned newIndex = 0;
478   unsigned newStructuredIndex = 0;
479   FullyStructuredList
480     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
481   CheckExplicitInitList(Entity, IL, T, newIndex,
482                         FullyStructuredList, newStructuredIndex,
483                         /*TopLevelObject=*/true);
484 
485   if (!hadError && !VerifyOnly) {
486     bool RequiresSecondPass = false;
487     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
488     if (RequiresSecondPass && !hadError)
489       FillInValueInitializations(Entity, FullyStructuredList,
490                                  RequiresSecondPass);
491   }
492 }
493 
494 int InitListChecker::numArrayElements(QualType DeclType) {
495   // FIXME: use a proper constant
496   int maxElements = 0x7FFFFFFF;
497   if (const ConstantArrayType *CAT =
498         SemaRef.Context.getAsConstantArrayType(DeclType)) {
499     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
500   }
501   return maxElements;
502 }
503 
504 int InitListChecker::numStructUnionElements(QualType DeclType) {
505   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
506   int InitializableMembers = 0;
507   for (RecordDecl::field_iterator
508          Field = structDecl->field_begin(),
509          FieldEnd = structDecl->field_end();
510        Field != FieldEnd; ++Field) {
511     if (!Field->isUnnamedBitfield())
512       ++InitializableMembers;
513   }
514   if (structDecl->isUnion())
515     return std::min(InitializableMembers, 1);
516   return InitializableMembers - structDecl->hasFlexibleArrayMember();
517 }
518 
519 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
520                                             InitListExpr *ParentIList,
521                                             QualType T, unsigned &Index,
522                                             InitListExpr *StructuredList,
523                                             unsigned &StructuredIndex) {
524   int maxElements = 0;
525 
526   if (T->isArrayType())
527     maxElements = numArrayElements(T);
528   else if (T->isRecordType())
529     maxElements = numStructUnionElements(T);
530   else if (T->isVectorType())
531     maxElements = T->getAs<VectorType>()->getNumElements();
532   else
533     llvm_unreachable("CheckImplicitInitList(): Illegal type");
534 
535   if (maxElements == 0) {
536     if (!VerifyOnly)
537       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
538                    diag::err_implicit_empty_initializer);
539     ++Index;
540     hadError = true;
541     return;
542   }
543 
544   // Build a structured initializer list corresponding to this subobject.
545   InitListExpr *StructuredSubobjectInitList
546     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
547                                  StructuredIndex,
548           SourceRange(ParentIList->getInit(Index)->getLocStart(),
549                       ParentIList->getSourceRange().getEnd()));
550   unsigned StructuredSubobjectInitIndex = 0;
551 
552   // Check the element types and build the structural subobject.
553   unsigned StartIndex = Index;
554   CheckListElementTypes(Entity, ParentIList, T,
555                         /*SubobjectIsDesignatorContext=*/false, Index,
556                         StructuredSubobjectInitList,
557                         StructuredSubobjectInitIndex);
558 
559   if (VerifyOnly) {
560     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
561       hadError = true;
562   } else {
563     StructuredSubobjectInitList->setType(T);
564 
565     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
566     // Update the structured sub-object initializer so that it's ending
567     // range corresponds with the end of the last initializer it used.
568     if (EndIndex < ParentIList->getNumInits()) {
569       SourceLocation EndLoc
570         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
571       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
572     }
573 
574     // Complain about missing braces.
575     if (T->isArrayType() || T->isRecordType()) {
576       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
577                     AllowBraceElision ? diag::warn_missing_braces :
578                                         diag::err_missing_braces)
579         << StructuredSubobjectInitList->getSourceRange()
580         << FixItHint::CreateInsertion(
581               StructuredSubobjectInitList->getLocStart(), "{")
582         << FixItHint::CreateInsertion(
583               SemaRef.PP.getLocForEndOfToken(
584                                       StructuredSubobjectInitList->getLocEnd()),
585               "}");
586       if (!AllowBraceElision)
587         hadError = true;
588     }
589   }
590 }
591 
592 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
593                                             InitListExpr *IList, QualType &T,
594                                             unsigned &Index,
595                                             InitListExpr *StructuredList,
596                                             unsigned &StructuredIndex,
597                                             bool TopLevelObject) {
598   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
599   if (!VerifyOnly) {
600     SyntacticToSemantic[IList] = StructuredList;
601     StructuredList->setSyntacticForm(IList);
602   }
603   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
604                         Index, StructuredList, StructuredIndex, TopLevelObject);
605   if (!VerifyOnly) {
606     QualType ExprTy = T;
607     if (!ExprTy->isArrayType())
608       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
609     IList->setType(ExprTy);
610     StructuredList->setType(ExprTy);
611   }
612   if (hadError)
613     return;
614 
615   if (Index < IList->getNumInits()) {
616     // We have leftover initializers
617     if (VerifyOnly) {
618       if (SemaRef.getLangOpts().CPlusPlus ||
619           (SemaRef.getLangOpts().OpenCL &&
620            IList->getType()->isVectorType())) {
621         hadError = true;
622       }
623       return;
624     }
625 
626     if (StructuredIndex == 1 &&
627         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
628       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
629       if (SemaRef.getLangOpts().CPlusPlus) {
630         DK = diag::err_excess_initializers_in_char_array_initializer;
631         hadError = true;
632       }
633       // Special-case
634       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
635         << IList->getInit(Index)->getSourceRange();
636     } else if (!T->isIncompleteType()) {
637       // Don't complain for incomplete types, since we'll get an error
638       // elsewhere
639       QualType CurrentObjectType = StructuredList->getType();
640       int initKind =
641         CurrentObjectType->isArrayType()? 0 :
642         CurrentObjectType->isVectorType()? 1 :
643         CurrentObjectType->isScalarType()? 2 :
644         CurrentObjectType->isUnionType()? 3 :
645         4;
646 
647       unsigned DK = diag::warn_excess_initializers;
648       if (SemaRef.getLangOpts().CPlusPlus) {
649         DK = diag::err_excess_initializers;
650         hadError = true;
651       }
652       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
653         DK = diag::err_excess_initializers;
654         hadError = true;
655       }
656 
657       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
658         << initKind << IList->getInit(Index)->getSourceRange();
659     }
660   }
661 
662   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
663       !TopLevelObject)
664     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
665       << IList->getSourceRange()
666       << FixItHint::CreateRemoval(IList->getLocStart())
667       << FixItHint::CreateRemoval(IList->getLocEnd());
668 }
669 
670 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
671                                             InitListExpr *IList,
672                                             QualType &DeclType,
673                                             bool SubobjectIsDesignatorContext,
674                                             unsigned &Index,
675                                             InitListExpr *StructuredList,
676                                             unsigned &StructuredIndex,
677                                             bool TopLevelObject) {
678   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
679     // Explicitly braced initializer for complex type can be real+imaginary
680     // parts.
681     CheckComplexType(Entity, IList, DeclType, Index,
682                      StructuredList, StructuredIndex);
683   } else if (DeclType->isScalarType()) {
684     CheckScalarType(Entity, IList, DeclType, Index,
685                     StructuredList, StructuredIndex);
686   } else if (DeclType->isVectorType()) {
687     CheckVectorType(Entity, IList, DeclType, Index,
688                     StructuredList, StructuredIndex);
689   } else if (DeclType->isRecordType()) {
690     assert(DeclType->isAggregateType() &&
691            "non-aggregate records should be handed in CheckSubElementType");
692     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694                           SubobjectIsDesignatorContext, Index,
695                           StructuredList, StructuredIndex,
696                           TopLevelObject);
697   } else if (DeclType->isArrayType()) {
698     llvm::APSInt Zero(
699                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700                     false);
701     CheckArrayType(Entity, IList, DeclType, Zero,
702                    SubobjectIsDesignatorContext, Index,
703                    StructuredList, StructuredIndex);
704   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
705     // This type is invalid, issue a diagnostic.
706     ++Index;
707     if (!VerifyOnly)
708       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
709         << DeclType;
710     hadError = true;
711   } else if (DeclType->isReferenceType()) {
712     CheckReferenceType(Entity, IList, DeclType, Index,
713                        StructuredList, StructuredIndex);
714   } else if (DeclType->isObjCObjectType()) {
715     if (!VerifyOnly)
716       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
717         << DeclType;
718     hadError = true;
719   } else {
720     if (!VerifyOnly)
721       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
722         << DeclType;
723     hadError = true;
724   }
725 }
726 
727 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
728                                           InitListExpr *IList,
729                                           QualType ElemType,
730                                           unsigned &Index,
731                                           InitListExpr *StructuredList,
732                                           unsigned &StructuredIndex) {
733   Expr *expr = IList->getInit(Index);
734   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
735     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
736       unsigned newIndex = 0;
737       unsigned newStructuredIndex = 0;
738       InitListExpr *newStructuredList
739         = getStructuredSubobjectInit(IList, Index, ElemType,
740                                      StructuredList, StructuredIndex,
741                                      SubInitList->getSourceRange());
742       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
743                             newStructuredList, newStructuredIndex);
744       ++StructuredIndex;
745       ++Index;
746       return;
747     }
748     assert(SemaRef.getLangOpts().CPlusPlus &&
749            "non-aggregate records are only possible in C++");
750     // C++ initialization is handled later.
751   }
752 
753   if (ElemType->isScalarType()) {
754     return CheckScalarType(Entity, IList, ElemType, Index,
755                            StructuredList, StructuredIndex);
756   } else if (ElemType->isReferenceType()) {
757     return CheckReferenceType(Entity, IList, ElemType, Index,
758                               StructuredList, StructuredIndex);
759   }
760 
761   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
762     // arrayType can be incomplete if we're initializing a flexible
763     // array member.  There's nothing we can do with the completed
764     // type here, though.
765 
766     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
767       if (!VerifyOnly) {
768         CheckStringInit(Str, ElemType, arrayType, SemaRef);
769         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
770       }
771       ++Index;
772       return;
773     }
774 
775     // Fall through for subaggregate initialization.
776 
777   } else if (SemaRef.getLangOpts().CPlusPlus) {
778     // C++ [dcl.init.aggr]p12:
779     //   All implicit type conversions (clause 4) are considered when
780     //   initializing the aggregate member with an initializer from
781     //   an initializer-list. If the initializer can initialize a
782     //   member, the member is initialized. [...]
783 
784     // FIXME: Better EqualLoc?
785     InitializationKind Kind =
786       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
787     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
788 
789     if (Seq) {
790       if (!VerifyOnly) {
791         ExprResult Result =
792           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
793         if (Result.isInvalid())
794           hadError = true;
795 
796         UpdateStructuredListElement(StructuredList, StructuredIndex,
797                                     Result.takeAs<Expr>());
798       }
799       ++Index;
800       return;
801     }
802 
803     // Fall through for subaggregate initialization
804   } else {
805     // C99 6.7.8p13:
806     //
807     //   The initializer for a structure or union object that has
808     //   automatic storage duration shall be either an initializer
809     //   list as described below, or a single expression that has
810     //   compatible structure or union type. In the latter case, the
811     //   initial value of the object, including unnamed members, is
812     //   that of the expression.
813     ExprResult ExprRes = SemaRef.Owned(expr);
814     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
815         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
816                                                  !VerifyOnly)
817           == Sema::Compatible) {
818       if (ExprRes.isInvalid())
819         hadError = true;
820       else {
821         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
822 	      if (ExprRes.isInvalid())
823 	        hadError = true;
824       }
825       UpdateStructuredListElement(StructuredList, StructuredIndex,
826                                   ExprRes.takeAs<Expr>());
827       ++Index;
828       return;
829     }
830     ExprRes.release();
831     // Fall through for subaggregate initialization
832   }
833 
834   // C++ [dcl.init.aggr]p12:
835   //
836   //   [...] Otherwise, if the member is itself a non-empty
837   //   subaggregate, brace elision is assumed and the initializer is
838   //   considered for the initialization of the first member of
839   //   the subaggregate.
840   if (!SemaRef.getLangOpts().OpenCL &&
841       (ElemType->isAggregateType() || ElemType->isVectorType())) {
842     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
843                           StructuredIndex);
844     ++StructuredIndex;
845   } else {
846     if (!VerifyOnly) {
847       // We cannot initialize this element, so let
848       // PerformCopyInitialization produce the appropriate diagnostic.
849       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
850                                         SemaRef.Owned(expr),
851                                         /*TopLevelOfInitList=*/true);
852     }
853     hadError = true;
854     ++Index;
855     ++StructuredIndex;
856   }
857 }
858 
859 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
860                                        InitListExpr *IList, QualType DeclType,
861                                        unsigned &Index,
862                                        InitListExpr *StructuredList,
863                                        unsigned &StructuredIndex) {
864   assert(Index == 0 && "Index in explicit init list must be zero");
865 
866   // As an extension, clang supports complex initializers, which initialize
867   // a complex number component-wise.  When an explicit initializer list for
868   // a complex number contains two two initializers, this extension kicks in:
869   // it exepcts the initializer list to contain two elements convertible to
870   // the element type of the complex type. The first element initializes
871   // the real part, and the second element intitializes the imaginary part.
872 
873   if (IList->getNumInits() != 2)
874     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
875                            StructuredIndex);
876 
877   // This is an extension in C.  (The builtin _Complex type does not exist
878   // in the C++ standard.)
879   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
880     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
881       << IList->getSourceRange();
882 
883   // Initialize the complex number.
884   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
885   InitializedEntity ElementEntity =
886     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
887 
888   for (unsigned i = 0; i < 2; ++i) {
889     ElementEntity.setElementIndex(Index);
890     CheckSubElementType(ElementEntity, IList, elementType, Index,
891                         StructuredList, StructuredIndex);
892   }
893 }
894 
895 
896 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
897                                       InitListExpr *IList, QualType DeclType,
898                                       unsigned &Index,
899                                       InitListExpr *StructuredList,
900                                       unsigned &StructuredIndex) {
901   if (Index >= IList->getNumInits()) {
902     if (!VerifyOnly)
903       SemaRef.Diag(IList->getLocStart(),
904                    SemaRef.getLangOpts().CPlusPlus0x ?
905                      diag::warn_cxx98_compat_empty_scalar_initializer :
906                      diag::err_empty_scalar_initializer)
907         << IList->getSourceRange();
908     hadError = !SemaRef.getLangOpts().CPlusPlus0x;
909     ++Index;
910     ++StructuredIndex;
911     return;
912   }
913 
914   Expr *expr = IList->getInit(Index);
915   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
916     if (!VerifyOnly)
917       SemaRef.Diag(SubIList->getLocStart(),
918                    diag::warn_many_braces_around_scalar_init)
919         << SubIList->getSourceRange();
920 
921     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
922                     StructuredIndex);
923     return;
924   } else if (isa<DesignatedInitExpr>(expr)) {
925     if (!VerifyOnly)
926       SemaRef.Diag(expr->getLocStart(),
927                    diag::err_designator_for_scalar_init)
928         << DeclType << expr->getSourceRange();
929     hadError = true;
930     ++Index;
931     ++StructuredIndex;
932     return;
933   }
934 
935   if (VerifyOnly) {
936     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
937       hadError = true;
938     ++Index;
939     return;
940   }
941 
942   ExprResult Result =
943     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
944                                       SemaRef.Owned(expr),
945                                       /*TopLevelOfInitList=*/true);
946 
947   Expr *ResultExpr = 0;
948 
949   if (Result.isInvalid())
950     hadError = true; // types weren't compatible.
951   else {
952     ResultExpr = Result.takeAs<Expr>();
953 
954     if (ResultExpr != expr) {
955       // The type was promoted, update initializer list.
956       IList->setInit(Index, ResultExpr);
957     }
958   }
959   if (hadError)
960     ++StructuredIndex;
961   else
962     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
963   ++Index;
964 }
965 
966 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
967                                          InitListExpr *IList, QualType DeclType,
968                                          unsigned &Index,
969                                          InitListExpr *StructuredList,
970                                          unsigned &StructuredIndex) {
971   if (Index >= IList->getNumInits()) {
972     // FIXME: It would be wonderful if we could point at the actual member. In
973     // general, it would be useful to pass location information down the stack,
974     // so that we know the location (or decl) of the "current object" being
975     // initialized.
976     if (!VerifyOnly)
977       SemaRef.Diag(IList->getLocStart(),
978                     diag::err_init_reference_member_uninitialized)
979         << DeclType
980         << IList->getSourceRange();
981     hadError = true;
982     ++Index;
983     ++StructuredIndex;
984     return;
985   }
986 
987   Expr *expr = IList->getInit(Index);
988   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus0x) {
989     if (!VerifyOnly)
990       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
991         << DeclType << IList->getSourceRange();
992     hadError = true;
993     ++Index;
994     ++StructuredIndex;
995     return;
996   }
997 
998   if (VerifyOnly) {
999     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1000       hadError = true;
1001     ++Index;
1002     return;
1003   }
1004 
1005   ExprResult Result =
1006     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1007                                       SemaRef.Owned(expr),
1008                                       /*TopLevelOfInitList=*/true);
1009 
1010   if (Result.isInvalid())
1011     hadError = true;
1012 
1013   expr = Result.takeAs<Expr>();
1014   IList->setInit(Index, expr);
1015 
1016   if (hadError)
1017     ++StructuredIndex;
1018   else
1019     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1020   ++Index;
1021 }
1022 
1023 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1024                                       InitListExpr *IList, QualType DeclType,
1025                                       unsigned &Index,
1026                                       InitListExpr *StructuredList,
1027                                       unsigned &StructuredIndex) {
1028   const VectorType *VT = DeclType->getAs<VectorType>();
1029   unsigned maxElements = VT->getNumElements();
1030   unsigned numEltsInit = 0;
1031   QualType elementType = VT->getElementType();
1032 
1033   if (Index >= IList->getNumInits()) {
1034     // Make sure the element type can be value-initialized.
1035     if (VerifyOnly)
1036       CheckValueInitializable(
1037           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1038     return;
1039   }
1040 
1041   if (!SemaRef.getLangOpts().OpenCL) {
1042     // If the initializing element is a vector, try to copy-initialize
1043     // instead of breaking it apart (which is doomed to failure anyway).
1044     Expr *Init = IList->getInit(Index);
1045     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1046       if (VerifyOnly) {
1047         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1048           hadError = true;
1049         ++Index;
1050         return;
1051       }
1052 
1053       ExprResult Result =
1054         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1055                                           SemaRef.Owned(Init),
1056                                           /*TopLevelOfInitList=*/true);
1057 
1058       Expr *ResultExpr = 0;
1059       if (Result.isInvalid())
1060         hadError = true; // types weren't compatible.
1061       else {
1062         ResultExpr = Result.takeAs<Expr>();
1063 
1064         if (ResultExpr != Init) {
1065           // The type was promoted, update initializer list.
1066           IList->setInit(Index, ResultExpr);
1067         }
1068       }
1069       if (hadError)
1070         ++StructuredIndex;
1071       else
1072         UpdateStructuredListElement(StructuredList, StructuredIndex,
1073                                     ResultExpr);
1074       ++Index;
1075       return;
1076     }
1077 
1078     InitializedEntity ElementEntity =
1079       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1080 
1081     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1082       // Don't attempt to go past the end of the init list
1083       if (Index >= IList->getNumInits()) {
1084         if (VerifyOnly)
1085           CheckValueInitializable(ElementEntity);
1086         break;
1087       }
1088 
1089       ElementEntity.setElementIndex(Index);
1090       CheckSubElementType(ElementEntity, IList, elementType, Index,
1091                           StructuredList, StructuredIndex);
1092     }
1093     return;
1094   }
1095 
1096   InitializedEntity ElementEntity =
1097     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1098 
1099   // OpenCL initializers allows vectors to be constructed from vectors.
1100   for (unsigned i = 0; i < maxElements; ++i) {
1101     // Don't attempt to go past the end of the init list
1102     if (Index >= IList->getNumInits())
1103       break;
1104 
1105     ElementEntity.setElementIndex(Index);
1106 
1107     QualType IType = IList->getInit(Index)->getType();
1108     if (!IType->isVectorType()) {
1109       CheckSubElementType(ElementEntity, IList, elementType, Index,
1110                           StructuredList, StructuredIndex);
1111       ++numEltsInit;
1112     } else {
1113       QualType VecType;
1114       const VectorType *IVT = IType->getAs<VectorType>();
1115       unsigned numIElts = IVT->getNumElements();
1116 
1117       if (IType->isExtVectorType())
1118         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1119       else
1120         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1121                                                 IVT->getVectorKind());
1122       CheckSubElementType(ElementEntity, IList, VecType, Index,
1123                           StructuredList, StructuredIndex);
1124       numEltsInit += numIElts;
1125     }
1126   }
1127 
1128   // OpenCL requires all elements to be initialized.
1129   if (numEltsInit != maxElements) {
1130     if (!VerifyOnly)
1131       SemaRef.Diag(IList->getLocStart(),
1132                    diag::err_vector_incorrect_num_initializers)
1133         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1134     hadError = true;
1135   }
1136 }
1137 
1138 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1139                                      InitListExpr *IList, QualType &DeclType,
1140                                      llvm::APSInt elementIndex,
1141                                      bool SubobjectIsDesignatorContext,
1142                                      unsigned &Index,
1143                                      InitListExpr *StructuredList,
1144                                      unsigned &StructuredIndex) {
1145   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1146 
1147   // Check for the special-case of initializing an array with a string.
1148   if (Index < IList->getNumInits()) {
1149     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1150                                  SemaRef.Context)) {
1151       // We place the string literal directly into the resulting
1152       // initializer list. This is the only place where the structure
1153       // of the structured initializer list doesn't match exactly,
1154       // because doing so would involve allocating one character
1155       // constant for each string.
1156       if (!VerifyOnly) {
1157         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1158         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1159         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1160       }
1161       ++Index;
1162       return;
1163     }
1164   }
1165   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1166     // Check for VLAs; in standard C it would be possible to check this
1167     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1168     // them in all sorts of strange places).
1169     if (!VerifyOnly)
1170       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1171                     diag::err_variable_object_no_init)
1172         << VAT->getSizeExpr()->getSourceRange();
1173     hadError = true;
1174     ++Index;
1175     ++StructuredIndex;
1176     return;
1177   }
1178 
1179   // We might know the maximum number of elements in advance.
1180   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1181                            elementIndex.isUnsigned());
1182   bool maxElementsKnown = false;
1183   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1184     maxElements = CAT->getSize();
1185     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1186     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1187     maxElementsKnown = true;
1188   }
1189 
1190   QualType elementType = arrayType->getElementType();
1191   while (Index < IList->getNumInits()) {
1192     Expr *Init = IList->getInit(Index);
1193     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1194       // If we're not the subobject that matches up with the '{' for
1195       // the designator, we shouldn't be handling the
1196       // designator. Return immediately.
1197       if (!SubobjectIsDesignatorContext)
1198         return;
1199 
1200       // Handle this designated initializer. elementIndex will be
1201       // updated to be the next array element we'll initialize.
1202       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1203                                      DeclType, 0, &elementIndex, Index,
1204                                      StructuredList, StructuredIndex, true,
1205                                      false)) {
1206         hadError = true;
1207         continue;
1208       }
1209 
1210       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1211         maxElements = maxElements.extend(elementIndex.getBitWidth());
1212       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1213         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1214       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1215 
1216       // If the array is of incomplete type, keep track of the number of
1217       // elements in the initializer.
1218       if (!maxElementsKnown && elementIndex > maxElements)
1219         maxElements = elementIndex;
1220 
1221       continue;
1222     }
1223 
1224     // If we know the maximum number of elements, and we've already
1225     // hit it, stop consuming elements in the initializer list.
1226     if (maxElementsKnown && elementIndex == maxElements)
1227       break;
1228 
1229     InitializedEntity ElementEntity =
1230       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1231                                            Entity);
1232     // Check this element.
