1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/LiteralSupport.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/AnalysisBasedWarnings.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Designator.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/Lookup.h"
40 #include "clang/Sema/ParsedTemplate.h"
41 #include "clang/Sema/Scope.h"
42 #include "clang/Sema/ScopeInfo.h"
43 #include "clang/Sema/SemaFixItUtils.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/Support/ConvertUTF.h"
47 using namespace clang;
48 using namespace sema;
49 
50 /// \brief Determine whether the use of this declaration is valid, without
51 /// emitting diagnostics.
52 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
53   // See if this is an auto-typed variable whose initializer we are parsing.
54   if (ParsingInitForAutoVars.count(D))
55     return false;
56 
57   // See if this is a deleted function.
58   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
59     if (FD->isDeleted())
60       return false;
61 
62     // If the function has a deduced return type, and we can't deduce it,
63     // then we can't use it either.
64     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
65         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
66       return false;
67   }
68 
69   // See if this function is unavailable.
70   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
71       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
72     return false;
73 
74   return true;
75 }
76 
77 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
78   // Warn if this is used but marked unused.
79   if (const auto *A = D->getAttr<UnusedAttr>()) {
80     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
81     // should diagnose them.
82     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused) {
83       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
84       if (DC && !DC->hasAttr<UnusedAttr>())
85         S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
86     }
87   }
88 }
89 
90 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
91   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
92   if (!OMD)
93     return false;
94   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
95   if (!OID)
96     return false;
97 
98   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
99     if (ObjCMethodDecl *CatMeth =
100             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
101       if (!CatMeth->hasAttr<AvailabilityAttr>())
102         return true;
103   return false;
104 }
105 
106 AvailabilityResult Sema::ShouldDiagnoseAvailabilityOfDecl(
107     NamedDecl *&D, VersionTuple ContextVersion, std::string *Message) {
108   AvailabilityResult Result = D->getAvailability(Message, ContextVersion);
109 
110   // For typedefs, if the typedef declaration appears available look
111   // to the underlying type to see if it is more restrictive.
112   while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
113     if (Result == AR_Available) {
114       if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
115         D = TT->getDecl();
116         Result = D->getAvailability(Message, ContextVersion);
117         continue;
118       }
119     }
120     break;
121   }
122 
123   // Forward class declarations get their attributes from their definition.
124   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
125     if (IDecl->getDefinition()) {
126       D = IDecl->getDefinition();
127       Result = D->getAvailability(Message, ContextVersion);
128     }
129   }
130 
131   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
132     if (Result == AR_Available) {
133       const DeclContext *DC = ECD->getDeclContext();
134       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
135         Result = TheEnumDecl->getAvailability(Message, ContextVersion);
136     }
137 
138   switch (Result) {
139   case AR_Available:
140     return Result;
141 
142   case AR_Unavailable:
143   case AR_Deprecated:
144     return getCurContextAvailability() != Result ? Result : AR_Available;
145 
146   case AR_NotYetIntroduced: {
147     // Don't do this for enums, they can't be redeclared.
148     if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
149       return AR_Available;
150 
151     bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
152     // Objective-C method declarations in categories are not modelled as
153     // redeclarations, so manually look for a redeclaration in a category
154     // if necessary.
155     if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
156       Warn = false;
157     // In general, D will point to the most recent redeclaration. However,
158     // for `@class A;` decls, this isn't true -- manually go through the
159     // redecl chain in that case.
160     if (Warn && isa<ObjCInterfaceDecl>(D))
161       for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
162            Redecl = Redecl->getPreviousDecl())
163         if (!Redecl->hasAttr<AvailabilityAttr>() ||
164             Redecl->getAttr<AvailabilityAttr>()->isInherited())
165           Warn = false;
166 
167     return Warn ? AR_NotYetIntroduced : AR_Available;
168   }
169   }
170   llvm_unreachable("Unknown availability result!");
171 }
172 
173 static void
174 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
175                            const ObjCInterfaceDecl *UnknownObjCClass,
176                            bool ObjCPropertyAccess) {
177   VersionTuple ContextVersion;
178   if (const DeclContext *DC = S.getCurObjCLexicalContext())
179     ContextVersion = S.getVersionForDecl(cast<Decl>(DC));
180 
181   std::string Message;
182   // See if this declaration is unavailable, deprecated, or partial in the
183   // current context.
