1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54 
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63 
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66 
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70 
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (!SL)
74     return SIF_Other;
75 
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78 
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119 
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122 
123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130 
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148 
149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   auto *ConstantArrayTy =
153       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155 
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167 
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169 
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182 
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::ext_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195 
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206 
207 namespace {
208 
209 /// @brief Semantic checking for initializer lists.
210 ///
211 /// The InitListChecker class contains a set of routines that each
212 /// handle the initialization of a certain kind of entity, e.g.,
213 /// arrays, vectors, struct/union types, scalars, etc. The
214 /// InitListChecker itself performs a recursive walk of the subobject
215 /// structure of the type to be initialized, while stepping through
216 /// the initializer list one element at a time. The IList and Index
217 /// parameters to each of the Check* routines contain the active
218 /// (syntactic) initializer list and the index into that initializer
219 /// list that represents the current initializer. Each routine is
220 /// responsible for moving that Index forward as it consumes elements.
221 ///
222 /// Each Check* routine also has a StructuredList/StructuredIndex
223 /// arguments, which contains the current "structured" (semantic)
224 /// initializer list and the index into that initializer list where we
225 /// are copying initializers as we map them over to the semantic
226 /// list. Once we have completed our recursive walk of the subobject
227 /// structure, we will have constructed a full semantic initializer
228 /// list.
229 ///
230 /// C99 designators cause changes in the initializer list traversal,
231 /// because they make the initialization "jump" into a specific
232 /// subobject and then continue the initialization from that
233 /// point. CheckDesignatedInitializer() recursively steps into the
234 /// designated subobject and manages backing out the recursion to
235 /// initialize the subobjects after the one designated.
236 class InitListChecker {
237   Sema &SemaRef;
238   bool hadError;
239   bool VerifyOnly; // no diagnostics, no structure building
240   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
241   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
242   InitListExpr *FullyStructuredList;
243 
244   void CheckImplicitInitList(const InitializedEntity &Entity,
245                              InitListExpr *ParentIList, QualType T,
246                              unsigned &Index, InitListExpr *StructuredList,
247                              unsigned &StructuredIndex);
248   void CheckExplicitInitList(const InitializedEntity &Entity,
249                              InitListExpr *IList, QualType &T,
250                              InitListExpr *StructuredList,
251                              bool TopLevelObject = false);
252   void CheckListElementTypes(const InitializedEntity &Entity,
253                              InitListExpr *IList, QualType &DeclType,
254                              bool SubobjectIsDesignatorContext,
255                              unsigned &Index,
256                              InitListExpr *StructuredList,
257                              unsigned &StructuredIndex,
258                              bool TopLevelObject = false);
259   void CheckSubElementType(const InitializedEntity &Entity,
260                            InitListExpr *IList, QualType ElemType,
261                            unsigned &Index,
262                            InitListExpr *StructuredList,
263                            unsigned &StructuredIndex);
264   void CheckComplexType(const InitializedEntity &Entity,
265                         InitListExpr *IList, QualType DeclType,
266                         unsigned &Index,
267                         InitListExpr *StructuredList,
268                         unsigned &StructuredIndex);
269   void CheckScalarType(const InitializedEntity &Entity,
270                        InitListExpr *IList, QualType DeclType,
271                        unsigned &Index,
272                        InitListExpr *StructuredList,
273                        unsigned &StructuredIndex);
274   void CheckReferenceType(const InitializedEntity &Entity,
275                           InitListExpr *IList, QualType DeclType,
276                           unsigned &Index,
277                           InitListExpr *StructuredList,
278                           unsigned &StructuredIndex);
279   void CheckVectorType(const InitializedEntity &Entity,
280                        InitListExpr *IList, QualType DeclType, unsigned &Index,
281                        InitListExpr *StructuredList,
282                        unsigned &StructuredIndex);
283   void CheckStructUnionTypes(const InitializedEntity &Entity,
284                              InitListExpr *IList, QualType DeclType,
285                              CXXRecordDecl::base_class_range Bases,
286                              RecordDecl::field_iterator Field,
287                              bool SubobjectIsDesignatorContext, unsigned &Index,
288                              InitListExpr *StructuredList,
289                              unsigned &StructuredIndex,
290                              bool TopLevelObject = false);
291   void CheckArrayType(const InitializedEntity &Entity,
292                       InitListExpr *IList, QualType &DeclType,
293                       llvm::APSInt elementIndex,
294                       bool SubobjectIsDesignatorContext, unsigned &Index,
295                       InitListExpr *StructuredList,
296                       unsigned &StructuredIndex);
297   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
298                                   InitListExpr *IList, DesignatedInitExpr *DIE,
299                                   unsigned DesigIdx,
300                                   QualType &CurrentObjectType,
301                                   RecordDecl::field_iterator *NextField,
302                                   llvm::APSInt *NextElementIndex,
303                                   unsigned &Index,
304                                   InitListExpr *StructuredList,
305                                   unsigned &StructuredIndex,
306                                   bool FinishSubobjectInit,
307                                   bool TopLevelObject);
308   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
309                                            QualType CurrentObjectType,
310                                            InitListExpr *StructuredList,
311                                            unsigned StructuredIndex,
312                                            SourceRange InitRange,
313                                            bool IsFullyOverwritten = false);
314   void UpdateStructuredListElement(InitListExpr *StructuredList,
315                                    unsigned &StructuredIndex,
316                                    Expr *expr);
317   int numArrayElements(QualType DeclType);
318   int numStructUnionElements(QualType DeclType);
319 
320   static ExprResult PerformEmptyInit(Sema &SemaRef,
321                                      SourceLocation Loc,
322                                      const InitializedEntity &Entity,
323                                      bool VerifyOnly,
324                                      bool TreatUnavailableAsInvalid);
325 
326   // Explanation on the "FillWithNoInit" mode:
327   //
328   // Assume we have the following definitions (Case#1):
329   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
330   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
331   //
332   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
333   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
334   //
335   // But if we have (Case#2):
336   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
337   //
338   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
339   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
340   //
341   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
342   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
343   // initializers but with special "NoInitExpr" place holders, which tells the
344   // CodeGen not to generate any initializers for these parts.
345   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
346                               const InitializedEntity &ParentEntity,
347                               InitListExpr *ILE, bool &RequiresSecondPass,
348                               bool FillWithNoInit);
349   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
350                                const InitializedEntity &ParentEntity,
351                                InitListExpr *ILE, bool &RequiresSecondPass,
352                                bool FillWithNoInit = false);
353   void FillInEmptyInitializations(const InitializedEntity &Entity,
354                                   InitListExpr *ILE, bool &RequiresSecondPass,
355                                   bool FillWithNoInit = false);
356   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
357                               Expr *InitExpr, FieldDecl *Field,
358                               bool TopLevelObject);
359   void CheckEmptyInitializable(const InitializedEntity &Entity,
360                                SourceLocation Loc);
361 
362 public:
363   InitListChecker(Sema &S, const InitializedEntity &Entity,
364                   InitListExpr *IL, QualType &T, bool VerifyOnly,
365                   bool TreatUnavailableAsInvalid);
366   bool HadError() { return hadError; }
367 
368   // @brief Retrieves the fully-structured initializer list used for
369   // semantic analysis and code generation.
370   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
371 };
372 
373 } // end anonymous namespace
374 
375 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
376                                              SourceLocation Loc,
377                                              const InitializedEntity &Entity,
378                                              bool VerifyOnly,
379                                              bool TreatUnavailableAsInvalid) {
380   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
381                                                             true);
382   MultiExprArg SubInit;
383   Expr *InitExpr;
384   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
385 
386   // C++ [dcl.init.aggr]p7:
387   //   If there are fewer initializer-clauses in the list than there are
388   //   members in the aggregate, then each member not explicitly initialized
389   //   ...
390   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
391       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
392   if (EmptyInitList) {
393     // C++1y / DR1070:
394     //   shall be initialized [...] from an empty initializer list.
395     //
396     // We apply the resolution of this DR to C++11 but not C++98, since C++98
397     // does not have useful semantics for initialization from an init list.
398     // We treat this as copy-initialization, because aggregate initialization
399     // always performs copy-initialization on its elements.
400     //
401     // Only do this if we're initializing a class type, to avoid filling in
402     // the initializer list where possible.
403     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
404                    InitListExpr(SemaRef.Context, Loc, None, Loc);
405     InitExpr->setType(SemaRef.Context.VoidTy);
406     SubInit = InitExpr;
407     Kind = InitializationKind::CreateCopy(Loc, Loc);
408   } else {
409     // C++03:
410     //   shall be value-initialized.
411   }
412 
413   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
414   // libstdc++4.6 marks the vector default constructor as explicit in
415   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
416   // stlport does so too. Look for std::__debug for libstdc++, and for
417   // std:: for stlport.  This is effectively a compiler-side implementation of
418   // LWG2193.
419   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
420           InitializationSequence::FK_ExplicitConstructor) {
421     OverloadCandidateSet::iterator Best;
422     OverloadingResult O =
423         InitSeq.getFailedCandidateSet()
424             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
425     (void)O;
426     assert(O == OR_Success && "Inconsistent overload resolution");
427     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
428     CXXRecordDecl *R = CtorDecl->getParent();
429 
430     if (CtorDecl->getMinRequiredArguments() == 0 &&
431         CtorDecl->isExplicit() && R->getDeclName() &&
432         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
433       bool IsInStd = false;
434       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
435            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
436         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
437           IsInStd = true;
438       }
439 
440       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
441               .Cases("basic_string", "deque", "forward_list", true)
442               .Cases("list", "map", "multimap", "multiset", true)
443               .Cases("priority_queue", "queue", "set", "stack", true)
444               .Cases("unordered_map", "unordered_set", "vector", true)
445               .Default(false)) {
446         InitSeq.InitializeFrom(
447             SemaRef, Entity,
448             InitializationKind::CreateValue(Loc, Loc, Loc, true),
449             MultiExprArg(), /*TopLevelOfInitList=*/false,
450             TreatUnavailableAsInvalid);
451         // Emit a warning for this.  System header warnings aren't shown
452         // by default, but people working on system headers should see it.
453         if (!VerifyOnly) {
454           SemaRef.Diag(CtorDecl->getLocation(),
455                        diag::warn_invalid_initializer_from_system_header);
456           if (Entity.getKind() == InitializedEntity::EK_Member)
457             SemaRef.Diag(Entity.getDecl()->getLocation(),
458                          diag::note_used_in_initialization_here);
459           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
460             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
461         }
462       }
463     }
464   }
465   if (!InitSeq) {
466     if (!VerifyOnly) {
467       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
468       if (Entity.getKind() == InitializedEntity::EK_Member)
469         SemaRef.Diag(Entity.getDecl()->getLocation(),
470                      diag::note_in_omitted_aggregate_initializer)
471           << /*field*/1 << Entity.getDecl();
472       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
473         bool IsTrailingArrayNewMember =
474             Entity.getParent() &&
475             Entity.getParent()->isVariableLengthArrayNew();
476         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
477           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
478           << Entity.getElementIndex();
479       }
480     }
481     return ExprError();
482   }
483 
484   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
485                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
486 }
487 
488 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
489                                               SourceLocation Loc) {
490   assert(VerifyOnly &&
491          "CheckEmptyInitializable is only inteded for verification mode.");
492   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
493                        TreatUnavailableAsInvalid).isInvalid())
494     hadError = true;
495 }
496 
497 void InitListChecker::FillInEmptyInitForBase(
498     unsigned Init, const CXXBaseSpecifier &Base,
499     const InitializedEntity &ParentEntity, InitListExpr *ILE,
500     bool &RequiresSecondPass, bool FillWithNoInit) {
501   assert(Init < ILE->getNumInits() && "should have been expanded");
502 
503   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
504       SemaRef.Context, &Base, false, &ParentEntity);
505 
506   if (!ILE->getInit(Init)) {
507     ExprResult BaseInit =
508         FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
509                        : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
510                                           /*VerifyOnly*/ false,
511                                           TreatUnavailableAsInvalid);
512     if (BaseInit.isInvalid()) {
513       hadError = true;
514       return;
515     }
516 
517     ILE->setInit(Init, BaseInit.getAs<Expr>());
518   } else if (InitListExpr *InnerILE =
519                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
520     FillInEmptyInitializations(BaseEntity, InnerILE,
521                                RequiresSecondPass, FillWithNoInit);
522   } else if (DesignatedInitUpdateExpr *InnerDIUE =
523                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
524     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
525                                RequiresSecondPass, /*FillWithNoInit =*/true);
526   }
527 }
528 
529 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
530                                         const InitializedEntity &ParentEntity,
531                                               InitListExpr *ILE,
532                                               bool &RequiresSecondPass,
533                                               bool FillWithNoInit) {
534   SourceLocation Loc = ILE->getLocEnd();
535   unsigned NumInits = ILE->getNumInits();
536   InitializedEntity MemberEntity
537     = InitializedEntity::InitializeMember(Field, &ParentEntity);
538 
539   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
540     if (!RType->getDecl()->isUnion())
541       assert(Init < NumInits && "This ILE should have been expanded");
542 
543   if (Init >= NumInits || !ILE->getInit(Init)) {
544     if (FillWithNoInit) {
545       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
546       if (Init < NumInits)
547         ILE->setInit(Init, Filler);
548       else
549         ILE->updateInit(SemaRef.Context, Init, Filler);
550       return;
551     }
552     // C++1y [dcl.init.aggr]p7:
553     //   If there are fewer initializer-clauses in the list than there are
554     //   members in the aggregate, then each member not explicitly initialized
555     //   shall be initialized from its brace-or-equal-initializer [...]
556     if (Field->hasInClassInitializer()) {
557       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
558       if (DIE.isInvalid()) {
559         hadError = true;
560         return;
561       }
562       if (Init < NumInits)
563         ILE->setInit(Init, DIE.get());
564       else {
565         ILE->updateInit(SemaRef.Context, Init, DIE.get());
566         RequiresSecondPass = true;
567       }
568       return;
569     }
570 
571     if (Field->getType()->isReferenceType()) {
572       // C++ [dcl.init.aggr]p9:
573       //   If an incomplete or empty initializer-list leaves a
574       //   member of reference type uninitialized, the program is
575       //   ill-formed.
576       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
577         << Field->getType()
578         << ILE->getSyntacticForm()->getSourceRange();
579       SemaRef.Diag(Field->getLocation(),
580                    diag::note_uninit_reference_member);
581       hadError = true;
582       return;
583     }
584 
585     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
586                                              /*VerifyOnly*/false,
587                                              TreatUnavailableAsInvalid);
588     if (MemberInit.isInvalid()) {
589       hadError = true;
590       return;
591     }
592 
593     if (hadError) {
594       // Do nothing
595     } else if (Init < NumInits) {
596       ILE->setInit(Init, MemberInit.getAs<Expr>());
597     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
598       // Empty initialization requires a constructor call, so
599       // extend the initializer list to include the constructor
600       // call and make a note that we'll need to take another pass
601       // through the initializer list.
602       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
603       RequiresSecondPass = true;
604     }
605   } else if (InitListExpr *InnerILE
606                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
607     FillInEmptyInitializations(MemberEntity, InnerILE,
608                                RequiresSecondPass, FillWithNoInit);
609   else if (DesignatedInitUpdateExpr *InnerDIUE
610                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
611     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
612                                RequiresSecondPass, /*FillWithNoInit =*/ true);
613 }
614 
615 /// Recursively replaces NULL values within the given initializer list
616 /// with expressions that perform value-initialization of the
617 /// appropriate type.
618 void
619 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
620                                             InitListExpr *ILE,
621                                             bool &RequiresSecondPass,
622                                             bool FillWithNoInit) {
623   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
624          "Should not have void type");
625 
626   // A transparent ILE is not performing aggregate initialization and should
627   // not be filled in.
628   if (ILE->isTransparent())
629     return;
630 
631   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
632     const RecordDecl *RDecl = RType->getDecl();
633     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
634       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
635                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
636     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
637              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
638       for (auto *Field : RDecl->fields()) {
639         if (Field->hasInClassInitializer()) {
640           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
641                                   FillWithNoInit);
642           break;
643         }
644       }
645     } else {
646       // The fields beyond ILE->getNumInits() are default initialized, so in
647       // order to leave them uninitialized, the ILE is expanded and the extra
648       // fields are then filled with NoInitExpr.
649       unsigned NumElems = numStructUnionElements(ILE->getType());
650       if (RDecl->hasFlexibleArrayMember())
651         ++NumElems;
652       if (ILE->getNumInits() < NumElems)
653         ILE->resizeInits(SemaRef.Context, NumElems);
654 
655       unsigned Init = 0;
656 
657       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
658         for (auto &Base : CXXRD->bases()) {
659           if (hadError)
660             return;
661 
662           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
663                                  FillWithNoInit);
664           ++Init;
665         }
666       }
667 
668       for (auto *Field : RDecl->fields()) {
669         if (Field->isUnnamedBitfield())
670           continue;
671 
672         if (hadError)
673           return;
674 
675         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
676                                 FillWithNoInit);
677         if (hadError)
678           return;
679 
680         ++Init;
681 
682         // Only look at the first initialization of a union.
683         if (RDecl->isUnion())
684           break;
685       }
686     }
687 
688     return;
689   }
690 
691   QualType ElementType;
692 
693   InitializedEntity ElementEntity = Entity;
694   unsigned NumInits = ILE->getNumInits();
695   unsigned NumElements = NumInits;
696   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
697     ElementType = AType->getElementType();
698     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
699       NumElements = CAType->getSize().getZExtValue();
700     // For an array new with an unknown bound, ask for one additional element
701     // in order to populate the array filler.
702     if (Entity.isVariableLengthArrayNew())
703       ++NumElements;
704     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
705                                                          0, Entity);
706   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
707     ElementType = VType->getElementType();
708     NumElements = VType->getNumElements();
709     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
710                                                          0, Entity);
711   } else
712     ElementType = ILE->getType();
713 
714   for (unsigned Init = 0; Init != NumElements; ++Init) {
715     if (hadError)
716       return;
717 
718     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
719         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
720       ElementEntity.setElementIndex(Init);
721 
722     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
723     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
724       ILE->setInit(Init, ILE->getArrayFiller());
725     else if (!InitExpr && !ILE->hasArrayFiller()) {
726       Expr *Filler = nullptr;
727 
728       if (FillWithNoInit)
729         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
730       else {
731         ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
732                                                   ElementEntity,
733                                                   /*VerifyOnly*/false,
734                                                   TreatUnavailableAsInvalid);
735         if (ElementInit.isInvalid()) {
736           hadError = true;
737           return;
738         }
739 
740         Filler = ElementInit.getAs<Expr>();
741       }
742 
743       if (hadError) {
744         // Do nothing
745       } else if (Init < NumInits) {
746         // For arrays, just set the expression used for value-initialization
747         // of the "holes" in the array.
748         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
749           ILE->setArrayFiller(Filler);
750         else
751           ILE->setInit(Init, Filler);
752       } else {
753         // For arrays, just set the expression used for value-initialization
754         // of the rest of elements and exit.
755         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
756           ILE->setArrayFiller(Filler);
757           return;
758         }
759 
760         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
761           // Empty initialization requires a constructor call, so
762           // extend the initializer list to include the constructor
763           // call and make a note that we'll need to take another pass
764           // through the initializer list.
765           ILE->updateInit(SemaRef.Context, Init, Filler);
766           RequiresSecondPass = true;
767         }
768       }
769     } else if (InitListExpr *InnerILE
770                  = dyn_cast_or_null<InitListExpr>(InitExpr))
771       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
772                                  FillWithNoInit);
773     else if (DesignatedInitUpdateExpr *InnerDIUE
774                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
775       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
776                                  RequiresSecondPass, /*FillWithNoInit =*/ true);
777   }
778 }
779 
780 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
781                                  InitListExpr *IL, QualType &T,
782                                  bool VerifyOnly,
783                                  bool TreatUnavailableAsInvalid)
784   : SemaRef(S), VerifyOnly(VerifyOnly),
785     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
786   // FIXME: Check that IL isn't already the semantic form of some other
787   // InitListExpr. If it is, we'd create a broken AST.
788 
789   hadError = false;
790 
791   FullyStructuredList =
792       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
793   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
794                         /*TopLevelObject=*/true);
795 
796   if (!hadError && !VerifyOnly) {
797     bool RequiresSecondPass = false;
798     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
799     if (RequiresSecondPass && !hadError)
800       FillInEmptyInitializations(Entity, FullyStructuredList,
801                                  RequiresSecondPass);
802   }
803 }
804 
805 int InitListChecker::numArrayElements(QualType DeclType) {
806   // FIXME: use a proper constant
807   int maxElements = 0x7FFFFFFF;
808   if (const ConstantArrayType *CAT =
809         SemaRef.Context.getAsConstantArrayType(DeclType)) {
810     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
811   }
812   return maxElements;
813 }
814 
815 int InitListChecker::numStructUnionElements(QualType DeclType) {
816   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
817   int InitializableMembers = 0;
818   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
819     InitializableMembers += CXXRD->getNumBases();
820   for (const auto *Field : structDecl->fields())
821     if (!Field->isUnnamedBitfield())
822       ++InitializableMembers;
823 
824   if (structDecl->isUnion())
825     return std::min(InitializableMembers, 1);
826   return InitializableMembers - structDecl->hasFlexibleArrayMember();
827 }
828 
829 /// Check whether the range of the initializer \p ParentIList from element
830 /// \p Index onwards can be used to initialize an object of type \p T. Update
831 /// \p Index to indicate how many elements of the list were consumed.
832 ///
833 /// This also fills in \p StructuredList, from element \p StructuredIndex
834 /// onwards, with the fully-braced, desugared form of the initialization.
835 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
836                                             InitListExpr *ParentIList,
837                                             QualType T, unsigned &Index,
838                                             InitListExpr *StructuredList,
839                                             unsigned &StructuredIndex) {
840   int maxElements = 0;
841 
842   if (T->isArrayType())
843     maxElements = numArrayElements(T);
844   else if (T->isRecordType())
845     maxElements = numStructUnionElements(T);
846   else if (T->isVectorType())
847     maxElements = T->getAs<VectorType>()->getNumElements();
848   else
849     llvm_unreachable("CheckImplicitInitList(): Illegal type");
850 
851   if (maxElements == 0) {
852     if (!VerifyOnly)
853       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
854                    diag::err_implicit_empty_initializer);
855     ++Index;
856     hadError = true;
857     return;
858   }
859 
860   // Build a structured initializer list corresponding to this subobject.
861   InitListExpr *StructuredSubobjectInitList
862     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
863                                  StructuredIndex,
864           SourceRange(ParentIList->getInit(Index)->getLocStart(),
865                       ParentIList->getSourceRange().getEnd()));
866   unsigned StructuredSubobjectInitIndex = 0;
867 
868   // Check the element types and build the structural subobject.
869   unsigned StartIndex = Index;
870   CheckListElementTypes(Entity, ParentIList, T,
871                         /*SubobjectIsDesignatorContext=*/false, Index,
872                         StructuredSubobjectInitList,
873                         StructuredSubobjectInitIndex);
874 
875   if (!VerifyOnly) {
876     StructuredSubobjectInitList->setType(T);
877 
878     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
879     // Update the structured sub-object initializer so that it's ending
880     // range corresponds with the end of the last initializer it used.
881     if (EndIndex < ParentIList->getNumInits() &&
882         ParentIList->getInit(EndIndex)) {
883       SourceLocation EndLoc
884         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
885       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
886     }
887 
888     // Complain about missing braces.
889     if (T->isArrayType() || T->isRecordType()) {
890       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
891                    diag::warn_missing_braces)
892           << StructuredSubobjectInitList->getSourceRange()
893           << FixItHint::CreateInsertion(
894                  StructuredSubobjectInitList->getLocStart(), "{")
895           << FixItHint::CreateInsertion(
896                  SemaRef.getLocForEndOfToken(
897                      StructuredSubobjectInitList->getLocEnd()),
898                  "}");
899     }
900   }
901 }
902 
903 /// Warn that \p Entity was of scalar type and was initialized by a
904 /// single-element braced initializer list.
905 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
906                                  SourceRange Braces) {
907   // Don't warn during template instantiation. If the initialization was
908   // non-dependent, we warned during the initial parse; otherwise, the
909   // type might not be scalar in some uses of the template.
910   if (S.inTemplateInstantiation())
911     return;
912 
913   unsigned DiagID = 0;
914 
915   switch (Entity.getKind()) {
916   case InitializedEntity::EK_VectorElement:
917   case InitializedEntity::EK_ComplexElement:
918   case InitializedEntity::EK_ArrayElement:
919   case InitializedEntity::EK_Parameter:
920   case InitializedEntity::EK_Parameter_CF_Audited:
921   case InitializedEntity::EK_Result:
922     // Extra braces here are suspicious.
923     DiagID = diag::warn_braces_around_scalar_init;
924     break;
925 
926   case InitializedEntity::EK_Member:
927     // Warn on aggregate initialization but not on ctor init list or
928     // default member initializer.
929     if (Entity.getParent())
930       DiagID = diag::warn_braces_around_scalar_init;
931     break;
932 
933   case InitializedEntity::EK_Variable:
934   case InitializedEntity::EK_LambdaCapture:
935     // No warning, might be direct-list-initialization.
936     // FIXME: Should we warn for copy-list-initialization in these cases?
937     break;
938 
939   case InitializedEntity::EK_New:
940   case InitializedEntity::EK_Temporary:
941   case InitializedEntity::EK_CompoundLiteralInit:
942     // No warning, braces are part of the syntax of the underlying construct.
943     break;
944 
945   case InitializedEntity::EK_RelatedResult:
946     // No warning, we already warned when initializing the result.
947     break;
948 
949   case InitializedEntity::EK_Exception:
950   case InitializedEntity::EK_Base:
951   case InitializedEntity::EK_Delegating:
952   case InitializedEntity::EK_BlockElement:
953   case InitializedEntity::EK_Binding:
954     llvm_unreachable("unexpected braced scalar init");
955   }
956 
957   if (DiagID) {
958     S.Diag(Braces.getBegin(), DiagID)
959       << Braces
960       << FixItHint::CreateRemoval(Braces.getBegin())
961       << FixItHint::CreateRemoval(Braces.getEnd());
962   }
963 }
964 
965 /// Check whether the initializer \p IList (that was written with explicit
966 /// braces) can be used to initialize an object of type \p T.
967 ///
968 /// This also fills in \p StructuredList with the fully-braced, desugared
969 /// form of the initialization.
970 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
971                                             InitListExpr *IList, QualType &T,
972                                             InitListExpr *StructuredList,
973                                             bool TopLevelObject) {
974   if (!VerifyOnly) {
975     SyntacticToSemantic[IList] = StructuredList;
976     StructuredList->setSyntacticForm(IList);
977   }
978 
979   unsigned Index = 0, StructuredIndex = 0;
980   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
981                         Index, StructuredList, StructuredIndex, TopLevelObject);
982   if (!VerifyOnly) {
983     QualType ExprTy = T;
984     if (!ExprTy->isArrayType())
985       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
986     IList->setType(ExprTy);
987     StructuredList->setType(ExprTy);
988   }
989   if (hadError)
990     return;
991 
992   if (Index < IList->getNumInits()) {
993     // We have leftover initializers
994     if (VerifyOnly) {
995       if (SemaRef.getLangOpts().CPlusPlus ||
996           (SemaRef.getLangOpts().OpenCL &&
997            IList->getType()->isVectorType())) {
998         hadError = true;
999       }
1000       return;
1001     }
1002 
1003     if (StructuredIndex == 1 &&
1004         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1005             SIF_None) {
1006       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1007       if (SemaRef.getLangOpts().CPlusPlus) {
1008         DK = diag::err_excess_initializers_in_char_array_initializer;
1009         hadError = true;
1010       }
1011       // Special-case
1012       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1013         << IList->getInit(Index)->getSourceRange();
1014     } else if (!T->isIncompleteType()) {
1015       // Don't complain for incomplete types, since we'll get an error
1016       // elsewhere
1017       QualType CurrentObjectType = StructuredList->getType();
1018       int initKind =
1019         CurrentObjectType->isArrayType()? 0 :
1020         CurrentObjectType->isVectorType()? 1 :
1021         CurrentObjectType->isScalarType()? 2 :
1022         CurrentObjectType->isUnionType()? 3 :
1023         4;
1024 
1025       unsigned DK = diag::ext_excess_initializers;
1026       if (SemaRef.getLangOpts().CPlusPlus) {
1027         DK = diag::err_excess_initializers;
1028         hadError = true;
1029       }
1030       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1031         DK = diag::err_excess_initializers;
1032         hadError = true;
1033       }
1034 
1035       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1036         << initKind << IList->getInit(Index)->getSourceRange();
1037     }
1038   }
1039 
1040   if (!VerifyOnly && T->isScalarType() &&
1041       IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1042     warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1043 }
1044 
1045 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1046                                             InitListExpr *IList,
1047                                             QualType &DeclType,
1048                                             bool SubobjectIsDesignatorContext,
1049                                             unsigned &Index,
1050                                             InitListExpr *StructuredList,
1051                                             unsigned &StructuredIndex,
1052                                             bool TopLevelObject) {
1053   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1054     // Explicitly braced initializer for complex type can be real+imaginary
1055     // parts.
1056     CheckComplexType(Entity, IList, DeclType, Index,
1057                      StructuredList, StructuredIndex);
1058   } else if (DeclType->isScalarType()) {
1059     CheckScalarType(Entity, IList, DeclType, Index,
1060                     StructuredList, StructuredIndex);
1061   } else if (DeclType->isVectorType()) {
1062     CheckVectorType(Entity, IList, DeclType, Index,
1063                     StructuredList, StructuredIndex);
1064   } else if (DeclType->isRecordType()) {
1065     assert(DeclType->isAggregateType() &&
1066            "non-aggregate records should be handed in CheckSubElementType");
1067     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1068     auto Bases =
1069         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1070                                         CXXRecordDecl::base_class_iterator());
1071     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1072       Bases = CXXRD->bases();
1073     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1074                           SubobjectIsDesignatorContext, Index, StructuredList,
1075                           StructuredIndex, TopLevelObject);
1076   } else if (DeclType->isArrayType()) {
1077     llvm::APSInt Zero(
1078                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1079                     false);
1080     CheckArrayType(Entity, IList, DeclType, Zero,
1081                    SubobjectIsDesignatorContext, Index,
1082                    StructuredList, StructuredIndex);
1083   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1084     // This type is invalid, issue a diagnostic.
1085     ++Index;
1086     if (!VerifyOnly)
1087       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1088         << DeclType;
1089     hadError = true;
1090   } else if (DeclType->isReferenceType()) {
1091     CheckReferenceType(Entity, IList, DeclType, Index,
1092                        StructuredList, StructuredIndex);
1093   } else if (DeclType->isObjCObjectType()) {
1094     if (!VerifyOnly)
1095       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1096         << DeclType;
1097     hadError = true;
1098   } else {
1099     if (!VerifyOnly)
1100       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1101         << DeclType;
1102     hadError = true;
1103   }
1104 }
1105 
1106 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1107                                           InitListExpr *IList,
1108                                           QualType ElemType,
1109                                           unsigned &Index,
1110                                           InitListExpr *StructuredList,
1111                                           unsigned &StructuredIndex) {
1112   Expr *expr = IList->getInit(Index);
1113 
1114   if (ElemType->isReferenceType())
1115     return CheckReferenceType(Entity, IList, ElemType, Index,
1116                               StructuredList, StructuredIndex);
1117 
1118   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1119     if (SubInitList->getNumInits() == 1 &&
1120         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1121         SIF_None) {
1122       expr = SubInitList->getInit(0);
1123     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1124       InitListExpr *InnerStructuredList
1125         = getStructuredSubobjectInit(IList, Index, ElemType,
1126                                      StructuredList, StructuredIndex,
1127                                      SubInitList->getSourceRange(), true);
1128       CheckExplicitInitList(Entity, SubInitList, ElemType,
1129                             InnerStructuredList);
1130 
1131       if (!hadError && !VerifyOnly) {
1132         bool RequiresSecondPass = false;
1133         FillInEmptyInitializations(Entity, InnerStructuredList,
1134                                    RequiresSecondPass);
1135         if (RequiresSecondPass && !hadError)
1136           FillInEmptyInitializations(Entity, InnerStructuredList,
1137                                      RequiresSecondPass);
1138       }
1139       ++StructuredIndex;
1140       ++Index;
1141       return;
1142     }
1143     // C++ initialization is handled later.
1144   } else if (isa<ImplicitValueInitExpr>(expr)) {
1145     // This happens during template instantiation when we see an InitListExpr
1146     // that we've already checked once.
1147     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1148            "found implicit initialization for the wrong type");
1149     if (!VerifyOnly)
1150       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1151     ++Index;
1152     return;
1153   }
1154 
1155   if (SemaRef.getLangOpts().CPlusPlus) {
1156     // C++ [dcl.init.aggr]p2:
1157     //   Each member is copy-initialized from the corresponding
1158     //   initializer-clause.
1159 
1160     // FIXME: Better EqualLoc?
1161     InitializationKind Kind =
1162       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1163     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1164                                /*TopLevelOfInitList*/ true);
1165 
1166     // C++14 [dcl.init.aggr]p13:
1167     //   If the assignment-expression can initialize a member, the member is
1168     //   initialized. Otherwise [...] brace elision is assumed
1169     //
1170     // Brace elision is never performed if the element is not an
1171     // assignment-expression.
1172     if (Seq || isa<InitListExpr>(expr)) {
1173       if (!VerifyOnly) {
1174         ExprResult Result =
1175           Seq.Perform(SemaRef, Entity, Kind, expr);
1176         if (Result.isInvalid())
1177           hadError = true;
1178 
1179         UpdateStructuredListElement(StructuredList, StructuredIndex,
1180                                     Result.getAs<Expr>());
1181       } else if (!Seq)
1182         hadError = true;
1183       ++Index;
1184       return;
1185     }
1186 
1187     // Fall through for subaggregate initialization
1188   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1189     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1190     return CheckScalarType(Entity, IList, ElemType, Index,
1191                            StructuredList, StructuredIndex);
1192   } else if (const ArrayType *arrayType =
1193                  SemaRef.Context.getAsArrayType(ElemType)) {
1194     // arrayType can be incomplete if we're initializing a flexible
1195     // array member.  There's nothing we can do with the completed
1196     // type here, though.
1197 
1198     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1199       if (!VerifyOnly) {
1200         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1201         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1202       }
1203       ++Index;
1204       return;
1205     }
1206 
1207     // Fall through for subaggregate initialization.