1233     CheckSubElementType(ElementEntity, IList, elementType, Index,
1234                         StructuredList, StructuredIndex);
1235     ++elementIndex;
1236 
1237     // If the array is of incomplete type, keep track of the number of
1238     // elements in the initializer.
1239     if (!maxElementsKnown && elementIndex > maxElements)
1240       maxElements = elementIndex;
1241   }
1242   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1243     // If this is an incomplete array type, the actual type needs to
1244     // be calculated here.
1245     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1246     if (maxElements == Zero) {
1247       // Sizing an array implicitly to zero is not allowed by ISO C,
1248       // but is supported by GNU.
1249       SemaRef.Diag(IList->getLocStart(),
1250                     diag::ext_typecheck_zero_array_size);
1251     }
1252 
1253     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1254                                                      ArrayType::Normal, 0);
1255   }
1256   if (!hadError && VerifyOnly) {
1257     // Check if there are any members of the array that get value-initialized.
1258     // If so, check if doing that is possible.
1259     // FIXME: This needs to detect holes left by designated initializers too.
1260     if (maxElementsKnown && elementIndex < maxElements)
1261       CheckValueInitializable(InitializedEntity::InitializeElement(
1262                                                   SemaRef.Context, 0, Entity));
1263   }
1264 }
1265 
1266 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1267                                              Expr *InitExpr,
1268                                              FieldDecl *Field,
1269                                              bool TopLevelObject) {
1270   // Handle GNU flexible array initializers.
1271   unsigned FlexArrayDiag;
1272   if (isa<InitListExpr>(InitExpr) &&
1273       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1274     // Empty flexible array init always allowed as an extension
1275     FlexArrayDiag = diag::ext_flexible_array_init;
1276   } else if (SemaRef.getLangOpts().CPlusPlus) {
1277     // Disallow flexible array init in C++; it is not required for gcc
1278     // compatibility, and it needs work to IRGen correctly in general.
1279     FlexArrayDiag = diag::err_flexible_array_init;
1280   } else if (!TopLevelObject) {
1281     // Disallow flexible array init on non-top-level object
1282     FlexArrayDiag = diag::err_flexible_array_init;
1283   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1284     // Disallow flexible array init on anything which is not a variable.
1285     FlexArrayDiag = diag::err_flexible_array_init;
1286   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1287     // Disallow flexible array init on local variables.
1288     FlexArrayDiag = diag::err_flexible_array_init;
1289   } else {
1290     // Allow other cases.
1291     FlexArrayDiag = diag::ext_flexible_array_init;
1292   }
1293 
1294   if (!VerifyOnly) {
1295     SemaRef.Diag(InitExpr->getLocStart(),
1296                  FlexArrayDiag)
1297       << InitExpr->getLocStart();
1298     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299       << Field;
1300   }
1301 
1302   return FlexArrayDiag != diag::ext_flexible_array_init;
1303 }
1304 
1305 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1306                                             InitListExpr *IList,
1307                                             QualType DeclType,
1308                                             RecordDecl::field_iterator Field,
1309                                             bool SubobjectIsDesignatorContext,
1310                                             unsigned &Index,
1311                                             InitListExpr *StructuredList,
1312                                             unsigned &StructuredIndex,
1313                                             bool TopLevelObject) {
1314   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1315 
1316   // If the record is invalid, some of it's members are invalid. To avoid
1317   // confusion, we forgo checking the intializer for the entire record.
1318   if (structDecl->isInvalidDecl()) {
1319     // Assume it was supposed to consume a single initializer.
1320     ++Index;
1321     hadError = true;
1322     return;
1323   }
1324 
1325   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1326     // Value-initialize the first named member of the union.
1327     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1328     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1329          Field != FieldEnd; ++Field) {
1330       if (Field->getDeclName()) {
1331         if (VerifyOnly)
1332           CheckValueInitializable(
1333               InitializedEntity::InitializeMember(*Field, &Entity));
1334         else
1335           StructuredList->setInitializedFieldInUnion(*Field);
1336         break;
1337       }
1338     }
1339     return;
1340   }
1341 
1342   // If structDecl is a forward declaration, this loop won't do
1343   // anything except look at designated initializers; That's okay,
1344   // because an error should get printed out elsewhere. It might be
1345   // worthwhile to skip over the rest of the initializer, though.
1346   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1347   RecordDecl::field_iterator FieldEnd = RD->field_end();
1348   bool InitializedSomething = false;
1349   bool CheckForMissingFields = true;
1350   while (Index < IList->getNumInits()) {
1351     Expr *Init = IList->getInit(Index);
1352 
1353     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1354       // If we're not the subobject that matches up with the '{' for
1355       // the designator, we shouldn't be handling the
1356       // designator. Return immediately.
1357       if (!SubobjectIsDesignatorContext)
1358         return;
1359 
1360       // Handle this designated initializer. Field will be updated to
1361       // the next field that we'll be initializing.
1362       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1363                                      DeclType, &Field, 0, Index,
1364                                      StructuredList, StructuredIndex,
1365                                      true, TopLevelObject))
1366         hadError = true;
1367 
1368       InitializedSomething = true;
1369 
1370       // Disable check for missing fields when designators are used.
1371       // This matches gcc behaviour.
1372       CheckForMissingFields = false;
1373       continue;
1374     }
1375 
1376     if (Field == FieldEnd) {
1377       // We've run out of fields. We're done.
1378       break;
1379     }
1380 
1381     // We've already initialized a member of a union. We're done.
1382     if (InitializedSomething && DeclType->isUnionType())
1383       break;
1384 
1385     // If we've hit the flexible array member at the end, we're done.
1386     if (Field->getType()->isIncompleteArrayType())
1387       break;
1388 
1389     if (Field->isUnnamedBitfield()) {
1390       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1391       ++Field;
1392       continue;
1393     }
1394 
1395     // Make sure we can use this declaration.
1396     bool InvalidUse;
1397     if (VerifyOnly)
1398       InvalidUse = !SemaRef.CanUseDecl(*Field);
1399     else
1400       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1401                                           IList->getInit(Index)->getLocStart());
1402     if (InvalidUse) {
1403       ++Index;
1404       ++Field;
1405       hadError = true;
1406       continue;
1407     }
1408 
1409     InitializedEntity MemberEntity =
1410       InitializedEntity::InitializeMember(*Field, &Entity);
1411     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1412                         StructuredList, StructuredIndex);
1413     InitializedSomething = true;
1414 
1415     if (DeclType->isUnionType() && !VerifyOnly) {
1416       // Initialize the first field within the union.
1417       StructuredList->setInitializedFieldInUnion(*Field);
1418     }
1419 
1420     ++Field;
1421   }
1422 
1423   // Emit warnings for missing struct field initializers.
1424   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1425       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1426       !DeclType->isUnionType()) {
1427     // It is possible we have one or more unnamed bitfields remaining.
1428     // Find first (if any) named field and emit warning.
1429     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1430          it != end; ++it) {
1431       if (!it->isUnnamedBitfield()) {
1432         SemaRef.Diag(IList->getSourceRange().getEnd(),
1433                      diag::warn_missing_field_initializers) << it->getName();
1434         break;
1435       }
1436     }
1437   }
1438 
1439   // Check that any remaining fields can be value-initialized.
1440   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1441       !Field->getType()->isIncompleteArrayType()) {
1442     // FIXME: Should check for holes left by designated initializers too.
1443     for (; Field != FieldEnd && !hadError; ++Field) {
1444       if (!Field->isUnnamedBitfield())
1445         CheckValueInitializable(
1446             InitializedEntity::InitializeMember(*Field, &Entity));
1447     }
1448   }
1449 
1450   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1451       Index >= IList->getNumInits())
1452     return;
1453 
1454   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1455                              TopLevelObject)) {
1456     hadError = true;
1457     ++Index;
1458     return;
1459   }
1460 
1461   InitializedEntity MemberEntity =
1462     InitializedEntity::InitializeMember(*Field, &Entity);
1463 
1464   if (isa<InitListExpr>(IList->getInit(Index)))
1465     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1466                         StructuredList, StructuredIndex);
1467   else
1468     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1469                           StructuredList, StructuredIndex);
1470 }
1471 
1472 /// \brief Expand a field designator that refers to a member of an
1473 /// anonymous struct or union into a series of field designators that
1474 /// refers to the field within the appropriate subobject.
1475 ///
1476 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1477                                            DesignatedInitExpr *DIE,
1478                                            unsigned DesigIdx,
1479                                            IndirectFieldDecl *IndirectField) {
1480   typedef DesignatedInitExpr::Designator Designator;
1481 
1482   // Build the replacement designators.
1483   SmallVector<Designator, 4> Replacements;
1484   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1485        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1486     if (PI + 1 == PE)
1487       Replacements.push_back(Designator((IdentifierInfo *)0,
1488                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1489                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1490     else
1491       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1492                                         SourceLocation()));
1493     assert(isa<FieldDecl>(*PI));
1494     Replacements.back().setField(cast<FieldDecl>(*PI));
1495   }
1496 
1497   // Expand the current designator into the set of replacement
1498   // designators, so we have a full subobject path down to where the
1499   // member of the anonymous struct/union is actually stored.
1500   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1501                         &Replacements[0] + Replacements.size());
1502 }
1503 
1504 /// \brief Given an implicit anonymous field, search the IndirectField that
1505 ///  corresponds to FieldName.
1506 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1507                                                  IdentifierInfo *FieldName) {
1508   if (!FieldName)
1509     return 0;
1510 
1511   assert(AnonField->isAnonymousStructOrUnion());
1512   Decl *NextDecl = AnonField->getNextDeclInContext();
1513   while (IndirectFieldDecl *IF =
1514           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1515     if (FieldName == IF->getAnonField()->getIdentifier())
1516       return IF;
1517     NextDecl = NextDecl->getNextDeclInContext();
1518   }
1519   return 0;
1520 }
1521 
1522 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1523                                                    DesignatedInitExpr *DIE) {
1524   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1525   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1526   for (unsigned I = 0; I < NumIndexExprs; ++I)
1527     IndexExprs[I] = DIE->getSubExpr(I + 1);
1528   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1529                                     DIE->size(), IndexExprs,
1530                                     DIE->getEqualOrColonLoc(),
1531                                     DIE->usesGNUSyntax(), DIE->getInit());
1532 }
1533 
1534 namespace {
1535 
1536 // Callback to only accept typo corrections that are for field members of
1537 // the given struct or union.
1538 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1539  public:
1540   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1541       : Record(RD) {}
1542 
1543   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1544     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1545     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1546   }
1547 
1548  private:
1549   RecordDecl *Record;
1550 };
1551 
1552 }
1553 
1554 /// @brief Check the well-formedness of a C99 designated initializer.
1555 ///
1556 /// Determines whether the designated initializer @p DIE, which
1557 /// resides at the given @p Index within the initializer list @p
1558 /// IList, is well-formed for a current object of type @p DeclType
1559 /// (C99 6.7.8). The actual subobject that this designator refers to
1560 /// within the current subobject is returned in either
1561 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1562 ///
1563 /// @param IList  The initializer list in which this designated
1564 /// initializer occurs.
1565 ///
1566 /// @param DIE The designated initializer expression.
1567 ///
1568 /// @param DesigIdx  The index of the current designator.
1569 ///
1570 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1571 /// into which the designation in @p DIE should refer.
1572 ///
1573 /// @param NextField  If non-NULL and the first designator in @p DIE is
1574 /// a field, this will be set to the field declaration corresponding
1575 /// to the field named by the designator.
1576 ///
1577 /// @param NextElementIndex  If non-NULL and the first designator in @p
1578 /// DIE is an array designator or GNU array-range designator, this
1579 /// will be set to the last index initialized by this designator.
1580 ///
1581 /// @param Index  Index into @p IList where the designated initializer
1582 /// @p DIE occurs.
1583 ///
1584 /// @param StructuredList  The initializer list expression that
1585 /// describes all of the subobject initializers in the order they'll
1586 /// actually be initialized.
1587 ///
1588 /// @returns true if there was an error, false otherwise.
1589 bool
1590 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1591                                             InitListExpr *IList,
1592                                             DesignatedInitExpr *DIE,
1593                                             unsigned DesigIdx,
1594                                             QualType &CurrentObjectType,
1595                                           RecordDecl::field_iterator *NextField,
1596                                             llvm::APSInt *NextElementIndex,
1597                                             unsigned &Index,
1598                                             InitListExpr *StructuredList,
1599                                             unsigned &StructuredIndex,
1600                                             bool FinishSubobjectInit,
1601                                             bool TopLevelObject) {
1602   if (DesigIdx == DIE->size()) {
1603     // Check the actual initialization for the designated object type.
1604     bool prevHadError = hadError;
1605 
1606     // Temporarily remove the designator expression from the
1607     // initializer list that the child calls see, so that we don't try
1608     // to re-process the designator.
1609     unsigned OldIndex = Index;
1610     IList->setInit(OldIndex, DIE->getInit());
1611 
1612     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1613                         StructuredList, StructuredIndex);
1614 
1615     // Restore the designated initializer expression in the syntactic
1616     // form of the initializer list.
1617     if (IList->getInit(OldIndex) != DIE->getInit())
1618       DIE->setInit(IList->getInit(OldIndex));
1619     IList->setInit(OldIndex, DIE);
1620 
1621     return hadError && !prevHadError;
1622   }
1623 
1624   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1625   bool IsFirstDesignator = (DesigIdx == 0);
1626   if (!VerifyOnly) {
1627     assert((IsFirstDesignator || StructuredList) &&
1628            "Need a non-designated initializer list to start from");
1629 
1630     // Determine the structural initializer list that corresponds to the
1631     // current subobject.
1632     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1633       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1634                                    StructuredList, StructuredIndex,
1635                                    SourceRange(D->getStartLocation(),
1636                                                DIE->getSourceRange().getEnd()));
1637     assert(StructuredList && "Expected a structured initializer list");
1638   }
1639 
1640   if (D->isFieldDesignator()) {
1641     // C99 6.7.8p7:
1642     //
1643     //   If a designator has the form
1644     //
1645     //      . identifier
1646     //
1647     //   then the current object (defined below) shall have
1648     //   structure or union type and the identifier shall be the
1649     //   name of a member of that type.
1650     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1651     if (!RT) {
1652       SourceLocation Loc = D->getDotLoc();
1653       if (Loc.isInvalid())
1654         Loc = D->getFieldLoc();
1655       if (!VerifyOnly)
1656         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1657           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1658       ++Index;
1659       return true;
1660     }
1661 
1662     // Note: we perform a linear search of the fields here, despite
1663     // the fact that we have a faster lookup method, because we always
1664     // need to compute the field's index.
1665     FieldDecl *KnownField = D->getField();
1666     IdentifierInfo *FieldName = D->getFieldName();
1667     unsigned FieldIndex = 0;
1668     RecordDecl::field_iterator
1669       Field = RT->getDecl()->field_begin(),
1670       FieldEnd = RT->getDecl()->field_end();
1671     for (; Field != FieldEnd; ++Field) {
1672       if (Field->isUnnamedBitfield())
1673         continue;
1674 
1675       // If we find a field representing an anonymous field, look in the
1676       // IndirectFieldDecl that follow for the designated initializer.
1677       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1678         if (IndirectFieldDecl *IF =
1679             FindIndirectFieldDesignator(*Field, FieldName)) {
1680           // In verify mode, don't modify the original.
1681           if (VerifyOnly)
1682             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1683           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1684           D = DIE->getDesignator(DesigIdx);
1685           break;
1686         }
1687       }
1688       if (KnownField && KnownField == *Field)
1689         break;
1690       if (FieldName && FieldName == Field->getIdentifier())
1691         break;
1692 
1693       ++FieldIndex;
1694     }
1695 
1696     if (Field == FieldEnd) {
1697       if (VerifyOnly) {
1698         ++Index;
1699         return true; // No typo correction when just trying this out.
1700       }
1701 
1702       // There was no normal field in the struct with the designated
1703       // name. Perform another lookup for this name, which may find
1704       // something that we can't designate (e.g., a member function),
1705       // may find nothing, or may find a member of an anonymous
1706       // struct/union.
1707       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1708       FieldDecl *ReplacementField = 0;
1709       if (Lookup.first == Lookup.second) {
1710         // Name lookup didn't find anything. Determine whether this
1711         // was a typo for another field name.
1712         FieldInitializerValidatorCCC Validator(RT->getDecl());
1713         TypoCorrection Corrected = SemaRef.CorrectTypo(
1714             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1715             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1716             RT->getDecl());
1717         if (Corrected) {
1718           std::string CorrectedStr(
1719               Corrected.getAsString(SemaRef.getLangOpts()));
1720           std::string CorrectedQuotedStr(
1721               Corrected.getQuoted(SemaRef.getLangOpts()));
1722           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1723           SemaRef.Diag(D->getFieldLoc(),
1724                        diag::err_field_designator_unknown_suggest)
1725             << FieldName << CurrentObjectType << CorrectedQuotedStr
1726             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1727           SemaRef.Diag(ReplacementField->getLocation(),
1728                        diag::note_previous_decl) << CorrectedQuotedStr;
1729           hadError = true;
1730         } else {
1731           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1732             << FieldName << CurrentObjectType;
1733           ++Index;
1734           return true;
1735         }
1736       }
1737 
1738       if (!ReplacementField) {
1739         // Name lookup found something, but it wasn't a field.
1740         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1741           << FieldName;
1742         SemaRef.Diag((*Lookup.first)->getLocation(),
1743                       diag::note_field_designator_found);
1744         ++Index;
1745         return true;
1746       }
1747 
1748       if (!KnownField) {
1749         // The replacement field comes from typo correction; find it
1750         // in the list of fields.
1751         FieldIndex = 0;
1752         Field = RT->getDecl()->field_begin();
1753         for (; Field != FieldEnd; ++Field) {
1754           if (Field->isUnnamedBitfield())
1755             continue;
1756 
1757           if (ReplacementField == *Field ||
1758               Field->getIdentifier() == ReplacementField->getIdentifier())
1759             break;
1760 
1761           ++FieldIndex;
1762         }
1763       }
1764     }
1765 
1766     // All of the fields of a union are located at the same place in
1767     // the initializer list.
1768     if (RT->getDecl()->isUnion()) {
1769       FieldIndex = 0;
1770       if (!VerifyOnly)
1771         StructuredList->setInitializedFieldInUnion(*Field);
1772     }
1773 
1774     // Make sure we can use this declaration.
1775     bool InvalidUse;
1776     if (VerifyOnly)
1777       InvalidUse = !SemaRef.CanUseDecl(*Field);
1778     else
1779       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1780     if (InvalidUse) {
1781       ++Index;
1782       return true;
1783     }
1784 
1785     if (!VerifyOnly) {
1786       // Update the designator with the field declaration.
1787       D->setField(*Field);
1788 
1789       // Make sure that our non-designated initializer list has space
1790       // for a subobject corresponding to this field.
1791       if (FieldIndex >= StructuredList->getNumInits())
1792         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1793     }
1794 
1795     // This designator names a flexible array member.
1796     if (Field->getType()->isIncompleteArrayType()) {
1797       bool Invalid = false;
1798       if ((DesigIdx + 1) != DIE->size()) {
1799         // We can't designate an object within the flexible array
1800         // member (because GCC doesn't allow it).
1801         if (!VerifyOnly) {
1802           DesignatedInitExpr::Designator *NextD
1803             = DIE->getDesignator(DesigIdx + 1);
1804           SemaRef.Diag(NextD->getStartLocation(),
1805                         diag::err_designator_into_flexible_array_member)
1806             << SourceRange(NextD->getStartLocation(),
1807                            DIE->getSourceRange().getEnd());
1808           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1809             << *Field;
1810         }
1811         Invalid = true;
1812       }
1813 
1814       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1815           !isa<StringLiteral>(DIE->getInit())) {
1816         // The initializer is not an initializer list.
1817         if (!VerifyOnly) {
1818           SemaRef.Diag(DIE->getInit()->getLocStart(),
1819                         diag::err_flexible_array_init_needs_braces)
1820             << DIE->getInit()->getSourceRange();
1821           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1822             << *Field;
1823         }
1824         Invalid = true;
1825       }
1826 
1827       // Check GNU flexible array initializer.
1828       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1829                                              TopLevelObject))
1830         Invalid = true;
1831 
1832       if (Invalid) {
1833         ++Index;
1834         return true;
1835       }
1836 
1837       // Initialize the array.
1838       bool prevHadError = hadError;
1839       unsigned newStructuredIndex = FieldIndex;
1840       unsigned OldIndex = Index;
1841       IList->setInit(Index, DIE->getInit());
1842 
1843       InitializedEntity MemberEntity =
1844         InitializedEntity::InitializeMember(*Field, &Entity);
1845       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1846                           StructuredList, newStructuredIndex);
1847 
1848       IList->setInit(OldIndex, DIE);
1849       if (hadError && !prevHadError) {
1850         ++Field;
1851         ++FieldIndex;
1852         if (NextField)
1853           *NextField = Field;
1854         StructuredIndex = FieldIndex;
1855         return true;
1856       }
1857     } else {
1858       // Recurse to check later designated subobjects.
1859       QualType FieldType = Field->getType();
1860       unsigned newStructuredIndex = FieldIndex;
1861 
1862       InitializedEntity MemberEntity =
1863         InitializedEntity::InitializeMember(*Field, &Entity);
1864       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1865                                      FieldType, 0, 0, Index,
1866                                      StructuredList, newStructuredIndex,
1867                                      true, false))
1868         return true;
1869     }
1870 
1871     // Find the position of the next field to be initialized in this
1872     // subobject.
1873     ++Field;
1874     ++FieldIndex;
1875 
1876     // If this the first designator, our caller will continue checking
1877     // the rest of this struct/class/union subobject.
1878     if (IsFirstDesignator) {
1879       if (NextField)
1880         *NextField = Field;
1881       StructuredIndex = FieldIndex;
1882       return false;
1883     }
1884 
1885     if (!FinishSubobjectInit)
1886       return false;
1887 
1888     // We've already initialized something in the union; we're done.
1889     if (RT->getDecl()->isUnion())
1890       return hadError;
1891 
1892     // Check the remaining fields within this class/struct/union subobject.
1893     bool prevHadError = hadError;
1894 
1895     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1896                           StructuredList, FieldIndex);
1897     return hadError && !prevHadError;
1898   }
1899 
1900   // C99 6.7.8p6:
1901   //
1902   //   If a designator has the form
1903   //
1904   //      [ constant-expression ]
1905   //
1906   //   then the current object (defined below) shall have array
1907   //   type and the expression shall be an integer constant
1908   //   expression. If the array is of unknown size, any
1909   //   nonnegative value is valid.
1910   //
1911   // Additionally, cope with the GNU extension that permits
1912   // designators of the form
1913   //
1914   //      [ constant-expression ... constant-expression ]
1915   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1916   if (!AT) {
1917     if (!VerifyOnly)
1918       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1919         << CurrentObjectType;
1920     ++Index;
1921     return true;
1922   }
1923 
1924   Expr *IndexExpr = 0;
1925   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1926   if (D->isArrayDesignator()) {
1927     IndexExpr = DIE->getArrayIndex(*D);
1928     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1929     DesignatedEndIndex = DesignatedStartIndex;
1930   } else {
1931     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1932 
1933     DesignatedStartIndex =
1934       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935     DesignatedEndIndex =
1936       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1937     IndexExpr = DIE->getArrayRangeEnd(*D);
1938 
1939     // Codegen can't handle evaluating array range designators that have side
1940     // effects, because we replicate the AST value for each initialized element.
1941     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1942     // elements with something that has a side effect, so codegen can emit an
1943     // "error unsupported" error instead of miscompiling the app.