184   if (AvailabilityResult Result =
185           S.ShouldDiagnoseAvailabilityOfDecl(D, ContextVersion, &Message)) {
186 
187     if (Result == AR_NotYetIntroduced && S.getCurFunctionOrMethodDecl()) {
188       S.getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
189       return;
190     }
191 
192     const ObjCPropertyDecl *ObjCPDecl = nullptr;
193     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
194       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
195         AvailabilityResult PDeclResult =
196             PD->getAvailability(nullptr, ContextVersion);
197         if (PDeclResult == Result)
198           ObjCPDecl = PD;
199       }
200     }
201 
202     S.EmitAvailabilityWarning(Result, D, Message, Loc, UnknownObjCClass,
203                               ObjCPDecl, ObjCPropertyAccess);
204   }
205 }
206 
207 /// \brief Emit a note explaining that this function is deleted.
208 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
209   assert(Decl->isDeleted());
210 
211   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
212 
213   if (Method && Method->isDeleted() && Method->isDefaulted()) {
214     // If the method was explicitly defaulted, point at that declaration.
215     if (!Method->isImplicit())
216       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
217 
218     // Try to diagnose why this special member function was implicitly
219     // deleted. This might fail, if that reason no longer applies.
220     CXXSpecialMember CSM = getSpecialMember(Method);
221     if (CSM != CXXInvalid)
222       ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
223 
224     return;
225   }
226 
227   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
228   if (Ctor && Ctor->isInheritingConstructor())
229     return NoteDeletedInheritingConstructor(Ctor);
230 
231   Diag(Decl->getLocation(), diag::note_availability_specified_here)
232     << Decl << true;
233 }
234 
235 /// \brief Determine whether a FunctionDecl was ever declared with an
236 /// explicit storage class.
237 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
238   for (auto I : D->redecls()) {
239     if (I->getStorageClass() != SC_None)
240       return true;
241   }
242   return false;
243 }
244 
245 /// \brief Check whether we're in an extern inline function and referring to a
246 /// variable or function with internal linkage (C11 6.7.4p3).
247 ///
248 /// This is only a warning because we used to silently accept this code, but
249 /// in many cases it will not behave correctly. This is not enabled in C++ mode
250 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
251 /// and so while there may still be user mistakes, most of the time we can't
252 /// prove that there are errors.
253 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
254                                                       const NamedDecl *D,
255                                                       SourceLocation Loc) {
256   // This is disabled under C++; there are too many ways for this to fire in
257   // contexts where the warning is a false positive, or where it is technically
258   // correct but benign.
259   if (S.getLangOpts().CPlusPlus)
260     return;
261 
262   // Check if this is an inlined function or method.
263   FunctionDecl *Current = S.getCurFunctionDecl();
264   if (!Current)
265     return;
266   if (!Current->isInlined())
267     return;
268   if (!Current->isExternallyVisible())
269     return;
270 
271   // Check if the decl has internal linkage.
272   if (D->getFormalLinkage() != InternalLinkage)
273     return;
274 
275   // Downgrade from ExtWarn to Extension if
276   //  (1) the supposedly external inline function is in the main file,
277   //      and probably won't be included anywhere else.
278   //  (2) the thing we're referencing is a pure function.
279   //  (3) the thing we're referencing is another inline function.
280   // This last can give us false negatives, but it's better than warning on
281   // wrappers for simple C library functions.
282   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
283   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
284   if (!DowngradeWarning && UsedFn)
285     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
286 
287   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
288                                : diag::ext_internal_in_extern_inline)
289     << /*IsVar=*/!UsedFn << D;
290 
291   S.MaybeSuggestAddingStaticToDecl(Current);
292 
293   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
294       << D;
295 }
296 
297 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
298   const FunctionDecl *First = Cur->getFirstDecl();
299 
300   // Suggest "static" on the function, if possible.
301   if (!hasAnyExplicitStorageClass(First)) {
302     SourceLocation DeclBegin = First->getSourceRange().getBegin();
303     Diag(DeclBegin, diag::note_convert_inline_to_static)
304       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
305   }
306 }
307 
308 /// \brief Determine whether the use of this declaration is valid, and
309 /// emit any corresponding diagnostics.
