1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Sema/Designator.h" 21 #include "clang/Sema/Initialization.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_UTF8StringIntoPlainChar, 53 SIF_PlainStringIntoUTF8Char, 54 SIF_Other 55 }; 56 57 /// Check whether the array of type AT can be initialized by the Init 58 /// expression by means of string initialization. Returns SIF_None if so, 59 /// otherwise returns a StringInitFailureKind that describes why the 60 /// initialization would not work. 61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 62 ASTContext &Context) { 63 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 64 return SIF_Other; 65 66 // See if this is a string literal or @encode. 67 Init = Init->IgnoreParens(); 68 69 // Handle @encode, which is a narrow string. 70 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 71 return SIF_None; 72 73 // Otherwise we can only handle string literals. 74 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 75 if (!SL) 76 return SIF_Other; 77 78 const QualType ElemTy = 79 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 80 81 switch (SL->getKind()) { 82 case StringLiteral::UTF8: 83 // char8_t array can be initialized with a UTF-8 string. 84 if (ElemTy->isChar8Type()) 85 return SIF_None; 86 LLVM_FALLTHROUGH; 87 case StringLiteral::Ascii: 88 // char array can be initialized with a narrow string. 89 // Only allow char x[] = "foo"; not char x[] = L"foo"; 90 if (ElemTy->isCharType()) 91 return (SL->getKind() == StringLiteral::UTF8 && 92 Context.getLangOpts().Char8) 93 ? SIF_UTF8StringIntoPlainChar 94 : SIF_None; 95 if (ElemTy->isChar8Type()) 96 return SIF_PlainStringIntoUTF8Char; 97 if (IsWideCharCompatible(ElemTy, Context)) 98 return SIF_NarrowStringIntoWideChar; 99 return SIF_Other; 100 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 101 // "An array with element type compatible with a qualified or unqualified 102 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 103 // string literal with the corresponding encoding prefix (L, u, or U, 104 // respectively), optionally enclosed in braces. 105 case StringLiteral::UTF16: 106 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 107 return SIF_None; 108 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 109 return SIF_WideStringIntoChar; 110 if (IsWideCharCompatible(ElemTy, Context)) 111 return SIF_IncompatWideStringIntoWideChar; 112 return SIF_Other; 113 case StringLiteral::UTF32: 114 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 115 return SIF_None; 116 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 117 return SIF_WideStringIntoChar; 118 if (IsWideCharCompatible(ElemTy, Context)) 119 return SIF_IncompatWideStringIntoWideChar; 120 return SIF_Other; 121 case StringLiteral::Wide: 122 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 123 return SIF_None; 124 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 125 return SIF_WideStringIntoChar; 126 if (IsWideCharCompatible(ElemTy, Context)) 127 return SIF_IncompatWideStringIntoWideChar; 128 return SIF_Other; 129 } 130 131 llvm_unreachable("missed a StringLiteral kind?"); 132 } 133 134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 135 ASTContext &Context) { 136 const ArrayType *arrayType = Context.getAsArrayType(declType); 137 if (!arrayType) 138 return SIF_Other; 139 return IsStringInit(init, arrayType, Context); 140 } 141 142 /// Update the type of a string literal, including any surrounding parentheses, 143 /// to match the type of the object which it is initializing. 144 static void updateStringLiteralType(Expr *E, QualType Ty) { 145 while (true) { 146 E->setType(Ty); 147 E->setValueKind(VK_RValue); 148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 149 break; 150 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 151 E = PE->getSubExpr(); 152 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 153 assert(UO->getOpcode() == UO_Extension); 154 E = UO->getSubExpr(); 155 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 156 E = GSE->getResultExpr(); 157 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 158 E = CE->getChosenSubExpr(); 159 } else { 160 llvm_unreachable("unexpected expr in string literal init"); 161 } 162 } 163 } 164 165 /// Fix a compound literal initializing an array so it's correctly marked 166 /// as an rvalue. 167 static void updateGNUCompoundLiteralRValue(Expr *E) { 168 while (true) { 169 E->setValueKind(VK_RValue); 170 if (isa<CompoundLiteralExpr>(E)) { 171 break; 172 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 173 E = PE->getSubExpr(); 174 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 175 assert(UO->getOpcode() == UO_Extension); 176 E = UO->getSubExpr(); 177 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 178 E = GSE->getResultExpr(); 179 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 180 E = CE->getChosenSubExpr(); 181 } else { 182 llvm_unreachable("unexpected expr in array compound literal init"); 183 } 184 } 185 } 186 187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 188 Sema &S) { 189 // Get the length of the string as parsed. 190 auto *ConstantArrayTy = 191 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 192 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 193 194 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 195 // C99 6.7.8p14. We have an array of character type with unknown size 196 // being initialized to a string literal. 197 llvm::APInt ConstVal(32, StrLength); 198 // Return a new array type (C99 6.7.8p22). 199 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 200 ConstVal, 201 ArrayType::Normal, 0); 202 updateStringLiteralType(Str, DeclT); 203 return; 204 } 205 206 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 207 208 // We have an array of character type with known size. However, 209 // the size may be smaller or larger than the string we are initializing. 210 // FIXME: Avoid truncation for 64-bit length strings. 211 if (S.getLangOpts().CPlusPlus) { 212 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 213 // For Pascal strings it's OK to strip off the terminating null character, 214 // so the example below is valid: 215 // 216 // unsigned char a[2] = "\pa"; 217 if (SL->isPascal()) 218 StrLength--; 219 } 220 221 // [dcl.init.string]p2 222 if (StrLength > CAT->getSize().getZExtValue()) 223 S.Diag(Str->getBeginLoc(), 224 diag::err_initializer_string_for_char_array_too_long) 225 << Str->getSourceRange(); 226 } else { 227 // C99 6.7.8p14. 228 if (StrLength-1 > CAT->getSize().getZExtValue()) 229 S.Diag(Str->getBeginLoc(), 230 diag::ext_initializer_string_for_char_array_too_long) 231 << Str->getSourceRange(); 232 } 233 234 // Set the type to the actual size that we are initializing. If we have 235 // something like: 236 // char x[1] = "foo"; 237 // then this will set the string literal's type to char[1]. 238 updateStringLiteralType(Str, DeclT); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Semantic checking for initializer lists. 243 //===----------------------------------------------------------------------===// 244 245 namespace { 246 247 /// Semantic checking for initializer lists. 248 /// 249 /// The InitListChecker class contains a set of routines that each 250 /// handle the initialization of a certain kind of entity, e.g., 251 /// arrays, vectors, struct/union types, scalars, etc. The 252 /// InitListChecker itself performs a recursive walk of the subobject 253 /// structure of the type to be initialized, while stepping through 254 /// the initializer list one element at a time. The IList and Index 255 /// parameters to each of the Check* routines contain the active 256 /// (syntactic) initializer list and the index into that initializer 257 /// list that represents the current initializer. Each routine is 258 /// responsible for moving that Index forward as it consumes elements. 259 /// 260 /// Each Check* routine also has a StructuredList/StructuredIndex 261 /// arguments, which contains the current "structured" (semantic) 262 /// initializer list and the index into that initializer list where we 263 /// are copying initializers as we map them over to the semantic 264 /// list. Once we have completed our recursive walk of the subobject 265 /// structure, we will have constructed a full semantic initializer 266 /// list. 267 /// 268 /// C99 designators cause changes in the initializer list traversal, 269 /// because they make the initialization "jump" into a specific 270 /// subobject and then continue the initialization from that 271 /// point. CheckDesignatedInitializer() recursively steps into the 272 /// designated subobject and manages backing out the recursion to 273 /// initialize the subobjects after the one designated. 274 class InitListChecker { 275 Sema &SemaRef; 276 bool hadError; 277 bool VerifyOnly; // no diagnostics, no structure building 278 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 279 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 280 InitListExpr *FullyStructuredList; 281 282 void CheckImplicitInitList(const InitializedEntity &Entity, 283 InitListExpr *ParentIList, QualType T, 284 unsigned &Index, InitListExpr *StructuredList, 285 unsigned &StructuredIndex); 286 void CheckExplicitInitList(const InitializedEntity &Entity, 287 InitListExpr *IList, QualType &T, 288 InitListExpr *StructuredList, 289 bool TopLevelObject = false); 290 void CheckListElementTypes(const InitializedEntity &Entity, 291 InitListExpr *IList, QualType &DeclType, 292 bool SubobjectIsDesignatorContext, 293 unsigned &Index, 294 InitListExpr *StructuredList, 295 unsigned &StructuredIndex, 296 bool TopLevelObject = false); 297 void CheckSubElementType(const InitializedEntity &Entity, 298 InitListExpr *IList, QualType ElemType, 299 unsigned &Index, 300 InitListExpr *StructuredList, 301 unsigned &StructuredIndex); 302 void CheckComplexType(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType DeclType, 304 unsigned &Index, 305 InitListExpr *StructuredList, 306 unsigned &StructuredIndex); 307 void CheckScalarType(const InitializedEntity &Entity, 308 InitListExpr *IList, QualType DeclType, 309 unsigned &Index, 310 InitListExpr *StructuredList, 311 unsigned &StructuredIndex); 312 void CheckReferenceType(const InitializedEntity &Entity, 313 InitListExpr *IList, QualType DeclType, 314 unsigned &Index, 315 InitListExpr *StructuredList, 316 unsigned &StructuredIndex); 317 void CheckVectorType(const InitializedEntity &Entity, 318 InitListExpr *IList, QualType DeclType, unsigned &Index, 319 InitListExpr *StructuredList, 320 unsigned &StructuredIndex); 321 void CheckStructUnionTypes(const InitializedEntity &Entity, 322 InitListExpr *IList, QualType DeclType, 323 CXXRecordDecl::base_class_range Bases, 324 RecordDecl::field_iterator Field, 325 bool SubobjectIsDesignatorContext, unsigned &Index, 326 InitListExpr *StructuredList, 327 unsigned &StructuredIndex, 328 bool TopLevelObject = false); 329 void CheckArrayType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType &DeclType, 331 llvm::APSInt elementIndex, 332 bool SubobjectIsDesignatorContext, unsigned &Index, 333 InitListExpr *StructuredList, 334 unsigned &StructuredIndex); 335 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 336 InitListExpr *IList, DesignatedInitExpr *DIE, 337 unsigned DesigIdx, 338 QualType &CurrentObjectType, 339 RecordDecl::field_iterator *NextField, 340 llvm::APSInt *NextElementIndex, 341 unsigned &Index, 342 InitListExpr *StructuredList, 343 unsigned &StructuredIndex, 344 bool FinishSubobjectInit, 345 bool TopLevelObject); 346 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 347 QualType CurrentObjectType, 348 InitListExpr *StructuredList, 349 unsigned StructuredIndex, 350 SourceRange InitRange, 351 bool IsFullyOverwritten = false); 352 void UpdateStructuredListElement(InitListExpr *StructuredList, 353 unsigned &StructuredIndex, 354 Expr *expr); 355 int numArrayElements(QualType DeclType); 356 int numStructUnionElements(QualType DeclType); 357 358 static ExprResult PerformEmptyInit(Sema &SemaRef, 359 SourceLocation Loc, 360 const InitializedEntity &Entity, 361 bool VerifyOnly, 362 bool TreatUnavailableAsInvalid); 363 364 // Explanation on the "FillWithNoInit" mode: 365 // 366 // Assume we have the following definitions (Case#1): 367 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 368 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 369 // 370 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 371 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 372 // 373 // But if we have (Case#2): 374 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 375 // 376 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 377 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 378 // 379 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 380 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 381 // initializers but with special "NoInitExpr" place holders, which tells the 382 // CodeGen not to generate any initializers for these parts. 383 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 384 const InitializedEntity &ParentEntity, 385 InitListExpr *ILE, bool &RequiresSecondPass, 386 bool FillWithNoInit); 387 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 388 const InitializedEntity &ParentEntity, 389 InitListExpr *ILE, bool &RequiresSecondPass, 390 bool FillWithNoInit = false); 391 void FillInEmptyInitializations(const InitializedEntity &Entity, 392 InitListExpr *ILE, bool &RequiresSecondPass, 393 InitListExpr *OuterILE, unsigned OuterIndex, 394 bool FillWithNoInit = false); 395 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 396 Expr *InitExpr, FieldDecl *Field, 397 bool TopLevelObject); 398 void CheckEmptyInitializable(const InitializedEntity &Entity, 399 SourceLocation Loc); 400 401 public: 402 InitListChecker(Sema &S, const InitializedEntity &Entity, 403 InitListExpr *IL, QualType &T, bool VerifyOnly, 404 bool TreatUnavailableAsInvalid); 405 bool HadError() { return hadError; } 406 407 // Retrieves the fully-structured initializer list used for 408 // semantic analysis and code generation. 409 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 410 }; 411 412 } // end anonymous namespace 413 414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 415 SourceLocation Loc, 416 const InitializedEntity &Entity, 417 bool VerifyOnly, 418 bool TreatUnavailableAsInvalid) { 419 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 420 true); 421 MultiExprArg SubInit; 422 Expr *InitExpr; 423 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 424 425 // C++ [dcl.init.aggr]p7: 426 // If there are fewer initializer-clauses in the list than there are 427 // members in the aggregate, then each member not explicitly initialized 428 // ... 429 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 430 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 431 if (EmptyInitList) { 432 // C++1y / DR1070: 433 // shall be initialized [...] from an empty initializer list. 434 // 435 // We apply the resolution of this DR to C++11 but not C++98, since C++98 436 // does not have useful semantics for initialization from an init list. 437 // We treat this as copy-initialization, because aggregate initialization 438 // always performs copy-initialization on its elements. 439 // 440 // Only do this if we're initializing a class type, to avoid filling in 441 // the initializer list where possible. 442 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 443 InitListExpr(SemaRef.Context, Loc, None, Loc); 444 InitExpr->setType(SemaRef.Context.VoidTy); 445 SubInit = InitExpr; 446 Kind = InitializationKind::CreateCopy(Loc, Loc); 447 } else { 448 // C++03: 449 // shall be value-initialized. 450 } 451 452 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 453 // libstdc++4.6 marks the vector default constructor as explicit in 454 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 455 // stlport does so too. Look for std::__debug for libstdc++, and for 456 // std:: for stlport. This is effectively a compiler-side implementation of 457 // LWG2193. 458 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 459 InitializationSequence::FK_ExplicitConstructor) { 460 OverloadCandidateSet::iterator Best; 461 OverloadingResult O = 462 InitSeq.getFailedCandidateSet() 463 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 464 (void)O; 465 assert(O == OR_Success && "Inconsistent overload resolution"); 466 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 467 CXXRecordDecl *R = CtorDecl->getParent(); 468 469 if (CtorDecl->getMinRequiredArguments() == 0 && 470 CtorDecl->isExplicit() && R->getDeclName() && 471 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 472 bool IsInStd = false; 473 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 474 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 475 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 476 IsInStd = true; 477 } 478 479 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 480 .Cases("basic_string", "deque", "forward_list", true) 481 .Cases("list", "map", "multimap", "multiset", true) 482 .Cases("priority_queue", "queue", "set", "stack", true) 483 .Cases("unordered_map", "unordered_set", "vector", true) 484 .Default(false)) { 485 InitSeq.InitializeFrom( 486 SemaRef, Entity, 487 InitializationKind::CreateValue(Loc, Loc, Loc, true), 488 MultiExprArg(), /*TopLevelOfInitList=*/false, 489 TreatUnavailableAsInvalid); 490 // Emit a warning for this. System header warnings aren't shown 491 // by default, but people working on system headers should see it. 492 if (!VerifyOnly) { 493 SemaRef.Diag(CtorDecl->getLocation(), 494 diag::warn_invalid_initializer_from_system_header); 495 if (Entity.getKind() == InitializedEntity::EK_Member) 496 SemaRef.Diag(Entity.getDecl()->getLocation(), 497 diag::note_used_in_initialization_here); 498 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 499 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 500 } 501 } 502 } 503 } 504 if (!InitSeq) { 505 if (!VerifyOnly) { 506 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 507 if (Entity.getKind() == InitializedEntity::EK_Member) 508 SemaRef.Diag(Entity.getDecl()->getLocation(), 509 diag::note_in_omitted_aggregate_initializer) 510 << /*field*/1 << Entity.getDecl(); 511 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 512 bool IsTrailingArrayNewMember = 513 Entity.getParent() && 514 Entity.getParent()->isVariableLengthArrayNew(); 515 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 516 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 517 << Entity.getElementIndex(); 518 } 519 } 520 return ExprError(); 521 } 522 523 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 524 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 525 } 526 527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 528 SourceLocation Loc) { 529 assert(VerifyOnly && 530 "CheckEmptyInitializable is only inteded for verification mode."); 531 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true, 532 TreatUnavailableAsInvalid).isInvalid()) 533 hadError = true; 534 } 535 536 void InitListChecker::FillInEmptyInitForBase( 537 unsigned Init, const CXXBaseSpecifier &Base, 538 const InitializedEntity &ParentEntity, InitListExpr *ILE, 539 bool &RequiresSecondPass, bool FillWithNoInit) { 540 assert(Init < ILE->getNumInits() && "should have been expanded"); 541 542 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 543 SemaRef.Context, &Base, false, &ParentEntity); 544 545 if (!ILE->getInit(Init)) { 546 ExprResult BaseInit = 547 FillWithNoInit 548 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 549 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity, 550 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 551 if (BaseInit.isInvalid()) { 552 hadError = true; 553 return; 554 } 555 556 ILE->setInit(Init, BaseInit.getAs<Expr>()); 557 } else if (InitListExpr *InnerILE = 558 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 559 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 560 ILE, Init, FillWithNoInit); 561 } else if (DesignatedInitUpdateExpr *InnerDIUE = 562 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 563 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 564 RequiresSecondPass, ILE, Init, 565 /*FillWithNoInit =*/true); 566 } 567 } 568 569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 570 const InitializedEntity &ParentEntity, 571 InitListExpr *ILE, 572 bool &RequiresSecondPass, 573 bool FillWithNoInit) { 574 SourceLocation Loc = ILE->getEndLoc(); 575 unsigned NumInits = ILE->getNumInits(); 576 InitializedEntity MemberEntity 577 = InitializedEntity::InitializeMember(Field, &ParentEntity); 578 579 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 580 if (!RType->getDecl()->isUnion()) 581 assert(Init < NumInits && "This ILE should have been expanded"); 582 583 if (Init >= NumInits || !ILE->getInit(Init)) { 584 if (FillWithNoInit) { 585 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 586 if (Init < NumInits) 587 ILE->setInit(Init, Filler); 588 else 589 ILE->updateInit(SemaRef.Context, Init, Filler); 590 return; 591 } 592 // C++1y [dcl.init.aggr]p7: 593 // If there are fewer initializer-clauses in the list than there are 594 // members in the aggregate, then each member not explicitly initialized 595 // shall be initialized from its brace-or-equal-initializer [...] 596 if (Field->hasInClassInitializer()) { 597 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 598 if (DIE.isInvalid()) { 599 hadError = true; 600 return; 601 } 602 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 603 if (Init < NumInits) 604 ILE->setInit(Init, DIE.get()); 605 else { 606 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 607 RequiresSecondPass = true; 608 } 609 return; 610 } 611 612 if (Field->getType()->isReferenceType()) { 613 // C++ [dcl.init.aggr]p9: 614 // If an incomplete or empty initializer-list leaves a 615 // member of reference type uninitialized, the program is 616 // ill-formed. 617 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 618 << Field->getType() 619 << ILE->getSyntacticForm()->getSourceRange(); 620 SemaRef.Diag(Field->getLocation(), 621 diag::note_uninit_reference_member); 622 hadError = true; 623 return; 624 } 625 626 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 627 /*VerifyOnly*/false, 628 TreatUnavailableAsInvalid); 629 if (MemberInit.isInvalid()) { 630 hadError = true; 631 return; 632 } 633 634 if (hadError) { 635 // Do nothing 636 } else if (Init < NumInits) { 637 ILE->setInit(Init, MemberInit.getAs<Expr>()); 638 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 639 // Empty initialization requires a constructor call, so 640 // extend the initializer list to include the constructor 641 // call and make a note that we'll need to take another pass 642 // through the initializer list. 643 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 644 RequiresSecondPass = true; 645 } 646 } else if (InitListExpr *InnerILE 647 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 648 FillInEmptyInitializations(MemberEntity, InnerILE, 649 RequiresSecondPass, ILE, Init, FillWithNoInit); 650 else if (DesignatedInitUpdateExpr *InnerDIUE 651 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) 652 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 653 RequiresSecondPass, ILE, Init, 654 /*FillWithNoInit =*/true); 655 } 656 657 /// Recursively replaces NULL values within the given initializer list 658 /// with expressions that perform value-initialization of the 659 /// appropriate type, and finish off the InitListExpr formation. 660 void 661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 662 InitListExpr *ILE, 663 bool &RequiresSecondPass, 664 InitListExpr *OuterILE, 665 unsigned OuterIndex, 666 bool FillWithNoInit) { 667 assert((ILE->getType() != SemaRef.Context.VoidTy) && 668 "Should not have void type"); 669 670 // If this is a nested initializer list, we might have changed its contents 671 // (and therefore some of its properties, such as instantiation-dependence) 672 // while filling it in. Inform the outer initializer list so that its state 673 // can be updated to match. 674 // FIXME: We should fully build the inner initializers before constructing 675 // the outer InitListExpr instead of mutating AST nodes after they have 676 // been used as subexpressions of other nodes. 677 struct UpdateOuterILEWithUpdatedInit { 678 InitListExpr *Outer; 679 unsigned OuterIndex; 680 ~UpdateOuterILEWithUpdatedInit() { 681 if (Outer) 682 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 683 } 684 } UpdateOuterRAII = {OuterILE, OuterIndex}; 685 686 // A transparent ILE is not performing aggregate initialization and should 687 // not be filled in. 688 if (ILE->isTransparent()) 689 return; 690 691 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 692 const RecordDecl *RDecl = RType->getDecl(); 693 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 694 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 695 Entity, ILE, RequiresSecondPass, FillWithNoInit); 696 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 697 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 698 for (auto *Field : RDecl->fields()) { 699 if (Field->hasInClassInitializer()) { 700 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 701 FillWithNoInit); 702 break; 703 } 704 } 705 } else { 706 // The fields beyond ILE->getNumInits() are default initialized, so in 707 // order to leave them uninitialized, the ILE is expanded and the extra 708 // fields are then filled with NoInitExpr. 709 unsigned NumElems = numStructUnionElements(ILE->getType()); 710 if (RDecl->hasFlexibleArrayMember()) 711 ++NumElems; 712 if (ILE->getNumInits() < NumElems) 713 ILE->resizeInits(SemaRef.Context, NumElems); 714 715 unsigned Init = 0; 716 717 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 718 for (auto &Base : CXXRD->bases()) { 719 if (hadError) 720 return; 721 722 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 723 FillWithNoInit); 724 ++Init; 725 } 726 } 727 728 for (auto *Field : RDecl->fields()) { 729 if (Field->isUnnamedBitfield()) 730 continue; 731 732 if (hadError) 733 return; 734 735 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 736 FillWithNoInit); 737 if (hadError) 738 return; 739 740 ++Init; 741 742 // Only look at the first initialization of a union. 743 if (RDecl->isUnion()) 744 break; 745 } 746 } 747 748 return; 749 } 750 751 QualType ElementType; 752 753 InitializedEntity ElementEntity = Entity; 754 unsigned NumInits = ILE->getNumInits(); 755 unsigned NumElements = NumInits; 756 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 757 ElementType = AType->getElementType(); 758 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 759 NumElements = CAType->getSize().getZExtValue(); 760 // For an array new with an unknown bound, ask for one additional element 761 // in order to populate the array filler. 762 if (Entity.isVariableLengthArrayNew()) 763 ++NumElements; 764 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 765 0, Entity); 766 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 767 ElementType = VType->getElementType(); 768 NumElements = VType->getNumElements(); 769 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 770 0, Entity); 771 } else 772 ElementType = ILE->getType(); 773 774 for (unsigned Init = 0; Init != NumElements; ++Init) { 775 if (hadError) 776 return; 777 778 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 779 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 780 ElementEntity.setElementIndex(Init); 781 782 if (Init >= NumInits && ILE->hasArrayFiller()) 783 return; 784 785 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 786 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 787 ILE->setInit(Init, ILE->getArrayFiller()); 788 else if (!InitExpr && !ILE->hasArrayFiller()) { 789 Expr *Filler = nullptr; 790 791 if (FillWithNoInit) 792 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 793 else { 794 ExprResult ElementInit = 795 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity, 796 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 797 if (ElementInit.isInvalid()) { 798 hadError = true; 799 return; 800 } 801 802 Filler = ElementInit.getAs<Expr>(); 803 } 804 805 if (hadError) { 806 // Do nothing 807 } else if (Init < NumInits) { 808 // For arrays, just set the expression used for value-initialization 809 // of the "holes" in the array. 810 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 811 ILE->setArrayFiller(Filler); 812 else 813 ILE->setInit(Init, Filler); 814 } else { 815 // For arrays, just set the expression used for value-initialization 816 // of the rest of elements and exit. 817 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 818 ILE->setArrayFiller(Filler); 819 return; 820 } 821 822 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 823 // Empty initialization requires a constructor call, so 824 // extend the initializer list to include the constructor 825 // call and make a note that we'll need to take another pass 826 // through the initializer list. 827 ILE->updateInit(SemaRef.Context, Init, Filler); 828 RequiresSecondPass = true; 829 } 830 } 831 } else if (InitListExpr *InnerILE 832 = dyn_cast_or_null<InitListExpr>(InitExpr)) 833 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 834 ILE, Init, FillWithNoInit); 835 else if (DesignatedInitUpdateExpr *InnerDIUE 836 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) 837 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 838 RequiresSecondPass, ILE, Init, 839 /*FillWithNoInit =*/true); 840 } 841 } 842 843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 844 InitListExpr *IL, QualType &T, 845 bool VerifyOnly, 846 bool TreatUnavailableAsInvalid) 847 : SemaRef(S), VerifyOnly(VerifyOnly), 848 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) { 849 // FIXME: Check that IL isn't already the semantic form of some other 850 // InitListExpr. If it is, we'd create a broken AST. 851 852 hadError = false; 853 854 FullyStructuredList = 855 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 856 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 857 /*TopLevelObject=*/true); 858 859 if (!hadError && !VerifyOnly) { 860 bool RequiresSecondPass = false; 861 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 862 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 863 if (RequiresSecondPass && !hadError) 864 FillInEmptyInitializations(Entity, FullyStructuredList, 865 RequiresSecondPass, nullptr, 0); 866 } 867 } 868 869 int InitListChecker::numArrayElements(QualType DeclType) { 870 // FIXME: use a proper constant 871 int maxElements = 0x7FFFFFFF; 872 if (const ConstantArrayType *CAT = 873 SemaRef.Context.getAsConstantArrayType(DeclType)) { 874 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 875 } 876 return maxElements; 877 } 878 879 int InitListChecker::numStructUnionElements(QualType DeclType) { 880 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 881 int InitializableMembers = 0; 882 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 883 InitializableMembers += CXXRD->getNumBases(); 884 for (const auto *Field : structDecl->fields()) 885 if (!Field->isUnnamedBitfield()) 886 ++InitializableMembers; 887 888 if (structDecl->isUnion()) 889 return std::min(InitializableMembers, 1); 890 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 891 } 892 893 /// Determine whether Entity is an entity for which it is idiomatic to elide 894 /// the braces in aggregate initialization. 895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 896 // Recursive initialization of the one and only field within an aggregate 897 // class is considered idiomatic. This case arises in particular for 898 // initialization of std::array, where the C++ standard suggests the idiom of 899 // 900 // std::array<T, N> arr = {1, 2, 3}; 901 // 902 // (where std::array is an aggregate struct containing a single array field. 903 904 // FIXME: Should aggregate initialization of a struct with a single 905 // base class and no members also suppress the warning? 906 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 907 return false; 908 909 auto *ParentRD = 910 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 911 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 912 if (CXXRD->getNumBases()) 913 return false; 914 915 auto FieldIt = ParentRD->field_begin(); 916 assert(FieldIt != ParentRD->field_end() && 917 "no fields but have initializer for member?"); 918 return ++FieldIt == ParentRD->field_end(); 919 } 920 921 /// Check whether the range of the initializer \p ParentIList from element 922 /// \p Index onwards can be used to initialize an object of type \p T. Update 923 /// \p Index to indicate how many elements of the list were consumed. 924 /// 925 /// This also fills in \p StructuredList, from element \p StructuredIndex 926 /// onwards, with the fully-braced, desugared form of the initialization. 927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 928 InitListExpr *ParentIList, 929 QualType T, unsigned &Index, 930 InitListExpr *StructuredList, 931 unsigned &StructuredIndex) { 932 int maxElements = 0; 933 934 if (T->isArrayType()) 935 maxElements = numArrayElements(T); 936 else if (T->isRecordType()) 937 maxElements = numStructUnionElements(T); 938 else if (T->isVectorType()) 939 maxElements = T->getAs<VectorType>()->getNumElements(); 940 else 941 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 942 943 if (maxElements == 0) { 944 if (!VerifyOnly) 945 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 946 diag::err_implicit_empty_initializer); 947 ++Index; 948 hadError = true; 949 return; 950 } 951 952 // Build a structured initializer list corresponding to this subobject. 953 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 954 ParentIList, Index, T, StructuredList, StructuredIndex, 955 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 956 ParentIList->getSourceRange().getEnd())); 957 unsigned StructuredSubobjectInitIndex = 0; 958 959 // Check the element types and build the structural subobject. 960 unsigned StartIndex = Index; 961 CheckListElementTypes(Entity, ParentIList, T, 962 /*SubobjectIsDesignatorContext=*/false, Index, 963 StructuredSubobjectInitList, 964 StructuredSubobjectInitIndex); 965 966 if (!VerifyOnly) { 967 StructuredSubobjectInitList->setType(T); 968 969 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 970 // Update the structured sub-object initializer so that it's ending 971 // range corresponds with the end of the last initializer it used. 972 if (EndIndex < ParentIList->getNumInits() && 973 ParentIList->getInit(EndIndex)) { 974 SourceLocation EndLoc 975 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 976 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 977 } 978 979 // Complain about missing braces. 980 if ((T->isArrayType() || T->isRecordType()) && 981 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 982 !isIdiomaticBraceElisionEntity(Entity)) { 983 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 984 diag::warn_missing_braces) 985 << StructuredSubobjectInitList->getSourceRange() 986 << FixItHint::CreateInsertion( 987 StructuredSubobjectInitList->getBeginLoc(), "{") 988 << FixItHint::CreateInsertion( 989 SemaRef.getLocForEndOfToken( 990 StructuredSubobjectInitList->getEndLoc()), 991 "}"); 992 } 993 994 // Warn if this type won't be an aggregate in future versions of C++. 995 auto *CXXRD = T->getAsCXXRecordDecl(); 996 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 997 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 998 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 999 << StructuredSubobjectInitList->getSourceRange() << T; 1000 } 1001 } 1002 } 1003 1004 /// Warn that \p Entity was of scalar type and was initialized by a 1005 /// single-element braced initializer list. 1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1007 SourceRange Braces) { 1008 // Don't warn during template instantiation. If the initialization was 1009 // non-dependent, we warned during the initial parse; otherwise, the 1010 // type might not be scalar in some uses of the template. 1011 if (S.inTemplateInstantiation()) 1012 return; 1013 1014 unsigned DiagID = 0; 1015 1016 switch (Entity.getKind()) { 1017 case InitializedEntity::EK_VectorElement: 1018 case InitializedEntity::EK_ComplexElement: 1019 case InitializedEntity::EK_ArrayElement: 1020 case InitializedEntity::EK_Parameter: 1021 case InitializedEntity::EK_Parameter_CF_Audited: 1022 case InitializedEntity::EK_Result: 1023 // Extra braces here are suspicious. 1024 DiagID = diag::warn_braces_around_scalar_init; 1025 break; 1026 1027 case InitializedEntity::EK_Member: 1028 // Warn on aggregate initialization but not on ctor init list or 1029 // default member initializer. 1030 if (Entity.getParent()) 1031 DiagID = diag::warn_braces_around_scalar_init; 1032 break; 1033 1034 case InitializedEntity::EK_Variable: 1035 case InitializedEntity::EK_LambdaCapture: 1036 // No warning, might be direct-list-initialization. 1037 // FIXME: Should we warn for copy-list-initialization in these cases? 1038 break; 1039 1040 case InitializedEntity::EK_New: 1041 case InitializedEntity::EK_Temporary: 1042 case InitializedEntity::EK_CompoundLiteralInit: 1043 // No warning, braces are part of the syntax of the underlying construct. 1044 break; 1045 1046 case InitializedEntity::EK_RelatedResult: 1047 // No warning, we already warned when initializing the result. 1048 break; 1049 1050 case InitializedEntity::EK_Exception: 1051 case InitializedEntity::EK_Base: 1052 case InitializedEntity::EK_Delegating: 1053 case InitializedEntity::EK_BlockElement: 1054 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1055 case InitializedEntity::EK_Binding: 1056 case InitializedEntity::EK_StmtExprResult: 1057 llvm_unreachable("unexpected braced scalar init"); 1058 } 1059 1060 if (DiagID) { 1061 S.Diag(Braces.getBegin(), DiagID) 1062 << Braces 1063 << FixItHint::CreateRemoval(Braces.getBegin()) 1064 << FixItHint::CreateRemoval(Braces.getEnd()); 1065 } 1066 } 1067 1068 /// Check whether the initializer \p IList (that was written with explicit 1069 /// braces) can be used to initialize an object of type \p T. 1070 /// 1071 /// This also fills in \p StructuredList with the fully-braced, desugared 1072 /// form of the initialization. 1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1074 InitListExpr *IList, QualType &T, 1075 InitListExpr *StructuredList, 1076 bool TopLevelObject) { 1077 if (!VerifyOnly) { 1078 SyntacticToSemantic[IList] = StructuredList; 1079 StructuredList->setSyntacticForm(IList); 1080 } 1081 1082 unsigned Index = 0, StructuredIndex = 0; 1083 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1084 Index, StructuredList, StructuredIndex, TopLevelObject); 1085 if (!VerifyOnly) { 1086 QualType ExprTy = T; 1087 if (!ExprTy->isArrayType()) 1088 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1089 IList->setType(ExprTy); 1090 StructuredList->setType(ExprTy); 1091 } 1092 if (hadError) 1093 return; 1094 1095 if (Index < IList->getNumInits()) { 1096 // We have leftover initializers 1097 if (VerifyOnly) { 1098 if (SemaRef.getLangOpts().CPlusPlus || 1099 (SemaRef.getLangOpts().OpenCL && 1100 IList->getType()->isVectorType())) { 1101 hadError = true; 1102 } 1103 return; 1104 } 1105 1106 if (StructuredIndex == 1 && 1107 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1108 SIF_None) { 1109 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; 1110 if (SemaRef.getLangOpts().CPlusPlus) { 1111 DK = diag::err_excess_initializers_in_char_array_initializer; 1112 hadError = true; 1113 } 1114 // Special-case 1115 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1116 << IList->getInit(Index)->getSourceRange(); 1117 } else if (!T->isIncompleteType()) { 1118 // Don't complain for incomplete types, since we'll get an error 1119 // elsewhere 1120 QualType CurrentObjectType = StructuredList->getType(); 1121 int initKind = 1122 CurrentObjectType->isArrayType()? 0 : 1123 CurrentObjectType->isVectorType()? 1 : 1124 CurrentObjectType->isScalarType()? 2 : 1125 CurrentObjectType->isUnionType()? 3 : 1126 4; 1127 1128 unsigned DK = diag::ext_excess_initializers; 1129 if (SemaRef.getLangOpts().CPlusPlus) { 1130 DK = diag::err_excess_initializers; 1131 hadError = true; 1132 } 1133 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 1134 DK = diag::err_excess_initializers; 1135 hadError = true; 1136 } 1137 1138 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1139 << initKind << IList->getInit(Index)->getSourceRange(); 1140 } 1141 } 1142 1143 if (!VerifyOnly) { 1144 if (T->isScalarType() && IList->getNumInits() == 1 && 1145 !isa<InitListExpr>(IList->getInit(0))) 1146 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1147 1148 // Warn if this is a class type that won't be an aggregate in future 1149 // versions of C++. 1150 auto *CXXRD = T->getAsCXXRecordDecl(); 1151 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1152 // Don't warn if there's an equivalent default constructor that would be 1153 // used instead. 1154 bool HasEquivCtor = false; 1155 if (IList->getNumInits() == 0) { 1156 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1157 HasEquivCtor = CD && !CD->isDeleted(); 1158 } 1159 1160 if (!HasEquivCtor) { 1161 SemaRef.Diag(IList->getBeginLoc(), 1162 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1163 << IList->getSourceRange() << T; 1164 } 1165 } 1166 } 1167 } 1168 1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1170 InitListExpr *IList, 1171 QualType &DeclType, 1172 bool SubobjectIsDesignatorContext, 1173 unsigned &Index, 1174 InitListExpr *StructuredList, 1175 unsigned &StructuredIndex, 1176 bool TopLevelObject) { 1177 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1178 // Explicitly braced initializer for complex type can be real+imaginary 1179 // parts. 1180 CheckComplexType(Entity, IList, DeclType, Index, 1181 StructuredList, StructuredIndex); 1182 } else if (DeclType->isScalarType()) { 1183 CheckScalarType(Entity, IList, DeclType, Index, 1184 StructuredList, StructuredIndex); 1185 } else if (DeclType->isVectorType()) { 1186 CheckVectorType(Entity, IList, DeclType, Index, 1187 StructuredList, StructuredIndex); 1188 } else if (DeclType->isRecordType()) { 1189 assert(DeclType->isAggregateType() && 1190 "non-aggregate records should be handed in CheckSubElementType"); 1191 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1192 auto Bases = 1193 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1194 CXXRecordDecl::base_class_iterator()); 1195 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1196 Bases = CXXRD->bases(); 1197 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1198 SubobjectIsDesignatorContext, Index, StructuredList, 1199 StructuredIndex, TopLevelObject); 1200 } else if (DeclType->isArrayType()) { 1201 llvm::APSInt Zero( 1202 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1203 false); 1204 CheckArrayType(Entity, IList, DeclType, Zero, 1205 SubobjectIsDesignatorContext, Index, 1206 StructuredList, StructuredIndex); 1207 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1208 // This type is invalid, issue a diagnostic. 