1208 
1209   } else {
1210     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1211             ElemType->isClkEventT()) && "Unexpected type");
1212 
1213     // C99 6.7.8p13:
1214     //
1215     //   The initializer for a structure or union object that has
1216     //   automatic storage duration shall be either an initializer
1217     //   list as described below, or a single expression that has
1218     //   compatible structure or union type. In the latter case, the
1219     //   initial value of the object, including unnamed members, is
1220     //   that of the expression.
1221     ExprResult ExprRes = expr;
1222     if (SemaRef.CheckSingleAssignmentConstraints(
1223             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1224       if (ExprRes.isInvalid())
1225         hadError = true;
1226       else {
1227         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1228           if (ExprRes.isInvalid())
1229             hadError = true;
1230       }
1231       UpdateStructuredListElement(StructuredList, StructuredIndex,
1232                                   ExprRes.getAs<Expr>());
1233       ++Index;
1234       return;
1235     }
1236     ExprRes.get();
1237     // Fall through for subaggregate initialization
1238   }
1239 
1240   // C++ [dcl.init.aggr]p12:
1241   //
1242   //   [...] Otherwise, if the member is itself a non-empty
1243   //   subaggregate, brace elision is assumed and the initializer is
1244   //   considered for the initialization of the first member of
1245   //   the subaggregate.
1246   // OpenCL vector initializer is handled elsewhere.
1247   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1248       ElemType->isAggregateType()) {
1249     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1250                           StructuredIndex);
1251     ++StructuredIndex;
1252   } else {
1253     if (!VerifyOnly) {
1254       // We cannot initialize this element, so let
1255       // PerformCopyInitialization produce the appropriate diagnostic.
1256       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1257                                         /*TopLevelOfInitList=*/true);
1258     }
1259     hadError = true;
1260     ++Index;
1261     ++StructuredIndex;
1262   }
1263 }
1264 
1265 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1266                                        InitListExpr *IList, QualType DeclType,
1267                                        unsigned &Index,
1268                                        InitListExpr *StructuredList,
1269                                        unsigned &StructuredIndex) {
1270   assert(Index == 0 && "Index in explicit init list must be zero");
1271 
1272   // As an extension, clang supports complex initializers, which initialize
1273   // a complex number component-wise.  When an explicit initializer list for
1274   // a complex number contains two two initializers, this extension kicks in:
1275   // it exepcts the initializer list to contain two elements convertible to
1276   // the element type of the complex type. The first element initializes
1277   // the real part, and the second element intitializes the imaginary part.
1278 
1279   if (IList->getNumInits() != 2)
1280     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1281                            StructuredIndex);
1282 
1283   // This is an extension in C.  (The builtin _Complex type does not exist
1284   // in the C++ standard.)
1285   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1286     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1287       << IList->getSourceRange();
1288 
1289   // Initialize the complex number.
1290   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1291   InitializedEntity ElementEntity =
1292     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1293 
1294   for (unsigned i = 0; i < 2; ++i) {
1295     ElementEntity.setElementIndex(Index);
1296     CheckSubElementType(ElementEntity, IList, elementType, Index,
1297                         StructuredList, StructuredIndex);
1298   }
1299 }
1300 
1301 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1302                                       InitListExpr *IList, QualType DeclType,
1303                                       unsigned &Index,
1304                                       InitListExpr *StructuredList,
1305                                       unsigned &StructuredIndex) {
1306   if (Index >= IList->getNumInits()) {
1307     if (!VerifyOnly)
1308       SemaRef.Diag(IList->getLocStart(),
1309                    SemaRef.getLangOpts().CPlusPlus11 ?
1310                      diag::warn_cxx98_compat_empty_scalar_initializer :
1311                      diag::err_empty_scalar_initializer)
1312         << IList->getSourceRange();
1313     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1314     ++Index;
1315     ++StructuredIndex;
1316     return;
1317   }
1318 
1319   Expr *expr = IList->getInit(Index);
1320   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1321     // FIXME: This is invalid, and accepting it causes overload resolution
1322     // to pick the wrong overload in some corner cases.
1323     if (!VerifyOnly)
1324       SemaRef.Diag(SubIList->getLocStart(),
1325                    diag::ext_many_braces_around_scalar_init)
1326         << SubIList->getSourceRange();
1327 
1328     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1329                     StructuredIndex);
1330     return;
1331   } else if (isa<DesignatedInitExpr>(expr)) {
1332     if (!VerifyOnly)
1333       SemaRef.Diag(expr->getLocStart(),
1334                    diag::err_designator_for_scalar_init)
1335         << DeclType << expr->getSourceRange();
1336     hadError = true;
1337     ++Index;
1338     ++StructuredIndex;
1339     return;
1340   }
1341 
1342   if (VerifyOnly) {
1343     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1344       hadError = true;
1345     ++Index;
1346     return;
1347   }
1348 
1349   ExprResult Result =
1350     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1351                                       /*TopLevelOfInitList=*/true);
1352 
1353   Expr *ResultExpr = nullptr;
1354 
1355   if (Result.isInvalid())
1356     hadError = true; // types weren't compatible.
1357   else {
1358     ResultExpr = Result.getAs<Expr>();
1359 
1360     if (ResultExpr != expr) {
1361       // The type was promoted, update initializer list.
1362       IList->setInit(Index, ResultExpr);
1363     }
1364   }
1365   if (hadError)
1366     ++StructuredIndex;
1367   else
1368     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1369   ++Index;
1370 }
1371 
1372 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1373                                          InitListExpr *IList, QualType DeclType,
1374                                          unsigned &Index,
1375                                          InitListExpr *StructuredList,
1376                                          unsigned &StructuredIndex) {
1377   if (Index >= IList->getNumInits()) {
1378     // FIXME: It would be wonderful if we could point at the actual member. In
1379     // general, it would be useful to pass location information down the stack,
1380     // so that we know the location (or decl) of the "current object" being
1381     // initialized.
1382     if (!VerifyOnly)
1383       SemaRef.Diag(IList->getLocStart(),
1384                     diag::err_init_reference_member_uninitialized)
1385         << DeclType
1386         << IList->getSourceRange();
1387     hadError = true;
1388     ++Index;
1389     ++StructuredIndex;
1390     return;
1391   }
1392 
1393   Expr *expr = IList->getInit(Index);
1394   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1395     if (!VerifyOnly)
1396       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1397         << DeclType << IList->getSourceRange();
1398     hadError = true;
1399     ++Index;
1400     ++StructuredIndex;
1401     return;
1402   }
1403 
1404   if (VerifyOnly) {
1405     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1406       hadError = true;
1407     ++Index;
1408     return;
1409   }
1410 
1411   ExprResult Result =
1412       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1413                                         /*TopLevelOfInitList=*/true);
1414 
1415   if (Result.isInvalid())
1416     hadError = true;
1417 
1418   expr = Result.getAs<Expr>();
1419   IList->setInit(Index, expr);
1420 
1421   if (hadError)
1422     ++StructuredIndex;
1423   else
1424     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1425   ++Index;
1426 }
1427 
1428 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1429                                       InitListExpr *IList, QualType DeclType,
1430                                       unsigned &Index,
1431                                       InitListExpr *StructuredList,
1432                                       unsigned &StructuredIndex) {
1433   const VectorType *VT = DeclType->getAs<VectorType>();
1434   unsigned maxElements = VT->getNumElements();
1435   unsigned numEltsInit = 0;
1436   QualType elementType = VT->getElementType();
1437 
1438   if (Index >= IList->getNumInits()) {
1439     // Make sure the element type can be value-initialized.
1440     if (VerifyOnly)
1441       CheckEmptyInitializable(
1442           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1443           IList->getLocEnd());
1444     return;
1445   }
1446 
1447   if (!SemaRef.getLangOpts().OpenCL) {
1448     // If the initializing element is a vector, try to copy-initialize
1449     // instead of breaking it apart (which is doomed to failure anyway).
1450     Expr *Init = IList->getInit(Index);
1451     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1452       if (VerifyOnly) {
1453         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1454           hadError = true;
1455         ++Index;
1456         return;
1457       }
1458 
1459   ExprResult Result =
1460       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1461                                         /*TopLevelOfInitList=*/true);
1462 
1463       Expr *ResultExpr = nullptr;
1464       if (Result.isInvalid())
1465         hadError = true; // types weren't compatible.
1466       else {
1467         ResultExpr = Result.getAs<Expr>();
1468 
1469         if (ResultExpr != Init) {
1470           // The type was promoted, update initializer list.
1471           IList->setInit(Index, ResultExpr);
1472         }
1473       }
1474       if (hadError)
1475         ++StructuredIndex;
1476       else
1477         UpdateStructuredListElement(StructuredList, StructuredIndex,
1478                                     ResultExpr);
1479       ++Index;
1480       return;
1481     }
1482 
1483     InitializedEntity ElementEntity =
1484       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1485 
1486     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1487       // Don't attempt to go past the end of the init list
1488       if (Index >= IList->getNumInits()) {
1489         if (VerifyOnly)
1490           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1491         break;
1492       }
1493 
1494       ElementEntity.setElementIndex(Index);
1495       CheckSubElementType(ElementEntity, IList, elementType, Index,
1496                           StructuredList, StructuredIndex);
1497     }
1498 
1499     if (VerifyOnly)
1500       return;
1501 
1502     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1503     const VectorType *T = Entity.getType()->getAs<VectorType>();
1504     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1505                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1506       // The ability to use vector initializer lists is a GNU vector extension
1507       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1508       // endian machines it works fine, however on big endian machines it
1509       // exhibits surprising behaviour:
1510       //
1511       //   uint32x2_t x = {42, 64};
1512       //   return vget_lane_u32(x, 0); // Will return 64.
1513       //
1514       // Because of this, explicitly call out that it is non-portable.
1515       //
1516       SemaRef.Diag(IList->getLocStart(),
1517                    diag::warn_neon_vector_initializer_non_portable);
1518 
1519       const char *typeCode;
1520       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1521 
1522       if (elementType->isFloatingType())
1523         typeCode = "f";
1524       else if (elementType->isSignedIntegerType())
1525         typeCode = "s";
1526       else if (elementType->isUnsignedIntegerType())
1527         typeCode = "u";
1528       else
1529         llvm_unreachable("Invalid element type!");
1530 
1531       SemaRef.Diag(IList->getLocStart(),
1532                    SemaRef.Context.getTypeSize(VT) > 64 ?
1533                    diag::note_neon_vector_initializer_non_portable_q :
1534                    diag::note_neon_vector_initializer_non_portable)
1535         << typeCode << typeSize;
1536     }
1537 
1538     return;
1539   }
1540 
1541   InitializedEntity ElementEntity =
1542     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1543 
1544   // OpenCL initializers allows vectors to be constructed from vectors.
1545   for (unsigned i = 0; i < maxElements; ++i) {
1546     // Don't attempt to go past the end of the init list
1547     if (Index >= IList->getNumInits())
1548       break;
1549 
1550     ElementEntity.setElementIndex(Index);
1551 
1552     QualType IType = IList->getInit(Index)->getType();
1553     if (!IType->isVectorType()) {
1554       CheckSubElementType(ElementEntity, IList, elementType, Index,
1555                           StructuredList, StructuredIndex);
1556       ++numEltsInit;
1557     } else {
1558       QualType VecType;
1559       const VectorType *IVT = IType->getAs<VectorType>();
1560       unsigned numIElts = IVT->getNumElements();
1561 
1562       if (IType->isExtVectorType())
1563         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1564       else
1565         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1566                                                 IVT->getVectorKind());
1567       CheckSubElementType(ElementEntity, IList, VecType, Index,
1568                           StructuredList, StructuredIndex);
1569       numEltsInit += numIElts;
1570     }
1571   }
1572 
1573   // OpenCL requires all elements to be initialized.
1574   if (numEltsInit != maxElements) {
1575     if (!VerifyOnly)
1576       SemaRef.Diag(IList->getLocStart(),
1577                    diag::err_vector_incorrect_num_initializers)
1578         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1579     hadError = true;
1580   }
1581 }
1582 
1583 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1584                                      InitListExpr *IList, QualType &DeclType,
1585                                      llvm::APSInt elementIndex,
1586                                      bool SubobjectIsDesignatorContext,
1587                                      unsigned &Index,
1588                                      InitListExpr *StructuredList,
1589                                      unsigned &StructuredIndex) {
1590   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1591 
1592   // Check for the special-case of initializing an array with a string.
1593   if (Index < IList->getNumInits()) {
1594     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1595         SIF_None) {
1596       // We place the string literal directly into the resulting
1597       // initializer list. This is the only place where the structure
1598       // of the structured initializer list doesn't match exactly,
1599       // because doing so would involve allocating one character
1600       // constant for each string.
1601       if (!VerifyOnly) {
1602         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1603         UpdateStructuredListElement(StructuredList, StructuredIndex,
1604                                     IList->getInit(Index));
1605         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1606       }
1607       ++Index;
1608       return;
1609     }
1610   }
1611   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1612     // Check for VLAs; in standard C it would be possible to check this
1613     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1614     // them in all sorts of strange places).
1615     if (!VerifyOnly)
1616       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1617                     diag::err_variable_object_no_init)
1618         << VAT->getSizeExpr()->getSourceRange();
1619     hadError = true;
1620     ++Index;
1621     ++StructuredIndex;
1622     return;
1623   }
1624 
1625   // We might know the maximum number of elements in advance.
1626   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1627                            elementIndex.isUnsigned());
1628   bool maxElementsKnown = false;
1629   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1630     maxElements = CAT->getSize();
1631     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1632     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1633     maxElementsKnown = true;
1634   }
1635 
1636   QualType elementType = arrayType->getElementType();
1637   while (Index < IList->getNumInits()) {
1638     Expr *Init = IList->getInit(Index);
1639     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1640       // If we're not the subobject that matches up with the '{' for
1641       // the designator, we shouldn't be handling the
1642       // designator. Return immediately.
1643       if (!SubobjectIsDesignatorContext)
1644         return;
1645 
1646       // Handle this designated initializer. elementIndex will be
1647       // updated to be the next array element we'll initialize.
1648       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1649                                      DeclType, nullptr, &elementIndex, Index,
1650                                      StructuredList, StructuredIndex, true,
1651                                      false)) {
1652         hadError = true;
1653         continue;
1654       }
1655 
1656       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1657         maxElements = maxElements.extend(elementIndex.getBitWidth());
1658       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1659         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1660       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1661 
1662       // If the array is of incomplete type, keep track of the number of
1663       // elements in the initializer.
1664       if (!maxElementsKnown && elementIndex > maxElements)
1665         maxElements = elementIndex;
1666 
1667       continue;
1668     }
1669 
1670     // If we know the maximum number of elements, and we've already
1671     // hit it, stop consuming elements in the initializer list.
1672     if (maxElementsKnown && elementIndex == maxElements)
1673       break;
1674 
1675     InitializedEntity ElementEntity =
1676       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1677                                            Entity);
1678     // Check this element.
1679     CheckSubElementType(ElementEntity, IList, elementType, Index,
1680                         StructuredList, StructuredIndex);
1681     ++elementIndex;
1682 
1683     // If the array is of incomplete type, keep track of the number of
1684     // elements in the initializer.
1685     if (!maxElementsKnown && elementIndex > maxElements)
1686       maxElements = elementIndex;
1687   }
1688   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1689     // If this is an incomplete array type, the actual type needs to
1690     // be calculated here.
1691     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1692     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1693       // Sizing an array implicitly to zero is not allowed by ISO C,
1694       // but is supported by GNU.
1695       SemaRef.Diag(IList->getLocStart(),
1696                     diag::ext_typecheck_zero_array_size);
1697     }
1698 
1699     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1700                                                      ArrayType::Normal, 0);
1701   }
1702   if (!hadError && VerifyOnly) {
1703     // If there are any members of the array that get value-initialized, check
1704     // that is possible. That happens if we know the bound and don't have
1705     // enough elements, or if we're performing an array new with an unknown
1706     // bound.
1707     // FIXME: This needs to detect holes left by designated initializers too.
1708     if ((maxElementsKnown && elementIndex < maxElements) ||
1709         Entity.isVariableLengthArrayNew())
1710       CheckEmptyInitializable(InitializedEntity::InitializeElement(
1711                                                   SemaRef.Context, 0, Entity),
1712                               IList->getLocEnd());
1713   }
1714 }
1715 
1716 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1717                                              Expr *InitExpr,
1718                                              FieldDecl *Field,
1719                                              bool TopLevelObject) {
1720   // Handle GNU flexible array initializers.
1721   unsigned FlexArrayDiag;
1722   if (isa<InitListExpr>(InitExpr) &&
1723       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1724     // Empty flexible array init always allowed as an extension
1725     FlexArrayDiag = diag::ext_flexible_array_init;
1726   } else if (SemaRef.getLangOpts().CPlusPlus) {
1727     // Disallow flexible array init in C++; it is not required for gcc
1728     // compatibility, and it needs work to IRGen correctly in general.
1729     FlexArrayDiag = diag::err_flexible_array_init;
1730   } else if (!TopLevelObject) {
1731     // Disallow flexible array init on non-top-level object
1732     FlexArrayDiag = diag::err_flexible_array_init;
1733   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1734     // Disallow flexible array init on anything which is not a variable.
1735     FlexArrayDiag = diag::err_flexible_array_init;
1736   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1737     // Disallow flexible array init on local variables.
1738     FlexArrayDiag = diag::err_flexible_array_init;
1739   } else {
1740     // Allow other cases.
1741     FlexArrayDiag = diag::ext_flexible_array_init;
1742   }
1743 
1744   if (!VerifyOnly) {
1745     SemaRef.Diag(InitExpr->getLocStart(),
1746                  FlexArrayDiag)
1747       << InitExpr->getLocStart();
1748     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1749       << Field;
1750   }
1751 
1752   return FlexArrayDiag != diag::ext_flexible_array_init;
1753 }
1754 
1755 void InitListChecker::CheckStructUnionTypes(
1756     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1757     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1758     bool SubobjectIsDesignatorContext, unsigned &Index,
1759     InitListExpr *StructuredList, unsigned &StructuredIndex,
1760     bool TopLevelObject) {
1761   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1762 
1763   // If the record is invalid, some of it's members are invalid. To avoid
1764   // confusion, we forgo checking the intializer for the entire record.
1765   if (structDecl->isInvalidDecl()) {
1766     // Assume it was supposed to consume a single initializer.
1767     ++Index;
1768     hadError = true;
1769     return;
1770   }
1771 
1772   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1773     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1774 
1775     // If there's a default initializer, use it.
1776     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1777       if (VerifyOnly)
1778         return;
1779       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1780            Field != FieldEnd; ++Field) {
1781         if (Field->hasInClassInitializer()) {
1782           StructuredList->setInitializedFieldInUnion(*Field);
1783           // FIXME: Actually build a CXXDefaultInitExpr?
1784           return;
1785         }
1786       }
1787     }
1788 
1789     // Value-initialize the first member of the union that isn't an unnamed
1790     // bitfield.
1791     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1792          Field != FieldEnd; ++Field) {
1793       if (!Field->isUnnamedBitfield()) {
1794         if (VerifyOnly)
1795           CheckEmptyInitializable(
1796               InitializedEntity::InitializeMember(*Field, &Entity),
1797               IList->getLocEnd());
1798         else
1799           StructuredList->setInitializedFieldInUnion(*Field);
1800         break;
1801       }
1802     }
1803     return;
1804   }
1805 
1806   bool InitializedSomething = false;
1807 
1808   // If we have any base classes, they are initialized prior to the fields.
1809   for (auto &Base : Bases) {
1810     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1811     SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1812 
1813     // Designated inits always initialize fields, so if we see one, all
1814     // remaining base classes have no explicit initializer.
1815     if (Init && isa<DesignatedInitExpr>(Init))
1816       Init = nullptr;
1817 
1818     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1819         SemaRef.Context, &Base, false, &Entity);
1820     if (Init) {
1821       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1822                           StructuredList, StructuredIndex);
1823       InitializedSomething = true;
1824     } else if (VerifyOnly) {
1825       CheckEmptyInitializable(BaseEntity, InitLoc);
1826     }
1827   }
1828 
1829   // If structDecl is a forward declaration, this loop won't do
1830   // anything except look at designated initializers; That's okay,
1831   // because an error should get printed out elsewhere. It might be
1832   // worthwhile to skip over the rest of the initializer, though.
1833   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1834   RecordDecl::field_iterator FieldEnd = RD->field_end();
1835   bool CheckForMissingFields = true;
1836   while (Index < IList->getNumInits()) {
1837     Expr *Init = IList->getInit(Index);
1838 
1839     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1840       // If we're not the subobject that matches up with the '{' for
1841       // the designator, we shouldn't be handling the
1842       // designator. Return immediately.
1843       if (!SubobjectIsDesignatorContext)
1844         return;
1845 
1846       // Handle this designated initializer. Field will be updated to
1847       // the next field that we'll be initializing.
1848       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1849                                      DeclType, &Field, nullptr, Index,
1850                                      StructuredList, StructuredIndex,
1851                                      true, TopLevelObject))
1852         hadError = true;
1853 
1854       InitializedSomething = true;
1855 
1856       // Disable check for missing fields when designators are used.
1857       // This matches gcc behaviour.
1858       CheckForMissingFields = false;
1859       continue;
1860     }
1861 
1862     if (Field == FieldEnd) {
1863       // We've run out of fields. We're done.
1864       break;
1865     }
1866 
1867     // We've already initialized a member of a union. We're done.
1868     if (InitializedSomething && DeclType->isUnionType())
1869       break;
1870 
1871     // If we've hit the flexible array member at the end, we're done.
1872     if (Field->getType()->isIncompleteArrayType())
1873       break;
1874 
1875     if (Field->isUnnamedBitfield()) {
1876       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1877       ++Field;
1878       continue;
1879     }
1880 
1881     // Make sure we can use this declaration.
1882     bool InvalidUse;
1883     if (VerifyOnly)
1884       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1885     else
1886       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1887                                           IList->getInit(Index)->getLocStart());
1888     if (InvalidUse) {
1889       ++Index;
1890       ++Field;
1891       hadError = true;
1892       continue;
1893     }
1894 
1895     InitializedEntity MemberEntity =
1896       InitializedEntity::InitializeMember(*Field, &Entity);
1897     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1898                         StructuredList, StructuredIndex);
1899     InitializedSomething = true;
1900 
1901     if (DeclType->isUnionType() && !VerifyOnly) {
1902       // Initialize the first field within the union.
1903       StructuredList->setInitializedFieldInUnion(*Field);
1904     }
1905 
1906     ++Field;
1907   }
1908 
1909   // Emit warnings for missing struct field initializers.
1910   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1911       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1912       !DeclType->isUnionType()) {
1913     // It is possible we have one or more unnamed bitfields remaining.
1914     // Find first (if any) named field and emit warning.
1915     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1916          it != end; ++it) {
1917       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1918         SemaRef.Diag(IList->getSourceRange().getEnd(),
1919                      diag::warn_missing_field_initializers) << *it;
1920         break;
1921       }
1922     }
1923   }
1924 
1925   // Check that any remaining fields can be value-initialized.
1926   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1927       !Field->getType()->isIncompleteArrayType()) {
1928     // FIXME: Should check for holes left by designated initializers too.
1929     for (; Field != FieldEnd && !hadError; ++Field) {
1930       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1931         CheckEmptyInitializable(
1932             InitializedEntity::InitializeMember(*Field, &Entity),
1933             IList->getLocEnd());
1934     }
1935   }
1936 
1937   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1938       Index >= IList->getNumInits())
1939     return;
1940 
1941   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1942                              TopLevelObject)) {
1943     hadError = true;
1944     ++Index;
1945     return;
1946   }
1947 
1948   InitializedEntity MemberEntity =
1949     InitializedEntity::InitializeMember(*Field, &Entity);
1950 
1951   if (isa<InitListExpr>(IList->getInit(Index)))
1952     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1953                         StructuredList, StructuredIndex);
1954   else
1955     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1956                           StructuredList, StructuredIndex);
1957 }
1958 
1959 /// \brief Expand a field designator that refers to a member of an
1960 /// anonymous struct or union into a series of field designators that
1961 /// refers to the field within the appropriate subobject.
1962 ///
1963 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1964                                            DesignatedInitExpr *DIE,
1965                                            unsigned DesigIdx,
1966                                            IndirectFieldDecl *IndirectField) {
1967   typedef DesignatedInitExpr::Designator Designator;
1968 
1969   // Build the replacement designators.
1970   SmallVector<Designator, 4> Replacements;
1971   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1972        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1973     if (PI + 1 == PE)
1974       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1975                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1976                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1977     else
1978       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1979                                         SourceLocation(), SourceLocation()));
1980     assert(isa<FieldDecl>(*PI));
1981     Replacements.back().setField(cast<FieldDecl>(*PI));
1982   }
1983 
1984   // Expand the current designator into the set of replacement
1985   // designators, so we have a full subobject path down to where the
1986   // member of the anonymous struct/union is actually stored.
1987   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1988                         &Replacements[0] + Replacements.size());
1989 }
1990 
1991 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1992                                                    DesignatedInitExpr *DIE) {
1993   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1994   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1995   for (unsigned I = 0; I < NumIndexExprs; ++I)
1996     IndexExprs[I] = DIE->getSubExpr(I + 1);
1997   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
1998                                     IndexExprs,
1999                                     DIE->getEqualOrColonLoc(),
2000                                     DIE->usesGNUSyntax(), DIE->getInit());
2001 }
2002 
2003 namespace {
2004 
2005 // Callback to only accept typo corrections that are for field members of
2006 // the given struct or union.
2007 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2008  public:
2009   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2010       : Record(RD) {}
2011 
2012   bool ValidateCandidate(const TypoCorrection &candidate) override {
2013     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2014     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2015   }
2016 
2017  private:
2018   RecordDecl *Record;
2019 };
2020 
2021 } // end anonymous namespace
2022 
2023 /// @brief Check the well-formedness of a C99 designated initializer.
2024 ///
2025 /// Determines whether the designated initializer @p DIE, which
2026 /// resides at the given @p Index within the initializer list @p
2027 /// IList, is well-formed for a current object of type @p DeclType
2028 /// (C99 6.7.8). The actual subobject that this designator refers to
2029 /// within the current subobject is returned in either
2030 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2031 ///
2032 /// @param IList  The initializer list in which this designated
2033 /// initializer occurs.
2034 ///
2035 /// @param DIE The designated initializer expression.
2036 ///
2037 /// @param DesigIdx  The index of the current designator.
2038 ///
2039 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2040 /// into which the designation in @p DIE should refer.
2041 ///
2042 /// @param NextField  If non-NULL and the first designator in @p DIE is
2043 /// a field, this will be set to the field declaration corresponding
2044 /// to the field named by the designator.
2045 ///
2046 /// @param NextElementIndex  If non-NULL and the first designator in @p
2047 /// DIE is an array designator or GNU array-range designator, this
2048 /// will be set to the last index initialized by this designator.
2049 ///
2050 /// @param Index  Index into @p IList where the designated initializer
2051 /// @p DIE occurs.
2052 ///
2053 /// @param StructuredList  The initializer list expression that
2054 /// describes all of the subobject initializers in the order they'll
2055 /// actually be initialized.
2056 ///
2057 /// @returns true if there was an error, false otherwise.
2058 bool
2059 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2060                                             InitListExpr *IList,
2061                                             DesignatedInitExpr *DIE,
2062                                             unsigned DesigIdx,
2063                                             QualType &CurrentObjectType,
2064                                           RecordDecl::field_iterator *NextField,
2065                                             llvm::APSInt *NextElementIndex,
2066                                             unsigned &Index,
2067                                             InitListExpr *StructuredList,
2068                                             unsigned &StructuredIndex,
2069                                             bool FinishSubobjectInit,
2070                                             bool TopLevelObject) {
2071   if (DesigIdx == DIE->size()) {
2072     // Check the actual initialization for the designated object type.
2073     bool prevHadError = hadError;
2074 
2075     // Temporarily remove the designator expression from the
2076     // initializer list that the child calls see, so that we don't try
2077     // to re-process the designator.
2078     unsigned OldIndex = Index;
2079     IList->setInit(OldIndex, DIE->getInit());
2080 
2081     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2082                         StructuredList, StructuredIndex);
2083 
2084     // Restore the designated initializer expression in the syntactic
2085     // form of the initializer list.
2086     if (IList->getInit(OldIndex) != DIE->getInit())
2087       DIE->setInit(IList->getInit(OldIndex));
2088     IList->setInit(OldIndex, DIE);
2089 
2090     return hadError && !prevHadError;
2091   }
2092 
2093   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2094   bool IsFirstDesignator = (DesigIdx == 0);
2095   if (!VerifyOnly) {
2096     assert((IsFirstDesignator || StructuredList) &&
2097            "Need a non-designated initializer list to start from");
2098 
2099     // Determine the structural initializer list that corresponds to the
2100     // current subobject.
2101     if (IsFirstDesignator)
2102       StructuredList = SyntacticToSemantic.lookup(IList);
2103     else {
2104       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2105           StructuredList->getInit(StructuredIndex) : nullptr;
2106       if (!ExistingInit && StructuredList->hasArrayFiller())
2107         ExistingInit = StructuredList->getArrayFiller();
2108 
2109       if (!ExistingInit)
2110         StructuredList =
2111           getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2112                                      StructuredList, StructuredIndex,
2113                                      SourceRange(D->getLocStart(),
2114                                                  DIE->getLocEnd()));
2115       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2116         StructuredList = Result;
2117       else {
2118         if (DesignatedInitUpdateExpr *E =
2119                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2120           StructuredList = E->getUpdater();
2121         else {
2122           DesignatedInitUpdateExpr *DIUE =
2123               new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2124                                         D->getLocStart(), ExistingInit,
2125                                         DIE->getLocEnd());
2126           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2127           StructuredList = DIUE->getUpdater();
2128         }
2129 
2130         // We need to check on source range validity because the previous
2131         // initializer does not have to be an explicit initializer. e.g.,
2132         //
2133         // struct P { int a, b; };
2134         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2135         //
2136         // There is an overwrite taking place because the first braced initializer
2137         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2138         if (ExistingInit->getSourceRange().isValid()) {
2139           // We are creating an initializer list that initializes the
2140           // subobjects of the current object, but there was already an
2141           // initialization that completely initialized the current
2142           // subobject, e.g., by a compound literal:
2143           //
2144           // struct X { int a, b; };
2145           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2146           //
2147           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2148           // designated initializer re-initializes the whole
2149           // subobject [0], overwriting previous initializers.
2150           SemaRef.Diag(D->getLocStart(),
2151                        diag::warn_subobject_initializer_overrides)
2152             << SourceRange(D->getLocStart(), DIE->getLocEnd());
2153 
2154           SemaRef.Diag(ExistingInit->getLocStart(),
2155                        diag::note_previous_initializer)
2156             << /*FIXME:has side effects=*/0
2157             << ExistingInit->getSourceRange();
2158         }
2159       }
2160     }
2161     assert(StructuredList && "Expected a structured initializer list");
2162   }
2163 
2164   if (D->isFieldDesignator()) {
2165     // C99 6.7.8p7:
2166     //
2167     //   If a designator has the form
2168     //
2169     //      . identifier
2170     //
2171     //   then the current object (defined below) shall have
2172     //   structure or union type and the identifier shall be the
2173     //   name of a member of that type.
2174     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2175     if (!RT) {
2176       SourceLocation Loc = D->getDotLoc();
2177       if (Loc.isInvalid())
2178         Loc = D->getFieldLoc();
2179       if (!VerifyOnly)
2180         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2181           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2182       ++Index;
2183       return true;
2184     }
2185 
2186     FieldDecl *KnownField = D->getField();
2187     if (!KnownField) {
2188       IdentifierInfo *FieldName = D->getFieldName();
2189       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2190       for (NamedDecl *ND : Lookup) {
2191         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2192           KnownField = FD;
2193           break;
2194         }
2195         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2196           // In verify mode, don't modify the original.
2197           if (VerifyOnly)
2198             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2199           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2200           D = DIE->getDesignator(DesigIdx);
2201           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2202           break;
2203         }
2204       }
2205       if (!KnownField) {
2206         if (VerifyOnly) {
2207           ++Index;
2208           return true;  // No typo correction when just trying this out.
2209         }
2210 
2211         // Name lookup found something, but it wasn't a field.
2212         if (!Lookup.empty()) {
2213           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2214             << FieldName;
2215           SemaRef.Diag(Lookup.front()->getLocation(),
2216                        diag::note_field_designator_found);
2217           ++Index;
2218           return true;
2219         }
2220 
2221         // Name lookup didn't find anything.
2222         // Determine whether this was a typo for another field name.
2223         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2224                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2225                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2226                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2227                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2228           SemaRef.diagnoseTypo(
2229               Corrected,
2230               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2231                 << FieldName << CurrentObjectType);
2232           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2233           hadError = true;
2234         } else {
2235           // Typo correction didn't find anything.
2236           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2237             << FieldName << CurrentObjectType;
2238           ++Index;
2239           return true;
2240         }
2241       }
2242     }
2243 
2244     unsigned FieldIndex = 0;
2245 
2246     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2247       FieldIndex = CXXRD->getNumBases();
2248 
2249     for (auto *FI : RT->getDecl()->fields()) {
2250       if (FI->isUnnamedBitfield())
2251         continue;
2252       if (declaresSameEntity(KnownField, FI)) {
2253         KnownField = FI;
2254         break;
2255       }
2256       ++FieldIndex;
2257     }
2258 
2259     RecordDecl::field_iterator Field =
2260         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2261 
2262     // All of the fields of a union are located at the same place in
2263     // the initializer list.
2264     if (RT->getDecl()->isUnion()) {
2265       FieldIndex = 0;
2266       if (!VerifyOnly) {
2267         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2268         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2269           assert(StructuredList->getNumInits() == 1
2270                  && "A union should never have more than one initializer!");
2271 
2272           // We're about to throw away an initializer, emit warning.
2273           SemaRef.Diag(D->getFieldLoc(),
2274                        diag::warn_initializer_overrides)
2275             << D->getSourceRange();
2276           Expr *ExistingInit = StructuredList->getInit(0);
2277           SemaRef.Diag(ExistingInit->getLocStart(),
2278                        diag::note_previous_initializer)
2279             << /*FIXME:has side effects=*/0
2280             << ExistingInit->getSourceRange();
2281 
2282           // remove existing initializer
2283           StructuredList->resizeInits(SemaRef.Context, 0);
2284           StructuredList->setInitializedFieldInUnion(nullptr);
2285         }
2286 
2287         StructuredList->setInitializedFieldInUnion(*Field);
2288       }
2289     }
2290 
2291     // Make sure we can use this declaration.