310 ///
311 /// This routine diagnoses various problems with referencing
312 /// declarations that can occur when using a declaration. For example,
313 /// it might warn if a deprecated or unavailable declaration is being
314 /// used, or produce an error (and return true) if a C++0x deleted
315 /// function is being used.
316 ///
317 /// \returns true if there was an error (this declaration cannot be
318 /// referenced), false otherwise.
319 ///
320 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
321                              const ObjCInterfaceDecl *UnknownObjCClass,
322                              bool ObjCPropertyAccess) {
323   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
324     // If there were any diagnostics suppressed by template argument deduction,
325     // emit them now.
326     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
327     if (Pos != SuppressedDiagnostics.end()) {
328       for (const PartialDiagnosticAt &Suppressed : Pos->second)
329         Diag(Suppressed.first, Suppressed.second);
330 
331       // Clear out the list of suppressed diagnostics, so that we don't emit
332       // them again for this specialization. However, we don't obsolete this
333       // entry from the table, because we want to avoid ever emitting these
334       // diagnostics again.
335       Pos->second.clear();
336     }
337 
338     // C++ [basic.start.main]p3:
339     //   The function 'main' shall not be used within a program.
340     if (cast<FunctionDecl>(D)->isMain())
341       Diag(Loc, diag::ext_main_used);
342   }
343 
344   // See if this is an auto-typed variable whose initializer we are parsing.
345   if (ParsingInitForAutoVars.count(D)) {
346     if (isa<BindingDecl>(D)) {
347       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
348         << D->getDeclName();
349     } else {
350       const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
351 
352       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
353         << D->getDeclName() << (unsigned)AT->getKeyword();
354     }
355     return true;
356   }
357 
358   // See if this is a deleted function.
359   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
360     if (FD->isDeleted()) {
361       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
362       if (Ctor && Ctor->isInheritingConstructor())
363         Diag(Loc, diag::err_deleted_inherited_ctor_use)
364             << Ctor->getParent()
365             << Ctor->getInheritedConstructor().getConstructor()->getParent();
366       else
367         Diag(Loc, diag::err_deleted_function_use);
368       NoteDeletedFunction(FD);
369       return true;
370     }
371 
372     // If the function has a deduced return type, and we can't deduce it,
373     // then we can't use it either.
374     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
375         DeduceReturnType(FD, Loc))
376       return true;
377 
378     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
379       return true;
380   }
381 
382   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
383   // Only the variables omp_in and omp_out are allowed in the combiner.
384   // Only the variables omp_priv and omp_orig are allowed in the
385   // initializer-clause.
386   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
387   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
388       isa<VarDecl>(D)) {
389     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
390         << getCurFunction()->HasOMPDeclareReductionCombiner;
391     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
392     return true;
393   }
394   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
395                              ObjCPropertyAccess);
396 
397   DiagnoseUnusedOfDecl(*this, D, Loc);
398 
399   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
400 
401   return false;
402 }
403 
404 /// \brief Retrieve the message suffix that should be added to a
405 /// diagnostic complaining about the given function being deleted or
406 /// unavailable.
407 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
408   std::string Message;
409   if (FD->getAvailability(&Message))
410     return ": " + Message;
411 
412   return std::string();
413 }
414 
415 /// DiagnoseSentinelCalls - This routine checks whether a call or
416 /// message-send is to a declaration with the sentinel attribute, and
417 /// if so, it checks that the requirements of the sentinel are
418 /// satisfied.
419 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
420                                  ArrayRef<Expr *> Args) {
421   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
422   if (!attr)
423     return;
424 
425   // The number of formal parameters of the declaration.
426   unsigned numFormalParams;
427 
428   // The kind of declaration.  This is also an index into a %select in
429   // the diagnostic.
430   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
431 
432   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
433     numFormalParams = MD->param_size();
434     calleeType = CT_Method;
435   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
436     numFormalParams = FD->param_size();
437     calleeType = CT_Function;
438   } else if (isa<VarDecl>(D)) {
439     QualType type = cast<ValueDecl>(D)->getType();
440     const FunctionType *fn = nullptr;
441     if (const PointerType *ptr = type->getAs<PointerType>()) {
442       fn = ptr->getPointeeType()->getAs<FunctionType>();
443       if (!fn) return;
444       calleeType = CT_Function;
445     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
446       fn = ptr->getPointeeType()->castAs<FunctionType>();
447       calleeType = CT_Block;
448     } else {
449       return;
450     }
451 
452     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
453       numFormalParams = proto->getNumParams();
454     } else {
455       numFormalParams = 0;
456     }
457   } else {
458     return;
459   }
460 
461   // "nullPos" is the number of formal parameters at the end which
462   // effectively count as part of the variadic arguments.  This is
463   // useful if you would prefer to not have *any* formal parameters,
464   // but the language forces you to have at least one.