1944     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1945         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1946       FullyStructuredList->sawArrayRangeDesignator();
1947   }
1948 
1949   if (isa<ConstantArrayType>(AT)) {
1950     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1951     DesignatedStartIndex
1952       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1953     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1954     DesignatedEndIndex
1955       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1956     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1957     if (DesignatedEndIndex >= MaxElements) {
1958       if (!VerifyOnly)
1959         SemaRef.Diag(IndexExpr->getLocStart(),
1960                       diag::err_array_designator_too_large)
1961           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1962           << IndexExpr->getSourceRange();
1963       ++Index;
1964       return true;
1965     }
1966   } else {
1967     // Make sure the bit-widths and signedness match.
1968     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1969       DesignatedEndIndex
1970         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1971     else if (DesignatedStartIndex.getBitWidth() <
1972              DesignatedEndIndex.getBitWidth())
1973       DesignatedStartIndex
1974         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1975     DesignatedStartIndex.setIsUnsigned(true);
1976     DesignatedEndIndex.setIsUnsigned(true);
1977   }
1978 
1979   // Make sure that our non-designated initializer list has space
1980   // for a subobject corresponding to this array element.
1981   if (!VerifyOnly &&
1982       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1983     StructuredList->resizeInits(SemaRef.Context,
1984                                 DesignatedEndIndex.getZExtValue() + 1);
1985 
1986   // Repeatedly perform subobject initializations in the range
1987   // [DesignatedStartIndex, DesignatedEndIndex].
1988 
1989   // Move to the next designator
1990   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1991   unsigned OldIndex = Index;
1992 
1993   InitializedEntity ElementEntity =
1994     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1995 
1996   while (DesignatedStartIndex <= DesignatedEndIndex) {
1997     // Recurse to check later designated subobjects.
1998     QualType ElementType = AT->getElementType();
1999     Index = OldIndex;
2000 
2001     ElementEntity.setElementIndex(ElementIndex);
2002     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2003                                    ElementType, 0, 0, Index,
2004                                    StructuredList, ElementIndex,
2005                                    (DesignatedStartIndex == DesignatedEndIndex),
2006                                    false))
2007       return true;
2008 
2009     // Move to the next index in the array that we'll be initializing.
2010     ++DesignatedStartIndex;
2011     ElementIndex = DesignatedStartIndex.getZExtValue();
2012   }
2013 
2014   // If this the first designator, our caller will continue checking
2015   // the rest of this array subobject.
2016   if (IsFirstDesignator) {
2017     if (NextElementIndex)
2018       *NextElementIndex = DesignatedStartIndex;
2019     StructuredIndex = ElementIndex;
2020     return false;
2021   }
2022 
2023   if (!FinishSubobjectInit)
2024     return false;
2025 
2026   // Check the remaining elements within this array subobject.
2027   bool prevHadError = hadError;
2028   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2029                  /*SubobjectIsDesignatorContext=*/false, Index,
2030                  StructuredList, ElementIndex);
2031   return hadError && !prevHadError;
2032 }
2033 
2034 // Get the structured initializer list for a subobject of type
2035 // @p CurrentObjectType.
2036 InitListExpr *
2037 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2038                                             QualType CurrentObjectType,
2039                                             InitListExpr *StructuredList,
2040                                             unsigned StructuredIndex,
2041                                             SourceRange InitRange) {
2042   if (VerifyOnly)
2043     return 0; // No structured list in verification-only mode.
2044   Expr *ExistingInit = 0;
2045   if (!StructuredList)
2046     ExistingInit = SyntacticToSemantic.lookup(IList);
2047   else if (StructuredIndex < StructuredList->getNumInits())
2048     ExistingInit = StructuredList->getInit(StructuredIndex);
2049 
2050   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2051     return Result;
2052 
2053   if (ExistingInit) {
2054     // We are creating an initializer list that initializes the
2055     // subobjects of the current object, but there was already an
2056     // initialization that completely initialized the current
2057     // subobject, e.g., by a compound literal:
2058     //
2059     // struct X { int a, b; };
2060     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2061     //
2062     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2063     // designated initializer re-initializes the whole
2064     // subobject [0], overwriting previous initializers.
2065     SemaRef.Diag(InitRange.getBegin(),
2066                  diag::warn_subobject_initializer_overrides)
2067       << InitRange;
2068     SemaRef.Diag(ExistingInit->getLocStart(),
2069                   diag::note_previous_initializer)
2070       << /*FIXME:has side effects=*/0
2071       << ExistingInit->getSourceRange();
2072   }
2073 
2074   InitListExpr *Result
2075     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2076                                          InitRange.getBegin(), MultiExprArg(),
2077                                          InitRange.getEnd());
2078 
2079   QualType ResultType = CurrentObjectType;
2080   if (!ResultType->isArrayType())
2081     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2082   Result->setType(ResultType);
2083 
2084   // Pre-allocate storage for the structured initializer list.
2085   unsigned NumElements = 0;
2086   unsigned NumInits = 0;
2087   bool GotNumInits = false;
2088   if (!StructuredList) {
2089     NumInits = IList->getNumInits();
2090     GotNumInits = true;
2091   } else if (Index < IList->getNumInits()) {
2092     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2093       NumInits = SubList->getNumInits();
2094       GotNumInits = true;
2095     }
2096   }
2097 
2098   if (const ArrayType *AType
2099       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2100     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2101       NumElements = CAType->getSize().getZExtValue();
2102       // Simple heuristic so that we don't allocate a very large
2103       // initializer with many empty entries at the end.
2104       if (GotNumInits && NumElements > NumInits)
2105         NumElements = 0;
2106     }
2107   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2108     NumElements = VType->getNumElements();
2109   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2110     RecordDecl *RDecl = RType->getDecl();
2111     if (RDecl->isUnion())
2112       NumElements = 1;
2113     else
2114       NumElements = std::distance(RDecl->field_begin(),
2115                                   RDecl->field_end());
2116   }
2117 
2118   Result->reserveInits(SemaRef.Context, NumElements);
2119 
2120   // Link this new initializer list into the structured initializer
2121   // lists.
2122   if (StructuredList)
2123     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2124   else {
2125     Result->setSyntacticForm(IList);
2126     SyntacticToSemantic[IList] = Result;
2127   }
2128 
2129   return Result;
2130 }
2131 
2132 /// Update the initializer at index @p StructuredIndex within the
2133 /// structured initializer list to the value @p expr.
2134 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2135                                                   unsigned &StructuredIndex,
2136                                                   Expr *expr) {
2137   // No structured initializer list to update
2138   if (!StructuredList)
2139     return;
2140 
2141   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2142                                                   StructuredIndex, expr)) {
2143     // This initializer overwrites a previous initializer. Warn.
2144     SemaRef.Diag(expr->getLocStart(),
2145                   diag::warn_initializer_overrides)
2146       << expr->getSourceRange();
2147     SemaRef.Diag(PrevInit->getLocStart(),
2148                   diag::note_previous_initializer)
2149       << /*FIXME:has side effects=*/0
2150       << PrevInit->getSourceRange();
2151   }
2152 
2153   ++StructuredIndex;
2154 }
2155 
2156 /// Check that the given Index expression is a valid array designator
2157 /// value. This is essentially just a wrapper around
2158 /// VerifyIntegerConstantExpression that also checks for negative values
2159 /// and produces a reasonable diagnostic if there is a
2160 /// failure. Returns the index expression, possibly with an implicit cast
2161 /// added, on success.  If everything went okay, Value will receive the
2162 /// value of the constant expression.
2163 static ExprResult
2164 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2165   SourceLocation Loc = Index->getLocStart();
2166 
2167   // Make sure this is an integer constant expression.
2168   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2169   if (Result.isInvalid())
2170     return Result;
2171 
2172   if (Value.isSigned() && Value.isNegative())
2173     return S.Diag(Loc, diag::err_array_designator_negative)
2174       << Value.toString(10) << Index->getSourceRange();
2175 
2176   Value.setIsUnsigned(true);
2177   return Result;
2178 }
2179 
2180 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2181                                             SourceLocation Loc,
2182                                             bool GNUSyntax,
2183                                             ExprResult Init) {
2184   typedef DesignatedInitExpr::Designator ASTDesignator;
2185 
2186   bool Invalid = false;
2187   SmallVector<ASTDesignator, 32> Designators;
2188   SmallVector<Expr *, 32> InitExpressions;
2189 
2190   // Build designators and check array designator expressions.
2191   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2192     const Designator &D = Desig.getDesignator(Idx);
2193     switch (D.getKind()) {
2194     case Designator::FieldDesignator:
2195       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2196                                           D.getFieldLoc()));
2197       break;
2198 
2199     case Designator::ArrayDesignator: {
2200       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2201       llvm::APSInt IndexValue;
2202       if (!Index->isTypeDependent() && !Index->isValueDependent())
2203         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2204       if (!Index)
2205         Invalid = true;
2206       else {
2207         Designators.push_back(ASTDesignator(InitExpressions.size(),
2208                                             D.getLBracketLoc(),
2209                                             D.getRBracketLoc()));
2210         InitExpressions.push_back(Index);
2211       }
2212       break;
2213     }
2214 
2215     case Designator::ArrayRangeDesignator: {
2216       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2217       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2218       llvm::APSInt StartValue;
2219       llvm::APSInt EndValue;
2220       bool StartDependent = StartIndex->isTypeDependent() ||
2221                             StartIndex->isValueDependent();
2222       bool EndDependent = EndIndex->isTypeDependent() ||
2223                           EndIndex->isValueDependent();
2224       if (!StartDependent)
2225         StartIndex =
2226             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2227       if (!EndDependent)
2228         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2229 
2230       if (!StartIndex || !EndIndex)
2231         Invalid = true;
2232       else {
2233         // Make sure we're comparing values with the same bit width.
2234         if (StartDependent || EndDependent) {
2235           // Nothing to compute.
2236         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2237           EndValue = EndValue.extend(StartValue.getBitWidth());
2238         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2239           StartValue = StartValue.extend(EndValue.getBitWidth());
2240 
2241         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2242           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2243             << StartValue.toString(10) << EndValue.toString(10)
2244             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2245           Invalid = true;
2246         } else {
2247           Designators.push_back(ASTDesignator(InitExpressions.size(),
2248                                               D.getLBracketLoc(),
2249                                               D.getEllipsisLoc(),
2250                                               D.getRBracketLoc()));
2251           InitExpressions.push_back(StartIndex);
2252           InitExpressions.push_back(EndIndex);
2253         }
2254       }
2255       break;
2256     }
2257     }
2258   }
2259 
2260   if (Invalid || Init.isInvalid())
2261     return ExprError();
2262 
2263   // Clear out the expressions within the designation.
2264   Desig.ClearExprs(*this);
2265 
2266   DesignatedInitExpr *DIE
2267     = DesignatedInitExpr::Create(Context,
2268                                  Designators.data(), Designators.size(),
2269                                  InitExpressions, Loc, GNUSyntax,
2270                                  Init.takeAs<Expr>());
2271 
2272   if (!getLangOpts().C99)
2273     Diag(DIE->getLocStart(), diag::ext_designated_init)
2274       << DIE->getSourceRange();
2275 
2276   return Owned(DIE);
2277 }
2278 
2279 //===----------------------------------------------------------------------===//
2280 // Initialization entity
2281 //===----------------------------------------------------------------------===//
2282 
2283 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2284                                      const InitializedEntity &Parent)
2285   : Parent(&Parent), Index(Index)
2286 {
2287   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2288     Kind = EK_ArrayElement;
2289     Type = AT->getElementType();
2290   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2291     Kind = EK_VectorElement;
2292     Type = VT->getElementType();
2293   } else {
2294     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2295     assert(CT && "Unexpected type");
2296     Kind = EK_ComplexElement;
2297     Type = CT->getElementType();
2298   }
2299 }
2300 
2301 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2302                                                     CXXBaseSpecifier *Base,
2303                                                     bool IsInheritedVirtualBase)
2304 {
2305   InitializedEntity Result;
2306   Result.Kind = EK_Base;
2307   Result.Base = reinterpret_cast<uintptr_t>(Base);
2308   if (IsInheritedVirtualBase)
2309     Result.Base |= 0x01;
2310 
2311   Result.Type = Base->getType();
2312   return Result;
2313 }
2314 
2315 DeclarationName InitializedEntity::getName() const {
2316   switch (getKind()) {
2317   case EK_Parameter: {
2318     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2319     return (D ? D->getDeclName() : DeclarationName());
2320   }
2321 
2322   case EK_Variable:
2323   case EK_Member:
2324     return VariableOrMember->getDeclName();
2325 
2326   case EK_LambdaCapture:
2327     return Capture.Var->getDeclName();
2328 
2329   case EK_Result:
2330   case EK_Exception:
2331   case EK_New:
2332   case EK_Temporary:
2333   case EK_Base:
2334   case EK_Delegating:
2335   case EK_ArrayElement:
2336   case EK_VectorElement:
2337   case EK_ComplexElement:
2338   case EK_BlockElement:
2339     return DeclarationName();
2340   }
2341 
2342   llvm_unreachable("Invalid EntityKind!");
2343 }
2344 
2345 DeclaratorDecl *InitializedEntity::getDecl() const {
2346   switch (getKind()) {
2347   case EK_Variable:
2348   case EK_Member:
2349     return VariableOrMember;
2350 
2351   case EK_Parameter:
2352     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2353 
2354   case EK_Result:
2355   case EK_Exception:
2356   case EK_New:
2357   case EK_Temporary:
2358   case EK_Base:
2359   case EK_Delegating:
2360   case EK_ArrayElement:
2361   case EK_VectorElement:
2362   case EK_ComplexElement:
2363   case EK_BlockElement:
2364   case EK_LambdaCapture:
2365     return 0;
2366   }
2367 
2368   llvm_unreachable("Invalid EntityKind!");
2369 }
2370 
2371 bool InitializedEntity::allowsNRVO() const {
2372   switch (getKind()) {
2373   case EK_Result:
2374   case EK_Exception:
2375     return LocAndNRVO.NRVO;
2376 
2377   case EK_Variable:
2378   case EK_Parameter:
2379   case EK_Member:
2380   case EK_New:
2381   case EK_Temporary:
2382   case EK_Base:
2383   case EK_Delegating:
2384   case EK_ArrayElement:
2385   case EK_VectorElement:
2386   case EK_ComplexElement:
2387   case EK_BlockElement:
2388   case EK_LambdaCapture:
2389     break;
2390   }
2391 
2392   return false;
2393 }
2394 
2395 //===----------------------------------------------------------------------===//
2396 // Initialization sequence
2397 //===----------------------------------------------------------------------===//
2398 
2399 void InitializationSequence::Step::Destroy() {
2400   switch (Kind) {
2401   case SK_ResolveAddressOfOverloadedFunction:
2402   case SK_CastDerivedToBaseRValue:
2403   case SK_CastDerivedToBaseXValue:
2404   case SK_CastDerivedToBaseLValue:
2405   case SK_BindReference:
2406   case SK_BindReferenceToTemporary:
2407   case SK_ExtraneousCopyToTemporary:
2408   case SK_UserConversion:
2409   case SK_QualificationConversionRValue:
2410   case SK_QualificationConversionXValue:
2411   case SK_QualificationConversionLValue:
2412   case SK_ListInitialization:
2413   case SK_ListConstructorCall:
2414   case SK_UnwrapInitList:
2415   case SK_RewrapInitList:
2416   case SK_ConstructorInitialization:
2417   case SK_ZeroInitialization:
2418   case SK_CAssignment:
2419   case SK_StringInit:
2420   case SK_ObjCObjectConversion:
2421   case SK_ArrayInit:
2422   case SK_ParenthesizedArrayInit:
2423   case SK_PassByIndirectCopyRestore:
2424   case SK_PassByIndirectRestore:
2425   case SK_ProduceObjCObject:
2426   case SK_StdInitializerList:
2427     break;
2428 
2429   case SK_ConversionSequence:
2430     delete ICS;
2431   }
2432 }
2433 
2434 bool InitializationSequence::isDirectReferenceBinding() const {
2435   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2436 }
2437 
2438 bool InitializationSequence::isAmbiguous() const {
2439   if (!Failed())
2440     return false;
2441 
2442   switch (getFailureKind()) {
2443   case FK_TooManyInitsForReference:
2444   case FK_ArrayNeedsInitList:
2445   case FK_ArrayNeedsInitListOrStringLiteral:
2446   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2447   case FK_NonConstLValueReferenceBindingToTemporary:
2448   case FK_NonConstLValueReferenceBindingToUnrelated:
2449   case FK_RValueReferenceBindingToLValue:
2450   case FK_ReferenceInitDropsQualifiers:
2451   case FK_ReferenceInitFailed:
2452   case FK_ConversionFailed:
2453   case FK_ConversionFromPropertyFailed:
2454   case FK_TooManyInitsForScalar:
2455   case FK_ReferenceBindingToInitList:
2456   case FK_InitListBadDestinationType:
2457   case FK_DefaultInitOfConst:
2458   case FK_Incomplete:
2459   case FK_ArrayTypeMismatch:
2460   case FK_NonConstantArrayInit:
2461   case FK_ListInitializationFailed:
2462   case FK_VariableLengthArrayHasInitializer:
2463   case FK_PlaceholderType:
2464   case FK_InitListElementCopyFailure:
2465   case FK_ExplicitConstructor:
2466     return false;
2467 
2468   case FK_ReferenceInitOverloadFailed:
2469   case FK_UserConversionOverloadFailed:
2470   case FK_ConstructorOverloadFailed:
2471   case FK_ListConstructorOverloadFailed:
2472     return FailedOverloadResult == OR_Ambiguous;
2473   }
2474 
2475   llvm_unreachable("Invalid EntityKind!");
2476 }
2477 
2478 bool InitializationSequence::isConstructorInitialization() const {
2479   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2480 }
2481 
2482 void
2483 InitializationSequence
2484 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2485                                    DeclAccessPair Found,
2486                                    bool HadMultipleCandidates) {
2487   Step S;
2488   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2489   S.Type = Function->getType();
2490   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2491   S.Function.Function = Function;
2492   S.Function.FoundDecl = Found;
2493   Steps.push_back(S);
2494 }
2495 
2496 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2497                                                       ExprValueKind VK) {
2498   Step S;
2499   switch (VK) {
2500   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2501   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2502   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2503   }
2504   S.Type = BaseType;
2505   Steps.push_back(S);
2506 }
2507 
2508 void InitializationSequence::AddReferenceBindingStep(QualType T,
2509                                                      bool BindingTemporary) {
2510   Step S;
2511   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2512   S.Type = T;
2513   Steps.push_back(S);
2514 }
2515 
2516 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2517   Step S;
2518   S.Kind = SK_ExtraneousCopyToTemporary;
2519   S.Type = T;
2520   Steps.push_back(S);
2521 }
2522 
2523 void
2524 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2525                                               DeclAccessPair FoundDecl,
2526                                               QualType T,
2527                                               bool HadMultipleCandidates) {
2528   Step S;
2529   S.Kind = SK_UserConversion;
2530   S.Type = T;
2531   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2532   S.Function.Function = Function;
2533   S.Function.FoundDecl = FoundDecl;
2534   Steps.push_back(S);
2535 }
2536 
2537 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2538                                                             ExprValueKind VK) {
2539   Step S;
2540   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2541   switch (VK) {
2542   case VK_RValue:
2543     S.Kind = SK_QualificationConversionRValue;
2544     break;
2545   case VK_XValue:
2546     S.Kind = SK_QualificationConversionXValue;
2547     break;
2548   case VK_LValue:
2549     S.Kind = SK_QualificationConversionLValue;
2550     break;
2551   }
2552   S.Type = Ty;
2553   Steps.push_back(S);
2554 }
2555 
2556 void InitializationSequence::AddConversionSequenceStep(
2557                                        const ImplicitConversionSequence &ICS,
2558                                                        QualType T) {
2559   Step S;
2560   S.Kind = SK_ConversionSequence;
2561   S.Type = T;
2562   S.ICS = new ImplicitConversionSequence(ICS);
2563   Steps.push_back(S);
2564 }
2565 
2566 void InitializationSequence::AddListInitializationStep(QualType T) {
2567   Step S;
2568   S.Kind = SK_ListInitialization;
2569   S.Type = T;
2570   Steps.push_back(S);
2571 }
2572 
2573 void
2574 InitializationSequence
2575 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2576                                    AccessSpecifier Access,
2577                                    QualType T,
2578                                    bool HadMultipleCandidates,
2579                                    bool FromInitList, bool AsInitList) {
2580   Step S;
2581   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2582                                        : SK_ConstructorInitialization;
2583   S.Type = T;
2584   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2585   S.Function.Function = Constructor;
2586   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2587   Steps.push_back(S);
2588 }
2589 
2590 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2591   Step S;
2592   S.Kind = SK_ZeroInitialization;
2593   S.Type = T;
2594   Steps.push_back(S);
2595 }
2596 
2597 void InitializationSequence::AddCAssignmentStep(QualType T) {
2598   Step S;
2599   S.Kind = SK_CAssignment;
2600   S.Type = T;
2601   Steps.push_back(S);
2602 }
2603 
2604 void InitializationSequence::AddStringInitStep(QualType T) {
2605   Step S;
2606   S.Kind = SK_StringInit;
2607   S.Type = T;
2608   Steps.push_back(S);
2609 }
2610 
2611 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2612   Step S;
2613   S.Kind = SK_ObjCObjectConversion;
2614   S.Type = T;
2615   Steps.push_back(S);
2616 }
2617 
2618 void InitializationSequence::AddArrayInitStep(QualType T) {
2619   Step S;
2620   S.Kind = SK_ArrayInit;
2621   S.Type = T;
2622   Steps.push_back(S);
2623 }
2624 
2625 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2626   Step S;
2627   S.Kind = SK_ParenthesizedArrayInit;
2628   S.Type = T;
2629   Steps.push_back(S);
2630 }
2631 
2632 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2633                                                               bool shouldCopy) {
2634   Step s;
2635   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2636                        : SK_PassByIndirectRestore);
2637   s.Type = type;
2638   Steps.push_back(s);
2639 }
2640 
2641 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2642   Step S;
2643   S.Kind = SK_ProduceObjCObject;
2644   S.Type = T;
2645   Steps.push_back(S);
2646 }
2647 
2648 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2649   Step S;
2650   S.Kind = SK_StdInitializerList;
2651   S.Type = T;
2652   Steps.push_back(S);
2653 }
2654 
2655 void InitializationSequence::RewrapReferenceInitList(QualType T,
2656                                                      InitListExpr *Syntactic) {
2657   assert(Syntactic->getNumInits() == 1 &&
2658          "Can only rewrap trivial init lists.");
2659   Step S;
2660   S.Kind = SK_UnwrapInitList;
2661   S.Type = Syntactic->getInit(0)->getType();
2662   Steps.insert(Steps.begin(), S);
2663 
2664   S.Kind = SK_RewrapInitList;
2665   S.Type = T;
2666   S.WrappingSyntacticList = Syntactic;
2667   Steps.push_back(S);
2668 }
2669 
2670 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2671                                                 OverloadingResult Result) {
2672   setSequenceKind(FailedSequence);
2673   this->Failure = Failure;
2674   this->FailedOverloadResult = Result;
2675 }
2676 
2677 //===----------------------------------------------------------------------===//
2678 // Attempt initialization
2679 //===----------------------------------------------------------------------===//
2680 
2681 static void MaybeProduceObjCObject(Sema &S,
2682                                    InitializationSequence &Sequence,
2683                                    const InitializedEntity &Entity) {
2684   if (!S.getLangOpts().ObjCAutoRefCount) return;
2685 
2686   /// When initializing a parameter, produce the value if it's marked
2687   /// __attribute__((ns_consumed)).