1209 ++Index; 1210 if (!VerifyOnly) 1211 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1212 << DeclType; 1213 hadError = true; 1214 } else if (DeclType->isReferenceType()) { 1215 CheckReferenceType(Entity, IList, DeclType, Index, 1216 StructuredList, StructuredIndex); 1217 } else if (DeclType->isObjCObjectType()) { 1218 if (!VerifyOnly) 1219 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1220 hadError = true; 1221 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1222 // Checks for scalar type are sufficient for these types too. 1223 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1224 StructuredIndex); 1225 } else { 1226 if (!VerifyOnly) 1227 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1228 << DeclType; 1229 hadError = true; 1230 } 1231 } 1232 1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1234 InitListExpr *IList, 1235 QualType ElemType, 1236 unsigned &Index, 1237 InitListExpr *StructuredList, 1238 unsigned &StructuredIndex) { 1239 Expr *expr = IList->getInit(Index); 1240 1241 if (ElemType->isReferenceType()) 1242 return CheckReferenceType(Entity, IList, ElemType, Index, 1243 StructuredList, StructuredIndex); 1244 1245 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1246 if (SubInitList->getNumInits() == 1 && 1247 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1248 SIF_None) { 1249 expr = SubInitList->getInit(0); 1250 } else if (!SemaRef.getLangOpts().CPlusPlus) { 1251 InitListExpr *InnerStructuredList 1252 = getStructuredSubobjectInit(IList, Index, ElemType, 1253 StructuredList, StructuredIndex, 1254 SubInitList->getSourceRange(), true); 1255 CheckExplicitInitList(Entity, SubInitList, ElemType, 1256 InnerStructuredList); 1257 1258 if (!hadError && !VerifyOnly) { 1259 bool RequiresSecondPass = false; 1260 FillInEmptyInitializations(Entity, InnerStructuredList, 1261 RequiresSecondPass, StructuredList, 1262 StructuredIndex); 1263 if (RequiresSecondPass && !hadError) 1264 FillInEmptyInitializations(Entity, InnerStructuredList, 1265 RequiresSecondPass, StructuredList, 1266 StructuredIndex); 1267 } 1268 ++StructuredIndex; 1269 ++Index; 1270 return; 1271 } 1272 // C++ initialization is handled later. 1273 } else if (isa<ImplicitValueInitExpr>(expr)) { 1274 // This happens during template instantiation when we see an InitListExpr 1275 // that we've already checked once. 1276 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1277 "found implicit initialization for the wrong type"); 1278 if (!VerifyOnly) 1279 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1280 ++Index; 1281 return; 1282 } 1283 1284 if (SemaRef.getLangOpts().CPlusPlus) { 1285 // C++ [dcl.init.aggr]p2: 1286 // Each member is copy-initialized from the corresponding 1287 // initializer-clause. 1288 1289 // FIXME: Better EqualLoc? 1290 InitializationKind Kind = 1291 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1292 InitializationSequence Seq(SemaRef, Entity, Kind, expr, 1293 /*TopLevelOfInitList*/ true); 1294 1295 // C++14 [dcl.init.aggr]p13: 1296 // If the assignment-expression can initialize a member, the member is 1297 // initialized. Otherwise [...] brace elision is assumed 1298 // 1299 // Brace elision is never performed if the element is not an 1300 // assignment-expression. 1301 if (Seq || isa<InitListExpr>(expr)) { 1302 if (!VerifyOnly) { 1303 ExprResult Result = 1304 Seq.Perform(SemaRef, Entity, Kind, expr); 1305 if (Result.isInvalid()) 1306 hadError = true; 1307 1308 UpdateStructuredListElement(StructuredList, StructuredIndex, 1309 Result.getAs<Expr>()); 1310 } else if (!Seq) 1311 hadError = true; 1312 ++Index; 1313 return; 1314 } 1315 1316 // Fall through for subaggregate initialization 1317 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1318 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1319 return CheckScalarType(Entity, IList, ElemType, Index, 1320 StructuredList, StructuredIndex); 1321 } else if (const ArrayType *arrayType = 1322 SemaRef.Context.getAsArrayType(ElemType)) { 1323 // arrayType can be incomplete if we're initializing a flexible 1324 // array member. There's nothing we can do with the completed 1325 // type here, though. 1326 1327 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1328 if (!VerifyOnly) { 1329 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1330 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1331 } 1332 ++Index; 1333 return; 1334 } 1335 1336 // Fall through for subaggregate initialization. 1337 1338 } else { 1339 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1340 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1341 1342 // C99 6.7.8p13: 1343 // 1344 // The initializer for a structure or union object that has 1345 // automatic storage duration shall be either an initializer 1346 // list as described below, or a single expression that has 1347 // compatible structure or union type. In the latter case, the 1348 // initial value of the object, including unnamed members, is 1349 // that of the expression. 1350 ExprResult ExprRes = expr; 1351 if (SemaRef.CheckSingleAssignmentConstraints( 1352 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1353 if (ExprRes.isInvalid()) 1354 hadError = true; 1355 else { 1356 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1357 if (ExprRes.isInvalid()) 1358 hadError = true; 1359 } 1360 UpdateStructuredListElement(StructuredList, StructuredIndex, 1361 ExprRes.getAs<Expr>()); 1362 ++Index; 1363 return; 1364 } 1365 ExprRes.get(); 1366 // Fall through for subaggregate initialization 1367 } 1368 1369 // C++ [dcl.init.aggr]p12: 1370 // 1371 // [...] Otherwise, if the member is itself a non-empty 1372 // subaggregate, brace elision is assumed and the initializer is 1373 // considered for the initialization of the first member of 1374 // the subaggregate. 1375 // OpenCL vector initializer is handled elsewhere. 1376 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1377 ElemType->isAggregateType()) { 1378 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1379 StructuredIndex); 1380 ++StructuredIndex; 1381 } else { 1382 if (!VerifyOnly) { 1383 // We cannot initialize this element, so let 1384 // PerformCopyInitialization produce the appropriate diagnostic. 1385 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1386 /*TopLevelOfInitList=*/true); 1387 } 1388 hadError = true; 1389 ++Index; 1390 ++StructuredIndex; 1391 } 1392 } 1393 1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1395 InitListExpr *IList, QualType DeclType, 1396 unsigned &Index, 1397 InitListExpr *StructuredList, 1398 unsigned &StructuredIndex) { 1399 assert(Index == 0 && "Index in explicit init list must be zero"); 1400 1401 // As an extension, clang supports complex initializers, which initialize 1402 // a complex number component-wise. When an explicit initializer list for 1403 // a complex number contains two two initializers, this extension kicks in: 1404 // it exepcts the initializer list to contain two elements convertible to 1405 // the element type of the complex type. The first element initializes 1406 // the real part, and the second element intitializes the imaginary part. 1407 1408 if (IList->getNumInits() != 2) 1409 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1410 StructuredIndex); 1411 1412 // This is an extension in C. (The builtin _Complex type does not exist 1413 // in the C++ standard.) 1414 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1415 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1416 << IList->getSourceRange(); 1417 1418 // Initialize the complex number. 1419 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1420 InitializedEntity ElementEntity = 1421 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1422 1423 for (unsigned i = 0; i < 2; ++i) { 1424 ElementEntity.setElementIndex(Index); 1425 CheckSubElementType(ElementEntity, IList, elementType, Index, 1426 StructuredList, StructuredIndex); 1427 } 1428 } 1429 1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1431 InitListExpr *IList, QualType DeclType, 1432 unsigned &Index, 1433 InitListExpr *StructuredList, 1434 unsigned &StructuredIndex) { 1435 if (Index >= IList->getNumInits()) { 1436 if (!VerifyOnly) 1437 SemaRef.Diag(IList->getBeginLoc(), 1438 SemaRef.getLangOpts().CPlusPlus11 1439 ? diag::warn_cxx98_compat_empty_scalar_initializer 1440 : diag::err_empty_scalar_initializer) 1441 << IList->getSourceRange(); 1442 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1443 ++Index; 1444 ++StructuredIndex; 1445 return; 1446 } 1447 1448 Expr *expr = IList->getInit(Index); 1449 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1450 // FIXME: This is invalid, and accepting it causes overload resolution 1451 // to pick the wrong overload in some corner cases. 1452 if (!VerifyOnly) 1453 SemaRef.Diag(SubIList->getBeginLoc(), 1454 diag::ext_many_braces_around_scalar_init) 1455 << SubIList->getSourceRange(); 1456 1457 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1458 StructuredIndex); 1459 return; 1460 } else if (isa<DesignatedInitExpr>(expr)) { 1461 if (!VerifyOnly) 1462 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1463 << DeclType << expr->getSourceRange(); 1464 hadError = true; 1465 ++Index; 1466 ++StructuredIndex; 1467 return; 1468 } 1469 1470 if (VerifyOnly) { 1471 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1472 hadError = true; 1473 ++Index; 1474 return; 1475 } 1476 1477 ExprResult Result = 1478 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1479 /*TopLevelOfInitList=*/true); 1480 1481 Expr *ResultExpr = nullptr; 1482 1483 if (Result.isInvalid()) 1484 hadError = true; // types weren't compatible. 1485 else { 1486 ResultExpr = Result.getAs<Expr>(); 1487 1488 if (ResultExpr != expr) { 1489 // The type was promoted, update initializer list. 1490 IList->setInit(Index, ResultExpr); 1491 } 1492 } 1493 if (hadError) 1494 ++StructuredIndex; 1495 else 1496 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1497 ++Index; 1498 } 1499 1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1501 InitListExpr *IList, QualType DeclType, 1502 unsigned &Index, 1503 InitListExpr *StructuredList, 1504 unsigned &StructuredIndex) { 1505 if (Index >= IList->getNumInits()) { 1506 // FIXME: It would be wonderful if we could point at the actual member. In 1507 // general, it would be useful to pass location information down the stack, 1508 // so that we know the location (or decl) of the "current object" being 1509 // initialized. 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 diag::err_init_reference_member_uninitialized) 1513 << DeclType << IList->getSourceRange(); 1514 hadError = true; 1515 ++Index; 1516 ++StructuredIndex; 1517 return; 1518 } 1519 1520 Expr *expr = IList->getInit(Index); 1521 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1522 if (!VerifyOnly) 1523 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1524 << DeclType << IList->getSourceRange(); 1525 hadError = true; 1526 ++Index; 1527 ++StructuredIndex; 1528 return; 1529 } 1530 1531 if (VerifyOnly) { 1532 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1533 hadError = true; 1534 ++Index; 1535 return; 1536 } 1537 1538 ExprResult Result = 1539 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1540 /*TopLevelOfInitList=*/true); 1541 1542 if (Result.isInvalid()) 1543 hadError = true; 1544 1545 expr = Result.getAs<Expr>(); 1546 IList->setInit(Index, expr); 1547 1548 if (hadError) 1549 ++StructuredIndex; 1550 else 1551 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1552 ++Index; 1553 } 1554 1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1556 InitListExpr *IList, QualType DeclType, 1557 unsigned &Index, 1558 InitListExpr *StructuredList, 1559 unsigned &StructuredIndex) { 1560 const VectorType *VT = DeclType->getAs<VectorType>(); 1561 unsigned maxElements = VT->getNumElements(); 1562 unsigned numEltsInit = 0; 1563 QualType elementType = VT->getElementType(); 1564 1565 if (Index >= IList->getNumInits()) { 1566 // Make sure the element type can be value-initialized. 1567 if (VerifyOnly) 1568 CheckEmptyInitializable( 1569 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1570 IList->getEndLoc()); 1571 return; 1572 } 1573 1574 if (!SemaRef.getLangOpts().OpenCL) { 1575 // If the initializing element is a vector, try to copy-initialize 1576 // instead of breaking it apart (which is doomed to failure anyway). 1577 Expr *Init = IList->getInit(Index); 1578 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1579 if (VerifyOnly) { 1580 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1581 hadError = true; 1582 ++Index; 1583 return; 1584 } 1585 1586 ExprResult Result = 1587 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1588 /*TopLevelOfInitList=*/true); 1589 1590 Expr *ResultExpr = nullptr; 1591 if (Result.isInvalid()) 1592 hadError = true; // types weren't compatible. 1593 else { 1594 ResultExpr = Result.getAs<Expr>(); 1595 1596 if (ResultExpr != Init) { 1597 // The type was promoted, update initializer list. 1598 IList->setInit(Index, ResultExpr); 1599 } 1600 } 1601 if (hadError) 1602 ++StructuredIndex; 1603 else 1604 UpdateStructuredListElement(StructuredList, StructuredIndex, 1605 ResultExpr); 1606 ++Index; 1607 return; 1608 } 1609 1610 InitializedEntity ElementEntity = 1611 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1612 1613 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1614 // Don't attempt to go past the end of the init list 1615 if (Index >= IList->getNumInits()) { 1616 if (VerifyOnly) 1617 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1618 break; 1619 } 1620 1621 ElementEntity.setElementIndex(Index); 1622 CheckSubElementType(ElementEntity, IList, elementType, Index, 1623 StructuredList, StructuredIndex); 1624 } 1625 1626 if (VerifyOnly) 1627 return; 1628 1629 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1630 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1631 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1632 T->getVectorKind() == VectorType::NeonPolyVector)) { 1633 // The ability to use vector initializer lists is a GNU vector extension 1634 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1635 // endian machines it works fine, however on big endian machines it 1636 // exhibits surprising behaviour: 1637 // 1638 // uint32x2_t x = {42, 64}; 1639 // return vget_lane_u32(x, 0); // Will return 64. 1640 // 1641 // Because of this, explicitly call out that it is non-portable. 1642 // 1643 SemaRef.Diag(IList->getBeginLoc(), 1644 diag::warn_neon_vector_initializer_non_portable); 1645 1646 const char *typeCode; 1647 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1648 1649 if (elementType->isFloatingType()) 1650 typeCode = "f"; 1651 else if (elementType->isSignedIntegerType()) 1652 typeCode = "s"; 1653 else if (elementType->isUnsignedIntegerType()) 1654 typeCode = "u"; 1655 else 1656 llvm_unreachable("Invalid element type!"); 1657 1658 SemaRef.Diag(IList->getBeginLoc(), 1659 SemaRef.Context.getTypeSize(VT) > 64 1660 ? diag::note_neon_vector_initializer_non_portable_q 1661 : diag::note_neon_vector_initializer_non_portable) 1662 << typeCode << typeSize; 1663 } 1664 1665 return; 1666 } 1667 1668 InitializedEntity ElementEntity = 1669 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1670 1671 // OpenCL initializers allows vectors to be constructed from vectors. 1672 for (unsigned i = 0; i < maxElements; ++i) { 1673 // Don't attempt to go past the end of the init list 1674 if (Index >= IList->getNumInits()) 1675 break; 1676 1677 ElementEntity.setElementIndex(Index); 1678 1679 QualType IType = IList->getInit(Index)->getType(); 1680 if (!IType->isVectorType()) { 1681 CheckSubElementType(ElementEntity, IList, elementType, Index, 1682 StructuredList, StructuredIndex); 1683 ++numEltsInit; 1684 } else { 1685 QualType VecType; 1686 const VectorType *IVT = IType->getAs<VectorType>(); 1687 unsigned numIElts = IVT->getNumElements(); 1688 1689 if (IType->isExtVectorType()) 1690 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1691 else 1692 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1693 IVT->getVectorKind()); 1694 CheckSubElementType(ElementEntity, IList, VecType, Index, 1695 StructuredList, StructuredIndex); 1696 numEltsInit += numIElts; 1697 } 1698 } 1699 1700 // OpenCL requires all elements to be initialized. 1701 if (numEltsInit != maxElements) { 1702 if (!VerifyOnly) 1703 SemaRef.Diag(IList->getBeginLoc(), 1704 diag::err_vector_incorrect_num_initializers) 1705 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1706 hadError = true; 1707 } 1708 } 1709 1710 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1711 InitListExpr *IList, QualType &DeclType, 1712 llvm::APSInt elementIndex, 1713 bool SubobjectIsDesignatorContext, 1714 unsigned &Index, 1715 InitListExpr *StructuredList, 1716 unsigned &StructuredIndex) { 1717 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1718 1719 // Check for the special-case of initializing an array with a string. 1720 if (Index < IList->getNumInits()) { 1721 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1722 SIF_None) { 1723 // We place the string literal directly into the resulting 1724 // initializer list. This is the only place where the structure 1725 // of the structured initializer list doesn't match exactly, 1726 // because doing so would involve allocating one character 1727 // constant for each string. 1728 if (!VerifyOnly) { 1729 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1730 UpdateStructuredListElement(StructuredList, StructuredIndex, 1731 IList->getInit(Index)); 1732 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1733 } 1734 ++Index; 1735 return; 1736 } 1737 } 1738 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1739 // Check for VLAs; in standard C it would be possible to check this 1740 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1741 // them in all sorts of strange places). 1742 if (!VerifyOnly) 1743 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1744 diag::err_variable_object_no_init) 1745 << VAT->getSizeExpr()->getSourceRange(); 1746 hadError = true; 1747 ++Index; 1748 ++StructuredIndex; 1749 return; 1750 } 1751 1752 // We might know the maximum number of elements in advance. 1753 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1754 elementIndex.isUnsigned()); 1755 bool maxElementsKnown = false; 1756 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1757 maxElements = CAT->getSize(); 1758 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1759 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1760 maxElementsKnown = true; 1761 } 1762 1763 QualType elementType = arrayType->getElementType(); 1764 while (Index < IList->getNumInits()) { 1765 Expr *Init = IList->getInit(Index); 1766 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1767 // If we're not the subobject that matches up with the '{' for 1768 // the designator, we shouldn't be handling the 1769 // designator. Return immediately. 1770 if (!SubobjectIsDesignatorContext) 1771 return; 1772 1773 // Handle this designated initializer. elementIndex will be 1774 // updated to be the next array element we'll initialize. 1775 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1776 DeclType, nullptr, &elementIndex, Index, 1777 StructuredList, StructuredIndex, true, 1778 false)) { 1779 hadError = true; 1780 continue; 1781 } 1782 1783 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1784 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1785 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1786 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1787 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1788 1789 // If the array is of incomplete type, keep track of the number of 1790 // elements in the initializer. 1791 if (!maxElementsKnown && elementIndex > maxElements) 1792 maxElements = elementIndex; 1793 1794 continue; 1795 } 1796 1797 // If we know the maximum number of elements, and we've already 1798 // hit it, stop consuming elements in the initializer list. 1799 if (maxElementsKnown && elementIndex == maxElements) 1800 break; 1801 1802 InitializedEntity ElementEntity = 1803 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1804 Entity); 1805 // Check this element. 1806 CheckSubElementType(ElementEntity, IList, elementType, Index, 1807 StructuredList, StructuredIndex); 1808 ++elementIndex; 1809 1810 // If the array is of incomplete type, keep track of the number of 1811 // elements in the initializer. 1812 if (!maxElementsKnown && elementIndex > maxElements) 1813 maxElements = elementIndex; 1814 } 1815 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1816 // If this is an incomplete array type, the actual type needs to 1817 // be calculated here. 1818 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1819 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1820 // Sizing an array implicitly to zero is not allowed by ISO C, 1821 // but is supported by GNU. 1822 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1823 } 1824 1825 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1826 ArrayType::Normal, 0); 1827 } 1828 if (!hadError && VerifyOnly) { 1829 // If there are any members of the array that get value-initialized, check 1830 // that is possible. That happens if we know the bound and don't have 1831 // enough elements, or if we're performing an array new with an unknown 1832 // bound. 1833 // FIXME: This needs to detect holes left by designated initializers too. 1834 if ((maxElementsKnown && elementIndex < maxElements) || 1835 Entity.isVariableLengthArrayNew()) 1836 CheckEmptyInitializable( 1837 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1838 IList->getEndLoc()); 1839 } 1840 } 1841 1842 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1843 Expr *InitExpr, 1844 FieldDecl *Field, 1845 bool TopLevelObject) { 1846 // Handle GNU flexible array initializers. 1847 unsigned FlexArrayDiag; 1848 if (isa<InitListExpr>(InitExpr) && 1849 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1850 // Empty flexible array init always allowed as an extension 1851 FlexArrayDiag = diag::ext_flexible_array_init; 1852 } else if (SemaRef.getLangOpts().CPlusPlus) { 1853 // Disallow flexible array init in C++; it is not required for gcc 1854 // compatibility, and it needs work to IRGen correctly in general. 1855 FlexArrayDiag = diag::err_flexible_array_init; 1856 } else if (!TopLevelObject) { 1857 // Disallow flexible array init on non-top-level object 1858 FlexArrayDiag = diag::err_flexible_array_init; 1859 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1860 // Disallow flexible array init on anything which is not a variable. 1861 FlexArrayDiag = diag::err_flexible_array_init; 1862 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1863 // Disallow flexible array init on local variables. 1864 FlexArrayDiag = diag::err_flexible_array_init; 1865 } else { 1866 // Allow other cases. 1867 FlexArrayDiag = diag::ext_flexible_array_init; 1868 } 1869 1870 if (!VerifyOnly) { 1871 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1872 << InitExpr->getBeginLoc(); 1873 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1874 << Field; 1875 } 1876 1877 return FlexArrayDiag != diag::ext_flexible_array_init; 1878 } 1879 1880 /// Check if the type of a class element has an accessible destructor. 1881 /// 1882 /// Aggregate initialization requires a class element's destructor be 1883 /// accessible per 11.6.1 [dcl.init.aggr]: 1884 /// 1885 /// The destructor for each element of class type is potentially invoked 1886 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1887 /// occurs. 1888 static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc, 1889 Sema &SemaRef) { 1890 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1891 if (!CXXRD) 1892 return false; 1893 1894 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1895 SemaRef.CheckDestructorAccess(Loc, Destructor, 1896 SemaRef.PDiag(diag::err_access_dtor_temp) 1897 << ElementType); 1898 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1899 if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc)) 1900 return true; 1901 return false; 1902 } 1903 1904 void InitListChecker::CheckStructUnionTypes( 1905 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1906 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1907 bool SubobjectIsDesignatorContext, unsigned &Index, 1908 InitListExpr *StructuredList, unsigned &StructuredIndex, 1909 bool TopLevelObject) { 1910 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 1911 1912 // If the record is invalid, some of it's members are invalid. To avoid 1913 // confusion, we forgo checking the intializer for the entire record. 1914 if (structDecl->isInvalidDecl()) { 1915 // Assume it was supposed to consume a single initializer. 1916 ++Index; 1917 hadError = true; 1918 return; 1919 } 1920 1921 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1922 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1923 1924 if (!VerifyOnly) 1925 for (FieldDecl *FD : RD->fields()) { 1926 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 1927 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) { 1928 hadError = true; 1929 return; 1930 } 1931 } 1932 1933 // If there's a default initializer, use it. 1934 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1935 if (VerifyOnly) 1936 return; 1937 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1938 Field != FieldEnd; ++Field) { 1939 if (Field->hasInClassInitializer()) { 1940 StructuredList->setInitializedFieldInUnion(*Field); 1941 // FIXME: Actually build a CXXDefaultInitExpr? 1942 return; 1943 } 1944 } 1945 } 1946 1947 // Value-initialize the first member of the union that isn't an unnamed 1948 // bitfield. 1949 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1950 Field != FieldEnd; ++Field) { 1951 if (!Field->isUnnamedBitfield()) { 1952 if (VerifyOnly) 1953 CheckEmptyInitializable( 1954 InitializedEntity::InitializeMember(*Field, &Entity), 1955 IList->getEndLoc()); 1956 else 1957 StructuredList->setInitializedFieldInUnion(*Field); 1958 break; 1959 } 1960 } 1961 return; 1962 } 1963 1964 bool InitializedSomething = false; 1965 1966 // If we have any base classes, they are initialized prior to the fields. 1967 for (auto &Base : Bases) { 1968 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 1969 1970 // Designated inits always initialize fields, so if we see one, all 1971 // remaining base classes have no explicit initializer. 1972 if (Init && isa<DesignatedInitExpr>(Init)) 1973 Init = nullptr; 1974 1975 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 1976 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 1977 SemaRef.Context, &Base, false, &Entity); 1978 if (Init) { 1979 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 1980 StructuredList, StructuredIndex); 1981 InitializedSomething = true; 1982 } else if (VerifyOnly) { 1983 CheckEmptyInitializable(BaseEntity, InitLoc); 1984 } 1985 1986 if (!VerifyOnly) 1987 if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) { 1988 hadError = true; 1989 return; 1990 } 1991 } 1992 1993 // If structDecl is a forward declaration, this loop won't do 1994 // anything except look at designated initializers; That's okay, 1995 // because an error should get printed out elsewhere. It might be 1996 // worthwhile to skip over the rest of the initializer, though. 1997 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1998 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1999 bool CheckForMissingFields = 2000 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2001 bool HasDesignatedInit = false; 2002 2003 while (Index < IList->getNumInits()) { 2004 Expr *Init = IList->getInit(Index); 2005 SourceLocation InitLoc = Init->getBeginLoc(); 2006 2007 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2008 // If we're not the subobject that matches up with the '{' for 2009 // the designator, we shouldn't be handling the 2010 // designator. Return immediately. 2011 if (!SubobjectIsDesignatorContext) 2012 return; 2013 2014 HasDesignatedInit = true; 2015 2016 // Handle this designated initializer. Field will be updated to 2017 // the next field that we'll be initializing. 2018 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2019 DeclType, &Field, nullptr, Index, 2020 StructuredList, StructuredIndex, 2021 true, TopLevelObject)) 2022 hadError = true; 2023 else if (!VerifyOnly) { 2024 // Find the field named by the designated initializer. 2025 RecordDecl::field_iterator F = RD->field_begin(); 2026 while (std::next(F) != Field) 2027 ++F; 2028 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2029 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) { 2030 hadError = true; 2031 return; 2032 } 2033 } 2034 2035 InitializedSomething = true; 2036 2037 // Disable check for missing fields when designators are used. 2038 // This matches gcc behaviour. 2039 CheckForMissingFields = false; 2040 continue; 2041 } 2042 2043 if (Field == FieldEnd) { 2044 // We've run out of fields. We're done. 2045 break; 2046 } 2047 2048 // We've already initialized a member of a union. We're done. 2049 if (InitializedSomething && DeclType->isUnionType()) 2050 break; 2051 2052 // If we've hit the flexible array member at the end, we're done. 2053 if (Field->getType()->isIncompleteArrayType()) 2054 break; 2055 2056 if (Field->isUnnamedBitfield()) { 2057 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2058 ++Field; 2059 continue; 2060 } 2061 2062 // Make sure we can use this declaration. 2063 bool InvalidUse; 2064 if (VerifyOnly) 2065 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2066 else 2067 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2068 *Field, IList->getInit(Index)->getBeginLoc()); 2069 if (InvalidUse) { 2070 ++Index; 2071 ++Field; 2072 hadError = true; 2073 continue; 2074 } 2075 2076 if (!VerifyOnly) { 2077 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2078 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) { 2079 hadError = true; 2080 return; 2081 } 2082 } 2083 2084 InitializedEntity MemberEntity = 2085 InitializedEntity::InitializeMember(*Field, &Entity); 2086 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2087 StructuredList, StructuredIndex); 2088 InitializedSomething = true; 2089 2090 if (DeclType->isUnionType() && !VerifyOnly) { 2091 // Initialize the first field within the union. 2092 StructuredList->setInitializedFieldInUnion(*Field); 2093 } 2094 2095 ++Field; 2096 } 2097 2098 // Emit warnings for missing struct field initializers. 2099 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2100 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2101 !DeclType->isUnionType()) { 2102 // It is possible we have one or more unnamed bitfields remaining. 2103 // Find first (if any) named field and emit warning. 2104 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2105 it != end; ++it) { 2106 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2107 SemaRef.Diag(IList->getSourceRange().getEnd(), 2108 diag::warn_missing_field_initializers) << *it; 2109 break; 2110 } 2111 } 2112 } 2113 2114 // Check that any remaining fields can be value-initialized. 2115 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 2116 !Field->getType()->isIncompleteArrayType()) { 2117 // FIXME: Should check for holes left by designated initializers too. 2118 for (; Field != FieldEnd && !hadError; ++Field) { 2119 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2120 CheckEmptyInitializable( 2121 InitializedEntity::InitializeMember(*Field, &Entity), 2122 IList->getEndLoc()); 2123 } 2124 } 2125 2126 // Check that the types of the remaining fields have accessible destructors. 2127 if (!VerifyOnly) { 2128 // If the initializer expression has a designated initializer, check the 2129 // elements for which a designated initializer is not provided too. 2130 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2131 : Field; 2132 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2133 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2134 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) { 2135 hadError = true; 2136 return; 2137 } 2138 } 2139 } 2140 2141 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2142 Index >= IList->getNumInits()) 2143 return; 2144 2145 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2146 TopLevelObject)) { 2147 hadError = true; 2148 ++Index; 2149 return; 2150 } 2151 2152 InitializedEntity MemberEntity = 2153 InitializedEntity::InitializeMember(*Field, &Entity); 2154 2155 if (isa<InitListExpr>(IList->getInit(Index))) 2156 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2157 StructuredList, StructuredIndex); 2158 else 2159 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2160 StructuredList, StructuredIndex); 2161 } 2162 2163 /// Expand a field designator that refers to a member of an 2164 /// anonymous struct or union into a series of field designators that 2165 /// refers to the field within the appropriate subobject. 2166 /// 2167 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2168 DesignatedInitExpr *DIE, 2169 unsigned DesigIdx, 2170 IndirectFieldDecl *IndirectField) { 2171 typedef DesignatedInitExpr::Designator Designator; 2172 2173 // Build the replacement designators. 2174 SmallVector<Designator, 4> Replacements; 2175 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2176 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2177 if (PI + 1 == PE) 2178 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2179 DIE->getDesignator(DesigIdx)->getDotLoc(), 2180 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2181 else 2182 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2183 SourceLocation(), SourceLocation())); 2184 assert(isa<FieldDecl>(*PI)); 2185 Replacements.back().setField(cast<FieldDecl>(*PI)); 2186 } 2187 2188 // Expand the current designator into the set of replacement 2189 // designators, so we have a full subobject path down to where the 2190 // member of the anonymous struct/union is actually stored. 2191 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2192 &Replacements[0] + Replacements.size()); 2193 } 2194 2195 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2196 DesignatedInitExpr *DIE) { 2197 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2198 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2199 for (unsigned I = 0; I < NumIndexExprs; ++I) 2200 IndexExprs[I] = DIE->getSubExpr(I + 1); 2201 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2202 IndexExprs, 2203 DIE->getEqualOrColonLoc(), 2204 DIE->usesGNUSyntax(), DIE->getInit()); 2205 } 2206 2207 namespace { 2208 2209 // Callback to only accept typo corrections that are for field members of 2210 // the given struct or union. 2211 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2212 public: 2213 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2214 : Record(RD) {} 2215 2216 bool ValidateCandidate(const TypoCorrection &candidate) override { 2217 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2218 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2219 } 2220 2221 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2222 return llvm::make_unique<FieldInitializerValidatorCCC>(*this); 2223 } 2224 2225 private: 2226 RecordDecl *Record; 2227 }; 2228 2229 } // end anonymous namespace 2230 2231 /// Check the well-formedness of a C99 designated initializer. 2232 /// 2233 /// Determines whether the designated initializer @p DIE, which 2234 /// resides at the given @p Index within the initializer list @p 2235 /// IList, is well-formed for a current object of type @p DeclType 2236 /// (C99 6.7.8). The actual subobject that this designator refers to 2237 /// within the current subobject is returned in either 2238 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2239 /// 2240 /// @param IList The initializer list in which this designated 2241 /// initializer occurs. 2242 /// 2243 /// @param DIE The designated initializer expression. 2244 /// 2245 /// @param DesigIdx The index of the current designator. 2246 /// 2247 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2248 /// into which the designation in @p DIE should refer. 2249 /// 2250 /// @param NextField If non-NULL and the first designator in @p DIE is 2251 /// a field, this will be set to the field declaration corresponding 2252 /// to the field named by the designator. 2253 /// 2254 /// @param NextElementIndex If non-NULL and the first designator in @p 2255 /// DIE is an array designator or GNU array-range designator, this 2256 /// will be set to the last index initialized by this designator. 2257 /// 2258 /// @param Index Index into @p IList where the designated initializer 2259 /// @p DIE occurs. 2260 /// 2261 /// @param StructuredList The initializer list expression that 2262 /// describes all of the subobject initializers in the order they'll 2263 /// actually be initialized. 2264 /// 2265 /// @returns true if there was an error, false otherwise. 2266 bool 2267 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2268 InitListExpr *IList, 2269 DesignatedInitExpr *DIE, 2270 unsigned DesigIdx, 2271 QualType &CurrentObjectType, 2272 RecordDecl::field_iterator *NextField, 2273 llvm::APSInt *NextElementIndex, 2274 unsigned &Index, 2275 InitListExpr *StructuredList, 2276 unsigned &StructuredIndex, 2277 bool FinishSubobjectInit, 2278 bool TopLevelObject) { 2279 if (DesigIdx == DIE->size()) { 2280 // Check the actual initialization for the designated object type. 2281 bool prevHadError = hadError; 2282 2283 // Temporarily remove the designator expression from the 2284 // initializer list that the child calls see, so that we don't try 2285 // to re-process the designator. 2286 unsigned OldIndex = Index; 2287 IList->setInit(OldIndex, DIE->getInit()); 2288 2289 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2290 StructuredList, StructuredIndex); 2291 2292 // Restore the designated initializer expression in the syntactic 2293 // form of the initializer list. 2294 if (IList->getInit(OldIndex) != DIE->getInit()) 2295 DIE->setInit(IList->getInit(OldIndex)); 2296 IList->setInit(OldIndex, DIE); 2297 2298 return hadError && !prevHadError; 2299 } 2300 2301 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2302 bool IsFirstDesignator = (DesigIdx == 0); 2303 if (!VerifyOnly) { 2304 assert((IsFirstDesignator || StructuredList) && 2305 "Need a non-designated initializer list to start from"); 2306 2307 // Determine the structural initializer list that corresponds to the 2308 // current subobject. 2309 if (IsFirstDesignator) 2310 StructuredList = SyntacticToSemantic.lookup(IList); 2311 else { 2312 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2313 StructuredList->getInit(StructuredIndex) : nullptr; 2314 if (!ExistingInit && StructuredList->hasArrayFiller()) 2315 ExistingInit = StructuredList->getArrayFiller(); 2316 2317 if (!ExistingInit) 2318 StructuredList = getStructuredSubobjectInit( 2319 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2320 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2321 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2322 StructuredList = Result; 2323 else { 2324 if (DesignatedInitUpdateExpr *E = 2325 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2326 StructuredList = E->getUpdater(); 2327 else { 2328 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2329 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2330 ExistingInit, DIE->getEndLoc()); 2331 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2332 StructuredList = DIUE->getUpdater(); 2333 } 2334 2335 // We need to check on source range validity because the previous 2336 // initializer does not have to be an explicit initializer. e.g., 2337 // 2338 // struct P { int a, b; }; 2339 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2340 // 2341 // There is an overwrite taking place because the first braced initializer 2342 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 2343 if (ExistingInit->getSourceRange().isValid()) { 2344 // We are creating an initializer list that initializes the 2345 // subobjects of the current object, but there was already an 2346 // initialization that completely initialized the current 2347 // subobject, e.g., by a compound literal: 2348 // 2349 // struct X { int a, b; }; 2350 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2351 // 2352 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2353 // designated initializer re-initializes the whole 2354 // subobject [0], overwriting previous initializers. 2355 SemaRef.Diag(D->getBeginLoc(), 2356 diag::warn_subobject_initializer_overrides) 2357 << SourceRange(D->getBeginLoc(), DIE->getEndLoc()); 2358 2359 SemaRef.Diag(ExistingInit->getBeginLoc(), 2360 diag::note_previous_initializer) 2361 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2362 } 2363 } 2364 } 2365 assert(StructuredList && "Expected a structured initializer list"); 2366 } 2367 2368 if (D->isFieldDesignator()) { 2369 // C99 6.7.8p7: 2370 // 2371 // If a designator has the form 2372 // 2373 // . identifier 2374 // 2375 // then the current object (defined below) shall have 2376 // structure or union type and the identifier shall be the 2377 // name of a member of that type. 2378 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2379 if (!RT) { 2380 SourceLocation Loc = D->getDotLoc(); 2381 if (Loc.isInvalid()) 2382 Loc = D->getFieldLoc(); 2383 if (!VerifyOnly) 2384 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2385 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2386 ++Index; 2387 return true; 2388 } 2389 2390 FieldDecl *KnownField = D->getField(); 2391 if (!KnownField) { 2392 IdentifierInfo *FieldName = D->getFieldName(); 2393 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2394 for (NamedDecl *ND : Lookup) { 2395 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2396 KnownField = FD; 2397 break; 2398 } 2399 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2400 // In verify mode, don't modify the original. 2401 if (VerifyOnly) 2402 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2403 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2404 D = DIE->getDesignator(DesigIdx); 2405 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2406 break; 2407 } 2408 } 2409 if (!KnownField) { 2410 if (VerifyOnly) { 2411 ++Index; 2412 return true; // No typo correction when just trying this out. 2413 } 2414 2415 // Name lookup found something, but it wasn't a field. 2416 if (!Lookup.empty()) { 2417 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2418 << FieldName; 2419 SemaRef.Diag(Lookup.front()->getLocation(), 2420 diag::note_field_designator_found); 2421 ++Index; 2422 return true; 2423 } 2424 2425 // Name lookup didn't find anything. 