465   unsigned nullPos = attr->getNullPos();
466   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
467   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
468 
469   // The number of arguments which should follow the sentinel.
470   unsigned numArgsAfterSentinel = attr->getSentinel();
471 
472   // If there aren't enough arguments for all the formal parameters,
473   // the sentinel, and the args after the sentinel, complain.
474   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
475     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
476     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
477     return;
478   }
479 
480   // Otherwise, find the sentinel expression.
481   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
482   if (!sentinelExpr) return;
483   if (sentinelExpr->isValueDependent()) return;
484   if (Context.isSentinelNullExpr(sentinelExpr)) return;
485 
486   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
487   // or 'NULL' if those are actually defined in the context.  Only use
488   // 'nil' for ObjC methods, where it's much more likely that the
489   // variadic arguments form a list of object pointers.
490   SourceLocation MissingNilLoc
491     = getLocForEndOfToken(sentinelExpr->getLocEnd());
492   std::string NullValue;
493   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
494     NullValue = "nil";
495   else if (getLangOpts().CPlusPlus11)
496     NullValue = "nullptr";
497   else if (PP.isMacroDefined("NULL"))
498     NullValue = "NULL";
499   else
500     NullValue = "(void*) 0";
501 
502   if (MissingNilLoc.isInvalid())
503     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
504   else
505     Diag(MissingNilLoc, diag::warn_missing_sentinel)
506       << int(calleeType)
507       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
508   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
509 }
510 
511 SourceRange Sema::getExprRange(Expr *E) const {
512   return E ? E->getSourceRange() : SourceRange();
513 }
514 
515 //===----------------------------------------------------------------------===//
516 //  Standard Promotions and Conversions
517 //===----------------------------------------------------------------------===//
518 
519 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
520 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
521   // Handle any placeholder expressions which made it here.
522   if (E->getType()->isPlaceholderType()) {
523     ExprResult result = CheckPlaceholderExpr(E);
524     if (result.isInvalid()) return ExprError();
525     E = result.get();
526   }
527 
528   QualType Ty = E->getType();
529   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
530 
531   if (Ty->isFunctionType()) {
532     // If we are here, we are not calling a function but taking
533     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
534     if (getLangOpts().OpenCL) {
535       if (Diagnose)
536         Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
537       return ExprError();
538     }
539 
540     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
541       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
542         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
543           return ExprError();
544 
545     E = ImpCastExprToType(E, Context.getPointerType(Ty),
546                           CK_FunctionToPointerDecay).get();
547   } else if (Ty->isArrayType()) {
548     // In C90 mode, arrays only promote to pointers if the array expression is
549     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
550     // type 'array of type' is converted to an expression that has type 'pointer
551     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
552     // that has type 'array of type' ...".  The relevant change is "an lvalue"
553     // (C90) to "an expression" (C99).
554     //
555     // C++ 4.2p1:
556     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
557     // T" can be converted to an rvalue of type "pointer to T".
558     //
559     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
560       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
561                             CK_ArrayToPointerDecay).get();
562   }
563   return E;
564 }
565 
566 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
567   // Check to see if we are dereferencing a null pointer.  If so,
568   // and if not volatile-qualified, this is undefined behavior that the
569   // optimizer will delete, so warn about it.  People sometimes try to use this
570   // to get a deterministic trap and are surprised by clang's behavior.  This
571   // only handles the pattern "*null", which is a very syntactic check.