2292     bool InvalidUse;
2293     if (VerifyOnly)
2294       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2295     else
2296       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2297     if (InvalidUse) {
2298       ++Index;
2299       return true;
2300     }
2301 
2302     if (!VerifyOnly) {
2303       // Update the designator with the field declaration.
2304       D->setField(*Field);
2305 
2306       // Make sure that our non-designated initializer list has space
2307       // for a subobject corresponding to this field.
2308       if (FieldIndex >= StructuredList->getNumInits())
2309         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2310     }
2311 
2312     // This designator names a flexible array member.
2313     if (Field->getType()->isIncompleteArrayType()) {
2314       bool Invalid = false;
2315       if ((DesigIdx + 1) != DIE->size()) {
2316         // We can't designate an object within the flexible array
2317         // member (because GCC doesn't allow it).
2318         if (!VerifyOnly) {
2319           DesignatedInitExpr::Designator *NextD
2320             = DIE->getDesignator(DesigIdx + 1);
2321           SemaRef.Diag(NextD->getLocStart(),
2322                         diag::err_designator_into_flexible_array_member)
2323             << SourceRange(NextD->getLocStart(),
2324                            DIE->getLocEnd());
2325           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2326             << *Field;
2327         }
2328         Invalid = true;
2329       }
2330 
2331       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2332           !isa<StringLiteral>(DIE->getInit())) {
2333         // The initializer is not an initializer list.
2334         if (!VerifyOnly) {
2335           SemaRef.Diag(DIE->getInit()->getLocStart(),
2336                         diag::err_flexible_array_init_needs_braces)
2337             << DIE->getInit()->getSourceRange();
2338           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2339             << *Field;
2340         }
2341         Invalid = true;
2342       }
2343 
2344       // Check GNU flexible array initializer.
2345       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2346                                              TopLevelObject))
2347         Invalid = true;
2348 
2349       if (Invalid) {
2350         ++Index;
2351         return true;
2352       }
2353 
2354       // Initialize the array.
2355       bool prevHadError = hadError;
2356       unsigned newStructuredIndex = FieldIndex;
2357       unsigned OldIndex = Index;
2358       IList->setInit(Index, DIE->getInit());
2359 
2360       InitializedEntity MemberEntity =
2361         InitializedEntity::InitializeMember(*Field, &Entity);
2362       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2363                           StructuredList, newStructuredIndex);
2364 
2365       IList->setInit(OldIndex, DIE);
2366       if (hadError && !prevHadError) {
2367         ++Field;
2368         ++FieldIndex;
2369         if (NextField)
2370           *NextField = Field;
2371         StructuredIndex = FieldIndex;
2372         return true;
2373       }
2374     } else {
2375       // Recurse to check later designated subobjects.
2376       QualType FieldType = Field->getType();
2377       unsigned newStructuredIndex = FieldIndex;
2378 
2379       InitializedEntity MemberEntity =
2380         InitializedEntity::InitializeMember(*Field, &Entity);
2381       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2382                                      FieldType, nullptr, nullptr, Index,
2383                                      StructuredList, newStructuredIndex,
2384                                      FinishSubobjectInit, false))
2385         return true;
2386     }
2387 
2388     // Find the position of the next field to be initialized in this
2389     // subobject.
2390     ++Field;
2391     ++FieldIndex;
2392 
2393     // If this the first designator, our caller will continue checking
2394     // the rest of this struct/class/union subobject.
2395     if (IsFirstDesignator) {
2396       if (NextField)
2397         *NextField = Field;
2398       StructuredIndex = FieldIndex;
2399       return false;
2400     }
2401 
2402     if (!FinishSubobjectInit)
2403       return false;
2404 
2405     // We've already initialized something in the union; we're done.
2406     if (RT->getDecl()->isUnion())
2407       return hadError;
2408 
2409     // Check the remaining fields within this class/struct/union subobject.
2410     bool prevHadError = hadError;
2411 
2412     auto NoBases =
2413         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2414                                         CXXRecordDecl::base_class_iterator());
2415     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2416                           false, Index, StructuredList, FieldIndex);
2417     return hadError && !prevHadError;
2418   }
2419 
2420   // C99 6.7.8p6:
2421   //
2422   //   If a designator has the form
2423   //
2424   //      [ constant-expression ]
2425   //
2426   //   then the current object (defined below) shall have array
2427   //   type and the expression shall be an integer constant
2428   //   expression. If the array is of unknown size, any
2429   //   nonnegative value is valid.
2430   //
2431   // Additionally, cope with the GNU extension that permits
2432   // designators of the form
2433   //
2434   //      [ constant-expression ... constant-expression ]
2435   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2436   if (!AT) {
2437     if (!VerifyOnly)
2438       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2439         << CurrentObjectType;
2440     ++Index;
2441     return true;
2442   }
2443 
2444   Expr *IndexExpr = nullptr;
2445   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2446   if (D->isArrayDesignator()) {
2447     IndexExpr = DIE->getArrayIndex(*D);
2448     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2449     DesignatedEndIndex = DesignatedStartIndex;
2450   } else {
2451     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2452 
2453     DesignatedStartIndex =
2454       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2455     DesignatedEndIndex =
2456       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2457     IndexExpr = DIE->getArrayRangeEnd(*D);
2458 
2459     // Codegen can't handle evaluating array range designators that have side
2460     // effects, because we replicate the AST value for each initialized element.
2461     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2462     // elements with something that has a side effect, so codegen can emit an
2463     // "error unsupported" error instead of miscompiling the app.
2464     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2465         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2466       FullyStructuredList->sawArrayRangeDesignator();
2467   }
2468 
2469   if (isa<ConstantArrayType>(AT)) {
2470     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2471     DesignatedStartIndex
2472       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2473     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2474     DesignatedEndIndex
2475       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2476     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2477     if (DesignatedEndIndex >= MaxElements) {
2478       if (!VerifyOnly)
2479         SemaRef.Diag(IndexExpr->getLocStart(),
2480                       diag::err_array_designator_too_large)
2481           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2482           << IndexExpr->getSourceRange();
2483       ++Index;
2484       return true;
2485     }
2486   } else {
2487     unsigned DesignatedIndexBitWidth =
2488       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2489     DesignatedStartIndex =
2490       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2491     DesignatedEndIndex =
2492       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2493     DesignatedStartIndex.setIsUnsigned(true);
2494     DesignatedEndIndex.setIsUnsigned(true);
2495   }
2496 
2497   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2498     // We're modifying a string literal init; we have to decompose the string
2499     // so we can modify the individual characters.
2500     ASTContext &Context = SemaRef.Context;
2501     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2502 
2503     // Compute the character type
2504     QualType CharTy = AT->getElementType();
2505 
2506     // Compute the type of the integer literals.
2507     QualType PromotedCharTy = CharTy;
2508     if (CharTy->isPromotableIntegerType())
2509       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2510     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2511 
2512     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2513       // Get the length of the string.
2514       uint64_t StrLen = SL->getLength();
2515       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2516         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2517       StructuredList->resizeInits(Context, StrLen);
2518 
2519       // Build a literal for each character in the string, and put them into
2520       // the init list.
2521       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2522         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2523         Expr *Init = new (Context) IntegerLiteral(
2524             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2525         if (CharTy != PromotedCharTy)
2526           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2527                                           Init, nullptr, VK_RValue);
2528         StructuredList->updateInit(Context, i, Init);
2529       }
2530     } else {
2531       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2532       std::string Str;
2533       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2534 
2535       // Get the length of the string.
2536       uint64_t StrLen = Str.size();
2537       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2538         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2539       StructuredList->resizeInits(Context, StrLen);
2540 
2541       // Build a literal for each character in the string, and put them into
2542       // the init list.
2543       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2544         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2545         Expr *Init = new (Context) IntegerLiteral(
2546             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2547         if (CharTy != PromotedCharTy)
2548           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2549                                           Init, nullptr, VK_RValue);
2550         StructuredList->updateInit(Context, i, Init);
2551       }
2552     }
2553   }
2554 
2555   // Make sure that our non-designated initializer list has space
2556   // for a subobject corresponding to this array element.
2557   if (!VerifyOnly &&
2558       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2559     StructuredList->resizeInits(SemaRef.Context,
2560                                 DesignatedEndIndex.getZExtValue() + 1);
2561 
2562   // Repeatedly perform subobject initializations in the range
2563   // [DesignatedStartIndex, DesignatedEndIndex].
2564 
2565   // Move to the next designator
2566   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2567   unsigned OldIndex = Index;
2568 
2569   InitializedEntity ElementEntity =
2570     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2571 
2572   while (DesignatedStartIndex <= DesignatedEndIndex) {
2573     // Recurse to check later designated subobjects.
2574     QualType ElementType = AT->getElementType();
2575     Index = OldIndex;
2576 
2577     ElementEntity.setElementIndex(ElementIndex);
2578     if (CheckDesignatedInitializer(
2579             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2580             nullptr, Index, StructuredList, ElementIndex,
2581             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2582             false))
2583       return true;
2584 
2585     // Move to the next index in the array that we'll be initializing.
2586     ++DesignatedStartIndex;
2587     ElementIndex = DesignatedStartIndex.getZExtValue();
2588   }
2589 
2590   // If this the first designator, our caller will continue checking
2591   // the rest of this array subobject.
2592   if (IsFirstDesignator) {
2593     if (NextElementIndex)
2594       *NextElementIndex = DesignatedStartIndex;
2595     StructuredIndex = ElementIndex;
2596     return false;
2597   }
2598 
2599   if (!FinishSubobjectInit)
2600     return false;
2601 
2602   // Check the remaining elements within this array subobject.
2603   bool prevHadError = hadError;
2604   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2605                  /*SubobjectIsDesignatorContext=*/false, Index,
2606                  StructuredList, ElementIndex);
2607   return hadError && !prevHadError;
2608 }
2609 
2610 // Get the structured initializer list for a subobject of type
2611 // @p CurrentObjectType.
2612 InitListExpr *
2613 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2614                                             QualType CurrentObjectType,
2615                                             InitListExpr *StructuredList,
2616                                             unsigned StructuredIndex,
2617                                             SourceRange InitRange,
2618                                             bool IsFullyOverwritten) {
2619   if (VerifyOnly)
2620     return nullptr; // No structured list in verification-only mode.
2621   Expr *ExistingInit = nullptr;
2622   if (!StructuredList)
2623     ExistingInit = SyntacticToSemantic.lookup(IList);
2624   else if (StructuredIndex < StructuredList->getNumInits())
2625     ExistingInit = StructuredList->getInit(StructuredIndex);
2626 
2627   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2628     // There might have already been initializers for subobjects of the current
2629     // object, but a subsequent initializer list will overwrite the entirety
2630     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2631     //
2632     // struct P { char x[6]; };
2633     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2634     //
2635     // The first designated initializer is ignored, and l.x is just "f".
2636     if (!IsFullyOverwritten)
2637       return Result;
2638 
2639   if (ExistingInit) {
2640     // We are creating an initializer list that initializes the
2641     // subobjects of the current object, but there was already an
2642     // initialization that completely initialized the current
2643     // subobject, e.g., by a compound literal:
2644     //
2645     // struct X { int a, b; };
2646     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2647     //
2648     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2649     // designated initializer re-initializes the whole
2650     // subobject [0], overwriting previous initializers.
2651     SemaRef.Diag(InitRange.getBegin(),
2652                  diag::warn_subobject_initializer_overrides)
2653       << InitRange;
2654     SemaRef.Diag(ExistingInit->getLocStart(),
2655                   diag::note_previous_initializer)
2656       << /*FIXME:has side effects=*/0
2657       << ExistingInit->getSourceRange();
2658   }
2659 
2660   InitListExpr *Result
2661     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2662                                          InitRange.getBegin(), None,
2663                                          InitRange.getEnd());
2664 
2665   QualType ResultType = CurrentObjectType;
2666   if (!ResultType->isArrayType())
2667     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2668   Result->setType(ResultType);
2669 
2670   // Pre-allocate storage for the structured initializer list.
2671   unsigned NumElements = 0;
2672   unsigned NumInits = 0;
2673   bool GotNumInits = false;
2674   if (!StructuredList) {
2675     NumInits = IList->getNumInits();
2676     GotNumInits = true;
2677   } else if (Index < IList->getNumInits()) {
2678     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2679       NumInits = SubList->getNumInits();
2680       GotNumInits = true;
2681     }
2682   }
2683 
2684   if (const ArrayType *AType
2685       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2686     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2687       NumElements = CAType->getSize().getZExtValue();
2688       // Simple heuristic so that we don't allocate a very large
2689       // initializer with many empty entries at the end.
2690       if (GotNumInits && NumElements > NumInits)
2691         NumElements = 0;
2692     }
2693   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2694     NumElements = VType->getNumElements();
2695   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2696     RecordDecl *RDecl = RType->getDecl();
2697     if (RDecl->isUnion())
2698       NumElements = 1;
2699     else
2700       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2701   }
2702 
2703   Result->reserveInits(SemaRef.Context, NumElements);
2704 
2705   // Link this new initializer list into the structured initializer
2706   // lists.
2707   if (StructuredList)
2708     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2709   else {
2710     Result->setSyntacticForm(IList);
2711     SyntacticToSemantic[IList] = Result;
2712   }
2713 
2714   return Result;
2715 }
2716 
2717 /// Update the initializer at index @p StructuredIndex within the
2718 /// structured initializer list to the value @p expr.
2719 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2720                                                   unsigned &StructuredIndex,
2721                                                   Expr *expr) {
2722   // No structured initializer list to update
2723   if (!StructuredList)
2724     return;
2725 
2726   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2727                                                   StructuredIndex, expr)) {
2728     // This initializer overwrites a previous initializer. Warn.
2729     // We need to check on source range validity because the previous
2730     // initializer does not have to be an explicit initializer.
2731     // struct P { int a, b; };
2732     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2733     // There is an overwrite taking place because the first braced initializer
2734     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2735     if (PrevInit->getSourceRange().isValid()) {
2736       SemaRef.Diag(expr->getLocStart(),
2737                    diag::warn_initializer_overrides)
2738         << expr->getSourceRange();
2739 
2740       SemaRef.Diag(PrevInit->getLocStart(),
2741                    diag::note_previous_initializer)
2742         << /*FIXME:has side effects=*/0
2743         << PrevInit->getSourceRange();
2744     }
2745   }
2746 
2747   ++StructuredIndex;
2748 }
2749 
2750 /// Check that the given Index expression is a valid array designator
2751 /// value. This is essentially just a wrapper around
2752 /// VerifyIntegerConstantExpression that also checks for negative values
2753 /// and produces a reasonable diagnostic if there is a
2754 /// failure. Returns the index expression, possibly with an implicit cast
2755 /// added, on success.  If everything went okay, Value will receive the
2756 /// value of the constant expression.
2757 static ExprResult
2758 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2759   SourceLocation Loc = Index->getLocStart();
2760 
2761   // Make sure this is an integer constant expression.
2762   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2763   if (Result.isInvalid())
2764     return Result;
2765 
2766   if (Value.isSigned() && Value.isNegative())
2767     return S.Diag(Loc, diag::err_array_designator_negative)
2768       << Value.toString(10) << Index->getSourceRange();
2769 
2770   Value.setIsUnsigned(true);
2771   return Result;
2772 }
2773 
2774 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2775                                             SourceLocation Loc,
2776                                             bool GNUSyntax,
2777                                             ExprResult Init) {
2778   typedef DesignatedInitExpr::Designator ASTDesignator;
2779 
2780   bool Invalid = false;
2781   SmallVector<ASTDesignator, 32> Designators;
2782   SmallVector<Expr *, 32> InitExpressions;
2783 
2784   // Build designators and check array designator expressions.
2785   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2786     const Designator &D = Desig.getDesignator(Idx);
2787     switch (D.getKind()) {
2788     case Designator::FieldDesignator:
2789       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2790                                           D.getFieldLoc()));
2791       break;
2792 
2793     case Designator::ArrayDesignator: {
2794       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2795       llvm::APSInt IndexValue;
2796       if (!Index->isTypeDependent() && !Index->isValueDependent())
2797         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2798       if (!Index)
2799         Invalid = true;
2800       else {
2801         Designators.push_back(ASTDesignator(InitExpressions.size(),
2802                                             D.getLBracketLoc(),
2803                                             D.getRBracketLoc()));
2804         InitExpressions.push_back(Index);
2805       }
2806       break;
2807     }
2808 
2809     case Designator::ArrayRangeDesignator: {
2810       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2811       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2812       llvm::APSInt StartValue;
2813       llvm::APSInt EndValue;
2814       bool StartDependent = StartIndex->isTypeDependent() ||
2815                             StartIndex->isValueDependent();
2816       bool EndDependent = EndIndex->isTypeDependent() ||
2817                           EndIndex->isValueDependent();
2818       if (!StartDependent)
2819         StartIndex =
2820             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2821       if (!EndDependent)
2822         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2823 
2824       if (!StartIndex || !EndIndex)
2825         Invalid = true;
2826       else {
2827         // Make sure we're comparing values with the same bit width.
2828         if (StartDependent || EndDependent) {
2829           // Nothing to compute.
2830         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2831           EndValue = EndValue.extend(StartValue.getBitWidth());
2832         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2833           StartValue = StartValue.extend(EndValue.getBitWidth());
2834 
2835         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2836           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2837             << StartValue.toString(10) << EndValue.toString(10)
2838             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2839           Invalid = true;
2840         } else {
2841           Designators.push_back(ASTDesignator(InitExpressions.size(),
2842                                               D.getLBracketLoc(),
2843                                               D.getEllipsisLoc(),
2844                                               D.getRBracketLoc()));
2845           InitExpressions.push_back(StartIndex);
2846           InitExpressions.push_back(EndIndex);
2847         }
2848       }
2849       break;
2850     }
2851     }
2852   }
2853 
2854   if (Invalid || Init.isInvalid())
2855     return ExprError();
2856 
2857   // Clear out the expressions within the designation.
2858   Desig.ClearExprs(*this);
2859 
2860   DesignatedInitExpr *DIE
2861     = DesignatedInitExpr::Create(Context,
2862                                  Designators,
2863                                  InitExpressions, Loc, GNUSyntax,
2864                                  Init.getAs<Expr>());
2865 
2866   if (!getLangOpts().C99)
2867     Diag(DIE->getLocStart(), diag::ext_designated_init)
2868       << DIE->getSourceRange();
2869 
2870   return DIE;
2871 }
2872 
2873 //===----------------------------------------------------------------------===//
2874 // Initialization entity
2875 //===----------------------------------------------------------------------===//
2876 
2877 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2878                                      const InitializedEntity &Parent)
2879   : Parent(&Parent), Index(Index)
2880 {
2881   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2882     Kind = EK_ArrayElement;
2883     Type = AT->getElementType();
2884   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2885     Kind = EK_VectorElement;
2886     Type = VT->getElementType();
2887   } else {
2888     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2889     assert(CT && "Unexpected type");
2890     Kind = EK_ComplexElement;
2891     Type = CT->getElementType();
2892   }
2893 }
2894 
2895 InitializedEntity
2896 InitializedEntity::InitializeBase(ASTContext &Context,
2897                                   const CXXBaseSpecifier *Base,
2898                                   bool IsInheritedVirtualBase,
2899                                   const InitializedEntity *Parent) {
2900   InitializedEntity Result;
2901   Result.Kind = EK_Base;
2902   Result.Parent = Parent;
2903   Result.Base = reinterpret_cast<uintptr_t>(Base);
2904   if (IsInheritedVirtualBase)
2905     Result.Base |= 0x01;
2906 
2907   Result.Type = Base->getType();
2908   return Result;
2909 }
2910 
2911 DeclarationName InitializedEntity::getName() const {
2912   switch (getKind()) {
2913   case EK_Parameter:
2914   case EK_Parameter_CF_Audited: {
2915     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2916     return (D ? D->getDeclName() : DeclarationName());
2917   }
2918 
2919   case EK_Variable:
2920   case EK_Member:
2921   case EK_Binding:
2922     return Variable.VariableOrMember->getDeclName();
2923 
2924   case EK_LambdaCapture:
2925     return DeclarationName(Capture.VarID);
2926 
2927   case EK_Result:
2928   case EK_Exception:
2929   case EK_New:
2930   case EK_Temporary:
2931   case EK_Base:
2932   case EK_Delegating:
2933   case EK_ArrayElement:
2934   case EK_VectorElement:
2935   case EK_ComplexElement:
2936   case EK_BlockElement:
2937   case EK_CompoundLiteralInit:
2938   case EK_RelatedResult:
2939     return DeclarationName();
2940   }
2941 
2942   llvm_unreachable("Invalid EntityKind!");
2943 }
2944 
2945 ValueDecl *InitializedEntity::getDecl() const {
2946   switch (getKind()) {
2947   case EK_Variable:
2948   case EK_Member:
2949   case EK_Binding:
2950     return Variable.VariableOrMember;
2951 
2952   case EK_Parameter:
2953   case EK_Parameter_CF_Audited:
2954     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2955 
2956   case EK_Result:
2957   case EK_Exception:
2958   case EK_New:
2959   case EK_Temporary:
2960   case EK_Base:
2961   case EK_Delegating:
2962   case EK_ArrayElement:
2963   case EK_VectorElement:
2964   case EK_ComplexElement:
2965   case EK_BlockElement:
2966   case EK_LambdaCapture:
2967   case EK_CompoundLiteralInit:
2968   case EK_RelatedResult:
2969     return nullptr;
2970   }
2971 
2972   llvm_unreachable("Invalid EntityKind!");
2973 }
2974 
2975 bool InitializedEntity::allowsNRVO() const {
2976   switch (getKind()) {
2977   case EK_Result:
2978   case EK_Exception:
2979     return LocAndNRVO.NRVO;
2980 
2981   case EK_Variable:
2982   case EK_Parameter:
2983   case EK_Parameter_CF_Audited:
2984   case EK_Member:
2985   case EK_Binding:
2986   case EK_New:
2987   case EK_Temporary:
2988   case EK_CompoundLiteralInit:
2989   case EK_Base:
2990   case EK_Delegating:
2991   case EK_ArrayElement:
2992   case EK_VectorElement:
2993   case EK_ComplexElement:
2994   case EK_BlockElement:
2995   case EK_LambdaCapture:
2996   case EK_RelatedResult:
2997     break;
2998   }
2999 
3000   return false;
3001 }
3002 
3003 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3004   assert(getParent() != this);
3005   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3006   for (unsigned I = 0; I != Depth; ++I)
3007     OS << "`-";
3008 
3009   switch (getKind()) {
3010   case EK_Variable: OS << "Variable"; break;
3011   case EK_Parameter: OS << "Parameter"; break;
3012   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3013     break;
3014   case EK_Result: OS << "Result"; break;
3015   case EK_Exception: OS << "Exception"; break;
3016   case EK_Member: OS << "Member"; break;
3017   case EK_Binding: OS << "Binding"; break;
3018   case EK_New: OS << "New"; break;
3019   case EK_Temporary: OS << "Temporary"; break;
3020   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3021   case EK_RelatedResult: OS << "RelatedResult"; break;
3022   case EK_Base: OS << "Base"; break;
3023   case EK_Delegating: OS << "Delegating"; break;
3024   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3025   case EK_VectorElement: OS << "VectorElement " << Index; break;
3026   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3027   case EK_BlockElement: OS << "Block"; break;
3028   case EK_LambdaCapture:
3029     OS << "LambdaCapture ";
3030     OS << DeclarationName(Capture.VarID);
3031     break;
3032   }
3033 
3034   if (auto *D = getDecl()) {
3035     OS << " ";
3036     D->printQualifiedName(OS);
3037   }
3038 
3039   OS << " '" << getType().getAsString() << "'\n";
3040 
3041   return Depth + 1;
3042 }
3043 
3044 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3045   dumpImpl(llvm::errs());
3046 }
3047 
3048 //===----------------------------------------------------------------------===//
3049 // Initialization sequence
3050 //===----------------------------------------------------------------------===//
3051 
3052 void InitializationSequence::Step::Destroy() {
3053   switch (Kind) {
3054   case SK_ResolveAddressOfOverloadedFunction:
3055   case SK_CastDerivedToBaseRValue:
3056   case SK_CastDerivedToBaseXValue:
3057   case SK_CastDerivedToBaseLValue:
3058   case SK_BindReference:
3059   case SK_BindReferenceToTemporary:
3060   case SK_FinalCopy:
3061   case SK_ExtraneousCopyToTemporary:
3062   case SK_UserConversion:
3063   case SK_QualificationConversionRValue:
3064   case SK_QualificationConversionXValue:
3065   case SK_QualificationConversionLValue:
3066   case SK_AtomicConversion:
3067   case SK_LValueToRValue:
3068   case SK_ListInitialization:
3069   case SK_UnwrapInitList:
3070   case SK_RewrapInitList:
3071   case SK_ConstructorInitialization:
3072   case SK_ConstructorInitializationFromList:
3073   case SK_ZeroInitialization:
3074   case SK_CAssignment:
3075   case SK_StringInit:
3076   case SK_ObjCObjectConversion:
3077   case SK_ArrayLoopIndex:
3078   case SK_ArrayLoopInit:
3079   case SK_ArrayInit:
3080   case SK_GNUArrayInit:
3081   case SK_ParenthesizedArrayInit:
3082   case SK_PassByIndirectCopyRestore:
3083   case SK_PassByIndirectRestore:
3084   case SK_ProduceObjCObject:
3085   case SK_StdInitializerList:
3086   case SK_StdInitializerListConstructorCall:
3087   case SK_OCLSamplerInit:
3088   case SK_OCLZeroEvent:
3089   case SK_OCLZeroQueue:
3090     break;
3091 
3092   case SK_ConversionSequence:
3093   case SK_ConversionSequenceNoNarrowing:
3094     delete ICS;
3095   }
3096 }
3097 
3098 bool InitializationSequence::isDirectReferenceBinding() const {
3099   // There can be some lvalue adjustments after the SK_BindReference step.
3100   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3101     if (I->Kind == SK_BindReference)
3102       return true;
3103     if (I->Kind == SK_BindReferenceToTemporary)
3104       return false;
3105   }
3106   return false;
3107 }
3108 
3109 bool InitializationSequence::isAmbiguous() const {
3110   if (!Failed())
3111     return false;
3112 
3113   switch (getFailureKind()) {
3114   case FK_TooManyInitsForReference:
3115   case FK_ArrayNeedsInitList:
3116   case FK_ArrayNeedsInitListOrStringLiteral:
3117   case FK_ArrayNeedsInitListOrWideStringLiteral:
3118   case FK_NarrowStringIntoWideCharArray:
3119   case FK_WideStringIntoCharArray:
3120   case FK_IncompatWideStringIntoWideChar:
3121   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3122   case FK_NonConstLValueReferenceBindingToTemporary:
3123   case FK_NonConstLValueReferenceBindingToBitfield:
3124   case FK_NonConstLValueReferenceBindingToVectorElement:
3125   case FK_NonConstLValueReferenceBindingToUnrelated:
3126   case FK_RValueReferenceBindingToLValue:
3127   case FK_ReferenceInitDropsQualifiers:
3128   case FK_ReferenceInitFailed:
3129   case FK_ConversionFailed:
3130   case FK_ConversionFromPropertyFailed:
3131   case FK_TooManyInitsForScalar:
3132   case FK_ReferenceBindingToInitList:
3133   case FK_InitListBadDestinationType:
3134   case FK_DefaultInitOfConst:
3135   case FK_Incomplete:
3136   case FK_ArrayTypeMismatch:
3137   case FK_NonConstantArrayInit:
3138   case FK_ListInitializationFailed:
3139   case FK_VariableLengthArrayHasInitializer:
3140   case FK_PlaceholderType:
3141   case FK_ExplicitConstructor:
3142   case FK_AddressOfUnaddressableFunction:
3143     return false;
3144 
3145   case FK_ReferenceInitOverloadFailed:
3146   case FK_UserConversionOverloadFailed:
3147   case FK_ConstructorOverloadFailed:
3148   case FK_ListConstructorOverloadFailed:
3149     return FailedOverloadResult == OR_Ambiguous;
3150   }
3151 
3152   llvm_unreachable("Invalid EntityKind!");
3153 }
3154 
3155 bool InitializationSequence::isConstructorInitialization() const {
3156   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3157 }
3158 
3159 void
3160 InitializationSequence
3161 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3162                                    DeclAccessPair Found,
3163                                    bool HadMultipleCandidates) {
3164   Step S;
3165   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3166   S.Type = Function->getType();
3167   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3168   S.Function.Function = Function;
3169   S.Function.FoundDecl = Found;
3170   Steps.push_back(S);
3171 }
3172 
3173 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3174                                                       ExprValueKind VK) {
3175   Step S;
3176   switch (VK) {
3177   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3178   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3179   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3180   }
3181   S.Type = BaseType;
3182   Steps.push_back(S);
3183 }
3184 
3185 void InitializationSequence::AddReferenceBindingStep(QualType T,
3186                                                      bool BindingTemporary) {
3187   Step S;
3188   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3189   S.Type = T;
3190   Steps.push_back(S);
3191 }
3192 
3193 void InitializationSequence::AddFinalCopy(QualType T) {
3194   Step S;
3195   S.Kind = SK_FinalCopy;
3196   S.Type = T;
3197   Steps.push_back(S);
3198 }
3199 
3200 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3201   Step S;
3202   S.Kind = SK_ExtraneousCopyToTemporary;
3203   S.Type = T;
3204   Steps.push_back(S);
3205 }
3206 
3207 void
3208 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3209                                               DeclAccessPair FoundDecl,
3210                                               QualType T,
3211                                               bool HadMultipleCandidates) {
3212   Step S;
3213   S.Kind = SK_UserConversion;
3214   S.Type = T;
3215   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3216   S.Function.Function = Function;
3217   S.Function.FoundDecl = FoundDecl;
3218   Steps.push_back(S);
3219 }
3220 
3221 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3222                                                             ExprValueKind VK) {
3223   Step S;
3224   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3225   switch (VK) {
3226   case VK_RValue:
3227     S.Kind = SK_QualificationConversionRValue;
3228     break;
3229   case VK_XValue:
3230     S.Kind = SK_QualificationConversionXValue;
3231     break;
3232   case VK_LValue:
3233     S.Kind = SK_QualificationConversionLValue;
3234     break;
3235   }
3236   S.Type = Ty;
3237   Steps.push_back(S);
3238 }
3239 
3240 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3241   Step S;
3242   S.Kind = SK_AtomicConversion;
3243   S.Type = Ty;
3244   Steps.push_back(S);
3245 }
3246 
3247 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3248   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3249 
3250   Step S;
3251   S.Kind = SK_LValueToRValue;
3252   S.Type = Ty;
3253   Steps.push_back(S);
3254 }
3255 
3256 void InitializationSequence::AddConversionSequenceStep(
3257     const ImplicitConversionSequence &ICS, QualType T,
3258     bool TopLevelOfInitList) {
3259   Step S;
3260   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3261                               : SK_ConversionSequence;
3262   S.Type = T;
3263   S.ICS = new ImplicitConversionSequence(ICS);
3264   Steps.push_back(S);
3265 }
3266 
3267 void InitializationSequence::AddListInitializationStep(QualType T) {
3268   Step S;
3269   S.Kind = SK_ListInitialization;
3270   S.Type = T;
3271   Steps.push_back(S);
3272 }
3273 
3274 void InitializationSequence::AddConstructorInitializationStep(
3275     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3276     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3277   Step S;
3278   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3279                                      : SK_ConstructorInitializationFromList
3280                         : SK_ConstructorInitialization;
3281   S.Type = T;
3282   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3283   S.Function.Function = Constructor;
3284   S.Function.FoundDecl = FoundDecl;
3285   Steps.push_back(S);
3286 }
3287 
3288 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3289   Step S;
3290   S.Kind = SK_ZeroInitialization;
3291   S.Type = T;
3292   Steps.push_back(S);
3293 }
3294 
3295 void InitializationSequence::AddCAssignmentStep(QualType T) {
3296   Step S;
3297   S.Kind = SK_CAssignment;
3298   S.Type = T;
3299   Steps.push_back(S);
3300 }
3301 
3302 void InitializationSequence::AddStringInitStep(QualType T) {
3303   Step S;
3304   S.Kind = SK_StringInit;
3305   S.Type = T;
3306   Steps.push_back(S);
3307 }
3308 
3309 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3310   Step S;
3311   S.Kind = SK_ObjCObjectConversion;
3312   S.Type = T;
3313   Steps.push_back(S);
3314 }
3315 
3316 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3317   Step S;
3318   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3319   S.Type = T;
3320   Steps.push_back(S);
3321 }
3322 
3323 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3324   Step S;
3325   S.Kind = SK_ArrayLoopIndex;
3326   S.Type = EltT;
3327   Steps.insert(Steps.begin(), S);
3328 
3329   S.Kind = SK_ArrayLoopInit;
3330   S.Type = T;
3331   Steps.push_back(S);
3332 }
3333 
3334 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3335   Step S;
3336   S.Kind = SK_ParenthesizedArrayInit;
3337   S.Type = T;
3338   Steps.push_back(S);
3339 }
3340 
3341 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3342                                                               bool shouldCopy) {
3343   Step s;
3344   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3345                        : SK_PassByIndirectRestore);
3346   s.Type = type;
3347   Steps.push_back(s);
3348 }
3349 
3350 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3351   Step S;
3352   S.Kind = SK_ProduceObjCObject;
3353   S.Type = T;
3354   Steps.push_back(S);
3355 }
3356 
3357 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3358   Step S;
3359   S.Kind = SK_StdInitializerList;
3360   S.Type = T;
3361   Steps.push_back(S);
3362 }
3363 
3364 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3365   Step S;
3366   S.Kind = SK_OCLSamplerInit;
3367   S.Type = T;
3368   Steps.push_back(S);
3369 }
3370 
3371 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3372   Step S;
3373   S.Kind = SK_OCLZeroEvent;
3374   S.Type = T;
3375   Steps.push_back(S);
3376 }
3377 
3378 void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3379   Step S;
3380   S.Kind = SK_OCLZeroQueue;
3381   S.Type = T;
3382   Steps.push_back(S);
3383 }
3384 
3385 void InitializationSequence::RewrapReferenceInitList(QualType T,
3386                                                      InitListExpr *Syntactic) {
3387   assert(Syntactic->getNumInits() == 1 &&
3388          "Can only rewrap trivial init lists.");
3389   Step S;
3390   S.Kind = SK_UnwrapInitList;
3391   S.Type = Syntactic->getInit(0)->getType();
3392   Steps.insert(Steps.begin(), S);
3393 
3394   S.Kind = SK_RewrapInitList;
3395   S.Type = T;
3396   S.WrappingSyntacticList = Syntactic;
3397   Steps.push_back(S);
3398 }
3399 
3400 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3401                                                 OverloadingResult Result) {
3402   setSequenceKind(FailedSequence);
3403   this->Failure = Failure;
3404   this->FailedOverloadResult = Result;
3405 }
3406 
3407 //===----------------------------------------------------------------------===//
3408 // Attempt initialization
3409 //===----------------------------------------------------------------------===//
3410 
3411 /// Tries to add a zero initializer. Returns true if that worked.