2426 // Determine whether this was a typo for another field name. 2427 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2428 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2429 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2430 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2431 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2432 SemaRef.diagnoseTypo( 2433 Corrected, 2434 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2435 << FieldName << CurrentObjectType); 2436 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2437 hadError = true; 2438 } else { 2439 // Typo correction didn't find anything. 2440 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2441 << FieldName << CurrentObjectType; 2442 ++Index; 2443 return true; 2444 } 2445 } 2446 } 2447 2448 unsigned FieldIndex = 0; 2449 2450 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2451 FieldIndex = CXXRD->getNumBases(); 2452 2453 for (auto *FI : RT->getDecl()->fields()) { 2454 if (FI->isUnnamedBitfield()) 2455 continue; 2456 if (declaresSameEntity(KnownField, FI)) { 2457 KnownField = FI; 2458 break; 2459 } 2460 ++FieldIndex; 2461 } 2462 2463 RecordDecl::field_iterator Field = 2464 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2465 2466 // All of the fields of a union are located at the same place in 2467 // the initializer list. 2468 if (RT->getDecl()->isUnion()) { 2469 FieldIndex = 0; 2470 if (!VerifyOnly) { 2471 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2472 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2473 assert(StructuredList->getNumInits() == 1 2474 && "A union should never have more than one initializer!"); 2475 2476 Expr *ExistingInit = StructuredList->getInit(0); 2477 if (ExistingInit) { 2478 // We're about to throw away an initializer, emit warning. 2479 SemaRef.Diag(D->getFieldLoc(), 2480 diag::warn_initializer_overrides) 2481 << D->getSourceRange(); 2482 SemaRef.Diag(ExistingInit->getBeginLoc(), 2483 diag::note_previous_initializer) 2484 << /*FIXME:has side effects=*/0 2485 << ExistingInit->getSourceRange(); 2486 } 2487 2488 // remove existing initializer 2489 StructuredList->resizeInits(SemaRef.Context, 0); 2490 StructuredList->setInitializedFieldInUnion(nullptr); 2491 } 2492 2493 StructuredList->setInitializedFieldInUnion(*Field); 2494 } 2495 } 2496 2497 // Make sure we can use this declaration. 2498 bool InvalidUse; 2499 if (VerifyOnly) 2500 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2501 else 2502 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2503 if (InvalidUse) { 2504 ++Index; 2505 return true; 2506 } 2507 2508 if (!VerifyOnly) { 2509 // Update the designator with the field declaration. 2510 D->setField(*Field); 2511 2512 // Make sure that our non-designated initializer list has space 2513 // for a subobject corresponding to this field. 2514 if (FieldIndex >= StructuredList->getNumInits()) 2515 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2516 } 2517 2518 // This designator names a flexible array member. 2519 if (Field->getType()->isIncompleteArrayType()) { 2520 bool Invalid = false; 2521 if ((DesigIdx + 1) != DIE->size()) { 2522 // We can't designate an object within the flexible array 2523 // member (because GCC doesn't allow it). 2524 if (!VerifyOnly) { 2525 DesignatedInitExpr::Designator *NextD 2526 = DIE->getDesignator(DesigIdx + 1); 2527 SemaRef.Diag(NextD->getBeginLoc(), 2528 diag::err_designator_into_flexible_array_member) 2529 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2530 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2531 << *Field; 2532 } 2533 Invalid = true; 2534 } 2535 2536 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2537 !isa<StringLiteral>(DIE->getInit())) { 2538 // The initializer is not an initializer list. 2539 if (!VerifyOnly) { 2540 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2541 diag::err_flexible_array_init_needs_braces) 2542 << DIE->getInit()->getSourceRange(); 2543 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2544 << *Field; 2545 } 2546 Invalid = true; 2547 } 2548 2549 // Check GNU flexible array initializer. 2550 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2551 TopLevelObject)) 2552 Invalid = true; 2553 2554 if (Invalid) { 2555 ++Index; 2556 return true; 2557 } 2558 2559 // Initialize the array. 2560 bool prevHadError = hadError; 2561 unsigned newStructuredIndex = FieldIndex; 2562 unsigned OldIndex = Index; 2563 IList->setInit(Index, DIE->getInit()); 2564 2565 InitializedEntity MemberEntity = 2566 InitializedEntity::InitializeMember(*Field, &Entity); 2567 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2568 StructuredList, newStructuredIndex); 2569 2570 IList->setInit(OldIndex, DIE); 2571 if (hadError && !prevHadError) { 2572 ++Field; 2573 ++FieldIndex; 2574 if (NextField) 2575 *NextField = Field; 2576 StructuredIndex = FieldIndex; 2577 return true; 2578 } 2579 } else { 2580 // Recurse to check later designated subobjects. 2581 QualType FieldType = Field->getType(); 2582 unsigned newStructuredIndex = FieldIndex; 2583 2584 InitializedEntity MemberEntity = 2585 InitializedEntity::InitializeMember(*Field, &Entity); 2586 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2587 FieldType, nullptr, nullptr, Index, 2588 StructuredList, newStructuredIndex, 2589 FinishSubobjectInit, false)) 2590 return true; 2591 } 2592 2593 // Find the position of the next field to be initialized in this 2594 // subobject. 2595 ++Field; 2596 ++FieldIndex; 2597 2598 // If this the first designator, our caller will continue checking 2599 // the rest of this struct/class/union subobject. 2600 if (IsFirstDesignator) { 2601 if (NextField) 2602 *NextField = Field; 2603 StructuredIndex = FieldIndex; 2604 return false; 2605 } 2606 2607 if (!FinishSubobjectInit) 2608 return false; 2609 2610 // We've already initialized something in the union; we're done. 2611 if (RT->getDecl()->isUnion()) 2612 return hadError; 2613 2614 // Check the remaining fields within this class/struct/union subobject. 2615 bool prevHadError = hadError; 2616 2617 auto NoBases = 2618 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2619 CXXRecordDecl::base_class_iterator()); 2620 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2621 false, Index, StructuredList, FieldIndex); 2622 return hadError && !prevHadError; 2623 } 2624 2625 // C99 6.7.8p6: 2626 // 2627 // If a designator has the form 2628 // 2629 // [ constant-expression ] 2630 // 2631 // then the current object (defined below) shall have array 2632 // type and the expression shall be an integer constant 2633 // expression. If the array is of unknown size, any 2634 // nonnegative value is valid. 2635 // 2636 // Additionally, cope with the GNU extension that permits 2637 // designators of the form 2638 // 2639 // [ constant-expression ... constant-expression ] 2640 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2641 if (!AT) { 2642 if (!VerifyOnly) 2643 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2644 << CurrentObjectType; 2645 ++Index; 2646 return true; 2647 } 2648 2649 Expr *IndexExpr = nullptr; 2650 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2651 if (D->isArrayDesignator()) { 2652 IndexExpr = DIE->getArrayIndex(*D); 2653 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2654 DesignatedEndIndex = DesignatedStartIndex; 2655 } else { 2656 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2657 2658 DesignatedStartIndex = 2659 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2660 DesignatedEndIndex = 2661 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2662 IndexExpr = DIE->getArrayRangeEnd(*D); 2663 2664 // Codegen can't handle evaluating array range designators that have side 2665 // effects, because we replicate the AST value for each initialized element. 2666 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2667 // elements with something that has a side effect, so codegen can emit an 2668 // "error unsupported" error instead of miscompiling the app. 2669 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2670 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2671 FullyStructuredList->sawArrayRangeDesignator(); 2672 } 2673 2674 if (isa<ConstantArrayType>(AT)) { 2675 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2676 DesignatedStartIndex 2677 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2678 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2679 DesignatedEndIndex 2680 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2681 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2682 if (DesignatedEndIndex >= MaxElements) { 2683 if (!VerifyOnly) 2684 SemaRef.Diag(IndexExpr->getBeginLoc(), 2685 diag::err_array_designator_too_large) 2686 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2687 << IndexExpr->getSourceRange(); 2688 ++Index; 2689 return true; 2690 } 2691 } else { 2692 unsigned DesignatedIndexBitWidth = 2693 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2694 DesignatedStartIndex = 2695 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2696 DesignatedEndIndex = 2697 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2698 DesignatedStartIndex.setIsUnsigned(true); 2699 DesignatedEndIndex.setIsUnsigned(true); 2700 } 2701 2702 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2703 // We're modifying a string literal init; we have to decompose the string 2704 // so we can modify the individual characters. 2705 ASTContext &Context = SemaRef.Context; 2706 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2707 2708 // Compute the character type 2709 QualType CharTy = AT->getElementType(); 2710 2711 // Compute the type of the integer literals. 2712 QualType PromotedCharTy = CharTy; 2713 if (CharTy->isPromotableIntegerType()) 2714 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2715 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2716 2717 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2718 // Get the length of the string. 2719 uint64_t StrLen = SL->getLength(); 2720 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2721 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2722 StructuredList->resizeInits(Context, StrLen); 2723 2724 // Build a literal for each character in the string, and put them into 2725 // the init list. 2726 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2727 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2728 Expr *Init = new (Context) IntegerLiteral( 2729 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2730 if (CharTy != PromotedCharTy) 2731 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2732 Init, nullptr, VK_RValue); 2733 StructuredList->updateInit(Context, i, Init); 2734 } 2735 } else { 2736 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2737 std::string Str; 2738 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2739 2740 // Get the length of the string. 2741 uint64_t StrLen = Str.size(); 2742 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2743 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2744 StructuredList->resizeInits(Context, StrLen); 2745 2746 // Build a literal for each character in the string, and put them into 2747 // the init list. 2748 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2749 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2750 Expr *Init = new (Context) IntegerLiteral( 2751 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2752 if (CharTy != PromotedCharTy) 2753 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2754 Init, nullptr, VK_RValue); 2755 StructuredList->updateInit(Context, i, Init); 2756 } 2757 } 2758 } 2759 2760 // Make sure that our non-designated initializer list has space 2761 // for a subobject corresponding to this array element. 2762 if (!VerifyOnly && 2763 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2764 StructuredList->resizeInits(SemaRef.Context, 2765 DesignatedEndIndex.getZExtValue() + 1); 2766 2767 // Repeatedly perform subobject initializations in the range 2768 // [DesignatedStartIndex, DesignatedEndIndex]. 2769 2770 // Move to the next designator 2771 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2772 unsigned OldIndex = Index; 2773 2774 InitializedEntity ElementEntity = 2775 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2776 2777 while (DesignatedStartIndex <= DesignatedEndIndex) { 2778 // Recurse to check later designated subobjects. 2779 QualType ElementType = AT->getElementType(); 2780 Index = OldIndex; 2781 2782 ElementEntity.setElementIndex(ElementIndex); 2783 if (CheckDesignatedInitializer( 2784 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2785 nullptr, Index, StructuredList, ElementIndex, 2786 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2787 false)) 2788 return true; 2789 2790 // Move to the next index in the array that we'll be initializing. 2791 ++DesignatedStartIndex; 2792 ElementIndex = DesignatedStartIndex.getZExtValue(); 2793 } 2794 2795 // If this the first designator, our caller will continue checking 2796 // the rest of this array subobject. 2797 if (IsFirstDesignator) { 2798 if (NextElementIndex) 2799 *NextElementIndex = DesignatedStartIndex; 2800 StructuredIndex = ElementIndex; 2801 return false; 2802 } 2803 2804 if (!FinishSubobjectInit) 2805 return false; 2806 2807 // Check the remaining elements within this array subobject. 2808 bool prevHadError = hadError; 2809 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2810 /*SubobjectIsDesignatorContext=*/false, Index, 2811 StructuredList, ElementIndex); 2812 return hadError && !prevHadError; 2813 } 2814 2815 // Get the structured initializer list for a subobject of type 2816 // @p CurrentObjectType. 2817 InitListExpr * 2818 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2819 QualType CurrentObjectType, 2820 InitListExpr *StructuredList, 2821 unsigned StructuredIndex, 2822 SourceRange InitRange, 2823 bool IsFullyOverwritten) { 2824 if (VerifyOnly) 2825 return nullptr; // No structured list in verification-only mode. 2826 Expr *ExistingInit = nullptr; 2827 if (!StructuredList) 2828 ExistingInit = SyntacticToSemantic.lookup(IList); 2829 else if (StructuredIndex < StructuredList->getNumInits()) 2830 ExistingInit = StructuredList->getInit(StructuredIndex); 2831 2832 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2833 // There might have already been initializers for subobjects of the current 2834 // object, but a subsequent initializer list will overwrite the entirety 2835 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2836 // 2837 // struct P { char x[6]; }; 2838 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2839 // 2840 // The first designated initializer is ignored, and l.x is just "f". 2841 if (!IsFullyOverwritten) 2842 return Result; 2843 2844 if (ExistingInit) { 2845 // We are creating an initializer list that initializes the 2846 // subobjects of the current object, but there was already an 2847 // initialization that completely initialized the current 2848 // subobject, e.g., by a compound literal: 2849 // 2850 // struct X { int a, b; }; 2851 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2852 // 2853 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2854 // designated initializer re-initializes the whole 2855 // subobject [0], overwriting previous initializers. 2856 SemaRef.Diag(InitRange.getBegin(), 2857 diag::warn_subobject_initializer_overrides) 2858 << InitRange; 2859 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer) 2860 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2861 } 2862 2863 InitListExpr *Result 2864 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2865 InitRange.getBegin(), None, 2866 InitRange.getEnd()); 2867 2868 QualType ResultType = CurrentObjectType; 2869 if (!ResultType->isArrayType()) 2870 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2871 Result->setType(ResultType); 2872 2873 // Pre-allocate storage for the structured initializer list. 2874 unsigned NumElements = 0; 2875 unsigned NumInits = 0; 2876 bool GotNumInits = false; 2877 if (!StructuredList) { 2878 NumInits = IList->getNumInits(); 2879 GotNumInits = true; 2880 } else if (Index < IList->getNumInits()) { 2881 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2882 NumInits = SubList->getNumInits(); 2883 GotNumInits = true; 2884 } 2885 } 2886 2887 if (const ArrayType *AType 2888 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2889 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2890 NumElements = CAType->getSize().getZExtValue(); 2891 // Simple heuristic so that we don't allocate a very large 2892 // initializer with many empty entries at the end. 2893 if (GotNumInits && NumElements > NumInits) 2894 NumElements = 0; 2895 } 2896 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2897 NumElements = VType->getNumElements(); 2898 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2899 RecordDecl *RDecl = RType->getDecl(); 2900 if (RDecl->isUnion()) 2901 NumElements = 1; 2902 else 2903 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2904 } 2905 2906 Result->reserveInits(SemaRef.Context, NumElements); 2907 2908 // Link this new initializer list into the structured initializer 2909 // lists. 2910 if (StructuredList) 2911 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2912 else { 2913 Result->setSyntacticForm(IList); 2914 SyntacticToSemantic[IList] = Result; 2915 } 2916 2917 return Result; 2918 } 2919 2920 /// Update the initializer at index @p StructuredIndex within the 2921 /// structured initializer list to the value @p expr. 2922 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2923 unsigned &StructuredIndex, 2924 Expr *expr) { 2925 // No structured initializer list to update 2926 if (!StructuredList) 2927 return; 2928 2929 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2930 StructuredIndex, expr)) { 2931 // This initializer overwrites a previous initializer. Warn. 2932 // We need to check on source range validity because the previous 2933 // initializer does not have to be an explicit initializer. 2934 // struct P { int a, b; }; 2935 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2936 // There is an overwrite taking place because the first braced initializer 2937 // list "{ .a = 2 }' already provides value for .p.b (which is zero). 2938 if (PrevInit->getSourceRange().isValid()) { 2939 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides) 2940 << expr->getSourceRange(); 2941 2942 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer) 2943 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange(); 2944 } 2945 } 2946 2947 ++StructuredIndex; 2948 } 2949 2950 /// Check that the given Index expression is a valid array designator 2951 /// value. This is essentially just a wrapper around 2952 /// VerifyIntegerConstantExpression that also checks for negative values 2953 /// and produces a reasonable diagnostic if there is a 2954 /// failure. Returns the index expression, possibly with an implicit cast 2955 /// added, on success. If everything went okay, Value will receive the 2956 /// value of the constant expression. 2957 static ExprResult 2958 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2959 SourceLocation Loc = Index->getBeginLoc(); 2960 2961 // Make sure this is an integer constant expression. 2962 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2963 if (Result.isInvalid()) 2964 return Result; 2965 2966 if (Value.isSigned() && Value.isNegative()) 2967 return S.Diag(Loc, diag::err_array_designator_negative) 2968 << Value.toString(10) << Index->getSourceRange(); 2969 2970 Value.setIsUnsigned(true); 2971 return Result; 2972 } 2973 2974 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2975 SourceLocation Loc, 2976 bool GNUSyntax, 2977 ExprResult Init) { 2978 typedef DesignatedInitExpr::Designator ASTDesignator; 2979 2980 bool Invalid = false; 2981 SmallVector<ASTDesignator, 32> Designators; 2982 SmallVector<Expr *, 32> InitExpressions; 2983 2984 // Build designators and check array designator expressions. 2985 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2986 const Designator &D = Desig.getDesignator(Idx); 2987 switch (D.getKind()) { 2988 case Designator::FieldDesignator: 2989 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2990 D.getFieldLoc())); 2991 break; 2992 2993 case Designator::ArrayDesignator: { 2994 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2995 llvm::APSInt IndexValue; 2996 if (!Index->isTypeDependent() && !Index->isValueDependent()) 2997 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 2998 if (!Index) 2999 Invalid = true; 3000 else { 3001 Designators.push_back(ASTDesignator(InitExpressions.size(), 3002 D.getLBracketLoc(), 3003 D.getRBracketLoc())); 3004 InitExpressions.push_back(Index); 3005 } 3006 break; 3007 } 3008 3009 case Designator::ArrayRangeDesignator: { 3010 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3011 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3012 llvm::APSInt StartValue; 3013 llvm::APSInt EndValue; 3014 bool StartDependent = StartIndex->isTypeDependent() || 3015 StartIndex->isValueDependent(); 3016 bool EndDependent = EndIndex->isTypeDependent() || 3017 EndIndex->isValueDependent(); 3018 if (!StartDependent) 3019 StartIndex = 3020 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3021 if (!EndDependent) 3022 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3023 3024 if (!StartIndex || !EndIndex) 3025 Invalid = true; 3026 else { 3027 // Make sure we're comparing values with the same bit width. 3028 if (StartDependent || EndDependent) { 3029 // Nothing to compute. 3030 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3031 EndValue = EndValue.extend(StartValue.getBitWidth()); 3032 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3033 StartValue = StartValue.extend(EndValue.getBitWidth()); 3034 3035 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3036 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3037 << StartValue.toString(10) << EndValue.toString(10) 3038 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3039 Invalid = true; 3040 } else { 3041 Designators.push_back(ASTDesignator(InitExpressions.size(), 3042 D.getLBracketLoc(), 3043 D.getEllipsisLoc(), 3044 D.getRBracketLoc())); 3045 InitExpressions.push_back(StartIndex); 3046 InitExpressions.push_back(EndIndex); 3047 } 3048 } 3049 break; 3050 } 3051 } 3052 } 3053 3054 if (Invalid || Init.isInvalid()) 3055 return ExprError(); 3056 3057 // Clear out the expressions within the designation. 3058 Desig.ClearExprs(*this); 3059 3060 DesignatedInitExpr *DIE 3061 = DesignatedInitExpr::Create(Context, 3062 Designators, 3063 InitExpressions, Loc, GNUSyntax, 3064 Init.getAs<Expr>()); 3065 3066 if (!getLangOpts().C99) 3067 Diag(DIE->getBeginLoc(), diag::ext_designated_init) 3068 << DIE->getSourceRange(); 3069 3070 return DIE; 3071 } 3072 3073 //===----------------------------------------------------------------------===// 3074 // Initialization entity 3075 //===----------------------------------------------------------------------===// 3076 3077 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3078 const InitializedEntity &Parent) 3079 : Parent(&Parent), Index(Index) 3080 { 3081 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3082 Kind = EK_ArrayElement; 3083 Type = AT->getElementType(); 3084 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3085 Kind = EK_VectorElement; 3086 Type = VT->getElementType(); 3087 } else { 3088 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3089 assert(CT && "Unexpected type"); 3090 Kind = EK_ComplexElement; 3091 Type = CT->getElementType(); 3092 } 3093 } 3094 3095 InitializedEntity 3096 InitializedEntity::InitializeBase(ASTContext &Context, 3097 const CXXBaseSpecifier *Base, 3098 bool IsInheritedVirtualBase, 3099 const InitializedEntity *Parent) { 3100 InitializedEntity Result; 3101 Result.Kind = EK_Base; 3102 Result.Parent = Parent; 3103 Result.Base = reinterpret_cast<uintptr_t>(Base); 3104 if (IsInheritedVirtualBase) 3105 Result.Base |= 0x01; 3106 3107 Result.Type = Base->getType(); 3108 return Result; 3109 } 3110 3111 DeclarationName InitializedEntity::getName() const { 3112 switch (getKind()) { 3113 case EK_Parameter: 3114 case EK_Parameter_CF_Audited: { 3115 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3116 return (D ? D->getDeclName() : DeclarationName()); 3117 } 3118 3119 case EK_Variable: 3120 case EK_Member: 3121 case EK_Binding: 3122 return Variable.VariableOrMember->getDeclName(); 3123 3124 case EK_LambdaCapture: 3125 return DeclarationName(Capture.VarID); 3126 3127 case EK_Result: 3128 case EK_StmtExprResult: 3129 case EK_Exception: 3130 case EK_New: 3131 case EK_Temporary: 3132 case EK_Base: 3133 case EK_Delegating: 3134 case EK_ArrayElement: 3135 case EK_VectorElement: 3136 case EK_ComplexElement: 3137 case EK_BlockElement: 3138 case EK_LambdaToBlockConversionBlockElement: 3139 case EK_CompoundLiteralInit: 3140 case EK_RelatedResult: 3141 return DeclarationName(); 3142 } 3143 3144 llvm_unreachable("Invalid EntityKind!"); 3145 } 3146 3147 ValueDecl *InitializedEntity::getDecl() const { 3148 switch (getKind()) { 3149 case EK_Variable: 3150 case EK_Member: 3151 case EK_Binding: 3152 return Variable.VariableOrMember; 3153 3154 case EK_Parameter: 3155 case EK_Parameter_CF_Audited: 3156 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3157 3158 case EK_Result: 3159 case EK_StmtExprResult: 3160 case EK_Exception: 3161 case EK_New: 3162 case EK_Temporary: 3163 case EK_Base: 3164 case EK_Delegating: 3165 case EK_ArrayElement: 3166 case EK_VectorElement: 3167 case EK_ComplexElement: 3168 case EK_BlockElement: 3169 case EK_LambdaToBlockConversionBlockElement: 3170 case EK_LambdaCapture: 3171 case EK_CompoundLiteralInit: 3172 case EK_RelatedResult: 3173 return nullptr; 3174 } 3175 3176 llvm_unreachable("Invalid EntityKind!"); 3177 } 3178 3179 bool InitializedEntity::allowsNRVO() const { 3180 switch (getKind()) { 3181 case EK_Result: 3182 case EK_Exception: 3183 return LocAndNRVO.NRVO; 3184 3185 case EK_StmtExprResult: 3186 case EK_Variable: 3187 case EK_Parameter: 3188 case EK_Parameter_CF_Audited: 3189 case EK_Member: 3190 case EK_Binding: 3191 case EK_New: 3192 case EK_Temporary: 3193 case EK_CompoundLiteralInit: 3194 case EK_Base: 3195 case EK_Delegating: 3196 case EK_ArrayElement: 3197 case EK_VectorElement: 3198 case EK_ComplexElement: 3199 case EK_BlockElement: 3200 case EK_LambdaToBlockConversionBlockElement: 3201 case EK_LambdaCapture: 3202 case EK_RelatedResult: 3203 break; 3204 } 3205 3206 return false; 3207 } 3208 3209 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3210 assert(getParent() != this); 3211 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3212 for (unsigned I = 0; I != Depth; ++I) 3213 OS << "`-"; 3214 3215 switch (getKind()) { 3216 case EK_Variable: OS << "Variable"; break; 3217 case EK_Parameter: OS << "Parameter"; break; 3218 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3219 break; 3220 case EK_Result: OS << "Result"; break; 3221 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3222 case EK_Exception: OS << "Exception"; break; 3223 case EK_Member: OS << "Member"; break; 3224 case EK_Binding: OS << "Binding"; break; 3225 case EK_New: OS << "New"; break; 3226 case EK_Temporary: OS << "Temporary"; break; 3227 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3228 case EK_RelatedResult: OS << "RelatedResult"; break; 3229 case EK_Base: OS << "Base"; break; 3230 case EK_Delegating: OS << "Delegating"; break; 3231 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3232 case EK_VectorElement: OS << "VectorElement " << Index; break; 3233 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3234 case EK_BlockElement: OS << "Block"; break; 3235 case EK_LambdaToBlockConversionBlockElement: 3236 OS << "Block (lambda)"; 3237 break; 3238 case EK_LambdaCapture: 3239 OS << "LambdaCapture "; 3240 OS << DeclarationName(Capture.VarID); 3241 break; 3242 } 3243 3244 if (auto *D = getDecl()) { 3245 OS << " "; 3246 D->printQualifiedName(OS); 3247 } 3248 3249 OS << " '" << getType().getAsString() << "'\n"; 3250 3251 return Depth + 1; 3252 } 3253 3254 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3255 dumpImpl(llvm::errs()); 3256 } 3257 3258 //===----------------------------------------------------------------------===// 3259 // Initialization sequence 3260 //===----------------------------------------------------------------------===// 3261 3262 void InitializationSequence::Step::Destroy() { 3263 switch (Kind) { 3264 case SK_ResolveAddressOfOverloadedFunction: 3265 case SK_CastDerivedToBaseRValue: 3266 case SK_CastDerivedToBaseXValue: 3267 case SK_CastDerivedToBaseLValue: 3268 case SK_BindReference: 3269 case SK_BindReferenceToTemporary: 3270 case SK_FinalCopy: 3271 case SK_ExtraneousCopyToTemporary: 3272 case SK_UserConversion: 3273 case SK_QualificationConversionRValue: 3274 case SK_QualificationConversionXValue: 3275 case SK_QualificationConversionLValue: 3276 case SK_AtomicConversion: 3277 case SK_LValueToRValue: 3278 case SK_ListInitialization: 3279 case SK_UnwrapInitList: 3280 case SK_RewrapInitList: 3281 case SK_ConstructorInitialization: 3282 case SK_ConstructorInitializationFromList: 3283 case SK_ZeroInitialization: 3284 case SK_CAssignment: 3285 case SK_StringInit: 3286 case SK_ObjCObjectConversion: 3287 case SK_ArrayLoopIndex: 3288 case SK_ArrayLoopInit: 3289 case SK_ArrayInit: 3290 case SK_GNUArrayInit: 3291 case SK_ParenthesizedArrayInit: 3292 case SK_PassByIndirectCopyRestore: 3293 case SK_PassByIndirectRestore: 3294 case SK_ProduceObjCObject: 3295 case SK_StdInitializerList: 3296 case SK_StdInitializerListConstructorCall: 3297 case SK_OCLSamplerInit: 3298 case SK_OCLZeroOpaqueType: 3299 break; 3300 3301 case SK_ConversionSequence: 3302 case SK_ConversionSequenceNoNarrowing: 3303 delete ICS; 3304 } 3305 } 3306 3307 bool InitializationSequence::isDirectReferenceBinding() const { 3308 // There can be some lvalue adjustments after the SK_BindReference step. 3309 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3310 if (I->Kind == SK_BindReference) 3311 return true; 3312 if (I->Kind == SK_BindReferenceToTemporary) 3313 return false; 3314 } 3315 return false; 3316 } 3317 3318 bool InitializationSequence::isAmbiguous() const { 3319 if (!Failed()) 3320 return false; 3321 3322 switch (getFailureKind()) { 3323 case FK_TooManyInitsForReference: 3324 case FK_ParenthesizedListInitForReference: 3325 case FK_ArrayNeedsInitList: 3326 case FK_ArrayNeedsInitListOrStringLiteral: 3327 case FK_ArrayNeedsInitListOrWideStringLiteral: 3328 case FK_NarrowStringIntoWideCharArray: 3329 case FK_WideStringIntoCharArray: 3330 case FK_IncompatWideStringIntoWideChar: 3331 case FK_PlainStringIntoUTF8Char: 3332 case FK_UTF8StringIntoPlainChar: 3333 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3334 case FK_NonConstLValueReferenceBindingToTemporary: 3335 case FK_NonConstLValueReferenceBindingToBitfield: 3336 case FK_NonConstLValueReferenceBindingToVectorElement: 3337 case FK_NonConstLValueReferenceBindingToUnrelated: 3338 case FK_RValueReferenceBindingToLValue: 3339 case FK_ReferenceInitDropsQualifiers: 3340 case FK_ReferenceInitFailed: 3341 case FK_ConversionFailed: 3342 case FK_ConversionFromPropertyFailed: 3343 case FK_TooManyInitsForScalar: 3344 case FK_ParenthesizedListInitForScalar: 3345 case FK_ReferenceBindingToInitList: 3346 case FK_InitListBadDestinationType: 3347 case FK_DefaultInitOfConst: 3348 case FK_Incomplete: 3349 case FK_ArrayTypeMismatch: 3350 case FK_NonConstantArrayInit: 3351 case FK_ListInitializationFailed: 3352 case FK_VariableLengthArrayHasInitializer: 3353 case FK_PlaceholderType: 3354 case FK_ExplicitConstructor: 3355 case FK_AddressOfUnaddressableFunction: 3356 return false; 3357 3358 case FK_ReferenceInitOverloadFailed: 3359 case FK_UserConversionOverloadFailed: 3360 case FK_ConstructorOverloadFailed: 3361 case FK_ListConstructorOverloadFailed: 3362 return FailedOverloadResult == OR_Ambiguous; 3363 } 3364 3365 llvm_unreachable("Invalid EntityKind!"); 3366 } 3367 3368 bool InitializationSequence::isConstructorInitialization() const { 3369 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3370 } 3371 3372 void 3373 InitializationSequence 3374 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3375 DeclAccessPair Found, 3376 bool HadMultipleCandidates) { 3377 Step S; 3378 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3379 S.Type = Function->getType(); 3380 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3381 S.Function.Function = Function; 3382 S.Function.FoundDecl = Found; 3383 Steps.push_back(S); 3384 } 3385 3386 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3387 ExprValueKind VK) { 3388 Step S; 3389 switch (VK) { 3390 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3391 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3392 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3393 } 3394 S.Type = BaseType; 3395 Steps.push_back(S); 3396 } 3397 3398 void InitializationSequence::AddReferenceBindingStep(QualType T, 3399 bool BindingTemporary) { 3400 Step S; 3401 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3402 S.Type = T; 3403 Steps.push_back(S); 3404 } 3405 3406 void InitializationSequence::AddFinalCopy(QualType T) { 3407 Step S; 3408 S.Kind = SK_FinalCopy; 3409 S.Type = T; 3410 Steps.push_back(S); 3411 } 3412 3413 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3414 Step S; 3415 S.Kind = SK_ExtraneousCopyToTemporary; 3416 S.Type = T; 3417 Steps.push_back(S); 3418 } 3419 3420 void 3421 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3422 DeclAccessPair FoundDecl, 3423 QualType T, 3424 bool HadMultipleCandidates) { 3425 Step S; 3426 S.Kind = SK_UserConversion; 3427 S.Type = T; 3428 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3429 S.Function.Function = Function; 3430 S.Function.FoundDecl = FoundDecl; 3431 Steps.push_back(S); 3432 } 3433 3434 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3435 ExprValueKind VK) { 3436 Step S; 3437 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3438 switch (VK) { 3439 case VK_RValue: 3440 S.Kind = SK_QualificationConversionRValue; 3441 break; 3442 case VK_XValue: 3443 S.Kind = SK_QualificationConversionXValue; 3444 break; 3445 case VK_LValue: 3446 S.Kind = SK_QualificationConversionLValue; 3447 break; 3448 } 3449 S.Type = Ty; 3450 Steps.push_back(S); 3451 } 3452 3453 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3454 Step S; 3455 S.Kind = SK_AtomicConversion; 3456 S.Type = Ty; 3457 Steps.push_back(S); 3458 } 3459 3460 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 3461 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 3462 3463 Step S; 3464 S.Kind = SK_LValueToRValue; 3465 S.Type = Ty; 3466 Steps.push_back(S); 3467 } 3468 3469 void InitializationSequence::AddConversionSequenceStep( 3470 const ImplicitConversionSequence &ICS, QualType T, 3471 bool TopLevelOfInitList) { 3472 Step S; 3473 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3474 : SK_ConversionSequence; 3475 S.Type = T; 3476 S.ICS = new ImplicitConversionSequence(ICS); 3477 Steps.push_back(S); 3478 } 3479 3480 void InitializationSequence::AddListInitializationStep(QualType T) { 3481 Step S; 3482 S.Kind = SK_ListInitialization; 3483 S.Type = T; 3484 Steps.push_back(S); 3485 } 3486 3487 void InitializationSequence::AddConstructorInitializationStep( 3488 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3489 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3490 Step S; 3491 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3492 : SK_ConstructorInitializationFromList 3493 : SK_ConstructorInitialization; 3494 S.Type = T; 3495 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3496 S.Function.Function = Constructor; 3497 S.Function.FoundDecl = FoundDecl; 3498 Steps.push_back(S); 3499 } 3500 3501 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3502 Step S; 3503 S.Kind = SK_ZeroInitialization; 3504 S.Type = T; 3505 Steps.push_back(S); 3506 } 3507 3508 void InitializationSequence::AddCAssignmentStep(QualType T) { 3509 Step S; 3510 S.Kind = SK_CAssignment; 3511 S.Type = T; 3512 Steps.push_back(S); 3513 } 3514 3515 void InitializationSequence::AddStringInitStep(QualType T) { 3516 Step S; 3517 S.Kind = SK_StringInit; 3518 S.Type = T; 3519 Steps.push_back(S); 3520 } 3521 3522 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3523 Step S; 3524 S.Kind = SK_ObjCObjectConversion; 3525 S.Type = T; 3526 Steps.push_back(S); 3527 } 3528 3529 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3530 Step S; 3531 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3532 S.Type = T; 3533 Steps.push_back(S); 3534 } 3535 3536 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3537 Step S; 3538 S.Kind = SK_ArrayLoopIndex; 3539 S.Type = EltT; 3540 Steps.insert(Steps.begin(), S); 3541 3542 S.Kind = SK_ArrayLoopInit; 3543 S.Type = T; 3544 Steps.push_back(S); 3545 } 3546 3547 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3548 Step S; 3549 S.Kind = SK_ParenthesizedArrayInit; 3550 S.Type = T; 3551 Steps.push_back(S); 3552 } 3553 3554 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3555 bool shouldCopy) { 3556 Step s; 3557 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3558 : SK_PassByIndirectRestore); 3559 s.Type = type; 3560 Steps.push_back(s); 3561 } 3562 3563 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3564 Step S; 3565 S.Kind = SK_ProduceObjCObject; 3566 S.Type = T; 3567 Steps.push_back(S); 3568 } 3569 3570 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3571 Step S; 3572 S.Kind = SK_StdInitializerList; 3573 S.Type = T; 3574 Steps.push_back(S); 3575 } 3576 3577 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3578 Step S; 3579 S.Kind = SK_OCLSamplerInit; 3580 S.Type = T; 3581 Steps.push_back(S); 3582 } 3583 3584 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3585 Step S; 3586 S.Kind = SK_OCLZeroOpaqueType; 3587 S.Type = T; 3588 Steps.push_back(S); 3589 } 3590 3591 void InitializationSequence::RewrapReferenceInitList(QualType T, 3592 InitListExpr *Syntactic) { 3593 assert(Syntactic->getNumInits() == 1 && 3594 "Can only rewrap trivial init lists."); 3595 Step S; 3596 S.Kind = SK_UnwrapInitList; 3597 S.Type = Syntactic->getInit(0)->getType(); 3598 Steps.insert(Steps.begin(), S); 3599 3600 S.Kind = SK_RewrapInitList; 3601 S.Type = T; 3602 S.WrappingSyntacticList = Syntactic; 3603 Steps.push_back(S); 3604 } 3605 3606 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3607 OverloadingResult Result) { 3608 setSequenceKind(FailedSequence); 3609 this->Failure = Failure; 3610 this->FailedOverloadResult = Result; 3611 } 3612 3613 //===----------------------------------------------------------------------===// 3614 // Attempt initialization 3615 //===----------------------------------------------------------------------===// 3616 3617 /// Tries to add a zero initializer. Returns true if that worked. 3618 static bool 3619 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3620 const InitializedEntity &Entity) { 3621 if (Entity.getKind() != InitializedEntity::EK_Variable) 3622 return false; 3623 3624 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3625 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3626 return false; 3627 3628 QualType VariableTy = VD->getType().getCanonicalType(); 3629 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3630 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3631 if (!Init.empty()) { 3632 Sequence.AddZeroInitializationStep(Entity.getType()); 3633 Sequence.SetZeroInitializationFixit(Init, Loc); 3634 return true; 3635 } 3636 return false; 3637 } 3638 3639 static void MaybeProduceObjCObject(Sema &S, 3640 InitializationSequence &Sequence, 3641 const InitializedEntity &Entity) { 3642 if (!S.getLangOpts().ObjCAutoRefCount) return; 3643 3644 /// When initializing a parameter, produce the value if it's marked 3645 /// __attribute__((ns_consumed)). 3646 if (Entity.isParameterKind()) { 3647 if (!Entity.isParameterConsumed()) 3648 return; 3649 3650 assert(Entity.getType()->isObjCRetainableType() && 3651 "consuming an object of unretainable type?"); 3652 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3653 3654 /// When initializing a return value, if the return type is a 3655 /// retainable type, then returns need to immediately retain the 3656 /// object. If an autorelease is required, it will be done at the 3657 /// last instant. 3658 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3659 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3660 if (!Entity.getType()->isObjCRetainableType()) 3661 return; 3662 3663 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3664 } 3665 } 3666 3667 static void TryListInitialization(Sema &S, 3668 const InitializedEntity &Entity, 3669 const InitializationKind &Kind, 3670 InitListExpr *InitList, 3671 InitializationSequence &Sequence, 3672 bool TreatUnavailableAsInvalid); 3673 3674 /// When initializing from init list via constructor, handle 3675 /// initialization of an object of type std::initializer_list<T>. 3676 /// 3677 /// \return true if we have handled initialization of an object of type 3678 /// std::initializer_list<T>, false otherwise. 3679 static bool TryInitializerListConstruction(Sema &S, 3680 InitListExpr *List, 3681 QualType DestType, 3682 InitializationSequence &Sequence, 3683 bool TreatUnavailableAsInvalid) { 3684 QualType E; 3685 if (!S.isStdInitializerList(DestType, &E)) 3686 return false; 3687 3688 if (!S.isCompleteType(List->getExprLoc(), E)) { 3689 Sequence.setIncompleteTypeFailure(E); 3690 return true; 3691 } 3692 3693 // Try initializing a temporary array from the init list. 3694 QualType ArrayType = S.Context.getConstantArrayType( 3695 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3696 List->getNumInits()), 3697 clang::ArrayType::Normal, 0); 3698 InitializedEntity HiddenArray = 3699 InitializedEntity::InitializeTemporary(ArrayType); 3700 InitializationKind Kind = InitializationKind::CreateDirectList( 3701 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3702 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3703 TreatUnavailableAsInvalid); 3704 if (Sequence) 3705 Sequence.AddStdInitializerListConstructionStep(DestType); 3706 return true; 3707 } 3708 3709 /// Determine if the constructor has the signature of a copy or move 3710 /// constructor for the type T of the class in which it was found. That is, 3711 /// determine if its first parameter is of type T or reference to (possibly 3712 /// cv-qualified) T. 3713 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3714 const ConstructorInfo &Info) { 3715 if (Info.Constructor->getNumParams() == 0) 3716 return false; 3717 3718 QualType ParmT = 3719 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3720 QualType ClassT = 3721 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3722 3723 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3724 } 3725 3726 static OverloadingResult 3727 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3728 MultiExprArg Args, 3729 OverloadCandidateSet &CandidateSet, 3730 QualType DestType, 3731 DeclContext::lookup_result Ctors, 3732 OverloadCandidateSet::iterator &Best, 3733 bool CopyInitializing, bool AllowExplicit, 3734 bool OnlyListConstructors, bool IsListInit, 3735 bool SecondStepOfCopyInit = false) { 3736 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3737 3738 for (NamedDecl *D : Ctors) { 3739 auto Info = getConstructorInfo(D); 3740 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3741 continue; 3742 3743 if (!AllowExplicit && Info.Constructor->isExplicit()) 3744 continue; 3745 3746 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3747 continue; 3748 3749 // C++11 [over.best.ics]p4: 3750 // ... and the constructor or user-defined conversion function is a 3751 // candidate by 3752 // - 13.3.1.3, when the argument is the temporary in the second step 3753 // of a class copy-initialization, or 3754 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3755 // - the second phase of 13.3.1.7 when the initializer list has exactly 3756 // one element that is itself an initializer list, and the target is 3757 // the first parameter of a constructor of class X, and the conversion 3758 // is to X or reference to (possibly cv-qualified X), 3759 // user-defined conversion sequences are not considered. 