572   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
573     if (UO->getOpcode() == UO_Deref &&
574         UO->getSubExpr()->IgnoreParenCasts()->
575           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
576         !UO->getType().isVolatileQualified()) {
577     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
578                           S.PDiag(diag::warn_indirection_through_null)
579                             << UO->getSubExpr()->getSourceRange());
580     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
581                         S.PDiag(diag::note_indirection_through_null));
582   }
583 }
584 
585 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
586                                     SourceLocation AssignLoc,
587                                     const Expr* RHS) {
588   const ObjCIvarDecl *IV = OIRE->getDecl();
589   if (!IV)
590     return;
591 
592   DeclarationName MemberName = IV->getDeclName();
593   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
594   if (!Member || !Member->isStr("isa"))
595     return;
596 
597   const Expr *Base = OIRE->getBase();
598   QualType BaseType = Base->getType();
599   if (OIRE->isArrow())
600     BaseType = BaseType->getPointeeType();
601   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
602     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
603       ObjCInterfaceDecl *ClassDeclared = nullptr;
604       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
605       if (!ClassDeclared->getSuperClass()
606           && (*ClassDeclared->ivar_begin()) == IV) {
607         if (RHS) {
608           NamedDecl *ObjectSetClass =
609             S.LookupSingleName(S.TUScope,
610                                &S.Context.Idents.get("object_setClass"),
611                                SourceLocation(), S.LookupOrdinaryName);
612           if (ObjectSetClass) {
613             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
614             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
615             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
616             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
617                                                      AssignLoc), ",") <<
618             FixItHint::CreateInsertion(RHSLocEnd, ")");
619           }
620           else
621             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
622         } else {
623           NamedDecl *ObjectGetClass =
624             S.LookupSingleName(S.TUScope,
625                                &S.Context.Idents.get("object_getClass"),
626                                SourceLocation(), S.LookupOrdinaryName);
627           if (ObjectGetClass)
628             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
629             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
630             FixItHint::CreateReplacement(
631                                          SourceRange(OIRE->getOpLoc(),
632                                                      OIRE->getLocEnd()), ")");
633           else
634             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
635         }
636         S.Diag(IV->getLocation(), diag::note_ivar_decl);
637       }
638     }
639 }
640 
641 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
642   // Handle any placeholder expressions which made it here.
643   if (E->getType()->isPlaceholderType()) {
644     ExprResult result = CheckPlaceholderExpr(E);
645     if (result.isInvalid()) return ExprError();
646     E = result.get();
647   }
648 
649   // C++ [conv.lval]p1:
650   //   A glvalue of a non-function, non-array type T can be
651   //   converted to a prvalue.
652   if (!E->isGLValue()) return E;
653 
654   QualType T = E->getType();
655   assert(!T.isNull() && "r-value conversion on typeless expression?");
656 
657   // We don't want to throw lvalue-to-rvalue casts on top of
658   // expressions of certain types in C++.
659   if (getLangOpts().CPlusPlus &&
660       (E->getType() == Context.OverloadTy ||
661        T->isDependentType() ||
662        T->isRecordType()))
663     return E;
664 
665   // The C standard is actually really unclear on this point, and
666   // DR106 tells us what the result should be but not why.  It's
667   // generally best to say that void types just doesn't undergo
668   // lvalue-to-rvalue at all.  Note that expressions of unqualified
669   // 'void' type are never l-values, but qualified void can be.
670   if (T->isVoidType())
671     return E;
672 
673   // OpenCL usually rejects direct accesses to values of 'half' type.
674   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
675       T->isHalfType()) {
676     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
677       << 0 << T;
678     return ExprError();
679   }
680 
681   CheckForNullPointerDereference(*this, E);
682   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
683     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
684                                      &Context.Idents.get("object_getClass"),
685                                      SourceLocation(), LookupOrdinaryName);
686     if (ObjectGetClass)
687       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
688         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
689         FixItHint::CreateReplacement(
690                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
691     else
692       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
693   }
694   else if (const ObjCIvarRefExpr *OIRE =
695             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
696     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
697 
698   // C++ [conv.lval]p1:
699   //   [...] If T is a non-class type, the type of the prvalue is the
700   //   cv-unqualified version of T. Otherwise, the type of the
701   //   rvalue is T.
702   //
703   // C99 6.3.2.1p2:
704   //   If the lvalue has qualified type, the value has the unqualified
705   //   version of the type of the lvalue; otherwise, the value has the
706   //   type of the lvalue.
707   if (T.hasQualifiers())
708     T = T.getUnqualifiedType();
709 
710   // Under the MS ABI, lock down the inheritance model now.
711   if (T->isMemberPointerType() &&
712       Context.getTargetInfo().getCXXABI().isMicrosoft())
713     (void)isCompleteType(E->getExprLoc(), T);
714 
715   UpdateMarkingForLValueToRValue(E);
716 
717   // Loading a __weak object implicitly retains the value, so we need a cleanup to
718   // balance that.