3412 static bool
3413 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3414                                    const InitializedEntity &Entity) {
3415   if (Entity.getKind() != InitializedEntity::EK_Variable)
3416     return false;
3417 
3418   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3419   if (VD->getInit() || VD->getLocEnd().isMacroID())
3420     return false;
3421 
3422   QualType VariableTy = VD->getType().getCanonicalType();
3423   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3424   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3425   if (!Init.empty()) {
3426     Sequence.AddZeroInitializationStep(Entity.getType());
3427     Sequence.SetZeroInitializationFixit(Init, Loc);
3428     return true;
3429   }
3430   return false;
3431 }
3432 
3433 static void MaybeProduceObjCObject(Sema &S,
3434                                    InitializationSequence &Sequence,
3435                                    const InitializedEntity &Entity) {
3436   if (!S.getLangOpts().ObjCAutoRefCount) return;
3437 
3438   /// When initializing a parameter, produce the value if it's marked
3439   /// __attribute__((ns_consumed)).
3440   if (Entity.isParameterKind()) {
3441     if (!Entity.isParameterConsumed())
3442       return;
3443 
3444     assert(Entity.getType()->isObjCRetainableType() &&
3445            "consuming an object of unretainable type?");
3446     Sequence.AddProduceObjCObjectStep(Entity.getType());
3447 
3448   /// When initializing a return value, if the return type is a
3449   /// retainable type, then returns need to immediately retain the
3450   /// object.  If an autorelease is required, it will be done at the
3451   /// last instant.
3452   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3453     if (!Entity.getType()->isObjCRetainableType())
3454       return;
3455 
3456     Sequence.AddProduceObjCObjectStep(Entity.getType());
3457   }
3458 }
3459 
3460 static void TryListInitialization(Sema &S,
3461                                   const InitializedEntity &Entity,
3462                                   const InitializationKind &Kind,
3463                                   InitListExpr *InitList,
3464                                   InitializationSequence &Sequence,
3465                                   bool TreatUnavailableAsInvalid);
3466 
3467 /// \brief When initializing from init list via constructor, handle
3468 /// initialization of an object of type std::initializer_list<T>.
3469 ///
3470 /// \return true if we have handled initialization of an object of type
3471 /// std::initializer_list<T>, false otherwise.
3472 static bool TryInitializerListConstruction(Sema &S,
3473                                            InitListExpr *List,
3474                                            QualType DestType,
3475                                            InitializationSequence &Sequence,
3476                                            bool TreatUnavailableAsInvalid) {
3477   QualType E;
3478   if (!S.isStdInitializerList(DestType, &E))
3479     return false;
3480 
3481   if (!S.isCompleteType(List->getExprLoc(), E)) {
3482     Sequence.setIncompleteTypeFailure(E);
3483     return true;
3484   }
3485 
3486   // Try initializing a temporary array from the init list.
3487   QualType ArrayType = S.Context.getConstantArrayType(
3488       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3489                                  List->getNumInits()),
3490       clang::ArrayType::Normal, 0);
3491   InitializedEntity HiddenArray =
3492       InitializedEntity::InitializeTemporary(ArrayType);
3493   InitializationKind Kind =
3494       InitializationKind::CreateDirectList(List->getExprLoc());
3495   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3496                         TreatUnavailableAsInvalid);
3497   if (Sequence)
3498     Sequence.AddStdInitializerListConstructionStep(DestType);
3499   return true;
3500 }
3501 
3502 /// Determine if the constructor has the signature of a copy or move
3503 /// constructor for the type T of the class in which it was found. That is,
3504 /// determine if its first parameter is of type T or reference to (possibly
3505 /// cv-qualified) T.
3506 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3507                                    const ConstructorInfo &Info) {
3508   if (Info.Constructor->getNumParams() == 0)
3509     return false;
3510 
3511   QualType ParmT =
3512       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3513   QualType ClassT =
3514       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3515 
3516   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3517 }
3518 
3519 static OverloadingResult
3520 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3521                            MultiExprArg Args,
3522                            OverloadCandidateSet &CandidateSet,
3523                            DeclContext::lookup_result Ctors,
3524                            OverloadCandidateSet::iterator &Best,
3525                            bool CopyInitializing, bool AllowExplicit,
3526                            bool OnlyListConstructors, bool IsListInit,
3527                            bool SecondStepOfCopyInit = false) {
3528   CandidateSet.clear();
3529 
3530   for (NamedDecl *D : Ctors) {
3531     auto Info = getConstructorInfo(D);
3532     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3533       continue;
3534 
3535     if (!AllowExplicit && Info.Constructor->isExplicit())
3536       continue;
3537 
3538     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3539       continue;
3540 
3541     // C++11 [over.best.ics]p4:
3542     //   ... and the constructor or user-defined conversion function is a
3543     //   candidate by
3544     //   - 13.3.1.3, when the argument is the temporary in the second step
3545     //     of a class copy-initialization, or
3546     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3547     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3548     //     one element that is itself an initializer list, and the target is
3549     //     the first parameter of a constructor of class X, and the conversion
3550     //     is to X or reference to (possibly cv-qualified X),
3551     //   user-defined conversion sequences are not considered.
3552     bool SuppressUserConversions =
3553         SecondStepOfCopyInit ||
3554         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3555          hasCopyOrMoveCtorParam(S.Context, Info));
3556 
3557     if (Info.ConstructorTmpl)
3558       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3559                                      /*ExplicitArgs*/ nullptr, Args,
3560                                      CandidateSet, SuppressUserConversions);
3561     else {
3562       // C++ [over.match.copy]p1:
3563       //   - When initializing a temporary to be bound to the first parameter
3564       //     of a constructor [for type T] that takes a reference to possibly
3565       //     cv-qualified T as its first argument, called with a single
3566       //     argument in the context of direct-initialization, explicit
3567       //     conversion functions are also considered.
3568       // FIXME: What if a constructor template instantiates to such a signature?
3569       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3570                                Args.size() == 1 &&
3571                                hasCopyOrMoveCtorParam(S.Context, Info);
3572       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3573                              CandidateSet, SuppressUserConversions,
3574                              /*PartialOverloading=*/false,
3575                              /*AllowExplicit=*/AllowExplicitConv);
3576     }
3577   }
3578 
3579   // Perform overload resolution and return the result.
3580   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3581 }
3582 
3583 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3584 /// enumerates the constructors of the initialized entity and performs overload
3585 /// resolution to select the best.
3586 /// \param DestType       The destination class type.
3587 /// \param DestArrayType  The destination type, which is either DestType or
3588 ///                       a (possibly multidimensional) array of DestType.
3589 /// \param IsListInit     Is this list-initialization?
3590 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3591 ///                       list-initialization from {x} where x is the same
3592 ///                       type as the entity?
3593 static void TryConstructorInitialization(Sema &S,
3594                                          const InitializedEntity &Entity,
3595                                          const InitializationKind &Kind,
3596                                          MultiExprArg Args, QualType DestType,
3597                                          QualType DestArrayType,
3598                                          InitializationSequence &Sequence,
3599                                          bool IsListInit = false,
3600                                          bool IsInitListCopy = false) {
3601   assert(((!IsListInit && !IsInitListCopy) ||
3602           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3603          "IsListInit/IsInitListCopy must come with a single initializer list "
3604          "argument.");
3605   InitListExpr *ILE =
3606       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3607   MultiExprArg UnwrappedArgs =
3608       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3609 
3610   // The type we're constructing needs to be complete.
3611   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3612     Sequence.setIncompleteTypeFailure(DestType);
3613     return;
3614   }
3615 
3616   // C++1z [dcl.init]p17:
3617   //     - If the initializer expression is a prvalue and the cv-unqualified
3618   //       version of the source type is the same class as the class of the
3619   //       destination, the initializer expression is used to initialize the
3620   //       destination object.
3621   // Per DR (no number yet), this does not apply when initializing a base
3622   // class or delegating to another constructor from a mem-initializer.
3623   if (S.getLangOpts().CPlusPlus1z &&
3624       Entity.getKind() != InitializedEntity::EK_Base &&
3625       Entity.getKind() != InitializedEntity::EK_Delegating &&
3626       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3627       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3628     // Convert qualifications if necessary.
3629     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3630     if (ILE)
3631       Sequence.RewrapReferenceInitList(DestType, ILE);
3632     return;
3633   }
3634 
3635   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3636   assert(DestRecordType && "Constructor initialization requires record type");
3637   CXXRecordDecl *DestRecordDecl
3638     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3639 
3640   // Build the candidate set directly in the initialization sequence
3641   // structure, so that it will persist if we fail.
3642   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3643 
3644   // Determine whether we are allowed to call explicit constructors or
3645   // explicit conversion operators.
3646   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3647   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3648 
3649   //   - Otherwise, if T is a class type, constructors are considered. The
3650   //     applicable constructors are enumerated, and the best one is chosen
3651   //     through overload resolution.
3652   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3653 
3654   OverloadingResult Result = OR_No_Viable_Function;
3655   OverloadCandidateSet::iterator Best;
3656   bool AsInitializerList = false;
3657 
3658   // C++11 [over.match.list]p1, per DR1467:
3659   //   When objects of non-aggregate type T are list-initialized, such that
3660   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3661   //   according to the rules in this section, overload resolution selects
3662   //   the constructor in two phases:
3663   //
3664   //   - Initially, the candidate functions are the initializer-list
3665   //     constructors of the class T and the argument list consists of the
3666   //     initializer list as a single argument.
3667   if (IsListInit) {
3668     AsInitializerList = true;
3669 
3670     // If the initializer list has no elements and T has a default constructor,
3671     // the first phase is omitted.
3672     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3673       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3674                                           CandidateSet, Ctors, Best,
3675                                           CopyInitialization, AllowExplicit,
3676                                           /*OnlyListConstructor=*/true,
3677                                           IsListInit);
3678   }
3679 
3680   // C++11 [over.match.list]p1:
3681   //   - If no viable initializer-list constructor is found, overload resolution
3682   //     is performed again, where the candidate functions are all the
3683   //     constructors of the class T and the argument list consists of the
3684   //     elements of the initializer list.
3685   if (Result == OR_No_Viable_Function) {
3686     AsInitializerList = false;
3687     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3688                                         CandidateSet, Ctors, Best,
3689                                         CopyInitialization, AllowExplicit,
3690                                         /*OnlyListConstructors=*/false,
3691                                         IsListInit);
3692   }
3693   if (Result) {
3694     Sequence.SetOverloadFailure(IsListInit ?
3695                       InitializationSequence::FK_ListConstructorOverloadFailed :
3696                       InitializationSequence::FK_ConstructorOverloadFailed,
3697                                 Result);
3698     return;
3699   }
3700 
3701   // C++11 [dcl.init]p6:
3702   //   If a program calls for the default initialization of an object
3703   //   of a const-qualified type T, T shall be a class type with a
3704   //   user-provided default constructor.
3705   // C++ core issue 253 proposal:
3706   //   If the implicit default constructor initializes all subobjects, no
3707   //   initializer should be required.
3708   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3709   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3710   if (Kind.getKind() == InitializationKind::IK_Default &&
3711       Entity.getType().isConstQualified()) {
3712     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3713       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3714         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3715       return;
3716     }
3717   }
3718 
3719   // C++11 [over.match.list]p1:
3720   //   In copy-list-initialization, if an explicit constructor is chosen, the
3721   //   initializer is ill-formed.
3722   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3723     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3724     return;
3725   }
3726 
3727   // Add the constructor initialization step. Any cv-qualification conversion is
3728   // subsumed by the initialization.
3729   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3730   Sequence.AddConstructorInitializationStep(
3731       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3732       IsListInit | IsInitListCopy, AsInitializerList);
3733 }
3734 
3735 static bool
3736 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3737                                              Expr *Initializer,
3738                                              QualType &SourceType,
3739                                              QualType &UnqualifiedSourceType,
3740                                              QualType UnqualifiedTargetType,
3741                                              InitializationSequence &Sequence) {
3742   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3743         S.Context.OverloadTy) {
3744     DeclAccessPair Found;
3745     bool HadMultipleCandidates = false;
3746     if (FunctionDecl *Fn
3747         = S.ResolveAddressOfOverloadedFunction(Initializer,
3748                                                UnqualifiedTargetType,
3749                                                false, Found,
3750                                                &HadMultipleCandidates)) {
3751       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3752                                                 HadMultipleCandidates);
3753       SourceType = Fn->getType();
3754       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3755     } else if (!UnqualifiedTargetType->isRecordType()) {
3756       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3757       return true;
3758     }
3759   }
3760   return false;
3761 }
3762 
3763 static void TryReferenceInitializationCore(Sema &S,
3764                                            const InitializedEntity &Entity,
3765                                            const InitializationKind &Kind,
3766                                            Expr *Initializer,
3767                                            QualType cv1T1, QualType T1,
3768                                            Qualifiers T1Quals,
3769                                            QualType cv2T2, QualType T2,
3770                                            Qualifiers T2Quals,
3771                                            InitializationSequence &Sequence);
3772 
3773 static void TryValueInitialization(Sema &S,
3774                                    const InitializedEntity &Entity,
3775                                    const InitializationKind &Kind,
3776                                    InitializationSequence &Sequence,
3777                                    InitListExpr *InitList = nullptr);
3778 
3779 /// \brief Attempt list initialization of a reference.
3780 static void TryReferenceListInitialization(Sema &S,
3781                                            const InitializedEntity &Entity,
3782                                            const InitializationKind &Kind,
3783                                            InitListExpr *InitList,
3784                                            InitializationSequence &Sequence,
3785                                            bool TreatUnavailableAsInvalid) {
3786   // First, catch C++03 where this isn't possible.
3787   if (!S.getLangOpts().CPlusPlus11) {
3788     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3789     return;
3790   }
3791   // Can't reference initialize a compound literal.
3792   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3793     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3794     return;
3795   }
3796 
3797   QualType DestType = Entity.getType();
3798   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3799   Qualifiers T1Quals;
3800   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3801 
3802   // Reference initialization via an initializer list works thus:
3803   // If the initializer list consists of a single element that is
3804   // reference-related to the referenced type, bind directly to that element
3805   // (possibly creating temporaries).
3806   // Otherwise, initialize a temporary with the initializer list and
3807   // bind to that.
3808   if (InitList->getNumInits() == 1) {
3809     Expr *Initializer = InitList->getInit(0);
3810     QualType cv2T2 = Initializer->getType();
3811     Qualifiers T2Quals;
3812     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3813 
3814     // If this fails, creating a temporary wouldn't work either.
3815     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3816                                                      T1, Sequence))
3817       return;
3818 
3819     SourceLocation DeclLoc = Initializer->getLocStart();
3820     bool dummy1, dummy2, dummy3;
3821     Sema::ReferenceCompareResult RefRelationship
3822       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3823                                        dummy2, dummy3);
3824     if (RefRelationship >= Sema::Ref_Related) {
3825       // Try to bind the reference here.
3826       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3827                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3828       if (Sequence)
3829         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3830       return;
3831     }
3832 
3833     // Update the initializer if we've resolved an overloaded function.
3834     if (Sequence.step_begin() != Sequence.step_end())
3835       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3836   }
3837 
3838   // Not reference-related. Create a temporary and bind to that.
3839   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3840 
3841   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
3842                         TreatUnavailableAsInvalid);
3843   if (Sequence) {
3844     if (DestType->isRValueReferenceType() ||
3845         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3846       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3847     else
3848       Sequence.SetFailed(
3849           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3850   }
3851 }
3852 
3853 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3854 static void TryListInitialization(Sema &S,
3855                                   const InitializedEntity &Entity,
3856                                   const InitializationKind &Kind,
3857                                   InitListExpr *InitList,
3858                                   InitializationSequence &Sequence,
3859                                   bool TreatUnavailableAsInvalid) {
3860   QualType DestType = Entity.getType();
3861 
3862   // C++ doesn't allow scalar initialization with more than one argument.
3863   // But C99 complex numbers are scalars and it makes sense there.
3864   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3865       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3866     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3867     return;
3868   }
3869   if (DestType->isReferenceType()) {
3870     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
3871                                    TreatUnavailableAsInvalid);
3872     return;
3873   }
3874 
3875   if (DestType->isRecordType() &&
3876       !S.isCompleteType(InitList->getLocStart(), DestType)) {
3877     Sequence.setIncompleteTypeFailure(DestType);
3878     return;
3879   }
3880 
3881   // C++11 [dcl.init.list]p3, per DR1467:
3882   // - If T is a class type and the initializer list has a single element of
3883   //   type cv U, where U is T or a class derived from T, the object is
3884   //   initialized from that element (by copy-initialization for
3885   //   copy-list-initialization, or by direct-initialization for
3886   //   direct-list-initialization).
3887   // - Otherwise, if T is a character array and the initializer list has a
3888   //   single element that is an appropriately-typed string literal
3889   //   (8.5.2 [dcl.init.string]), initialization is performed as described
3890   //   in that section.
3891   // - Otherwise, if T is an aggregate, [...] (continue below).
3892   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3893     if (DestType->isRecordType()) {
3894       QualType InitType = InitList->getInit(0)->getType();
3895       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3896           S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
3897         Expr *InitListAsExpr = InitList;
3898         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3899                                      DestType, Sequence,
3900                                      /*InitListSyntax*/false,
3901                                      /*IsInitListCopy*/true);
3902         return;
3903       }
3904     }
3905     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3906       Expr *SubInit[1] = {InitList->getInit(0)};
3907       if (!isa<VariableArrayType>(DestAT) &&
3908           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3909         InitializationKind SubKind =
3910             Kind.getKind() == InitializationKind::IK_DirectList
3911                 ? InitializationKind::CreateDirect(Kind.getLocation(),
3912                                                    InitList->getLBraceLoc(),
3913                                                    InitList->getRBraceLoc())
3914                 : Kind;
3915         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3916                                 /*TopLevelOfInitList*/ true,
3917                                 TreatUnavailableAsInvalid);
3918 
3919         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3920         // the element is not an appropriately-typed string literal, in which
3921         // case we should proceed as in C++11 (below).
3922         if (Sequence) {
3923           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3924           return;
3925         }
3926       }
3927     }
3928   }
3929 
3930   // C++11 [dcl.init.list]p3:
3931   //   - If T is an aggregate, aggregate initialization is performed.
3932   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3933       (S.getLangOpts().CPlusPlus11 &&
3934        S.isStdInitializerList(DestType, nullptr))) {
3935     if (S.getLangOpts().CPlusPlus11) {
3936       //   - Otherwise, if the initializer list has no elements and T is a
3937       //     class type with a default constructor, the object is
3938       //     value-initialized.
3939       if (InitList->getNumInits() == 0) {
3940         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3941         if (RD->hasDefaultConstructor()) {
3942           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3943           return;
3944         }
3945       }
3946 
3947       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3948       //     an initializer_list object constructed [...]
3949       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
3950                                          TreatUnavailableAsInvalid))
3951         return;
3952 
3953       //   - Otherwise, if T is a class type, constructors are considered.
3954       Expr *InitListAsExpr = InitList;
3955       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3956                                    DestType, Sequence, /*InitListSyntax*/true);
3957     } else
3958       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3959     return;
3960   }
3961 
3962   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3963       InitList->getNumInits() == 1) {
3964     Expr *E = InitList->getInit(0);
3965 
3966     //   - Otherwise, if T is an enumeration with a fixed underlying type,
3967     //     the initializer-list has a single element v, and the initialization
3968     //     is direct-list-initialization, the object is initialized with the
3969     //     value T(v); if a narrowing conversion is required to convert v to
3970     //     the underlying type of T, the program is ill-formed.
3971     auto *ET = DestType->getAs<EnumType>();
3972     if (S.getLangOpts().CPlusPlus1z &&
3973         Kind.getKind() == InitializationKind::IK_DirectList &&
3974         ET && ET->getDecl()->isFixed() &&
3975         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
3976         (E->getType()->isIntegralOrEnumerationType() ||
3977          E->getType()->isFloatingType())) {
3978       // There are two ways that T(v) can work when T is an enumeration type.
3979       // If there is either an implicit conversion sequence from v to T or
3980       // a conversion function that can convert from v to T, then we use that.
3981       // Otherwise, if v is of integral, enumeration, or floating-point type,
3982       // it is converted to the enumeration type via its underlying type.
3983       // There is no overlap possible between these two cases (except when the
3984       // source value is already of the destination type), and the first
3985       // case is handled by the general case for single-element lists below.
3986       ImplicitConversionSequence ICS;
3987       ICS.setStandard();
3988       ICS.Standard.setAsIdentityConversion();
3989       if (!E->isRValue())
3990         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3991       // If E is of a floating-point type, then the conversion is ill-formed
3992       // due to narrowing, but go through the motions in order to produce the
3993       // right diagnostic.
3994       ICS.Standard.Second = E->getType()->isFloatingType()
3995                                 ? ICK_Floating_Integral
3996                                 : ICK_Integral_Conversion;
3997       ICS.Standard.setFromType(E->getType());
3998       ICS.Standard.setToType(0, E->getType());
3999       ICS.Standard.setToType(1, DestType);
4000       ICS.Standard.setToType(2, DestType);
4001       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4002                                          /*TopLevelOfInitList*/true);
4003       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4004       return;
4005     }
4006 
4007     //   - Otherwise, if the initializer list has a single element of type E
4008     //     [...references are handled above...], the object or reference is
4009     //     initialized from that element (by copy-initialization for
4010     //     copy-list-initialization, or by direct-initialization for
4011     //     direct-list-initialization); if a narrowing conversion is required
4012     //     to convert the element to T, the program is ill-formed.
4013     //
4014     // Per core-24034, this is direct-initialization if we were performing
4015     // direct-list-initialization and copy-initialization otherwise.
4016     // We can't use InitListChecker for this, because it always performs
4017     // copy-initialization. This only matters if we might use an 'explicit'
4018     // conversion operator, so we only need to handle the cases where the source
4019     // is of record type.
4020     if (InitList->getInit(0)->getType()->isRecordType()) {
4021       InitializationKind SubKind =
4022           Kind.getKind() == InitializationKind::IK_DirectList
4023               ? InitializationKind::CreateDirect(Kind.getLocation(),
4024                                                  InitList->getLBraceLoc(),
4025                                                  InitList->getRBraceLoc())
4026               : Kind;
4027       Expr *SubInit[1] = { InitList->getInit(0) };
4028       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4029                               /*TopLevelOfInitList*/true,
4030                               TreatUnavailableAsInvalid);
4031       if (Sequence)
4032         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4033       return;
4034     }
4035   }
4036 
4037   InitListChecker CheckInitList(S, Entity, InitList,
4038           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4039   if (CheckInitList.HadError()) {
4040     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4041     return;
4042   }
4043 
4044   // Add the list initialization step with the built init list.
4045   Sequence.AddListInitializationStep(DestType);
4046 }
4047 
4048 /// \brief Try a reference initialization that involves calling a conversion
4049 /// function.
4050 static OverloadingResult TryRefInitWithConversionFunction(
4051     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4052     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4053     InitializationSequence &Sequence) {
4054   QualType DestType = Entity.getType();
4055   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4056   QualType T1 = cv1T1.getUnqualifiedType();
4057   QualType cv2T2 = Initializer->getType();
4058   QualType T2 = cv2T2.getUnqualifiedType();
4059 
4060   bool DerivedToBase;
4061   bool ObjCConversion;
4062   bool ObjCLifetimeConversion;
4063   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
4064                                          T1, T2, DerivedToBase,
4065                                          ObjCConversion,
4066                                          ObjCLifetimeConversion) &&
4067          "Must have incompatible references when binding via conversion");
4068   (void)DerivedToBase;
4069   (void)ObjCConversion;
4070   (void)ObjCLifetimeConversion;
4071 
4072   // Build the candidate set directly in the initialization sequence
4073   // structure, so that it will persist if we fail.
4074   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4075   CandidateSet.clear();
4076 
4077   // Determine whether we are allowed to call explicit constructors or
4078   // explicit conversion operators.
4079   bool AllowExplicit = Kind.AllowExplicit();
4080   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4081 
4082   const RecordType *T1RecordType = nullptr;
4083   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4084       S.isCompleteType(Kind.getLocation(), T1)) {
4085     // The type we're converting to is a class type. Enumerate its constructors
4086     // to see if there is a suitable conversion.
4087     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4088 
4089     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4090       auto Info = getConstructorInfo(D);
4091       if (!Info.Constructor)
4092         continue;
4093 
4094       if (!Info.Constructor->isInvalidDecl() &&
4095           Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4096         if (Info.ConstructorTmpl)
4097           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4098                                          /*ExplicitArgs*/ nullptr,
4099                                          Initializer, CandidateSet,
4100                                          /*SuppressUserConversions=*/true);
4101         else
4102           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4103                                  Initializer, CandidateSet,
4104                                  /*SuppressUserConversions=*/true);
4105       }
4106     }
4107   }
4108   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4109     return OR_No_Viable_Function;
4110 
4111   const RecordType *T2RecordType = nullptr;
4112   if ((T2RecordType = T2->getAs<RecordType>()) &&
4113       S.isCompleteType(Kind.getLocation(), T2)) {
4114     // The type we're converting from is a class type, enumerate its conversion
4115     // functions.
4116     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4117 
4118     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4119     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4120       NamedDecl *D = *I;
4121       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4122       if (isa<UsingShadowDecl>(D))
4123         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4124 
4125       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4126       CXXConversionDecl *Conv;
4127       if (ConvTemplate)
4128         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4129       else
4130         Conv = cast<CXXConversionDecl>(D);
4131 
4132       // If the conversion function doesn't return a reference type,
4133       // it can't be considered for this conversion unless we're allowed to
4134       // consider rvalues.
4135       // FIXME: Do we need to make sure that we only consider conversion
4136       // candidates with reference-compatible results? That might be needed to
4137       // break recursion.
4138       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4139           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4140         if (ConvTemplate)
4141           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4142                                            ActingDC, Initializer,
4143                                            DestType, CandidateSet,
4144                                            /*AllowObjCConversionOnExplicit=*/
4145                                              false);
4146         else
4147           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4148                                    Initializer, DestType, CandidateSet,
4149                                    /*AllowObjCConversionOnExplicit=*/false);
4150       }
4151     }
4152   }
4153   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4154     return OR_No_Viable_Function;
4155 
4156   SourceLocation DeclLoc = Initializer->getLocStart();
4157 
4158   // Perform overload resolution. If it fails, return the failed result.
4159   OverloadCandidateSet::iterator Best;
4160   if (OverloadingResult Result
4161         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
4162     return Result;
4163 
4164   FunctionDecl *Function = Best->Function;
4165   // This is the overload that will be used for this initialization step if we
4166   // use this initialization. Mark it as referenced.
4167   Function->setReferenced();
4168 
4169   // Compute the returned type and value kind of the conversion.
4170   QualType cv3T3;
4171   if (isa<CXXConversionDecl>(Function))
4172     cv3T3 = Function->getReturnType();
4173   else
4174     cv3T3 = T1;
4175 
4176   ExprValueKind VK = VK_RValue;
4177   if (cv3T3->isLValueReferenceType())
4178     VK = VK_LValue;
4179   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4180     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4181   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4182 
4183   // Add the user-defined conversion step.
4184   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4185   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4186                                  HadMultipleCandidates);
4187 
4188   // Determine whether we'll need to perform derived-to-base adjustments or
4189   // other conversions.
4190   bool NewDerivedToBase = false;
4191   bool NewObjCConversion = false;
4192   bool NewObjCLifetimeConversion = false;
4193   Sema::ReferenceCompareResult NewRefRelationship
4194     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4195                                      NewDerivedToBase, NewObjCConversion,
4196                                      NewObjCLifetimeConversion);
4197 
4198   // Add the final conversion sequence, if necessary.
4199   if (NewRefRelationship == Sema::Ref_Incompatible) {
4200     assert(!isa<CXXConstructorDecl>(Function) &&
4201            "should not have conversion after constructor");
4202 
4203     ImplicitConversionSequence ICS;
4204     ICS.setStandard();
4205     ICS.Standard = Best->FinalConversion;
4206     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4207 
4208     // Every implicit conversion results in a prvalue, except for a glvalue
4209     // derived-to-base conversion, which we handle below.
4210     cv3T3 = ICS.Standard.getToType(2);
4211     VK = VK_RValue;
4212   }
4213 
4214   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4215   //   type "cv1 T4" and the temporary materialization conversion is applied.
4216   //
4217   // We adjust the cv-qualifications to match the reference regardless of
4218   // whether we have a prvalue so that the AST records the change. In this
4219   // case, T4 is "cv3 T3".
4220   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4221   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4222     Sequence.AddQualificationConversionStep(cv1T4, VK);
4223   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4224   VK = IsLValueRef ? VK_LValue : VK_XValue;
4225 
4226   if (NewDerivedToBase)
4227     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4228   else if (NewObjCConversion)
4229     Sequence.AddObjCObjectConversionStep(cv1T1);
4230 
4231   return OR_Success;
4232 }
4233 
4234 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4235                                            const InitializedEntity &Entity,
4236                                            Expr *CurInitExpr);
4237 
4238 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
4239 static void TryReferenceInitialization(Sema &S,
4240                                        const InitializedEntity &Entity,
4241                                        const InitializationKind &Kind,
4242                                        Expr *Initializer,
4243                                        InitializationSequence &Sequence) {
4244   QualType DestType = Entity.getType();
4245   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4246   Qualifiers T1Quals;
4247   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4248   QualType cv2T2 = Initializer->getType();
4249   Qualifiers T2Quals;
4250   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4251 
4252   // If the initializer is the address of an overloaded function, try
4253   // to resolve the overloaded function. If all goes well, T2 is the
4254   // type of the resulting function.
4255   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4256                                                    T1, Sequence))
4257     return;
4258 
4259   // Delegate everything else to a subfunction.
4260   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4261                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4262 }
4263 
4264 /// Determine whether an expression is a non-referenceable glvalue (one to
4265 /// which a reference can never bind). Attemting to bind a reference to
4266 /// such a glvalue will always create a temporary.
4267 static bool isNonReferenceableGLValue(Expr *E) {
4268   return E->refersToBitField() || E->refersToVectorElement();
4269 }
4270 
4271 /// \brief Reference initialization without resolving overloaded functions.
4272 static void TryReferenceInitializationCore(Sema &S,
4273                                            const InitializedEntity &Entity,
4274                                            const InitializationKind &Kind,
4275                                            Expr *Initializer,
4276                                            QualType cv1T1, QualType T1,
4277                                            Qualifiers T1Quals,
4278                                            QualType cv2T2, QualType T2,
4279                                            Qualifiers T2Quals,
4280                                            InitializationSequence &Sequence) {
4281   QualType DestType = Entity.getType();
4282   SourceLocation DeclLoc = Initializer->getLocStart();
4283   // Compute some basic properties of the types and the initializer.
4284   bool isLValueRef = DestType->isLValueReferenceType();
4285   bool isRValueRef = !isLValueRef;
4286   bool DerivedToBase = false;
4287   bool ObjCConversion = false;
4288   bool ObjCLifetimeConversion = false;
4289   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4290   Sema::ReferenceCompareResult RefRelationship
4291     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4292                                      ObjCConversion, ObjCLifetimeConversion);
4293 
4294   // C++0x [dcl.init.ref]p5:
4295   //   A reference to type "cv1 T1" is initialized by an expression of type
4296   //   "cv2 T2" as follows:
4297   //
4298   //     - If the reference is an lvalue reference and the initializer
4299   //       expression
4300   // Note the analogous bullet points for rvalue refs to functions. Because
4301   // there are no function rvalues in C++, rvalue refs to functions are treated
4302   // like lvalue refs.
4303   OverloadingResult ConvOvlResult = OR_Success;
4304   bool T1Function = T1->isFunctionType();
4305   if (isLValueRef || T1Function) {
4306     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4307         (RefRelationship == Sema::Ref_Compatible ||
4308          (Kind.isCStyleOrFunctionalCast() &&
4309           RefRelationship == Sema::Ref_Related))) {
4310       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4311       //     reference-compatible with "cv2 T2," or
4312       if (T1Quals != T2Quals)
4313         // Convert to cv1 T2. This should only add qualifiers unless this is a
4314         // c-style cast. The removal of qualifiers in that case notionally
4315         // happens after the reference binding, but that doesn't matter.
4316         Sequence.AddQualificationConversionStep(
4317             S.Context.getQualifiedType(T2, T1Quals),
4318             Initializer->getValueKind());
4319       if (DerivedToBase)
4320         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4321       else if (ObjCConversion)
4322         Sequence.AddObjCObjectConversionStep(cv1T1);
4323 
4324       // We only create a temporary here when binding a reference to a
4325       // bit-field or vector element. Those cases are't supposed to be
4326       // handled by this bullet, but the outcome is the same either way.
4327       Sequence.AddReferenceBindingStep(cv1T1, false);
4328       return;
4329     }
4330 
4331     //     - has a class type (i.e., T2 is a class type), where T1 is not
4332     //       reference-related to T2, and can be implicitly converted to an
4333     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4334     //       with "cv3 T3" (this conversion is selected by enumerating the
4335     //       applicable conversion functions (13.3.1.6) and choosing the best
4336     //       one through overload resolution (13.3)),
4337     // If we have an rvalue ref to function type here, the rhs must be
4338     // an rvalue. DR1287 removed the "implicitly" here.
4339     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4340         (isLValueRef || InitCategory.isRValue())) {
4341       ConvOvlResult = TryRefInitWithConversionFunction(
4342           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4343           /*IsLValueRef*/ isLValueRef, Sequence);
4344       if (ConvOvlResult == OR_Success)
4345         return;
4346       if (ConvOvlResult != OR_No_Viable_Function)
4347         Sequence.SetOverloadFailure(
4348             InitializationSequence::FK_ReferenceInitOverloadFailed,
4349             ConvOvlResult);
4350     }
4351   }
4352 
4353   //     - Otherwise, the reference shall be an lvalue reference to a
4354   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4355   //       shall be an rvalue reference.