3760 bool SuppressUserConversions = 3761 SecondStepOfCopyInit || 3762 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3763 hasCopyOrMoveCtorParam(S.Context, Info)); 3764 3765 if (Info.ConstructorTmpl) 3766 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3767 /*ExplicitArgs*/ nullptr, Args, 3768 CandidateSet, SuppressUserConversions); 3769 else { 3770 // C++ [over.match.copy]p1: 3771 // - When initializing a temporary to be bound to the first parameter 3772 // of a constructor [for type T] that takes a reference to possibly 3773 // cv-qualified T as its first argument, called with a single 3774 // argument in the context of direct-initialization, explicit 3775 // conversion functions are also considered. 3776 // FIXME: What if a constructor template instantiates to such a signature? 3777 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3778 Args.size() == 1 && 3779 hasCopyOrMoveCtorParam(S.Context, Info); 3780 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3781 CandidateSet, SuppressUserConversions, 3782 /*PartialOverloading=*/false, 3783 /*AllowExplicit=*/AllowExplicitConv); 3784 } 3785 } 3786 3787 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3788 // 3789 // When initializing an object of class type T by constructor 3790 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3791 // from a single expression of class type U, conversion functions of 3792 // U that convert to the non-reference type cv T are candidates. 3793 // Explicit conversion functions are only candidates during 3794 // direct-initialization. 3795 // 3796 // Note: SecondStepOfCopyInit is only ever true in this case when 3797 // evaluating whether to produce a C++98 compatibility warning. 3798 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3799 !SecondStepOfCopyInit) { 3800 Expr *Initializer = Args[0]; 3801 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3802 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3803 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3804 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3805 NamedDecl *D = *I; 3806 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3807 D = D->getUnderlyingDecl(); 3808 3809 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3810 CXXConversionDecl *Conv; 3811 if (ConvTemplate) 3812 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3813 else 3814 Conv = cast<CXXConversionDecl>(D); 3815 3816 if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) { 3817 if (ConvTemplate) 3818 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3819 ActingDC, Initializer, DestType, 3820 CandidateSet, AllowExplicit, 3821 /*AllowResultConversion*/false); 3822 else 3823 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3824 DestType, CandidateSet, AllowExplicit, 3825 /*AllowResultConversion*/false); 3826 } 3827 } 3828 } 3829 } 3830 3831 // Perform overload resolution and return the result. 3832 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3833 } 3834 3835 /// Attempt initialization by constructor (C++ [dcl.init]), which 3836 /// enumerates the constructors of the initialized entity and performs overload 3837 /// resolution to select the best. 3838 /// \param DestType The destination class type. 3839 /// \param DestArrayType The destination type, which is either DestType or 3840 /// a (possibly multidimensional) array of DestType. 3841 /// \param IsListInit Is this list-initialization? 3842 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3843 /// list-initialization from {x} where x is the same 3844 /// type as the entity? 3845 static void TryConstructorInitialization(Sema &S, 3846 const InitializedEntity &Entity, 3847 const InitializationKind &Kind, 3848 MultiExprArg Args, QualType DestType, 3849 QualType DestArrayType, 3850 InitializationSequence &Sequence, 3851 bool IsListInit = false, 3852 bool IsInitListCopy = false) { 3853 assert(((!IsListInit && !IsInitListCopy) || 3854 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3855 "IsListInit/IsInitListCopy must come with a single initializer list " 3856 "argument."); 3857 InitListExpr *ILE = 3858 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3859 MultiExprArg UnwrappedArgs = 3860 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 3861 3862 // The type we're constructing needs to be complete. 3863 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3864 Sequence.setIncompleteTypeFailure(DestType); 3865 return; 3866 } 3867 3868 // C++17 [dcl.init]p17: 3869 // - If the initializer expression is a prvalue and the cv-unqualified 3870 // version of the source type is the same class as the class of the 3871 // destination, the initializer expression is used to initialize the 3872 // destination object. 3873 // Per DR (no number yet), this does not apply when initializing a base 3874 // class or delegating to another constructor from a mem-initializer. 3875 // ObjC++: Lambda captured by the block in the lambda to block conversion 3876 // should avoid copy elision. 3877 if (S.getLangOpts().CPlusPlus17 && 3878 Entity.getKind() != InitializedEntity::EK_Base && 3879 Entity.getKind() != InitializedEntity::EK_Delegating && 3880 Entity.getKind() != 3881 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 3882 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 3883 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 3884 // Convert qualifications if necessary. 3885 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3886 if (ILE) 3887 Sequence.RewrapReferenceInitList(DestType, ILE); 3888 return; 3889 } 3890 3891 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3892 assert(DestRecordType && "Constructor initialization requires record type"); 3893 CXXRecordDecl *DestRecordDecl 3894 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3895 3896 // Build the candidate set directly in the initialization sequence 3897 // structure, so that it will persist if we fail. 3898 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3899 3900 // Determine whether we are allowed to call explicit constructors or 3901 // explicit conversion operators. 3902 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 3903 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3904 3905 // - Otherwise, if T is a class type, constructors are considered. The 3906 // applicable constructors are enumerated, and the best one is chosen 3907 // through overload resolution. 3908 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 3909 3910 OverloadingResult Result = OR_No_Viable_Function; 3911 OverloadCandidateSet::iterator Best; 3912 bool AsInitializerList = false; 3913 3914 // C++11 [over.match.list]p1, per DR1467: 3915 // When objects of non-aggregate type T are list-initialized, such that 3916 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 3917 // according to the rules in this section, overload resolution selects 3918 // the constructor in two phases: 3919 // 3920 // - Initially, the candidate functions are the initializer-list 3921 // constructors of the class T and the argument list consists of the 3922 // initializer list as a single argument. 3923 if (IsListInit) { 3924 AsInitializerList = true; 3925 3926 // If the initializer list has no elements and T has a default constructor, 3927 // the first phase is omitted. 3928 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 3929 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3930 CandidateSet, DestType, Ctors, Best, 3931 CopyInitialization, AllowExplicit, 3932 /*OnlyListConstructor=*/true, 3933 IsListInit); 3934 } 3935 3936 // C++11 [over.match.list]p1: 3937 // - If no viable initializer-list constructor is found, overload resolution 3938 // is performed again, where the candidate functions are all the 3939 // constructors of the class T and the argument list consists of the 3940 // elements of the initializer list. 3941 if (Result == OR_No_Viable_Function) { 3942 AsInitializerList = false; 3943 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 3944 CandidateSet, DestType, Ctors, Best, 3945 CopyInitialization, AllowExplicit, 3946 /*OnlyListConstructors=*/false, 3947 IsListInit); 3948 } 3949 if (Result) { 3950 Sequence.SetOverloadFailure(IsListInit ? 3951 InitializationSequence::FK_ListConstructorOverloadFailed : 3952 InitializationSequence::FK_ConstructorOverloadFailed, 3953 Result); 3954 return; 3955 } 3956 3957 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3958 3959 // In C++17, ResolveConstructorOverload can select a conversion function 3960 // instead of a constructor. 3961 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 3962 // Add the user-defined conversion step that calls the conversion function. 3963 QualType ConvType = CD->getConversionType(); 3964 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 3965 "should not have selected this conversion function"); 3966 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 3967 HadMultipleCandidates); 3968 if (!S.Context.hasSameType(ConvType, DestType)) 3969 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3970 if (IsListInit) 3971 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 3972 return; 3973 } 3974 3975 // C++11 [dcl.init]p6: 3976 // If a program calls for the default initialization of an object 3977 // of a const-qualified type T, T shall be a class type with a 3978 // user-provided default constructor. 3979 // C++ core issue 253 proposal: 3980 // If the implicit default constructor initializes all subobjects, no 3981 // initializer should be required. 3982 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 3983 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3984 if (Kind.getKind() == InitializationKind::IK_Default && 3985 Entity.getType().isConstQualified()) { 3986 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 3987 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 3988 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3989 return; 3990 } 3991 } 3992 3993 // C++11 [over.match.list]p1: 3994 // In copy-list-initialization, if an explicit constructor is chosen, the 3995 // initializer is ill-formed. 3996 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3997 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 3998 return; 3999 } 4000 4001 // Add the constructor initialization step. Any cv-qualification conversion is 4002 // subsumed by the initialization. 4003 Sequence.AddConstructorInitializationStep( 4004 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4005 IsListInit | IsInitListCopy, AsInitializerList); 4006 } 4007 4008 static bool 4009 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4010 Expr *Initializer, 4011 QualType &SourceType, 4012 QualType &UnqualifiedSourceType, 4013 QualType UnqualifiedTargetType, 4014 InitializationSequence &Sequence) { 4015 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4016 S.Context.OverloadTy) { 4017 DeclAccessPair Found; 4018 bool HadMultipleCandidates = false; 4019 if (FunctionDecl *Fn 4020 = S.ResolveAddressOfOverloadedFunction(Initializer, 4021 UnqualifiedTargetType, 4022 false, Found, 4023 &HadMultipleCandidates)) { 4024 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4025 HadMultipleCandidates); 4026 SourceType = Fn->getType(); 4027 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4028 } else if (!UnqualifiedTargetType->isRecordType()) { 4029 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4030 return true; 4031 } 4032 } 4033 return false; 4034 } 4035 4036 static void TryReferenceInitializationCore(Sema &S, 4037 const InitializedEntity &Entity, 4038 const InitializationKind &Kind, 4039 Expr *Initializer, 4040 QualType cv1T1, QualType T1, 4041 Qualifiers T1Quals, 4042 QualType cv2T2, QualType T2, 4043 Qualifiers T2Quals, 4044 InitializationSequence &Sequence); 4045 4046 static void TryValueInitialization(Sema &S, 4047 const InitializedEntity &Entity, 4048 const InitializationKind &Kind, 4049 InitializationSequence &Sequence, 4050 InitListExpr *InitList = nullptr); 4051 4052 /// Attempt list initialization of a reference. 4053 static void TryReferenceListInitialization(Sema &S, 4054 const InitializedEntity &Entity, 4055 const InitializationKind &Kind, 4056 InitListExpr *InitList, 4057 InitializationSequence &Sequence, 4058 bool TreatUnavailableAsInvalid) { 4059 // First, catch C++03 where this isn't possible. 4060 if (!S.getLangOpts().CPlusPlus11) { 4061 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4062 return; 4063 } 4064 // Can't reference initialize a compound literal. 4065 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4066 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4067 return; 4068 } 4069 4070 QualType DestType = Entity.getType(); 4071 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4072 Qualifiers T1Quals; 4073 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4074 4075 // Reference initialization via an initializer list works thus: 4076 // If the initializer list consists of a single element that is 4077 // reference-related to the referenced type, bind directly to that element 4078 // (possibly creating temporaries). 4079 // Otherwise, initialize a temporary with the initializer list and 4080 // bind to that. 4081 if (InitList->getNumInits() == 1) { 4082 Expr *Initializer = InitList->getInit(0); 4083 QualType cv2T2 = Initializer->getType(); 4084 Qualifiers T2Quals; 4085 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4086 4087 // If this fails, creating a temporary wouldn't work either. 4088 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4089 T1, Sequence)) 4090 return; 4091 4092 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4093 bool dummy1, dummy2, dummy3; 4094 Sema::ReferenceCompareResult RefRelationship 4095 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 4096 dummy2, dummy3); 4097 if (RefRelationship >= Sema::Ref_Related) { 4098 // Try to bind the reference here. 4099 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4100 T1Quals, cv2T2, T2, T2Quals, Sequence); 4101 if (Sequence) 4102 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4103 return; 4104 } 4105 4106 // Update the initializer if we've resolved an overloaded function. 4107 if (Sequence.step_begin() != Sequence.step_end()) 4108 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4109 } 4110 4111 // Not reference-related. Create a temporary and bind to that. 4112 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4113 4114 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4115 TreatUnavailableAsInvalid); 4116 if (Sequence) { 4117 if (DestType->isRValueReferenceType() || 4118 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4119 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4120 else 4121 Sequence.SetFailed( 4122 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4123 } 4124 } 4125 4126 /// Attempt list initialization (C++0x [dcl.init.list]) 4127 static void TryListInitialization(Sema &S, 4128 const InitializedEntity &Entity, 4129 const InitializationKind &Kind, 4130 InitListExpr *InitList, 4131 InitializationSequence &Sequence, 4132 bool TreatUnavailableAsInvalid) { 4133 QualType DestType = Entity.getType(); 4134 4135 // C++ doesn't allow scalar initialization with more than one argument. 4136 // But C99 complex numbers are scalars and it makes sense there. 4137 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4138 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4139 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4140 return; 4141 } 4142 if (DestType->isReferenceType()) { 4143 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4144 TreatUnavailableAsInvalid); 4145 return; 4146 } 4147 4148 if (DestType->isRecordType() && 4149 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4150 Sequence.setIncompleteTypeFailure(DestType); 4151 return; 4152 } 4153 4154 // C++11 [dcl.init.list]p3, per DR1467: 4155 // - If T is a class type and the initializer list has a single element of 4156 // type cv U, where U is T or a class derived from T, the object is 4157 // initialized from that element (by copy-initialization for 4158 // copy-list-initialization, or by direct-initialization for 4159 // direct-list-initialization). 4160 // - Otherwise, if T is a character array and the initializer list has a 4161 // single element that is an appropriately-typed string literal 4162 // (8.5.2 [dcl.init.string]), initialization is performed as described 4163 // in that section. 4164 // - Otherwise, if T is an aggregate, [...] (continue below). 4165 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4166 if (DestType->isRecordType()) { 4167 QualType InitType = InitList->getInit(0)->getType(); 4168 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4169 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4170 Expr *InitListAsExpr = InitList; 4171 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4172 DestType, Sequence, 4173 /*InitListSyntax*/false, 4174 /*IsInitListCopy*/true); 4175 return; 4176 } 4177 } 4178 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4179 Expr *SubInit[1] = {InitList->getInit(0)}; 4180 if (!isa<VariableArrayType>(DestAT) && 4181 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4182 InitializationKind SubKind = 4183 Kind.getKind() == InitializationKind::IK_DirectList 4184 ? InitializationKind::CreateDirect(Kind.getLocation(), 4185 InitList->getLBraceLoc(), 4186 InitList->getRBraceLoc()) 4187 : Kind; 4188 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4189 /*TopLevelOfInitList*/ true, 4190 TreatUnavailableAsInvalid); 4191 4192 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4193 // the element is not an appropriately-typed string literal, in which 4194 // case we should proceed as in C++11 (below). 4195 if (Sequence) { 4196 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4197 return; 4198 } 4199 } 4200 } 4201 } 4202 4203 // C++11 [dcl.init.list]p3: 4204 // - If T is an aggregate, aggregate initialization is performed. 4205 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4206 (S.getLangOpts().CPlusPlus11 && 4207 S.isStdInitializerList(DestType, nullptr))) { 4208 if (S.getLangOpts().CPlusPlus11) { 4209 // - Otherwise, if the initializer list has no elements and T is a 4210 // class type with a default constructor, the object is 4211 // value-initialized. 4212 if (InitList->getNumInits() == 0) { 4213 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4214 if (RD->hasDefaultConstructor()) { 4215 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4216 return; 4217 } 4218 } 4219 4220 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4221 // an initializer_list object constructed [...] 4222 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4223 TreatUnavailableAsInvalid)) 4224 return; 4225 4226 // - Otherwise, if T is a class type, constructors are considered. 4227 Expr *InitListAsExpr = InitList; 4228 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4229 DestType, Sequence, /*InitListSyntax*/true); 4230 } else 4231 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4232 return; 4233 } 4234 4235 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4236 InitList->getNumInits() == 1) { 4237 Expr *E = InitList->getInit(0); 4238 4239 // - Otherwise, if T is an enumeration with a fixed underlying type, 4240 // the initializer-list has a single element v, and the initialization 4241 // is direct-list-initialization, the object is initialized with the 4242 // value T(v); if a narrowing conversion is required to convert v to 4243 // the underlying type of T, the program is ill-formed. 4244 auto *ET = DestType->getAs<EnumType>(); 4245 if (S.getLangOpts().CPlusPlus17 && 4246 Kind.getKind() == InitializationKind::IK_DirectList && 4247 ET && ET->getDecl()->isFixed() && 4248 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4249 (E->getType()->isIntegralOrEnumerationType() || 4250 E->getType()->isFloatingType())) { 4251 // There are two ways that T(v) can work when T is an enumeration type. 4252 // If there is either an implicit conversion sequence from v to T or 4253 // a conversion function that can convert from v to T, then we use that. 4254 // Otherwise, if v is of integral, enumeration, or floating-point type, 4255 // it is converted to the enumeration type via its underlying type. 4256 // There is no overlap possible between these two cases (except when the 4257 // source value is already of the destination type), and the first 4258 // case is handled by the general case for single-element lists below. 4259 ImplicitConversionSequence ICS; 4260 ICS.setStandard(); 4261 ICS.Standard.setAsIdentityConversion(); 4262 if (!E->isRValue()) 4263 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4264 // If E is of a floating-point type, then the conversion is ill-formed 4265 // due to narrowing, but go through the motions in order to produce the 4266 // right diagnostic. 4267 ICS.Standard.Second = E->getType()->isFloatingType() 4268 ? ICK_Floating_Integral 4269 : ICK_Integral_Conversion; 4270 ICS.Standard.setFromType(E->getType()); 4271 ICS.Standard.setToType(0, E->getType()); 4272 ICS.Standard.setToType(1, DestType); 4273 ICS.Standard.setToType(2, DestType); 4274 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4275 /*TopLevelOfInitList*/true); 4276 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4277 return; 4278 } 4279 4280 // - Otherwise, if the initializer list has a single element of type E 4281 // [...references are handled above...], the object or reference is 4282 // initialized from that element (by copy-initialization for 4283 // copy-list-initialization, or by direct-initialization for 4284 // direct-list-initialization); if a narrowing conversion is required 4285 // to convert the element to T, the program is ill-formed. 4286 // 4287 // Per core-24034, this is direct-initialization if we were performing 4288 // direct-list-initialization and copy-initialization otherwise. 4289 // We can't use InitListChecker for this, because it always performs 4290 // copy-initialization. This only matters if we might use an 'explicit' 4291 // conversion operator, so we only need to handle the cases where the source 4292 // is of record type. 4293 if (InitList->getInit(0)->getType()->isRecordType()) { 4294 InitializationKind SubKind = 4295 Kind.getKind() == InitializationKind::IK_DirectList 4296 ? InitializationKind::CreateDirect(Kind.getLocation(), 4297 InitList->getLBraceLoc(), 4298 InitList->getRBraceLoc()) 4299 : Kind; 4300 Expr *SubInit[1] = { InitList->getInit(0) }; 4301 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4302 /*TopLevelOfInitList*/true, 4303 TreatUnavailableAsInvalid); 4304 if (Sequence) 4305 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4306 return; 4307 } 4308 } 4309 4310 InitListChecker CheckInitList(S, Entity, InitList, 4311 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4312 if (CheckInitList.HadError()) { 4313 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4314 return; 4315 } 4316 4317 // Add the list initialization step with the built init list. 4318 Sequence.AddListInitializationStep(DestType); 4319 } 4320 4321 /// Try a reference initialization that involves calling a conversion 4322 /// function. 4323 static OverloadingResult TryRefInitWithConversionFunction( 4324 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4325 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4326 InitializationSequence &Sequence) { 4327 QualType DestType = Entity.getType(); 4328 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4329 QualType T1 = cv1T1.getUnqualifiedType(); 4330 QualType cv2T2 = Initializer->getType(); 4331 QualType T2 = cv2T2.getUnqualifiedType(); 4332 4333 bool DerivedToBase; 4334 bool ObjCConversion; 4335 bool ObjCLifetimeConversion; 4336 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, 4337 DerivedToBase, ObjCConversion, 4338 ObjCLifetimeConversion) && 4339 "Must have incompatible references when binding via conversion"); 4340 (void)DerivedToBase; 4341 (void)ObjCConversion; 4342 (void)ObjCLifetimeConversion; 4343 4344 // Build the candidate set directly in the initialization sequence 4345 // structure, so that it will persist if we fail. 4346 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4347 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4348 4349 // Determine whether we are allowed to call explicit conversion operators. 4350 // Note that none of [over.match.copy], [over.match.conv], nor 4351 // [over.match.ref] permit an explicit constructor to be chosen when 4352 // initializing a reference, not even for direct-initialization. 4353 bool AllowExplicitCtors = false; 4354 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4355 4356 const RecordType *T1RecordType = nullptr; 4357 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4358 S.isCompleteType(Kind.getLocation(), T1)) { 4359 // The type we're converting to is a class type. Enumerate its constructors 4360 // to see if there is a suitable conversion. 4361 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4362 4363 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4364 auto Info = getConstructorInfo(D); 4365 if (!Info.Constructor) 4366 continue; 4367 4368 if (!Info.Constructor->isInvalidDecl() && 4369 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4370 if (Info.ConstructorTmpl) 4371 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 4372 /*ExplicitArgs*/ nullptr, 4373 Initializer, CandidateSet, 4374 /*SuppressUserConversions=*/true); 4375 else 4376 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 4377 Initializer, CandidateSet, 4378 /*SuppressUserConversions=*/true); 4379 } 4380 } 4381 } 4382 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4383 return OR_No_Viable_Function; 4384 4385 const RecordType *T2RecordType = nullptr; 4386 if ((T2RecordType = T2->getAs<RecordType>()) && 4387 S.isCompleteType(Kind.getLocation(), T2)) { 4388 // The type we're converting from is a class type, enumerate its conversion 4389 // functions. 4390 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4391 4392 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4393 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4394 NamedDecl *D = *I; 4395 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4396 if (isa<UsingShadowDecl>(D)) 4397 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4398 4399 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4400 CXXConversionDecl *Conv; 4401 if (ConvTemplate) 4402 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4403 else 4404 Conv = cast<CXXConversionDecl>(D); 4405 4406 // If the conversion function doesn't return a reference type, 4407 // it can't be considered for this conversion unless we're allowed to 4408 // consider rvalues. 4409 // FIXME: Do we need to make sure that we only consider conversion 4410 // candidates with reference-compatible results? That might be needed to 4411 // break recursion. 4412 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4413 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 4414 if (ConvTemplate) 4415 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4416 ActingDC, Initializer, 4417 DestType, CandidateSet, 4418 /*AllowObjCConversionOnExplicit=*/ 4419 false); 4420 else 4421 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4422 Initializer, DestType, CandidateSet, 4423 /*AllowObjCConversionOnExplicit=*/false); 4424 } 4425 } 4426 } 4427 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4428 return OR_No_Viable_Function; 4429 4430 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4431 4432 // Perform overload resolution. If it fails, return the failed result. 4433 OverloadCandidateSet::iterator Best; 4434 if (OverloadingResult Result 4435 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4436 return Result; 4437 4438 FunctionDecl *Function = Best->Function; 4439 // This is the overload that will be used for this initialization step if we 4440 // use this initialization. Mark it as referenced. 4441 Function->setReferenced(); 4442 4443 // Compute the returned type and value kind of the conversion. 4444 QualType cv3T3; 4445 if (isa<CXXConversionDecl>(Function)) 4446 cv3T3 = Function->getReturnType(); 4447 else 4448 cv3T3 = T1; 4449 4450 ExprValueKind VK = VK_RValue; 4451 if (cv3T3->isLValueReferenceType()) 4452 VK = VK_LValue; 4453 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4454 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4455 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4456 4457 // Add the user-defined conversion step. 4458 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4459 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4460 HadMultipleCandidates); 4461 4462 // Determine whether we'll need to perform derived-to-base adjustments or 4463 // other conversions. 4464 bool NewDerivedToBase = false; 4465 bool NewObjCConversion = false; 4466 bool NewObjCLifetimeConversion = false; 4467 Sema::ReferenceCompareResult NewRefRelationship 4468 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, 4469 NewDerivedToBase, NewObjCConversion, 4470 NewObjCLifetimeConversion); 4471 4472 // Add the final conversion sequence, if necessary. 4473 if (NewRefRelationship == Sema::Ref_Incompatible) { 4474 assert(!isa<CXXConstructorDecl>(Function) && 4475 "should not have conversion after constructor"); 4476 4477 ImplicitConversionSequence ICS; 4478 ICS.setStandard(); 4479 ICS.Standard = Best->FinalConversion; 4480 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4481 4482 // Every implicit conversion results in a prvalue, except for a glvalue 4483 // derived-to-base conversion, which we handle below. 4484 cv3T3 = ICS.Standard.getToType(2); 4485 VK = VK_RValue; 4486 } 4487 4488 // If the converted initializer is a prvalue, its type T4 is adjusted to 4489 // type "cv1 T4" and the temporary materialization conversion is applied. 4490 // 4491 // We adjust the cv-qualifications to match the reference regardless of 4492 // whether we have a prvalue so that the AST records the change. In this 4493 // case, T4 is "cv3 T3". 4494 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4495 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4496 Sequence.AddQualificationConversionStep(cv1T4, VK); 4497 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4498 VK = IsLValueRef ? VK_LValue : VK_XValue; 4499 4500 if (NewDerivedToBase) 4501 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4502 else if (NewObjCConversion) 4503 Sequence.AddObjCObjectConversionStep(cv1T1); 4504 4505 return OR_Success; 4506 } 4507 4508 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4509 const InitializedEntity &Entity, 4510 Expr *CurInitExpr); 4511 4512 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4513 static void TryReferenceInitialization(Sema &S, 4514 const InitializedEntity &Entity, 4515 const InitializationKind &Kind, 4516 Expr *Initializer, 4517 InitializationSequence &Sequence) { 4518 QualType DestType = Entity.getType(); 4519 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4520 Qualifiers T1Quals; 4521 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4522 QualType cv2T2 = Initializer->getType(); 4523 Qualifiers T2Quals; 4524 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4525 4526 // If the initializer is the address of an overloaded function, try 4527 // to resolve the overloaded function. If all goes well, T2 is the 4528 // type of the resulting function. 4529 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4530 T1, Sequence)) 4531 return; 4532 4533 // Delegate everything else to a subfunction. 4534 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4535 T1Quals, cv2T2, T2, T2Quals, Sequence); 4536 } 4537 4538 /// Determine whether an expression is a non-referenceable glvalue (one to 4539 /// which a reference can never bind). Attempting to bind a reference to 4540 /// such a glvalue will always create a temporary. 4541 static bool isNonReferenceableGLValue(Expr *E) { 4542 return E->refersToBitField() || E->refersToVectorElement(); 4543 } 4544 4545 /// Reference initialization without resolving overloaded functions. 4546 static void TryReferenceInitializationCore(Sema &S, 4547 const InitializedEntity &Entity, 4548 const InitializationKind &Kind, 4549 Expr *Initializer, 4550 QualType cv1T1, QualType T1, 4551 Qualifiers T1Quals, 4552 QualType cv2T2, QualType T2, 4553 Qualifiers T2Quals, 4554 InitializationSequence &Sequence) { 4555 QualType DestType = Entity.getType(); 4556 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4557 // Compute some basic properties of the types and the initializer. 4558 bool isLValueRef = DestType->isLValueReferenceType(); 4559 bool isRValueRef = !isLValueRef; 4560 bool DerivedToBase = false; 4561 bool ObjCConversion = false; 4562 bool ObjCLifetimeConversion = false; 4563 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4564 Sema::ReferenceCompareResult RefRelationship 4565 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 4566 ObjCConversion, ObjCLifetimeConversion); 4567 4568 // C++0x [dcl.init.ref]p5: 4569 // A reference to type "cv1 T1" is initialized by an expression of type 4570 // "cv2 T2" as follows: 4571 // 4572 // - If the reference is an lvalue reference and the initializer 4573 // expression 4574 // Note the analogous bullet points for rvalue refs to functions. Because 4575 // there are no function rvalues in C++, rvalue refs to functions are treated 4576 // like lvalue refs. 4577 OverloadingResult ConvOvlResult = OR_Success; 4578 bool T1Function = T1->isFunctionType(); 4579 if (isLValueRef || T1Function) { 4580 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4581 (RefRelationship == Sema::Ref_Compatible || 4582 (Kind.isCStyleOrFunctionalCast() && 4583 RefRelationship == Sema::Ref_Related))) { 4584 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4585 // reference-compatible with "cv2 T2," or 4586 if (T1Quals != T2Quals) 4587 // Convert to cv1 T2. This should only add qualifiers unless this is a 4588 // c-style cast. The removal of qualifiers in that case notionally 4589 // happens after the reference binding, but that doesn't matter. 4590 Sequence.AddQualificationConversionStep( 4591 S.Context.getQualifiedType(T2, T1Quals), 4592 Initializer->getValueKind()); 4593 if (DerivedToBase) 4594 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4595 else if (ObjCConversion) 4596 Sequence.AddObjCObjectConversionStep(cv1T1); 4597 4598 // We only create a temporary here when binding a reference to a 4599 // bit-field or vector element. Those cases are't supposed to be 4600 // handled by this bullet, but the outcome is the same either way. 4601 Sequence.AddReferenceBindingStep(cv1T1, false); 4602 return; 4603 } 4604 4605 // - has a class type (i.e., T2 is a class type), where T1 is not 4606 // reference-related to T2, and can be implicitly converted to an 4607 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4608 // with "cv3 T3" (this conversion is selected by enumerating the 4609 // applicable conversion functions (13.3.1.6) and choosing the best 4610 // one through overload resolution (13.3)), 4611 // If we have an rvalue ref to function type here, the rhs must be 4612 // an rvalue. DR1287 removed the "implicitly" here. 4613 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4614 (isLValueRef || InitCategory.isRValue())) { 4615 ConvOvlResult = TryRefInitWithConversionFunction( 4616 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4617 /*IsLValueRef*/ isLValueRef, Sequence); 4618 if (ConvOvlResult == OR_Success) 4619 return; 4620 if (ConvOvlResult != OR_No_Viable_Function) 4621 Sequence.SetOverloadFailure( 4622 InitializationSequence::FK_ReferenceInitOverloadFailed, 4623 ConvOvlResult); 4624 } 4625 } 4626 4627 // - Otherwise, the reference shall be an lvalue reference to a 4628 // non-volatile const type (i.e., cv1 shall be const), or the reference 4629 // shall be an rvalue reference. 4630 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4631 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4632 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4633 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4634 Sequence.SetOverloadFailure( 4635 InitializationSequence::FK_ReferenceInitOverloadFailed, 4636 ConvOvlResult); 4637 else if (!InitCategory.isLValue()) 4638 Sequence.SetFailed( 4639 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4640 else { 4641 InitializationSequence::FailureKind FK; 4642 switch (RefRelationship) { 4643 case Sema::Ref_Compatible: 4644 if (Initializer->refersToBitField()) 4645 FK = InitializationSequence:: 4646 FK_NonConstLValueReferenceBindingToBitfield; 4647 else if (Initializer->refersToVectorElement()) 4648 FK = InitializationSequence:: 4649 FK_NonConstLValueReferenceBindingToVectorElement; 4650 else 4651 llvm_unreachable("unexpected kind of compatible initializer"); 4652 break; 4653 case Sema::Ref_Related: 4654 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4655 break; 4656 case Sema::Ref_Incompatible: 4657 FK = InitializationSequence:: 4658 FK_NonConstLValueReferenceBindingToUnrelated; 4659 break; 4660 } 4661 Sequence.SetFailed(FK); 4662 } 4663 return; 4664 } 4665 4666 // - If the initializer expression 4667 // - is an 4668 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4669 // [1z] rvalue (but not a bit-field) or 4670 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4671 // 4672 // Note: functions are handled above and below rather than here... 4673 if (!T1Function && 4674 (RefRelationship == Sema::Ref_Compatible || 4675 (Kind.isCStyleOrFunctionalCast() && 4676 RefRelationship == Sema::Ref_Related)) && 4677 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4678 (InitCategory.isPRValue() && 4679 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4680 T2->isArrayType())))) { 4681 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4682 if (InitCategory.isPRValue() && T2->isRecordType()) { 4683 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4684 // compiler the freedom to perform a copy here or bind to the 4685 // object, while C++0x requires that we bind directly to the 4686 // object. Hence, we always bind to the object without making an 4687 // extra copy. However, in C++03 requires that we check for the 4688 // presence of a suitable copy constructor: 4689 // 4690 // The constructor that would be used to make the copy shall 4691 // be callable whether or not the copy is actually done. 4692 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4693 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4694 else if (S.getLangOpts().CPlusPlus11) 4695 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4696 } 4697 4698 // C++1z [dcl.init.ref]/5.2.1.2: 4699 // If the converted initializer is a prvalue, its type T4 is adjusted 4700 // to type "cv1 T4" and the temporary materialization conversion is 4701 // applied. 4702 // Postpone address space conversions to after the temporary materialization 4703 // conversion to allow creating temporaries in the alloca address space. 4704 auto T1QualsIgnoreAS = T1Quals; 4705 auto T2QualsIgnoreAS = T2Quals; 4706 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4707 T1QualsIgnoreAS.removeAddressSpace(); 4708 T2QualsIgnoreAS.removeAddressSpace(); 4709 } 4710 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4711 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4712 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4713 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4714 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4715 // Add addr space conversion if required. 4716 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4717 auto T4Quals = cv1T4.getQualifiers(); 4718 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4719 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4720 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4721 } 4722 4723 // In any case, the reference is bound to the resulting glvalue (or to 4724 // an appropriate base class subobject). 4725 if (DerivedToBase) 4726 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4727 else if (ObjCConversion) 4728 Sequence.AddObjCObjectConversionStep(cv1T1); 4729 return; 4730 } 4731 4732 // - has a class type (i.e., T2 is a class type), where T1 is not 4733 // reference-related to T2, and can be implicitly converted to an 4734 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4735 // where "cv1 T1" is reference-compatible with "cv3 T3", 4736 // 4737 // DR1287 removes the "implicitly" here. 4738 if (T2->isRecordType()) { 4739 if (RefRelationship == Sema::Ref_Incompatible) { 4740 ConvOvlResult = TryRefInitWithConversionFunction( 4741 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4742 /*IsLValueRef*/ isLValueRef, Sequence); 4743 if (ConvOvlResult) 4744 Sequence.SetOverloadFailure( 4745 InitializationSequence::FK_ReferenceInitOverloadFailed, 4746 ConvOvlResult); 4747 4748 return; 4749 } 4750 4751 if (RefRelationship == Sema::Ref_Compatible && 4752 isRValueRef && InitCategory.isLValue()) { 4753 Sequence.SetFailed( 4754 InitializationSequence::FK_RValueReferenceBindingToLValue); 4755 return; 4756 } 4757 4758 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4759 return; 4760 } 4761 4762 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4763 // from the initializer expression using the rules for a non-reference 4764 // copy-initialization (8.5). The reference is then bound to the 4765 // temporary. [...] 