2688   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2689     if (!Entity.isParameterConsumed())
2690       return;
2691 
2692     assert(Entity.getType()->isObjCRetainableType() &&
2693            "consuming an object of unretainable type?");
2694     Sequence.AddProduceObjCObjectStep(Entity.getType());
2695 
2696   /// When initializing a return value, if the return type is a
2697   /// retainable type, then returns need to immediately retain the
2698   /// object.  If an autorelease is required, it will be done at the
2699   /// last instant.
2700   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2701     if (!Entity.getType()->isObjCRetainableType())
2702       return;
2703 
2704     Sequence.AddProduceObjCObjectStep(Entity.getType());
2705   }
2706 }
2707 
2708 /// \brief When initializing from init list via constructor, handle
2709 /// initialization of an object of type std::initializer_list<T>.
2710 ///
2711 /// \return true if we have handled initialization of an object of type
2712 /// std::initializer_list<T>, false otherwise.
2713 static bool TryInitializerListConstruction(Sema &S,
2714                                            InitListExpr *List,
2715                                            QualType DestType,
2716                                            InitializationSequence &Sequence) {
2717   QualType E;
2718   if (!S.isStdInitializerList(DestType, &E))
2719     return false;
2720 
2721   // Check that each individual element can be copy-constructed. But since we
2722   // have no place to store further information, we'll recalculate everything
2723   // later.
2724   InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2725       S.Context.getConstantArrayType(E,
2726           llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2727                       List->getNumInits()),
2728           ArrayType::Normal, 0));
2729   InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2730       0, HiddenArray);
2731   for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2732     Element.setElementIndex(i);
2733     if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2734       Sequence.SetFailed(
2735           InitializationSequence::FK_InitListElementCopyFailure);
2736       return true;
2737     }
2738   }
2739   Sequence.AddStdInitializerListConstructionStep(DestType);
2740   return true;
2741 }
2742 
2743 static OverloadingResult
2744 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2745                            Expr **Args, unsigned NumArgs,
2746                            OverloadCandidateSet &CandidateSet,
2747                            DeclContext::lookup_iterator Con,
2748                            DeclContext::lookup_iterator ConEnd,
2749                            OverloadCandidateSet::iterator &Best,
2750                            bool CopyInitializing, bool AllowExplicit,
2751                            bool OnlyListConstructors, bool InitListSyntax) {
2752   CandidateSet.clear();
2753 
2754   for (; Con != ConEnd; ++Con) {
2755     NamedDecl *D = *Con;
2756     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2757     bool SuppressUserConversions = false;
2758 
2759     // Find the constructor (which may be a template).
2760     CXXConstructorDecl *Constructor = 0;
2761     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2762     if (ConstructorTmpl)
2763       Constructor = cast<CXXConstructorDecl>(
2764                                            ConstructorTmpl->getTemplatedDecl());
2765     else {
2766       Constructor = cast<CXXConstructorDecl>(D);
2767 
2768       // If we're performing copy initialization using a copy constructor, we
2769       // suppress user-defined conversions on the arguments. We do the same for
2770       // move constructors.
2771       if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2772           Constructor->isCopyOrMoveConstructor())
2773         SuppressUserConversions = true;
2774     }
2775 
2776     if (!Constructor->isInvalidDecl() &&
2777         (AllowExplicit || !Constructor->isExplicit()) &&
2778         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2779       if (ConstructorTmpl)
2780         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2781                                        /*ExplicitArgs*/ 0,
2782                                        llvm::makeArrayRef(Args, NumArgs),
2783                                        CandidateSet, SuppressUserConversions);
2784       else {
2785         // C++ [over.match.copy]p1:
2786         //   - When initializing a temporary to be bound to the first parameter
2787         //     of a constructor that takes a reference to possibly cv-qualified
2788         //     T as its first argument, called with a single argument in the
2789         //     context of direct-initialization, explicit conversion functions
2790         //     are also considered.
2791         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2792                                  NumArgs == 1 &&
2793                                  Constructor->isCopyOrMoveConstructor();
2794         S.AddOverloadCandidate(Constructor, FoundDecl,
2795                                llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2796                                SuppressUserConversions,
2797                                /*PartialOverloading=*/false,
2798                                /*AllowExplicit=*/AllowExplicitConv);
2799       }
2800     }
2801   }
2802 
2803   // Perform overload resolution and return the result.
2804   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2805 }
2806 
2807 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2808 /// enumerates the constructors of the initialized entity and performs overload
2809 /// resolution to select the best.
2810 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2811 /// class type.
2812 static void TryConstructorInitialization(Sema &S,
2813                                          const InitializedEntity &Entity,
2814                                          const InitializationKind &Kind,
2815                                          Expr **Args, unsigned NumArgs,
2816                                          QualType DestType,
2817                                          InitializationSequence &Sequence,
2818                                          bool InitListSyntax = false) {
2819   assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2820          "InitListSyntax must come with a single initializer list argument.");
2821 
2822   // Check constructor arguments for self reference.
2823   if (DeclaratorDecl *DD = Entity.getDecl())
2824     // Parameters arguments are occassionially constructed with itself,
2825     // for instance, in recursive functions.  Skip them.
2826     if (!isa<ParmVarDecl>(DD))
2827       for (unsigned i = 0; i < NumArgs; ++i)
2828         S.CheckSelfReference(DD, Args[i]);
2829 
2830   // The type we're constructing needs to be complete.
2831   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2832     Sequence.setIncompleteTypeFailure(DestType);
2833     return;
2834   }
2835 
2836   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2837   assert(DestRecordType && "Constructor initialization requires record type");
2838   CXXRecordDecl *DestRecordDecl
2839     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2840 
2841   // Build the candidate set directly in the initialization sequence
2842   // structure, so that it will persist if we fail.
2843   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2844 
2845   // Determine whether we are allowed to call explicit constructors or
2846   // explicit conversion operators.
2847   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2848   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2849 
2850   //   - Otherwise, if T is a class type, constructors are considered. The
2851   //     applicable constructors are enumerated, and the best one is chosen
2852   //     through overload resolution.
2853   DeclContext::lookup_iterator ConStart, ConEnd;
2854   llvm::tie(ConStart, ConEnd) = S.LookupConstructors(DestRecordDecl);
2855 
2856   OverloadingResult Result = OR_No_Viable_Function;
2857   OverloadCandidateSet::iterator Best;
2858   bool AsInitializerList = false;
2859 
2860   // C++11 [over.match.list]p1:
2861   //   When objects of non-aggregate type T are list-initialized, overload
2862   //   resolution selects the constructor in two phases:
2863   //   - Initially, the candidate functions are the initializer-list
2864   //     constructors of the class T and the argument list consists of the
2865   //     initializer list as a single argument.
2866   if (InitListSyntax) {
2867     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2868     AsInitializerList = true;
2869 
2870     // If the initializer list has no elements and T has a default constructor,
2871     // the first phase is omitted.
2872     if (ILE->getNumInits() != 0 ||
2873         (!DestRecordDecl->hasDeclaredDefaultConstructor() &&
2874          !DestRecordDecl->needsImplicitDefaultConstructor()))
2875       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2876                                           CandidateSet, ConStart, ConEnd, Best,
2877                                           CopyInitialization, AllowExplicit,
2878                                           /*OnlyListConstructor=*/true,
2879                                           InitListSyntax);
2880 
2881     // Time to unwrap the init list.
2882     Args = ILE->getInits();
2883     NumArgs = ILE->getNumInits();
2884   }
2885 
2886   // C++11 [over.match.list]p1:
2887   //   - If no viable initializer-list constructor is found, overload resolution
2888   //     is performed again, where the candidate functions are all the
2889   //     constructors of the class T and the argument list consists of the
2890   //     elements of the initializer list.
2891   if (Result == OR_No_Viable_Function) {
2892     AsInitializerList = false;
2893     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2894                                         CandidateSet, ConStart, ConEnd, Best,
2895                                         CopyInitialization, AllowExplicit,
2896                                         /*OnlyListConstructors=*/false,
2897                                         InitListSyntax);
2898   }
2899   if (Result) {
2900     Sequence.SetOverloadFailure(InitListSyntax ?
2901                       InitializationSequence::FK_ListConstructorOverloadFailed :
2902                       InitializationSequence::FK_ConstructorOverloadFailed,
2903                                 Result);
2904     return;
2905   }
2906 
2907   // C++11 [dcl.init]p6:
2908   //   If a program calls for the default initialization of an object
2909   //   of a const-qualified type T, T shall be a class type with a
2910   //   user-provided default constructor.
2911   if (Kind.getKind() == InitializationKind::IK_Default &&
2912       Entity.getType().isConstQualified() &&
2913       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2914     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2915     return;
2916   }
2917 
2918   // C++11 [over.match.list]p1:
2919   //   In copy-list-initialization, if an explicit constructor is chosen, the
2920   //   initializer is ill-formed.
2921   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2922   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2923     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2924     return;
2925   }
2926 
2927   // Add the constructor initialization step. Any cv-qualification conversion is
2928   // subsumed by the initialization.
2929   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2930   Sequence.AddConstructorInitializationStep(CtorDecl,
2931                                             Best->FoundDecl.getAccess(),
2932                                             DestType, HadMultipleCandidates,
2933                                             InitListSyntax, AsInitializerList);
2934 }
2935 
2936 static bool
2937 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2938                                              Expr *Initializer,
2939                                              QualType &SourceType,
2940                                              QualType &UnqualifiedSourceType,
2941                                              QualType UnqualifiedTargetType,
2942                                              InitializationSequence &Sequence) {
2943   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2944         S.Context.OverloadTy) {
2945     DeclAccessPair Found;
2946     bool HadMultipleCandidates = false;
2947     if (FunctionDecl *Fn
2948         = S.ResolveAddressOfOverloadedFunction(Initializer,
2949                                                UnqualifiedTargetType,
2950                                                false, Found,
2951                                                &HadMultipleCandidates)) {
2952       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2953                                                 HadMultipleCandidates);
2954       SourceType = Fn->getType();
2955       UnqualifiedSourceType = SourceType.getUnqualifiedType();
2956     } else if (!UnqualifiedTargetType->isRecordType()) {
2957       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2958       return true;
2959     }
2960   }
2961   return false;
2962 }
2963 
2964 static void TryReferenceInitializationCore(Sema &S,
2965                                            const InitializedEntity &Entity,
2966                                            const InitializationKind &Kind,
2967                                            Expr *Initializer,
2968                                            QualType cv1T1, QualType T1,
2969                                            Qualifiers T1Quals,
2970                                            QualType cv2T2, QualType T2,
2971                                            Qualifiers T2Quals,
2972                                            InitializationSequence &Sequence);
2973 
2974 static void TryValueInitialization(Sema &S,
2975                                    const InitializedEntity &Entity,
2976                                    const InitializationKind &Kind,
2977                                    InitializationSequence &Sequence,
2978                                    InitListExpr *InitList = 0);
2979 
2980 static void TryListInitialization(Sema &S,
2981                                   const InitializedEntity &Entity,
2982                                   const InitializationKind &Kind,
2983                                   InitListExpr *InitList,
2984                                   InitializationSequence &Sequence);
2985 
2986 /// \brief Attempt list initialization of a reference.
2987 static void TryReferenceListInitialization(Sema &S,
2988                                            const InitializedEntity &Entity,
2989                                            const InitializationKind &Kind,
2990                                            InitListExpr *InitList,
2991                                            InitializationSequence &Sequence)
2992 {
2993   // First, catch C++03 where this isn't possible.
2994   if (!S.getLangOpts().CPlusPlus0x) {
2995     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2996     return;
2997   }
2998 
2999   QualType DestType = Entity.getType();
3000   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3001   Qualifiers T1Quals;
3002   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3003 
3004   // Reference initialization via an initializer list works thus:
3005   // If the initializer list consists of a single element that is
3006   // reference-related to the referenced type, bind directly to that element
3007   // (possibly creating temporaries).
3008   // Otherwise, initialize a temporary with the initializer list and
3009   // bind to that.
3010   if (InitList->getNumInits() == 1) {
3011     Expr *Initializer = InitList->getInit(0);
3012     QualType cv2T2 = Initializer->getType();
3013     Qualifiers T2Quals;
3014     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3015 
3016     // If this fails, creating a temporary wouldn't work either.
3017     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3018                                                      T1, Sequence))
3019       return;
3020 
3021     SourceLocation DeclLoc = Initializer->getLocStart();
3022     bool dummy1, dummy2, dummy3;
3023     Sema::ReferenceCompareResult RefRelationship
3024       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3025                                        dummy2, dummy3);
3026     if (RefRelationship >= Sema::Ref_Related) {
3027       // Try to bind the reference here.
3028       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3029                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3030       if (Sequence)
3031         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3032       return;
3033     }
3034   }
3035 
3036   // Not reference-related. Create a temporary and bind to that.
3037   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3038 
3039   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3040   if (Sequence) {
3041     if (DestType->isRValueReferenceType() ||
3042         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3043       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3044     else
3045       Sequence.SetFailed(
3046           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3047   }
3048 }
3049 
3050 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3051 static void TryListInitialization(Sema &S,
3052                                   const InitializedEntity &Entity,
3053                                   const InitializationKind &Kind,
3054                                   InitListExpr *InitList,
3055                                   InitializationSequence &Sequence) {
3056   QualType DestType = Entity.getType();
3057 
3058   // C++ doesn't allow scalar initialization with more than one argument.
3059   // But C99 complex numbers are scalars and it makes sense there.
3060   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3061       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3062     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3063     return;
3064   }
3065   if (DestType->isReferenceType()) {
3066     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3067     return;
3068   }
3069   if (DestType->isRecordType()) {
3070     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3071       Sequence.setIncompleteTypeFailure(DestType);
3072       return;
3073     }
3074 
3075     // C++11 [dcl.init.list]p3:
3076     //   - If T is an aggregate, aggregate initialization is performed.
3077     if (!DestType->isAggregateType()) {
3078       if (S.getLangOpts().CPlusPlus0x) {
3079         //   - Otherwise, if the initializer list has no elements and T is a
3080         //     class type with a default constructor, the object is
3081         //     value-initialized.
3082         if (InitList->getNumInits() == 0) {
3083           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3084           if (RD->hasDeclaredDefaultConstructor() ||
3085               RD->needsImplicitDefaultConstructor()) {
3086             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3087             return;
3088           }
3089         }
3090 
3091         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3092         //     an initializer_list object constructed [...]
3093         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3094           return;
3095 
3096         //   - Otherwise, if T is a class type, constructors are considered.
3097         Expr *Arg = InitList;
3098         TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3099                                      Sequence, /*InitListSyntax*/true);
3100       } else
3101         Sequence.SetFailed(
3102             InitializationSequence::FK_InitListBadDestinationType);
3103       return;
3104     }
3105   }
3106 
3107   InitListChecker CheckInitList(S, Entity, InitList,
3108           DestType, /*VerifyOnly=*/true,
3109           Kind.getKind() != InitializationKind::IK_DirectList ||
3110             !S.getLangOpts().CPlusPlus0x);
3111   if (CheckInitList.HadError()) {
3112     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3113     return;
3114   }
3115 
3116   // Add the list initialization step with the built init list.
3117   Sequence.AddListInitializationStep(DestType);
3118 }
3119 
3120 /// \brief Try a reference initialization that involves calling a conversion
3121 /// function.
3122 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3123                                              const InitializedEntity &Entity,
3124                                              const InitializationKind &Kind,
3125                                              Expr *Initializer,
3126                                              bool AllowRValues,
3127                                              InitializationSequence &Sequence) {
3128   QualType DestType = Entity.getType();
3129   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3130   QualType T1 = cv1T1.getUnqualifiedType();
3131   QualType cv2T2 = Initializer->getType();
3132   QualType T2 = cv2T2.getUnqualifiedType();
3133 
3134   bool DerivedToBase;
3135   bool ObjCConversion;
3136   bool ObjCLifetimeConversion;
3137   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3138                                          T1, T2, DerivedToBase,
3139                                          ObjCConversion,
3140                                          ObjCLifetimeConversion) &&
3141          "Must have incompatible references when binding via conversion");
3142   (void)DerivedToBase;
3143   (void)ObjCConversion;
3144   (void)ObjCLifetimeConversion;
3145 
3146   // Build the candidate set directly in the initialization sequence
3147   // structure, so that it will persist if we fail.
3148   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3149   CandidateSet.clear();
3150 
3151   // Determine whether we are allowed to call explicit constructors or
3152   // explicit conversion operators.
3153   bool AllowExplicit = Kind.AllowExplicit();
3154   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3155 
3156   const RecordType *T1RecordType = 0;
3157   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3158       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3159     // The type we're converting to is a class type. Enumerate its constructors
3160     // to see if there is a suitable conversion.
3161     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3162 
3163     DeclContext::lookup_iterator Con, ConEnd;
3164     for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3165          Con != ConEnd; ++Con) {
3166       NamedDecl *D = *Con;
3167       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3168 
3169       // Find the constructor (which may be a template).
3170       CXXConstructorDecl *Constructor = 0;
3171       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3172       if (ConstructorTmpl)
3173         Constructor = cast<CXXConstructorDecl>(
3174                                          ConstructorTmpl->getTemplatedDecl());
3175       else
3176         Constructor = cast<CXXConstructorDecl>(D);
3177 
3178       if (!Constructor->isInvalidDecl() &&
3179           Constructor->isConvertingConstructor(AllowExplicit)) {
3180         if (ConstructorTmpl)
3181           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3182                                          /*ExplicitArgs*/ 0,
3183                                          Initializer, CandidateSet,
3184                                          /*SuppressUserConversions=*/true);
3185         else
3186           S.AddOverloadCandidate(Constructor, FoundDecl,
3187                                  Initializer, CandidateSet,
3188                                  /*SuppressUserConversions=*/true);
3189       }
3190     }
3191   }
3192   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3193     return OR_No_Viable_Function;
3194 
3195   const RecordType *T2RecordType = 0;
3196   if ((T2RecordType = T2->getAs<RecordType>()) &&
3197       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3198     // The type we're converting from is a class type, enumerate its conversion
3199     // functions.
3200     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3201 
3202     const UnresolvedSetImpl *Conversions
3203       = T2RecordDecl->getVisibleConversionFunctions();
3204     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3205            E = Conversions->end(); I != E; ++I) {
3206       NamedDecl *D = *I;
3207       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3208       if (isa<UsingShadowDecl>(D))
3209         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3210 
3211       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3212       CXXConversionDecl *Conv;
3213       if (ConvTemplate)
3214         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3215       else
3216         Conv = cast<CXXConversionDecl>(D);
3217 
3218       // If the conversion function doesn't return a reference type,
3219       // it can't be considered for this conversion unless we're allowed to
3220       // consider rvalues.
3221       // FIXME: Do we need to make sure that we only consider conversion
3222       // candidates with reference-compatible results? That might be needed to
3223       // break recursion.
3224       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3225           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3226         if (ConvTemplate)
3227           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3228                                            ActingDC, Initializer,
3229                                            DestType, CandidateSet);
3230         else
3231           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3232                                    Initializer, DestType, CandidateSet);
3233       }
3234     }
3235   }
3236   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3237     return OR_No_Viable_Function;
3238 
3239   SourceLocation DeclLoc = Initializer->getLocStart();
3240 
3241   // Perform overload resolution. If it fails, return the failed result.
3242   OverloadCandidateSet::iterator Best;
3243   if (OverloadingResult Result
3244         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3245     return Result;
3246 
3247   FunctionDecl *Function = Best->Function;
3248 
3249   // This is the overload that will actually be used for the initialization, so
3250   // mark it as used.
3251   S.MarkFunctionReferenced(DeclLoc, Function);
3252 
3253   // Compute the returned type of the conversion.
3254   if (isa<CXXConversionDecl>(Function))
3255     T2 = Function->getResultType();
3256   else
3257     T2 = cv1T1;
3258 
3259   // Add the user-defined conversion step.
3260   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3261   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3262                                  T2.getNonLValueExprType(S.Context),
3263                                  HadMultipleCandidates);
3264 
3265   // Determine whether we need to perform derived-to-base or
3266   // cv-qualification adjustments.
3267   ExprValueKind VK = VK_RValue;
3268   if (T2->isLValueReferenceType())
3269     VK = VK_LValue;
3270   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3271     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3272 
3273   bool NewDerivedToBase = false;
3274   bool NewObjCConversion = false;
3275   bool NewObjCLifetimeConversion = false;
3276   Sema::ReferenceCompareResult NewRefRelationship
3277     = S.CompareReferenceRelationship(DeclLoc, T1,
3278                                      T2.getNonLValueExprType(S.Context),
3279                                      NewDerivedToBase, NewObjCConversion,
3280                                      NewObjCLifetimeConversion);
3281   if (NewRefRelationship == Sema::Ref_Incompatible) {
3282     // If the type we've converted to is not reference-related to the
3283     // type we're looking for, then there is another conversion step
3284     // we need to perform to produce a temporary of the right type
3285     // that we'll be binding to.
3286     ImplicitConversionSequence ICS;
3287     ICS.setStandard();
3288     ICS.Standard = Best->FinalConversion;
3289     T2 = ICS.Standard.getToType(2);
3290     Sequence.AddConversionSequenceStep(ICS, T2);
3291   } else if (NewDerivedToBase)
3292     Sequence.AddDerivedToBaseCastStep(
3293                                 S.Context.getQualifiedType(T1,
3294                                   T2.getNonReferenceType().getQualifiers()),
3295                                       VK);
3296   else if (NewObjCConversion)
3297     Sequence.AddObjCObjectConversionStep(
3298                                 S.Context.getQualifiedType(T1,
3299                                   T2.getNonReferenceType().getQualifiers()));
3300 
3301   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3302     Sequence.AddQualificationConversionStep(cv1T1, VK);
3303 
3304   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3305   return OR_Success;
3306 }
3307 
3308 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3309                                            const InitializedEntity &Entity,
3310                                            Expr *CurInitExpr);
3311 
3312 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3313 static void TryReferenceInitialization(Sema &S,
3314                                        const InitializedEntity &Entity,
3315                                        const InitializationKind &Kind,
3316                                        Expr *Initializer,
3317                                        InitializationSequence &Sequence) {
3318   QualType DestType = Entity.getType();
3319   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3320   Qualifiers T1Quals;
3321   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3322   QualType cv2T2 = Initializer->getType();
3323   Qualifiers T2Quals;
3324   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3325 
3326   // If the initializer is the address of an overloaded function, try
3327   // to resolve the overloaded function. If all goes well, T2 is the
3328   // type of the resulting function.
3329   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3330                                                    T1, Sequence))
3331     return;
3332 
3333   // Delegate everything else to a subfunction.
3334   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3335                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3336 }
3337 
3338 /// \brief Reference initialization without resolving overloaded functions.
3339 static void TryReferenceInitializationCore(Sema &S,
3340                                            const InitializedEntity &Entity,
3341                                            const InitializationKind &Kind,
3342                                            Expr *Initializer,
3343                                            QualType cv1T1, QualType T1,
3344                                            Qualifiers T1Quals,
3345                                            QualType cv2T2, QualType T2,
3346                                            Qualifiers T2Quals,
3347                                            InitializationSequence &Sequence) {
3348   QualType DestType = Entity.getType();
3349   SourceLocation DeclLoc = Initializer->getLocStart();
3350   // Compute some basic properties of the types and the initializer.
3351   bool isLValueRef = DestType->isLValueReferenceType();
3352   bool isRValueRef = !isLValueRef;
3353   bool DerivedToBase = false;
3354   bool ObjCConversion = false;
3355   bool ObjCLifetimeConversion = false;
3356   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3357   Sema::ReferenceCompareResult RefRelationship
3358     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3359                                      ObjCConversion, ObjCLifetimeConversion);
3360 
3361   // C++0x [dcl.init.ref]p5:
3362   //   A reference to type "cv1 T1" is initialized by an expression of type
3363   //   "cv2 T2" as follows:
3364   //
3365   //     - If the reference is an lvalue reference and the initializer
3366   //       expression
3367   // Note the analogous bullet points for rvlaue refs to functions. Because
3368   // there are no function rvalues in C++, rvalue refs to functions are treated
3369   // like lvalue refs.