4356   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4357     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4358       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4359     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4360       Sequence.SetOverloadFailure(
4361                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4362                                   ConvOvlResult);
4363     else if (!InitCategory.isLValue())
4364       Sequence.SetFailed(
4365           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4366     else {
4367       InitializationSequence::FailureKind FK;
4368       switch (RefRelationship) {
4369       case Sema::Ref_Compatible:
4370         if (Initializer->refersToBitField())
4371           FK = InitializationSequence::
4372               FK_NonConstLValueReferenceBindingToBitfield;
4373         else if (Initializer->refersToVectorElement())
4374           FK = InitializationSequence::
4375               FK_NonConstLValueReferenceBindingToVectorElement;
4376         else
4377           llvm_unreachable("unexpected kind of compatible initializer");
4378         break;
4379       case Sema::Ref_Related:
4380         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4381         break;
4382       case Sema::Ref_Incompatible:
4383         FK = InitializationSequence::
4384             FK_NonConstLValueReferenceBindingToUnrelated;
4385         break;
4386       }
4387       Sequence.SetFailed(FK);
4388     }
4389     return;
4390   }
4391 
4392   //    - If the initializer expression
4393   //      - is an
4394   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4395   // [1z]   rvalue (but not a bit-field) or
4396   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4397   //
4398   // Note: functions are handled above and below rather than here...
4399   if (!T1Function &&
4400       (RefRelationship == Sema::Ref_Compatible ||
4401        (Kind.isCStyleOrFunctionalCast() &&
4402         RefRelationship == Sema::Ref_Related)) &&
4403       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4404        (InitCategory.isPRValue() &&
4405         (S.getLangOpts().CPlusPlus1z || T2->isRecordType() ||
4406          T2->isArrayType())))) {
4407     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4408     if (InitCategory.isPRValue() && T2->isRecordType()) {
4409       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4410       // compiler the freedom to perform a copy here or bind to the
4411       // object, while C++0x requires that we bind directly to the
4412       // object. Hence, we always bind to the object without making an
4413       // extra copy. However, in C++03 requires that we check for the
4414       // presence of a suitable copy constructor:
4415       //
4416       //   The constructor that would be used to make the copy shall
4417       //   be callable whether or not the copy is actually done.
4418       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4419         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4420       else if (S.getLangOpts().CPlusPlus11)
4421         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4422     }
4423 
4424     // C++1z [dcl.init.ref]/5.2.1.2:
4425     //   If the converted initializer is a prvalue, its type T4 is adjusted
4426     //   to type "cv1 T4" and the temporary materialization conversion is
4427     //   applied.
4428     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4429     if (T1Quals != T2Quals)
4430       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4431     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4432     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4433 
4434     //   In any case, the reference is bound to the resulting glvalue (or to
4435     //   an appropriate base class subobject).
4436     if (DerivedToBase)
4437       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4438     else if (ObjCConversion)
4439       Sequence.AddObjCObjectConversionStep(cv1T1);
4440     return;
4441   }
4442 
4443   //       - has a class type (i.e., T2 is a class type), where T1 is not
4444   //         reference-related to T2, and can be implicitly converted to an
4445   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4446   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4447   //
4448   // DR1287 removes the "implicitly" here.
4449   if (T2->isRecordType()) {
4450     if (RefRelationship == Sema::Ref_Incompatible) {
4451       ConvOvlResult = TryRefInitWithConversionFunction(
4452           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4453           /*IsLValueRef*/ isLValueRef, Sequence);
4454       if (ConvOvlResult)
4455         Sequence.SetOverloadFailure(
4456             InitializationSequence::FK_ReferenceInitOverloadFailed,
4457             ConvOvlResult);
4458 
4459       return;
4460     }
4461 
4462     if (RefRelationship == Sema::Ref_Compatible &&
4463         isRValueRef && InitCategory.isLValue()) {
4464       Sequence.SetFailed(
4465         InitializationSequence::FK_RValueReferenceBindingToLValue);
4466       return;
4467     }
4468 
4469     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4470     return;
4471   }
4472 
4473   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4474   //        from the initializer expression using the rules for a non-reference
4475   //        copy-initialization (8.5). The reference is then bound to the
4476   //        temporary. [...]
4477 
4478   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4479 
4480   // FIXME: Why do we use an implicit conversion here rather than trying
4481   // copy-initialization?
4482   ImplicitConversionSequence ICS
4483     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4484                               /*SuppressUserConversions=*/false,
4485                               /*AllowExplicit=*/false,
4486                               /*FIXME:InOverloadResolution=*/false,
4487                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4488                               /*AllowObjCWritebackConversion=*/false);
4489 
4490   if (ICS.isBad()) {
4491     // FIXME: Use the conversion function set stored in ICS to turn
4492     // this into an overloading ambiguity diagnostic. However, we need
4493     // to keep that set as an OverloadCandidateSet rather than as some
4494     // other kind of set.
4495     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4496       Sequence.SetOverloadFailure(
4497                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4498                                   ConvOvlResult);
4499     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4500       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4501     else
4502       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4503     return;
4504   } else {
4505     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4506   }
4507 
4508   //        [...] If T1 is reference-related to T2, cv1 must be the
4509   //        same cv-qualification as, or greater cv-qualification
4510   //        than, cv2; otherwise, the program is ill-formed.
4511   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4512   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4513   if (RefRelationship == Sema::Ref_Related &&
4514       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4515     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4516     return;
4517   }
4518 
4519   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4520   //   reference, the initializer expression shall not be an lvalue.
4521   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4522       InitCategory.isLValue()) {
4523     Sequence.SetFailed(
4524                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4525     return;
4526   }
4527 
4528   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4529 }
4530 
4531 /// \brief Attempt character array initialization from a string literal
4532 /// (C++ [dcl.init.string], C99 6.7.8).
4533 static void TryStringLiteralInitialization(Sema &S,
4534                                            const InitializedEntity &Entity,
4535                                            const InitializationKind &Kind,
4536                                            Expr *Initializer,
4537                                        InitializationSequence &Sequence) {
4538   Sequence.AddStringInitStep(Entity.getType());
4539 }
4540 
4541 /// \brief Attempt value initialization (C++ [dcl.init]p7).
4542 static void TryValueInitialization(Sema &S,
4543                                    const InitializedEntity &Entity,
4544                                    const InitializationKind &Kind,
4545                                    InitializationSequence &Sequence,
4546                                    InitListExpr *InitList) {
4547   assert((!InitList || InitList->getNumInits() == 0) &&
4548          "Shouldn't use value-init for non-empty init lists");
4549 
4550   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4551   //
4552   //   To value-initialize an object of type T means:
4553   QualType T = Entity.getType();
4554 
4555   //     -- if T is an array type, then each element is value-initialized;
4556   T = S.Context.getBaseElementType(T);
4557 
4558   if (const RecordType *RT = T->getAs<RecordType>()) {
4559     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4560       bool NeedZeroInitialization = true;
4561       // C++98:
4562       // -- if T is a class type (clause 9) with a user-declared constructor
4563       //    (12.1), then the default constructor for T is called (and the
4564       //    initialization is ill-formed if T has no accessible default
4565       //    constructor);
4566       // C++11:
4567       // -- if T is a class type (clause 9) with either no default constructor
4568       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4569       //    or deleted, then the object is default-initialized;
4570       //
4571       // Note that the C++11 rule is the same as the C++98 rule if there are no
4572       // defaulted or deleted constructors, so we just use it unconditionally.
4573       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4574       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4575         NeedZeroInitialization = false;
4576 
4577       // -- if T is a (possibly cv-qualified) non-union class type without a
4578       //    user-provided or deleted default constructor, then the object is
4579       //    zero-initialized and, if T has a non-trivial default constructor,
4580       //    default-initialized;
4581       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4582       // constructor' part was removed by DR1507.
4583       if (NeedZeroInitialization)
4584         Sequence.AddZeroInitializationStep(Entity.getType());
4585 
4586       // C++03:
4587       // -- if T is a non-union class type without a user-declared constructor,
4588       //    then every non-static data member and base class component of T is
4589       //    value-initialized;
4590       // [...] A program that calls for [...] value-initialization of an
4591       // entity of reference type is ill-formed.
4592       //
4593       // C++11 doesn't need this handling, because value-initialization does not
4594       // occur recursively there, and the implicit default constructor is
4595       // defined as deleted in the problematic cases.
4596       if (!S.getLangOpts().CPlusPlus11 &&
4597           ClassDecl->hasUninitializedReferenceMember()) {
4598         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4599         return;
4600       }
4601 
4602       // If this is list-value-initialization, pass the empty init list on when
4603       // building the constructor call. This affects the semantics of a few
4604       // things (such as whether an explicit default constructor can be called).
4605       Expr *InitListAsExpr = InitList;
4606       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4607       bool InitListSyntax = InitList;
4608 
4609       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4610       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4611       return TryConstructorInitialization(
4612           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4613     }
4614   }
4615 
4616   Sequence.AddZeroInitializationStep(Entity.getType());
4617 }
4618 
4619 /// \brief Attempt default initialization (C++ [dcl.init]p6).
4620 static void TryDefaultInitialization(Sema &S,
4621                                      const InitializedEntity &Entity,
4622                                      const InitializationKind &Kind,
4623                                      InitializationSequence &Sequence) {
4624   assert(Kind.getKind() == InitializationKind::IK_Default);
4625 
4626   // C++ [dcl.init]p6:
4627   //   To default-initialize an object of type T means:
4628   //     - if T is an array type, each element is default-initialized;
4629   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4630 
4631   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4632   //       constructor for T is called (and the initialization is ill-formed if
4633   //       T has no accessible default constructor);
4634   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4635     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4636                                  Entity.getType(), Sequence);
4637     return;
4638   }
4639 
4640   //     - otherwise, no initialization is performed.
4641 
4642   //   If a program calls for the default initialization of an object of
4643   //   a const-qualified type T, T shall be a class type with a user-provided
4644   //   default constructor.
4645   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4646     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4647       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4648     return;
4649   }
4650 
4651   // If the destination type has a lifetime property, zero-initialize it.
4652   if (DestType.getQualifiers().hasObjCLifetime()) {
4653     Sequence.AddZeroInitializationStep(Entity.getType());
4654     return;
4655   }
4656 }
4657 
4658 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4659 /// which enumerates all conversion functions and performs overload resolution
4660 /// to select the best.
4661 static void TryUserDefinedConversion(Sema &S,
4662                                      QualType DestType,
4663                                      const InitializationKind &Kind,
4664                                      Expr *Initializer,
4665                                      InitializationSequence &Sequence,
4666                                      bool TopLevelOfInitList) {
4667   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4668   QualType SourceType = Initializer->getType();
4669   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4670          "Must have a class type to perform a user-defined conversion");
4671 
4672   // Build the candidate set directly in the initialization sequence
4673   // structure, so that it will persist if we fail.
4674   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4675   CandidateSet.clear();
4676 
4677   // Determine whether we are allowed to call explicit constructors or
4678   // explicit conversion operators.
4679   bool AllowExplicit = Kind.AllowExplicit();
4680 
4681   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4682     // The type we're converting to is a class type. Enumerate its constructors
4683     // to see if there is a suitable conversion.
4684     CXXRecordDecl *DestRecordDecl
4685       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4686 
4687     // Try to complete the type we're converting to.
4688     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4689       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4690         auto Info = getConstructorInfo(D);
4691         if (!Info.Constructor)
4692           continue;
4693 
4694         if (!Info.Constructor->isInvalidDecl() &&
4695             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4696           if (Info.ConstructorTmpl)
4697             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4698                                            /*ExplicitArgs*/ nullptr,
4699                                            Initializer, CandidateSet,
4700                                            /*SuppressUserConversions=*/true);
4701           else
4702             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4703                                    Initializer, CandidateSet,
4704                                    /*SuppressUserConversions=*/true);
4705         }
4706       }
4707     }
4708   }
4709 
4710   SourceLocation DeclLoc = Initializer->getLocStart();
4711 
4712   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4713     // The type we're converting from is a class type, enumerate its conversion
4714     // functions.
4715 
4716     // We can only enumerate the conversion functions for a complete type; if
4717     // the type isn't complete, simply skip this step.
4718     if (S.isCompleteType(DeclLoc, SourceType)) {
4719       CXXRecordDecl *SourceRecordDecl
4720         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4721 
4722       const auto &Conversions =
4723           SourceRecordDecl->getVisibleConversionFunctions();
4724       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4725         NamedDecl *D = *I;
4726         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4727         if (isa<UsingShadowDecl>(D))
4728           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4729 
4730         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4731         CXXConversionDecl *Conv;
4732         if (ConvTemplate)
4733           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4734         else
4735           Conv = cast<CXXConversionDecl>(D);
4736 
4737         if (AllowExplicit || !Conv->isExplicit()) {
4738           if (ConvTemplate)
4739             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4740                                              ActingDC, Initializer, DestType,
4741                                              CandidateSet, AllowExplicit);
4742           else
4743             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4744                                      Initializer, DestType, CandidateSet,
4745                                      AllowExplicit);
4746         }
4747       }
4748     }
4749   }
4750 
4751   // Perform overload resolution. If it fails, return the failed result.
4752   OverloadCandidateSet::iterator Best;
4753   if (OverloadingResult Result
4754         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4755     Sequence.SetOverloadFailure(
4756                         InitializationSequence::FK_UserConversionOverloadFailed,
4757                                 Result);
4758     return;
4759   }
4760 
4761   FunctionDecl *Function = Best->Function;
4762   Function->setReferenced();
4763   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4764 
4765   if (isa<CXXConstructorDecl>(Function)) {
4766     // Add the user-defined conversion step. Any cv-qualification conversion is
4767     // subsumed by the initialization. Per DR5, the created temporary is of the
4768     // cv-unqualified type of the destination.
4769     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4770                                    DestType.getUnqualifiedType(),
4771                                    HadMultipleCandidates);
4772 
4773     // C++14 and before:
4774     //   - if the function is a constructor, the call initializes a temporary
4775     //     of the cv-unqualified version of the destination type. The [...]
4776     //     temporary [...] is then used to direct-initialize, according to the
4777     //     rules above, the object that is the destination of the
4778     //     copy-initialization.
4779     // Note that this just performs a simple object copy from the temporary.
4780     //
4781     // C++1z:
4782     //   - if the function is a constructor, the call is a prvalue of the
4783     //     cv-unqualified version of the destination type whose return object
4784     //     is initialized by the constructor. The call is used to
4785     //     direct-initialize, according to the rules above, the object that
4786     //     is the destination of the copy-initialization.
4787     // Therefore we need to do nothing further.
4788     //
4789     // FIXME: Mark this copy as extraneous.
4790     if (!S.getLangOpts().CPlusPlus1z)
4791       Sequence.AddFinalCopy(DestType);
4792     else if (DestType.hasQualifiers())
4793       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4794     return;
4795   }
4796 
4797   // Add the user-defined conversion step that calls the conversion function.
4798   QualType ConvType = Function->getCallResultType();
4799   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4800                                  HadMultipleCandidates);
4801 
4802   if (ConvType->getAs<RecordType>()) {
4803     //   The call is used to direct-initialize [...] the object that is the
4804     //   destination of the copy-initialization.
4805     //
4806     // In C++1z, this does not call a constructor if we enter /17.6.1:
4807     //   - If the initializer expression is a prvalue and the cv-unqualified
4808     //     version of the source type is the same as the class of the
4809     //     destination [... do not make an extra copy]
4810     //
4811     // FIXME: Mark this copy as extraneous.
4812     if (!S.getLangOpts().CPlusPlus1z ||
4813         Function->getReturnType()->isReferenceType() ||
4814         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4815       Sequence.AddFinalCopy(DestType);
4816     else if (!S.Context.hasSameType(ConvType, DestType))
4817       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4818     return;
4819   }
4820 
4821   // If the conversion following the call to the conversion function
4822   // is interesting, add it as a separate step.
4823   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4824       Best->FinalConversion.Third) {
4825     ImplicitConversionSequence ICS;
4826     ICS.setStandard();
4827     ICS.Standard = Best->FinalConversion;
4828     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4829   }
4830 }
4831 
4832 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4833 /// a function with a pointer return type contains a 'return false;' statement.
4834 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4835 /// code using that header.
4836 ///
4837 /// Work around this by treating 'return false;' as zero-initializing the result
4838 /// if it's used in a pointer-returning function in a system header.
4839 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4840                                               const InitializedEntity &Entity,
4841                                               const Expr *Init) {
4842   return S.getLangOpts().CPlusPlus11 &&
4843          Entity.getKind() == InitializedEntity::EK_Result &&
4844          Entity.getType()->isPointerType() &&
4845          isa<CXXBoolLiteralExpr>(Init) &&
4846          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4847          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4848 }
4849 
4850 /// The non-zero enum values here are indexes into diagnostic alternatives.
4851 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4852 
4853 /// Determines whether this expression is an acceptable ICR source.
4854 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4855                                          bool isAddressOf, bool &isWeakAccess) {
4856   // Skip parens.
4857   e = e->IgnoreParens();
4858 
4859   // Skip address-of nodes.
4860   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4861     if (op->getOpcode() == UO_AddrOf)
4862       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4863                                 isWeakAccess);
4864 
4865   // Skip certain casts.
4866   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4867     switch (ce->getCastKind()) {
4868     case CK_Dependent:
4869     case CK_BitCast:
4870     case CK_LValueBitCast:
4871     case CK_NoOp:
4872       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4873 
4874     case CK_ArrayToPointerDecay:
4875       return IIK_nonscalar;
4876 
4877     case CK_NullToPointer:
4878       return IIK_okay;
4879 
4880     default:
4881       break;
4882     }
4883 
4884   // If we have a declaration reference, it had better be a local variable.
4885   } else if (isa<DeclRefExpr>(e)) {
4886     // set isWeakAccess to true, to mean that there will be an implicit
4887     // load which requires a cleanup.
4888     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4889       isWeakAccess = true;
4890 
4891     if (!isAddressOf) return IIK_nonlocal;
4892 
4893     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4894     if (!var) return IIK_nonlocal;
4895 
4896     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4897 
4898   // If we have a conditional operator, check both sides.
4899   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4900     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4901                                                 isWeakAccess))
4902       return iik;
4903 
4904     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4905 
4906   // These are never scalar.
4907   } else if (isa<ArraySubscriptExpr>(e)) {
4908     return IIK_nonscalar;
4909 
4910   // Otherwise, it needs to be a null pointer constant.
4911   } else {
4912     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4913             ? IIK_okay : IIK_nonlocal);
4914   }
4915 
4916   return IIK_nonlocal;
4917 }
4918 
4919 /// Check whether the given expression is a valid operand for an
4920 /// indirect copy/restore.
4921 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4922   assert(src->isRValue());
4923   bool isWeakAccess = false;
4924   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4925   // If isWeakAccess to true, there will be an implicit
4926   // load which requires a cleanup.
4927   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4928     S.Cleanup.setExprNeedsCleanups(true);
4929 
4930   if (iik == IIK_okay) return;
4931 
4932   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4933     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4934     << src->getSourceRange();
4935 }
4936 
4937 /// \brief Determine whether we have compatible array types for the
4938 /// purposes of GNU by-copy array initialization.
4939 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4940                                     const ArrayType *Source) {
4941   // If the source and destination array types are equivalent, we're
4942   // done.
4943   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4944     return true;
4945 
4946   // Make sure that the element types are the same.
4947   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4948     return false;
4949 
4950   // The only mismatch we allow is when the destination is an
4951   // incomplete array type and the source is a constant array type.
4952   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4953 }
4954 
4955 static bool tryObjCWritebackConversion(Sema &S,
4956                                        InitializationSequence &Sequence,
4957                                        const InitializedEntity &Entity,
4958                                        Expr *Initializer) {
4959   bool ArrayDecay = false;
4960   QualType ArgType = Initializer->getType();
4961   QualType ArgPointee;
4962   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4963     ArrayDecay = true;
4964     ArgPointee = ArgArrayType->getElementType();
4965     ArgType = S.Context.getPointerType(ArgPointee);
4966   }
4967 
4968   // Handle write-back conversion.
4969   QualType ConvertedArgType;
4970   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4971                                    ConvertedArgType))
4972     return false;
4973 
4974   // We should copy unless we're passing to an argument explicitly
4975   // marked 'out'.
4976   bool ShouldCopy = true;
4977   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4978     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4979 
4980   // Do we need an lvalue conversion?
4981   if (ArrayDecay || Initializer->isGLValue()) {
4982     ImplicitConversionSequence ICS;
4983     ICS.setStandard();
4984     ICS.Standard.setAsIdentityConversion();
4985 
4986     QualType ResultType;
4987     if (ArrayDecay) {
4988       ICS.Standard.First = ICK_Array_To_Pointer;
4989       ResultType = S.Context.getPointerType(ArgPointee);
4990     } else {
4991       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4992       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4993     }
4994 
4995     Sequence.AddConversionSequenceStep(ICS, ResultType);
4996   }
4997 
4998   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4999   return true;
5000 }
5001 
5002 static bool TryOCLSamplerInitialization(Sema &S,
5003                                         InitializationSequence &Sequence,
5004                                         QualType DestType,
5005                                         Expr *Initializer) {
5006   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5007       (!Initializer->isIntegerConstantExpr(S.Context) &&
5008       !Initializer->getType()->isSamplerT()))
5009     return false;
5010 
5011   Sequence.AddOCLSamplerInitStep(DestType);
5012   return true;
5013 }
5014 
5015 //
5016 // OpenCL 1.2 spec, s6.12.10
5017 //
5018 // The event argument can also be used to associate the
5019 // async_work_group_copy with a previous async copy allowing
5020 // an event to be shared by multiple async copies; otherwise
5021 // event should be zero.
5022 //
5023 static bool TryOCLZeroEventInitialization(Sema &S,
5024                                           InitializationSequence &Sequence,
5025                                           QualType DestType,
5026                                           Expr *Initializer) {
5027   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5028       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5029       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5030     return false;
5031 
5032   Sequence.AddOCLZeroEventStep(DestType);
5033   return true;
5034 }
5035 
5036 static bool TryOCLZeroQueueInitialization(Sema &S,
5037                                           InitializationSequence &Sequence,
5038                                           QualType DestType,
5039                                           Expr *Initializer) {
5040   if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
5041       !DestType->isQueueT() ||
5042       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5043       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5044     return false;
5045 
5046   Sequence.AddOCLZeroQueueStep(DestType);
5047   return true;
5048 }
5049 
5050 InitializationSequence::InitializationSequence(Sema &S,
5051                                                const InitializedEntity &Entity,
5052                                                const InitializationKind &Kind,
5053                                                MultiExprArg Args,
5054                                                bool TopLevelOfInitList,
5055                                                bool TreatUnavailableAsInvalid)
5056     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5057   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5058                  TreatUnavailableAsInvalid);
5059 }
5060 
5061 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5062 /// address of that function, this returns true. Otherwise, it returns false.
5063 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5064   auto *DRE = dyn_cast<DeclRefExpr>(E);
5065   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5066     return false;
5067 
5068   return !S.checkAddressOfFunctionIsAvailable(
5069       cast<FunctionDecl>(DRE->getDecl()));
5070 }
5071 
5072 /// Determine whether we can perform an elementwise array copy for this kind
5073 /// of entity.
5074 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5075   switch (Entity.getKind()) {
5076   case InitializedEntity::EK_LambdaCapture:
5077     // C++ [expr.prim.lambda]p24:
5078     //   For array members, the array elements are direct-initialized in
5079     //   increasing subscript order.
5080     return true;
5081 
5082   case InitializedEntity::EK_Variable:
5083     // C++ [dcl.decomp]p1:
5084     //   [...] each element is copy-initialized or direct-initialized from the
5085     //   corresponding element of the assignment-expression [...]
5086     return isa<DecompositionDecl>(Entity.getDecl());
5087 
5088   case InitializedEntity::EK_Member:
5089     // C++ [class.copy.ctor]p14:
5090     //   - if the member is an array, each element is direct-initialized with
5091     //     the corresponding subobject of x
5092     return Entity.isImplicitMemberInitializer();
5093 
5094   case InitializedEntity::EK_ArrayElement:
5095     // All the above cases are intended to apply recursively, even though none
5096     // of them actually say that.
5097     if (auto *E = Entity.getParent())
5098       return canPerformArrayCopy(*E);
5099     break;
5100 
5101   default:
5102     break;
5103   }
5104 
5105   return false;
5106 }
5107 
5108 void InitializationSequence::InitializeFrom(Sema &S,
5109                                             const InitializedEntity &Entity,
5110                                             const InitializationKind &Kind,
5111                                             MultiExprArg Args,
5112                                             bool TopLevelOfInitList,
5113                                             bool TreatUnavailableAsInvalid) {
5114   ASTContext &Context = S.Context;
5115 
5116   // Eliminate non-overload placeholder types in the arguments.  We
5117   // need to do this before checking whether types are dependent
5118   // because lowering a pseudo-object expression might well give us
5119   // something of dependent type.
5120   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5121     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5122       // FIXME: should we be doing this here?
5123       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5124       if (result.isInvalid()) {
5125         SetFailed(FK_PlaceholderType);
5126         return;
5127       }
5128       Args[I] = result.get();
5129     }
5130 
5131   // C++0x [dcl.init]p16:
5132   //   The semantics of initializers are as follows. The destination type is
5133   //   the type of the object or reference being initialized and the source
5134   //   type is the type of the initializer expression. The source type is not
5135   //   defined when the initializer is a braced-init-list or when it is a
5136   //   parenthesized list of expressions.
5137   QualType DestType = Entity.getType();
5138 
5139   if (DestType->isDependentType() ||
5140       Expr::hasAnyTypeDependentArguments(Args)) {
5141     SequenceKind = DependentSequence;
5142     return;
5143   }
5144 
5145   // Almost everything is a normal sequence.
5146   setSequenceKind(NormalSequence);
5147 
5148   QualType SourceType;
5149   Expr *Initializer = nullptr;
5150   if (Args.size() == 1) {
5151     Initializer = Args[0];
5152     if (S.getLangOpts().ObjC1) {
5153       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5154                                               DestType, Initializer->getType(),
5155                                               Initializer) ||
5156           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5157         Args[0] = Initializer;
5158     }
5159     if (!isa<InitListExpr>(Initializer))
5160       SourceType = Initializer->getType();
5161   }
5162 
5163   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5164   //       object is list-initialized (8.5.4).
5165   if (Kind.getKind() != InitializationKind::IK_Direct) {
5166     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5167       TryListInitialization(S, Entity, Kind, InitList, *this,
5168                             TreatUnavailableAsInvalid);
5169       return;
5170     }
5171   }
5172 
5173   //     - If the destination type is a reference type, see 8.5.3.
5174   if (DestType->isReferenceType()) {
5175     // C++0x [dcl.init.ref]p1:
5176     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5177     //   (8.3.2), shall be initialized by an object, or function, of type T or
5178     //   by an object that can be converted into a T.
5179     // (Therefore, multiple arguments are not permitted.)
5180     if (Args.size() != 1)
5181       SetFailed(FK_TooManyInitsForReference);
5182     else
5183       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5184     return;
5185   }
5186 
5187   //     - If the initializer is (), the object is value-initialized.
5188   if (Kind.getKind() == InitializationKind::IK_Value ||
5189       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5190     TryValueInitialization(S, Entity, Kind, *this);
5191     return;
5192   }
5193 
5194   // Handle default initialization.
5195   if (Kind.getKind() == InitializationKind::IK_Default) {
5196     TryDefaultInitialization(S, Entity, Kind, *this);
5197     return;
5198   }
5199 
5200   //     - If the destination type is an array of characters, an array of
5201   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5202   //       initializer is a string literal, see 8.5.2.
5203   //     - Otherwise, if the destination type is an array, the program is
5204   //       ill-formed.
5205   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5206     if (Initializer && isa<VariableArrayType>(DestAT)) {
5207       SetFailed(FK_VariableLengthArrayHasInitializer);
5208       return;
5209     }
5210 
5211     if (Initializer) {
5212       switch (IsStringInit(Initializer, DestAT, Context)) {
5213       case SIF_None:
5214         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5215         return;
5216       case SIF_NarrowStringIntoWideChar:
5217         SetFailed(FK_NarrowStringIntoWideCharArray);
5218         return;
5219       case SIF_WideStringIntoChar:
5220         SetFailed(FK_WideStringIntoCharArray);
5221         return;
5222       case SIF_IncompatWideStringIntoWideChar:
5223         SetFailed(FK_IncompatWideStringIntoWideChar);
5224         return;
5225       case SIF_Other:
5226         break;
5227       }
5228     }
5229 
5230     // Some kinds of initialization permit an array to be initialized from
5231     // another array of the same type, and perform elementwise initialization.
5232     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5233         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5234                                          Entity.getType()) &&
5235         canPerformArrayCopy(Entity)) {
5236       // If source is a prvalue, use it directly.
5237       if (Initializer->getValueKind() == VK_RValue) {
5238         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5239         return;
5240       }
5241 
5242       // Emit element-at-a-time copy loop.
5243       InitializedEntity Element =
5244           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5245       QualType InitEltT =
5246           Context.getAsArrayType(Initializer->getType())->getElementType();
5247       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5248                           Initializer->getValueKind(),
5249                           Initializer->getObjectKind());
5250       Expr *OVEAsExpr = &OVE;
5251       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5252                      TreatUnavailableAsInvalid);
5253       if (!Failed())
5254         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5255       return;
5256     }
5257 
5258     // Note: as an GNU C extension, we allow initialization of an
5259     // array from a compound literal that creates an array of the same
5260     // type, so long as the initializer has no side effects.
5261     if (!S.getLangOpts().CPlusPlus && Initializer &&
5262         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5263         Initializer->getType()->isArrayType()) {
5264       const ArrayType *SourceAT
5265         = Context.getAsArrayType(Initializer->getType());
5266       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5267         SetFailed(FK_ArrayTypeMismatch);
5268       else if (Initializer->HasSideEffects(S.Context))
5269         SetFailed(FK_NonConstantArrayInit);
5270       else {
5271         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5272       }
5273     }
5274     // Note: as a GNU C++ extension, we allow list-initialization of a
5275     // class member of array type from a parenthesized initializer list.
5276     else if (S.getLangOpts().CPlusPlus &&
5277              Entity.getKind() == InitializedEntity::EK_Member &&
5278              Initializer && isa<InitListExpr>(Initializer)) {
5279       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5280                             *this, TreatUnavailableAsInvalid);
5281       AddParenthesizedArrayInitStep(DestType);
5282     } else if (DestAT->getElementType()->isCharType())
5283       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5284     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5285       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5286     else
5287       SetFailed(FK_ArrayNeedsInitList);
5288 
5289     return;
5290   }
5291 
5292   // Determine whether we should consider writeback conversions for
5293   // Objective-C ARC.
5294   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5295          Entity.isParameterKind();
5296 
5297   // We're at the end of the line for C: it's either a write-back conversion
5298   // or it's a C assignment. There's no need to check anything else.
5299   if (!S.getLangOpts().CPlusPlus) {
5300     // If allowed, check whether this is an Objective-C writeback conversion.
5301     if (allowObjCWritebackConversion &&
5302         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5303       return;
5304     }
5305 
5306     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5307       return;
5308 
5309     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
5310       return;
5311 
5312     if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
5313        return;
5314 
5315     // Handle initialization in C
5316     AddCAssignmentStep(DestType);
5317     MaybeProduceObjCObject(S, *this, Entity);
5318     return;
5319   }
5320 
5321   assert(S.getLangOpts().CPlusPlus);
5322 
5323   //     - If the destination type is a (possibly cv-qualified) class type:
5324   if (DestType->isRecordType()) {
5325     //     - If the initialization is direct-initialization, or if it is
5326     //       copy-initialization where the cv-unqualified version of the
5327     //       source type is the same class as, or a derived class of, the
5328     //       class of the destination, constructors are considered. [...]
5329     if (Kind.getKind() == InitializationKind::IK_Direct ||
5330         (Kind.getKind() == InitializationKind::IK_Copy &&
5331          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5332           S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5333       TryConstructorInitialization(S, Entity, Kind, Args,
5334                                    DestType, DestType, *this);
5335     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5336     //       user-defined conversion sequences that can convert from the source
5337     //       type to the destination type or (when a conversion function is
5338     //       used) to a derived class thereof are enumerated as described in
5339     //       13.3.1.4, and the best one is chosen through overload resolution
5340     //       (13.3).
5341     else
5342       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5343                                TopLevelOfInitList);
5344     return;
5345   }
5346 
5347   if (Args.size() > 1) {
5348     SetFailed(FK_TooManyInitsForScalar);
5349     return;
5350   }
5351   assert(Args.size() == 1 && "Zero-argument case handled above");
5352 
5353   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5354   //      type, conversion functions are considered.
5355   if (!SourceType.isNull() && SourceType->isRecordType()) {
5356     // For a conversion to _Atomic(T) from either T or a class type derived
5357     // from T, initialize the T object then convert to _Atomic type.
5358     bool NeedAtomicConversion = false;
5359     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5360       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5361           S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5362                           Atomic->getValueType())) {
5363         DestType = Atomic->getValueType();
5364         NeedAtomicConversion = true;
5365       }
5366     }
5367 
5368     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5369                              TopLevelOfInitList);
5370     MaybeProduceObjCObject(S, *this, Entity);
5371     if (!Failed() && NeedAtomicConversion)
5372       AddAtomicConversionStep(Entity.getType());
5373     return;
5374   }
5375 
5376   //    - Otherwise, the initial value of the object being initialized is the
5377   //      (possibly converted) value of the initializer expression. Standard
5378   //      conversions (Clause 4) will be used, if necessary, to convert the
5379   //      initializer expression to the cv-unqualified version of the
5380   //      destination type; no user-defined conversions are considered.
5381 
5382   ImplicitConversionSequence ICS
5383     = S.TryImplicitConversion(Initializer, DestType,
5384                               /*SuppressUserConversions*/true,
5385                               /*AllowExplicitConversions*/ false,
5386                               /*InOverloadResolution*/ false,
5387                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5388                               allowObjCWritebackConversion);
5389 
5390   if (ICS.isStandard() &&
5391       ICS.Standard.Second == ICK_Writeback_Conversion) {
5392     // Objective-C ARC writeback conversion.
5393 
5394     // We should copy unless we're passing to an argument explicitly
5395     // marked 'out'.
5396     bool ShouldCopy = true;
5397     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5398       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5399 
5400     // If there was an lvalue adjustment, add it as a separate conversion.