4766 4767 // Ignore address space of reference type at this point and perform address 4768 // space conversion after the reference binding step. 4769 QualType cv1T1IgnoreAS = 4770 T1Quals.hasAddressSpace() 4771 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4772 : cv1T1; 4773 4774 InitializedEntity TempEntity = 4775 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4776 4777 // FIXME: Why do we use an implicit conversion here rather than trying 4778 // copy-initialization? 4779 ImplicitConversionSequence ICS 4780 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4781 /*SuppressUserConversions=*/false, 4782 /*AllowExplicit=*/false, 4783 /*FIXME:InOverloadResolution=*/false, 4784 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4785 /*AllowObjCWritebackConversion=*/false); 4786 4787 if (ICS.isBad()) { 4788 // FIXME: Use the conversion function set stored in ICS to turn 4789 // this into an overloading ambiguity diagnostic. However, we need 4790 // to keep that set as an OverloadCandidateSet rather than as some 4791 // other kind of set. 4792 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4793 Sequence.SetOverloadFailure( 4794 InitializationSequence::FK_ReferenceInitOverloadFailed, 4795 ConvOvlResult); 4796 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4797 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4798 else 4799 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4800 return; 4801 } else { 4802 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4803 } 4804 4805 // [...] If T1 is reference-related to T2, cv1 must be the 4806 // same cv-qualification as, or greater cv-qualification 4807 // than, cv2; otherwise, the program is ill-formed. 4808 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4809 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4810 if ((RefRelationship == Sema::Ref_Related && 4811 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4812 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4813 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4814 return; 4815 } 4816 4817 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4818 // reference, the initializer expression shall not be an lvalue. 4819 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4820 InitCategory.isLValue()) { 4821 Sequence.SetFailed( 4822 InitializationSequence::FK_RValueReferenceBindingToLValue); 4823 return; 4824 } 4825 4826 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true); 4827 4828 if (T1Quals.hasAddressSpace()) 4829 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4830 : VK_XValue); 4831 } 4832 4833 /// Attempt character array initialization from a string literal 4834 /// (C++ [dcl.init.string], C99 6.7.8). 4835 static void TryStringLiteralInitialization(Sema &S, 4836 const InitializedEntity &Entity, 4837 const InitializationKind &Kind, 4838 Expr *Initializer, 4839 InitializationSequence &Sequence) { 4840 Sequence.AddStringInitStep(Entity.getType()); 4841 } 4842 4843 /// Attempt value initialization (C++ [dcl.init]p7). 4844 static void TryValueInitialization(Sema &S, 4845 const InitializedEntity &Entity, 4846 const InitializationKind &Kind, 4847 InitializationSequence &Sequence, 4848 InitListExpr *InitList) { 4849 assert((!InitList || InitList->getNumInits() == 0) && 4850 "Shouldn't use value-init for non-empty init lists"); 4851 4852 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4853 // 4854 // To value-initialize an object of type T means: 4855 QualType T = Entity.getType(); 4856 4857 // -- if T is an array type, then each element is value-initialized; 4858 T = S.Context.getBaseElementType(T); 4859 4860 if (const RecordType *RT = T->getAs<RecordType>()) { 4861 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4862 bool NeedZeroInitialization = true; 4863 // C++98: 4864 // -- if T is a class type (clause 9) with a user-declared constructor 4865 // (12.1), then the default constructor for T is called (and the 4866 // initialization is ill-formed if T has no accessible default 4867 // constructor); 4868 // C++11: 4869 // -- if T is a class type (clause 9) with either no default constructor 4870 // (12.1 [class.ctor]) or a default constructor that is user-provided 4871 // or deleted, then the object is default-initialized; 4872 // 4873 // Note that the C++11 rule is the same as the C++98 rule if there are no 4874 // defaulted or deleted constructors, so we just use it unconditionally. 4875 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4876 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4877 NeedZeroInitialization = false; 4878 4879 // -- if T is a (possibly cv-qualified) non-union class type without a 4880 // user-provided or deleted default constructor, then the object is 4881 // zero-initialized and, if T has a non-trivial default constructor, 4882 // default-initialized; 4883 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4884 // constructor' part was removed by DR1507. 4885 if (NeedZeroInitialization) 4886 Sequence.AddZeroInitializationStep(Entity.getType()); 4887 4888 // C++03: 4889 // -- if T is a non-union class type without a user-declared constructor, 4890 // then every non-static data member and base class component of T is 4891 // value-initialized; 4892 // [...] A program that calls for [...] value-initialization of an 4893 // entity of reference type is ill-formed. 4894 // 4895 // C++11 doesn't need this handling, because value-initialization does not 4896 // occur recursively there, and the implicit default constructor is 4897 // defined as deleted in the problematic cases. 4898 if (!S.getLangOpts().CPlusPlus11 && 4899 ClassDecl->hasUninitializedReferenceMember()) { 4900 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4901 return; 4902 } 4903 4904 // If this is list-value-initialization, pass the empty init list on when 4905 // building the constructor call. This affects the semantics of a few 4906 // things (such as whether an explicit default constructor can be called). 4907 Expr *InitListAsExpr = InitList; 4908 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4909 bool InitListSyntax = InitList; 4910 4911 // FIXME: Instead of creating a CXXConstructExpr of array type here, 4912 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 4913 return TryConstructorInitialization( 4914 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 4915 } 4916 } 4917 4918 Sequence.AddZeroInitializationStep(Entity.getType()); 4919 } 4920 4921 /// Attempt default initialization (C++ [dcl.init]p6). 4922 static void TryDefaultInitialization(Sema &S, 4923 const InitializedEntity &Entity, 4924 const InitializationKind &Kind, 4925 InitializationSequence &Sequence) { 4926 assert(Kind.getKind() == InitializationKind::IK_Default); 4927 4928 // C++ [dcl.init]p6: 4929 // To default-initialize an object of type T means: 4930 // - if T is an array type, each element is default-initialized; 4931 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4932 4933 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4934 // constructor for T is called (and the initialization is ill-formed if 4935 // T has no accessible default constructor); 4936 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4937 TryConstructorInitialization(S, Entity, Kind, None, DestType, 4938 Entity.getType(), Sequence); 4939 return; 4940 } 4941 4942 // - otherwise, no initialization is performed. 4943 4944 // If a program calls for the default initialization of an object of 4945 // a const-qualified type T, T shall be a class type with a user-provided 4946 // default constructor. 4947 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4948 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4949 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4950 return; 4951 } 4952 4953 // If the destination type has a lifetime property, zero-initialize it. 4954 if (DestType.getQualifiers().hasObjCLifetime()) { 4955 Sequence.AddZeroInitializationStep(Entity.getType()); 4956 return; 4957 } 4958 } 4959 4960 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 4961 /// which enumerates all conversion functions and performs overload resolution 4962 /// to select the best. 4963 static void TryUserDefinedConversion(Sema &S, 4964 QualType DestType, 4965 const InitializationKind &Kind, 4966 Expr *Initializer, 4967 InitializationSequence &Sequence, 4968 bool TopLevelOfInitList) { 4969 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4970 QualType SourceType = Initializer->getType(); 4971 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4972 "Must have a class type to perform a user-defined conversion"); 4973 4974 // Build the candidate set directly in the initialization sequence 4975 // structure, so that it will persist if we fail. 4976 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4977 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4978 4979 // Determine whether we are allowed to call explicit constructors or 4980 // explicit conversion operators. 4981 bool AllowExplicit = Kind.AllowExplicit(); 4982 4983 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4984 // The type we're converting to is a class type. Enumerate its constructors 4985 // to see if there is a suitable conversion. 4986 CXXRecordDecl *DestRecordDecl 4987 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4988 4989 // Try to complete the type we're converting to. 4990 if (S.isCompleteType(Kind.getLocation(), DestType)) { 4991 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 4992 auto Info = getConstructorInfo(D); 4993 if (!Info.Constructor) 4994 continue; 4995 4996 if (!Info.Constructor->isInvalidDecl() && 4997 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 4998 if (Info.ConstructorTmpl) 4999 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 5000 /*ExplicitArgs*/ nullptr, 5001 Initializer, CandidateSet, 5002 /*SuppressUserConversions=*/true); 5003 else 5004 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5005 Initializer, CandidateSet, 5006 /*SuppressUserConversions=*/true); 5007 } 5008 } 5009 } 5010 } 5011 5012 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5013 5014 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5015 // The type we're converting from is a class type, enumerate its conversion 5016 // functions. 5017 5018 // We can only enumerate the conversion functions for a complete type; if 5019 // the type isn't complete, simply skip this step. 5020 if (S.isCompleteType(DeclLoc, SourceType)) { 5021 CXXRecordDecl *SourceRecordDecl 5022 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5023 5024 const auto &Conversions = 5025 SourceRecordDecl->getVisibleConversionFunctions(); 5026 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5027 NamedDecl *D = *I; 5028 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5029 if (isa<UsingShadowDecl>(D)) 5030 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5031 5032 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5033 CXXConversionDecl *Conv; 5034 if (ConvTemplate) 5035 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5036 else 5037 Conv = cast<CXXConversionDecl>(D); 5038 5039 if (AllowExplicit || !Conv->isExplicit()) { 5040 if (ConvTemplate) 5041 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 5042 ActingDC, Initializer, DestType, 5043 CandidateSet, AllowExplicit); 5044 else 5045 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 5046 Initializer, DestType, CandidateSet, 5047 AllowExplicit); 5048 } 5049 } 5050 } 5051 } 5052 5053 // Perform overload resolution. If it fails, return the failed result. 5054 OverloadCandidateSet::iterator Best; 5055 if (OverloadingResult Result 5056 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5057 Sequence.SetOverloadFailure( 5058 InitializationSequence::FK_UserConversionOverloadFailed, 5059 Result); 5060 return; 5061 } 5062 5063 FunctionDecl *Function = Best->Function; 5064 Function->setReferenced(); 5065 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5066 5067 if (isa<CXXConstructorDecl>(Function)) { 5068 // Add the user-defined conversion step. Any cv-qualification conversion is 5069 // subsumed by the initialization. Per DR5, the created temporary is of the 5070 // cv-unqualified type of the destination. 5071 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5072 DestType.getUnqualifiedType(), 5073 HadMultipleCandidates); 5074 5075 // C++14 and before: 5076 // - if the function is a constructor, the call initializes a temporary 5077 // of the cv-unqualified version of the destination type. The [...] 5078 // temporary [...] is then used to direct-initialize, according to the 5079 // rules above, the object that is the destination of the 5080 // copy-initialization. 5081 // Note that this just performs a simple object copy from the temporary. 5082 // 5083 // C++17: 5084 // - if the function is a constructor, the call is a prvalue of the 5085 // cv-unqualified version of the destination type whose return object 5086 // is initialized by the constructor. The call is used to 5087 // direct-initialize, according to the rules above, the object that 5088 // is the destination of the copy-initialization. 5089 // Therefore we need to do nothing further. 5090 // 5091 // FIXME: Mark this copy as extraneous. 5092 if (!S.getLangOpts().CPlusPlus17) 5093 Sequence.AddFinalCopy(DestType); 5094 else if (DestType.hasQualifiers()) 5095 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5096 return; 5097 } 5098 5099 // Add the user-defined conversion step that calls the conversion function. 5100 QualType ConvType = Function->getCallResultType(); 5101 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5102 HadMultipleCandidates); 5103 5104 if (ConvType->getAs<RecordType>()) { 5105 // The call is used to direct-initialize [...] the object that is the 5106 // destination of the copy-initialization. 5107 // 5108 // In C++17, this does not call a constructor if we enter /17.6.1: 5109 // - If the initializer expression is a prvalue and the cv-unqualified 5110 // version of the source type is the same as the class of the 5111 // destination [... do not make an extra copy] 5112 // 5113 // FIXME: Mark this copy as extraneous. 5114 if (!S.getLangOpts().CPlusPlus17 || 5115 Function->getReturnType()->isReferenceType() || 5116 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5117 Sequence.AddFinalCopy(DestType); 5118 else if (!S.Context.hasSameType(ConvType, DestType)) 5119 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5120 return; 5121 } 5122 5123 // If the conversion following the call to the conversion function 5124 // is interesting, add it as a separate step. 5125 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5126 Best->FinalConversion.Third) { 5127 ImplicitConversionSequence ICS; 5128 ICS.setStandard(); 5129 ICS.Standard = Best->FinalConversion; 5130 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5131 } 5132 } 5133 5134 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5135 /// a function with a pointer return type contains a 'return false;' statement. 5136 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5137 /// code using that header. 5138 /// 5139 /// Work around this by treating 'return false;' as zero-initializing the result 5140 /// if it's used in a pointer-returning function in a system header. 5141 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5142 const InitializedEntity &Entity, 5143 const Expr *Init) { 5144 return S.getLangOpts().CPlusPlus11 && 5145 Entity.getKind() == InitializedEntity::EK_Result && 5146 Entity.getType()->isPointerType() && 5147 isa<CXXBoolLiteralExpr>(Init) && 5148 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5149 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5150 } 5151 5152 /// The non-zero enum values here are indexes into diagnostic alternatives. 5153 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5154 5155 /// Determines whether this expression is an acceptable ICR source. 5156 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5157 bool isAddressOf, bool &isWeakAccess) { 5158 // Skip parens. 5159 e = e->IgnoreParens(); 5160 5161 // Skip address-of nodes. 5162 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5163 if (op->getOpcode() == UO_AddrOf) 5164 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5165 isWeakAccess); 5166 5167 // Skip certain casts. 5168 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5169 switch (ce->getCastKind()) { 5170 case CK_Dependent: 5171 case CK_BitCast: 5172 case CK_LValueBitCast: 5173 case CK_NoOp: 5174 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5175 5176 case CK_ArrayToPointerDecay: 5177 return IIK_nonscalar; 5178 5179 case CK_NullToPointer: 5180 return IIK_okay; 5181 5182 default: 5183 break; 5184 } 5185 5186 // If we have a declaration reference, it had better be a local variable. 5187 } else if (isa<DeclRefExpr>(e)) { 5188 // set isWeakAccess to true, to mean that there will be an implicit 5189 // load which requires a cleanup. 5190 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5191 isWeakAccess = true; 5192 5193 if (!isAddressOf) return IIK_nonlocal; 5194 5195 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5196 if (!var) return IIK_nonlocal; 5197 5198 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5199 5200 // If we have a conditional operator, check both sides. 5201 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5202 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5203 isWeakAccess)) 5204 return iik; 5205 5206 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5207 5208 // These are never scalar. 5209 } else if (isa<ArraySubscriptExpr>(e)) { 5210 return IIK_nonscalar; 5211 5212 // Otherwise, it needs to be a null pointer constant. 5213 } else { 5214 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5215 ? IIK_okay : IIK_nonlocal); 5216 } 5217 5218 return IIK_nonlocal; 5219 } 5220 5221 /// Check whether the given expression is a valid operand for an 5222 /// indirect copy/restore. 5223 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5224 assert(src->isRValue()); 5225 bool isWeakAccess = false; 5226 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5227 // If isWeakAccess to true, there will be an implicit 5228 // load which requires a cleanup. 5229 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5230 S.Cleanup.setExprNeedsCleanups(true); 5231 5232 if (iik == IIK_okay) return; 5233 5234 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5235 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5236 << src->getSourceRange(); 5237 } 5238 5239 /// Determine whether we have compatible array types for the 5240 /// purposes of GNU by-copy array initialization. 5241 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5242 const ArrayType *Source) { 5243 // If the source and destination array types are equivalent, we're 5244 // done. 5245 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5246 return true; 5247 5248 // Make sure that the element types are the same. 5249 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5250 return false; 5251 5252 // The only mismatch we allow is when the destination is an 5253 // incomplete array type and the source is a constant array type. 5254 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5255 } 5256 5257 static bool tryObjCWritebackConversion(Sema &S, 5258 InitializationSequence &Sequence, 5259 const InitializedEntity &Entity, 5260 Expr *Initializer) { 5261 bool ArrayDecay = false; 5262 QualType ArgType = Initializer->getType(); 5263 QualType ArgPointee; 5264 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5265 ArrayDecay = true; 5266 ArgPointee = ArgArrayType->getElementType(); 5267 ArgType = S.Context.getPointerType(ArgPointee); 5268 } 5269 5270 // Handle write-back conversion. 5271 QualType ConvertedArgType; 5272 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5273 ConvertedArgType)) 5274 return false; 5275 5276 // We should copy unless we're passing to an argument explicitly 5277 // marked 'out'. 5278 bool ShouldCopy = true; 5279 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5280 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5281 5282 // Do we need an lvalue conversion? 5283 if (ArrayDecay || Initializer->isGLValue()) { 5284 ImplicitConversionSequence ICS; 5285 ICS.setStandard(); 5286 ICS.Standard.setAsIdentityConversion(); 5287 5288 QualType ResultType; 5289 if (ArrayDecay) { 5290 ICS.Standard.First = ICK_Array_To_Pointer; 5291 ResultType = S.Context.getPointerType(ArgPointee); 5292 } else { 5293 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5294 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5295 } 5296 5297 Sequence.AddConversionSequenceStep(ICS, ResultType); 5298 } 5299 5300 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5301 return true; 5302 } 5303 5304 static bool TryOCLSamplerInitialization(Sema &S, 5305 InitializationSequence &Sequence, 5306 QualType DestType, 5307 Expr *Initializer) { 5308 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5309 (!Initializer->isIntegerConstantExpr(S.Context) && 5310 !Initializer->getType()->isSamplerT())) 5311 return false; 5312 5313 Sequence.AddOCLSamplerInitStep(DestType); 5314 return true; 5315 } 5316 5317 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5318 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5319 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5320 } 5321 5322 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5323 InitializationSequence &Sequence, 5324 QualType DestType, 5325 Expr *Initializer) { 5326 if (!S.getLangOpts().OpenCL) 5327 return false; 5328 5329 // 5330 // OpenCL 1.2 spec, s6.12.10 5331 // 5332 // The event argument can also be used to associate the 5333 // async_work_group_copy with a previous async copy allowing 5334 // an event to be shared by multiple async copies; otherwise 5335 // event should be zero. 5336 // 5337 if (DestType->isEventT() || DestType->isQueueT()) { 5338 if (!IsZeroInitializer(Initializer, S)) 5339 return false; 5340 5341 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5342 return true; 5343 } 5344 5345 // We should allow zero initialization for all types defined in the 5346 // cl_intel_device_side_avc_motion_estimation extension, except 5347 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5348 if (S.getOpenCLOptions().isEnabled( 5349 "cl_intel_device_side_avc_motion_estimation") && 5350 DestType->isOCLIntelSubgroupAVCType()) { 5351 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5352 DestType->isOCLIntelSubgroupAVCMceResultType()) 5353 return false; 5354 if (!IsZeroInitializer(Initializer, S)) 5355 return false; 5356 5357 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5358 return true; 5359 } 5360 5361 return false; 5362 } 5363 5364 InitializationSequence::InitializationSequence(Sema &S, 5365 const InitializedEntity &Entity, 5366 const InitializationKind &Kind, 5367 MultiExprArg Args, 5368 bool TopLevelOfInitList, 5369 bool TreatUnavailableAsInvalid) 5370 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5371 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5372 TreatUnavailableAsInvalid); 5373 } 5374 5375 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5376 /// address of that function, this returns true. Otherwise, it returns false. 5377 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5378 auto *DRE = dyn_cast<DeclRefExpr>(E); 5379 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5380 return false; 5381 5382 return !S.checkAddressOfFunctionIsAvailable( 5383 cast<FunctionDecl>(DRE->getDecl())); 5384 } 5385 5386 /// Determine whether we can perform an elementwise array copy for this kind 5387 /// of entity. 5388 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5389 switch (Entity.getKind()) { 5390 case InitializedEntity::EK_LambdaCapture: 5391 // C++ [expr.prim.lambda]p24: 5392 // For array members, the array elements are direct-initialized in 5393 // increasing subscript order. 5394 return true; 5395 5396 case InitializedEntity::EK_Variable: 5397 // C++ [dcl.decomp]p1: 5398 // [...] each element is copy-initialized or direct-initialized from the 5399 // corresponding element of the assignment-expression [...] 5400 return isa<DecompositionDecl>(Entity.getDecl()); 5401 5402 case InitializedEntity::EK_Member: 5403 // C++ [class.copy.ctor]p14: 5404 // - if the member is an array, each element is direct-initialized with 5405 // the corresponding subobject of x 5406 return Entity.isImplicitMemberInitializer(); 5407 5408 case InitializedEntity::EK_ArrayElement: 5409 // All the above cases are intended to apply recursively, even though none 5410 // of them actually say that. 5411 if (auto *E = Entity.getParent()) 5412 return canPerformArrayCopy(*E); 5413 break; 5414 5415 default: 5416 break; 5417 } 5418 5419 return false; 5420 } 5421 5422 void InitializationSequence::InitializeFrom(Sema &S, 5423 const InitializedEntity &Entity, 5424 const InitializationKind &Kind, 5425 MultiExprArg Args, 5426 bool TopLevelOfInitList, 5427 bool TreatUnavailableAsInvalid) { 5428 ASTContext &Context = S.Context; 5429 5430 // Eliminate non-overload placeholder types in the arguments. We 5431 // need to do this before checking whether types are dependent 5432 // because lowering a pseudo-object expression might well give us 5433 // something of dependent type. 5434 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5435 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5436 // FIXME: should we be doing this here? 5437 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5438 if (result.isInvalid()) { 5439 SetFailed(FK_PlaceholderType); 5440 return; 5441 } 5442 Args[I] = result.get(); 5443 } 5444 5445 // C++0x [dcl.init]p16: 5446 // The semantics of initializers are as follows. The destination type is 5447 // the type of the object or reference being initialized and the source 5448 // type is the type of the initializer expression. The source type is not 5449 // defined when the initializer is a braced-init-list or when it is a 5450 // parenthesized list of expressions. 5451 QualType DestType = Entity.getType(); 5452 5453 if (DestType->isDependentType() || 5454 Expr::hasAnyTypeDependentArguments(Args)) { 5455 SequenceKind = DependentSequence; 5456 return; 5457 } 5458 5459 // Almost everything is a normal sequence. 5460 setSequenceKind(NormalSequence); 5461 5462 QualType SourceType; 5463 Expr *Initializer = nullptr; 5464 if (Args.size() == 1) { 5465 Initializer = Args[0]; 5466 if (S.getLangOpts().ObjC) { 5467 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5468 DestType, Initializer->getType(), 5469 Initializer) || 5470 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5471 Args[0] = Initializer; 5472 } 5473 if (!isa<InitListExpr>(Initializer)) 5474 SourceType = Initializer->getType(); 5475 } 5476 5477 // - If the initializer is a (non-parenthesized) braced-init-list, the 5478 // object is list-initialized (8.5.4). 5479 if (Kind.getKind() != InitializationKind::IK_Direct) { 5480 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5481 TryListInitialization(S, Entity, Kind, InitList, *this, 5482 TreatUnavailableAsInvalid); 5483 return; 5484 } 5485 } 5486 5487 // - If the destination type is a reference type, see 8.5.3. 5488 if (DestType->isReferenceType()) { 5489 // C++0x [dcl.init.ref]p1: 5490 // A variable declared to be a T& or T&&, that is, "reference to type T" 5491 // (8.3.2), shall be initialized by an object, or function, of type T or 5492 // by an object that can be converted into a T. 5493 // (Therefore, multiple arguments are not permitted.) 5494 if (Args.size() != 1) 5495 SetFailed(FK_TooManyInitsForReference); 5496 // C++17 [dcl.init.ref]p5: 5497 // A reference [...] is initialized by an expression [...] as follows: 5498 // If the initializer is not an expression, presumably we should reject, 5499 // but the standard fails to actually say so. 5500 else if (isa<InitListExpr>(Args[0])) 5501 SetFailed(FK_ParenthesizedListInitForReference); 5502 else 5503 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5504 return; 5505 } 5506 5507 // - If the initializer is (), the object is value-initialized. 5508 if (Kind.getKind() == InitializationKind::IK_Value || 5509 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5510 TryValueInitialization(S, Entity, Kind, *this); 5511 return; 5512 } 5513 5514 // Handle default initialization. 5515 if (Kind.getKind() == InitializationKind::IK_Default) { 5516 TryDefaultInitialization(S, Entity, Kind, *this); 5517 return; 5518 } 5519 5520 // - If the destination type is an array of characters, an array of 5521 // char16_t, an array of char32_t, or an array of wchar_t, and the 5522 // initializer is a string literal, see 8.5.2. 5523 // - Otherwise, if the destination type is an array, the program is 5524 // ill-formed. 5525 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5526 if (Initializer && isa<VariableArrayType>(DestAT)) { 5527 SetFailed(FK_VariableLengthArrayHasInitializer); 5528 return; 5529 } 5530 5531 if (Initializer) { 5532 switch (IsStringInit(Initializer, DestAT, Context)) { 5533 case SIF_None: 5534 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5535 return; 5536 case SIF_NarrowStringIntoWideChar: 5537 SetFailed(FK_NarrowStringIntoWideCharArray); 5538 return; 5539 case SIF_WideStringIntoChar: 5540 SetFailed(FK_WideStringIntoCharArray); 5541 return; 5542 case SIF_IncompatWideStringIntoWideChar: 5543 SetFailed(FK_IncompatWideStringIntoWideChar); 5544 return; 5545 case SIF_PlainStringIntoUTF8Char: 5546 SetFailed(FK_PlainStringIntoUTF8Char); 5547 return; 5548 case SIF_UTF8StringIntoPlainChar: 5549 SetFailed(FK_UTF8StringIntoPlainChar); 5550 return; 5551 case SIF_Other: 5552 break; 5553 } 5554 } 5555 5556 // Some kinds of initialization permit an array to be initialized from 5557 // another array of the same type, and perform elementwise initialization. 5558 if (Initializer && isa<ConstantArrayType>(DestAT) && 5559 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5560 Entity.getType()) && 5561 canPerformArrayCopy(Entity)) { 5562 // If source is a prvalue, use it directly. 5563 if (Initializer->getValueKind() == VK_RValue) { 5564 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5565 return; 5566 } 5567 5568 // Emit element-at-a-time copy loop. 5569 InitializedEntity Element = 5570 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5571 QualType InitEltT = 5572 Context.getAsArrayType(Initializer->getType())->getElementType(); 5573 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5574 Initializer->getValueKind(), 5575 Initializer->getObjectKind()); 5576 Expr *OVEAsExpr = &OVE; 5577 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5578 TreatUnavailableAsInvalid); 5579 if (!Failed()) 5580 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5581 return; 5582 } 5583 5584 // Note: as an GNU C extension, we allow initialization of an 5585 // array from a compound literal that creates an array of the same 5586 // type, so long as the initializer has no side effects. 5587 if (!S.getLangOpts().CPlusPlus && Initializer && 5588 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5589 Initializer->getType()->isArrayType()) { 5590 const ArrayType *SourceAT 5591 = Context.getAsArrayType(Initializer->getType()); 5592 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5593 SetFailed(FK_ArrayTypeMismatch); 5594 else if (Initializer->HasSideEffects(S.Context)) 5595 SetFailed(FK_NonConstantArrayInit); 5596 else { 5597 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5598 } 5599 } 5600 // Note: as a GNU C++ extension, we allow list-initialization of a 5601 // class member of array type from a parenthesized initializer list. 5602 else if (S.getLangOpts().CPlusPlus && 5603 Entity.getKind() == InitializedEntity::EK_Member && 5604 Initializer && isa<InitListExpr>(Initializer)) { 5605 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5606 *this, TreatUnavailableAsInvalid); 5607 AddParenthesizedArrayInitStep(DestType); 5608 } else if (DestAT->getElementType()->isCharType()) 5609 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5610 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5611 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5612 else 5613 SetFailed(FK_ArrayNeedsInitList); 5614 5615 return; 5616 } 5617 5618 // Determine whether we should consider writeback conversions for 5619 // Objective-C ARC. 5620 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5621 Entity.isParameterKind(); 5622 5623 // We're at the end of the line for C: it's either a write-back conversion 5624 // or it's a C assignment. There's no need to check anything else. 5625 if (!S.getLangOpts().CPlusPlus) { 5626 // If allowed, check whether this is an Objective-C writeback conversion. 5627 if (allowObjCWritebackConversion && 5628 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5629 return; 5630 } 5631 5632 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5633 return; 5634 5635 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5636 return; 5637 5638 // Handle initialization in C 5639 AddCAssignmentStep(DestType); 5640 MaybeProduceObjCObject(S, *this, Entity); 5641 return; 5642 } 5643 5644 assert(S.getLangOpts().CPlusPlus); 5645 5646 // - If the destination type is a (possibly cv-qualified) class type: 5647 if (DestType->isRecordType()) { 5648 // - If the initialization is direct-initialization, or if it is 5649 // copy-initialization where the cv-unqualified version of the 5650 // source type is the same class as, or a derived class of, the 5651 // class of the destination, constructors are considered. [...] 5652 if (Kind.getKind() == InitializationKind::IK_Direct || 5653 (Kind.getKind() == InitializationKind::IK_Copy && 5654 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5655 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5656 TryConstructorInitialization(S, Entity, Kind, Args, 5657 DestType, DestType, *this); 5658 // - Otherwise (i.e., for the remaining copy-initialization cases), 5659 // user-defined conversion sequences that can convert from the source 5660 // type to the destination type or (when a conversion function is 5661 // used) to a derived class thereof are enumerated as described in 5662 // 13.3.1.4, and the best one is chosen through overload resolution 5663 // (13.3). 5664 else 5665 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5666 TopLevelOfInitList); 5667 return; 5668 } 5669 5670 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5671 5672 // The remaining cases all need a source type. 5673 if (Args.size() > 1) { 5674 SetFailed(FK_TooManyInitsForScalar); 5675 return; 5676 } else if (isa<InitListExpr>(Args[0])) { 5677 SetFailed(FK_ParenthesizedListInitForScalar); 5678 return; 5679 } 5680 5681 // - Otherwise, if the source type is a (possibly cv-qualified) class 5682 // type, conversion functions are considered. 5683 if (!SourceType.isNull() && SourceType->isRecordType()) { 5684 // For a conversion to _Atomic(T) from either T or a class type derived 5685 // from T, initialize the T object then convert to _Atomic type. 5686 bool NeedAtomicConversion = false; 5687 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5688 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5689 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5690 Atomic->getValueType())) { 5691 DestType = Atomic->getValueType(); 5692 NeedAtomicConversion = true; 5693 } 5694 } 5695 5696 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5697 TopLevelOfInitList); 5698 MaybeProduceObjCObject(S, *this, Entity); 5699 if (!Failed() && NeedAtomicConversion) 5700 AddAtomicConversionStep(Entity.getType()); 5701 return; 5702 } 5703 5704 // - Otherwise, the initial value of the object being initialized is the 5705 // (possibly converted) value of the initializer expression. Standard 5706 // conversions (Clause 4) will be used, if necessary, to convert the 5707 // initializer expression to the cv-unqualified version of the 5708 // destination type; no user-defined conversions are considered. 5709 5710 ImplicitConversionSequence ICS 5711 = S.TryImplicitConversion(Initializer, DestType, 5712 /*SuppressUserConversions*/true, 5713 /*AllowExplicitConversions*/ false, 5714 /*InOverloadResolution*/ false, 5715 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5716 allowObjCWritebackConversion); 5717 5718 if (ICS.isStandard() && 5719 ICS.Standard.Second == ICK_Writeback_Conversion) { 5720 // Objective-C ARC writeback conversion. 5721 5722 // We should copy unless we're passing to an argument explicitly 5723 // marked 'out'. 5724 bool ShouldCopy = true; 5725 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5726 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5727 5728 // If there was an lvalue adjustment, add it as a separate conversion. 5729 if (ICS.Standard.First == ICK_Array_To_Pointer || 5730 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5731 ImplicitConversionSequence LvalueICS; 5732 LvalueICS.setStandard(); 5733 LvalueICS.Standard.setAsIdentityConversion(); 5734 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5735 LvalueICS.Standard.First = ICS.Standard.First; 5736 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5737 } 5738 5739 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5740 } else if (ICS.isBad()) { 5741 DeclAccessPair dap; 5742 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5743 AddZeroInitializationStep(Entity.getType()); 5744 } else if (Initializer->getType() == Context.OverloadTy && 5745 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5746 false, dap)) 5747 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5748 else if (Initializer->getType()->isFunctionType() && 5749 isExprAnUnaddressableFunction(S, Initializer)) 5750 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5751 else 5752 SetFailed(InitializationSequence::FK_ConversionFailed); 5753 } else { 5754 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5755 5756 MaybeProduceObjCObject(S, *this, Entity); 5757 } 5758 } 5759 5760 InitializationSequence::~InitializationSequence() { 5761 for (auto &S : Steps) 5762 S.Destroy(); 5763 } 5764 5765 //===----------------------------------------------------------------------===// 5766 // Perform initialization 5767 //===----------------------------------------------------------------------===// 5768 static Sema::AssignmentAction 5769 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5770 switch(Entity.getKind()) { 5771 case InitializedEntity::EK_Variable: 5772 case InitializedEntity::EK_New: 5773 case InitializedEntity::EK_Exception: 5774 case InitializedEntity::EK_Base: 5775 case InitializedEntity::EK_Delegating: 5776 return Sema::AA_Initializing; 5777 5778 case InitializedEntity::EK_Parameter: 5779 if (Entity.getDecl() && 5780 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5781 return Sema::AA_Sending; 5782 5783 return Sema::AA_Passing; 5784 5785 case InitializedEntity::EK_Parameter_CF_Audited: 5786 if (Entity.getDecl() && 5787 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5788 return Sema::AA_Sending; 5789 5790 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5791 5792 case InitializedEntity::EK_Result: 5793 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5794 return Sema::AA_Returning; 5795 5796 case InitializedEntity::EK_Temporary: 5797 case InitializedEntity::EK_RelatedResult: 5798 // FIXME: Can we tell apart casting vs. converting? 5799 return Sema::AA_Casting; 5800 5801 case InitializedEntity::EK_Member: 5802 case InitializedEntity::EK_Binding: 5803 case InitializedEntity::EK_ArrayElement: 5804 case InitializedEntity::EK_VectorElement: 5805 case InitializedEntity::EK_ComplexElement: 5806 case InitializedEntity::EK_BlockElement: 5807 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5808 case InitializedEntity::EK_LambdaCapture: 5809 case InitializedEntity::EK_CompoundLiteralInit: 5810 return Sema::AA_Initializing; 5811 } 5812 5813 llvm_unreachable("Invalid EntityKind!"); 5814 } 5815 5816 /// Whether we should bind a created object as a temporary when 5817 /// initializing the given entity. 5818 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5819 switch (Entity.getKind()) { 5820 case InitializedEntity::EK_ArrayElement: 5821 case InitializedEntity::EK_Member: 5822 case InitializedEntity::EK_Result: 5823 case InitializedEntity::EK_StmtExprResult: 5824 case InitializedEntity::EK_New: 5825 case InitializedEntity::EK_Variable: 5826 case InitializedEntity::EK_Base: 5827 case InitializedEntity::EK_Delegating: 5828 case InitializedEntity::EK_VectorElement: 5829 case InitializedEntity::EK_ComplexElement: 5830 case InitializedEntity::EK_Exception: 5831 case InitializedEntity::EK_BlockElement: 5832 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5833 case InitializedEntity::EK_LambdaCapture: 5834 case InitializedEntity::EK_CompoundLiteralInit: 5835 return false; 5836 5837 case InitializedEntity::EK_Parameter: 5838 case InitializedEntity::EK_Parameter_CF_Audited: 5839 case InitializedEntity::EK_Temporary: 5840 case InitializedEntity::EK_RelatedResult: 5841 case InitializedEntity::EK_Binding: 5842 return true; 5843 } 5844 5845 llvm_unreachable("missed an InitializedEntity kind?"); 5846 } 5847 5848 /// Whether the given entity, when initialized with an object 5849 /// created for that initialization, requires destruction. 5850 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 5851 switch (Entity.getKind()) { 5852 case InitializedEntity::EK_Result: 5853 case InitializedEntity::EK_StmtExprResult: 5854 case InitializedEntity::EK_New: 5855 case InitializedEntity::EK_Base: 5856 case InitializedEntity::EK_Delegating: 5857 case InitializedEntity::EK_VectorElement: 5858 case InitializedEntity::EK_ComplexElement: 5859 case InitializedEntity::EK_BlockElement: 5860 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5861 case InitializedEntity::EK_LambdaCapture: 5862 return false; 5863 5864 case InitializedEntity::EK_Member: 5865 case InitializedEntity::EK_Binding: 5866 case InitializedEntity::EK_Variable: 5867 case InitializedEntity::EK_Parameter: 5868 case InitializedEntity::EK_Parameter_CF_Audited: 5869 case InitializedEntity::EK_Temporary: 5870 case InitializedEntity::EK_ArrayElement: 5871 case InitializedEntity::EK_Exception: 5872 case InitializedEntity::EK_CompoundLiteralInit: 5873 case InitializedEntity::EK_RelatedResult: 5874 return true; 5875 } 5876 5877 llvm_unreachable("missed an InitializedEntity kind?"); 5878 } 5879 5880 /// Get the location at which initialization diagnostics should appear. 