3370   OverloadingResult ConvOvlResult = OR_Success;
3371   bool T1Function = T1->isFunctionType();
3372   if (isLValueRef || T1Function) {
3373     if (InitCategory.isLValue() &&
3374         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3375          (Kind.isCStyleOrFunctionalCast() &&
3376           RefRelationship == Sema::Ref_Related))) {
3377       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3378       //     reference-compatible with "cv2 T2," or
3379       //
3380       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3381       // bit-field when we're determining whether the reference initialization
3382       // can occur. However, we do pay attention to whether it is a bit-field
3383       // to decide whether we're actually binding to a temporary created from
3384       // the bit-field.
3385       if (DerivedToBase)
3386         Sequence.AddDerivedToBaseCastStep(
3387                          S.Context.getQualifiedType(T1, T2Quals),
3388                          VK_LValue);
3389       else if (ObjCConversion)
3390         Sequence.AddObjCObjectConversionStep(
3391                                      S.Context.getQualifiedType(T1, T2Quals));
3392 
3393       if (T1Quals != T2Quals)
3394         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3395       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3396         (Initializer->getBitField() || Initializer->refersToVectorElement());
3397       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3398       return;
3399     }
3400 
3401     //     - has a class type (i.e., T2 is a class type), where T1 is not
3402     //       reference-related to T2, and can be implicitly converted to an
3403     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3404     //       with "cv3 T3" (this conversion is selected by enumerating the
3405     //       applicable conversion functions (13.3.1.6) and choosing the best
3406     //       one through overload resolution (13.3)),
3407     // If we have an rvalue ref to function type here, the rhs must be
3408     // an rvalue.
3409     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3410         (isLValueRef || InitCategory.isRValue())) {
3411       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3412                                                        Initializer,
3413                                                    /*AllowRValues=*/isRValueRef,
3414                                                        Sequence);
3415       if (ConvOvlResult == OR_Success)
3416         return;
3417       if (ConvOvlResult != OR_No_Viable_Function) {
3418         Sequence.SetOverloadFailure(
3419                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3420                                     ConvOvlResult);
3421       }
3422     }
3423   }
3424 
3425   //     - Otherwise, the reference shall be an lvalue reference to a
3426   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3427   //       shall be an rvalue reference.
3428   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3429     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3430       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3431     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3432       Sequence.SetOverloadFailure(
3433                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3434                                   ConvOvlResult);
3435     else
3436       Sequence.SetFailed(InitCategory.isLValue()
3437         ? (RefRelationship == Sema::Ref_Related
3438              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3439              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3440         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3441 
3442     return;
3443   }
3444 
3445   //    - If the initializer expression
3446   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3447   //        "cv1 T1" is reference-compatible with "cv2 T2"
3448   // Note: functions are handled below.
3449   if (!T1Function &&
3450       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3451        (Kind.isCStyleOrFunctionalCast() &&
3452         RefRelationship == Sema::Ref_Related)) &&
3453       (InitCategory.isXValue() ||
3454        (InitCategory.isPRValue() && T2->isRecordType()) ||
3455        (InitCategory.isPRValue() && T2->isArrayType()))) {
3456     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3457     if (InitCategory.isPRValue() && T2->isRecordType()) {
3458       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3459       // compiler the freedom to perform a copy here or bind to the
3460       // object, while C++0x requires that we bind directly to the
3461       // object. Hence, we always bind to the object without making an
3462       // extra copy. However, in C++03 requires that we check for the
3463       // presence of a suitable copy constructor:
3464       //
3465       //   The constructor that would be used to make the copy shall
3466       //   be callable whether or not the copy is actually done.
3467       if (!S.getLangOpts().CPlusPlus0x && !S.getLangOpts().MicrosoftExt)
3468         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3469       else if (S.getLangOpts().CPlusPlus0x)
3470         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3471     }
3472 
3473     if (DerivedToBase)
3474       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3475                                         ValueKind);
3476     else if (ObjCConversion)
3477       Sequence.AddObjCObjectConversionStep(
3478                                        S.Context.getQualifiedType(T1, T2Quals));
3479 
3480     if (T1Quals != T2Quals)
3481       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3482     Sequence.AddReferenceBindingStep(cv1T1,
3483                                  /*bindingTemporary=*/InitCategory.isPRValue());
3484     return;
3485   }
3486 
3487   //       - has a class type (i.e., T2 is a class type), where T1 is not
3488   //         reference-related to T2, and can be implicitly converted to an
3489   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3490   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3491   if (T2->isRecordType()) {
3492     if (RefRelationship == Sema::Ref_Incompatible) {
3493       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3494                                                        Kind, Initializer,
3495                                                        /*AllowRValues=*/true,
3496                                                        Sequence);
3497       if (ConvOvlResult)
3498         Sequence.SetOverloadFailure(
3499                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3500                                     ConvOvlResult);
3501 
3502       return;
3503     }
3504 
3505     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3506     return;
3507   }
3508 
3509   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3510   //        from the initializer expression using the rules for a non-reference
3511   //        copy initialization (8.5). The reference is then bound to the
3512   //        temporary. [...]
3513 
3514   // Determine whether we are allowed to call explicit constructors or
3515   // explicit conversion operators.
3516   bool AllowExplicit = Kind.AllowExplicit();
3517 
3518   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3519 
3520   ImplicitConversionSequence ICS
3521     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3522                               /*SuppressUserConversions*/ false,
3523                               AllowExplicit,
3524                               /*FIXME:InOverloadResolution=*/false,
3525                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3526                               /*AllowObjCWritebackConversion=*/false);
3527 
3528   if (ICS.isBad()) {
3529     // FIXME: Use the conversion function set stored in ICS to turn
3530     // this into an overloading ambiguity diagnostic. However, we need
3531     // to keep that set as an OverloadCandidateSet rather than as some
3532     // other kind of set.
3533     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3534       Sequence.SetOverloadFailure(
3535                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3536                                   ConvOvlResult);
3537     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3538       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3539     else
3540       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3541     return;
3542   } else {
3543     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3544   }
3545 
3546   //        [...] If T1 is reference-related to T2, cv1 must be the
3547   //        same cv-qualification as, or greater cv-qualification
3548   //        than, cv2; otherwise, the program is ill-formed.
3549   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3550   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3551   if (RefRelationship == Sema::Ref_Related &&
3552       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3553     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3554     return;
3555   }
3556 
3557   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3558   //   reference, the initializer expression shall not be an lvalue.
3559   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3560       InitCategory.isLValue()) {
3561     Sequence.SetFailed(
3562                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3563     return;
3564   }
3565 
3566   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3567   return;
3568 }
3569 
3570 /// \brief Attempt character array initialization from a string literal
3571 /// (C++ [dcl.init.string], C99 6.7.8).
3572 static void TryStringLiteralInitialization(Sema &S,
3573                                            const InitializedEntity &Entity,
3574                                            const InitializationKind &Kind,
3575                                            Expr *Initializer,
3576                                        InitializationSequence &Sequence) {
3577   Sequence.AddStringInitStep(Entity.getType());
3578 }
3579 
3580 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3581 static void TryValueInitialization(Sema &S,
3582                                    const InitializedEntity &Entity,
3583                                    const InitializationKind &Kind,
3584                                    InitializationSequence &Sequence,
3585                                    InitListExpr *InitList) {
3586   assert((!InitList || InitList->getNumInits() == 0) &&
3587          "Shouldn't use value-init for non-empty init lists");
3588 
3589   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3590   //
3591   //   To value-initialize an object of type T means:
3592   QualType T = Entity.getType();
3593 
3594   //     -- if T is an array type, then each element is value-initialized;
3595   T = S.Context.getBaseElementType(T);
3596 
3597   if (const RecordType *RT = T->getAs<RecordType>()) {
3598     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3599       bool NeedZeroInitialization = true;
3600       if (!S.getLangOpts().CPlusPlus0x) {
3601         // C++98:
3602         // -- if T is a class type (clause 9) with a user-declared constructor
3603         //    (12.1), then the default constructor for T is called (and the
3604         //    initialization is ill-formed if T has no accessible default
3605         //    constructor);
3606         if (ClassDecl->hasUserDeclaredConstructor())
3607           NeedZeroInitialization = false;
3608       } else {
3609         // C++11:
3610         // -- if T is a class type (clause 9) with either no default constructor
3611         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3612         //    or deleted, then the object is default-initialized;
3613         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3614         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3615           NeedZeroInitialization = false;
3616       }
3617 
3618       // -- if T is a (possibly cv-qualified) non-union class type without a
3619       //    user-provided or deleted default constructor, then the object is
3620       //    zero-initialized and, if T has a non-trivial default constructor,
3621       //    default-initialized;
3622       // FIXME: The 'non-union' here is a defect (not yet assigned an issue
3623       // number). Update the quotation when the defect is resolved.
3624       if (NeedZeroInitialization)
3625         Sequence.AddZeroInitializationStep(Entity.getType());
3626 
3627       // If this is list-value-initialization, pass the empty init list on when
3628       // building the constructor call. This affects the semantics of a few
3629       // things (such as whether an explicit default constructor can be called).
3630       Expr *InitListAsExpr = InitList;
3631       Expr **Args = InitList ? &InitListAsExpr : 0;
3632       unsigned NumArgs = InitList ? 1 : 0;
3633       bool InitListSyntax = InitList;
3634 
3635       return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3636                                           Sequence, InitListSyntax);
3637     }
3638   }
3639 
3640   Sequence.AddZeroInitializationStep(Entity.getType());
3641 }
3642 
3643 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3644 static void TryDefaultInitialization(Sema &S,
3645                                      const InitializedEntity &Entity,
3646                                      const InitializationKind &Kind,
3647                                      InitializationSequence &Sequence) {
3648   assert(Kind.getKind() == InitializationKind::IK_Default);
3649 
3650   // C++ [dcl.init]p6:
3651   //   To default-initialize an object of type T means:
3652   //     - if T is an array type, each element is default-initialized;
3653   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3654 
3655   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3656   //       constructor for T is called (and the initialization is ill-formed if
3657   //       T has no accessible default constructor);
3658   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3659     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3660     return;
3661   }
3662 
3663   //     - otherwise, no initialization is performed.
3664 
3665   //   If a program calls for the default initialization of an object of
3666   //   a const-qualified type T, T shall be a class type with a user-provided
3667   //   default constructor.
3668   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3669     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3670     return;
3671   }
3672 
3673   // If the destination type has a lifetime property, zero-initialize it.
3674   if (DestType.getQualifiers().hasObjCLifetime()) {
3675     Sequence.AddZeroInitializationStep(Entity.getType());
3676     return;
3677   }
3678 }
3679 
3680 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3681 /// which enumerates all conversion functions and performs overload resolution
3682 /// to select the best.
3683 static void TryUserDefinedConversion(Sema &S,
3684                                      const InitializedEntity &Entity,
3685                                      const InitializationKind &Kind,
3686                                      Expr *Initializer,
3687                                      InitializationSequence &Sequence) {
3688   QualType DestType = Entity.getType();
3689   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3690   QualType SourceType = Initializer->getType();
3691   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3692          "Must have a class type to perform a user-defined conversion");
3693 
3694   // Build the candidate set directly in the initialization sequence
3695   // structure, so that it will persist if we fail.
3696   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3697   CandidateSet.clear();
3698 
3699   // Determine whether we are allowed to call explicit constructors or
3700   // explicit conversion operators.
3701   bool AllowExplicit = Kind.AllowExplicit();
3702 
3703   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3704     // The type we're converting to is a class type. Enumerate its constructors
3705     // to see if there is a suitable conversion.
3706     CXXRecordDecl *DestRecordDecl
3707       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3708 
3709     // Try to complete the type we're converting to.
3710     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3711       DeclContext::lookup_iterator Con, ConEnd;
3712       for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3713            Con != ConEnd; ++Con) {
3714         NamedDecl *D = *Con;
3715         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3716 
3717         // Find the constructor (which may be a template).
3718         CXXConstructorDecl *Constructor = 0;
3719         FunctionTemplateDecl *ConstructorTmpl
3720           = dyn_cast<FunctionTemplateDecl>(D);
3721         if (ConstructorTmpl)
3722           Constructor = cast<CXXConstructorDecl>(
3723                                            ConstructorTmpl->getTemplatedDecl());
3724         else
3725           Constructor = cast<CXXConstructorDecl>(D);
3726 
3727         if (!Constructor->isInvalidDecl() &&
3728             Constructor->isConvertingConstructor(AllowExplicit)) {
3729           if (ConstructorTmpl)
3730             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3731                                            /*ExplicitArgs*/ 0,
3732                                            Initializer, CandidateSet,
3733                                            /*SuppressUserConversions=*/true);
3734           else
3735             S.AddOverloadCandidate(Constructor, FoundDecl,
3736                                    Initializer, CandidateSet,
3737                                    /*SuppressUserConversions=*/true);
3738         }
3739       }
3740     }
3741   }
3742 
3743   SourceLocation DeclLoc = Initializer->getLocStart();
3744 
3745   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3746     // The type we're converting from is a class type, enumerate its conversion
3747     // functions.
3748 
3749     // We can only enumerate the conversion functions for a complete type; if
3750     // the type isn't complete, simply skip this step.
3751     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3752       CXXRecordDecl *SourceRecordDecl
3753         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3754 
3755       const UnresolvedSetImpl *Conversions
3756         = SourceRecordDecl->getVisibleConversionFunctions();
3757       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3758            E = Conversions->end();
3759            I != E; ++I) {
3760         NamedDecl *D = *I;
3761         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3762         if (isa<UsingShadowDecl>(D))
3763           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3764 
3765         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3766         CXXConversionDecl *Conv;
3767         if (ConvTemplate)
3768           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3769         else
3770           Conv = cast<CXXConversionDecl>(D);
3771 
3772         if (AllowExplicit || !Conv->isExplicit()) {
3773           if (ConvTemplate)
3774             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3775                                              ActingDC, Initializer, DestType,
3776                                              CandidateSet);
3777           else
3778             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3779                                      Initializer, DestType, CandidateSet);
3780         }
3781       }
3782     }
3783   }
3784 
3785   // Perform overload resolution. If it fails, return the failed result.
3786   OverloadCandidateSet::iterator Best;
3787   if (OverloadingResult Result
3788         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3789     Sequence.SetOverloadFailure(
3790                         InitializationSequence::FK_UserConversionOverloadFailed,
3791                                 Result);
3792     return;
3793   }
3794 
3795   FunctionDecl *Function = Best->Function;
3796   S.MarkFunctionReferenced(DeclLoc, Function);
3797   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3798 
3799   if (isa<CXXConstructorDecl>(Function)) {
3800     // Add the user-defined conversion step. Any cv-qualification conversion is
3801     // subsumed by the initialization. Per DR5, the created temporary is of the
3802     // cv-unqualified type of the destination.
3803     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3804                                    DestType.getUnqualifiedType(),
3805                                    HadMultipleCandidates);
3806     return;
3807   }
3808 
3809   // Add the user-defined conversion step that calls the conversion function.
3810   QualType ConvType = Function->getCallResultType();
3811   if (ConvType->getAs<RecordType>()) {
3812     // If we're converting to a class type, there may be an copy of
3813     // the resulting temporary object (possible to create an object of
3814     // a base class type). That copy is not a separate conversion, so
3815     // we just make a note of the actual destination type (possibly a
3816     // base class of the type returned by the conversion function) and
3817     // let the user-defined conversion step handle the conversion.
3818     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3819                                    HadMultipleCandidates);
3820     return;
3821   }
3822 
3823   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3824                                  HadMultipleCandidates);
3825 
3826   // If the conversion following the call to the conversion function
3827   // is interesting, add it as a separate step.
3828   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3829       Best->FinalConversion.Third) {
3830     ImplicitConversionSequence ICS;
3831     ICS.setStandard();
3832     ICS.Standard = Best->FinalConversion;
3833     Sequence.AddConversionSequenceStep(ICS, DestType);
3834   }
3835 }
3836 
3837 /// The non-zero enum values here are indexes into diagnostic alternatives.
3838 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3839 
3840 /// Determines whether this expression is an acceptable ICR source.
3841 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3842                                          bool isAddressOf) {
3843   // Skip parens.
3844   e = e->IgnoreParens();
3845 
3846   // Skip address-of nodes.
3847   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3848     if (op->getOpcode() == UO_AddrOf)
3849       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3850 
3851   // Skip certain casts.
3852   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3853     switch (ce->getCastKind()) {
3854     case CK_Dependent:
3855     case CK_BitCast:
3856     case CK_LValueBitCast:
3857     case CK_NoOp:
3858       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3859 
3860     case CK_ArrayToPointerDecay:
3861       return IIK_nonscalar;
3862 
3863     case CK_NullToPointer:
3864       return IIK_okay;
3865 
3866     default:
3867       break;
3868     }
3869 
3870   // If we have a declaration reference, it had better be a local variable.
3871   } else if (isa<DeclRefExpr>(e)) {
3872     if (!isAddressOf) return IIK_nonlocal;
3873 
3874     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3875     if (!var) return IIK_nonlocal;
3876 
3877     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3878 
3879   // If we have a conditional operator, check both sides.
3880   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3881     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3882       return iik;
3883 
3884     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3885 
3886   // These are never scalar.
3887   } else if (isa<ArraySubscriptExpr>(e)) {
3888     return IIK_nonscalar;
3889 
3890   // Otherwise, it needs to be a null pointer constant.
3891   } else {
3892     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3893             ? IIK_okay : IIK_nonlocal);
3894   }
3895 
3896   return IIK_nonlocal;
3897 }
3898 
3899 /// Check whether the given expression is a valid operand for an
3900 /// indirect copy/restore.
3901 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3902   assert(src->isRValue());
3903 
3904   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3905   if (iik == IIK_okay) return;
3906 
3907   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3908     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3909     << src->getSourceRange();
3910 }
3911 
3912 /// \brief Determine whether we have compatible array types for the
3913 /// purposes of GNU by-copy array initialization.
3914 static bool hasCompatibleArrayTypes(ASTContext &Context,
3915                                     const ArrayType *Dest,
3916                                     const ArrayType *Source) {
3917   // If the source and destination array types are equivalent, we're
3918   // done.
3919   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3920     return true;
3921 
3922   // Make sure that the element types are the same.
3923   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3924     return false;
3925 
3926   // The only mismatch we allow is when the destination is an
3927   // incomplete array type and the source is a constant array type.
3928   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3929 }
3930 
3931 static bool tryObjCWritebackConversion(Sema &S,
3932                                        InitializationSequence &Sequence,
3933                                        const InitializedEntity &Entity,
3934                                        Expr *Initializer) {
3935   bool ArrayDecay = false;
3936   QualType ArgType = Initializer->getType();
3937   QualType ArgPointee;
3938   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3939     ArrayDecay = true;
3940     ArgPointee = ArgArrayType->getElementType();
3941     ArgType = S.Context.getPointerType(ArgPointee);
3942   }
3943 
3944   // Handle write-back conversion.
3945   QualType ConvertedArgType;
3946   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3947                                    ConvertedArgType))
3948     return false;
3949 
3950   // We should copy unless we're passing to an argument explicitly
3951   // marked 'out'.
3952   bool ShouldCopy = true;
3953   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3954     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3955 
3956   // Do we need an lvalue conversion?
3957   if (ArrayDecay || Initializer->isGLValue()) {
3958     ImplicitConversionSequence ICS;
3959     ICS.setStandard();
3960     ICS.Standard.setAsIdentityConversion();
3961 
3962     QualType ResultType;
3963     if (ArrayDecay) {
3964       ICS.Standard.First = ICK_Array_To_Pointer;
3965       ResultType = S.Context.getPointerType(ArgPointee);
3966     } else {
3967       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3968       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3969     }
3970 
3971     Sequence.AddConversionSequenceStep(ICS, ResultType);
3972   }
3973 
3974   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3975   return true;
3976 }
3977 
3978 InitializationSequence::InitializationSequence(Sema &S,
3979                                                const InitializedEntity &Entity,
3980                                                const InitializationKind &Kind,
3981                                                Expr **Args,
3982                                                unsigned NumArgs)
3983     : FailedCandidateSet(Kind.getLocation()) {
3984   ASTContext &Context = S.Context;
3985 
3986   // C++0x [dcl.init]p16:
3987   //   The semantics of initializers are as follows. The destination type is
3988   //   the type of the object or reference being initialized and the source
3989   //   type is the type of the initializer expression. The source type is not
3990   //   defined when the initializer is a braced-init-list or when it is a
3991   //   parenthesized list of expressions.
3992   QualType DestType = Entity.getType();
3993 
3994   if (DestType->isDependentType() ||
3995       Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
3996     SequenceKind = DependentSequence;
3997     return;
3998   }
3999 
4000   // Almost everything is a normal sequence.
4001   setSequenceKind(NormalSequence);
4002 
4003   for (unsigned I = 0; I != NumArgs; ++I)
4004     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4005       // FIXME: should we be doing this here?
4006       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4007       if (result.isInvalid()) {
4008         SetFailed(FK_PlaceholderType);
4009         return;
4010       }
4011       Args[I] = result.take();
4012     }
4013 
4014 
4015   QualType SourceType;
4016   Expr *Initializer = 0;
4017   if (NumArgs == 1) {
4018     Initializer = Args[0];
4019     if (!isa<InitListExpr>(Initializer))
4020       SourceType = Initializer->getType();
4021   }
4022 
4023   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4024   //       object is list-initialized (8.5.4).
4025   if (Kind.getKind() != InitializationKind::IK_Direct) {
4026     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4027       TryListInitialization(S, Entity, Kind, InitList, *this);
4028       return;
4029     }
4030   }
4031 
4032   //     - If the destination type is a reference type, see 8.5.3.
4033   if (DestType->isReferenceType()) {
4034     // C++0x [dcl.init.ref]p1:
4035     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4036     //   (8.3.2), shall be initialized by an object, or function, of type T or
4037     //   by an object that can be converted into a T.
4038     // (Therefore, multiple arguments are not permitted.)
4039     if (NumArgs != 1)
4040       SetFailed(FK_TooManyInitsForReference);
4041     else
4042       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4043     return;
4044   }
4045 
4046   //     - If the initializer is (), the object is value-initialized.
4047   if (Kind.getKind() == InitializationKind::IK_Value ||
4048       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4049     TryValueInitialization(S, Entity, Kind, *this);
4050     return;
4051   }
4052 
4053   // Handle default initialization.
4054   if (Kind.getKind() == InitializationKind::IK_Default) {
4055     TryDefaultInitialization(S, Entity, Kind, *this);
4056     return;
4057   }
4058 
4059   //     - If the destination type is an array of characters, an array of
4060   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4061   //       initializer is a string literal, see 8.5.2.
4062   //     - Otherwise, if the destination type is an array, the program is
4063   //       ill-formed.
4064   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4065     if (Initializer && isa<VariableArrayType>(DestAT)) {
4066       SetFailed(FK_VariableLengthArrayHasInitializer);
4067       return;
4068     }
4069 
4070     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4071       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4072       return;
4073     }
4074 
4075     // Note: as an GNU C extension, we allow initialization of an
4076     // array from a compound literal that creates an array of the same
4077     // type, so long as the initializer has no side effects.
4078     if (!S.getLangOpts().CPlusPlus && Initializer &&
4079         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4080         Initializer->getType()->isArrayType()) {
4081       const ArrayType *SourceAT
4082         = Context.getAsArrayType(Initializer->getType());
4083       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4084         SetFailed(FK_ArrayTypeMismatch);
4085       else if (Initializer->HasSideEffects(S.Context))
4086         SetFailed(FK_NonConstantArrayInit);
4087       else {
4088         AddArrayInitStep(DestType);
4089       }
4090     }
4091     // Note: as a GNU C++ extension, we allow list-initialization of a
4092     // class member of array type from a parenthesized initializer list.