5401     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5402         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5403       ImplicitConversionSequence LvalueICS;
5404       LvalueICS.setStandard();
5405       LvalueICS.Standard.setAsIdentityConversion();
5406       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5407       LvalueICS.Standard.First = ICS.Standard.First;
5408       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5409     }
5410 
5411     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5412   } else if (ICS.isBad()) {
5413     DeclAccessPair dap;
5414     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5415       AddZeroInitializationStep(Entity.getType());
5416     } else if (Initializer->getType() == Context.OverloadTy &&
5417                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5418                                                      false, dap))
5419       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5420     else if (Initializer->getType()->isFunctionType() &&
5421              isExprAnUnaddressableFunction(S, Initializer))
5422       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5423     else
5424       SetFailed(InitializationSequence::FK_ConversionFailed);
5425   } else {
5426     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5427 
5428     MaybeProduceObjCObject(S, *this, Entity);
5429   }
5430 }
5431 
5432 InitializationSequence::~InitializationSequence() {
5433   for (auto &S : Steps)
5434     S.Destroy();
5435 }
5436 
5437 //===----------------------------------------------------------------------===//
5438 // Perform initialization
5439 //===----------------------------------------------------------------------===//
5440 static Sema::AssignmentAction
5441 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5442   switch(Entity.getKind()) {
5443   case InitializedEntity::EK_Variable:
5444   case InitializedEntity::EK_New:
5445   case InitializedEntity::EK_Exception:
5446   case InitializedEntity::EK_Base:
5447   case InitializedEntity::EK_Delegating:
5448     return Sema::AA_Initializing;
5449 
5450   case InitializedEntity::EK_Parameter:
5451     if (Entity.getDecl() &&
5452         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5453       return Sema::AA_Sending;
5454 
5455     return Sema::AA_Passing;
5456 
5457   case InitializedEntity::EK_Parameter_CF_Audited:
5458     if (Entity.getDecl() &&
5459       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5460       return Sema::AA_Sending;
5461 
5462     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5463 
5464   case InitializedEntity::EK_Result:
5465     return Sema::AA_Returning;
5466 
5467   case InitializedEntity::EK_Temporary:
5468   case InitializedEntity::EK_RelatedResult:
5469     // FIXME: Can we tell apart casting vs. converting?
5470     return Sema::AA_Casting;
5471 
5472   case InitializedEntity::EK_Member:
5473   case InitializedEntity::EK_Binding:
5474   case InitializedEntity::EK_ArrayElement:
5475   case InitializedEntity::EK_VectorElement:
5476   case InitializedEntity::EK_ComplexElement:
5477   case InitializedEntity::EK_BlockElement:
5478   case InitializedEntity::EK_LambdaCapture:
5479   case InitializedEntity::EK_CompoundLiteralInit:
5480     return Sema::AA_Initializing;
5481   }
5482 
5483   llvm_unreachable("Invalid EntityKind!");
5484 }
5485 
5486 /// \brief Whether we should bind a created object as a temporary when
5487 /// initializing the given entity.
5488 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5489   switch (Entity.getKind()) {
5490   case InitializedEntity::EK_ArrayElement:
5491   case InitializedEntity::EK_Member:
5492   case InitializedEntity::EK_Result:
5493   case InitializedEntity::EK_New:
5494   case InitializedEntity::EK_Variable:
5495   case InitializedEntity::EK_Base:
5496   case InitializedEntity::EK_Delegating:
5497   case InitializedEntity::EK_VectorElement:
5498   case InitializedEntity::EK_ComplexElement:
5499   case InitializedEntity::EK_Exception:
5500   case InitializedEntity::EK_BlockElement:
5501   case InitializedEntity::EK_LambdaCapture:
5502   case InitializedEntity::EK_CompoundLiteralInit:
5503     return false;
5504 
5505   case InitializedEntity::EK_Parameter:
5506   case InitializedEntity::EK_Parameter_CF_Audited:
5507   case InitializedEntity::EK_Temporary:
5508   case InitializedEntity::EK_RelatedResult:
5509   case InitializedEntity::EK_Binding:
5510     return true;
5511   }
5512 
5513   llvm_unreachable("missed an InitializedEntity kind?");
5514 }
5515 
5516 /// \brief Whether the given entity, when initialized with an object
5517 /// created for that initialization, requires destruction.
5518 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5519   switch (Entity.getKind()) {
5520     case InitializedEntity::EK_Result:
5521     case InitializedEntity::EK_New:
5522     case InitializedEntity::EK_Base:
5523     case InitializedEntity::EK_Delegating:
5524     case InitializedEntity::EK_VectorElement:
5525     case InitializedEntity::EK_ComplexElement:
5526     case InitializedEntity::EK_BlockElement:
5527     case InitializedEntity::EK_LambdaCapture:
5528       return false;
5529 
5530     case InitializedEntity::EK_Member:
5531     case InitializedEntity::EK_Binding:
5532     case InitializedEntity::EK_Variable:
5533     case InitializedEntity::EK_Parameter:
5534     case InitializedEntity::EK_Parameter_CF_Audited:
5535     case InitializedEntity::EK_Temporary:
5536     case InitializedEntity::EK_ArrayElement:
5537     case InitializedEntity::EK_Exception:
5538     case InitializedEntity::EK_CompoundLiteralInit:
5539     case InitializedEntity::EK_RelatedResult:
5540       return true;
5541   }
5542 
5543   llvm_unreachable("missed an InitializedEntity kind?");
5544 }
5545 
5546 /// \brief Get the location at which initialization diagnostics should appear.
5547 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5548                                            Expr *Initializer) {
5549   switch (Entity.getKind()) {
5550   case InitializedEntity::EK_Result:
5551     return Entity.getReturnLoc();
5552 
5553   case InitializedEntity::EK_Exception:
5554     return Entity.getThrowLoc();
5555 
5556   case InitializedEntity::EK_Variable:
5557   case InitializedEntity::EK_Binding:
5558     return Entity.getDecl()->getLocation();
5559 
5560   case InitializedEntity::EK_LambdaCapture:
5561     return Entity.getCaptureLoc();
5562 
5563   case InitializedEntity::EK_ArrayElement:
5564   case InitializedEntity::EK_Member:
5565   case InitializedEntity::EK_Parameter:
5566   case InitializedEntity::EK_Parameter_CF_Audited:
5567   case InitializedEntity::EK_Temporary:
5568   case InitializedEntity::EK_New:
5569   case InitializedEntity::EK_Base:
5570   case InitializedEntity::EK_Delegating:
5571   case InitializedEntity::EK_VectorElement:
5572   case InitializedEntity::EK_ComplexElement:
5573   case InitializedEntity::EK_BlockElement:
5574   case InitializedEntity::EK_CompoundLiteralInit:
5575   case InitializedEntity::EK_RelatedResult:
5576     return Initializer->getLocStart();
5577   }
5578   llvm_unreachable("missed an InitializedEntity kind?");
5579 }
5580 
5581 /// \brief Make a (potentially elidable) temporary copy of the object
5582 /// provided by the given initializer by calling the appropriate copy
5583 /// constructor.
5584 ///
5585 /// \param S The Sema object used for type-checking.
5586 ///
5587 /// \param T The type of the temporary object, which must either be
5588 /// the type of the initializer expression or a superclass thereof.
5589 ///
5590 /// \param Entity The entity being initialized.
5591 ///
5592 /// \param CurInit The initializer expression.
5593 ///
5594 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5595 /// is permitted in C++03 (but not C++0x) when binding a reference to
5596 /// an rvalue.
5597 ///
5598 /// \returns An expression that copies the initializer expression into
5599 /// a temporary object, or an error expression if a copy could not be
5600 /// created.
5601 static ExprResult CopyObject(Sema &S,
5602                              QualType T,
5603                              const InitializedEntity &Entity,
5604                              ExprResult CurInit,
5605                              bool IsExtraneousCopy) {
5606   if (CurInit.isInvalid())
5607     return CurInit;
5608   // Determine which class type we're copying to.
5609   Expr *CurInitExpr = (Expr *)CurInit.get();
5610   CXXRecordDecl *Class = nullptr;
5611   if (const RecordType *Record = T->getAs<RecordType>())
5612     Class = cast<CXXRecordDecl>(Record->getDecl());
5613   if (!Class)
5614     return CurInit;
5615 
5616   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5617 
5618   // Make sure that the type we are copying is complete.
5619   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5620     return CurInit;
5621 
5622   // Perform overload resolution using the class's constructors. Per
5623   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5624   // is direct-initialization.
5625   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5626   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5627 
5628   OverloadCandidateSet::iterator Best;
5629   switch (ResolveConstructorOverload(
5630       S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5631       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5632       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5633       /*SecondStepOfCopyInit=*/true)) {
5634   case OR_Success:
5635     break;
5636 
5637   case OR_No_Viable_Function:
5638     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5639            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5640            : diag::err_temp_copy_no_viable)
5641       << (int)Entity.getKind() << CurInitExpr->getType()
5642       << CurInitExpr->getSourceRange();
5643     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5644     if (!IsExtraneousCopy || S.isSFINAEContext())
5645       return ExprError();
5646     return CurInit;
5647 
5648   case OR_Ambiguous:
5649     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5650       << (int)Entity.getKind() << CurInitExpr->getType()
5651       << CurInitExpr->getSourceRange();
5652     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5653     return ExprError();
5654 
5655   case OR_Deleted:
5656     S.Diag(Loc, diag::err_temp_copy_deleted)
5657       << (int)Entity.getKind() << CurInitExpr->getType()
5658       << CurInitExpr->getSourceRange();
5659     S.NoteDeletedFunction(Best->Function);
5660     return ExprError();
5661   }
5662 
5663   bool HadMultipleCandidates = CandidateSet.size() > 1;
5664 
5665   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5666   SmallVector<Expr*, 8> ConstructorArgs;
5667   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5668 
5669   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5670                            IsExtraneousCopy);
5671 
5672   if (IsExtraneousCopy) {
5673     // If this is a totally extraneous copy for C++03 reference
5674     // binding purposes, just return the original initialization
5675     // expression. We don't generate an (elided) copy operation here
5676     // because doing so would require us to pass down a flag to avoid
5677     // infinite recursion, where each step adds another extraneous,
5678     // elidable copy.
5679 
5680     // Instantiate the default arguments of any extra parameters in
5681     // the selected copy constructor, as if we were going to create a
5682     // proper call to the copy constructor.
5683     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5684       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5685       if (S.RequireCompleteType(Loc, Parm->getType(),
5686                                 diag::err_call_incomplete_argument))
5687         break;
5688 
5689       // Build the default argument expression; we don't actually care
5690       // if this succeeds or not, because this routine will complain
5691       // if there was a problem.
5692       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5693     }
5694 
5695     return CurInitExpr;
5696   }
5697 
5698   // Determine the arguments required to actually perform the
5699   // constructor call (we might have derived-to-base conversions, or
5700   // the copy constructor may have default arguments).
5701   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5702     return ExprError();
5703 
5704   // C++0x [class.copy]p32:
5705   //   When certain criteria are met, an implementation is allowed to
5706   //   omit the copy/move construction of a class object, even if the
5707   //   copy/move constructor and/or destructor for the object have
5708   //   side effects. [...]
5709   //     - when a temporary class object that has not been bound to a
5710   //       reference (12.2) would be copied/moved to a class object
5711   //       with the same cv-unqualified type, the copy/move operation
5712   //       can be omitted by constructing the temporary object
5713   //       directly into the target of the omitted copy/move
5714   //
5715   // Note that the other three bullets are handled elsewhere. Copy
5716   // elision for return statements and throw expressions are handled as part
5717   // of constructor initialization, while copy elision for exception handlers
5718   // is handled by the run-time.
5719   //
5720   // FIXME: If the function parameter is not the same type as the temporary, we
5721   // should still be able to elide the copy, but we don't have a way to
5722   // represent in the AST how much should be elided in this case.
5723   bool Elidable =
5724       CurInitExpr->isTemporaryObject(S.Context, Class) &&
5725       S.Context.hasSameUnqualifiedType(
5726           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5727           CurInitExpr->getType());
5728 
5729   // Actually perform the constructor call.
5730   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5731                                     Elidable,
5732                                     ConstructorArgs,
5733                                     HadMultipleCandidates,
5734                                     /*ListInit*/ false,
5735                                     /*StdInitListInit*/ false,
5736                                     /*ZeroInit*/ false,
5737                                     CXXConstructExpr::CK_Complete,
5738                                     SourceRange());
5739 
5740   // If we're supposed to bind temporaries, do so.
5741   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5742     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5743   return CurInit;
5744 }
5745 
5746 /// \brief Check whether elidable copy construction for binding a reference to
5747 /// a temporary would have succeeded if we were building in C++98 mode, for
5748 /// -Wc++98-compat.
5749 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5750                                            const InitializedEntity &Entity,
5751                                            Expr *CurInitExpr) {
5752   assert(S.getLangOpts().CPlusPlus11);
5753 
5754   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5755   if (!Record)
5756     return;
5757 
5758   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5759   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5760     return;
5761 
5762   // Find constructors which would have been considered.
5763   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5764   DeclContext::lookup_result Ctors =
5765       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5766 
5767   // Perform overload resolution.
5768   OverloadCandidateSet::iterator Best;
5769   OverloadingResult OR = ResolveConstructorOverload(
5770       S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5771       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5772       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5773       /*SecondStepOfCopyInit=*/true);
5774 
5775   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5776     << OR << (int)Entity.getKind() << CurInitExpr->getType()
5777     << CurInitExpr->getSourceRange();
5778 
5779   switch (OR) {
5780   case OR_Success:
5781     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5782                              Best->FoundDecl, Entity, Diag);
5783     // FIXME: Check default arguments as far as that's possible.
5784     break;
5785 
5786   case OR_No_Viable_Function:
5787     S.Diag(Loc, Diag);
5788     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5789     break;
5790 
5791   case OR_Ambiguous:
5792     S.Diag(Loc, Diag);
5793     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5794     break;
5795 
5796   case OR_Deleted:
5797     S.Diag(Loc, Diag);
5798     S.NoteDeletedFunction(Best->Function);
5799     break;
5800   }
5801 }
5802 
5803 void InitializationSequence::PrintInitLocationNote(Sema &S,
5804                                               const InitializedEntity &Entity) {
5805   if (Entity.isParameterKind() && Entity.getDecl()) {
5806     if (Entity.getDecl()->getLocation().isInvalid())
5807       return;
5808 
5809     if (Entity.getDecl()->getDeclName())
5810       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5811         << Entity.getDecl()->getDeclName();
5812     else
5813       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5814   }
5815   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5816            Entity.getMethodDecl())
5817     S.Diag(Entity.getMethodDecl()->getLocation(),
5818            diag::note_method_return_type_change)
5819       << Entity.getMethodDecl()->getDeclName();
5820 }
5821 
5822 /// Returns true if the parameters describe a constructor initialization of
5823 /// an explicit temporary object, e.g. "Point(x, y)".
5824 static bool isExplicitTemporary(const InitializedEntity &Entity,
5825                                 const InitializationKind &Kind,
5826                                 unsigned NumArgs) {
5827   switch (Entity.getKind()) {
5828   case InitializedEntity::EK_Temporary:
5829   case InitializedEntity::EK_CompoundLiteralInit:
5830   case InitializedEntity::EK_RelatedResult:
5831     break;
5832   default:
5833     return false;
5834   }
5835 
5836   switch (Kind.getKind()) {
5837   case InitializationKind::IK_DirectList:
5838     return true;
5839   // FIXME: Hack to work around cast weirdness.
5840   case InitializationKind::IK_Direct:
5841   case InitializationKind::IK_Value:
5842     return NumArgs != 1;
5843   default:
5844     return false;
5845   }
5846 }
5847 
5848 static ExprResult
5849 PerformConstructorInitialization(Sema &S,
5850                                  const InitializedEntity &Entity,
5851                                  const InitializationKind &Kind,
5852                                  MultiExprArg Args,
5853                                  const InitializationSequence::Step& Step,
5854                                  bool &ConstructorInitRequiresZeroInit,
5855                                  bool IsListInitialization,
5856                                  bool IsStdInitListInitialization,
5857                                  SourceLocation LBraceLoc,
5858                                  SourceLocation RBraceLoc) {
5859   unsigned NumArgs = Args.size();
5860   CXXConstructorDecl *Constructor
5861     = cast<CXXConstructorDecl>(Step.Function.Function);
5862   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5863 
5864   // Build a call to the selected constructor.
5865   SmallVector<Expr*, 8> ConstructorArgs;
5866   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5867                          ? Kind.getEqualLoc()
5868                          : Kind.getLocation();
5869 
5870   if (Kind.getKind() == InitializationKind::IK_Default) {
5871     // Force even a trivial, implicit default constructor to be
5872     // semantically checked. We do this explicitly because we don't build
5873     // the definition for completely trivial constructors.
5874     assert(Constructor->getParent() && "No parent class for constructor.");
5875     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5876         Constructor->isTrivial() && !Constructor->isUsed(false))
5877       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5878   }
5879 
5880   ExprResult CurInit((Expr *)nullptr);
5881 
5882   // C++ [over.match.copy]p1:
5883   //   - When initializing a temporary to be bound to the first parameter
5884   //     of a constructor that takes a reference to possibly cv-qualified
5885   //     T as its first argument, called with a single argument in the
5886   //     context of direct-initialization, explicit conversion functions
5887   //     are also considered.
5888   bool AllowExplicitConv =
5889       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
5890       hasCopyOrMoveCtorParam(S.Context,
5891                              getConstructorInfo(Step.Function.FoundDecl));
5892 
5893   // Determine the arguments required to actually perform the constructor
5894   // call.
5895   if (S.CompleteConstructorCall(Constructor, Args,
5896                                 Loc, ConstructorArgs,
5897                                 AllowExplicitConv,
5898                                 IsListInitialization))
5899     return ExprError();
5900 
5901 
5902   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5903     // An explicitly-constructed temporary, e.g., X(1, 2).
5904     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5905       return ExprError();
5906 
5907     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5908     if (!TSInfo)
5909       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5910     SourceRange ParenOrBraceRange =
5911       (Kind.getKind() == InitializationKind::IK_DirectList)
5912       ? SourceRange(LBraceLoc, RBraceLoc)
5913       : Kind.getParenRange();
5914 
5915     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
5916             Step.Function.FoundDecl.getDecl())) {
5917       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
5918       if (S.DiagnoseUseOfDecl(Constructor, Loc))
5919         return ExprError();
5920     }
5921     S.MarkFunctionReferenced(Loc, Constructor);
5922 
5923     CurInit = new (S.Context) CXXTemporaryObjectExpr(
5924         S.Context, Constructor,
5925         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
5926         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
5927         IsListInitialization, IsStdInitListInitialization,
5928         ConstructorInitRequiresZeroInit);
5929   } else {
5930     CXXConstructExpr::ConstructionKind ConstructKind =
5931       CXXConstructExpr::CK_Complete;
5932 
5933     if (Entity.getKind() == InitializedEntity::EK_Base) {
5934       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5935         CXXConstructExpr::CK_VirtualBase :
5936         CXXConstructExpr::CK_NonVirtualBase;
5937     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5938       ConstructKind = CXXConstructExpr::CK_Delegating;
5939     }
5940 
5941     // Only get the parenthesis or brace range if it is a list initialization or
5942     // direct construction.
5943     SourceRange ParenOrBraceRange;
5944     if (IsListInitialization)
5945       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5946     else if (Kind.getKind() == InitializationKind::IK_Direct)
5947       ParenOrBraceRange = Kind.getParenRange();
5948 
5949     // If the entity allows NRVO, mark the construction as elidable
5950     // unconditionally.
5951     if (Entity.allowsNRVO())
5952       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5953                                         Step.Function.FoundDecl,
5954                                         Constructor, /*Elidable=*/true,
5955                                         ConstructorArgs,
5956                                         HadMultipleCandidates,
5957                                         IsListInitialization,
5958                                         IsStdInitListInitialization,
5959                                         ConstructorInitRequiresZeroInit,
5960                                         ConstructKind,
5961                                         ParenOrBraceRange);
5962     else
5963       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5964                                         Step.Function.FoundDecl,
5965                                         Constructor,
5966                                         ConstructorArgs,
5967                                         HadMultipleCandidates,
5968                                         IsListInitialization,
5969                                         IsStdInitListInitialization,
5970                                         ConstructorInitRequiresZeroInit,
5971                                         ConstructKind,
5972                                         ParenOrBraceRange);
5973   }
5974   if (CurInit.isInvalid())
5975     return ExprError();
5976 
5977   // Only check access if all of that succeeded.
5978   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
5979   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5980     return ExprError();
5981 
5982   if (shouldBindAsTemporary(Entity))
5983     CurInit = S.MaybeBindToTemporary(CurInit.get());
5984 
5985   return CurInit;
5986 }
5987 
5988 /// Determine whether the specified InitializedEntity definitely has a lifetime
5989 /// longer than the current full-expression. Conservatively returns false if
5990 /// it's unclear.
5991 static bool
5992 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5993   const InitializedEntity *Top = &Entity;
5994   while (Top->getParent())
5995     Top = Top->getParent();
5996 
5997   switch (Top->getKind()) {
5998   case InitializedEntity::EK_Variable:
5999   case InitializedEntity::EK_Result:
6000   case InitializedEntity::EK_Exception:
6001   case InitializedEntity::EK_Member:
6002   case InitializedEntity::EK_Binding:
6003   case InitializedEntity::EK_New:
6004   case InitializedEntity::EK_Base:
6005   case InitializedEntity::EK_Delegating:
6006     return true;
6007 
6008   case InitializedEntity::EK_ArrayElement:
6009   case InitializedEntity::EK_VectorElement:
6010   case InitializedEntity::EK_BlockElement:
6011   case InitializedEntity::EK_ComplexElement:
6012     // Could not determine what the full initialization is. Assume it might not
6013     // outlive the full-expression.
6014     return false;
6015 
6016   case InitializedEntity::EK_Parameter:
6017   case InitializedEntity::EK_Parameter_CF_Audited:
6018   case InitializedEntity::EK_Temporary:
6019   case InitializedEntity::EK_LambdaCapture:
6020   case InitializedEntity::EK_CompoundLiteralInit:
6021   case InitializedEntity::EK_RelatedResult:
6022     // The entity being initialized might not outlive the full-expression.
6023     return false;
6024   }
6025 
6026   llvm_unreachable("unknown entity kind");
6027 }
6028 
6029 /// Determine the declaration which an initialized entity ultimately refers to,
6030 /// for the purpose of lifetime-extending a temporary bound to a reference in
6031 /// the initialization of \p Entity.
6032 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
6033     const InitializedEntity *Entity,
6034     const InitializedEntity *FallbackDecl = nullptr) {
6035   // C++11 [class.temporary]p5:
6036   switch (Entity->getKind()) {
6037   case InitializedEntity::EK_Variable:
6038     //   The temporary [...] persists for the lifetime of the reference
6039     return Entity;
6040 
6041   case InitializedEntity::EK_Member:
6042     // For subobjects, we look at the complete object.
6043     if (Entity->getParent())
6044       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6045                                                     Entity);
6046 
6047     //   except:
6048     //   -- A temporary bound to a reference member in a constructor's
6049     //      ctor-initializer persists until the constructor exits.
6050     return Entity;
6051 
6052   case InitializedEntity::EK_Binding:
6053     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6054     // type.
6055     return Entity;
6056 
6057   case InitializedEntity::EK_Parameter:
6058   case InitializedEntity::EK_Parameter_CF_Audited:
6059     //   -- A temporary bound to a reference parameter in a function call
6060     //      persists until the completion of the full-expression containing
6061     //      the call.
6062   case InitializedEntity::EK_Result:
6063     //   -- The lifetime of a temporary bound to the returned value in a
6064     //      function return statement is not extended; the temporary is
6065     //      destroyed at the end of the full-expression in the return statement.
6066   case InitializedEntity::EK_New:
6067     //   -- A temporary bound to a reference in a new-initializer persists
6068     //      until the completion of the full-expression containing the
6069     //      new-initializer.
6070     return nullptr;
6071 
6072   case InitializedEntity::EK_Temporary:
6073   case InitializedEntity::EK_CompoundLiteralInit:
6074   case InitializedEntity::EK_RelatedResult:
6075     // We don't yet know the storage duration of the surrounding temporary.
6076     // Assume it's got full-expression duration for now, it will patch up our
6077     // storage duration if that's not correct.
6078     return nullptr;
6079 
6080   case InitializedEntity::EK_ArrayElement:
6081     // For subobjects, we look at the complete object.
6082     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6083                                                   FallbackDecl);
6084 
6085   case InitializedEntity::EK_Base:
6086     // For subobjects, we look at the complete object.
6087     if (Entity->getParent())
6088       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6089                                                     Entity);
6090     // Fall through.
6091   case InitializedEntity::EK_Delegating:
6092     // We can reach this case for aggregate initialization in a constructor:
6093     //   struct A { int &&r; };
6094     //   struct B : A { B() : A{0} {} };
6095     // In this case, use the innermost field decl as the context.
6096     return FallbackDecl;
6097 
6098   case InitializedEntity::EK_BlockElement:
6099   case InitializedEntity::EK_LambdaCapture:
6100   case InitializedEntity::EK_Exception:
6101   case InitializedEntity::EK_VectorElement:
6102   case InitializedEntity::EK_ComplexElement:
6103     return nullptr;
6104   }
6105   llvm_unreachable("unknown entity kind");
6106 }
6107 
6108 static void performLifetimeExtension(Expr *Init,
6109                                      const InitializedEntity *ExtendingEntity);
6110 
6111 /// Update a glvalue expression that is used as the initializer of a reference
6112 /// to note that its lifetime is extended.
6113 /// \return \c true if any temporary had its lifetime extended.
6114 static bool
6115 performReferenceExtension(Expr *Init,
6116                           const InitializedEntity *ExtendingEntity) {
6117   // Walk past any constructs which we can lifetime-extend across.
6118   Expr *Old;
6119   do {
6120     Old = Init;
6121 
6122     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6123       if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
6124         // This is just redundant braces around an initializer. Step over it.
6125         Init = ILE->getInit(0);
6126       }
6127     }
6128 
6129     // Step over any subobject adjustments; we may have a materialized
6130     // temporary inside them.
6131     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6132 
6133     // Per current approach for DR1376, look through casts to reference type
6134     // when performing lifetime extension.
6135     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6136       if (CE->getSubExpr()->isGLValue())
6137         Init = CE->getSubExpr();
6138 
6139     // Per the current approach for DR1299, look through array element access
6140     // when performing lifetime extension.
6141     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init))
6142       Init = ASE->getBase();
6143   } while (Init != Old);
6144 
6145   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6146     // Update the storage duration of the materialized temporary.
6147     // FIXME: Rebuild the expression instead of mutating it.
6148     ME->setExtendingDecl(ExtendingEntity->getDecl(),
6149                          ExtendingEntity->allocateManglingNumber());
6150     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
6151     return true;
6152   }
6153 
6154   return false;
6155 }
6156 
6157 /// Update a prvalue expression that is going to be materialized as a
6158 /// lifetime-extended temporary.
6159 static void performLifetimeExtension(Expr *Init,
6160                                      const InitializedEntity *ExtendingEntity) {
6161   // Dig out the expression which constructs the extended temporary.
6162   Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6163 
6164   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6165     Init = BTE->getSubExpr();
6166 
6167   if (CXXStdInitializerListExpr *ILE =
6168           dyn_cast<CXXStdInitializerListExpr>(Init)) {
6169     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
6170     return;
6171   }
6172 
6173   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6174     if (ILE->getType()->isArrayType()) {
6175       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6176         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
6177       return;
6178     }
6179 
6180     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6181       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6182 
6183       // If we lifetime-extend a braced initializer which is initializing an
6184       // aggregate, and that aggregate contains reference members which are
6185       // bound to temporaries, those temporaries are also lifetime-extended.
6186       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6187           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6188         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
6189       else {
6190         unsigned Index = 0;
6191         for (const auto *I : RD->fields()) {
6192           if (Index >= ILE->getNumInits())
6193             break;
6194           if (I->isUnnamedBitfield())
6195             continue;
6196           Expr *SubInit = ILE->getInit(Index);
6197           if (I->getType()->isReferenceType())
6198             performReferenceExtension(SubInit, ExtendingEntity);
6199           else if (isa<InitListExpr>(SubInit) ||
6200                    isa<CXXStdInitializerListExpr>(SubInit))
6201             // This may be either aggregate-initialization of a member or
6202             // initialization of a std::initializer_list object. Either way,
6203             // we should recursively lifetime-extend that initializer.
6204             performLifetimeExtension(SubInit, ExtendingEntity);
6205           ++Index;
6206         }
6207       }
6208     }
6209   }
6210 }
6211 
6212 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
6213                                     const Expr *Init, bool IsInitializerList,
6214                                     const ValueDecl *ExtendingDecl) {
6215   // Warn if a field lifetime-extends a temporary.
6216   if (isa<FieldDecl>(ExtendingDecl)) {
6217     if (IsInitializerList) {
6218       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
6219         << /*at end of constructor*/true;
6220       return;
6221     }
6222 
6223     bool IsSubobjectMember = false;
6224     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
6225          Ent = Ent->getParent()) {
6226       if (Ent->getKind() != InitializedEntity::EK_Base) {
6227         IsSubobjectMember = true;
6228         break;
6229       }
6230     }
6231     S.Diag(Init->getExprLoc(),
6232            diag::warn_bind_ref_member_to_temporary)
6233       << ExtendingDecl << Init->getSourceRange()
6234       << IsSubobjectMember << IsInitializerList;
6235     if (IsSubobjectMember)
6236       S.Diag(ExtendingDecl->getLocation(),
6237              diag::note_ref_subobject_of_member_declared_here);
6238     else
6239       S.Diag(ExtendingDecl->getLocation(),
6240              diag::note_ref_or_ptr_member_declared_here)
6241         << /*is pointer*/false;
6242   }
6243 }
6244 
6245 static void DiagnoseNarrowingInInitList(Sema &S,
6246                                         const ImplicitConversionSequence &ICS,
6247                                         QualType PreNarrowingType,
6248                                         QualType EntityType,
6249                                         const Expr *PostInit);
6250 
6251 /// Provide warnings when std::move is used on construction.
6252 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
6253                                     bool IsReturnStmt) {
6254   if (!InitExpr)
6255     return;
6256 
6257   if (S.inTemplateInstantiation())
6258     return;
6259 
6260   QualType DestType = InitExpr->getType();
6261   if (!DestType->isRecordType())
6262     return;
6263 
6264   unsigned DiagID = 0;
6265   if (IsReturnStmt) {
6266     const CXXConstructExpr *CCE =
6267         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
6268     if (!CCE || CCE->getNumArgs() != 1)
6269       return;
6270 
6271     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
6272       return;
6273 
6274     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
6275   }
6276 
6277   // Find the std::move call and get the argument.
6278   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
6279   if (!CE || CE->getNumArgs() != 1)
6280     return;
6281 
6282   const FunctionDecl *MoveFunction = CE->getDirectCallee();
6283   if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
6284       !MoveFunction->getIdentifier() ||
6285       !MoveFunction->getIdentifier()->isStr("move"))
6286     return;
6287 
6288   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
6289 
6290   if (IsReturnStmt) {
6291     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
6292     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
6293       return;
6294 
6295     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
6296     if (!VD || !VD->hasLocalStorage())
6297       return;
6298 
6299     QualType SourceType = VD->getType();
6300     if (!SourceType->isRecordType())
6301       return;
6302 
6303     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
6304       return;
6305     }
6306 
6307     // If we're returning a function parameter, copy elision
6308     // is not possible.
6309     if (isa<ParmVarDecl>(VD))
6310       DiagID = diag::warn_redundant_move_on_return;
6311     else
6312       DiagID = diag::warn_pessimizing_move_on_return;
6313   } else {
6314     DiagID = diag::warn_pessimizing_move_on_initialization;
6315     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6316     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6317       return;
6318   }
6319 
6320   S.Diag(CE->getLocStart(), DiagID);
6321 
6322   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
6323   // is within a macro.
6324   SourceLocation CallBegin = CE->getCallee()->getLocStart();
6325   if (CallBegin.isMacroID())
6326     return;
6327   SourceLocation RParen = CE->getRParenLoc();
6328   if (RParen.isMacroID())
6329     return;
6330   SourceLocation LParen;
6331   SourceLocation ArgLoc = Arg->getLocStart();
6332 
6333   // Special testing for the argument location.  Since the fix-it needs the
6334   // location right before the argument, the argument location can be in a
6335   // macro only if it is at the beginning of the macro.
6336   while (ArgLoc.isMacroID() &&
6337          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6338     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6339   }
6340 
6341   if (LParen.isMacroID())
6342     return;
6343 
6344   LParen = ArgLoc.getLocWithOffset(-1);
6345 
6346   S.Diag(CE->getLocStart(), diag::note_remove_move)
6347       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6348       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6349 }
6350 
6351 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
6352   // Check to see if we are dereferencing a null pointer.  If so, this is
6353   // undefined behavior, so warn about it.  This only handles the pattern
6354   // "*null", which is a very syntactic check.
6355   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
6356     if (UO->getOpcode() == UO_Deref &&
6357         UO->getSubExpr()->IgnoreParenCasts()->
6358         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
6359     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
6360                           S.PDiag(diag::warn_binding_null_to_reference)
6361                             << UO->getSubExpr()->getSourceRange());
6362   }
6363 }
6364 
6365 MaterializeTemporaryExpr *
6366 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6367                                      bool BoundToLvalueReference) {
6368   auto MTE = new (Context)
6369       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
6370 
6371   // Order an ExprWithCleanups for lifetime marks.
6372   //
6373   // TODO: It'll be good to have a single place to check the access of the
6374   // destructor and generate ExprWithCleanups for various uses. Currently these
6375   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
6376   // but there may be a chance to merge them.
6377   Cleanup.setExprNeedsCleanups(false);
6378   return MTE;
6379 }
6380 
6381 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
6382   // In C++98, we don't want to implicitly create an xvalue.
6383   // FIXME: This means that AST consumers need to deal with "prvalues" that
6384   // denote materialized temporaries. Maybe we should add another ValueKind
6385   // for "xvalue pretending to be a prvalue" for C++98 support.
6386   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
6387     return E;
6388 
6389   // C++1z [conv.rval]/1: T shall be a complete type.
6390   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
6391   // If so, we should check for a non-abstract class type here too.