5881 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 5882 Expr *Initializer) { 5883 switch (Entity.getKind()) { 5884 case InitializedEntity::EK_Result: 5885 case InitializedEntity::EK_StmtExprResult: 5886 return Entity.getReturnLoc(); 5887 5888 case InitializedEntity::EK_Exception: 5889 return Entity.getThrowLoc(); 5890 5891 case InitializedEntity::EK_Variable: 5892 case InitializedEntity::EK_Binding: 5893 return Entity.getDecl()->getLocation(); 5894 5895 case InitializedEntity::EK_LambdaCapture: 5896 return Entity.getCaptureLoc(); 5897 5898 case InitializedEntity::EK_ArrayElement: 5899 case InitializedEntity::EK_Member: 5900 case InitializedEntity::EK_Parameter: 5901 case InitializedEntity::EK_Parameter_CF_Audited: 5902 case InitializedEntity::EK_Temporary: 5903 case InitializedEntity::EK_New: 5904 case InitializedEntity::EK_Base: 5905 case InitializedEntity::EK_Delegating: 5906 case InitializedEntity::EK_VectorElement: 5907 case InitializedEntity::EK_ComplexElement: 5908 case InitializedEntity::EK_BlockElement: 5909 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5910 case InitializedEntity::EK_CompoundLiteralInit: 5911 case InitializedEntity::EK_RelatedResult: 5912 return Initializer->getBeginLoc(); 5913 } 5914 llvm_unreachable("missed an InitializedEntity kind?"); 5915 } 5916 5917 /// Make a (potentially elidable) temporary copy of the object 5918 /// provided by the given initializer by calling the appropriate copy 5919 /// constructor. 5920 /// 5921 /// \param S The Sema object used for type-checking. 5922 /// 5923 /// \param T The type of the temporary object, which must either be 5924 /// the type of the initializer expression or a superclass thereof. 5925 /// 5926 /// \param Entity The entity being initialized. 5927 /// 5928 /// \param CurInit The initializer expression. 5929 /// 5930 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5931 /// is permitted in C++03 (but not C++0x) when binding a reference to 5932 /// an rvalue. 5933 /// 5934 /// \returns An expression that copies the initializer expression into 5935 /// a temporary object, or an error expression if a copy could not be 5936 /// created. 5937 static ExprResult CopyObject(Sema &S, 5938 QualType T, 5939 const InitializedEntity &Entity, 5940 ExprResult CurInit, 5941 bool IsExtraneousCopy) { 5942 if (CurInit.isInvalid()) 5943 return CurInit; 5944 // Determine which class type we're copying to. 5945 Expr *CurInitExpr = (Expr *)CurInit.get(); 5946 CXXRecordDecl *Class = nullptr; 5947 if (const RecordType *Record = T->getAs<RecordType>()) 5948 Class = cast<CXXRecordDecl>(Record->getDecl()); 5949 if (!Class) 5950 return CurInit; 5951 5952 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5953 5954 // Make sure that the type we are copying is complete. 5955 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5956 return CurInit; 5957 5958 // Perform overload resolution using the class's constructors. Per 5959 // C++11 [dcl.init]p16, second bullet for class types, this initialization 5960 // is direct-initialization. 5961 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5962 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 5963 5964 OverloadCandidateSet::iterator Best; 5965 switch (ResolveConstructorOverload( 5966 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 5967 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 5968 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 5969 /*SecondStepOfCopyInit=*/true)) { 5970 case OR_Success: 5971 break; 5972 5973 case OR_No_Viable_Function: 5974 CandidateSet.NoteCandidates( 5975 PartialDiagnosticAt( 5976 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 5977 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 5978 : diag::err_temp_copy_no_viable) 5979 << (int)Entity.getKind() << CurInitExpr->getType() 5980 << CurInitExpr->getSourceRange()), 5981 S, OCD_AllCandidates, CurInitExpr); 5982 if (!IsExtraneousCopy || S.isSFINAEContext()) 5983 return ExprError(); 5984 return CurInit; 5985 5986 case OR_Ambiguous: 5987 CandidateSet.NoteCandidates( 5988 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 5989 << (int)Entity.getKind() 5990 << CurInitExpr->getType() 5991 << CurInitExpr->getSourceRange()), 5992 S, OCD_ViableCandidates, CurInitExpr); 5993 return ExprError(); 5994 5995 case OR_Deleted: 5996 S.Diag(Loc, diag::err_temp_copy_deleted) 5997 << (int)Entity.getKind() << CurInitExpr->getType() 5998 << CurInitExpr->getSourceRange(); 5999 S.NoteDeletedFunction(Best->Function); 6000 return ExprError(); 6001 } 6002 6003 bool HadMultipleCandidates = CandidateSet.size() > 1; 6004 6005 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6006 SmallVector<Expr*, 8> ConstructorArgs; 6007 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6008 6009 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6010 IsExtraneousCopy); 6011 6012 if (IsExtraneousCopy) { 6013 // If this is a totally extraneous copy for C++03 reference 6014 // binding purposes, just return the original initialization 6015 // expression. We don't generate an (elided) copy operation here 6016 // because doing so would require us to pass down a flag to avoid 6017 // infinite recursion, where each step adds another extraneous, 6018 // elidable copy. 6019 6020 // Instantiate the default arguments of any extra parameters in 6021 // the selected copy constructor, as if we were going to create a 6022 // proper call to the copy constructor. 6023 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6024 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6025 if (S.RequireCompleteType(Loc, Parm->getType(), 6026 diag::err_call_incomplete_argument)) 6027 break; 6028 6029 // Build the default argument expression; we don't actually care 6030 // if this succeeds or not, because this routine will complain 6031 // if there was a problem. 6032 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6033 } 6034 6035 return CurInitExpr; 6036 } 6037 6038 // Determine the arguments required to actually perform the 6039 // constructor call (we might have derived-to-base conversions, or 6040 // the copy constructor may have default arguments). 6041 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6042 return ExprError(); 6043 6044 // C++0x [class.copy]p32: 6045 // When certain criteria are met, an implementation is allowed to 6046 // omit the copy/move construction of a class object, even if the 6047 // copy/move constructor and/or destructor for the object have 6048 // side effects. [...] 6049 // - when a temporary class object that has not been bound to a 6050 // reference (12.2) would be copied/moved to a class object 6051 // with the same cv-unqualified type, the copy/move operation 6052 // can be omitted by constructing the temporary object 6053 // directly into the target of the omitted copy/move 6054 // 6055 // Note that the other three bullets are handled elsewhere. Copy 6056 // elision for return statements and throw expressions are handled as part 6057 // of constructor initialization, while copy elision for exception handlers 6058 // is handled by the run-time. 6059 // 6060 // FIXME: If the function parameter is not the same type as the temporary, we 6061 // should still be able to elide the copy, but we don't have a way to 6062 // represent in the AST how much should be elided in this case. 6063 bool Elidable = 6064 CurInitExpr->isTemporaryObject(S.Context, Class) && 6065 S.Context.hasSameUnqualifiedType( 6066 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6067 CurInitExpr->getType()); 6068 6069 // Actually perform the constructor call. 6070 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6071 Elidable, 6072 ConstructorArgs, 6073 HadMultipleCandidates, 6074 /*ListInit*/ false, 6075 /*StdInitListInit*/ false, 6076 /*ZeroInit*/ false, 6077 CXXConstructExpr::CK_Complete, 6078 SourceRange()); 6079 6080 // If we're supposed to bind temporaries, do so. 6081 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6082 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6083 return CurInit; 6084 } 6085 6086 /// Check whether elidable copy construction for binding a reference to 6087 /// a temporary would have succeeded if we were building in C++98 mode, for 6088 /// -Wc++98-compat. 6089 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6090 const InitializedEntity &Entity, 6091 Expr *CurInitExpr) { 6092 assert(S.getLangOpts().CPlusPlus11); 6093 6094 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6095 if (!Record) 6096 return; 6097 6098 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6099 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6100 return; 6101 6102 // Find constructors which would have been considered. 6103 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6104 DeclContext::lookup_result Ctors = 6105 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6106 6107 // Perform overload resolution. 6108 OverloadCandidateSet::iterator Best; 6109 OverloadingResult OR = ResolveConstructorOverload( 6110 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6111 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6112 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6113 /*SecondStepOfCopyInit=*/true); 6114 6115 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6116 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6117 << CurInitExpr->getSourceRange(); 6118 6119 switch (OR) { 6120 case OR_Success: 6121 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6122 Best->FoundDecl, Entity, Diag); 6123 // FIXME: Check default arguments as far as that's possible. 6124 break; 6125 6126 case OR_No_Viable_Function: 6127 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6128 OCD_AllCandidates, CurInitExpr); 6129 break; 6130 6131 case OR_Ambiguous: 6132 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6133 OCD_ViableCandidates, CurInitExpr); 6134 break; 6135 6136 case OR_Deleted: 6137 S.Diag(Loc, Diag); 6138 S.NoteDeletedFunction(Best->Function); 6139 break; 6140 } 6141 } 6142 6143 void InitializationSequence::PrintInitLocationNote(Sema &S, 6144 const InitializedEntity &Entity) { 6145 if (Entity.isParameterKind() && Entity.getDecl()) { 6146 if (Entity.getDecl()->getLocation().isInvalid()) 6147 return; 6148 6149 if (Entity.getDecl()->getDeclName()) 6150 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6151 << Entity.getDecl()->getDeclName(); 6152 else 6153 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6154 } 6155 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6156 Entity.getMethodDecl()) 6157 S.Diag(Entity.getMethodDecl()->getLocation(), 6158 diag::note_method_return_type_change) 6159 << Entity.getMethodDecl()->getDeclName(); 6160 } 6161 6162 /// Returns true if the parameters describe a constructor initialization of 6163 /// an explicit temporary object, e.g. "Point(x, y)". 6164 static bool isExplicitTemporary(const InitializedEntity &Entity, 6165 const InitializationKind &Kind, 6166 unsigned NumArgs) { 6167 switch (Entity.getKind()) { 6168 case InitializedEntity::EK_Temporary: 6169 case InitializedEntity::EK_CompoundLiteralInit: 6170 case InitializedEntity::EK_RelatedResult: 6171 break; 6172 default: 6173 return false; 6174 } 6175 6176 switch (Kind.getKind()) { 6177 case InitializationKind::IK_DirectList: 6178 return true; 6179 // FIXME: Hack to work around cast weirdness. 6180 case InitializationKind::IK_Direct: 6181 case InitializationKind::IK_Value: 6182 return NumArgs != 1; 6183 default: 6184 return false; 6185 } 6186 } 6187 6188 static ExprResult 6189 PerformConstructorInitialization(Sema &S, 6190 const InitializedEntity &Entity, 6191 const InitializationKind &Kind, 6192 MultiExprArg Args, 6193 const InitializationSequence::Step& Step, 6194 bool &ConstructorInitRequiresZeroInit, 6195 bool IsListInitialization, 6196 bool IsStdInitListInitialization, 6197 SourceLocation LBraceLoc, 6198 SourceLocation RBraceLoc) { 6199 unsigned NumArgs = Args.size(); 6200 CXXConstructorDecl *Constructor 6201 = cast<CXXConstructorDecl>(Step.Function.Function); 6202 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6203 6204 // Build a call to the selected constructor. 6205 SmallVector<Expr*, 8> ConstructorArgs; 6206 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6207 ? Kind.getEqualLoc() 6208 : Kind.getLocation(); 6209 6210 if (Kind.getKind() == InitializationKind::IK_Default) { 6211 // Force even a trivial, implicit default constructor to be 6212 // semantically checked. We do this explicitly because we don't build 6213 // the definition for completely trivial constructors. 6214 assert(Constructor->getParent() && "No parent class for constructor."); 6215 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6216 Constructor->isTrivial() && !Constructor->isUsed(false)) 6217 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6218 } 6219 6220 ExprResult CurInit((Expr *)nullptr); 6221 6222 // C++ [over.match.copy]p1: 6223 // - When initializing a temporary to be bound to the first parameter 6224 // of a constructor that takes a reference to possibly cv-qualified 6225 // T as its first argument, called with a single argument in the 6226 // context of direct-initialization, explicit conversion functions 6227 // are also considered. 6228 bool AllowExplicitConv = 6229 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6230 hasCopyOrMoveCtorParam(S.Context, 6231 getConstructorInfo(Step.Function.FoundDecl)); 6232 6233 // Determine the arguments required to actually perform the constructor 6234 // call. 6235 if (S.CompleteConstructorCall(Constructor, Args, 6236 Loc, ConstructorArgs, 6237 AllowExplicitConv, 6238 IsListInitialization)) 6239 return ExprError(); 6240 6241 6242 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6243 // An explicitly-constructed temporary, e.g., X(1, 2). 6244 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6245 return ExprError(); 6246 6247 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6248 if (!TSInfo) 6249 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6250 SourceRange ParenOrBraceRange = 6251 (Kind.getKind() == InitializationKind::IK_DirectList) 6252 ? SourceRange(LBraceLoc, RBraceLoc) 6253 : Kind.getParenOrBraceRange(); 6254 6255 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6256 Step.Function.FoundDecl.getDecl())) { 6257 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6258 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6259 return ExprError(); 6260 } 6261 S.MarkFunctionReferenced(Loc, Constructor); 6262 6263 CurInit = CXXTemporaryObjectExpr::Create( 6264 S.Context, Constructor, 6265 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6266 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6267 IsListInitialization, IsStdInitListInitialization, 6268 ConstructorInitRequiresZeroInit); 6269 } else { 6270 CXXConstructExpr::ConstructionKind ConstructKind = 6271 CXXConstructExpr::CK_Complete; 6272 6273 if (Entity.getKind() == InitializedEntity::EK_Base) { 6274 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6275 CXXConstructExpr::CK_VirtualBase : 6276 CXXConstructExpr::CK_NonVirtualBase; 6277 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6278 ConstructKind = CXXConstructExpr::CK_Delegating; 6279 } 6280 6281 // Only get the parenthesis or brace range if it is a list initialization or 6282 // direct construction. 6283 SourceRange ParenOrBraceRange; 6284 if (IsListInitialization) 6285 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6286 else if (Kind.getKind() == InitializationKind::IK_Direct) 6287 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6288 6289 // If the entity allows NRVO, mark the construction as elidable 6290 // unconditionally. 6291 if (Entity.allowsNRVO()) 6292 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6293 Step.Function.FoundDecl, 6294 Constructor, /*Elidable=*/true, 6295 ConstructorArgs, 6296 HadMultipleCandidates, 6297 IsListInitialization, 6298 IsStdInitListInitialization, 6299 ConstructorInitRequiresZeroInit, 6300 ConstructKind, 6301 ParenOrBraceRange); 6302 else 6303 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6304 Step.Function.FoundDecl, 6305 Constructor, 6306 ConstructorArgs, 6307 HadMultipleCandidates, 6308 IsListInitialization, 6309 IsStdInitListInitialization, 6310 ConstructorInitRequiresZeroInit, 6311 ConstructKind, 6312 ParenOrBraceRange); 6313 } 6314 if (CurInit.isInvalid()) 6315 return ExprError(); 6316 6317 // Only check access if all of that succeeded. 6318 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6319 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6320 return ExprError(); 6321 6322 if (shouldBindAsTemporary(Entity)) 6323 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6324 6325 return CurInit; 6326 } 6327 6328 namespace { 6329 enum LifetimeKind { 6330 /// The lifetime of a temporary bound to this entity ends at the end of the 6331 /// full-expression, and that's (probably) fine. 6332 LK_FullExpression, 6333 6334 /// The lifetime of a temporary bound to this entity is extended to the 6335 /// lifeitme of the entity itself. 6336 LK_Extended, 6337 6338 /// The lifetime of a temporary bound to this entity probably ends too soon, 6339 /// because the entity is allocated in a new-expression. 6340 LK_New, 6341 6342 /// The lifetime of a temporary bound to this entity ends too soon, because 6343 /// the entity is a return object. 6344 LK_Return, 6345 6346 /// The lifetime of a temporary bound to this entity ends too soon, because 6347 /// the entity is the result of a statement expression. 6348 LK_StmtExprResult, 6349 6350 /// This is a mem-initializer: if it would extend a temporary (other than via 6351 /// a default member initializer), the program is ill-formed. 6352 LK_MemInitializer, 6353 }; 6354 using LifetimeResult = 6355 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6356 } 6357 6358 /// Determine the declaration which an initialized entity ultimately refers to, 6359 /// for the purpose of lifetime-extending a temporary bound to a reference in 6360 /// the initialization of \p Entity. 6361 static LifetimeResult getEntityLifetime( 6362 const InitializedEntity *Entity, 6363 const InitializedEntity *InitField = nullptr) { 6364 // C++11 [class.temporary]p5: 6365 switch (Entity->getKind()) { 6366 case InitializedEntity::EK_Variable: 6367 // The temporary [...] persists for the lifetime of the reference 6368 return {Entity, LK_Extended}; 6369 6370 case InitializedEntity::EK_Member: 6371 // For subobjects, we look at the complete object. 6372 if (Entity->getParent()) 6373 return getEntityLifetime(Entity->getParent(), Entity); 6374 6375 // except: 6376 // C++17 [class.base.init]p8: 6377 // A temporary expression bound to a reference member in a 6378 // mem-initializer is ill-formed. 6379 // C++17 [class.base.init]p11: 6380 // A temporary expression bound to a reference member from a 6381 // default member initializer is ill-formed. 6382 // 6383 // The context of p11 and its example suggest that it's only the use of a 6384 // default member initializer from a constructor that makes the program 6385 // ill-formed, not its mere existence, and that it can even be used by 6386 // aggregate initialization. 6387 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6388 : LK_MemInitializer}; 6389 6390 case InitializedEntity::EK_Binding: 6391 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6392 // type. 6393 return {Entity, LK_Extended}; 6394 6395 case InitializedEntity::EK_Parameter: 6396 case InitializedEntity::EK_Parameter_CF_Audited: 6397 // -- A temporary bound to a reference parameter in a function call 6398 // persists until the completion of the full-expression containing 6399 // the call. 6400 return {nullptr, LK_FullExpression}; 6401 6402 case InitializedEntity::EK_Result: 6403 // -- The lifetime of a temporary bound to the returned value in a 6404 // function return statement is not extended; the temporary is 6405 // destroyed at the end of the full-expression in the return statement. 6406 return {nullptr, LK_Return}; 6407 6408 case InitializedEntity::EK_StmtExprResult: 6409 // FIXME: Should we lifetime-extend through the result of a statement 6410 // expression? 6411 return {nullptr, LK_StmtExprResult}; 6412 6413 case InitializedEntity::EK_New: 6414 // -- A temporary bound to a reference in a new-initializer persists 6415 // until the completion of the full-expression containing the 6416 // new-initializer. 6417 return {nullptr, LK_New}; 6418 6419 case InitializedEntity::EK_Temporary: 6420 case InitializedEntity::EK_CompoundLiteralInit: 6421 case InitializedEntity::EK_RelatedResult: 6422 // We don't yet know the storage duration of the surrounding temporary. 6423 // Assume it's got full-expression duration for now, it will patch up our 6424 // storage duration if that's not correct. 6425 return {nullptr, LK_FullExpression}; 6426 6427 case InitializedEntity::EK_ArrayElement: 6428 // For subobjects, we look at the complete object. 6429 return getEntityLifetime(Entity->getParent(), InitField); 6430 6431 case InitializedEntity::EK_Base: 6432 // For subobjects, we look at the complete object. 6433 if (Entity->getParent()) 6434 return getEntityLifetime(Entity->getParent(), InitField); 6435 return {InitField, LK_MemInitializer}; 6436 6437 case InitializedEntity::EK_Delegating: 6438 // We can reach this case for aggregate initialization in a constructor: 6439 // struct A { int &&r; }; 6440 // struct B : A { B() : A{0} {} }; 6441 // In this case, use the outermost field decl as the context. 6442 return {InitField, LK_MemInitializer}; 6443 6444 case InitializedEntity::EK_BlockElement: 6445 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6446 case InitializedEntity::EK_LambdaCapture: 6447 case InitializedEntity::EK_VectorElement: 6448 case InitializedEntity::EK_ComplexElement: 6449 return {nullptr, LK_FullExpression}; 6450 6451 case InitializedEntity::EK_Exception: 6452 // FIXME: Can we diagnose lifetime problems with exceptions? 6453 return {nullptr, LK_FullExpression}; 6454 } 6455 llvm_unreachable("unknown entity kind"); 6456 } 6457 6458 namespace { 6459 enum ReferenceKind { 6460 /// Lifetime would be extended by a reference binding to a temporary. 6461 RK_ReferenceBinding, 6462 /// Lifetime would be extended by a std::initializer_list object binding to 6463 /// its backing array. 6464 RK_StdInitializerList, 6465 }; 6466 6467 /// A temporary or local variable. This will be one of: 6468 /// * A MaterializeTemporaryExpr. 6469 /// * A DeclRefExpr whose declaration is a local. 6470 /// * An AddrLabelExpr. 6471 /// * A BlockExpr for a block with captures. 6472 using Local = Expr*; 6473 6474 /// Expressions we stepped over when looking for the local state. Any steps 6475 /// that would inhibit lifetime extension or take us out of subexpressions of 6476 /// the initializer are included. 6477 struct IndirectLocalPathEntry { 6478 enum EntryKind { 6479 DefaultInit, 6480 AddressOf, 6481 VarInit, 6482 LValToRVal, 6483 LifetimeBoundCall, 6484 } Kind; 6485 Expr *E; 6486 const Decl *D = nullptr; 6487 IndirectLocalPathEntry() {} 6488 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6489 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6490 : Kind(K), E(E), D(D) {} 6491 }; 6492 6493 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6494 6495 struct RevertToOldSizeRAII { 6496 IndirectLocalPath &Path; 6497 unsigned OldSize = Path.size(); 6498 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6499 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6500 }; 6501 6502 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6503 ReferenceKind RK)>; 6504 } 6505 6506 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6507 for (auto E : Path) 6508 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6509 return true; 6510 return false; 6511 } 6512 6513 static bool pathContainsInit(IndirectLocalPath &Path) { 6514 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6515 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6516 E.Kind == IndirectLocalPathEntry::VarInit; 6517 }); 6518 } 6519 6520 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6521 Expr *Init, LocalVisitor Visit, 6522 bool RevisitSubinits); 6523 6524 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6525 Expr *Init, ReferenceKind RK, 6526 LocalVisitor Visit); 6527 6528 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6529 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6530 if (!TSI) 6531 return false; 6532 // Don't declare this variable in the second operand of the for-statement; 6533 // GCC miscompiles that by ending its lifetime before evaluating the 6534 // third operand. See gcc.gnu.org/PR86769. 6535 AttributedTypeLoc ATL; 6536 for (TypeLoc TL = TSI->getTypeLoc(); 6537 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6538 TL = ATL.getModifiedLoc()) { 6539 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6540 return true; 6541 } 6542 return false; 6543 } 6544 6545 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6546 LocalVisitor Visit) { 6547 const FunctionDecl *Callee; 6548 ArrayRef<Expr*> Args; 6549 6550 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6551 Callee = CE->getDirectCallee(); 6552 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6553 } else { 6554 auto *CCE = cast<CXXConstructExpr>(Call); 6555 Callee = CCE->getConstructor(); 6556 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6557 } 6558 if (!Callee) 6559 return; 6560 6561 Expr *ObjectArg = nullptr; 6562 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6563 ObjectArg = Args[0]; 6564 Args = Args.slice(1); 6565 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6566 ObjectArg = MCE->getImplicitObjectArgument(); 6567 } 6568 6569 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6570 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6571 if (Arg->isGLValue()) 6572 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6573 Visit); 6574 else 6575 visitLocalsRetainedByInitializer(Path, Arg, Visit, true); 6576 Path.pop_back(); 6577 }; 6578 6579 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6580 VisitLifetimeBoundArg(Callee, ObjectArg); 6581 6582 for (unsigned I = 0, 6583 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6584 I != N; ++I) { 6585 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6586 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6587 } 6588 } 6589 6590 /// Visit the locals that would be reachable through a reference bound to the 6591 /// glvalue expression \c Init. 6592 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6593 Expr *Init, ReferenceKind RK, 6594 LocalVisitor Visit) { 6595 RevertToOldSizeRAII RAII(Path); 6596 6597 // Walk past any constructs which we can lifetime-extend across. 6598 Expr *Old; 6599 do { 6600 Old = Init; 6601 6602 if (auto *FE = dyn_cast<FullExpr>(Init)) 6603 Init = FE->getSubExpr(); 6604 6605 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6606 // If this is just redundant braces around an initializer, step over it. 6607 if (ILE->isTransparent()) 6608 Init = ILE->getInit(0); 6609 } 6610 6611 // Step over any subobject adjustments; we may have a materialized 6612 // temporary inside them. 6613 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6614 6615 // Per current approach for DR1376, look through casts to reference type 6616 // when performing lifetime extension. 6617 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6618 if (CE->getSubExpr()->isGLValue()) 6619 Init = CE->getSubExpr(); 6620 6621 // Per the current approach for DR1299, look through array element access 6622 // on array glvalues when performing lifetime extension. 6623 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6624 Init = ASE->getBase(); 6625 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6626 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6627 Init = ICE->getSubExpr(); 6628 else 6629 // We can't lifetime extend through this but we might still find some 6630 // retained temporaries. 6631 return visitLocalsRetainedByInitializer(Path, Init, Visit, true); 6632 } 6633 6634 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6635 // constructor inherits one as an implicit mem-initializer. 6636 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6637 Path.push_back( 6638 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6639 Init = DIE->getExpr(); 6640 } 6641 } while (Init != Old); 6642 6643 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6644 if (Visit(Path, Local(MTE), RK)) 6645 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit, 6646 true); 6647 } 6648 6649 if (isa<CallExpr>(Init)) 6650 return visitLifetimeBoundArguments(Path, Init, Visit); 6651 6652 switch (Init->getStmtClass()) { 6653 case Stmt::DeclRefExprClass: { 6654 // If we find the name of a local non-reference parameter, we could have a 6655 // lifetime problem. 6656 auto *DRE = cast<DeclRefExpr>(Init); 6657 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6658 if (VD && VD->hasLocalStorage() && 6659 !DRE->refersToEnclosingVariableOrCapture()) { 6660 if (!VD->getType()->isReferenceType()) { 6661 Visit(Path, Local(DRE), RK); 6662 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6663 // The lifetime of a reference parameter is unknown; assume it's OK 6664 // for now. 6665 break; 6666 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6667 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6668 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6669 RK_ReferenceBinding, Visit); 6670 } 6671 } 6672 break; 6673 } 6674 6675 case Stmt::UnaryOperatorClass: { 6676 // The only unary operator that make sense to handle here 6677 // is Deref. All others don't resolve to a "name." This includes 6678 // handling all sorts of rvalues passed to a unary operator. 6679 const UnaryOperator *U = cast<UnaryOperator>(Init); 6680 if (U->getOpcode() == UO_Deref) 6681 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); 6682 break; 6683 } 6684 6685 case Stmt::OMPArraySectionExprClass: { 6686 visitLocalsRetainedByInitializer( 6687 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true); 6688 break; 6689 } 6690 6691 case Stmt::ConditionalOperatorClass: 6692 case Stmt::BinaryConditionalOperatorClass: { 6693 auto *C = cast<AbstractConditionalOperator>(Init); 6694 if (!C->getTrueExpr()->getType()->isVoidType()) 6695 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); 6696 if (!C->getFalseExpr()->getType()->isVoidType()) 6697 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); 6698 break; 6699 } 6700 6701 // FIXME: Visit the left-hand side of an -> or ->*. 6702 6703 default: 6704 break; 6705 } 6706 } 6707 6708 /// Visit the locals that would be reachable through an object initialized by 6709 /// the prvalue expression \c Init. 6710 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6711 Expr *Init, LocalVisitor Visit, 6712 bool RevisitSubinits) { 6713 RevertToOldSizeRAII RAII(Path); 6714 6715 Expr *Old; 6716 do { 6717 Old = Init; 6718 6719 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6720 // constructor inherits one as an implicit mem-initializer. 6721 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6722 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6723 Init = DIE->getExpr(); 6724 } 6725 6726 if (auto *FE = dyn_cast<FullExpr>(Init)) 6727 Init = FE->getSubExpr(); 6728 6729 // Dig out the expression which constructs the extended temporary. 6730 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6731 6732 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 6733 Init = BTE->getSubExpr(); 6734 6735 Init = Init->IgnoreParens(); 6736 6737 // Step over value-preserving rvalue casts. 6738 if (auto *CE = dyn_cast<CastExpr>(Init)) { 6739 switch (CE->getCastKind()) { 6740 case CK_LValueToRValue: 6741 // If we can match the lvalue to a const object, we can look at its 6742 // initializer. 6743 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 6744 return visitLocalsRetainedByReferenceBinding( 6745 Path, Init, RK_ReferenceBinding, 6746 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 6747 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 6748 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6749 if (VD && VD->getType().isConstQualified() && VD->getInit() && 6750 !isVarOnPath(Path, VD)) { 6751 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6752 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true); 6753 } 6754 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 6755 if (MTE->getType().isConstQualified()) 6756 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), 6757 Visit, true); 6758 } 6759 return false; 6760 }); 6761 6762 // We assume that objects can be retained by pointers cast to integers, 6763 // but not if the integer is cast to floating-point type or to _Complex. 6764 // We assume that casts to 'bool' do not preserve enough information to 6765 // retain a local object. 6766 case CK_NoOp: 6767 case CK_BitCast: 6768 case CK_BaseToDerived: 6769 case CK_DerivedToBase: 6770 case CK_UncheckedDerivedToBase: 6771 case CK_Dynamic: 6772 case CK_ToUnion: 6773 case CK_UserDefinedConversion: 6774 case CK_ConstructorConversion: 6775 case CK_IntegralToPointer: 6776 case CK_PointerToIntegral: 6777 case CK_VectorSplat: 6778 case CK_IntegralCast: 6779 case CK_CPointerToObjCPointerCast: 6780 case CK_BlockPointerToObjCPointerCast: 6781 case CK_AnyPointerToBlockPointerCast: 6782 case CK_AddressSpaceConversion: 6783 break; 6784 6785 case CK_ArrayToPointerDecay: 6786 // Model array-to-pointer decay as taking the address of the array 6787 // lvalue. 6788 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 6789 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 6790 RK_ReferenceBinding, Visit); 6791 6792 default: 6793 return; 6794 } 6795 6796 Init = CE->getSubExpr(); 6797 } 6798 } while (Old != Init); 6799 6800 // C++17 [dcl.init.list]p6: 6801 // initializing an initializer_list object from the array extends the 6802 // lifetime of the array exactly like binding a reference to a temporary. 6803 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 6804 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 6805 RK_StdInitializerList, Visit); 6806 6807 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6808 // We already visited the elements of this initializer list while 6809 // performing the initialization. Don't visit them again unless we've 6810 // changed the lifetime of the initialized entity. 6811 if (!RevisitSubinits) 6812 return; 6813 6814 if (ILE->isTransparent()) 6815 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 6816 RevisitSubinits); 6817 6818 if (ILE->getType()->isArrayType()) { 6819 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 6820 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 6821 RevisitSubinits); 6822 return; 6823 } 6824 6825 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 6826 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 6827 6828 // If we lifetime-extend a braced initializer which is initializing an 6829 // aggregate, and that aggregate contains reference members which are 6830 // bound to temporaries, those temporaries are also lifetime-extended. 6831 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 6832 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 6833 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 6834 RK_ReferenceBinding, Visit); 6835 else { 6836 unsigned Index = 0; 6837 for (const auto *I : RD->fields()) { 6838 if (Index >= ILE->getNumInits()) 6839 break; 6840 if (I->isUnnamedBitfield()) 6841 continue; 6842 Expr *SubInit = ILE->getInit(Index); 6843 if (I->getType()->isReferenceType()) 6844 visitLocalsRetainedByReferenceBinding(Path, SubInit, 6845 RK_ReferenceBinding, Visit); 6846 else 6847 // This might be either aggregate-initialization of a member or 6848 // initialization of a std::initializer_list object. Regardless, 6849 // we should recursively lifetime-extend that initializer. 6850 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 6851 RevisitSubinits); 6852 ++Index; 6853 } 6854 } 6855 } 6856 return; 6857 } 6858 6859 // The lifetime of an init-capture is that of the closure object constructed 6860 // by a lambda-expression. 6861 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 6862 for (Expr *E : LE->capture_inits()) { 6863 if (!E) 6864 continue; 6865 if (E->isGLValue()) 6866 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 6867 Visit); 6868 else 6869 visitLocalsRetainedByInitializer(Path, E, Visit, true); 6870 } 6871 } 6872 6873 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) 6874 return visitLifetimeBoundArguments(Path, Init, Visit); 6875 6876 switch (Init->getStmtClass()) { 6877 case Stmt::UnaryOperatorClass: { 6878 auto *UO = cast<UnaryOperator>(Init); 6879 // If the initializer is the address of a local, we could have a lifetime 6880 // problem. 6881 if (UO->getOpcode() == UO_AddrOf) { 6882 // If this is &rvalue, then it's ill-formed and we have already diagnosed 6883 // it. Don't produce a redundant warning about the lifetime of the 6884 // temporary. 6885 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 6886 return; 6887 6888 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 6889 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 6890 RK_ReferenceBinding, Visit); 6891 } 6892 break; 6893 } 6894 6895 case Stmt::BinaryOperatorClass: { 6896 // Handle pointer arithmetic. 6897 auto *BO = cast<BinaryOperator>(Init); 6898 BinaryOperatorKind BOK = BO->getOpcode(); 6899 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 6900 break; 6901 6902 if (BO->getLHS()->getType()->isPointerType()) 6903 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); 6904 else if (BO->getRHS()->getType()->isPointerType()) 6905 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); 6906 break; 6907 } 6908 6909 case Stmt::ConditionalOperatorClass: 6910 case Stmt::BinaryConditionalOperatorClass: { 6911 auto *C = cast<AbstractConditionalOperator>(Init); 6912 // In C++, we can have a throw-expression operand, which has 'void' type 6913 // and isn't interesting from a lifetime perspective. 6914 if (!C->getTrueExpr()->getType()->isVoidType()) 6915 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); 6916 if (!C->getFalseExpr()->getType()->isVoidType()) 6917 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); 6918 break; 6919 } 6920 6921 case Stmt::BlockExprClass: 6922 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 6923 // This is a local block, whose lifetime is that of the function. 6924 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 6925 } 6926 break; 6927 6928 case Stmt::AddrLabelExprClass: 6929 // We want to warn if the address of a label would escape the function. 6930 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 6931 break; 6932 6933 default: 6934 break; 6935 } 6936 } 6937 6938 /// Determine whether this is an indirect path to a temporary that we are 6939 /// supposed to lifetime-extend along (but don't). 6940 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 6941 for (auto Elem : Path) { 6942 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 6943 return false; 6944 } 6945 return true; 6946 } 6947 6948 /// Find the range for the first interesting entry in the path at or after I. 6949 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 6950 Expr *E) { 6951 for (unsigned N = Path.size(); I != N; ++I) { 6952 switch (Path[I].Kind) { 6953 case IndirectLocalPathEntry::AddressOf: 6954 case IndirectLocalPathEntry::LValToRVal: 6955 case IndirectLocalPathEntry::LifetimeBoundCall: 6956 // These exist primarily to mark the path as not permitting or 6957 // supporting lifetime extension. 6958 break; 6959 6960 case IndirectLocalPathEntry::DefaultInit: 6961 case IndirectLocalPathEntry::VarInit: 6962 return Path[I].E->getSourceRange(); 6963 } 6964 } 6965 return E->getSourceRange(); 6966 } 6967 6968 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 6969 Expr *Init) { 6970 LifetimeResult LR = getEntityLifetime(&Entity); 6971 LifetimeKind LK = LR.getInt(); 6972 const InitializedEntity *ExtendingEntity = LR.getPointer(); 6973 6974 // If this entity doesn't have an interesting lifetime, don't bother looking 6975 // for temporaries within its initializer. 6976 if (LK == LK_FullExpression) 6977 return; 6978 6979 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 6980 ReferenceKind RK) -> bool { 6981 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 6982 SourceLocation DiagLoc = DiagRange.getBegin(); 6983 6984 switch (LK) { 6985 case LK_FullExpression: 6986 llvm_unreachable("already handled this"); 6987 6988 case LK_Extended: { 6989 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 6990 if (!MTE) { 6991 // The initialized entity has lifetime beyond the full-expression, 6992 // and the local entity does too, so don't warn. 6993 // 6994 // FIXME: We should consider warning if a static / thread storage 6995 // duration variable retains an automatic storage duration local. 6996 return false; 6997 } 6998 6999 // Lifetime-extend the temporary. 7000 if (Path.empty()) { 7001 // Update the storage duration of the materialized temporary. 7002 // FIXME: Rebuild the expression instead of mutating it. 7003 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7004 ExtendingEntity->allocateManglingNumber()); 7005 // Also visit the temporaries lifetime-extended by this initializer. 7006 return true; 7007 } 7008 7009 if (shouldLifetimeExtendThroughPath(Path)) { 7010 // We're supposed to lifetime-extend the temporary along this path (per 7011 // the resolution of DR1815), but we don't support that yet. 7012 // 7013 // FIXME: Properly handle this situation. Perhaps the easiest approach 7014 // would be to clone the initializer expression on each use that would 7015 // lifetime extend its temporaries. 7016 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7017 << RK << DiagRange; 7018 } else { 7019 // If the path goes through the initialization of a variable or field, 7020 // it can't possibly reach a temporary created in this full-expression. 7021 // We will have already diagnosed any problems with the initializer. 7022 if (pathContainsInit(Path)) 7023 return false; 7024 7025 Diag(DiagLoc, diag::warn_dangling_variable) 7026 << RK << !Entity.getParent() 7027 << ExtendingEntity->getDecl()->isImplicit() 7028 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7029 } 7030 break; 7031 } 7032 7033 case LK_MemInitializer: { 7034 if (isa<MaterializeTemporaryExpr>(L)) { 7035 // Under C++ DR1696, if a mem-initializer (or a default member 7036 // initializer used by the absence of one) would lifetime-extend a 7037 // temporary, the program is ill-formed. 7038 if (auto *ExtendingDecl = 7039 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7040 bool IsSubobjectMember = ExtendingEntity != &Entity; 7041 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7042 ? diag::err_dangling_member 7043 : diag::warn_dangling_member) 7044 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7045 // Don't bother adding a note pointing to the field if we're inside 7046 // its default member initializer; our primary diagnostic points to 7047 // the same place in that case. 7048 if (Path.empty() || 7049 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7050 Diag(ExtendingDecl->getLocation(), 7051 diag::note_lifetime_extending_member_declared_here) 7052 << RK << IsSubobjectMember; 7053 } 7054 } else { 7055 // We have a mem-initializer but no particular field within it; this 7056 // is either a base class or a delegating initializer directly 7057 // initializing the base-class from something that doesn't live long 7058 // enough. 