4093     else if (S.getLangOpts().CPlusPlus &&
4094              Entity.getKind() == InitializedEntity::EK_Member &&
4095              Initializer && isa<InitListExpr>(Initializer)) {
4096       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4097                             *this);
4098       AddParenthesizedArrayInitStep(DestType);
4099     } else if (DestAT->getElementType()->isAnyCharacterType())
4100       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4101     else
4102       SetFailed(FK_ArrayNeedsInitList);
4103 
4104     return;
4105   }
4106 
4107   // Determine whether we should consider writeback conversions for
4108   // Objective-C ARC.
4109   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4110     Entity.getKind() == InitializedEntity::EK_Parameter;
4111 
4112   // We're at the end of the line for C: it's either a write-back conversion
4113   // or it's a C assignment. There's no need to check anything else.
4114   if (!S.getLangOpts().CPlusPlus) {
4115     // If allowed, check whether this is an Objective-C writeback conversion.
4116     if (allowObjCWritebackConversion &&
4117         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4118       return;
4119     }
4120 
4121     // Handle initialization in C
4122     AddCAssignmentStep(DestType);
4123     MaybeProduceObjCObject(S, *this, Entity);
4124     return;
4125   }
4126 
4127   assert(S.getLangOpts().CPlusPlus);
4128 
4129   //     - If the destination type is a (possibly cv-qualified) class type:
4130   if (DestType->isRecordType()) {
4131     //     - If the initialization is direct-initialization, or if it is
4132     //       copy-initialization where the cv-unqualified version of the
4133     //       source type is the same class as, or a derived class of, the
4134     //       class of the destination, constructors are considered. [...]
4135     if (Kind.getKind() == InitializationKind::IK_Direct ||
4136         (Kind.getKind() == InitializationKind::IK_Copy &&
4137          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4138           S.IsDerivedFrom(SourceType, DestType))))
4139       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4140                                    Entity.getType(), *this);
4141     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4142     //       user-defined conversion sequences that can convert from the source
4143     //       type to the destination type or (when a conversion function is
4144     //       used) to a derived class thereof are enumerated as described in
4145     //       13.3.1.4, and the best one is chosen through overload resolution
4146     //       (13.3).
4147     else
4148       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4149     return;
4150   }
4151 
4152   if (NumArgs > 1) {
4153     SetFailed(FK_TooManyInitsForScalar);
4154     return;
4155   }
4156   assert(NumArgs == 1 && "Zero-argument case handled above");
4157 
4158   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4159   //      type, conversion functions are considered.
4160   if (!SourceType.isNull() && SourceType->isRecordType()) {
4161     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4162     MaybeProduceObjCObject(S, *this, Entity);
4163     return;
4164   }
4165 
4166   //    - Otherwise, the initial value of the object being initialized is the
4167   //      (possibly converted) value of the initializer expression. Standard
4168   //      conversions (Clause 4) will be used, if necessary, to convert the
4169   //      initializer expression to the cv-unqualified version of the
4170   //      destination type; no user-defined conversions are considered.
4171 
4172   ImplicitConversionSequence ICS
4173     = S.TryImplicitConversion(Initializer, Entity.getType(),
4174                               /*SuppressUserConversions*/true,
4175                               /*AllowExplicitConversions*/ false,
4176                               /*InOverloadResolution*/ false,
4177                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4178                               allowObjCWritebackConversion);
4179 
4180   if (ICS.isStandard() &&
4181       ICS.Standard.Second == ICK_Writeback_Conversion) {
4182     // Objective-C ARC writeback conversion.
4183 
4184     // We should copy unless we're passing to an argument explicitly
4185     // marked 'out'.
4186     bool ShouldCopy = true;
4187     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4188       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4189 
4190     // If there was an lvalue adjustment, add it as a separate conversion.
4191     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4192         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4193       ImplicitConversionSequence LvalueICS;
4194       LvalueICS.setStandard();
4195       LvalueICS.Standard.setAsIdentityConversion();
4196       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4197       LvalueICS.Standard.First = ICS.Standard.First;
4198       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4199     }
4200 
4201     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4202   } else if (ICS.isBad()) {
4203     DeclAccessPair dap;
4204     if (Initializer->getType() == Context.OverloadTy &&
4205           !S.ResolveAddressOfOverloadedFunction(Initializer
4206                       , DestType, false, dap))
4207       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4208     else
4209       SetFailed(InitializationSequence::FK_ConversionFailed);
4210   } else {
4211     AddConversionSequenceStep(ICS, Entity.getType());
4212 
4213     MaybeProduceObjCObject(S, *this, Entity);
4214   }
4215 }
4216 
4217 InitializationSequence::~InitializationSequence() {
4218   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4219                                           StepEnd = Steps.end();
4220        Step != StepEnd; ++Step)
4221     Step->Destroy();
4222 }
4223 
4224 //===----------------------------------------------------------------------===//
4225 // Perform initialization
4226 //===----------------------------------------------------------------------===//
4227 static Sema::AssignmentAction
4228 getAssignmentAction(const InitializedEntity &Entity) {
4229   switch(Entity.getKind()) {
4230   case InitializedEntity::EK_Variable:
4231   case InitializedEntity::EK_New:
4232   case InitializedEntity::EK_Exception:
4233   case InitializedEntity::EK_Base:
4234   case InitializedEntity::EK_Delegating:
4235     return Sema::AA_Initializing;
4236 
4237   case InitializedEntity::EK_Parameter:
4238     if (Entity.getDecl() &&
4239         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4240       return Sema::AA_Sending;
4241 
4242     return Sema::AA_Passing;
4243 
4244   case InitializedEntity::EK_Result:
4245     return Sema::AA_Returning;
4246 
4247   case InitializedEntity::EK_Temporary:
4248     // FIXME: Can we tell apart casting vs. converting?
4249     return Sema::AA_Casting;
4250 
4251   case InitializedEntity::EK_Member:
4252   case InitializedEntity::EK_ArrayElement:
4253   case InitializedEntity::EK_VectorElement:
4254   case InitializedEntity::EK_ComplexElement:
4255   case InitializedEntity::EK_BlockElement:
4256   case InitializedEntity::EK_LambdaCapture:
4257     return Sema::AA_Initializing;
4258   }
4259 
4260   llvm_unreachable("Invalid EntityKind!");
4261 }
4262 
4263 /// \brief Whether we should binding a created object as a temporary when
4264 /// initializing the given entity.
4265 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4266   switch (Entity.getKind()) {
4267   case InitializedEntity::EK_ArrayElement:
4268   case InitializedEntity::EK_Member:
4269   case InitializedEntity::EK_Result:
4270   case InitializedEntity::EK_New:
4271   case InitializedEntity::EK_Variable:
4272   case InitializedEntity::EK_Base:
4273   case InitializedEntity::EK_Delegating:
4274   case InitializedEntity::EK_VectorElement:
4275   case InitializedEntity::EK_ComplexElement:
4276   case InitializedEntity::EK_Exception:
4277   case InitializedEntity::EK_BlockElement:
4278   case InitializedEntity::EK_LambdaCapture:
4279     return false;
4280 
4281   case InitializedEntity::EK_Parameter:
4282   case InitializedEntity::EK_Temporary:
4283     return true;
4284   }
4285 
4286   llvm_unreachable("missed an InitializedEntity kind?");
4287 }
4288 
4289 /// \brief Whether the given entity, when initialized with an object
4290 /// created for that initialization, requires destruction.
4291 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4292   switch (Entity.getKind()) {
4293     case InitializedEntity::EK_Member:
4294     case InitializedEntity::EK_Result:
4295     case InitializedEntity::EK_New:
4296     case InitializedEntity::EK_Base:
4297     case InitializedEntity::EK_Delegating:
4298     case InitializedEntity::EK_VectorElement:
4299     case InitializedEntity::EK_ComplexElement:
4300     case InitializedEntity::EK_BlockElement:
4301     case InitializedEntity::EK_LambdaCapture:
4302       return false;
4303 
4304     case InitializedEntity::EK_Variable:
4305     case InitializedEntity::EK_Parameter:
4306     case InitializedEntity::EK_Temporary:
4307     case InitializedEntity::EK_ArrayElement:
4308     case InitializedEntity::EK_Exception:
4309       return true;
4310   }
4311 
4312   llvm_unreachable("missed an InitializedEntity kind?");
4313 }
4314 
4315 /// \brief Look for copy and move constructors and constructor templates, for
4316 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4317 static void LookupCopyAndMoveConstructors(Sema &S,
4318                                           OverloadCandidateSet &CandidateSet,
4319                                           CXXRecordDecl *Class,
4320                                           Expr *CurInitExpr) {
4321   DeclContext::lookup_iterator Con, ConEnd;
4322   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4323        Con != ConEnd; ++Con) {
4324     CXXConstructorDecl *Constructor = 0;
4325 
4326     if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4327       // Handle copy/moveconstructors, only.
4328       if (!Constructor || Constructor->isInvalidDecl() ||
4329           !Constructor->isCopyOrMoveConstructor() ||
4330           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4331         continue;
4332 
4333       DeclAccessPair FoundDecl
4334         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4335       S.AddOverloadCandidate(Constructor, FoundDecl,
4336                              CurInitExpr, CandidateSet);
4337       continue;
4338     }
4339 
4340     // Handle constructor templates.
4341     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4342     if (ConstructorTmpl->isInvalidDecl())
4343       continue;
4344 
4345     Constructor = cast<CXXConstructorDecl>(
4346                                          ConstructorTmpl->getTemplatedDecl());
4347     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4348       continue;
4349 
4350     // FIXME: Do we need to limit this to copy-constructor-like
4351     // candidates?
4352     DeclAccessPair FoundDecl
4353       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4354     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4355                                    CurInitExpr, CandidateSet, true);
4356   }
4357 }
4358 
4359 /// \brief Get the location at which initialization diagnostics should appear.
4360 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4361                                            Expr *Initializer) {
4362   switch (Entity.getKind()) {
4363   case InitializedEntity::EK_Result:
4364     return Entity.getReturnLoc();
4365 
4366   case InitializedEntity::EK_Exception:
4367     return Entity.getThrowLoc();
4368 
4369   case InitializedEntity::EK_Variable:
4370     return Entity.getDecl()->getLocation();
4371 
4372   case InitializedEntity::EK_LambdaCapture:
4373     return Entity.getCaptureLoc();
4374 
4375   case InitializedEntity::EK_ArrayElement:
4376   case InitializedEntity::EK_Member:
4377   case InitializedEntity::EK_Parameter:
4378   case InitializedEntity::EK_Temporary:
4379   case InitializedEntity::EK_New:
4380   case InitializedEntity::EK_Base:
4381   case InitializedEntity::EK_Delegating:
4382   case InitializedEntity::EK_VectorElement:
4383   case InitializedEntity::EK_ComplexElement:
4384   case InitializedEntity::EK_BlockElement:
4385     return Initializer->getLocStart();
4386   }
4387   llvm_unreachable("missed an InitializedEntity kind?");
4388 }
4389 
4390 /// \brief Make a (potentially elidable) temporary copy of the object
4391 /// provided by the given initializer by calling the appropriate copy
4392 /// constructor.
4393 ///
4394 /// \param S The Sema object used for type-checking.
4395 ///
4396 /// \param T The type of the temporary object, which must either be
4397 /// the type of the initializer expression or a superclass thereof.
4398 ///
4399 /// \param Entity The entity being initialized.
4400 ///
4401 /// \param CurInit The initializer expression.
4402 ///
4403 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4404 /// is permitted in C++03 (but not C++0x) when binding a reference to
4405 /// an rvalue.
4406 ///
4407 /// \returns An expression that copies the initializer expression into
4408 /// a temporary object, or an error expression if a copy could not be
4409 /// created.
4410 static ExprResult CopyObject(Sema &S,
4411                              QualType T,
4412                              const InitializedEntity &Entity,
4413                              ExprResult CurInit,
4414                              bool IsExtraneousCopy) {
4415   // Determine which class type we're copying to.
4416   Expr *CurInitExpr = (Expr *)CurInit.get();
4417   CXXRecordDecl *Class = 0;
4418   if (const RecordType *Record = T->getAs<RecordType>())
4419     Class = cast<CXXRecordDecl>(Record->getDecl());
4420   if (!Class)
4421     return CurInit;
4422 
4423   // C++0x [class.copy]p32:
4424   //   When certain criteria are met, an implementation is allowed to
4425   //   omit the copy/move construction of a class object, even if the
4426   //   copy/move constructor and/or destructor for the object have
4427   //   side effects. [...]
4428   //     - when a temporary class object that has not been bound to a
4429   //       reference (12.2) would be copied/moved to a class object
4430   //       with the same cv-unqualified type, the copy/move operation
4431   //       can be omitted by constructing the temporary object
4432   //       directly into the target of the omitted copy/move
4433   //
4434   // Note that the other three bullets are handled elsewhere. Copy
4435   // elision for return statements and throw expressions are handled as part
4436   // of constructor initialization, while copy elision for exception handlers
4437   // is handled by the run-time.
4438   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4439   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4440 
4441   // Make sure that the type we are copying is complete.
4442   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4443     return CurInit;
4444 
4445   // Perform overload resolution using the class's copy/move constructors.
4446   // Only consider constructors and constructor templates. Per
4447   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4448   // is direct-initialization.
4449   OverloadCandidateSet CandidateSet(Loc);
4450   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4451 
4452   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4453 
4454   OverloadCandidateSet::iterator Best;
4455   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4456   case OR_Success:
4457     break;
4458 
4459   case OR_No_Viable_Function:
4460     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4461            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4462            : diag::err_temp_copy_no_viable)
4463       << (int)Entity.getKind() << CurInitExpr->getType()
4464       << CurInitExpr->getSourceRange();
4465     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4466     if (!IsExtraneousCopy || S.isSFINAEContext())
4467       return ExprError();
4468     return CurInit;
4469 
4470   case OR_Ambiguous:
4471     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4472       << (int)Entity.getKind() << CurInitExpr->getType()
4473       << CurInitExpr->getSourceRange();
4474     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4475     return ExprError();
4476 
4477   case OR_Deleted:
4478     S.Diag(Loc, diag::err_temp_copy_deleted)
4479       << (int)Entity.getKind() << CurInitExpr->getType()
4480       << CurInitExpr->getSourceRange();
4481     S.NoteDeletedFunction(Best->Function);
4482     return ExprError();
4483   }
4484 
4485   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4486   SmallVector<Expr*, 8> ConstructorArgs;
4487   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4488 
4489   S.CheckConstructorAccess(Loc, Constructor, Entity,
4490                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4491 
4492   if (IsExtraneousCopy) {
4493     // If this is a totally extraneous copy for C++03 reference
4494     // binding purposes, just return the original initialization
4495     // expression. We don't generate an (elided) copy operation here
4496     // because doing so would require us to pass down a flag to avoid
4497     // infinite recursion, where each step adds another extraneous,
4498     // elidable copy.
4499 
4500     // Instantiate the default arguments of any extra parameters in
4501     // the selected copy constructor, as if we were going to create a
4502     // proper call to the copy constructor.
4503     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4504       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4505       if (S.RequireCompleteType(Loc, Parm->getType(),
4506                                 diag::err_call_incomplete_argument))
4507         break;
4508 
4509       // Build the default argument expression; we don't actually care
4510       // if this succeeds or not, because this routine will complain
4511       // if there was a problem.
4512       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4513     }
4514 
4515     return S.Owned(CurInitExpr);
4516   }
4517 
4518   S.MarkFunctionReferenced(Loc, Constructor);
4519 
4520   // Determine the arguments required to actually perform the
4521   // constructor call (we might have derived-to-base conversions, or
4522   // the copy constructor may have default arguments).
4523   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4524                                 Loc, ConstructorArgs))
4525     return ExprError();
4526 
4527   // Actually perform the constructor call.
4528   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4529                                     ConstructorArgs,
4530                                     HadMultipleCandidates,
4531                                     /*ZeroInit*/ false,
4532                                     CXXConstructExpr::CK_Complete,
4533                                     SourceRange());
4534 
4535   // If we're supposed to bind temporaries, do so.
4536   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4537     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4538   return CurInit;
4539 }
4540 
4541 /// \brief Check whether elidable copy construction for binding a reference to
4542 /// a temporary would have succeeded if we were building in C++98 mode, for
4543 /// -Wc++98-compat.
4544 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4545                                            const InitializedEntity &Entity,
4546                                            Expr *CurInitExpr) {
4547   assert(S.getLangOpts().CPlusPlus0x);
4548 
4549   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4550   if (!Record)
4551     return;
4552 
4553   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4554   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4555         == DiagnosticsEngine::Ignored)
4556     return;
4557 
4558   // Find constructors which would have been considered.
4559   OverloadCandidateSet CandidateSet(Loc);
4560   LookupCopyAndMoveConstructors(
4561       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4562 
4563   // Perform overload resolution.
4564   OverloadCandidateSet::iterator Best;
4565   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4566 
4567   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4568     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4569     << CurInitExpr->getSourceRange();
4570 
4571   switch (OR) {
4572   case OR_Success:
4573     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4574                              Entity, Best->FoundDecl.getAccess(), Diag);
4575     // FIXME: Check default arguments as far as that's possible.
4576     break;
4577 
4578   case OR_No_Viable_Function:
4579     S.Diag(Loc, Diag);
4580     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4581     break;
4582 
4583   case OR_Ambiguous:
4584     S.Diag(Loc, Diag);
4585     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4586     break;
4587 
4588   case OR_Deleted:
4589     S.Diag(Loc, Diag);
4590     S.NoteDeletedFunction(Best->Function);
4591     break;
4592   }
4593 }
4594 
4595 void InitializationSequence::PrintInitLocationNote(Sema &S,
4596                                               const InitializedEntity &Entity) {
4597   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4598     if (Entity.getDecl()->getLocation().isInvalid())
4599       return;
4600 
4601     if (Entity.getDecl()->getDeclName())
4602       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4603         << Entity.getDecl()->getDeclName();
4604     else
4605       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4606   }
4607 }
4608 
4609 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4610   return s.Kind == InitializationSequence::SK_BindReference ||
4611          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4612 }
4613 
4614 static ExprResult
4615 PerformConstructorInitialization(Sema &S,
4616                                  const InitializedEntity &Entity,
4617                                  const InitializationKind &Kind,
4618                                  MultiExprArg Args,
4619                                  const InitializationSequence::Step& Step,
4620                                  bool &ConstructorInitRequiresZeroInit) {
4621   unsigned NumArgs = Args.size();
4622   CXXConstructorDecl *Constructor
4623     = cast<CXXConstructorDecl>(Step.Function.Function);
4624   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4625 
4626   // Build a call to the selected constructor.
4627   SmallVector<Expr*, 8> ConstructorArgs;
4628   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4629                          ? Kind.getEqualLoc()
4630                          : Kind.getLocation();
4631 
4632   if (Kind.getKind() == InitializationKind::IK_Default) {
4633     // Force even a trivial, implicit default constructor to be
4634     // semantically checked. We do this explicitly because we don't build
4635     // the definition for completely trivial constructors.
4636     assert(Constructor->getParent() && "No parent class for constructor.");
4637     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4638         Constructor->isTrivial() && !Constructor->isUsed(false))
4639       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4640   }
4641 
4642   ExprResult CurInit = S.Owned((Expr *)0);
4643 
4644   // C++ [over.match.copy]p1:
4645   //   - When initializing a temporary to be bound to the first parameter
4646   //     of a constructor that takes a reference to possibly cv-qualified
4647   //     T as its first argument, called with a single argument in the
4648   //     context of direct-initialization, explicit conversion functions
4649   //     are also considered.
4650   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4651                            Args.size() == 1 &&
4652                            Constructor->isCopyOrMoveConstructor();
4653 
4654   // Determine the arguments required to actually perform the constructor
4655   // call.
4656   if (S.CompleteConstructorCall(Constructor, Args,
4657                                 Loc, ConstructorArgs,
4658                                 AllowExplicitConv))
4659     return ExprError();
4660 
4661 
4662   if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4663       (Kind.getKind() == InitializationKind::IK_DirectList ||
4664        (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4665         (Kind.getKind() == InitializationKind::IK_Direct ||
4666          Kind.getKind() == InitializationKind::IK_Value)))) {
4667     // An explicitly-constructed temporary, e.g., X(1, 2).
4668     S.MarkFunctionReferenced(Loc, Constructor);
4669     S.DiagnoseUseOfDecl(Constructor, Loc);
4670 
4671     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4672     if (!TSInfo)
4673       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4674     SourceRange ParenRange;
4675     if (Kind.getKind() != InitializationKind::IK_DirectList)
4676       ParenRange = Kind.getParenRange();
4677 
4678     CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4679                                                              Constructor,
4680                                                              TSInfo,
4681                                                              ConstructorArgs,
4682                                                              ParenRange,
4683                                                      HadMultipleCandidates,
4684                                          ConstructorInitRequiresZeroInit));
4685   } else {
4686     CXXConstructExpr::ConstructionKind ConstructKind =
4687       CXXConstructExpr::CK_Complete;
4688 
4689     if (Entity.getKind() == InitializedEntity::EK_Base) {
4690       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4691         CXXConstructExpr::CK_VirtualBase :
4692         CXXConstructExpr::CK_NonVirtualBase;
4693     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4694       ConstructKind = CXXConstructExpr::CK_Delegating;
4695     }
4696 
4697     // Only get the parenthesis range if it is a direct construction.
4698     SourceRange parenRange =
4699         Kind.getKind() == InitializationKind::IK_Direct ?
4700         Kind.getParenRange() : SourceRange();
4701 
4702     // If the entity allows NRVO, mark the construction as elidable
4703     // unconditionally.
4704     if (Entity.allowsNRVO())
4705       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4706                                         Constructor, /*Elidable=*/true,
4707                                         ConstructorArgs,
4708                                         HadMultipleCandidates,
4709                                         ConstructorInitRequiresZeroInit,
4710                                         ConstructKind,
4711                                         parenRange);
4712     else
4713       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4714                                         Constructor,
4715                                         ConstructorArgs,
4716                                         HadMultipleCandidates,
4717                                         ConstructorInitRequiresZeroInit,
4718                                         ConstructKind,
4719                                         parenRange);
4720   }
4721   if (CurInit.isInvalid())
4722     return ExprError();
4723 
4724   // Only check access if all of that succeeded.
4725   S.CheckConstructorAccess(Loc, Constructor, Entity,
4726                            Step.Function.FoundDecl.getAccess());
4727   S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4728 
4729   if (shouldBindAsTemporary(Entity))
4730     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4731 
4732   return CurInit;
4733 }
4734 
4735 /// Determine whether the specified InitializedEntity definitely has a lifetime
4736 /// longer than the current full-expression. Conservatively returns false if
4737 /// it's unclear.
4738 static bool
4739 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4740   const InitializedEntity *Top = &Entity;
4741   while (Top->getParent())
4742     Top = Top->getParent();
4743 
4744   switch (Top->getKind()) {
4745   case InitializedEntity::EK_Variable:
4746   case InitializedEntity::EK_Result:
4747   case InitializedEntity::EK_Exception:
4748   case InitializedEntity::EK_Member:
4749   case InitializedEntity::EK_New:
4750   case InitializedEntity::EK_Base:
4751   case InitializedEntity::EK_Delegating:
4752     return true;
4753 
4754   case InitializedEntity::EK_ArrayElement:
4755   case InitializedEntity::EK_VectorElement:
4756   case InitializedEntity::EK_BlockElement:
4757   case InitializedEntity::EK_ComplexElement:
4758     // Could not determine what the full initialization is. Assume it might not
4759     // outlive the full-expression.