6392   QualType T = E->getType();
6393   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
6394     return ExprError();
6395 
6396   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
6397 }
6398 
6399 ExprResult
6400 InitializationSequence::Perform(Sema &S,
6401                                 const InitializedEntity &Entity,
6402                                 const InitializationKind &Kind,
6403                                 MultiExprArg Args,
6404                                 QualType *ResultType) {
6405   if (Failed()) {
6406     Diagnose(S, Entity, Kind, Args);
6407     return ExprError();
6408   }
6409   if (!ZeroInitializationFixit.empty()) {
6410     unsigned DiagID = diag::err_default_init_const;
6411     if (Decl *D = Entity.getDecl())
6412       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6413         DiagID = diag::ext_default_init_const;
6414 
6415     // The initialization would have succeeded with this fixit. Since the fixit
6416     // is on the error, we need to build a valid AST in this case, so this isn't
6417     // handled in the Failed() branch above.
6418     QualType DestType = Entity.getType();
6419     S.Diag(Kind.getLocation(), DiagID)
6420         << DestType << (bool)DestType->getAs<RecordType>()
6421         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6422                                       ZeroInitializationFixit);
6423   }
6424 
6425   if (getKind() == DependentSequence) {
6426     // If the declaration is a non-dependent, incomplete array type
6427     // that has an initializer, then its type will be completed once
6428     // the initializer is instantiated.
6429     if (ResultType && !Entity.getType()->isDependentType() &&
6430         Args.size() == 1) {
6431       QualType DeclType = Entity.getType();
6432       if (const IncompleteArrayType *ArrayT
6433                            = S.Context.getAsIncompleteArrayType(DeclType)) {
6434         // FIXME: We don't currently have the ability to accurately
6435         // compute the length of an initializer list without
6436         // performing full type-checking of the initializer list
6437         // (since we have to determine where braces are implicitly
6438         // introduced and such).  So, we fall back to making the array
6439         // type a dependently-sized array type with no specified
6440         // bound.
6441         if (isa<InitListExpr>((Expr *)Args[0])) {
6442           SourceRange Brackets;
6443 
6444           // Scavange the location of the brackets from the entity, if we can.
6445           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
6446             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6447               TypeLoc TL = TInfo->getTypeLoc();
6448               if (IncompleteArrayTypeLoc ArrayLoc =
6449                       TL.getAs<IncompleteArrayTypeLoc>())
6450                 Brackets = ArrayLoc.getBracketsRange();
6451             }
6452           }
6453 
6454           *ResultType
6455             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6456                                                    /*NumElts=*/nullptr,
6457                                                    ArrayT->getSizeModifier(),
6458                                        ArrayT->getIndexTypeCVRQualifiers(),
6459                                                    Brackets);
6460         }
6461 
6462       }
6463     }
6464     if (Kind.getKind() == InitializationKind::IK_Direct &&
6465         !Kind.isExplicitCast()) {
6466       // Rebuild the ParenListExpr.
6467       SourceRange ParenRange = Kind.getParenRange();
6468       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6469                                   Args);
6470     }
6471     assert(Kind.getKind() == InitializationKind::IK_Copy ||
6472            Kind.isExplicitCast() ||
6473            Kind.getKind() == InitializationKind::IK_DirectList);
6474     return ExprResult(Args[0]);
6475   }
6476 
6477   // No steps means no initialization.
6478   if (Steps.empty())
6479     return ExprResult((Expr *)nullptr);
6480 
6481   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6482       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6483       !Entity.isParameterKind()) {
6484     // Produce a C++98 compatibility warning if we are initializing a reference
6485     // from an initializer list. For parameters, we produce a better warning
6486     // elsewhere.
6487     Expr *Init = Args[0];
6488     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6489       << Init->getSourceRange();
6490   }
6491 
6492   // Diagnose cases where we initialize a pointer to an array temporary, and the
6493   // pointer obviously outlives the temporary.
6494   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6495       Entity.getType()->isPointerType() &&
6496       InitializedEntityOutlivesFullExpression(Entity)) {
6497     const Expr *Init = Args[0]->skipRValueSubobjectAdjustments();
6498     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
6499       Init = MTE->GetTemporaryExpr();
6500     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6501     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6502       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6503         << Init->getSourceRange();
6504   }
6505 
6506   QualType DestType = Entity.getType().getNonReferenceType();
6507   // FIXME: Ugly hack around the fact that Entity.getType() is not
6508   // the same as Entity.getDecl()->getType() in cases involving type merging,
6509   //  and we want latter when it makes sense.
6510   if (ResultType)
6511     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6512                                      Entity.getType();
6513 
6514   ExprResult CurInit((Expr *)nullptr);
6515   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
6516 
6517   // For initialization steps that start with a single initializer,
6518   // grab the only argument out the Args and place it into the "current"
6519   // initializer.
6520   switch (Steps.front().Kind) {
6521   case SK_ResolveAddressOfOverloadedFunction:
6522   case SK_CastDerivedToBaseRValue:
6523   case SK_CastDerivedToBaseXValue:
6524   case SK_CastDerivedToBaseLValue:
6525   case SK_BindReference:
6526   case SK_BindReferenceToTemporary:
6527   case SK_FinalCopy:
6528   case SK_ExtraneousCopyToTemporary:
6529   case SK_UserConversion:
6530   case SK_QualificationConversionLValue:
6531   case SK_QualificationConversionXValue:
6532   case SK_QualificationConversionRValue:
6533   case SK_AtomicConversion:
6534   case SK_LValueToRValue:
6535   case SK_ConversionSequence:
6536   case SK_ConversionSequenceNoNarrowing:
6537   case SK_ListInitialization:
6538   case SK_UnwrapInitList:
6539   case SK_RewrapInitList:
6540   case SK_CAssignment:
6541   case SK_StringInit:
6542   case SK_ObjCObjectConversion:
6543   case SK_ArrayLoopIndex:
6544   case SK_ArrayLoopInit:
6545   case SK_ArrayInit:
6546   case SK_GNUArrayInit:
6547   case SK_ParenthesizedArrayInit:
6548   case SK_PassByIndirectCopyRestore:
6549   case SK_PassByIndirectRestore:
6550   case SK_ProduceObjCObject:
6551   case SK_StdInitializerList:
6552   case SK_OCLSamplerInit:
6553   case SK_OCLZeroEvent:
6554   case SK_OCLZeroQueue: {
6555     assert(Args.size() == 1);
6556     CurInit = Args[0];
6557     if (!CurInit.get()) return ExprError();
6558     break;
6559   }
6560 
6561   case SK_ConstructorInitialization:
6562   case SK_ConstructorInitializationFromList:
6563   case SK_StdInitializerListConstructorCall:
6564   case SK_ZeroInitialization:
6565     break;
6566   }
6567 
6568   // Promote from an unevaluated context to an unevaluated list context in
6569   // C++11 list-initialization; we need to instantiate entities usable in
6570   // constant expressions here in order to perform narrowing checks =(
6571   EnterExpressionEvaluationContext Evaluated(
6572       S, EnterExpressionEvaluationContext::InitList,
6573       CurInit.get() && isa<InitListExpr>(CurInit.get()));
6574 
6575   // C++ [class.abstract]p2:
6576   //   no objects of an abstract class can be created except as subobjects
6577   //   of a class derived from it
6578   auto checkAbstractType = [&](QualType T) -> bool {
6579     if (Entity.getKind() == InitializedEntity::EK_Base ||
6580         Entity.getKind() == InitializedEntity::EK_Delegating)
6581       return false;
6582     return S.RequireNonAbstractType(Kind.getLocation(), T,
6583                                     diag::err_allocation_of_abstract_type);
6584   };
6585 
6586   // Walk through the computed steps for the initialization sequence,
6587   // performing the specified conversions along the way.
6588   bool ConstructorInitRequiresZeroInit = false;
6589   for (step_iterator Step = step_begin(), StepEnd = step_end();
6590        Step != StepEnd; ++Step) {
6591     if (CurInit.isInvalid())
6592       return ExprError();
6593 
6594     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6595 
6596     switch (Step->Kind) {
6597     case SK_ResolveAddressOfOverloadedFunction:
6598       // Overload resolution determined which function invoke; update the
6599       // initializer to reflect that choice.
6600       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6601       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6602         return ExprError();
6603       CurInit = S.FixOverloadedFunctionReference(CurInit,
6604                                                  Step->Function.FoundDecl,
6605                                                  Step->Function.Function);
6606       break;
6607 
6608     case SK_CastDerivedToBaseRValue:
6609     case SK_CastDerivedToBaseXValue:
6610     case SK_CastDerivedToBaseLValue: {
6611       // We have a derived-to-base cast that produces either an rvalue or an
6612       // lvalue. Perform that cast.
6613 
6614       CXXCastPath BasePath;
6615 
6616       // Casts to inaccessible base classes are allowed with C-style casts.
6617       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6618       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6619                                          CurInit.get()->getLocStart(),
6620                                          CurInit.get()->getSourceRange(),
6621                                          &BasePath, IgnoreBaseAccess))
6622         return ExprError();
6623 
6624       ExprValueKind VK =
6625           Step->Kind == SK_CastDerivedToBaseLValue ?
6626               VK_LValue :
6627               (Step->Kind == SK_CastDerivedToBaseXValue ?
6628                    VK_XValue :
6629                    VK_RValue);
6630       CurInit =
6631           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6632                                    CurInit.get(), &BasePath, VK);
6633       break;
6634     }
6635 
6636     case SK_BindReference:
6637       // Reference binding does not have any corresponding ASTs.
6638 
6639       // Check exception specifications
6640       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6641         return ExprError();
6642 
6643       // Even though we didn't materialize a temporary, the binding may still
6644       // extend the lifetime of a temporary. This happens if we bind a reference
6645       // to the result of a cast to reference type.
6646       if (const InitializedEntity *ExtendingEntity =
6647               getEntityForTemporaryLifetimeExtension(&Entity))
6648         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6649           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6650                                   /*IsInitializerList=*/false,
6651                                   ExtendingEntity->getDecl());
6652 
6653       CheckForNullPointerDereference(S, CurInit.get());
6654       break;
6655 
6656     case SK_BindReferenceToTemporary: {
6657       // Make sure the "temporary" is actually an rvalue.
6658       assert(CurInit.get()->isRValue() && "not a temporary");
6659 
6660       // Check exception specifications
6661       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6662         return ExprError();
6663 
6664       // Materialize the temporary into memory.
6665       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
6666           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
6667 
6668       // Maybe lifetime-extend the temporary's subobjects to match the
6669       // entity's lifetime.
6670       if (const InitializedEntity *ExtendingEntity =
6671               getEntityForTemporaryLifetimeExtension(&Entity))
6672         if (performReferenceExtension(MTE, ExtendingEntity))
6673           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6674                                   /*IsInitializerList=*/false,
6675                                   ExtendingEntity->getDecl());
6676 
6677       // If we're binding to an Objective-C object that has lifetime, we
6678       // need cleanups. Likewise if we're extending this temporary to automatic
6679       // storage duration -- we need to register its cleanup during the
6680       // full-expression's cleanups.
6681       if ((S.getLangOpts().ObjCAutoRefCount &&
6682            MTE->getType()->isObjCLifetimeType()) ||
6683           (MTE->getStorageDuration() == SD_Automatic &&
6684            MTE->getType().isDestructedType()))
6685         S.Cleanup.setExprNeedsCleanups(true);
6686 
6687       CurInit = MTE;
6688       break;
6689     }
6690 
6691     case SK_FinalCopy:
6692       if (checkAbstractType(Step->Type))
6693         return ExprError();
6694 
6695       // If the overall initialization is initializing a temporary, we already
6696       // bound our argument if it was necessary to do so. If not (if we're
6697       // ultimately initializing a non-temporary), our argument needs to be
6698       // bound since it's initializing a function parameter.
6699       // FIXME: This is a mess. Rationalize temporary destruction.
6700       if (!shouldBindAsTemporary(Entity))
6701         CurInit = S.MaybeBindToTemporary(CurInit.get());
6702       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6703                            /*IsExtraneousCopy=*/false);
6704       break;
6705 
6706     case SK_ExtraneousCopyToTemporary:
6707       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6708                            /*IsExtraneousCopy=*/true);
6709       break;
6710 
6711     case SK_UserConversion: {
6712       // We have a user-defined conversion that invokes either a constructor
6713       // or a conversion function.
6714       CastKind CastKind;
6715       FunctionDecl *Fn = Step->Function.Function;
6716       DeclAccessPair FoundFn = Step->Function.FoundDecl;
6717       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6718       bool CreatedObject = false;
6719       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6720         // Build a call to the selected constructor.
6721         SmallVector<Expr*, 8> ConstructorArgs;
6722         SourceLocation Loc = CurInit.get()->getLocStart();
6723 
6724         // Determine the arguments required to actually perform the constructor
6725         // call.
6726         Expr *Arg = CurInit.get();
6727         if (S.CompleteConstructorCall(Constructor,
6728                                       MultiExprArg(&Arg, 1),
6729                                       Loc, ConstructorArgs))
6730           return ExprError();
6731 
6732         // Build an expression that constructs a temporary.
6733         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
6734                                           FoundFn, Constructor,
6735                                           ConstructorArgs,
6736                                           HadMultipleCandidates,
6737                                           /*ListInit*/ false,
6738                                           /*StdInitListInit*/ false,
6739                                           /*ZeroInit*/ false,
6740                                           CXXConstructExpr::CK_Complete,
6741                                           SourceRange());
6742         if (CurInit.isInvalid())
6743           return ExprError();
6744 
6745         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
6746                                  Entity);
6747         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6748           return ExprError();
6749 
6750         CastKind = CK_ConstructorConversion;
6751         CreatedObject = true;
6752       } else {
6753         // Build a call to the conversion function.
6754         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6755         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6756                                     FoundFn);
6757         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6758           return ExprError();
6759 
6760         // FIXME: Should we move this initialization into a separate
6761         // derived-to-base conversion? I believe the answer is "no", because
6762         // we don't want to turn off access control here for c-style casts.
6763         CurInit = S.PerformObjectArgumentInitialization(CurInit.get(),
6764                                                         /*Qualifier=*/nullptr,
6765                                                         FoundFn, Conversion);
6766         if (CurInit.isInvalid())
6767           return ExprError();
6768 
6769         // Build the actual call to the conversion function.
6770         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6771                                            HadMultipleCandidates);
6772         if (CurInit.isInvalid())
6773           return ExprError();
6774 
6775         CastKind = CK_UserDefinedConversion;
6776         CreatedObject = Conversion->getReturnType()->isRecordType();
6777       }
6778 
6779       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
6780         return ExprError();
6781 
6782       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6783                                          CastKind, CurInit.get(), nullptr,
6784                                          CurInit.get()->getValueKind());
6785 
6786       if (shouldBindAsTemporary(Entity))
6787         // The overall entity is temporary, so this expression should be
6788         // destroyed at the end of its full-expression.
6789         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6790       else if (CreatedObject && shouldDestroyEntity(Entity)) {
6791         // The object outlasts the full-expression, but we need to prepare for
6792         // a destructor being run on it.
6793         // FIXME: It makes no sense to do this here. This should happen
6794         // regardless of how we initialized the entity.
6795         QualType T = CurInit.get()->getType();
6796         if (const RecordType *Record = T->getAs<RecordType>()) {
6797           CXXDestructorDecl *Destructor
6798             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6799           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6800                                   S.PDiag(diag::err_access_dtor_temp) << T);
6801           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6802           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6803             return ExprError();
6804         }
6805       }
6806       break;
6807     }
6808 
6809     case SK_QualificationConversionLValue:
6810     case SK_QualificationConversionXValue:
6811     case SK_QualificationConversionRValue: {
6812       // Perform a qualification conversion; these can never go wrong.
6813       ExprValueKind VK =
6814           Step->Kind == SK_QualificationConversionLValue ?
6815               VK_LValue :
6816               (Step->Kind == SK_QualificationConversionXValue ?
6817                    VK_XValue :
6818                    VK_RValue);
6819       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6820       break;
6821     }
6822 
6823     case SK_AtomicConversion: {
6824       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
6825       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6826                                     CK_NonAtomicToAtomic, VK_RValue);
6827       break;
6828     }
6829 
6830     case SK_LValueToRValue: {
6831       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6832       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6833                                          CK_LValueToRValue, CurInit.get(),
6834                                          /*BasePath=*/nullptr, VK_RValue);
6835       break;
6836     }
6837 
6838     case SK_ConversionSequence:
6839     case SK_ConversionSequenceNoNarrowing: {
6840       Sema::CheckedConversionKind CCK
6841         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6842         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6843         : Kind.isExplicitCast()? Sema::CCK_OtherCast
6844         : Sema::CCK_ImplicitConversion;
6845       ExprResult CurInitExprRes =
6846         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6847                                     getAssignmentAction(Entity), CCK);
6848       if (CurInitExprRes.isInvalid())
6849         return ExprError();
6850 
6851       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
6852 
6853       CurInit = CurInitExprRes;
6854 
6855       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6856           S.getLangOpts().CPlusPlus)
6857         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6858                                     CurInit.get());
6859 
6860       break;
6861     }
6862 
6863     case SK_ListInitialization: {
6864       if (checkAbstractType(Step->Type))
6865         return ExprError();
6866 
6867       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6868       // If we're not initializing the top-level entity, we need to create an
6869       // InitializeTemporary entity for our target type.
6870       QualType Ty = Step->Type;
6871       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6872       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6873       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6874       InitListChecker PerformInitList(S, InitEntity,
6875           InitList, Ty, /*VerifyOnly=*/false,
6876           /*TreatUnavailableAsInvalid=*/false);
6877       if (PerformInitList.HadError())
6878         return ExprError();
6879 
6880       // Hack: We must update *ResultType if available in order to set the
6881       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6882       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6883       if (ResultType &&
6884           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6885         if ((*ResultType)->isRValueReferenceType())
6886           Ty = S.Context.getRValueReferenceType(Ty);
6887         else if ((*ResultType)->isLValueReferenceType())
6888           Ty = S.Context.getLValueReferenceType(Ty,
6889             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6890         *ResultType = Ty;
6891       }
6892 
6893       InitListExpr *StructuredInitList =
6894           PerformInitList.getFullyStructuredList();
6895       CurInit.get();
6896       CurInit = shouldBindAsTemporary(InitEntity)
6897           ? S.MaybeBindToTemporary(StructuredInitList)
6898           : StructuredInitList;
6899       break;
6900     }
6901 
6902     case SK_ConstructorInitializationFromList: {
6903       if (checkAbstractType(Step->Type))
6904         return ExprError();
6905 
6906       // When an initializer list is passed for a parameter of type "reference
6907       // to object", we don't get an EK_Temporary entity, but instead an
6908       // EK_Parameter entity with reference type.
6909       // FIXME: This is a hack. What we really should do is create a user
6910       // conversion step for this case, but this makes it considerably more
6911       // complicated. For now, this will do.
6912       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6913                                         Entity.getType().getNonReferenceType());
6914       bool UseTemporary = Entity.getType()->isReferenceType();
6915       assert(Args.size() == 1 && "expected a single argument for list init");
6916       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6917       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6918         << InitList->getSourceRange();
6919       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6920       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6921                                                                    Entity,
6922                                                  Kind, Arg, *Step,
6923                                                ConstructorInitRequiresZeroInit,
6924                                                /*IsListInitialization*/true,
6925                                                /*IsStdInitListInit*/false,
6926                                                InitList->getLBraceLoc(),
6927                                                InitList->getRBraceLoc());
6928       break;
6929     }
6930 
6931     case SK_UnwrapInitList:
6932       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6933       break;
6934 
6935     case SK_RewrapInitList: {
6936       Expr *E = CurInit.get();
6937       InitListExpr *Syntactic = Step->WrappingSyntacticList;
6938       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6939           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6940       ILE->setSyntacticForm(Syntactic);
6941       ILE->setType(E->getType());
6942       ILE->setValueKind(E->getValueKind());
6943       CurInit = ILE;
6944       break;
6945     }
6946 
6947     case SK_ConstructorInitialization:
6948     case SK_StdInitializerListConstructorCall: {
6949       if (checkAbstractType(Step->Type))
6950         return ExprError();
6951 
6952       // When an initializer list is passed for a parameter of type "reference
6953       // to object", we don't get an EK_Temporary entity, but instead an
6954       // EK_Parameter entity with reference type.
6955       // FIXME: This is a hack. What we really should do is create a user
6956       // conversion step for this case, but this makes it considerably more
6957       // complicated. For now, this will do.
6958       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6959                                         Entity.getType().getNonReferenceType());
6960       bool UseTemporary = Entity.getType()->isReferenceType();
6961       bool IsStdInitListInit =
6962           Step->Kind == SK_StdInitializerListConstructorCall;
6963       Expr *Source = CurInit.get();
6964       CurInit = PerformConstructorInitialization(
6965           S, UseTemporary ? TempEntity : Entity, Kind,
6966           Source ? MultiExprArg(Source) : Args, *Step,
6967           ConstructorInitRequiresZeroInit,
6968           /*IsListInitialization*/ IsStdInitListInit,
6969           /*IsStdInitListInitialization*/ IsStdInitListInit,
6970           /*LBraceLoc*/ SourceLocation(),
6971           /*RBraceLoc*/ SourceLocation());
6972       break;
6973     }
6974 
6975     case SK_ZeroInitialization: {
6976       step_iterator NextStep = Step;
6977       ++NextStep;
6978       if (NextStep != StepEnd &&
6979           (NextStep->Kind == SK_ConstructorInitialization ||
6980            NextStep->Kind == SK_ConstructorInitializationFromList)) {
6981         // The need for zero-initialization is recorded directly into
6982         // the call to the object's constructor within the next step.
6983         ConstructorInitRequiresZeroInit = true;
6984       } else if (Kind.getKind() == InitializationKind::IK_Value &&
6985                  S.getLangOpts().CPlusPlus &&
6986                  !Kind.isImplicitValueInit()) {
6987         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6988         if (!TSInfo)
6989           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6990                                                     Kind.getRange().getBegin());
6991 
6992         CurInit = new (S.Context) CXXScalarValueInitExpr(
6993             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6994             Kind.getRange().getEnd());
6995       } else {
6996         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6997       }
6998       break;
6999     }
7000 
7001     case SK_CAssignment: {
7002       QualType SourceType = CurInit.get()->getType();
7003       // Save off the initial CurInit in case we need to emit a diagnostic
7004       ExprResult InitialCurInit = CurInit;
7005       ExprResult Result = CurInit;
7006       Sema::AssignConvertType ConvTy =
7007         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7008             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7009       if (Result.isInvalid())
7010         return ExprError();
7011       CurInit = Result;
7012 
7013       // If this is a call, allow conversion to a transparent union.
7014       ExprResult CurInitExprRes = CurInit;
7015       if (ConvTy != Sema::Compatible &&
7016           Entity.isParameterKind() &&
7017           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7018             == Sema::Compatible)
7019         ConvTy = Sema::Compatible;
7020       if (CurInitExprRes.isInvalid())
7021         return ExprError();
7022       CurInit = CurInitExprRes;
7023 
7024       bool Complained;
7025       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7026                                      Step->Type, SourceType,
7027                                      InitialCurInit.get(),
7028                                      getAssignmentAction(Entity, true),
7029                                      &Complained)) {
7030         PrintInitLocationNote(S, Entity);
7031         return ExprError();
7032       } else if (Complained)
7033         PrintInitLocationNote(S, Entity);
7034       break;
7035     }
7036 
7037     case SK_StringInit: {
7038       QualType Ty = Step->Type;
7039       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7040                       S.Context.getAsArrayType(Ty), S);
7041       break;
7042     }
7043 
7044     case SK_ObjCObjectConversion:
7045       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7046                           CK_ObjCObjectLValueCast,
7047                           CurInit.get()->getValueKind());
7048       break;
7049 
7050     case SK_ArrayLoopIndex: {
7051       Expr *Cur = CurInit.get();
7052       Expr *BaseExpr = new (S.Context)
7053           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7054                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7055       Expr *IndexExpr =
7056           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7057       CurInit = S.CreateBuiltinArraySubscriptExpr(
7058           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7059       ArrayLoopCommonExprs.push_back(BaseExpr);
7060       break;
7061     }
7062 
7063     case SK_ArrayLoopInit: {
7064       assert(!ArrayLoopCommonExprs.empty() &&
7065              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7066       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7067       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7068                                                   CurInit.get());
7069       break;
7070     }
7071 
7072     case SK_GNUArrayInit:
7073       // Okay: we checked everything before creating this step. Note that
7074       // this is a GNU extension.
7075       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7076         << Step->Type << CurInit.get()->getType()
7077         << CurInit.get()->getSourceRange();
7078       LLVM_FALLTHROUGH;
7079     case SK_ArrayInit:
7080       // If the destination type is an incomplete array type, update the
7081       // type accordingly.
7082       if (ResultType) {
7083         if (const IncompleteArrayType *IncompleteDest
7084                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
7085           if (const ConstantArrayType *ConstantSource
7086                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7087             *ResultType = S.Context.getConstantArrayType(
7088                                              IncompleteDest->getElementType(),
7089                                              ConstantSource->getSize(),
7090                                              ArrayType::Normal, 0);
7091           }
7092         }
7093       }
7094       break;
7095 
7096     case SK_ParenthesizedArrayInit:
7097       // Okay: we checked everything before creating this step. Note that
7098       // this is a GNU extension.
7099       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7100         << CurInit.get()->getSourceRange();
7101       break;
7102 
7103     case SK_PassByIndirectCopyRestore:
7104     case SK_PassByIndirectRestore:
7105       checkIndirectCopyRestoreSource(S, CurInit.get());
7106       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7107           CurInit.get(), Step->Type,
7108           Step->Kind == SK_PassByIndirectCopyRestore);
7109       break;
7110 
7111     case SK_ProduceObjCObject:
7112       CurInit =
7113           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7114                                    CurInit.get(), nullptr, VK_RValue);
7115       break;
7116 
7117     case SK_StdInitializerList: {
7118       S.Diag(CurInit.get()->getExprLoc(),
7119              diag::warn_cxx98_compat_initializer_list_init)
7120         << CurInit.get()->getSourceRange();
7121 
7122       // Materialize the temporary into memory.
7123       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7124           CurInit.get()->getType(), CurInit.get(),
7125           /*BoundToLvalueReference=*/false);
7126 
7127       // Maybe lifetime-extend the array temporary's subobjects to match the
7128       // entity's lifetime.
7129       if (const InitializedEntity *ExtendingEntity =
7130               getEntityForTemporaryLifetimeExtension(&Entity))
7131         if (performReferenceExtension(MTE, ExtendingEntity))
7132           warnOnLifetimeExtension(S, Entity, CurInit.get(),
7133                                   /*IsInitializerList=*/true,
7134                                   ExtendingEntity->getDecl());
7135 
7136       // Wrap it in a construction of a std::initializer_list<T>.
7137       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7138 
7139       // Bind the result, in case the library has given initializer_list a
7140       // non-trivial destructor.
7141       if (shouldBindAsTemporary(Entity))
7142         CurInit = S.MaybeBindToTemporary(CurInit.get());
7143       break;
7144     }
7145 
7146     case SK_OCLSamplerInit: {
7147       // Sampler initialzation have 5 cases:
7148       //   1. function argument passing
7149       //      1a. argument is a file-scope variable
7150       //      1b. argument is a function-scope variable
7151       //      1c. argument is one of caller function's parameters
7152       //   2. variable initialization
7153       //      2a. initializing a file-scope variable
7154       //      2b. initializing a function-scope variable
7155       //
7156       // For file-scope variables, since they cannot be initialized by function
7157       // call of __translate_sampler_initializer in LLVM IR, their references
7158       // need to be replaced by a cast from their literal initializers to
7159       // sampler type. Since sampler variables can only be used in function
7160       // calls as arguments, we only need to replace them when handling the
7161       // argument passing.
7162       assert(Step->Type->isSamplerT() &&
7163              "Sampler initialization on non-sampler type.");
7164       Expr *Init = CurInit.get();
7165       QualType SourceType = Init->getType();
7166       // Case 1
7167       if (Entity.isParameterKind()) {
7168         if (!SourceType->isSamplerT()) {
7169           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7170             << SourceType;
7171           break;
7172         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7173           auto Var = cast<VarDecl>(DRE->getDecl());
7174           // Case 1b and 1c
7175           // No cast from integer to sampler is needed.
7176           if (!Var->hasGlobalStorage()) {
7177             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7178                                                CK_LValueToRValue, Init,
7179                                                /*BasePath=*/nullptr, VK_RValue);
7180             break;
7181           }
7182           // Case 1a
7183           // For function call with a file-scope sampler variable as argument,
7184           // get the integer literal.
7185           // Do not diagnose if the file-scope variable does not have initializer
7186           // since this has already been diagnosed when parsing the variable
7187           // declaration.
7188           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7189             break;
7190           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
7191             Var->getInit()))->getSubExpr();
7192           SourceType = Init->getType();
7193         }
7194       } else {
7195         // Case 2
7196         // Check initializer is 32 bit integer constant.
7197         // If the initializer is taken from global variable, do not diagnose since
7198         // this has already been done when parsing the variable declaration.
7199         if (!Init->isConstantInitializer(S.Context, false))
7200           break;
7201 
7202         if (!SourceType->isIntegerType() ||
7203             32 != S.Context.getIntWidth(SourceType)) {
7204           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
7205             << SourceType;
7206           break;
7207         }
7208 
7209         llvm::APSInt Result;
7210         Init->EvaluateAsInt(Result, S.Context);
7211         const uint64_t SamplerValue = Result.getLimitedValue();
7212         // 32-bit value of sampler's initializer is interpreted as
7213         // bit-field with the following structure:
7214         // |unspecified|Filter|Addressing Mode| Normalized Coords|
7215         // |31        6|5    4|3             1|                 0|
7216         // This structure corresponds to enum values of sampler properties
7217         // defined in SPIR spec v1.2 and also opencl-c.h
7218         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
7219         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
7220         if (FilterMode != 1 && FilterMode != 2)
7221           S.Diag(Kind.getLocation(),
7222                  diag::warn_sampler_initializer_invalid_bits)
7223                  << "Filter Mode";
7224         if (AddressingMode > 4)
7225           S.Diag(Kind.getLocation(),
7226                  diag::warn_sampler_initializer_invalid_bits)
7227                  << "Addressing Mode";
7228       }
7229 
7230       // Cases 1a, 2a and 2b
7231       // Insert cast from integer to sampler.
7232       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
7233                                       CK_IntToOCLSampler);
7234       break;
7235     }
7236     case SK_OCLZeroEvent: {
7237       assert(Step->Type->isEventT() &&
7238              "Event initialization on non-event type.");
7239 
7240       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7241                                     CK_ZeroToOCLEvent,
7242                                     CurInit.get()->getValueKind());
7243       break;
7244     }
7245     case SK_OCLZeroQueue: {
7246       assert(Step->Type->isQueueT() &&
7247              "Event initialization on non queue type.");
7248 
7249       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7250                                     CK_ZeroToOCLQueue,
7251                                     CurInit.get()->getValueKind());
7252       break;
7253     }
7254     }
7255   }
7256 
7257   // Diagnose non-fatal problems with the completed initialization.
7258   if (Entity.getKind() == InitializedEntity::EK_Member &&
7259       cast<FieldDecl>(Entity.getDecl())->isBitField())
7260     S.CheckBitFieldInitialization(Kind.getLocation(),
7261                                   cast<FieldDecl>(Entity.getDecl()),
7262                                   CurInit.get());
7263 
7264   // Check for std::move on construction.
7265   if (const Expr *E = CurInit.get()) {
7266     CheckMoveOnConstruction(S, E,
7267                             Entity.getKind() == InitializedEntity::EK_Result);
7268   }
7269 
7270   return CurInit;
7271 }
7272 
7273 /// Somewhere within T there is an uninitialized reference subobject.
7274 /// Dig it out and diagnose it.
7275 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
7276                                            QualType T) {
7277   if (T->isReferenceType()) {
7278     S.Diag(Loc, diag::err_reference_without_init)
7279       << T.getNonReferenceType();
7280     return true;
7281   }
7282 
7283   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7284   if (!RD || !RD->hasUninitializedReferenceMember())
7285     return false;
7286 
7287   for (const auto *FI : RD->fields()) {
7288     if (FI->isUnnamedBitfield())
7289       continue;
7290 
7291     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
7292       S.Diag(Loc, diag::note_value_initialization_here) << RD;
7293       return true;
7294     }
7295   }
7296 
7297   for (const auto &BI : RD->bases()) {
7298     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
7299       S.Diag(Loc, diag::note_value_initialization_here) << RD;
7300       return true;
7301     }
7302   }
7303 
7304   return false;
7305 }
7306 
7307 
7308 //===----------------------------------------------------------------------===//
7309 // Diagnose initialization failures
7310 //===----------------------------------------------------------------------===//
7311 
7312 /// Emit notes associated with an initialization that failed due to a
7313 /// "simple" conversion failure.
7314 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
7315                                    Expr *op) {
7316   QualType destType = entity.getType();
7317   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
7318       op->getType()->isObjCObjectPointerType()) {
7319 
7320     // Emit a possible note about the conversion failing because the
7321     // operand is a message send with a related result type.
7322     S.EmitRelatedResultTypeNote(op);
7323 
7324     // Emit a possible note about a return failing because we're
7325     // expecting a related result type.
7326     if (entity.getKind() == InitializedEntity::EK_Result)
7327       S.EmitRelatedResultTypeNoteForReturn(destType);
7328   }
7329 }
7330 
7331 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
7332                              InitListExpr *InitList) {
7333   QualType DestType = Entity.getType();
7334 
7335   QualType E;
7336   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
7337     QualType ArrayType = S.Context.getConstantArrayType(
7338         E.withConst(),
7339         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
7340                     InitList->getNumInits()),
7341         clang::ArrayType::Normal, 0);
7342     InitializedEntity HiddenArray =
7343         InitializedEntity::InitializeTemporary(ArrayType);
7344     return diagnoseListInit(S, HiddenArray, InitList);
7345   }
7346 
7347   if (DestType->isReferenceType()) {
7348     // A list-initialization failure for a reference means that we tried to
7349     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
7350     // inner initialization failed.
7351     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
7352     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
7353     SourceLocation Loc = InitList->getLocStart();
7354     if (auto *D = Entity.getDecl())
7355       Loc = D->getLocation();
7356     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
7357     return;
7358   }
7359 
7360   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
7361                                    /*VerifyOnly=*/false,
7362                                    /*TreatUnavailableAsInvalid=*/false);
7363   assert(DiagnoseInitList.HadError() &&
7364          "Inconsistent init list check result.");
7365 }
7366 
7367 bool InitializationSequence::Diagnose(Sema &S,
7368                                       const InitializedEntity &Entity,
7369                                       const InitializationKind &Kind,
7370                                       ArrayRef<Expr *> Args) {
7371   if (!Failed())
7372     return false;
7373 
7374   QualType DestType = Entity.getType();
7375   switch (Failure) {
7376   case FK_TooManyInitsForReference:
7377     // FIXME: Customize for the initialized entity?