7059 // 7060 // FIXME: Warn on this. 7061 return false; 7062 } 7063 } else { 7064 // Paths via a default initializer can only occur during error recovery 7065 // (there's no other way that a default initializer can refer to a 7066 // local). Don't produce a bogus warning on those cases. 7067 if (pathContainsInit(Path)) 7068 return false; 7069 7070 auto *DRE = dyn_cast<DeclRefExpr>(L); 7071 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7072 if (!VD) { 7073 // A member was initialized to a local block. 7074 // FIXME: Warn on this. 7075 return false; 7076 } 7077 7078 if (auto *Member = 7079 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7080 bool IsPointer = Member->getType()->isAnyPointerType(); 7081 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7082 : diag::warn_bind_ref_member_to_parameter) 7083 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7084 Diag(Member->getLocation(), 7085 diag::note_ref_or_ptr_member_declared_here) 7086 << (unsigned)IsPointer; 7087 } 7088 } 7089 break; 7090 } 7091 7092 case LK_New: 7093 if (isa<MaterializeTemporaryExpr>(L)) { 7094 Diag(DiagLoc, RK == RK_ReferenceBinding 7095 ? diag::warn_new_dangling_reference 7096 : diag::warn_new_dangling_initializer_list) 7097 << !Entity.getParent() << DiagRange; 7098 } else { 7099 // We can't determine if the allocation outlives the local declaration. 7100 return false; 7101 } 7102 break; 7103 7104 case LK_Return: 7105 case LK_StmtExprResult: 7106 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7107 // We can't determine if the local variable outlives the statement 7108 // expression. 7109 if (LK == LK_StmtExprResult) 7110 return false; 7111 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7112 << Entity.getType()->isReferenceType() << DRE->getDecl() 7113 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7114 } else if (isa<BlockExpr>(L)) { 7115 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7116 } else if (isa<AddrLabelExpr>(L)) { 7117 // Don't warn when returning a label from a statement expression. 7118 // Leaving the scope doesn't end its lifetime. 7119 if (LK == LK_StmtExprResult) 7120 return false; 7121 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7122 } else { 7123 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7124 << Entity.getType()->isReferenceType() << DiagRange; 7125 } 7126 break; 7127 } 7128 7129 for (unsigned I = 0; I != Path.size(); ++I) { 7130 auto Elem = Path[I]; 7131 7132 switch (Elem.Kind) { 7133 case IndirectLocalPathEntry::AddressOf: 7134 case IndirectLocalPathEntry::LValToRVal: 7135 // These exist primarily to mark the path as not permitting or 7136 // supporting lifetime extension. 7137 break; 7138 7139 case IndirectLocalPathEntry::LifetimeBoundCall: 7140 // FIXME: Consider adding a note for this. 7141 break; 7142 7143 case IndirectLocalPathEntry::DefaultInit: { 7144 auto *FD = cast<FieldDecl>(Elem.D); 7145 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7146 << FD << nextPathEntryRange(Path, I + 1, L); 7147 break; 7148 } 7149 7150 case IndirectLocalPathEntry::VarInit: 7151 const VarDecl *VD = cast<VarDecl>(Elem.D); 7152 Diag(VD->getLocation(), diag::note_local_var_initializer) 7153 << VD->getType()->isReferenceType() 7154 << VD->isImplicit() << VD->getDeclName() 7155 << nextPathEntryRange(Path, I + 1, L); 7156 break; 7157 } 7158 } 7159 7160 // We didn't lifetime-extend, so don't go any further; we don't need more 7161 // warnings or errors on inner temporaries within this one's initializer. 7162 return false; 7163 }; 7164 7165 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7166 if (Init->isGLValue()) 7167 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7168 TemporaryVisitor); 7169 else 7170 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false); 7171 } 7172 7173 static void DiagnoseNarrowingInInitList(Sema &S, 7174 const ImplicitConversionSequence &ICS, 7175 QualType PreNarrowingType, 7176 QualType EntityType, 7177 const Expr *PostInit); 7178 7179 /// Provide warnings when std::move is used on construction. 7180 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7181 bool IsReturnStmt) { 7182 if (!InitExpr) 7183 return; 7184 7185 if (S.inTemplateInstantiation()) 7186 return; 7187 7188 QualType DestType = InitExpr->getType(); 7189 if (!DestType->isRecordType()) 7190 return; 7191 7192 unsigned DiagID = 0; 7193 if (IsReturnStmt) { 7194 const CXXConstructExpr *CCE = 7195 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7196 if (!CCE || CCE->getNumArgs() != 1) 7197 return; 7198 7199 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7200 return; 7201 7202 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7203 } 7204 7205 // Find the std::move call and get the argument. 7206 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7207 if (!CE || !CE->isCallToStdMove()) 7208 return; 7209 7210 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7211 7212 if (IsReturnStmt) { 7213 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7214 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7215 return; 7216 7217 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7218 if (!VD || !VD->hasLocalStorage()) 7219 return; 7220 7221 // __block variables are not moved implicitly. 7222 if (VD->hasAttr<BlocksAttr>()) 7223 return; 7224 7225 QualType SourceType = VD->getType(); 7226 if (!SourceType->isRecordType()) 7227 return; 7228 7229 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7230 return; 7231 } 7232 7233 // If we're returning a function parameter, copy elision 7234 // is not possible. 7235 if (isa<ParmVarDecl>(VD)) 7236 DiagID = diag::warn_redundant_move_on_return; 7237 else 7238 DiagID = diag::warn_pessimizing_move_on_return; 7239 } else { 7240 DiagID = diag::warn_pessimizing_move_on_initialization; 7241 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7242 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7243 return; 7244 } 7245 7246 S.Diag(CE->getBeginLoc(), DiagID); 7247 7248 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7249 // is within a macro. 7250 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7251 if (CallBegin.isMacroID()) 7252 return; 7253 SourceLocation RParen = CE->getRParenLoc(); 7254 if (RParen.isMacroID()) 7255 return; 7256 SourceLocation LParen; 7257 SourceLocation ArgLoc = Arg->getBeginLoc(); 7258 7259 // Special testing for the argument location. Since the fix-it needs the 7260 // location right before the argument, the argument location can be in a 7261 // macro only if it is at the beginning of the macro. 7262 while (ArgLoc.isMacroID() && 7263 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7264 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7265 } 7266 7267 if (LParen.isMacroID()) 7268 return; 7269 7270 LParen = ArgLoc.getLocWithOffset(-1); 7271 7272 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7273 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7274 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7275 } 7276 7277 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7278 // Check to see if we are dereferencing a null pointer. If so, this is 7279 // undefined behavior, so warn about it. This only handles the pattern 7280 // "*null", which is a very syntactic check. 7281 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7282 if (UO->getOpcode() == UO_Deref && 7283 UO->getSubExpr()->IgnoreParenCasts()-> 7284 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7285 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7286 S.PDiag(diag::warn_binding_null_to_reference) 7287 << UO->getSubExpr()->getSourceRange()); 7288 } 7289 } 7290 7291 MaterializeTemporaryExpr * 7292 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7293 bool BoundToLvalueReference) { 7294 auto MTE = new (Context) 7295 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7296 7297 // Order an ExprWithCleanups for lifetime marks. 7298 // 7299 // TODO: It'll be good to have a single place to check the access of the 7300 // destructor and generate ExprWithCleanups for various uses. Currently these 7301 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7302 // but there may be a chance to merge them. 7303 Cleanup.setExprNeedsCleanups(false); 7304 return MTE; 7305 } 7306 7307 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7308 // In C++98, we don't want to implicitly create an xvalue. 7309 // FIXME: This means that AST consumers need to deal with "prvalues" that 7310 // denote materialized temporaries. Maybe we should add another ValueKind 7311 // for "xvalue pretending to be a prvalue" for C++98 support. 7312 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7313 return E; 7314 7315 // C++1z [conv.rval]/1: T shall be a complete type. 7316 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7317 // If so, we should check for a non-abstract class type here too. 7318 QualType T = E->getType(); 7319 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7320 return ExprError(); 7321 7322 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7323 } 7324 7325 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7326 ExprValueKind VK, 7327 CheckedConversionKind CCK) { 7328 7329 CastKind CK = CK_NoOp; 7330 7331 if (VK == VK_RValue) { 7332 auto PointeeTy = Ty->getPointeeType(); 7333 auto ExprPointeeTy = E->getType()->getPointeeType(); 7334 if (!PointeeTy.isNull() && 7335 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7336 CK = CK_AddressSpaceConversion; 7337 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7338 CK = CK_AddressSpaceConversion; 7339 } 7340 7341 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7342 } 7343 7344 ExprResult InitializationSequence::Perform(Sema &S, 7345 const InitializedEntity &Entity, 7346 const InitializationKind &Kind, 7347 MultiExprArg Args, 7348 QualType *ResultType) { 7349 if (Failed()) { 7350 Diagnose(S, Entity, Kind, Args); 7351 return ExprError(); 7352 } 7353 if (!ZeroInitializationFixit.empty()) { 7354 unsigned DiagID = diag::err_default_init_const; 7355 if (Decl *D = Entity.getDecl()) 7356 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7357 DiagID = diag::ext_default_init_const; 7358 7359 // The initialization would have succeeded with this fixit. Since the fixit 7360 // is on the error, we need to build a valid AST in this case, so this isn't 7361 // handled in the Failed() branch above. 7362 QualType DestType = Entity.getType(); 7363 S.Diag(Kind.getLocation(), DiagID) 7364 << DestType << (bool)DestType->getAs<RecordType>() 7365 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7366 ZeroInitializationFixit); 7367 } 7368 7369 if (getKind() == DependentSequence) { 7370 // If the declaration is a non-dependent, incomplete array type 7371 // that has an initializer, then its type will be completed once 7372 // the initializer is instantiated. 7373 if (ResultType && !Entity.getType()->isDependentType() && 7374 Args.size() == 1) { 7375 QualType DeclType = Entity.getType(); 7376 if (const IncompleteArrayType *ArrayT 7377 = S.Context.getAsIncompleteArrayType(DeclType)) { 7378 // FIXME: We don't currently have the ability to accurately 7379 // compute the length of an initializer list without 7380 // performing full type-checking of the initializer list 7381 // (since we have to determine where braces are implicitly 7382 // introduced and such). So, we fall back to making the array 7383 // type a dependently-sized array type with no specified 7384 // bound. 7385 if (isa<InitListExpr>((Expr *)Args[0])) { 7386 SourceRange Brackets; 7387 7388 // Scavange the location of the brackets from the entity, if we can. 7389 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7390 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7391 TypeLoc TL = TInfo->getTypeLoc(); 7392 if (IncompleteArrayTypeLoc ArrayLoc = 7393 TL.getAs<IncompleteArrayTypeLoc>()) 7394 Brackets = ArrayLoc.getBracketsRange(); 7395 } 7396 } 7397 7398 *ResultType 7399 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7400 /*NumElts=*/nullptr, 7401 ArrayT->getSizeModifier(), 7402 ArrayT->getIndexTypeCVRQualifiers(), 7403 Brackets); 7404 } 7405 7406 } 7407 } 7408 if (Kind.getKind() == InitializationKind::IK_Direct && 7409 !Kind.isExplicitCast()) { 7410 // Rebuild the ParenListExpr. 7411 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7412 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7413 Args); 7414 } 7415 assert(Kind.getKind() == InitializationKind::IK_Copy || 7416 Kind.isExplicitCast() || 7417 Kind.getKind() == InitializationKind::IK_DirectList); 7418 return ExprResult(Args[0]); 7419 } 7420 7421 // No steps means no initialization. 7422 if (Steps.empty()) 7423 return ExprResult((Expr *)nullptr); 7424 7425 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7426 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7427 !Entity.isParameterKind()) { 7428 // Produce a C++98 compatibility warning if we are initializing a reference 7429 // from an initializer list. For parameters, we produce a better warning 7430 // elsewhere. 7431 Expr *Init = Args[0]; 7432 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7433 << Init->getSourceRange(); 7434 } 7435 7436 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7437 QualType ETy = Entity.getType(); 7438 Qualifiers TyQualifiers = ETy.getQualifiers(); 7439 bool HasGlobalAS = TyQualifiers.hasAddressSpace() && 7440 TyQualifiers.getAddressSpace() == LangAS::opencl_global; 7441 7442 if (S.getLangOpts().OpenCLVersion >= 200 && 7443 ETy->isAtomicType() && !HasGlobalAS && 7444 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7445 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7446 << 1 7447 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7448 return ExprError(); 7449 } 7450 7451 QualType DestType = Entity.getType().getNonReferenceType(); 7452 // FIXME: Ugly hack around the fact that Entity.getType() is not 7453 // the same as Entity.getDecl()->getType() in cases involving type merging, 7454 // and we want latter when it makes sense. 7455 if (ResultType) 7456 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7457 Entity.getType(); 7458 7459 ExprResult CurInit((Expr *)nullptr); 7460 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7461 7462 // For initialization steps that start with a single initializer, 7463 // grab the only argument out the Args and place it into the "current" 7464 // initializer. 7465 switch (Steps.front().Kind) { 7466 case SK_ResolveAddressOfOverloadedFunction: 7467 case SK_CastDerivedToBaseRValue: 7468 case SK_CastDerivedToBaseXValue: 7469 case SK_CastDerivedToBaseLValue: 7470 case SK_BindReference: 7471 case SK_BindReferenceToTemporary: 7472 case SK_FinalCopy: 7473 case SK_ExtraneousCopyToTemporary: 7474 case SK_UserConversion: 7475 case SK_QualificationConversionLValue: 7476 case SK_QualificationConversionXValue: 7477 case SK_QualificationConversionRValue: 7478 case SK_AtomicConversion: 7479 case SK_LValueToRValue: 7480 case SK_ConversionSequence: 7481 case SK_ConversionSequenceNoNarrowing: 7482 case SK_ListInitialization: 7483 case SK_UnwrapInitList: 7484 case SK_RewrapInitList: 7485 case SK_CAssignment: 7486 case SK_StringInit: 7487 case SK_ObjCObjectConversion: 7488 case SK_ArrayLoopIndex: 7489 case SK_ArrayLoopInit: 7490 case SK_ArrayInit: 7491 case SK_GNUArrayInit: 7492 case SK_ParenthesizedArrayInit: 7493 case SK_PassByIndirectCopyRestore: 7494 case SK_PassByIndirectRestore: 7495 case SK_ProduceObjCObject: 7496 case SK_StdInitializerList: 7497 case SK_OCLSamplerInit: 7498 case SK_OCLZeroOpaqueType: { 7499 assert(Args.size() == 1); 7500 CurInit = Args[0]; 7501 if (!CurInit.get()) return ExprError(); 7502 break; 7503 } 7504 7505 case SK_ConstructorInitialization: 7506 case SK_ConstructorInitializationFromList: 7507 case SK_StdInitializerListConstructorCall: 7508 case SK_ZeroInitialization: 7509 break; 7510 } 7511 7512 // Promote from an unevaluated context to an unevaluated list context in 7513 // C++11 list-initialization; we need to instantiate entities usable in 7514 // constant expressions here in order to perform narrowing checks =( 7515 EnterExpressionEvaluationContext Evaluated( 7516 S, EnterExpressionEvaluationContext::InitList, 7517 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7518 7519 // C++ [class.abstract]p2: 7520 // no objects of an abstract class can be created except as subobjects 7521 // of a class derived from it 7522 auto checkAbstractType = [&](QualType T) -> bool { 7523 if (Entity.getKind() == InitializedEntity::EK_Base || 7524 Entity.getKind() == InitializedEntity::EK_Delegating) 7525 return false; 7526 return S.RequireNonAbstractType(Kind.getLocation(), T, 7527 diag::err_allocation_of_abstract_type); 7528 }; 7529 7530 // Walk through the computed steps for the initialization sequence, 7531 // performing the specified conversions along the way. 7532 bool ConstructorInitRequiresZeroInit = false; 7533 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7534 Step != StepEnd; ++Step) { 7535 if (CurInit.isInvalid()) 7536 return ExprError(); 7537 7538 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7539 7540 switch (Step->Kind) { 7541 case SK_ResolveAddressOfOverloadedFunction: 7542 // Overload resolution determined which function invoke; update the 7543 // initializer to reflect that choice. 7544 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7545 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7546 return ExprError(); 7547 CurInit = S.FixOverloadedFunctionReference(CurInit, 7548 Step->Function.FoundDecl, 7549 Step->Function.Function); 7550 break; 7551 7552 case SK_CastDerivedToBaseRValue: 7553 case SK_CastDerivedToBaseXValue: 7554 case SK_CastDerivedToBaseLValue: { 7555 // We have a derived-to-base cast that produces either an rvalue or an 7556 // lvalue. Perform that cast. 7557 7558 CXXCastPath BasePath; 7559 7560 // Casts to inaccessible base classes are allowed with C-style casts. 7561 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7562 if (S.CheckDerivedToBaseConversion( 7563 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7564 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7565 return ExprError(); 7566 7567 ExprValueKind VK = 7568 Step->Kind == SK_CastDerivedToBaseLValue ? 7569 VK_LValue : 7570 (Step->Kind == SK_CastDerivedToBaseXValue ? 7571 VK_XValue : 7572 VK_RValue); 7573 CurInit = 7574 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7575 CurInit.get(), &BasePath, VK); 7576 break; 7577 } 7578 7579 case SK_BindReference: 7580 // Reference binding does not have any corresponding ASTs. 7581 7582 // Check exception specifications 7583 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7584 return ExprError(); 7585 7586 // We don't check for e.g. function pointers here, since address 7587 // availability checks should only occur when the function first decays 7588 // into a pointer or reference. 7589 if (CurInit.get()->getType()->isFunctionProtoType()) { 7590 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7591 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7592 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7593 DRE->getBeginLoc())) 7594 return ExprError(); 7595 } 7596 } 7597 } 7598 7599 CheckForNullPointerDereference(S, CurInit.get()); 7600 break; 7601 7602 case SK_BindReferenceToTemporary: { 7603 // Make sure the "temporary" is actually an rvalue. 7604 assert(CurInit.get()->isRValue() && "not a temporary"); 7605 7606 // Check exception specifications 7607 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7608 return ExprError(); 7609 7610 // Materialize the temporary into memory. 7611 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 7612 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 7613 CurInit = MTE; 7614 7615 // If we're extending this temporary to automatic storage duration -- we 7616 // need to register its cleanup during the full-expression's cleanups. 7617 if (MTE->getStorageDuration() == SD_Automatic && 7618 MTE->getType().isDestructedType()) 7619 S.Cleanup.setExprNeedsCleanups(true); 7620 break; 7621 } 7622 7623 case SK_FinalCopy: 7624 if (checkAbstractType(Step->Type)) 7625 return ExprError(); 7626 7627 // If the overall initialization is initializing a temporary, we already 7628 // bound our argument if it was necessary to do so. If not (if we're 7629 // ultimately initializing a non-temporary), our argument needs to be 7630 // bound since it's initializing a function parameter. 7631 // FIXME: This is a mess. Rationalize temporary destruction. 7632 if (!shouldBindAsTemporary(Entity)) 7633 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7634 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7635 /*IsExtraneousCopy=*/false); 7636 break; 7637 7638 case SK_ExtraneousCopyToTemporary: 7639 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7640 /*IsExtraneousCopy=*/true); 7641 break; 7642 7643 case SK_UserConversion: { 7644 // We have a user-defined conversion that invokes either a constructor 7645 // or a conversion function. 7646 CastKind CastKind; 7647 FunctionDecl *Fn = Step->Function.Function; 7648 DeclAccessPair FoundFn = Step->Function.FoundDecl; 7649 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 7650 bool CreatedObject = false; 7651 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 7652 // Build a call to the selected constructor. 7653 SmallVector<Expr*, 8> ConstructorArgs; 7654 SourceLocation Loc = CurInit.get()->getBeginLoc(); 7655 7656 // Determine the arguments required to actually perform the constructor 7657 // call. 7658 Expr *Arg = CurInit.get(); 7659 if (S.CompleteConstructorCall(Constructor, 7660 MultiExprArg(&Arg, 1), 7661 Loc, ConstructorArgs)) 7662 return ExprError(); 7663 7664 // Build an expression that constructs a temporary. 7665 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 7666 FoundFn, Constructor, 7667 ConstructorArgs, 7668 HadMultipleCandidates, 7669 /*ListInit*/ false, 7670 /*StdInitListInit*/ false, 7671 /*ZeroInit*/ false, 7672 CXXConstructExpr::CK_Complete, 7673 SourceRange()); 7674 if (CurInit.isInvalid()) 7675 return ExprError(); 7676 7677 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 7678 Entity); 7679 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7680 return ExprError(); 7681 7682 CastKind = CK_ConstructorConversion; 7683 CreatedObject = true; 7684 } else { 7685 // Build a call to the conversion function. 7686 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 7687 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 7688 FoundFn); 7689 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7690 return ExprError(); 7691 7692 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 7693 HadMultipleCandidates); 7694 if (CurInit.isInvalid()) 7695 return ExprError(); 7696 7697 CastKind = CK_UserDefinedConversion; 7698 CreatedObject = Conversion->getReturnType()->isRecordType(); 7699 } 7700 7701 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 7702 return ExprError(); 7703 7704 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 7705 CastKind, CurInit.get(), nullptr, 7706 CurInit.get()->getValueKind()); 7707 7708 if (shouldBindAsTemporary(Entity)) 7709 // The overall entity is temporary, so this expression should be 7710 // destroyed at the end of its full-expression. 7711 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 7712 else if (CreatedObject && shouldDestroyEntity(Entity)) { 7713 // The object outlasts the full-expression, but we need to prepare for 7714 // a destructor being run on it. 7715 // FIXME: It makes no sense to do this here. This should happen 7716 // regardless of how we initialized the entity. 7717 QualType T = CurInit.get()->getType(); 7718 if (const RecordType *Record = T->getAs<RecordType>()) { 7719 CXXDestructorDecl *Destructor 7720 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 7721 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 7722 S.PDiag(diag::err_access_dtor_temp) << T); 7723 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 7724 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 7725 return ExprError(); 7726 } 7727 } 7728 break; 7729 } 7730 7731 case SK_QualificationConversionLValue: 7732 case SK_QualificationConversionXValue: 7733 case SK_QualificationConversionRValue: { 7734 // Perform a qualification conversion; these can never go wrong. 7735 ExprValueKind VK = 7736 Step->Kind == SK_QualificationConversionLValue 7737 ? VK_LValue 7738 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 7739 : VK_RValue); 7740 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 7741 break; 7742 } 7743 7744 case SK_AtomicConversion: { 7745 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 7746 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7747 CK_NonAtomicToAtomic, VK_RValue); 7748 break; 7749 } 7750 7751 case SK_LValueToRValue: { 7752 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 7753 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 7754 CK_LValueToRValue, CurInit.get(), 7755 /*BasePath=*/nullptr, VK_RValue); 7756 break; 7757 } 7758 7759 case SK_ConversionSequence: 7760 case SK_ConversionSequenceNoNarrowing: { 7761 if (const auto *FromPtrType = 7762 CurInit.get()->getType()->getAs<PointerType>()) { 7763 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 7764 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 7765 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 7766 S.Diag(CurInit.get()->getExprLoc(), 7767 diag::warn_noderef_to_dereferenceable_pointer) 7768 << CurInit.get()->getSourceRange(); 7769 } 7770 } 7771 } 7772 7773 Sema::CheckedConversionKind CCK 7774 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 7775 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 7776 : Kind.isExplicitCast()? Sema::CCK_OtherCast 7777 : Sema::CCK_ImplicitConversion; 7778 ExprResult CurInitExprRes = 7779 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 7780 getAssignmentAction(Entity), CCK); 7781 if (CurInitExprRes.isInvalid()) 7782 return ExprError(); 7783 7784 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 7785 7786 CurInit = CurInitExprRes; 7787 7788 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 7789 S.getLangOpts().CPlusPlus) 7790 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 7791 CurInit.get()); 7792 7793 break; 7794 } 7795 7796 case SK_ListInitialization: { 7797 if (checkAbstractType(Step->Type)) 7798 return ExprError(); 7799 7800 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 7801 // If we're not initializing the top-level entity, we need to create an 7802 // InitializeTemporary entity for our target type. 7803 QualType Ty = Step->Type; 7804 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 7805 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 7806 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 7807 InitListChecker PerformInitList(S, InitEntity, 7808 InitList, Ty, /*VerifyOnly=*/false, 7809 /*TreatUnavailableAsInvalid=*/false); 7810 if (PerformInitList.HadError()) 7811 return ExprError(); 7812 7813 // Hack: We must update *ResultType if available in order to set the 7814 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 7815 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 7816 if (ResultType && 7817 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 7818 if ((*ResultType)->isRValueReferenceType()) 7819 Ty = S.Context.getRValueReferenceType(Ty); 7820 else if ((*ResultType)->isLValueReferenceType()) 7821 Ty = S.Context.getLValueReferenceType(Ty, 7822 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 7823 *ResultType = Ty; 7824 } 7825 7826 InitListExpr *StructuredInitList = 7827 PerformInitList.getFullyStructuredList(); 7828 CurInit.get(); 7829 CurInit = shouldBindAsTemporary(InitEntity) 7830 ? S.MaybeBindToTemporary(StructuredInitList) 7831 : StructuredInitList; 7832 break; 7833 } 7834 7835 case SK_ConstructorInitializationFromList: { 7836 if (checkAbstractType(Step->Type)) 7837 return ExprError(); 7838 7839 // When an initializer list is passed for a parameter of type "reference 7840 // to object", we don't get an EK_Temporary entity, but instead an 7841 // EK_Parameter entity with reference type. 7842 // FIXME: This is a hack. What we really should do is create a user 7843 // conversion step for this case, but this makes it considerably more 7844 // complicated. For now, this will do. 7845 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7846 Entity.getType().getNonReferenceType()); 7847 bool UseTemporary = Entity.getType()->isReferenceType(); 7848 assert(Args.size() == 1 && "expected a single argument for list init"); 7849 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7850 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 7851 << InitList->getSourceRange(); 7852 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 7853 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 7854 Entity, 7855 Kind, Arg, *Step, 7856 ConstructorInitRequiresZeroInit, 7857 /*IsListInitialization*/true, 7858 /*IsStdInitListInit*/false, 7859 InitList->getLBraceLoc(), 7860 InitList->getRBraceLoc()); 7861 break; 7862 } 7863 7864 case SK_UnwrapInitList: 7865 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 7866 break; 7867 7868 case SK_RewrapInitList: { 7869 Expr *E = CurInit.get(); 7870 InitListExpr *Syntactic = Step->WrappingSyntacticList; 7871 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 7872 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 7873 ILE->setSyntacticForm(Syntactic); 7874 ILE->setType(E->getType()); 7875 ILE->setValueKind(E->getValueKind()); 7876 CurInit = ILE; 7877 break; 7878 } 7879 7880 case SK_ConstructorInitialization: 7881 case SK_StdInitializerListConstructorCall: { 7882 if (checkAbstractType(Step->Type)) 7883 return ExprError(); 7884 7885 // When an initializer list is passed for a parameter of type "reference 7886 // to object", we don't get an EK_Temporary entity, but instead an 7887 // EK_Parameter entity with reference type. 7888 // FIXME: This is a hack. What we really should do is create a user 7889 // conversion step for this case, but this makes it considerably more 7890 // complicated. For now, this will do. 7891 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7892 Entity.getType().getNonReferenceType()); 7893 bool UseTemporary = Entity.getType()->isReferenceType(); 7894 bool IsStdInitListInit = 7895 Step->Kind == SK_StdInitializerListConstructorCall; 7896 Expr *Source = CurInit.get(); 7897 SourceRange Range = Kind.hasParenOrBraceRange() 7898 ? Kind.getParenOrBraceRange() 7899 : SourceRange(); 7900 CurInit = PerformConstructorInitialization( 7901 S, UseTemporary ? TempEntity : Entity, Kind, 7902 Source ? MultiExprArg(Source) : Args, *Step, 7903 ConstructorInitRequiresZeroInit, 7904 /*IsListInitialization*/ IsStdInitListInit, 7905 /*IsStdInitListInitialization*/ IsStdInitListInit, 7906 /*LBraceLoc*/ Range.getBegin(), 7907 /*RBraceLoc*/ Range.getEnd()); 7908 break; 7909 } 7910 7911 case SK_ZeroInitialization: { 7912 step_iterator NextStep = Step; 7913 ++NextStep; 7914 if (NextStep != StepEnd && 7915 (NextStep->Kind == SK_ConstructorInitialization || 7916 NextStep->Kind == SK_ConstructorInitializationFromList)) { 7917 // The need for zero-initialization is recorded directly into 7918 // the call to the object's constructor within the next step. 7919 ConstructorInitRequiresZeroInit = true; 7920 } else if (Kind.getKind() == InitializationKind::IK_Value && 7921 S.getLangOpts().CPlusPlus && 7922 !Kind.isImplicitValueInit()) { 7923 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 7924 if (!TSInfo) 7925 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 7926 Kind.getRange().getBegin()); 7927 7928 CurInit = new (S.Context) CXXScalarValueInitExpr( 7929 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 7930 Kind.getRange().getEnd()); 7931 } else { 7932 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 7933 } 7934 break; 7935 } 7936 7937 case SK_CAssignment: { 7938 QualType SourceType = CurInit.get()->getType(); 7939 7940 // Save off the initial CurInit in case we need to emit a diagnostic 7941 ExprResult InitialCurInit = CurInit; 7942 ExprResult Result = CurInit; 7943 Sema::AssignConvertType ConvTy = 7944 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 7945 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 7946 if (Result.isInvalid()) 7947 return ExprError(); 7948 CurInit = Result; 7949 7950 // If this is a call, allow conversion to a transparent union. 7951 ExprResult CurInitExprRes = CurInit; 7952 if (ConvTy != Sema::Compatible && 7953 Entity.isParameterKind() && 7954 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 7955 == Sema::Compatible) 7956 ConvTy = Sema::Compatible; 7957 if (CurInitExprRes.isInvalid()) 7958 return ExprError(); 7959 CurInit = CurInitExprRes; 7960 7961 bool Complained; 7962 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 7963 Step->Type, SourceType, 7964 InitialCurInit.get(), 7965 getAssignmentAction(Entity, true), 7966 &Complained)) { 7967 PrintInitLocationNote(S, Entity); 7968 return ExprError(); 7969 } else if (Complained) 7970 PrintInitLocationNote(S, Entity); 7971 break; 7972 } 7973 7974 case SK_StringInit: { 7975 QualType Ty = Step->Type; 7976 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 7977 S.Context.getAsArrayType(Ty), S); 7978 break; 7979 } 7980 7981 case SK_ObjCObjectConversion: 7982 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7983 CK_ObjCObjectLValueCast, 7984 CurInit.get()->getValueKind()); 7985 break; 7986 7987 case SK_ArrayLoopIndex: { 7988 Expr *Cur = CurInit.get(); 7989 Expr *BaseExpr = new (S.Context) 7990 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 7991 Cur->getValueKind(), Cur->getObjectKind(), Cur); 7992 Expr *IndexExpr = 7993 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 7994 CurInit = S.CreateBuiltinArraySubscriptExpr( 7995 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 7996 ArrayLoopCommonExprs.push_back(BaseExpr); 7997 break; 7998 } 7999 8000 case SK_ArrayLoopInit: { 8001 assert(!ArrayLoopCommonExprs.empty() && 8002 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8003 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8004 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8005 CurInit.get()); 8006 break; 8007 } 8008 8009 case SK_GNUArrayInit: 8010 // Okay: we checked everything before creating this step. Note that 8011 // this is a GNU extension. 8012 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8013 << Step->Type << CurInit.get()->getType() 8014 << CurInit.get()->getSourceRange(); 8015 updateGNUCompoundLiteralRValue(CurInit.get()); 8016 LLVM_FALLTHROUGH; 8017 case SK_ArrayInit: 8018 // If the destination type is an incomplete array type, update the 8019 // type accordingly. 8020 if (ResultType) { 8021 if (const IncompleteArrayType *IncompleteDest 8022 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8023 if (const ConstantArrayType *ConstantSource 8024 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8025 *ResultType = S.Context.getConstantArrayType( 8026 IncompleteDest->getElementType(), 8027 ConstantSource->getSize(), 8028 ArrayType::Normal, 0); 8029 } 8030 } 8031 } 8032 break; 8033 8034 case SK_ParenthesizedArrayInit: 8035 // Okay: we checked everything before creating this step. Note that 8036 // this is a GNU extension. 8037 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8038 << CurInit.get()->getSourceRange(); 8039 break; 8040 8041 case SK_PassByIndirectCopyRestore: 8042 case SK_PassByIndirectRestore: 8043 checkIndirectCopyRestoreSource(S, CurInit.get()); 8044 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8045 CurInit.get(), Step->Type, 8046 Step->Kind == SK_PassByIndirectCopyRestore); 8047 break; 8048 8049 case SK_ProduceObjCObject: 8050 CurInit = 8051 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8052 CurInit.get(), nullptr, VK_RValue); 8053 break; 8054 8055 case SK_StdInitializerList: { 8056 S.Diag(CurInit.get()->getExprLoc(), 8057 diag::warn_cxx98_compat_initializer_list_init) 8058 << CurInit.get()->getSourceRange(); 8059 8060 // Materialize the temporary into memory. 8061 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8062 CurInit.get()->getType(), CurInit.get(), 8063 /*BoundToLvalueReference=*/false); 8064 8065 // Wrap it in a construction of a std::initializer_list<T>. 8066 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8067 8068 // Bind the result, in case the library has given initializer_list a 8069 // non-trivial destructor. 8070 if (shouldBindAsTemporary(Entity)) 8071 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8072 break; 8073 } 8074 8075 case SK_OCLSamplerInit: { 8076 // Sampler initialization have 5 cases: 8077 // 1. function argument passing 8078 // 1a. argument is a file-scope variable 8079 // 1b. argument is a function-scope variable 8080 // 1c. argument is one of caller function's parameters 8081 // 2. variable initialization 8082 // 2a. initializing a file-scope variable 8083 // 2b. initializing a function-scope variable 8084 // 8085 // For file-scope variables, since they cannot be initialized by function 8086 // call of __translate_sampler_initializer in LLVM IR, their references 8087 // need to be replaced by a cast from their literal initializers to 8088 // sampler type. Since sampler variables can only be used in function 8089 // calls as arguments, we only need to replace them when handling the 8090 // argument passing. 8091 assert(Step->Type->isSamplerT() && 8092 "Sampler initialization on non-sampler type."); 8093 Expr *Init = CurInit.get(); 8094 QualType SourceType = Init->getType(); 8095 // Case 1 8096 if (Entity.isParameterKind()) { 8097 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8098 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8099 << SourceType; 8100 break; 8101 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8102 auto Var = cast<VarDecl>(DRE->getDecl()); 8103 // Case 1b and 1c 8104 // No cast from integer to sampler is needed. 8105 if (!Var->hasGlobalStorage()) { 8106 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8107 CK_LValueToRValue, Init, 8108 /*BasePath=*/nullptr, VK_RValue); 8109 break; 8110 } 8111 // Case 1a 8112 // For function call with a file-scope sampler variable as argument, 8113 // get the integer literal. 8114 // Do not diagnose if the file-scope variable does not have initializer 8115 // since this has already been diagnosed when parsing the variable 8116 // declaration. 8117 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8118 break; 8119 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8120 Var->getInit()))->getSubExpr(); 8121 SourceType = Init->getType(); 8122 } 8123 } else { 8124 // Case 2 8125 // Check initializer is 32 bit integer constant. 8126 // If the initializer is taken from global variable, do not diagnose since 8127 // this has already been done when parsing the variable declaration. 8128 if (!Init->isConstantInitializer(S.Context, false)) 8129 break; 8130 8131 if (!SourceType->isIntegerType() || 8132 32 != S.Context.getIntWidth(SourceType)) { 8133 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8134 << SourceType; 8135 break; 8136 } 8137 8138 Expr::EvalResult EVResult; 8139 Init->EvaluateAsInt(EVResult, S.Context); 8140 llvm::APSInt Result = EVResult.Val.getInt(); 8141 const uint64_t SamplerValue = Result.getLimitedValue(); 8142 // 32-bit value of sampler's initializer is interpreted as 8143 // bit-field with the following structure: 8144 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8145 // |31 6|5 4|3 1| 0| 8146 // This structure corresponds to enum values of sampler properties 8147 // defined in SPIR spec v1.2 and also opencl-c.h 8148 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8149 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8150 if (FilterMode != 1 && FilterMode != 2 && 8151 !S.getOpenCLOptions().isEnabled( 8152 "cl_intel_device_side_avc_motion_estimation")) 8153 S.Diag(Kind.getLocation(), 8154 diag::warn_sampler_initializer_invalid_bits) 8155 << "Filter Mode"; 8156 if (AddressingMode > 4) 8157 S.Diag(Kind.getLocation(), 8158 diag::warn_sampler_initializer_invalid_bits) 8159 << "Addressing Mode"; 8160 } 8161 8162 // Cases 1a, 2a and 2b 8163 // Insert cast from integer to sampler. 8164 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8165 CK_IntToOCLSampler); 8166 break; 8167 } 8168 case SK_OCLZeroOpaqueType: { 8169 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8170 Step->Type->isOCLIntelSubgroupAVCType()) && 8171 "Wrong type for initialization of OpenCL opaque type."); 8172 8173 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8174 CK_ZeroToOCLOpaqueType, 8175 CurInit.get()->getValueKind()); 8176 break; 8177 } 8178 } 8179 } 8180 8181 // Check whether the initializer has a shorter lifetime than the initialized 8182 // entity, and if not, either lifetime-extend or warn as appropriate. 8183 if (auto *Init = CurInit.get()) 8184 S.checkInitializerLifetime(Entity, Init); 8185 8186 // Diagnose non-fatal problems with the completed initialization. 8187 if (Entity.getKind() == InitializedEntity::EK_Member && 8188 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8189 S.CheckBitFieldInitialization(Kind.getLocation(), 8190 cast<FieldDecl>(Entity.getDecl()), 8191 CurInit.get()); 8192 8193 // Check for std::move on construction. 8194 if (const Expr *E = CurInit.get()) { 8195 CheckMoveOnConstruction(S, E, 8196 Entity.getKind() == InitializedEntity::EK_Result); 8197 } 8198 8199 return CurInit; 8200 } 8201 8202 /// Somewhere within T there is an uninitialized reference subobject. 8203 /// Dig it out and diagnose it. 8204 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8205 QualType T) { 8206 if (T->isReferenceType()) { 8207 S.Diag(Loc, diag::err_reference_without_init) 8208 << T.getNonReferenceType(); 8209 return true; 8210 } 8211 8212 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8213 if (!RD || !RD->hasUninitializedReferenceMember()) 8214 return false; 8215 8216 for (const auto *FI : RD->fields()) { 8217 if (FI->isUnnamedBitfield()) 8218 continue; 8219 8220 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8221 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8222 return true; 8223 } 8224 } 8225 8226 for (const auto &BI : RD->bases()) { 8227 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8228 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8229 return true; 8230 } 8231 } 8232 8233 return false; 8234 } 8235 8236 8237 //===----------------------------------------------------------------------===// 8238 // Diagnose initialization failures 8239 //===----------------------------------------------------------------------===// 8240 8241 /// Emit notes associated with an initialization that failed due to a 8242 /// "simple" conversion failure. 