4760     return false;
4761 
4762   case InitializedEntity::EK_Parameter:
4763   case InitializedEntity::EK_Temporary:
4764   case InitializedEntity::EK_LambdaCapture:
4765     // The entity being initialized might not outlive the full-expression.
4766     return false;
4767   }
4768 
4769   llvm_unreachable("unknown entity kind");
4770 }
4771 
4772 ExprResult
4773 InitializationSequence::Perform(Sema &S,
4774                                 const InitializedEntity &Entity,
4775                                 const InitializationKind &Kind,
4776                                 MultiExprArg Args,
4777                                 QualType *ResultType) {
4778   if (Failed()) {
4779     unsigned NumArgs = Args.size();
4780     Diagnose(S, Entity, Kind, Args.data(), NumArgs);
4781     return ExprError();
4782   }
4783 
4784   if (getKind() == DependentSequence) {
4785     // If the declaration is a non-dependent, incomplete array type
4786     // that has an initializer, then its type will be completed once
4787     // the initializer is instantiated.
4788     if (ResultType && !Entity.getType()->isDependentType() &&
4789         Args.size() == 1) {
4790       QualType DeclType = Entity.getType();
4791       if (const IncompleteArrayType *ArrayT
4792                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4793         // FIXME: We don't currently have the ability to accurately
4794         // compute the length of an initializer list without
4795         // performing full type-checking of the initializer list
4796         // (since we have to determine where braces are implicitly
4797         // introduced and such).  So, we fall back to making the array
4798         // type a dependently-sized array type with no specified
4799         // bound.
4800         if (isa<InitListExpr>((Expr *)Args[0])) {
4801           SourceRange Brackets;
4802 
4803           // Scavange the location of the brackets from the entity, if we can.
4804           if (DeclaratorDecl *DD = Entity.getDecl()) {
4805             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4806               TypeLoc TL = TInfo->getTypeLoc();
4807               if (IncompleteArrayTypeLoc *ArrayLoc
4808                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4809               Brackets = ArrayLoc->getBracketsRange();
4810             }
4811           }
4812 
4813           *ResultType
4814             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4815                                                    /*NumElts=*/0,
4816                                                    ArrayT->getSizeModifier(),
4817                                        ArrayT->getIndexTypeCVRQualifiers(),
4818                                                    Brackets);
4819         }
4820 
4821       }
4822     }
4823     if (Kind.getKind() == InitializationKind::IK_Direct &&
4824         !Kind.isExplicitCast()) {
4825       // Rebuild the ParenListExpr.
4826       SourceRange ParenRange = Kind.getParenRange();
4827       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4828                                   Args);
4829     }
4830     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4831            Kind.isExplicitCast() ||
4832            Kind.getKind() == InitializationKind::IK_DirectList);
4833     return ExprResult(Args[0]);
4834   }
4835 
4836   // No steps means no initialization.
4837   if (Steps.empty())
4838     return S.Owned((Expr *)0);
4839 
4840   if (S.getLangOpts().CPlusPlus0x && Entity.getType()->isReferenceType() &&
4841       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4842       Entity.getKind() != InitializedEntity::EK_Parameter) {
4843     // Produce a C++98 compatibility warning if we are initializing a reference
4844     // from an initializer list. For parameters, we produce a better warning
4845     // elsewhere.
4846     Expr *Init = Args[0];
4847     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4848       << Init->getSourceRange();
4849   }
4850 
4851   // Diagnose cases where we initialize a pointer to an array temporary, and the
4852   // pointer obviously outlives the temporary.
4853   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
4854       Entity.getType()->isPointerType() &&
4855       InitializedEntityOutlivesFullExpression(Entity)) {
4856     Expr *Init = Args[0];
4857     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4858     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4859       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4860         << Init->getSourceRange();
4861   }
4862 
4863   QualType DestType = Entity.getType().getNonReferenceType();
4864   // FIXME: Ugly hack around the fact that Entity.getType() is not
4865   // the same as Entity.getDecl()->getType() in cases involving type merging,
4866   //  and we want latter when it makes sense.
4867   if (ResultType)
4868     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4869                                      Entity.getType();
4870 
4871   ExprResult CurInit = S.Owned((Expr *)0);
4872 
4873   // For initialization steps that start with a single initializer,
4874   // grab the only argument out the Args and place it into the "current"
4875   // initializer.
4876   switch (Steps.front().Kind) {
4877   case SK_ResolveAddressOfOverloadedFunction:
4878   case SK_CastDerivedToBaseRValue:
4879   case SK_CastDerivedToBaseXValue:
4880   case SK_CastDerivedToBaseLValue:
4881   case SK_BindReference:
4882   case SK_BindReferenceToTemporary:
4883   case SK_ExtraneousCopyToTemporary:
4884   case SK_UserConversion:
4885   case SK_QualificationConversionLValue:
4886   case SK_QualificationConversionXValue:
4887   case SK_QualificationConversionRValue:
4888   case SK_ConversionSequence:
4889   case SK_ListInitialization:
4890   case SK_UnwrapInitList:
4891   case SK_RewrapInitList:
4892   case SK_CAssignment:
4893   case SK_StringInit:
4894   case SK_ObjCObjectConversion:
4895   case SK_ArrayInit:
4896   case SK_ParenthesizedArrayInit:
4897   case SK_PassByIndirectCopyRestore:
4898   case SK_PassByIndirectRestore:
4899   case SK_ProduceObjCObject:
4900   case SK_StdInitializerList: {
4901     assert(Args.size() == 1);
4902     CurInit = Args[0];
4903     if (!CurInit.get()) return ExprError();
4904     break;
4905   }
4906 
4907   case SK_ConstructorInitialization:
4908   case SK_ListConstructorCall:
4909   case SK_ZeroInitialization:
4910     break;
4911   }
4912 
4913   // Walk through the computed steps for the initialization sequence,
4914   // performing the specified conversions along the way.
4915   bool ConstructorInitRequiresZeroInit = false;
4916   for (step_iterator Step = step_begin(), StepEnd = step_end();
4917        Step != StepEnd; ++Step) {
4918     if (CurInit.isInvalid())
4919       return ExprError();
4920 
4921     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4922 
4923     switch (Step->Kind) {
4924     case SK_ResolveAddressOfOverloadedFunction:
4925       // Overload resolution determined which function invoke; update the
4926       // initializer to reflect that choice.
4927       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4928       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4929       CurInit = S.FixOverloadedFunctionReference(CurInit,
4930                                                  Step->Function.FoundDecl,
4931                                                  Step->Function.Function);
4932       break;
4933 
4934     case SK_CastDerivedToBaseRValue:
4935     case SK_CastDerivedToBaseXValue:
4936     case SK_CastDerivedToBaseLValue: {
4937       // We have a derived-to-base cast that produces either an rvalue or an
4938       // lvalue. Perform that cast.
4939 
4940       CXXCastPath BasePath;
4941 
4942       // Casts to inaccessible base classes are allowed with C-style casts.
4943       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4944       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4945                                          CurInit.get()->getLocStart(),
4946                                          CurInit.get()->getSourceRange(),
4947                                          &BasePath, IgnoreBaseAccess))
4948         return ExprError();
4949 
4950       if (S.BasePathInvolvesVirtualBase(BasePath)) {
4951         QualType T = SourceType;
4952         if (const PointerType *Pointer = T->getAs<PointerType>())
4953           T = Pointer->getPointeeType();
4954         if (const RecordType *RecordTy = T->getAs<RecordType>())
4955           S.MarkVTableUsed(CurInit.get()->getLocStart(),
4956                            cast<CXXRecordDecl>(RecordTy->getDecl()));
4957       }
4958 
4959       ExprValueKind VK =
4960           Step->Kind == SK_CastDerivedToBaseLValue ?
4961               VK_LValue :
4962               (Step->Kind == SK_CastDerivedToBaseXValue ?
4963                    VK_XValue :
4964                    VK_RValue);
4965       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4966                                                  Step->Type,
4967                                                  CK_DerivedToBase,
4968                                                  CurInit.get(),
4969                                                  &BasePath, VK));
4970       break;
4971     }
4972 
4973     case SK_BindReference:
4974       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4975         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4976         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4977           << Entity.getType().isVolatileQualified()
4978           << BitField->getDeclName()
4979           << CurInit.get()->getSourceRange();
4980         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4981         return ExprError();
4982       }
4983 
4984       if (CurInit.get()->refersToVectorElement()) {
4985         // References cannot bind to vector elements.
4986         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4987           << Entity.getType().isVolatileQualified()
4988           << CurInit.get()->getSourceRange();
4989         PrintInitLocationNote(S, Entity);
4990         return ExprError();
4991       }
4992 
4993       // Reference binding does not have any corresponding ASTs.
4994 
4995       // Check exception specifications
4996       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4997         return ExprError();
4998 
4999       break;
5000 
5001     case SK_BindReferenceToTemporary:
5002       // Check exception specifications
5003       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5004         return ExprError();
5005 
5006       // Materialize the temporary into memory.
5007       CurInit = new (S.Context) MaterializeTemporaryExpr(
5008                                          Entity.getType().getNonReferenceType(),
5009                                                          CurInit.get(),
5010                                      Entity.getType()->isLValueReferenceType());
5011 
5012       // If we're binding to an Objective-C object that has lifetime, we
5013       // need cleanups.
5014       if (S.getLangOpts().ObjCAutoRefCount &&
5015           CurInit.get()->getType()->isObjCLifetimeType())
5016         S.ExprNeedsCleanups = true;
5017 
5018       break;
5019 
5020     case SK_ExtraneousCopyToTemporary:
5021       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5022                            /*IsExtraneousCopy=*/true);
5023       break;
5024 
5025     case SK_UserConversion: {
5026       // We have a user-defined conversion that invokes either a constructor
5027       // or a conversion function.
5028       CastKind CastKind;
5029       bool IsCopy = false;
5030       FunctionDecl *Fn = Step->Function.Function;
5031       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5032       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5033       bool CreatedObject = false;
5034       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5035         // Build a call to the selected constructor.
5036         SmallVector<Expr*, 8> ConstructorArgs;
5037         SourceLocation Loc = CurInit.get()->getLocStart();
5038         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5039 
5040         // Determine the arguments required to actually perform the constructor
5041         // call.
5042         Expr *Arg = CurInit.get();
5043         if (S.CompleteConstructorCall(Constructor,
5044                                       MultiExprArg(&Arg, 1),
5045                                       Loc, ConstructorArgs))
5046           return ExprError();
5047 
5048         // Build an expression that constructs a temporary.
5049         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5050                                           ConstructorArgs,
5051                                           HadMultipleCandidates,
5052                                           /*ZeroInit*/ false,
5053                                           CXXConstructExpr::CK_Complete,
5054                                           SourceRange());
5055         if (CurInit.isInvalid())
5056           return ExprError();
5057 
5058         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5059                                  FoundFn.getAccess());
5060         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5061 
5062         CastKind = CK_ConstructorConversion;
5063         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5064         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5065             S.IsDerivedFrom(SourceType, Class))
5066           IsCopy = true;
5067 
5068         CreatedObject = true;
5069       } else {
5070         // Build a call to the conversion function.
5071         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5072         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5073                                     FoundFn);
5074         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5075 
5076         // FIXME: Should we move this initialization into a separate
5077         // derived-to-base conversion? I believe the answer is "no", because
5078         // we don't want to turn off access control here for c-style casts.
5079         ExprResult CurInitExprRes =
5080           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5081                                                 FoundFn, Conversion);
5082         if(CurInitExprRes.isInvalid())
5083           return ExprError();
5084         CurInit = CurInitExprRes;
5085 
5086         // Build the actual call to the conversion function.
5087         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5088                                            HadMultipleCandidates);
5089         if (CurInit.isInvalid() || !CurInit.get())
5090           return ExprError();
5091 
5092         CastKind = CK_UserDefinedConversion;
5093 
5094         CreatedObject = Conversion->getResultType()->isRecordType();
5095       }
5096 
5097       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5098       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5099 
5100       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5101         QualType T = CurInit.get()->getType();
5102         if (const RecordType *Record = T->getAs<RecordType>()) {
5103           CXXDestructorDecl *Destructor
5104             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5105           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5106                                   S.PDiag(diag::err_access_dtor_temp) << T);
5107           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5108           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5109         }
5110       }
5111 
5112       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5113                                                  CurInit.get()->getType(),
5114                                                  CastKind, CurInit.get(), 0,
5115                                                 CurInit.get()->getValueKind()));
5116       if (MaybeBindToTemp)
5117         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5118       if (RequiresCopy)
5119         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5120                              CurInit, /*IsExtraneousCopy=*/false);
5121       break;
5122     }
5123 
5124     case SK_QualificationConversionLValue:
5125     case SK_QualificationConversionXValue:
5126     case SK_QualificationConversionRValue: {
5127       // Perform a qualification conversion; these can never go wrong.
5128       ExprValueKind VK =
5129           Step->Kind == SK_QualificationConversionLValue ?
5130               VK_LValue :
5131               (Step->Kind == SK_QualificationConversionXValue ?
5132                    VK_XValue :
5133                    VK_RValue);
5134       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5135       break;
5136     }
5137 
5138     case SK_ConversionSequence: {
5139       Sema::CheckedConversionKind CCK
5140         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5141         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5142         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5143         : Sema::CCK_ImplicitConversion;
5144       ExprResult CurInitExprRes =
5145         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5146                                     getAssignmentAction(Entity), CCK);
5147       if (CurInitExprRes.isInvalid())
5148         return ExprError();
5149       CurInit = CurInitExprRes;
5150       break;
5151     }
5152 
5153     case SK_ListInitialization: {
5154       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5155       // Hack: We must pass *ResultType if available in order to set the type
5156       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5157       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5158       // temporary, not a reference, so we should pass Ty.
5159       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5160       // Since this step is never used for a reference directly, we explicitly
5161       // unwrap references here and rewrap them afterwards.
5162       // We also need to create a InitializeTemporary entity for this.
5163       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5164       bool IsTemporary = Entity.getType()->isReferenceType();
5165       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5166       InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5167           InitList, Ty, /*VerifyOnly=*/false,
5168           Kind.getKind() != InitializationKind::IK_DirectList ||
5169             !S.getLangOpts().CPlusPlus0x);
5170       if (PerformInitList.HadError())
5171         return ExprError();
5172 
5173       if (ResultType) {
5174         if ((*ResultType)->isRValueReferenceType())
5175           Ty = S.Context.getRValueReferenceType(Ty);
5176         else if ((*ResultType)->isLValueReferenceType())
5177           Ty = S.Context.getLValueReferenceType(Ty,
5178             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5179         *ResultType = Ty;
5180       }
5181 
5182       InitListExpr *StructuredInitList =
5183           PerformInitList.getFullyStructuredList();
5184       CurInit.release();
5185       CurInit = S.Owned(StructuredInitList);
5186       break;
5187     }
5188 
5189     case SK_ListConstructorCall: {
5190       // When an initializer list is passed for a parameter of type "reference
5191       // to object", we don't get an EK_Temporary entity, but instead an
5192       // EK_Parameter entity with reference type.
5193       // FIXME: This is a hack. What we really should do is create a user
5194       // conversion step for this case, but this makes it considerably more
5195       // complicated. For now, this will do.
5196       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5197                                         Entity.getType().getNonReferenceType());
5198       bool UseTemporary = Entity.getType()->isReferenceType();
5199       assert(Args.size() == 1 && "expected a single argument for list init");
5200       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5201       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5202         << InitList->getSourceRange();
5203       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5204       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5205                                                                    Entity,
5206                                                  Kind, Arg, *Step,
5207                                                ConstructorInitRequiresZeroInit);
5208       break;
5209     }
5210 
5211     case SK_UnwrapInitList:
5212       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5213       break;
5214 
5215     case SK_RewrapInitList: {
5216       Expr *E = CurInit.take();
5217       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5218       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5219           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5220       ILE->setSyntacticForm(Syntactic);
5221       ILE->setType(E->getType());
5222       ILE->setValueKind(E->getValueKind());
5223       CurInit = S.Owned(ILE);
5224       break;
5225     }
5226 
5227     case SK_ConstructorInitialization: {
5228       // When an initializer list is passed for a parameter of type "reference
5229       // to object", we don't get an EK_Temporary entity, but instead an
5230       // EK_Parameter entity with reference type.
5231       // FIXME: This is a hack. What we really should do is create a user
5232       // conversion step for this case, but this makes it considerably more
5233       // complicated. For now, this will do.
5234       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5235                                         Entity.getType().getNonReferenceType());
5236       bool UseTemporary = Entity.getType()->isReferenceType();
5237       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5238                                                                  : Entity,
5239                                                  Kind, Args, *Step,
5240                                                ConstructorInitRequiresZeroInit);
5241       break;
5242     }
5243 
5244     case SK_ZeroInitialization: {
5245       step_iterator NextStep = Step;
5246       ++NextStep;
5247       if (NextStep != StepEnd &&
5248           (NextStep->Kind == SK_ConstructorInitialization ||
5249            NextStep->Kind == SK_ListConstructorCall)) {
5250         // The need for zero-initialization is recorded directly into
5251         // the call to the object's constructor within the next step.
5252         ConstructorInitRequiresZeroInit = true;
5253       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5254                  S.getLangOpts().CPlusPlus &&
5255                  !Kind.isImplicitValueInit()) {
5256         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5257         if (!TSInfo)
5258           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5259                                                     Kind.getRange().getBegin());
5260 
5261         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5262                               TSInfo->getType().getNonLValueExprType(S.Context),
5263                                                                  TSInfo,
5264                                                     Kind.getRange().getEnd()));
5265       } else {
5266         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5267       }
5268       break;
5269     }
5270 
5271     case SK_CAssignment: {
5272       QualType SourceType = CurInit.get()->getType();
5273       ExprResult Result = CurInit;
5274       Sema::AssignConvertType ConvTy =
5275         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5276       if (Result.isInvalid())
5277         return ExprError();
5278       CurInit = Result;
5279 
5280       // If this is a call, allow conversion to a transparent union.
5281       ExprResult CurInitExprRes = CurInit;
5282       if (ConvTy != Sema::Compatible &&
5283           Entity.getKind() == InitializedEntity::EK_Parameter &&
5284           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5285             == Sema::Compatible)
5286         ConvTy = Sema::Compatible;
5287       if (CurInitExprRes.isInvalid())
5288         return ExprError();
5289       CurInit = CurInitExprRes;
5290 
5291       bool Complained;
5292       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5293                                      Step->Type, SourceType,
5294                                      CurInit.get(),
5295                                      getAssignmentAction(Entity),
5296                                      &Complained)) {
5297         PrintInitLocationNote(S, Entity);
5298         return ExprError();
5299       } else if (Complained)
5300         PrintInitLocationNote(S, Entity);
5301       break;
5302     }
5303 
5304     case SK_StringInit: {
5305       QualType Ty = Step->Type;
5306       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5307                       S.Context.getAsArrayType(Ty), S);
5308       break;
5309     }
5310 
5311     case SK_ObjCObjectConversion:
5312       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5313                           CK_ObjCObjectLValueCast,
5314                           CurInit.get()->getValueKind());
5315       break;
5316 
5317     case SK_ArrayInit:
5318       // Okay: we checked everything before creating this step. Note that
5319       // this is a GNU extension.
5320       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5321         << Step->Type << CurInit.get()->getType()
5322         << CurInit.get()->getSourceRange();
5323 
5324       // If the destination type is an incomplete array type, update the
5325       // type accordingly.
5326       if (ResultType) {
5327         if (const IncompleteArrayType *IncompleteDest
5328                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5329           if (const ConstantArrayType *ConstantSource
5330                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5331             *ResultType = S.Context.getConstantArrayType(
5332                                              IncompleteDest->getElementType(),
5333                                              ConstantSource->getSize(),
5334                                              ArrayType::Normal, 0);
5335           }
5336         }
5337       }
5338       break;
5339 
5340     case SK_ParenthesizedArrayInit:
5341       // Okay: we checked everything before creating this step. Note that
5342       // this is a GNU extension.
5343       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5344         << CurInit.get()->getSourceRange();
5345       break;
5346 
5347     case SK_PassByIndirectCopyRestore:
5348     case SK_PassByIndirectRestore:
5349       checkIndirectCopyRestoreSource(S, CurInit.get());
5350       CurInit = S.Owned(new (S.Context)
5351                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5352                                 Step->Kind == SK_PassByIndirectCopyRestore));
5353       break;
5354 
5355     case SK_ProduceObjCObject:
5356       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5357                                                  CK_ARCProduceObject,
5358                                                  CurInit.take(), 0, VK_RValue));
5359       break;
5360 
5361     case SK_StdInitializerList: {
5362       QualType Dest = Step->Type;
5363       QualType E;
5364       bool Success = S.isStdInitializerList(Dest, &E);
5365       (void)Success;
5366       assert(Success && "Destination type changed?");
5367 
5368       // If the element type has a destructor, check it.
5369       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5370         if (!RD->hasIrrelevantDestructor()) {
5371           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5372             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5373             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5374                                     S.PDiag(diag::err_access_dtor_temp) << E);
5375             S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5376           }
5377         }
5378       }
5379 
5380       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5381       S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5382         << ILE->getSourceRange();
5383       unsigned NumInits = ILE->getNumInits();
5384       SmallVector<Expr*, 16> Converted(NumInits);
5385       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5386           S.Context.getConstantArrayType(E,
5387               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5388                           NumInits),
5389               ArrayType::Normal, 0));
5390       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5391           0, HiddenArray);
5392       for (unsigned i = 0; i < NumInits; ++i) {
5393         Element.setElementIndex(i);
5394         ExprResult Init = S.Owned(ILE->getInit(i));
5395         ExprResult Res = S.PerformCopyInitialization(Element,
5396                                                      Init.get()->getExprLoc(),
5397                                                      Init);
5398         assert(!Res.isInvalid() && "Result changed since try phase.");
5399         Converted[i] = Res.take();
5400       }
5401       InitListExpr *Semantic = new (S.Context)
5402           InitListExpr(S.Context, ILE->getLBraceLoc(),
5403                        Converted, ILE->getRBraceLoc());
5404       Semantic->setSyntacticForm(ILE);
5405       Semantic->setType(Dest);
5406       Semantic->setInitializesStdInitializerList();
5407       CurInit = S.Owned(Semantic);
5408       break;
5409     }
5410     }
5411   }
5412 
5413   // Diagnose non-fatal problems with the completed initialization.
5414   if (Entity.getKind() == InitializedEntity::EK_Member &&
5415       cast<FieldDecl>(Entity.getDecl())->isBitField())
5416     S.CheckBitFieldInitialization(Kind.getLocation(),
5417                                   cast<FieldDecl>(Entity.getDecl()),
5418                                   CurInit.get());
5419 
5420   return CurInit;
5421 }
5422 
5423 //===----------------------------------------------------------------------===//
5424 // Diagnose initialization failures
5425 //===----------------------------------------------------------------------===//
5426 bool InitializationSequence::Diagnose(Sema &S,
5427                                       const InitializedEntity &Entity,
5428                                       const InitializationKind &Kind,
5429                                       Expr **Args, unsigned NumArgs) {
5430   if (!Failed())
5431     return false;
5432 
5433   QualType DestType = Entity.getType();
5434   switch (Failure) {
5435   case FK_TooManyInitsForReference:
5436     // FIXME: Customize for the initialized entity?
5437     if (NumArgs == 0)
5438       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5439         << DestType.getNonReferenceType();
5440     else  // FIXME: diagnostic below could be better!