7378     if (Args.empty()) {
7379       // Dig out the reference subobject which is uninitialized and diagnose it.
7380       // If this is value-initialization, this could be nested some way within
7381       // the target type.
7382       assert(Kind.getKind() == InitializationKind::IK_Value ||
7383              DestType->isReferenceType());
7384       bool Diagnosed =
7385         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
7386       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
7387       (void)Diagnosed;
7388     } else  // FIXME: diagnostic below could be better!
7389       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
7390         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
7391     break;
7392 
7393   case FK_ArrayNeedsInitList:
7394     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
7395     break;
7396   case FK_ArrayNeedsInitListOrStringLiteral:
7397     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
7398     break;
7399   case FK_ArrayNeedsInitListOrWideStringLiteral:
7400     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
7401     break;
7402   case FK_NarrowStringIntoWideCharArray:
7403     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
7404     break;
7405   case FK_WideStringIntoCharArray:
7406     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
7407     break;
7408   case FK_IncompatWideStringIntoWideChar:
7409     S.Diag(Kind.getLocation(),
7410            diag::err_array_init_incompat_wide_string_into_wchar);
7411     break;
7412   case FK_ArrayTypeMismatch:
7413   case FK_NonConstantArrayInit:
7414     S.Diag(Kind.getLocation(),
7415            (Failure == FK_ArrayTypeMismatch
7416               ? diag::err_array_init_different_type
7417               : diag::err_array_init_non_constant_array))
7418       << DestType.getNonReferenceType()
7419       << Args[0]->getType()
7420       << Args[0]->getSourceRange();
7421     break;
7422 
7423   case FK_VariableLengthArrayHasInitializer:
7424     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
7425       << Args[0]->getSourceRange();
7426     break;
7427 
7428   case FK_AddressOfOverloadFailed: {
7429     DeclAccessPair Found;
7430     S.ResolveAddressOfOverloadedFunction(Args[0],
7431                                          DestType.getNonReferenceType(),
7432                                          true,
7433                                          Found);
7434     break;
7435   }
7436 
7437   case FK_AddressOfUnaddressableFunction: {
7438     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
7439     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7440                                         Args[0]->getLocStart());
7441     break;
7442   }
7443 
7444   case FK_ReferenceInitOverloadFailed:
7445   case FK_UserConversionOverloadFailed:
7446     switch (FailedOverloadResult) {
7447     case OR_Ambiguous:
7448       if (Failure == FK_UserConversionOverloadFailed)
7449         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
7450           << Args[0]->getType() << DestType
7451           << Args[0]->getSourceRange();
7452       else
7453         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
7454           << DestType << Args[0]->getType()
7455           << Args[0]->getSourceRange();
7456 
7457       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7458       break;
7459 
7460     case OR_No_Viable_Function:
7461       if (!S.RequireCompleteType(Kind.getLocation(),
7462                                  DestType.getNonReferenceType(),
7463                           diag::err_typecheck_nonviable_condition_incomplete,
7464                                Args[0]->getType(), Args[0]->getSourceRange()))
7465         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
7466           << (Entity.getKind() == InitializedEntity::EK_Result)
7467           << Args[0]->getType() << Args[0]->getSourceRange()
7468           << DestType.getNonReferenceType();
7469 
7470       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7471       break;
7472 
7473     case OR_Deleted: {
7474       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
7475         << Args[0]->getType() << DestType.getNonReferenceType()
7476         << Args[0]->getSourceRange();
7477       OverloadCandidateSet::iterator Best;
7478       OverloadingResult Ovl
7479         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
7480                                                 true);
7481       if (Ovl == OR_Deleted) {
7482         S.NoteDeletedFunction(Best->Function);
7483       } else {
7484         llvm_unreachable("Inconsistent overload resolution?");
7485       }
7486       break;
7487     }
7488 
7489     case OR_Success:
7490       llvm_unreachable("Conversion did not fail!");
7491     }
7492     break;
7493 
7494   case FK_NonConstLValueReferenceBindingToTemporary:
7495     if (isa<InitListExpr>(Args[0])) {
7496       S.Diag(Kind.getLocation(),
7497              diag::err_lvalue_reference_bind_to_initlist)
7498       << DestType.getNonReferenceType().isVolatileQualified()
7499       << DestType.getNonReferenceType()
7500       << Args[0]->getSourceRange();
7501       break;
7502     }
7503     // Intentional fallthrough
7504 
7505   case FK_NonConstLValueReferenceBindingToUnrelated:
7506     S.Diag(Kind.getLocation(),
7507            Failure == FK_NonConstLValueReferenceBindingToTemporary
7508              ? diag::err_lvalue_reference_bind_to_temporary
7509              : diag::err_lvalue_reference_bind_to_unrelated)
7510       << DestType.getNonReferenceType().isVolatileQualified()
7511       << DestType.getNonReferenceType()
7512       << Args[0]->getType()
7513       << Args[0]->getSourceRange();
7514     break;
7515 
7516   case FK_NonConstLValueReferenceBindingToBitfield: {
7517     // We don't necessarily have an unambiguous source bit-field.
7518     FieldDecl *BitField = Args[0]->getSourceBitField();
7519     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
7520       << DestType.isVolatileQualified()
7521       << (BitField ? BitField->getDeclName() : DeclarationName())
7522       << (BitField != nullptr)
7523       << Args[0]->getSourceRange();
7524     if (BitField)
7525       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
7526     break;
7527   }
7528 
7529   case FK_NonConstLValueReferenceBindingToVectorElement:
7530     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
7531       << DestType.isVolatileQualified()
7532       << Args[0]->getSourceRange();
7533     break;
7534 
7535   case FK_RValueReferenceBindingToLValue:
7536     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7537       << DestType.getNonReferenceType() << Args[0]->getType()
7538       << Args[0]->getSourceRange();
7539     break;
7540 
7541   case FK_ReferenceInitDropsQualifiers: {
7542     QualType SourceType = Args[0]->getType();
7543     QualType NonRefType = DestType.getNonReferenceType();
7544     Qualifiers DroppedQualifiers =
7545         SourceType.getQualifiers() - NonRefType.getQualifiers();
7546 
7547     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7548       << SourceType
7549       << NonRefType
7550       << DroppedQualifiers.getCVRQualifiers()
7551       << Args[0]->getSourceRange();
7552     break;
7553   }
7554 
7555   case FK_ReferenceInitFailed:
7556     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7557       << DestType.getNonReferenceType()
7558       << Args[0]->isLValue()
7559       << Args[0]->getType()
7560       << Args[0]->getSourceRange();
7561     emitBadConversionNotes(S, Entity, Args[0]);
7562     break;
7563 
7564   case FK_ConversionFailed: {
7565     QualType FromType = Args[0]->getType();
7566     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7567       << (int)Entity.getKind()
7568       << DestType
7569       << Args[0]->isLValue()
7570       << FromType
7571       << Args[0]->getSourceRange();
7572     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7573     S.Diag(Kind.getLocation(), PDiag);
7574     emitBadConversionNotes(S, Entity, Args[0]);
7575     break;
7576   }
7577 
7578   case FK_ConversionFromPropertyFailed:
7579     // No-op. This error has already been reported.
7580     break;
7581 
7582   case FK_TooManyInitsForScalar: {
7583     SourceRange R;
7584 
7585     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7586     if (InitList && InitList->getNumInits() >= 1) {
7587       R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7588     } else {
7589       assert(Args.size() > 1 && "Expected multiple initializers!");
7590       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7591     }
7592 
7593     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7594     if (Kind.isCStyleOrFunctionalCast())
7595       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7596         << R;
7597     else
7598       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7599         << /*scalar=*/2 << R;
7600     break;
7601   }
7602 
7603   case FK_ReferenceBindingToInitList:
7604     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7605       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7606     break;
7607 
7608   case FK_InitListBadDestinationType:
7609     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7610       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7611     break;
7612 
7613   case FK_ListConstructorOverloadFailed:
7614   case FK_ConstructorOverloadFailed: {
7615     SourceRange ArgsRange;
7616     if (Args.size())
7617       ArgsRange = SourceRange(Args.front()->getLocStart(),
7618                               Args.back()->getLocEnd());
7619 
7620     if (Failure == FK_ListConstructorOverloadFailed) {
7621       assert(Args.size() == 1 &&
7622              "List construction from other than 1 argument.");
7623       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7624       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7625     }
7626 
7627     // FIXME: Using "DestType" for the entity we're printing is probably
7628     // bad.
7629     switch (FailedOverloadResult) {
7630       case OR_Ambiguous:
7631         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7632           << DestType << ArgsRange;
7633         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7634         break;
7635 
7636       case OR_No_Viable_Function:
7637         if (Kind.getKind() == InitializationKind::IK_Default &&
7638             (Entity.getKind() == InitializedEntity::EK_Base ||
7639              Entity.getKind() == InitializedEntity::EK_Member) &&
7640             isa<CXXConstructorDecl>(S.CurContext)) {
7641           // This is implicit default initialization of a member or
7642           // base within a constructor. If no viable function was
7643           // found, notify the user that they need to explicitly
7644           // initialize this base/member.
7645           CXXConstructorDecl *Constructor
7646             = cast<CXXConstructorDecl>(S.CurContext);
7647           const CXXRecordDecl *InheritedFrom = nullptr;
7648           if (auto Inherited = Constructor->getInheritedConstructor())
7649             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
7650           if (Entity.getKind() == InitializedEntity::EK_Base) {
7651             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7652               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7653               << S.Context.getTypeDeclType(Constructor->getParent())
7654               << /*base=*/0
7655               << Entity.getType()
7656               << InheritedFrom;
7657 
7658             RecordDecl *BaseDecl
7659               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7660                                                                   ->getDecl();
7661             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7662               << S.Context.getTagDeclType(BaseDecl);
7663           } else {
7664             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7665               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7666               << S.Context.getTypeDeclType(Constructor->getParent())
7667               << /*member=*/1
7668               << Entity.getName()
7669               << InheritedFrom;
7670             S.Diag(Entity.getDecl()->getLocation(),
7671                    diag::note_member_declared_at);
7672 
7673             if (const RecordType *Record
7674                                  = Entity.getType()->getAs<RecordType>())
7675               S.Diag(Record->getDecl()->getLocation(),
7676                      diag::note_previous_decl)
7677                 << S.Context.getTagDeclType(Record->getDecl());
7678           }
7679           break;
7680         }
7681 
7682         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7683           << DestType << ArgsRange;
7684         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7685         break;
7686 
7687       case OR_Deleted: {
7688         OverloadCandidateSet::iterator Best;
7689         OverloadingResult Ovl
7690           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7691         if (Ovl != OR_Deleted) {
7692           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7693             << true << DestType << ArgsRange;
7694           llvm_unreachable("Inconsistent overload resolution?");
7695           break;
7696         }
7697 
7698         // If this is a defaulted or implicitly-declared function, then
7699         // it was implicitly deleted. Make it clear that the deletion was
7700         // implicit.
7701         if (S.isImplicitlyDeleted(Best->Function))
7702           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7703             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7704             << DestType << ArgsRange;
7705         else
7706           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7707             << true << DestType << ArgsRange;
7708 
7709         S.NoteDeletedFunction(Best->Function);
7710         break;
7711       }
7712 
7713       case OR_Success:
7714         llvm_unreachable("Conversion did not fail!");
7715     }
7716   }
7717   break;
7718 
7719   case FK_DefaultInitOfConst:
7720     if (Entity.getKind() == InitializedEntity::EK_Member &&
7721         isa<CXXConstructorDecl>(S.CurContext)) {
7722       // This is implicit default-initialization of a const member in
7723       // a constructor. Complain that it needs to be explicitly
7724       // initialized.
7725       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7726       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7727         << (Constructor->getInheritedConstructor() ? 2 :
7728             Constructor->isImplicit() ? 1 : 0)
7729         << S.Context.getTypeDeclType(Constructor->getParent())
7730         << /*const=*/1
7731         << Entity.getName();
7732       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7733         << Entity.getName();
7734     } else {
7735       S.Diag(Kind.getLocation(), diag::err_default_init_const)
7736           << DestType << (bool)DestType->getAs<RecordType>();
7737     }
7738     break;
7739 
7740   case FK_Incomplete:
7741     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7742                           diag::err_init_incomplete_type);
7743     break;
7744 
7745   case FK_ListInitializationFailed: {
7746     // Run the init list checker again to emit diagnostics.
7747     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7748     diagnoseListInit(S, Entity, InitList);
7749     break;
7750   }
7751 
7752   case FK_PlaceholderType: {
7753     // FIXME: Already diagnosed!
7754     break;
7755   }
7756 
7757   case FK_ExplicitConstructor: {
7758     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7759       << Args[0]->getSourceRange();
7760     OverloadCandidateSet::iterator Best;
7761     OverloadingResult Ovl
7762       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7763     (void)Ovl;
7764     assert(Ovl == OR_Success && "Inconsistent overload resolution");
7765     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7766     S.Diag(CtorDecl->getLocation(),
7767            diag::note_explicit_ctor_deduction_guide_here) << false;
7768     break;
7769   }
7770   }
7771 
7772   PrintInitLocationNote(S, Entity);
7773   return true;
7774 }
7775 
7776 void InitializationSequence::dump(raw_ostream &OS) const {
7777   switch (SequenceKind) {
7778   case FailedSequence: {
7779     OS << "Failed sequence: ";
7780     switch (Failure) {
7781     case FK_TooManyInitsForReference:
7782       OS << "too many initializers for reference";
7783       break;
7784 
7785     case FK_ArrayNeedsInitList:
7786       OS << "array requires initializer list";
7787       break;
7788 
7789     case FK_AddressOfUnaddressableFunction:
7790       OS << "address of unaddressable function was taken";
7791       break;
7792 
7793     case FK_ArrayNeedsInitListOrStringLiteral:
7794       OS << "array requires initializer list or string literal";
7795       break;
7796 
7797     case FK_ArrayNeedsInitListOrWideStringLiteral:
7798       OS << "array requires initializer list or wide string literal";
7799       break;
7800 
7801     case FK_NarrowStringIntoWideCharArray:
7802       OS << "narrow string into wide char array";
7803       break;
7804 
7805     case FK_WideStringIntoCharArray:
7806       OS << "wide string into char array";
7807       break;
7808 
7809     case FK_IncompatWideStringIntoWideChar:
7810       OS << "incompatible wide string into wide char array";
7811       break;
7812 
7813     case FK_ArrayTypeMismatch:
7814       OS << "array type mismatch";
7815       break;
7816 
7817     case FK_NonConstantArrayInit:
7818       OS << "non-constant array initializer";
7819       break;
7820 
7821     case FK_AddressOfOverloadFailed:
7822       OS << "address of overloaded function failed";
7823       break;
7824 
7825     case FK_ReferenceInitOverloadFailed:
7826       OS << "overload resolution for reference initialization failed";
7827       break;
7828 
7829     case FK_NonConstLValueReferenceBindingToTemporary:
7830       OS << "non-const lvalue reference bound to temporary";
7831       break;
7832 
7833     case FK_NonConstLValueReferenceBindingToBitfield:
7834       OS << "non-const lvalue reference bound to bit-field";
7835       break;
7836 
7837     case FK_NonConstLValueReferenceBindingToVectorElement:
7838       OS << "non-const lvalue reference bound to vector element";
7839       break;
7840 
7841     case FK_NonConstLValueReferenceBindingToUnrelated:
7842       OS << "non-const lvalue reference bound to unrelated type";
7843       break;
7844 
7845     case FK_RValueReferenceBindingToLValue:
7846       OS << "rvalue reference bound to an lvalue";
7847       break;
7848 
7849     case FK_ReferenceInitDropsQualifiers:
7850       OS << "reference initialization drops qualifiers";
7851       break;
7852 
7853     case FK_ReferenceInitFailed:
7854       OS << "reference initialization failed";
7855       break;
7856 
7857     case FK_ConversionFailed:
7858       OS << "conversion failed";
7859       break;
7860 
7861     case FK_ConversionFromPropertyFailed:
7862       OS << "conversion from property failed";
7863       break;
7864 
7865     case FK_TooManyInitsForScalar:
7866       OS << "too many initializers for scalar";
7867       break;
7868 
7869     case FK_ReferenceBindingToInitList:
7870       OS << "referencing binding to initializer list";
7871       break;
7872 
7873     case FK_InitListBadDestinationType:
7874       OS << "initializer list for non-aggregate, non-scalar type";
7875       break;
7876 
7877     case FK_UserConversionOverloadFailed:
7878       OS << "overloading failed for user-defined conversion";
7879       break;
7880 
7881     case FK_ConstructorOverloadFailed:
7882       OS << "constructor overloading failed";
7883       break;
7884 
7885     case FK_DefaultInitOfConst:
7886       OS << "default initialization of a const variable";
7887       break;
7888 
7889     case FK_Incomplete:
7890       OS << "initialization of incomplete type";
7891       break;
7892 
7893     case FK_ListInitializationFailed:
7894       OS << "list initialization checker failure";
7895       break;
7896 
7897     case FK_VariableLengthArrayHasInitializer:
7898       OS << "variable length array has an initializer";
7899       break;
7900 
7901     case FK_PlaceholderType:
7902       OS << "initializer expression isn't contextually valid";
7903       break;
7904 
7905     case FK_ListConstructorOverloadFailed:
7906       OS << "list constructor overloading failed";
7907       break;
7908 
7909     case FK_ExplicitConstructor:
7910       OS << "list copy initialization chose explicit constructor";
7911       break;
7912     }
7913     OS << '\n';
7914     return;
7915   }
7916 
7917   case DependentSequence:
7918     OS << "Dependent sequence\n";
7919     return;
7920 
7921   case NormalSequence:
7922     OS << "Normal sequence: ";
7923     break;
7924   }
7925 
7926   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
7927     if (S != step_begin()) {
7928       OS << " -> ";
7929     }
7930 
7931     switch (S->Kind) {
7932     case SK_ResolveAddressOfOverloadedFunction:
7933       OS << "resolve address of overloaded function";
7934       break;
7935 
7936     case SK_CastDerivedToBaseRValue:
7937       OS << "derived-to-base (rvalue)";
7938       break;
7939 
7940     case SK_CastDerivedToBaseXValue:
7941       OS << "derived-to-base (xvalue)";
7942       break;
7943 
7944     case SK_CastDerivedToBaseLValue:
7945       OS << "derived-to-base (lvalue)";
7946       break;
7947 
7948     case SK_BindReference:
7949       OS << "bind reference to lvalue";
7950       break;
7951 
7952     case SK_BindReferenceToTemporary:
7953       OS << "bind reference to a temporary";
7954       break;
7955 
7956     case SK_FinalCopy:
7957       OS << "final copy in class direct-initialization";
7958       break;
7959 
7960     case SK_ExtraneousCopyToTemporary:
7961       OS << "extraneous C++03 copy to temporary";
7962       break;
7963 
7964     case SK_UserConversion:
7965       OS << "user-defined conversion via " << *S->Function.Function;
7966       break;
7967 
7968     case SK_QualificationConversionRValue:
7969       OS << "qualification conversion (rvalue)";
7970       break;
7971 
7972     case SK_QualificationConversionXValue:
7973       OS << "qualification conversion (xvalue)";
7974       break;
7975 
7976     case SK_QualificationConversionLValue:
7977       OS << "qualification conversion (lvalue)";
7978       break;
7979 
7980     case SK_AtomicConversion:
7981       OS << "non-atomic-to-atomic conversion";
7982       break;
7983 
7984     case SK_LValueToRValue:
7985       OS << "load (lvalue to rvalue)";
7986       break;
7987 
7988     case SK_ConversionSequence:
7989       OS << "implicit conversion sequence (";
7990       S->ICS->dump(); // FIXME: use OS
7991       OS << ")";
7992       break;
7993 
7994     case SK_ConversionSequenceNoNarrowing:
7995       OS << "implicit conversion sequence with narrowing prohibited (";
7996       S->ICS->dump(); // FIXME: use OS
7997       OS << ")";
7998       break;
7999 
8000     case SK_ListInitialization:
8001       OS << "list aggregate initialization";
8002       break;
8003 
8004     case SK_UnwrapInitList:
8005       OS << "unwrap reference initializer list";
8006       break;
8007 
8008     case SK_RewrapInitList:
8009       OS << "rewrap reference initializer list";
8010       break;
8011 
8012     case SK_ConstructorInitialization:
8013       OS << "constructor initialization";
8014       break;
8015 
8016     case SK_ConstructorInitializationFromList:
8017       OS << "list initialization via constructor";
8018       break;
8019 
8020     case SK_ZeroInitialization:
8021       OS << "zero initialization";
8022       break;
8023 
8024     case SK_CAssignment:
8025       OS << "C assignment";
8026       break;
8027 
8028     case SK_StringInit:
8029       OS << "string initialization";
8030       break;
8031 
8032     case SK_ObjCObjectConversion:
8033       OS << "Objective-C object conversion";
8034       break;
8035 
8036     case SK_ArrayLoopIndex:
8037       OS << "indexing for array initialization loop";
8038       break;
8039 
8040     case SK_ArrayLoopInit:
8041       OS << "array initialization loop";
8042       break;
8043 
8044     case SK_ArrayInit:
8045       OS << "array initialization";
8046       break;
8047 
8048     case SK_GNUArrayInit:
8049       OS << "array initialization (GNU extension)";
8050       break;
8051 
8052     case SK_ParenthesizedArrayInit:
8053       OS << "parenthesized array initialization";
8054       break;
8055 
8056     case SK_PassByIndirectCopyRestore:
8057       OS << "pass by indirect copy and restore";
8058       break;
8059 
8060     case SK_PassByIndirectRestore:
8061       OS << "pass by indirect restore";
8062       break;
8063 
8064     case SK_ProduceObjCObject:
8065       OS << "Objective-C object retension";
8066       break;
8067 
8068     case SK_StdInitializerList:
8069       OS << "std::initializer_list from initializer list";
8070       break;
8071 
8072     case SK_StdInitializerListConstructorCall:
8073       OS << "list initialization from std::initializer_list";
8074       break;
8075 
8076     case SK_OCLSamplerInit:
8077       OS << "OpenCL sampler_t from integer constant";
8078       break;
8079 
8080     case SK_OCLZeroEvent:
8081       OS << "OpenCL event_t from zero";
8082       break;
8083 
8084     case SK_OCLZeroQueue:
8085       OS << "OpenCL queue_t from zero";
8086       break;
8087     }
8088 
8089     OS << " [" << S->Type.getAsString() << ']';
8090   }
8091 
8092   OS << '\n';
8093 }
8094 
8095 void InitializationSequence::dump() const {
8096   dump(llvm::errs());
8097 }
8098 
8099 static void DiagnoseNarrowingInInitList(Sema &S,
8100                                         const ImplicitConversionSequence &ICS,
8101                                         QualType PreNarrowingType,
8102                                         QualType EntityType,
8103                                         const Expr *PostInit) {
8104   const StandardConversionSequence *SCS = nullptr;
8105   switch (ICS.getKind()) {
8106   case ImplicitConversionSequence::StandardConversion:
8107     SCS = &ICS.Standard;
8108     break;
8109   case ImplicitConversionSequence::UserDefinedConversion:
8110     SCS = &ICS.UserDefined.After;
8111     break;
8112   case ImplicitConversionSequence::AmbiguousConversion:
8113   case ImplicitConversionSequence::EllipsisConversion:
8114   case ImplicitConversionSequence::BadConversion:
8115     return;
8116   }
8117 
8118   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
8119   APValue ConstantValue;
8120   QualType ConstantType;
8121   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
8122                                 ConstantType)) {
8123   case NK_Not_Narrowing:
8124   case NK_Dependent_Narrowing:
8125     // No narrowing occurred.
8126     return;
8127 
8128   case NK_Type_Narrowing:
8129     // This was a floating-to-integer conversion, which is always considered a
8130     // narrowing conversion even if the value is a constant and can be
8131     // represented exactly as an integer.
8132     S.Diag(PostInit->getLocStart(),
8133            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8134                ? diag::warn_init_list_type_narrowing
8135                : diag::ext_init_list_type_narrowing)
8136       << PostInit->getSourceRange()
8137       << PreNarrowingType.getLocalUnqualifiedType()
8138       << EntityType.getLocalUnqualifiedType();
8139     break;
8140 
8141   case NK_Constant_Narrowing:
8142     // A constant value was narrowed.
8143     S.Diag(PostInit->getLocStart(),
8144            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8145                ? diag::warn_init_list_constant_narrowing
8146                : diag::ext_init_list_constant_narrowing)
8147       << PostInit->getSourceRange()
8148       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
8149       << EntityType.getLocalUnqualifiedType();
8150     break;
8151 
8152   case NK_Variable_Narrowing:
8153     // A variable's value may have been narrowed.
8154     S.Diag(PostInit->getLocStart(),
8155            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8156                ? diag::warn_init_list_variable_narrowing
8157                : diag::ext_init_list_variable_narrowing)
8158       << PostInit->getSourceRange()
8159       << PreNarrowingType.getLocalUnqualifiedType()
8160       << EntityType.getLocalUnqualifiedType();
8161     break;
8162   }
8163 
8164   SmallString<128> StaticCast;
8165   llvm::raw_svector_ostream OS(StaticCast);
8166   OS << "static_cast<";
8167   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
8168     // It's important to use the typedef's name if there is one so that the
8169     // fixit doesn't break code using types like int64_t.
8170     //
8171     // FIXME: This will break if the typedef requires qualification.  But
8172     // getQualifiedNameAsString() includes non-machine-parsable components.
8173     OS << *TT->getDecl();
8174   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
8175     OS << BT->getName(S.getLangOpts());
8176   else {
8177     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
8178     // with a broken cast.
8179     return;
8180   }
8181   OS << ">(";
8182   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
8183       << PostInit->getSourceRange()
8184       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
8185       << FixItHint::CreateInsertion(
8186              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
8187 }
8188 
8189 //===----------------------------------------------------------------------===//
8190 // Initialization helper functions
8191 //===----------------------------------------------------------------------===//
8192 bool
8193 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
8194                                    ExprResult Init) {
8195   if (Init.isInvalid())
8196     return false;
8197 
8198   Expr *InitE = Init.get();
8199   assert(InitE && "No initialization expression");
8200 
8201   InitializationKind Kind
8202     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
8203   InitializationSequence Seq(*this, Entity, Kind, InitE);
8204   return !Seq.Failed();
8205 }
8206 
8207 ExprResult
8208 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
8209                                 SourceLocation EqualLoc,
8210                                 ExprResult Init,
8211                                 bool TopLevelOfInitList,
8212                                 bool AllowExplicit) {
8213   if (Init.isInvalid())
8214     return ExprError();
8215 
8216   Expr *InitE = Init.get();
8217   assert(InitE && "No initialization expression?");
8218 
8219   if (EqualLoc.isInvalid())
8220     EqualLoc = InitE->getLocStart();
8221 
8222   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
8223                                                            EqualLoc,
8224                                                            AllowExplicit);
8225   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
8226 
8227   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
8228 
8229   return Result;
8230 }
8231 
8232 QualType Sema::DeduceTemplateSpecializationFromInitializer(
8233     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
8234     const InitializationKind &Kind, MultiExprArg Inits) {
8235   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
8236       TSInfo->getType()->getContainedDeducedType());
8237   assert(DeducedTST && "not a deduced template specialization type");
8238 
8239   // We can only perform deduction for class templates.
8240   auto TemplateName = DeducedTST->getTemplateName();
8241   auto *Template =
8242       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
8243   if (!Template) {
8244     Diag(Kind.getLocation(),
8245          diag::err_deduced_non_class_template_specialization_type)
8246       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
8247     if (auto *TD = TemplateName.getAsTemplateDecl())
8248       Diag(TD->getLocation(), diag::note_template_decl_here);
8249     return QualType();
8250   }
8251 
8252   // Can't deduce from dependent arguments.
8253   if (Expr::hasAnyTypeDependentArguments(Inits))
8254     return Context.DependentTy;
8255 
8256   // FIXME: Perform "exact type" matching first, per CWG discussion?
8257   //        Or implement this via an implied 'T(T) -> T' deduction guide?
8258 
8259   // FIXME: Do we need/want a std::initializer_list<T> special case?
8260 
8261   // Look up deduction guides, including those synthesized from constructors.
8262   //
8263   // C++1z [over.match.class.deduct]p1:
8264   //   A set of functions and function templates is formed comprising:
8265   //   - For each constructor of the class template designated by the
8266   //     template-name, a function template [...]
8267   //  - For each deduction-guide, a function or function template [...]
8268   DeclarationNameInfo NameInfo(
8269       Context.DeclarationNames.getCXXDeductionGuideName(Template),
8270       TSInfo->getTypeLoc().getEndLoc());
8271   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
8272   LookupQualifiedName(Guides, Template->getDeclContext());
8273 
8274   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
8275   // clear on this, but they're not found by name so access does not apply.
8276   Guides.suppressDiagnostics();
8277 
8278   // Figure out if this is list-initialization.
8279   InitListExpr *ListInit =
8280       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
8281           ? dyn_cast<InitListExpr>(Inits[0])
8282           : nullptr;
8283 
8284   // C++1z [over.match.class.deduct]p1:
8285   //   Initialization and overload resolution are performed as described in
8286   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
8287   //   (as appropriate for the type of initialization performed) for an object
8288   //   of a hypothetical class type, where the selected functions and function
8289   //   templates are considered to be the constructors of that class type
8290   //
8291   // Since we know we're initializing a class type of a type unrelated to that
8292   // of the initializer, this reduces to something fairly reasonable.
8293   OverloadCandidateSet Candidates(Kind.getLocation(),
8294                                   OverloadCandidateSet::CSK_Normal);
8295   OverloadCandidateSet::iterator Best;
8296   auto tryToResolveOverload =
8297       [&](bool OnlyListConstructors) -> OverloadingResult {
8298     Candidates.clear();
8299     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
8300       NamedDecl *D = (*I)->getUnderlyingDecl();
8301       if (D->isInvalidDecl())
8302         continue;
8303 
8304       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
8305       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
8306           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
8307       if (!GD)
8308         continue;
8309 
8310       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
8311       //   For copy-initialization, the candidate functions are all the
8312       //   converting constructors (12.3.1) of that class.
8313       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
8314       //   The converting constructors of T are candidate functions.
8315       if (Kind.isCopyInit() && !ListInit) {
8316         // Only consider converting constructors.
8317         if (GD->isExplicit())
8318           continue;
8319 
8320         // When looking for a converting constructor, deduction guides that
8321         // could never be called with one argument are not interesting to
8322         // check or note.
8323         if (GD->getMinRequiredArguments() > 1 ||
8324             (GD->getNumParams() == 0 && !GD->isVariadic()))
8325           continue;
8326       }
8327 
8328       // C++ [over.match.list]p1.1: (first phase list initialization)
8329       //   Initially, the candidate functions are the initializer-list
8330       //   constructors of the class T
8331       if (OnlyListConstructors && !isInitListConstructor(GD))
8332         continue;
8333 
8334       // C++ [over.match.list]p1.2: (second phase list initialization)
8335       //   the candidate functions are all the constructors of the class T
8336       // C++ [over.match.ctor]p1: (all other cases)
8337       //   the candidate functions are all the constructors of the class of
8338       //   the object being initialized
8339 
8340       // C++ [over.best.ics]p4:
8341       //   When [...] the constructor [...] is a candidate by
8342       //    - [over.match.copy] (in all cases)
8343       // FIXME: The "second phase of [over.match.list] case can also
8344       // theoretically happen here, but it's not clear whether we can
8345       // ever have a parameter of the right type.
8346       bool SuppressUserConversions = Kind.isCopyInit();
8347 
8348       if (TD)
8349         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
8350                                      Inits, Candidates,
8351                                      SuppressUserConversions);
8352       else
8353         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
8354                              SuppressUserConversions);
8355     }
8356     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
8357   };
8358 
8359   OverloadingResult Result = OR_No_Viable_Function;
8360 
8361   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
8362   // try initializer-list constructors.
8363   if (ListInit) {
8364     bool TryListConstructors = true;
8365 
8366     // Try list constructors unless the list is empty and the class has one or
8367     // more default constructors, in which case those constructors win.
8368     if (!ListInit->getNumInits()) {
8369       for (NamedDecl *D : Guides) {
8370         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
8371         if (FD && FD->getMinRequiredArguments() == 0) {
8372           TryListConstructors = false;
8373           break;
8374         }
8375       }
8376     }
8377 
8378     if (TryListConstructors)
8379       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
8380     // Then unwrap the initializer list and try again considering all
8381     // constructors.
8382     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
8383   }
8384 
8385   // If list-initialization fails, or if we're doing any other kind of
8386   // initialization, we (eventually) consider constructors.
8387   if (Result == OR_No_Viable_Function)
8388     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
8389 
8390   switch (Result) {
8391   case OR_Ambiguous:
8392     Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
8393       << TemplateName;
8394     // FIXME: For list-initialization candidates, it'd usually be better to
8395     // list why they were not viable when given the initializer list itself as
8396     // an argument.
8397     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
8398     return QualType();
8399 
8400   case OR_No_Viable_Function: {
8401     CXXRecordDecl *Primary =
8402         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
8403     bool Complete =
8404         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
8405     Diag(Kind.getLocation(),
8406          Complete ? diag::err_deduced_class_template_ctor_no_viable
8407                   : diag::err_deduced_class_template_incomplete)
8408       << TemplateName << !Guides.empty();
8409     Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
8410     return QualType();
8411   }
8412 
8413   case OR_Deleted: {
8414     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
8415       << TemplateName;
8416     NoteDeletedFunction(Best->Function);
8417     return QualType();
8418   }
8419 
8420   case OR_Success:
8421     // C++ [over.match.list]p1:
8422     //   In copy-list-initialization, if an explicit constructor is chosen, the
8423     //   initialization is ill-formed.
8424     if (Kind.isCopyInit() && ListInit &&
8425         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
8426       bool IsDeductionGuide = !Best->Function->isImplicit();
8427       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
8428           << TemplateName << IsDeductionGuide;
8429       Diag(Best->Function->getLocation(),
8430            diag::note_explicit_ctor_deduction_guide_here)
8431           << IsDeductionGuide;
8432       return QualType();
8433     }
8434 
8435     // Make sure we didn't select an unusable deduction guide, and mark it
8436     // as referenced.
8437     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
8438     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
8439     break;
8440   }
8441 
8442   // C++ [dcl.type.class.deduct]p1:
8443   //  The placeholder is replaced by the return type of the function selected
8444   //  by overload resolution for class template deduction.
8445   return SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
8446 }
8447