8243 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8244 Expr *op) { 8245 QualType destType = entity.getType(); 8246 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8247 op->getType()->isObjCObjectPointerType()) { 8248 8249 // Emit a possible note about the conversion failing because the 8250 // operand is a message send with a related result type. 8251 S.EmitRelatedResultTypeNote(op); 8252 8253 // Emit a possible note about a return failing because we're 8254 // expecting a related result type. 8255 if (entity.getKind() == InitializedEntity::EK_Result) 8256 S.EmitRelatedResultTypeNoteForReturn(destType); 8257 } 8258 } 8259 8260 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8261 InitListExpr *InitList) { 8262 QualType DestType = Entity.getType(); 8263 8264 QualType E; 8265 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8266 QualType ArrayType = S.Context.getConstantArrayType( 8267 E.withConst(), 8268 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8269 InitList->getNumInits()), 8270 clang::ArrayType::Normal, 0); 8271 InitializedEntity HiddenArray = 8272 InitializedEntity::InitializeTemporary(ArrayType); 8273 return diagnoseListInit(S, HiddenArray, InitList); 8274 } 8275 8276 if (DestType->isReferenceType()) { 8277 // A list-initialization failure for a reference means that we tried to 8278 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8279 // inner initialization failed. 8280 QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); 8281 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8282 SourceLocation Loc = InitList->getBeginLoc(); 8283 if (auto *D = Entity.getDecl()) 8284 Loc = D->getLocation(); 8285 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8286 return; 8287 } 8288 8289 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8290 /*VerifyOnly=*/false, 8291 /*TreatUnavailableAsInvalid=*/false); 8292 assert(DiagnoseInitList.HadError() && 8293 "Inconsistent init list check result."); 8294 } 8295 8296 bool InitializationSequence::Diagnose(Sema &S, 8297 const InitializedEntity &Entity, 8298 const InitializationKind &Kind, 8299 ArrayRef<Expr *> Args) { 8300 if (!Failed()) 8301 return false; 8302 8303 // When we want to diagnose only one element of a braced-init-list, 8304 // we need to factor it out. 8305 Expr *OnlyArg; 8306 if (Args.size() == 1) { 8307 auto *List = dyn_cast<InitListExpr>(Args[0]); 8308 if (List && List->getNumInits() == 1) 8309 OnlyArg = List->getInit(0); 8310 else 8311 OnlyArg = Args[0]; 8312 } 8313 else 8314 OnlyArg = nullptr; 8315 8316 QualType DestType = Entity.getType(); 8317 switch (Failure) { 8318 case FK_TooManyInitsForReference: 8319 // FIXME: Customize for the initialized entity? 8320 if (Args.empty()) { 8321 // Dig out the reference subobject which is uninitialized and diagnose it. 8322 // If this is value-initialization, this could be nested some way within 8323 // the target type. 8324 assert(Kind.getKind() == InitializationKind::IK_Value || 8325 DestType->isReferenceType()); 8326 bool Diagnosed = 8327 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8328 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8329 (void)Diagnosed; 8330 } else // FIXME: diagnostic below could be better! 8331 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8332 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8333 break; 8334 case FK_ParenthesizedListInitForReference: 8335 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8336 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8337 break; 8338 8339 case FK_ArrayNeedsInitList: 8340 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8341 break; 8342 case FK_ArrayNeedsInitListOrStringLiteral: 8343 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8344 break; 8345 case FK_ArrayNeedsInitListOrWideStringLiteral: 8346 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8347 break; 8348 case FK_NarrowStringIntoWideCharArray: 8349 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8350 break; 8351 case FK_WideStringIntoCharArray: 8352 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8353 break; 8354 case FK_IncompatWideStringIntoWideChar: 8355 S.Diag(Kind.getLocation(), 8356 diag::err_array_init_incompat_wide_string_into_wchar); 8357 break; 8358 case FK_PlainStringIntoUTF8Char: 8359 S.Diag(Kind.getLocation(), 8360 diag::err_array_init_plain_string_into_char8_t); 8361 S.Diag(Args.front()->getBeginLoc(), 8362 diag::note_array_init_plain_string_into_char8_t) 8363 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8364 break; 8365 case FK_UTF8StringIntoPlainChar: 8366 S.Diag(Kind.getLocation(), 8367 diag::err_array_init_utf8_string_into_char) 8368 << S.getLangOpts().CPlusPlus2a; 8369 break; 8370 case FK_ArrayTypeMismatch: 8371 case FK_NonConstantArrayInit: 8372 S.Diag(Kind.getLocation(), 8373 (Failure == FK_ArrayTypeMismatch 8374 ? diag::err_array_init_different_type 8375 : diag::err_array_init_non_constant_array)) 8376 << DestType.getNonReferenceType() 8377 << OnlyArg->getType() 8378 << Args[0]->getSourceRange(); 8379 break; 8380 8381 case FK_VariableLengthArrayHasInitializer: 8382 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8383 << Args[0]->getSourceRange(); 8384 break; 8385 8386 case FK_AddressOfOverloadFailed: { 8387 DeclAccessPair Found; 8388 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8389 DestType.getNonReferenceType(), 8390 true, 8391 Found); 8392 break; 8393 } 8394 8395 case FK_AddressOfUnaddressableFunction: { 8396 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8397 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8398 OnlyArg->getBeginLoc()); 8399 break; 8400 } 8401 8402 case FK_ReferenceInitOverloadFailed: 8403 case FK_UserConversionOverloadFailed: 8404 switch (FailedOverloadResult) { 8405 case OR_Ambiguous: 8406 8407 FailedCandidateSet.NoteCandidates( 8408 PartialDiagnosticAt( 8409 Kind.getLocation(), 8410 Failure == FK_UserConversionOverloadFailed 8411 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8412 << OnlyArg->getType() << DestType 8413 << Args[0]->getSourceRange()) 8414 : (S.PDiag(diag::err_ref_init_ambiguous) 8415 << DestType << OnlyArg->getType() 8416 << Args[0]->getSourceRange())), 8417 S, OCD_ViableCandidates, Args); 8418 break; 8419 8420 case OR_No_Viable_Function: { 8421 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8422 if (!S.RequireCompleteType(Kind.getLocation(), 8423 DestType.getNonReferenceType(), 8424 diag::err_typecheck_nonviable_condition_incomplete, 8425 OnlyArg->getType(), Args[0]->getSourceRange())) 8426 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8427 << (Entity.getKind() == InitializedEntity::EK_Result) 8428 << OnlyArg->getType() << Args[0]->getSourceRange() 8429 << DestType.getNonReferenceType(); 8430 8431 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8432 break; 8433 } 8434 case OR_Deleted: { 8435 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8436 << OnlyArg->getType() << DestType.getNonReferenceType() 8437 << Args[0]->getSourceRange(); 8438 OverloadCandidateSet::iterator Best; 8439 OverloadingResult Ovl 8440 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8441 if (Ovl == OR_Deleted) { 8442 S.NoteDeletedFunction(Best->Function); 8443 } else { 8444 llvm_unreachable("Inconsistent overload resolution?"); 8445 } 8446 break; 8447 } 8448 8449 case OR_Success: 8450 llvm_unreachable("Conversion did not fail!"); 8451 } 8452 break; 8453 8454 case FK_NonConstLValueReferenceBindingToTemporary: 8455 if (isa<InitListExpr>(Args[0])) { 8456 S.Diag(Kind.getLocation(), 8457 diag::err_lvalue_reference_bind_to_initlist) 8458 << DestType.getNonReferenceType().isVolatileQualified() 8459 << DestType.getNonReferenceType() 8460 << Args[0]->getSourceRange(); 8461 break; 8462 } 8463 LLVM_FALLTHROUGH; 8464 8465 case FK_NonConstLValueReferenceBindingToUnrelated: 8466 S.Diag(Kind.getLocation(), 8467 Failure == FK_NonConstLValueReferenceBindingToTemporary 8468 ? diag::err_lvalue_reference_bind_to_temporary 8469 : diag::err_lvalue_reference_bind_to_unrelated) 8470 << DestType.getNonReferenceType().isVolatileQualified() 8471 << DestType.getNonReferenceType() 8472 << OnlyArg->getType() 8473 << Args[0]->getSourceRange(); 8474 break; 8475 8476 case FK_NonConstLValueReferenceBindingToBitfield: { 8477 // We don't necessarily have an unambiguous source bit-field. 8478 FieldDecl *BitField = Args[0]->getSourceBitField(); 8479 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8480 << DestType.isVolatileQualified() 8481 << (BitField ? BitField->getDeclName() : DeclarationName()) 8482 << (BitField != nullptr) 8483 << Args[0]->getSourceRange(); 8484 if (BitField) 8485 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8486 break; 8487 } 8488 8489 case FK_NonConstLValueReferenceBindingToVectorElement: 8490 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8491 << DestType.isVolatileQualified() 8492 << Args[0]->getSourceRange(); 8493 break; 8494 8495 case FK_RValueReferenceBindingToLValue: 8496 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8497 << DestType.getNonReferenceType() << OnlyArg->getType() 8498 << Args[0]->getSourceRange(); 8499 break; 8500 8501 case FK_ReferenceInitDropsQualifiers: { 8502 QualType SourceType = OnlyArg->getType(); 8503 QualType NonRefType = DestType.getNonReferenceType(); 8504 Qualifiers DroppedQualifiers = 8505 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8506 8507 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8508 << SourceType 8509 << NonRefType 8510 << DroppedQualifiers.getCVRQualifiers() 8511 << Args[0]->getSourceRange(); 8512 break; 8513 } 8514 8515 case FK_ReferenceInitFailed: 8516 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8517 << DestType.getNonReferenceType() 8518 << DestType.getNonReferenceType()->isIncompleteType() 8519 << OnlyArg->isLValue() 8520 << OnlyArg->getType() 8521 << Args[0]->getSourceRange(); 8522 emitBadConversionNotes(S, Entity, Args[0]); 8523 break; 8524 8525 case FK_ConversionFailed: { 8526 QualType FromType = OnlyArg->getType(); 8527 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8528 << (int)Entity.getKind() 8529 << DestType 8530 << OnlyArg->isLValue() 8531 << FromType 8532 << Args[0]->getSourceRange(); 8533 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8534 S.Diag(Kind.getLocation(), PDiag); 8535 emitBadConversionNotes(S, Entity, Args[0]); 8536 break; 8537 } 8538 8539 case FK_ConversionFromPropertyFailed: 8540 // No-op. This error has already been reported. 8541 break; 8542 8543 case FK_TooManyInitsForScalar: { 8544 SourceRange R; 8545 8546 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8547 if (InitList && InitList->getNumInits() >= 1) { 8548 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8549 } else { 8550 assert(Args.size() > 1 && "Expected multiple initializers!"); 8551 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8552 } 8553 8554 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8555 if (Kind.isCStyleOrFunctionalCast()) 8556 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8557 << R; 8558 else 8559 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8560 << /*scalar=*/2 << R; 8561 break; 8562 } 8563 8564 case FK_ParenthesizedListInitForScalar: 8565 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8566 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8567 break; 8568 8569 case FK_ReferenceBindingToInitList: 8570 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8571 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8572 break; 8573 8574 case FK_InitListBadDestinationType: 8575 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8576 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8577 break; 8578 8579 case FK_ListConstructorOverloadFailed: 8580 case FK_ConstructorOverloadFailed: { 8581 SourceRange ArgsRange; 8582 if (Args.size()) 8583 ArgsRange = 8584 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8585 8586 if (Failure == FK_ListConstructorOverloadFailed) { 8587 assert(Args.size() == 1 && 8588 "List construction from other than 1 argument."); 8589 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8590 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 8591 } 8592 8593 // FIXME: Using "DestType" for the entity we're printing is probably 8594 // bad. 8595 switch (FailedOverloadResult) { 8596 case OR_Ambiguous: 8597 FailedCandidateSet.NoteCandidates( 8598 PartialDiagnosticAt(Kind.getLocation(), 8599 S.PDiag(diag::err_ovl_ambiguous_init) 8600 << DestType << ArgsRange), 8601 S, OCD_ViableCandidates, Args); 8602 break; 8603 8604 case OR_No_Viable_Function: 8605 if (Kind.getKind() == InitializationKind::IK_Default && 8606 (Entity.getKind() == InitializedEntity::EK_Base || 8607 Entity.getKind() == InitializedEntity::EK_Member) && 8608 isa<CXXConstructorDecl>(S.CurContext)) { 8609 // This is implicit default initialization of a member or 8610 // base within a constructor. If no viable function was 8611 // found, notify the user that they need to explicitly 8612 // initialize this base/member. 8613 CXXConstructorDecl *Constructor 8614 = cast<CXXConstructorDecl>(S.CurContext); 8615 const CXXRecordDecl *InheritedFrom = nullptr; 8616 if (auto Inherited = Constructor->getInheritedConstructor()) 8617 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 8618 if (Entity.getKind() == InitializedEntity::EK_Base) { 8619 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8620 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8621 << S.Context.getTypeDeclType(Constructor->getParent()) 8622 << /*base=*/0 8623 << Entity.getType() 8624 << InheritedFrom; 8625 8626 RecordDecl *BaseDecl 8627 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 8628 ->getDecl(); 8629 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 8630 << S.Context.getTagDeclType(BaseDecl); 8631 } else { 8632 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8633 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8634 << S.Context.getTypeDeclType(Constructor->getParent()) 8635 << /*member=*/1 8636 << Entity.getName() 8637 << InheritedFrom; 8638 S.Diag(Entity.getDecl()->getLocation(), 8639 diag::note_member_declared_at); 8640 8641 if (const RecordType *Record 8642 = Entity.getType()->getAs<RecordType>()) 8643 S.Diag(Record->getDecl()->getLocation(), 8644 diag::note_previous_decl) 8645 << S.Context.getTagDeclType(Record->getDecl()); 8646 } 8647 break; 8648 } 8649 8650 FailedCandidateSet.NoteCandidates( 8651 PartialDiagnosticAt( 8652 Kind.getLocation(), 8653 S.PDiag(diag::err_ovl_no_viable_function_in_init) 8654 << DestType << ArgsRange), 8655 S, OCD_AllCandidates, Args); 8656 break; 8657 8658 case OR_Deleted: { 8659 OverloadCandidateSet::iterator Best; 8660 OverloadingResult Ovl 8661 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8662 if (Ovl != OR_Deleted) { 8663 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8664 << DestType << ArgsRange; 8665 llvm_unreachable("Inconsistent overload resolution?"); 8666 break; 8667 } 8668 8669 // If this is a defaulted or implicitly-declared function, then 8670 // it was implicitly deleted. Make it clear that the deletion was 8671 // implicit. 8672 if (S.isImplicitlyDeleted(Best->Function)) 8673 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 8674 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 8675 << DestType << ArgsRange; 8676 else 8677 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8678 << DestType << ArgsRange; 8679 8680 S.NoteDeletedFunction(Best->Function); 8681 break; 8682 } 8683 8684 case OR_Success: 8685 llvm_unreachable("Conversion did not fail!"); 8686 } 8687 } 8688 break; 8689 8690 case FK_DefaultInitOfConst: 8691 if (Entity.getKind() == InitializedEntity::EK_Member && 8692 isa<CXXConstructorDecl>(S.CurContext)) { 8693 // This is implicit default-initialization of a const member in 8694 // a constructor. Complain that it needs to be explicitly 8695 // initialized. 8696 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 8697 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 8698 << (Constructor->getInheritedConstructor() ? 2 : 8699 Constructor->isImplicit() ? 1 : 0) 8700 << S.Context.getTypeDeclType(Constructor->getParent()) 8701 << /*const=*/1 8702 << Entity.getName(); 8703 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 8704 << Entity.getName(); 8705 } else { 8706 S.Diag(Kind.getLocation(), diag::err_default_init_const) 8707 << DestType << (bool)DestType->getAs<RecordType>(); 8708 } 8709 break; 8710 8711 case FK_Incomplete: 8712 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 8713 diag::err_init_incomplete_type); 8714 break; 8715 8716 case FK_ListInitializationFailed: { 8717 // Run the init list checker again to emit diagnostics. 8718 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8719 diagnoseListInit(S, Entity, InitList); 8720 break; 8721 } 8722 8723 case FK_PlaceholderType: { 8724 // FIXME: Already diagnosed! 8725 break; 8726 } 8727 8728 case FK_ExplicitConstructor: { 8729 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 8730 << Args[0]->getSourceRange(); 8731 OverloadCandidateSet::iterator Best; 8732 OverloadingResult Ovl 8733 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8734 (void)Ovl; 8735 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 8736 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 8737 S.Diag(CtorDecl->getLocation(), 8738 diag::note_explicit_ctor_deduction_guide_here) << false; 8739 break; 8740 } 8741 } 8742 8743 PrintInitLocationNote(S, Entity); 8744 return true; 8745 } 8746 8747 void InitializationSequence::dump(raw_ostream &OS) const { 8748 switch (SequenceKind) { 8749 case FailedSequence: { 8750 OS << "Failed sequence: "; 8751 switch (Failure) { 8752 case FK_TooManyInitsForReference: 8753 OS << "too many initializers for reference"; 8754 break; 8755 8756 case FK_ParenthesizedListInitForReference: 8757 OS << "parenthesized list init for reference"; 8758 break; 8759 8760 case FK_ArrayNeedsInitList: 8761 OS << "array requires initializer list"; 8762 break; 8763 8764 case FK_AddressOfUnaddressableFunction: 8765 OS << "address of unaddressable function was taken"; 8766 break; 8767 8768 case FK_ArrayNeedsInitListOrStringLiteral: 8769 OS << "array requires initializer list or string literal"; 8770 break; 8771 8772 case FK_ArrayNeedsInitListOrWideStringLiteral: 8773 OS << "array requires initializer list or wide string literal"; 8774 break; 8775 8776 case FK_NarrowStringIntoWideCharArray: 8777 OS << "narrow string into wide char array"; 8778 break; 8779 8780 case FK_WideStringIntoCharArray: 8781 OS << "wide string into char array"; 8782 break; 8783 8784 case FK_IncompatWideStringIntoWideChar: 8785 OS << "incompatible wide string into wide char array"; 8786 break; 8787 8788 case FK_PlainStringIntoUTF8Char: 8789 OS << "plain string literal into char8_t array"; 8790 break; 8791 8792 case FK_UTF8StringIntoPlainChar: 8793 OS << "u8 string literal into char array"; 8794 break; 8795 8796 case FK_ArrayTypeMismatch: 8797 OS << "array type mismatch"; 8798 break; 8799 8800 case FK_NonConstantArrayInit: 8801 OS << "non-constant array initializer"; 8802 break; 8803 8804 case FK_AddressOfOverloadFailed: 8805 OS << "address of overloaded function failed"; 8806 break; 8807 8808 case FK_ReferenceInitOverloadFailed: 8809 OS << "overload resolution for reference initialization failed"; 8810 break; 8811 8812 case FK_NonConstLValueReferenceBindingToTemporary: 8813 OS << "non-const lvalue reference bound to temporary"; 8814 break; 8815 8816 case FK_NonConstLValueReferenceBindingToBitfield: 8817 OS << "non-const lvalue reference bound to bit-field"; 8818 break; 8819 8820 case FK_NonConstLValueReferenceBindingToVectorElement: 8821 OS << "non-const lvalue reference bound to vector element"; 8822 break; 8823 8824 case FK_NonConstLValueReferenceBindingToUnrelated: 8825 OS << "non-const lvalue reference bound to unrelated type"; 8826 break; 8827 8828 case FK_RValueReferenceBindingToLValue: 8829 OS << "rvalue reference bound to an lvalue"; 8830 break; 8831 8832 case FK_ReferenceInitDropsQualifiers: 8833 OS << "reference initialization drops qualifiers"; 8834 break; 8835 8836 case FK_ReferenceInitFailed: 8837 OS << "reference initialization failed"; 8838 break; 8839 8840 case FK_ConversionFailed: 8841 OS << "conversion failed"; 8842 break; 8843 8844 case FK_ConversionFromPropertyFailed: 8845 OS << "conversion from property failed"; 8846 break; 8847 8848 case FK_TooManyInitsForScalar: 8849 OS << "too many initializers for scalar"; 8850 break; 8851 8852 case FK_ParenthesizedListInitForScalar: 8853 OS << "parenthesized list init for reference"; 8854 break; 8855 8856 case FK_ReferenceBindingToInitList: 8857 OS << "referencing binding to initializer list"; 8858 break; 8859 8860 case FK_InitListBadDestinationType: 8861 OS << "initializer list for non-aggregate, non-scalar type"; 8862 break; 8863 8864 case FK_UserConversionOverloadFailed: 8865 OS << "overloading failed for user-defined conversion"; 8866 break; 8867 8868 case FK_ConstructorOverloadFailed: 8869 OS << "constructor overloading failed"; 8870 break; 8871 8872 case FK_DefaultInitOfConst: 8873 OS << "default initialization of a const variable"; 8874 break; 8875 8876 case FK_Incomplete: 8877 OS << "initialization of incomplete type"; 8878 break; 8879 8880 case FK_ListInitializationFailed: 8881 OS << "list initialization checker failure"; 8882 break; 8883 8884 case FK_VariableLengthArrayHasInitializer: 8885 OS << "variable length array has an initializer"; 8886 break; 8887 8888 case FK_PlaceholderType: 8889 OS << "initializer expression isn't contextually valid"; 8890 break; 8891 8892 case FK_ListConstructorOverloadFailed: 8893 OS << "list constructor overloading failed"; 8894 break; 8895 8896 case FK_ExplicitConstructor: 8897 OS << "list copy initialization chose explicit constructor"; 8898 break; 8899 } 8900 OS << '\n'; 8901 return; 8902 } 8903 8904 case DependentSequence: 8905 OS << "Dependent sequence\n"; 8906 return; 8907 8908 case NormalSequence: 8909 OS << "Normal sequence: "; 8910 break; 8911 } 8912 8913 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 8914 if (S != step_begin()) { 8915 OS << " -> "; 8916 } 8917 8918 switch (S->Kind) { 8919 case SK_ResolveAddressOfOverloadedFunction: 8920 OS << "resolve address of overloaded function"; 8921 break; 8922 8923 case SK_CastDerivedToBaseRValue: 8924 OS << "derived-to-base (rvalue)"; 8925 break; 8926 8927 case SK_CastDerivedToBaseXValue: 8928 OS << "derived-to-base (xvalue)"; 8929 break; 8930 8931 case SK_CastDerivedToBaseLValue: 8932 OS << "derived-to-base (lvalue)"; 8933 break; 8934 8935 case SK_BindReference: 8936 OS << "bind reference to lvalue"; 8937 break; 8938 8939 case SK_BindReferenceToTemporary: 8940 OS << "bind reference to a temporary"; 8941 break; 8942 8943 case SK_FinalCopy: 8944 OS << "final copy in class direct-initialization"; 8945 break; 8946 8947 case SK_ExtraneousCopyToTemporary: 8948 OS << "extraneous C++03 copy to temporary"; 8949 break; 8950 8951 case SK_UserConversion: 8952 OS << "user-defined conversion via " << *S->Function.Function; 8953 break; 8954 8955 case SK_QualificationConversionRValue: 8956 OS << "qualification conversion (rvalue)"; 8957 break; 8958 8959 case SK_QualificationConversionXValue: 8960 OS << "qualification conversion (xvalue)"; 8961 break; 8962 8963 case SK_QualificationConversionLValue: 8964 OS << "qualification conversion (lvalue)"; 8965 break; 8966 8967 case SK_AtomicConversion: 8968 OS << "non-atomic-to-atomic conversion"; 8969 break; 8970 8971 case SK_LValueToRValue: 8972 OS << "load (lvalue to rvalue)"; 8973 break; 8974 8975 case SK_ConversionSequence: 8976 OS << "implicit conversion sequence ("; 8977 S->ICS->dump(); // FIXME: use OS 8978 OS << ")"; 8979 break; 8980 8981 case SK_ConversionSequenceNoNarrowing: 8982 OS << "implicit conversion sequence with narrowing prohibited ("; 8983 S->ICS->dump(); // FIXME: use OS 8984 OS << ")"; 8985 break; 8986 8987 case SK_ListInitialization: 8988 OS << "list aggregate initialization"; 8989 break; 8990 8991 case SK_UnwrapInitList: 8992 OS << "unwrap reference initializer list"; 8993 break; 8994 8995 case SK_RewrapInitList: 8996 OS << "rewrap reference initializer list"; 8997 break; 8998 8999 case SK_ConstructorInitialization: 9000 OS << "constructor initialization"; 9001 break; 9002 9003 case SK_ConstructorInitializationFromList: 9004 OS << "list initialization via constructor"; 9005 break; 9006 9007 case SK_ZeroInitialization: 9008 OS << "zero initialization"; 9009 break; 9010 9011 case SK_CAssignment: 9012 OS << "C assignment"; 9013 break; 9014 9015 case SK_StringInit: 9016 OS << "string initialization"; 9017 break; 9018 9019 case SK_ObjCObjectConversion: 9020 OS << "Objective-C object conversion"; 9021 break; 9022 9023 case SK_ArrayLoopIndex: 9024 OS << "indexing for array initialization loop"; 9025 break; 9026 9027 case SK_ArrayLoopInit: 9028 OS << "array initialization loop"; 9029 break; 9030 9031 case SK_ArrayInit: 9032 OS << "array initialization"; 9033 break; 9034 9035 case SK_GNUArrayInit: 9036 OS << "array initialization (GNU extension)"; 9037 break; 9038 9039 case SK_ParenthesizedArrayInit: 9040 OS << "parenthesized array initialization"; 9041 break; 9042 9043 case SK_PassByIndirectCopyRestore: 9044 OS << "pass by indirect copy and restore"; 9045 break; 9046 9047 case SK_PassByIndirectRestore: 9048 OS << "pass by indirect restore"; 9049 break; 9050 9051 case SK_ProduceObjCObject: 9052 OS << "Objective-C object retension"; 9053 break; 9054 9055 case SK_StdInitializerList: 9056 OS << "std::initializer_list from initializer list"; 9057 break; 9058 9059 case SK_StdInitializerListConstructorCall: 9060 OS << "list initialization from std::initializer_list"; 9061 break; 9062 9063 case SK_OCLSamplerInit: 9064 OS << "OpenCL sampler_t from integer constant"; 9065 break; 9066 9067 case SK_OCLZeroOpaqueType: 9068 OS << "OpenCL opaque type from zero"; 9069 break; 9070 } 9071 9072 OS << " [" << S->Type.getAsString() << ']'; 9073 } 9074 9075 OS << '\n'; 9076 } 9077 9078 void InitializationSequence::dump() const { 9079 dump(llvm::errs()); 9080 } 9081 9082 static bool NarrowingErrs(const LangOptions &L) { 9083 return L.CPlusPlus11 && 9084 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9085 } 9086 9087 static void DiagnoseNarrowingInInitList(Sema &S, 9088 const ImplicitConversionSequence &ICS, 9089 QualType PreNarrowingType, 9090 QualType EntityType, 9091 const Expr *PostInit) { 9092 const StandardConversionSequence *SCS = nullptr; 9093 switch (ICS.getKind()) { 9094 case ImplicitConversionSequence::StandardConversion: 9095 SCS = &ICS.Standard; 9096 break; 9097 case ImplicitConversionSequence::UserDefinedConversion: 9098 SCS = &ICS.UserDefined.After; 9099 break; 9100 case ImplicitConversionSequence::AmbiguousConversion: 9101 case ImplicitConversionSequence::EllipsisConversion: 9102 case ImplicitConversionSequence::BadConversion: 9103 return; 9104 } 9105 9106 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9107 APValue ConstantValue; 9108 QualType ConstantType; 9109 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9110 ConstantType)) { 9111 case NK_Not_Narrowing: 9112 case NK_Dependent_Narrowing: 9113 // No narrowing occurred. 9114 return; 9115 9116 case NK_Type_Narrowing: 9117 // This was a floating-to-integer conversion, which is always considered a 9118 // narrowing conversion even if the value is a constant and can be 9119 // represented exactly as an integer. 9120 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9121 ? diag::ext_init_list_type_narrowing 9122 : diag::warn_init_list_type_narrowing) 9123 << PostInit->getSourceRange() 9124 << PreNarrowingType.getLocalUnqualifiedType() 9125 << EntityType.getLocalUnqualifiedType(); 9126 break; 9127 9128 case NK_Constant_Narrowing: 9129 // A constant value was narrowed. 9130 S.Diag(PostInit->getBeginLoc(), 9131 NarrowingErrs(S.getLangOpts()) 9132 ? diag::ext_init_list_constant_narrowing 9133 : diag::warn_init_list_constant_narrowing) 9134 << PostInit->getSourceRange() 9135 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9136 << EntityType.getLocalUnqualifiedType(); 9137 break; 9138 9139 case NK_Variable_Narrowing: 9140 // A variable's value may have been narrowed. 9141 S.Diag(PostInit->getBeginLoc(), 9142 NarrowingErrs(S.getLangOpts()) 9143 ? diag::ext_init_list_variable_narrowing 9144 : diag::warn_init_list_variable_narrowing) 9145 << PostInit->getSourceRange() 9146 << PreNarrowingType.getLocalUnqualifiedType() 9147 << EntityType.getLocalUnqualifiedType(); 9148 break; 9149 } 9150 9151 SmallString<128> StaticCast; 9152 llvm::raw_svector_ostream OS(StaticCast); 9153 OS << "static_cast<"; 9154 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9155 // It's important to use the typedef's name if there is one so that the 9156 // fixit doesn't break code using types like int64_t. 9157 // 9158 // FIXME: This will break if the typedef requires qualification. But 9159 // getQualifiedNameAsString() includes non-machine-parsable components. 9160 OS << *TT->getDecl(); 9161 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9162 OS << BT->getName(S.getLangOpts()); 9163 else { 9164 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9165 // with a broken cast. 9166 return; 9167 } 9168 OS << ">("; 9169 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9170 << PostInit->getSourceRange() 9171 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9172 << FixItHint::CreateInsertion( 9173 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9174 } 9175 9176 //===----------------------------------------------------------------------===// 9177 // Initialization helper functions 9178 //===----------------------------------------------------------------------===// 9179 bool 9180 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9181 ExprResult Init) { 9182 if (Init.isInvalid()) 9183 return false; 9184 9185 Expr *InitE = Init.get(); 9186 assert(InitE && "No initialization expression"); 9187 9188 InitializationKind Kind = 9189 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9190 InitializationSequence Seq(*this, Entity, Kind, InitE); 9191 return !Seq.Failed(); 9192 } 9193 9194 ExprResult 9195 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9196 SourceLocation EqualLoc, 9197 ExprResult Init, 9198 bool TopLevelOfInitList, 9199 bool AllowExplicit) { 9200 if (Init.isInvalid()) 9201 return ExprError(); 9202 9203 Expr *InitE = Init.get(); 9204 assert(InitE && "No initialization expression?"); 9205 9206 if (EqualLoc.isInvalid()) 9207 EqualLoc = InitE->getBeginLoc(); 9208 9209 InitializationKind Kind = InitializationKind::CreateCopy( 9210 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9211 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9212 9213 // Prevent infinite recursion when performing parameter copy-initialization. 9214 const bool ShouldTrackCopy = 9215 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9216 if (ShouldTrackCopy) { 9217 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9218 CurrentParameterCopyTypes.end()) { 9219 Seq.SetOverloadFailure( 9220 InitializationSequence::FK_ConstructorOverloadFailed, 9221 OR_No_Viable_Function); 9222 9223 // Try to give a meaningful diagnostic note for the problematic 9224 // constructor. 9225 const auto LastStep = Seq.step_end() - 1; 9226 assert(LastStep->Kind == 9227 InitializationSequence::SK_ConstructorInitialization); 9228 const FunctionDecl *Function = LastStep->Function.Function; 9229 auto Candidate = 9230 llvm::find_if(Seq.getFailedCandidateSet(), 9231 [Function](const OverloadCandidate &Candidate) -> bool { 9232 return Candidate.Viable && 9233 Candidate.Function == Function && 9234 Candidate.Conversions.size() > 0; 9235 }); 9236 if (Candidate != Seq.getFailedCandidateSet().end() && 9237 Function->getNumParams() > 0) { 9238 Candidate->Viable = false; 9239 Candidate->FailureKind = ovl_fail_bad_conversion; 9240 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9241 InitE, 9242 Function->getParamDecl(0)->getType()); 9243 } 9244 } 9245 CurrentParameterCopyTypes.push_back(Entity.getType()); 9246 } 9247 9248 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9249 9250 if (ShouldTrackCopy) 9251 CurrentParameterCopyTypes.pop_back(); 9252 9253 return Result; 9254 } 9255 9256 /// Determine whether RD is, or is derived from, a specialization of CTD. 9257 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9258 ClassTemplateDecl *CTD) { 9259 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9260 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9261 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9262 }; 9263 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9264 } 9265 9266 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9267 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9268 const InitializationKind &Kind, MultiExprArg Inits) { 9269 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9270 TSInfo->getType()->getContainedDeducedType()); 9271 assert(DeducedTST && "not a deduced template specialization type"); 9272 9273 auto TemplateName = DeducedTST->getTemplateName(); 9274 if (TemplateName.isDependent()) 9275 return Context.DependentTy; 9276 9277 // We can only perform deduction for class templates. 9278 auto *Template = 9279 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9280 if (!Template) { 9281 Diag(Kind.getLocation(), 9282 diag::err_deduced_non_class_template_specialization_type) 9283 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9284 if (auto *TD = TemplateName.getAsTemplateDecl()) 9285 Diag(TD->getLocation(), diag::note_template_decl_here); 9286 return QualType(); 9287 } 9288 9289 // Can't deduce from dependent arguments. 9290 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9291 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9292 diag::warn_cxx14_compat_class_template_argument_deduction) 9293 << TSInfo->getTypeLoc().getSourceRange() << 0; 9294 return Context.DependentTy; 9295 } 9296 9297 // FIXME: Perform "exact type" matching first, per CWG discussion? 9298 // Or implement this via an implied 'T(T) -> T' deduction guide? 9299 9300 // FIXME: Do we need/want a std::initializer_list<T> special case? 9301 9302 // Look up deduction guides, including those synthesized from constructors. 9303 // 9304 // C++1z [over.match.class.deduct]p1: 9305 // A set of functions and function templates is formed comprising: 9306 // - For each constructor of the class template designated by the 9307 // template-name, a function template [...] 9308 // - For each deduction-guide, a function or function template [...] 9309 DeclarationNameInfo NameInfo( 9310 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9311 TSInfo->getTypeLoc().getEndLoc()); 9312 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9313 LookupQualifiedName(Guides, Template->getDeclContext()); 9314 9315 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9316 // clear on this, but they're not found by name so access does not apply. 9317 Guides.suppressDiagnostics(); 9318 9319 // Figure out if this is list-initialization. 9320 InitListExpr *ListInit = 9321 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9322 ? dyn_cast<InitListExpr>(Inits[0]) 9323 : nullptr; 9324 9325 // C++1z [over.match.class.deduct]p1: 9326 // Initialization and overload resolution are performed as described in 9327 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9328 // (as appropriate for the type of initialization performed) for an object 9329 // of a hypothetical class type, where the selected functions and function 9330 // templates are considered to be the constructors of that class type 9331 // 9332 // Since we know we're initializing a class type of a type unrelated to that 9333 // of the initializer, this reduces to something fairly reasonable. 9334 OverloadCandidateSet Candidates(Kind.getLocation(), 9335 OverloadCandidateSet::CSK_Normal); 9336 OverloadCandidateSet::iterator Best; 9337 9338 bool HasAnyDeductionGuide = false; 9339 9340 auto tryToResolveOverload = 9341 [&](bool OnlyListConstructors) -> OverloadingResult { 9342 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9343 HasAnyDeductionGuide = false; 9344 9345 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9346 NamedDecl *D = (*I)->getUnderlyingDecl(); 9347 if (D->isInvalidDecl()) 9348 continue; 9349 9350 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9351 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9352 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9353 if (!GD) 9354 continue; 9355 9356 if (!GD->isImplicit()) 9357 HasAnyDeductionGuide = true; 9358 9359 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9360 // For copy-initialization, the candidate functions are all the 9361 // converting constructors (12.3.1) of that class. 9362 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9363 // The converting constructors of T are candidate functions. 9364 if (Kind.isCopyInit() && !ListInit) { 9365 // Only consider converting constructors. 9366 if (GD->isExplicit()) 9367 continue; 9368 9369 // When looking for a converting constructor, deduction guides that 9370 // could never be called with one argument are not interesting to 9371 // check or note. 9372 if (GD->getMinRequiredArguments() > 1 || 9373 (GD->getNumParams() == 0 && !GD->isVariadic())) 9374 continue; 9375 } 9376 9377 // C++ [over.match.list]p1.1: (first phase list initialization) 9378 // Initially, the candidate functions are the initializer-list 9379 // constructors of the class T 9380 if (OnlyListConstructors && !isInitListConstructor(GD)) 9381 continue; 9382 9383 // C++ [over.match.list]p1.2: (second phase list initialization) 9384 // the candidate functions are all the constructors of the class T 9385 // C++ [over.match.ctor]p1: (all other cases) 9386 // the candidate functions are all the constructors of the class of 9387 // the object being initialized 9388 9389 // C++ [over.best.ics]p4: 9390 // When [...] the constructor [...] is a candidate by 9391 // - [over.match.copy] (in all cases) 9392 // FIXME: The "second phase of [over.match.list] case can also 9393 // theoretically happen here, but it's not clear whether we can 9394 // ever have a parameter of the right type. 9395 bool SuppressUserConversions = Kind.isCopyInit(); 9396 9397 if (TD) 9398 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9399 Inits, Candidates, 9400 SuppressUserConversions); 9401 else 9402 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9403 SuppressUserConversions); 9404 } 9405 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9406 }; 9407 9408 OverloadingResult Result = OR_No_Viable_Function; 9409 9410 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9411 // try initializer-list constructors. 9412 if (ListInit) { 9413 bool TryListConstructors = true; 9414 9415 // Try list constructors unless the list is empty and the class has one or 9416 // more default constructors, in which case those constructors win. 9417 if (!ListInit->getNumInits()) { 9418 for (NamedDecl *D : Guides) { 9419 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9420 if (FD && FD->getMinRequiredArguments() == 0) { 9421 TryListConstructors = false; 9422 break; 9423 } 9424 } 9425 } else if (ListInit->getNumInits() == 1) { 9426 // C++ [over.match.class.deduct]: 9427 // As an exception, the first phase in [over.match.list] (considering 9428 // initializer-list constructors) is omitted if the initializer list 9429 // consists of a single expression of type cv U, where U is a 9430 // specialization of C or a class derived from a specialization of C. 9431 Expr *E = ListInit->getInit(0); 9432 auto *RD = E->getType()->getAsCXXRecordDecl(); 9433 if (!isa<InitListExpr>(E) && RD && 9434 isCompleteType(Kind.getLocation(), E->getType()) && 9435 isOrIsDerivedFromSpecializationOf(RD, Template)) 9436 TryListConstructors = false; 9437 } 9438 9439 if (TryListConstructors) 9440 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9441 // Then unwrap the initializer list and try again considering all 9442 // constructors. 9443 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9444 } 9445 9446 // If list-initialization fails, or if we're doing any other kind of 9447 // initialization, we (eventually) consider constructors. 9448 if (Result == OR_No_Viable_Function) 9449 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9450 9451 switch (Result) { 9452 case OR_Ambiguous: 9453 // FIXME: For list-initialization candidates, it'd usually be better to 9454 // list why they were not viable when given the initializer list itself as 9455 // an argument. 9456 Candidates.NoteCandidates( 9457 PartialDiagnosticAt( 9458 Kind.getLocation(), 9459 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9460 << TemplateName), 9461 *this, OCD_ViableCandidates, Inits); 9462 return QualType(); 9463 9464 case OR_No_Viable_Function: { 9465 CXXRecordDecl *Primary = 9466 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9467 bool Complete = 9468 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9469 Candidates.NoteCandidates( 9470 PartialDiagnosticAt( 9471 Kind.getLocation(), 9472 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9473 : diag::err_deduced_class_template_incomplete) 9474 << TemplateName << !Guides.empty()), 9475 *this, OCD_AllCandidates, Inits); 9476 return QualType(); 9477 } 9478 9479 case OR_Deleted: { 9480 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9481 << TemplateName; 9482 NoteDeletedFunction(Best->Function); 9483 return QualType(); 9484 } 9485 9486 case OR_Success: 9487 // C++ [over.match.list]p1: 9488 // In copy-list-initialization, if an explicit constructor is chosen, the 9489 // initialization is ill-formed. 9490 if (Kind.isCopyInit() && ListInit && 9491 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9492 bool IsDeductionGuide = !Best->Function->isImplicit(); 9493 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9494 << TemplateName << IsDeductionGuide; 9495 Diag(Best->Function->getLocation(), 9496 diag::note_explicit_ctor_deduction_guide_here) 9497 << IsDeductionGuide; 9498 return QualType(); 9499 } 9500 9501 // Make sure we didn't select an unusable deduction guide, and mark it 9502 // as referenced. 9503 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9504 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9505 break; 9506 } 9507 9508 // C++ [dcl.type.class.deduct]p1: 9509 // The placeholder is replaced by the return type of the function selected 9510 // by overload resolution for class template deduction. 9511 QualType DeducedType = 9512 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9513 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9514 diag::warn_cxx14_compat_class_template_argument_deduction) 9515 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9516 9517 // Warn if CTAD was used on a type that does not have any user-defined 9518 // deduction guides. 9519 if (!HasAnyDeductionGuide) { 9520 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9521 diag::warn_ctad_maybe_unsupported) 9522 << TemplateName; 9523 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9524 } 9525 9526 return DeducedType; 9527 } 9528