5441       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5442         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5443     break;
5444 
5445   case FK_ArrayNeedsInitList:
5446   case FK_ArrayNeedsInitListOrStringLiteral:
5447     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5448       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5449     break;
5450 
5451   case FK_ArrayTypeMismatch:
5452   case FK_NonConstantArrayInit:
5453     S.Diag(Kind.getLocation(),
5454            (Failure == FK_ArrayTypeMismatch
5455               ? diag::err_array_init_different_type
5456               : diag::err_array_init_non_constant_array))
5457       << DestType.getNonReferenceType()
5458       << Args[0]->getType()
5459       << Args[0]->getSourceRange();
5460     break;
5461 
5462   case FK_VariableLengthArrayHasInitializer:
5463     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5464       << Args[0]->getSourceRange();
5465     break;
5466 
5467   case FK_AddressOfOverloadFailed: {
5468     DeclAccessPair Found;
5469     S.ResolveAddressOfOverloadedFunction(Args[0],
5470                                          DestType.getNonReferenceType(),
5471                                          true,
5472                                          Found);
5473     break;
5474   }
5475 
5476   case FK_ReferenceInitOverloadFailed:
5477   case FK_UserConversionOverloadFailed:
5478     switch (FailedOverloadResult) {
5479     case OR_Ambiguous:
5480       if (Failure == FK_UserConversionOverloadFailed)
5481         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5482           << Args[0]->getType() << DestType
5483           << Args[0]->getSourceRange();
5484       else
5485         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5486           << DestType << Args[0]->getType()
5487           << Args[0]->getSourceRange();
5488 
5489       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5490                                         llvm::makeArrayRef(Args, NumArgs));
5491       break;
5492 
5493     case OR_No_Viable_Function:
5494       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5495         << Args[0]->getType() << DestType.getNonReferenceType()
5496         << Args[0]->getSourceRange();
5497       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5498                                         llvm::makeArrayRef(Args, NumArgs));
5499       break;
5500 
5501     case OR_Deleted: {
5502       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5503         << Args[0]->getType() << DestType.getNonReferenceType()
5504         << Args[0]->getSourceRange();
5505       OverloadCandidateSet::iterator Best;
5506       OverloadingResult Ovl
5507         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5508                                                 true);
5509       if (Ovl == OR_Deleted) {
5510         S.NoteDeletedFunction(Best->Function);
5511       } else {
5512         llvm_unreachable("Inconsistent overload resolution?");
5513       }
5514       break;
5515     }
5516 
5517     case OR_Success:
5518       llvm_unreachable("Conversion did not fail!");
5519     }
5520     break;
5521 
5522   case FK_NonConstLValueReferenceBindingToTemporary:
5523     if (isa<InitListExpr>(Args[0])) {
5524       S.Diag(Kind.getLocation(),
5525              diag::err_lvalue_reference_bind_to_initlist)
5526       << DestType.getNonReferenceType().isVolatileQualified()
5527       << DestType.getNonReferenceType()
5528       << Args[0]->getSourceRange();
5529       break;
5530     }
5531     // Intentional fallthrough
5532 
5533   case FK_NonConstLValueReferenceBindingToUnrelated:
5534     S.Diag(Kind.getLocation(),
5535            Failure == FK_NonConstLValueReferenceBindingToTemporary
5536              ? diag::err_lvalue_reference_bind_to_temporary
5537              : diag::err_lvalue_reference_bind_to_unrelated)
5538       << DestType.getNonReferenceType().isVolatileQualified()
5539       << DestType.getNonReferenceType()
5540       << Args[0]->getType()
5541       << Args[0]->getSourceRange();
5542     break;
5543 
5544   case FK_RValueReferenceBindingToLValue:
5545     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5546       << DestType.getNonReferenceType() << Args[0]->getType()
5547       << Args[0]->getSourceRange();
5548     break;
5549 
5550   case FK_ReferenceInitDropsQualifiers:
5551     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5552       << DestType.getNonReferenceType()
5553       << Args[0]->getType()
5554       << Args[0]->getSourceRange();
5555     break;
5556 
5557   case FK_ReferenceInitFailed:
5558     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5559       << DestType.getNonReferenceType()
5560       << Args[0]->isLValue()
5561       << Args[0]->getType()
5562       << Args[0]->getSourceRange();
5563     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5564         Args[0]->getType()->isObjCObjectPointerType())
5565       S.EmitRelatedResultTypeNote(Args[0]);
5566     break;
5567 
5568   case FK_ConversionFailed: {
5569     QualType FromType = Args[0]->getType();
5570     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5571       << (int)Entity.getKind()
5572       << DestType
5573       << Args[0]->isLValue()
5574       << FromType
5575       << Args[0]->getSourceRange();
5576     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5577     S.Diag(Kind.getLocation(), PDiag);
5578     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5579         Args[0]->getType()->isObjCObjectPointerType())
5580       S.EmitRelatedResultTypeNote(Args[0]);
5581     break;
5582   }
5583 
5584   case FK_ConversionFromPropertyFailed:
5585     // No-op. This error has already been reported.
5586     break;
5587 
5588   case FK_TooManyInitsForScalar: {
5589     SourceRange R;
5590 
5591     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5592       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5593                       InitList->getLocEnd());
5594     else
5595       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5596 
5597     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5598     if (Kind.isCStyleOrFunctionalCast())
5599       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5600         << R;
5601     else
5602       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5603         << /*scalar=*/2 << R;
5604     break;
5605   }
5606 
5607   case FK_ReferenceBindingToInitList:
5608     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5609       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5610     break;
5611 
5612   case FK_InitListBadDestinationType:
5613     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5614       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5615     break;
5616 
5617   case FK_ListConstructorOverloadFailed:
5618   case FK_ConstructorOverloadFailed: {
5619     SourceRange ArgsRange;
5620     if (NumArgs)
5621       ArgsRange = SourceRange(Args[0]->getLocStart(),
5622                               Args[NumArgs - 1]->getLocEnd());
5623 
5624     if (Failure == FK_ListConstructorOverloadFailed) {
5625       assert(NumArgs == 1 && "List construction from other than 1 argument.");
5626       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5627       Args = InitList->getInits();
5628       NumArgs = InitList->getNumInits();
5629     }
5630 
5631     // FIXME: Using "DestType" for the entity we're printing is probably
5632     // bad.
5633     switch (FailedOverloadResult) {
5634       case OR_Ambiguous:
5635         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5636           << DestType << ArgsRange;
5637         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5638                                           llvm::makeArrayRef(Args, NumArgs));
5639         break;
5640 
5641       case OR_No_Viable_Function:
5642         if (Kind.getKind() == InitializationKind::IK_Default &&
5643             (Entity.getKind() == InitializedEntity::EK_Base ||
5644              Entity.getKind() == InitializedEntity::EK_Member) &&
5645             isa<CXXConstructorDecl>(S.CurContext)) {
5646           // This is implicit default initialization of a member or
5647           // base within a constructor. If no viable function was
5648           // found, notify the user that she needs to explicitly
5649           // initialize this base/member.
5650           CXXConstructorDecl *Constructor
5651             = cast<CXXConstructorDecl>(S.CurContext);
5652           if (Entity.getKind() == InitializedEntity::EK_Base) {
5653             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5654               << Constructor->isImplicit()
5655               << S.Context.getTypeDeclType(Constructor->getParent())
5656               << /*base=*/0
5657               << Entity.getType();
5658 
5659             RecordDecl *BaseDecl
5660               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5661                                                                   ->getDecl();
5662             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5663               << S.Context.getTagDeclType(BaseDecl);
5664           } else {
5665             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5666               << Constructor->isImplicit()
5667               << S.Context.getTypeDeclType(Constructor->getParent())
5668               << /*member=*/1
5669               << Entity.getName();
5670             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5671 
5672             if (const RecordType *Record
5673                                  = Entity.getType()->getAs<RecordType>())
5674               S.Diag(Record->getDecl()->getLocation(),
5675                      diag::note_previous_decl)
5676                 << S.Context.getTagDeclType(Record->getDecl());
5677           }
5678           break;
5679         }
5680 
5681         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5682           << DestType << ArgsRange;
5683         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5684                                           llvm::makeArrayRef(Args, NumArgs));
5685         break;
5686 
5687       case OR_Deleted: {
5688         OverloadCandidateSet::iterator Best;
5689         OverloadingResult Ovl
5690           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5691         if (Ovl != OR_Deleted) {
5692           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5693             << true << DestType << ArgsRange;
5694           llvm_unreachable("Inconsistent overload resolution?");
5695           break;
5696         }
5697 
5698         // If this is a defaulted or implicitly-declared function, then
5699         // it was implicitly deleted. Make it clear that the deletion was
5700         // implicit.
5701         if (S.isImplicitlyDeleted(Best->Function))
5702           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5703             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5704             << DestType << ArgsRange;
5705         else
5706           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5707             << true << DestType << ArgsRange;
5708 
5709         S.NoteDeletedFunction(Best->Function);
5710         break;
5711       }
5712 
5713       case OR_Success:
5714         llvm_unreachable("Conversion did not fail!");
5715     }
5716   }
5717   break;
5718 
5719   case FK_DefaultInitOfConst:
5720     if (Entity.getKind() == InitializedEntity::EK_Member &&
5721         isa<CXXConstructorDecl>(S.CurContext)) {
5722       // This is implicit default-initialization of a const member in
5723       // a constructor. Complain that it needs to be explicitly
5724       // initialized.
5725       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5726       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5727         << Constructor->isImplicit()
5728         << S.Context.getTypeDeclType(Constructor->getParent())
5729         << /*const=*/1
5730         << Entity.getName();
5731       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5732         << Entity.getName();
5733     } else {
5734       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5735         << DestType << (bool)DestType->getAs<RecordType>();
5736     }
5737     break;
5738 
5739   case FK_Incomplete:
5740     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5741                           diag::err_init_incomplete_type);
5742     break;
5743 
5744   case FK_ListInitializationFailed: {
5745     // Run the init list checker again to emit diagnostics.
5746     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5747     QualType DestType = Entity.getType();
5748     InitListChecker DiagnoseInitList(S, Entity, InitList,
5749             DestType, /*VerifyOnly=*/false,
5750             Kind.getKind() != InitializationKind::IK_DirectList ||
5751               !S.getLangOpts().CPlusPlus0x);
5752     assert(DiagnoseInitList.HadError() &&
5753            "Inconsistent init list check result.");
5754     break;
5755   }
5756 
5757   case FK_PlaceholderType: {
5758     // FIXME: Already diagnosed!
5759     break;
5760   }
5761 
5762   case FK_InitListElementCopyFailure: {
5763     // Try to perform all copies again.
5764     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5765     unsigned NumInits = InitList->getNumInits();
5766     QualType DestType = Entity.getType();
5767     QualType E;
5768     bool Success = S.isStdInitializerList(DestType, &E);
5769     (void)Success;
5770     assert(Success && "Where did the std::initializer_list go?");
5771     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5772         S.Context.getConstantArrayType(E,
5773             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5774                         NumInits),
5775             ArrayType::Normal, 0));
5776     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5777         0, HiddenArray);
5778     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5779     // where the init list type is wrong, e.g.
5780     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5781     // FIXME: Emit a note if we hit the limit?
5782     int ErrorCount = 0;
5783     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5784       Element.setElementIndex(i);
5785       ExprResult Init = S.Owned(InitList->getInit(i));
5786       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5787            .isInvalid())
5788         ++ErrorCount;
5789     }
5790     break;
5791   }
5792 
5793   case FK_ExplicitConstructor: {
5794     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5795       << Args[0]->getSourceRange();
5796     OverloadCandidateSet::iterator Best;
5797     OverloadingResult Ovl
5798       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5799     (void)Ovl;
5800     assert(Ovl == OR_Success && "Inconsistent overload resolution");
5801     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5802     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5803     break;
5804   }
5805   }
5806 
5807   PrintInitLocationNote(S, Entity);
5808   return true;
5809 }
5810 
5811 void InitializationSequence::dump(raw_ostream &OS) const {
5812   switch (SequenceKind) {
5813   case FailedSequence: {
5814     OS << "Failed sequence: ";
5815     switch (Failure) {
5816     case FK_TooManyInitsForReference:
5817       OS << "too many initializers for reference";
5818       break;
5819 
5820     case FK_ArrayNeedsInitList:
5821       OS << "array requires initializer list";
5822       break;
5823 
5824     case FK_ArrayNeedsInitListOrStringLiteral:
5825       OS << "array requires initializer list or string literal";
5826       break;
5827 
5828     case FK_ArrayTypeMismatch:
5829       OS << "array type mismatch";
5830       break;
5831 
5832     case FK_NonConstantArrayInit:
5833       OS << "non-constant array initializer";
5834       break;
5835 
5836     case FK_AddressOfOverloadFailed:
5837       OS << "address of overloaded function failed";
5838       break;
5839 
5840     case FK_ReferenceInitOverloadFailed:
5841       OS << "overload resolution for reference initialization failed";
5842       break;
5843 
5844     case FK_NonConstLValueReferenceBindingToTemporary:
5845       OS << "non-const lvalue reference bound to temporary";
5846       break;
5847 
5848     case FK_NonConstLValueReferenceBindingToUnrelated:
5849       OS << "non-const lvalue reference bound to unrelated type";
5850       break;
5851 
5852     case FK_RValueReferenceBindingToLValue:
5853       OS << "rvalue reference bound to an lvalue";
5854       break;
5855 
5856     case FK_ReferenceInitDropsQualifiers:
5857       OS << "reference initialization drops qualifiers";
5858       break;
5859 
5860     case FK_ReferenceInitFailed:
5861       OS << "reference initialization failed";
5862       break;
5863 
5864     case FK_ConversionFailed:
5865       OS << "conversion failed";
5866       break;
5867 
5868     case FK_ConversionFromPropertyFailed:
5869       OS << "conversion from property failed";
5870       break;
5871 
5872     case FK_TooManyInitsForScalar:
5873       OS << "too many initializers for scalar";
5874       break;
5875 
5876     case FK_ReferenceBindingToInitList:
5877       OS << "referencing binding to initializer list";
5878       break;
5879 
5880     case FK_InitListBadDestinationType:
5881       OS << "initializer list for non-aggregate, non-scalar type";
5882       break;
5883 
5884     case FK_UserConversionOverloadFailed:
5885       OS << "overloading failed for user-defined conversion";
5886       break;
5887 
5888     case FK_ConstructorOverloadFailed:
5889       OS << "constructor overloading failed";
5890       break;
5891 
5892     case FK_DefaultInitOfConst:
5893       OS << "default initialization of a const variable";
5894       break;
5895 
5896     case FK_Incomplete:
5897       OS << "initialization of incomplete type";
5898       break;
5899 
5900     case FK_ListInitializationFailed:
5901       OS << "list initialization checker failure";
5902       break;
5903 
5904     case FK_VariableLengthArrayHasInitializer:
5905       OS << "variable length array has an initializer";
5906       break;
5907 
5908     case FK_PlaceholderType:
5909       OS << "initializer expression isn't contextually valid";
5910       break;
5911 
5912     case FK_ListConstructorOverloadFailed:
5913       OS << "list constructor overloading failed";
5914       break;
5915 
5916     case FK_InitListElementCopyFailure:
5917       OS << "copy construction of initializer list element failed";
5918       break;
5919 
5920     case FK_ExplicitConstructor:
5921       OS << "list copy initialization chose explicit constructor";
5922       break;
5923     }
5924     OS << '\n';
5925     return;
5926   }
5927 
5928   case DependentSequence:
5929     OS << "Dependent sequence\n";
5930     return;
5931 
5932   case NormalSequence:
5933     OS << "Normal sequence: ";
5934     break;
5935   }
5936 
5937   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5938     if (S != step_begin()) {
5939       OS << " -> ";
5940     }
5941 
5942     switch (S->Kind) {
5943     case SK_ResolveAddressOfOverloadedFunction:
5944       OS << "resolve address of overloaded function";
5945       break;
5946 
5947     case SK_CastDerivedToBaseRValue:
5948       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5949       break;
5950 
5951     case SK_CastDerivedToBaseXValue:
5952       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5953       break;
5954 
5955     case SK_CastDerivedToBaseLValue:
5956       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5957       break;
5958 
5959     case SK_BindReference:
5960       OS << "bind reference to lvalue";
5961       break;
5962 
5963     case SK_BindReferenceToTemporary:
5964       OS << "bind reference to a temporary";
5965       break;
5966 
5967     case SK_ExtraneousCopyToTemporary:
5968       OS << "extraneous C++03 copy to temporary";
5969       break;
5970 
5971     case SK_UserConversion:
5972       OS << "user-defined conversion via " << *S->Function.Function;
5973       break;
5974 
5975     case SK_QualificationConversionRValue:
5976       OS << "qualification conversion (rvalue)";
5977       break;
5978 
5979     case SK_QualificationConversionXValue:
5980       OS << "qualification conversion (xvalue)";
5981       break;
5982 
5983     case SK_QualificationConversionLValue:
5984       OS << "qualification conversion (lvalue)";
5985       break;
5986 
5987     case SK_ConversionSequence:
5988       OS << "implicit conversion sequence (";
5989       S->ICS->DebugPrint(); // FIXME: use OS
5990       OS << ")";
5991       break;
5992 
5993     case SK_ListInitialization:
5994       OS << "list aggregate initialization";
5995       break;
5996 
5997     case SK_ListConstructorCall:
5998       OS << "list initialization via constructor";
5999       break;
6000 
6001     case SK_UnwrapInitList:
6002       OS << "unwrap reference initializer list";
6003       break;
6004 
6005     case SK_RewrapInitList:
6006       OS << "rewrap reference initializer list";
6007       break;
6008 
6009     case SK_ConstructorInitialization:
6010       OS << "constructor initialization";
6011       break;
6012 
6013     case SK_ZeroInitialization:
6014       OS << "zero initialization";
6015       break;
6016 
6017     case SK_CAssignment:
6018       OS << "C assignment";
6019       break;
6020 
6021     case SK_StringInit:
6022       OS << "string initialization";
6023       break;
6024 
6025     case SK_ObjCObjectConversion:
6026       OS << "Objective-C object conversion";
6027       break;
6028 
6029     case SK_ArrayInit:
6030       OS << "array initialization";
6031       break;
6032 
6033     case SK_ParenthesizedArrayInit:
6034       OS << "parenthesized array initialization";
6035       break;
6036 
6037     case SK_PassByIndirectCopyRestore:
6038       OS << "pass by indirect copy and restore";
6039       break;
6040 
6041     case SK_PassByIndirectRestore:
6042       OS << "pass by indirect restore";
6043       break;
6044 
6045     case SK_ProduceObjCObject:
6046       OS << "Objective-C object retension";
6047       break;
6048 
6049     case SK_StdInitializerList:
6050       OS << "std::initializer_list from initializer list";
6051       break;
6052     }
6053   }
6054 }
6055 
6056 void InitializationSequence::dump() const {
6057   dump(llvm::errs());
6058 }
6059 
6060 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6061                                         QualType EntityType,
6062                                         const Expr *PreInit,
6063                                         const Expr *PostInit) {
6064   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6065     return;
6066 
6067   // A narrowing conversion can only appear as the final implicit conversion in
6068   // an initialization sequence.
6069   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6070   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6071     return;
6072 
6073   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6074   const StandardConversionSequence *SCS = 0;
6075   switch (ICS.getKind()) {
6076   case ImplicitConversionSequence::StandardConversion:
6077     SCS = &ICS.Standard;
6078     break;
6079   case ImplicitConversionSequence::UserDefinedConversion:
6080     SCS = &ICS.UserDefined.After;
6081     break;
6082   case ImplicitConversionSequence::AmbiguousConversion:
6083   case ImplicitConversionSequence::EllipsisConversion:
6084   case ImplicitConversionSequence::BadConversion:
6085     return;
6086   }
6087 
6088   // Determine the type prior to the narrowing conversion. If a conversion
6089   // operator was used, this may be different from both the type of the entity
6090   // and of the pre-initialization expression.
6091   QualType PreNarrowingType = PreInit->getType();
6092   if (Seq.step_begin() + 1 != Seq.step_end())
6093     PreNarrowingType = Seq.step_end()[-2].Type;
6094 
6095   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6096   APValue ConstantValue;
6097   QualType ConstantType;
6098   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6099                                 ConstantType)) {
6100   case NK_Not_Narrowing:
6101     // No narrowing occurred.
6102     return;
6103 
6104   case NK_Type_Narrowing:
6105     // This was a floating-to-integer conversion, which is always considered a
6106     // narrowing conversion even if the value is a constant and can be
6107     // represented exactly as an integer.
6108     S.Diag(PostInit->getLocStart(),
6109            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6110              diag::warn_init_list_type_narrowing
6111            : S.isSFINAEContext()?
6112              diag::err_init_list_type_narrowing_sfinae
6113            : diag::err_init_list_type_narrowing)
6114       << PostInit->getSourceRange()
6115       << PreNarrowingType.getLocalUnqualifiedType()
6116       << EntityType.getLocalUnqualifiedType();
6117     break;
6118 
6119   case NK_Constant_Narrowing:
6120     // A constant value was narrowed.
6121     S.Diag(PostInit->getLocStart(),
6122            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6123              diag::warn_init_list_constant_narrowing
6124            : S.isSFINAEContext()?
6125              diag::err_init_list_constant_narrowing_sfinae
6126            : diag::err_init_list_constant_narrowing)
6127       << PostInit->getSourceRange()
6128       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6129       << EntityType.getLocalUnqualifiedType();
6130     break;
6131 
6132   case NK_Variable_Narrowing:
6133     // A variable's value may have been narrowed.
6134     S.Diag(PostInit->getLocStart(),
6135            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6136              diag::warn_init_list_variable_narrowing
6137            : S.isSFINAEContext()?
6138              diag::err_init_list_variable_narrowing_sfinae
6139            : diag::err_init_list_variable_narrowing)
6140       << PostInit->getSourceRange()
6141       << PreNarrowingType.getLocalUnqualifiedType()
6142       << EntityType.getLocalUnqualifiedType();
6143     break;
6144   }
6145 
6146   SmallString<128> StaticCast;
6147   llvm::raw_svector_ostream OS(StaticCast);
6148   OS << "static_cast<";
6149   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6150     // It's important to use the typedef's name if there is one so that the
6151     // fixit doesn't break code using types like int64_t.
6152     //
6153     // FIXME: This will break if the typedef requires qualification.  But
6154     // getQualifiedNameAsString() includes non-machine-parsable components.
6155     OS << *TT->getDecl();
6156   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6157     OS << BT->getName(S.getLangOpts());
6158   else {
6159     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6160     // with a broken cast.
6161     return;
6162   }
6163   OS << ">(";
6164   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6165     << PostInit->getSourceRange()
6166     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6167     << FixItHint::CreateInsertion(
6168       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6169 }
6170 
6171 //===----------------------------------------------------------------------===//
6172 // Initialization helper functions
6173 //===----------------------------------------------------------------------===//
6174 bool
6175 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6176                                    ExprResult Init) {
6177   if (Init.isInvalid())
6178     return false;
6179 
6180   Expr *InitE = Init.get();
6181   assert(InitE && "No initialization expression");
6182 
6183   InitializationKind Kind
6184     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6185   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6186   return !Seq.Failed();
6187 }
6188 
6189 ExprResult
6190 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6191                                 SourceLocation EqualLoc,
6192                                 ExprResult Init,
6193                                 bool TopLevelOfInitList,
6194                                 bool AllowExplicit) {
6195   if (Init.isInvalid())
6196     return ExprError();
6197 
6198   Expr *InitE = Init.get();
6199   assert(InitE && "No initialization expression?");
6200 
6201   if (EqualLoc.isInvalid())
6202     EqualLoc = InitE->getLocStart();
6203 
6204   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6205                                                            EqualLoc,
6206                                                            AllowExplicit);
6207   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6208   Init.release();
6209 
6210   ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6211 
6212   if (!Result.isInvalid() && TopLevelOfInitList)
6213     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6214                                 InitE, Result.get());
6215 
6216   return Result;
6217 }
6218