719   if (getLangOpts().ObjCAutoRefCount &&
720       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
721     Cleanup.setExprNeedsCleanups(true);
722 
723   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
724                                             nullptr, VK_RValue);
725 
726   // C11 6.3.2.1p2:
727   //   ... if the lvalue has atomic type, the value has the non-atomic version
728   //   of the type of the lvalue ...
729   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
730     T = Atomic->getValueType().getUnqualifiedType();
731     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
732                                    nullptr, VK_RValue);
733   }
734 
735   return Res;
736 }
737 
738 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
739   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
740   if (Res.isInvalid())
741     return ExprError();
742   Res = DefaultLvalueConversion(Res.get());
743   if (Res.isInvalid())
744     return ExprError();
745   return Res;
746 }
747 
748 /// CallExprUnaryConversions - a special case of an unary conversion
749 /// performed on a function designator of a call expression.
750 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
751   QualType Ty = E->getType();
752   ExprResult Res = E;
753   // Only do implicit cast for a function type, but not for a pointer
754   // to function type.
755   if (Ty->isFunctionType()) {
756     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
757                             CK_FunctionToPointerDecay).get();
758     if (Res.isInvalid())
759       return ExprError();
760   }
761   Res = DefaultLvalueConversion(Res.get());
762   if (Res.isInvalid())
763     return ExprError();
764   return Res.get();
765 }
766 
767 /// UsualUnaryConversions - Performs various conversions that are common to most
768 /// operators (C99 6.3). The conversions of array and function types are
769 /// sometimes suppressed. For example, the array->pointer conversion doesn't
770 /// apply if the array is an argument to the sizeof or address (&) operators.
771 /// In these instances, this routine should *not* be called.
772 ExprResult Sema::UsualUnaryConversions(Expr *E) {
773   // First, convert to an r-value.
774   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
775   if (Res.isInvalid())
776     return ExprError();
777   E = Res.get();
778 
779   QualType Ty = E->getType();
780   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
781 
782   // Half FP have to be promoted to float unless it is natively supported
783   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
784     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
785 
786   // Try to perform integral promotions if the object has a theoretically
787   // promotable type.
788   if (Ty->isIntegralOrUnscopedEnumerationType()) {
789     // C99 6.3.1.1p2:
790     //
791     //   The following may be used in an expression wherever an int or
792     //   unsigned int may be used:
793     //     - an object or expression with an integer type whose integer
794     //       conversion rank is less than or equal to the rank of int
795     //       and unsigned int.
796     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
797     //
798     //   If an int can represent all values of the original type, the
799     //   value is converted to an int; otherwise, it is converted to an
800     //   unsigned int. These are called the integer promotions. All
801     //   other types are unchanged by the integer promotions.
802 
803     QualType PTy = Context.isPromotableBitField(E);
804     if (!PTy.isNull()) {
805       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
806       return E;
807     }
808     if (Ty->isPromotableIntegerType()) {
809       QualType PT = Context.getPromotedIntegerType(Ty);
810       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
811       return E;
812     }
813   }
814   return E;
815 }
816 
817 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
818 /// do not have a prototype. Arguments that have type float or __fp16
819 /// are promoted to double. All other argument types are converted by
820 /// UsualUnaryConversions().
821 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
822   QualType Ty = E->getType();
823   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
824 
825   ExprResult Res = UsualUnaryConversions(E);
826   if (Res.isInvalid())
827     return ExprError();
828   E = Res.get();
829 
830   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
831   // double.
832   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
833   if (BTy && (BTy->getKind() == BuiltinType::Half ||
834               BTy->getKind() == BuiltinType::Float))
835     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
836 
837   // C++ performs lvalue-to-rvalue conversion as a default argument
838   // promotion, even on class types, but note:
839   //   C++11 [conv.lval]p2:
840   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
841   //     operand or a subexpression thereof the value contained in the
842   //     referenced object is not accessed. Otherwise, if the glvalue
843   //     has a class type, the conversion copy-initializes a temporary
844   //     of type T from the glvalue and the result of the conversion
845   //     is a prvalue for the temporary.
846   // FIXME: add some way to gate this entire thing for correctness in
847   // potentially potentially evaluated contexts.
848   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
849     ExprResult Temp = PerformCopyInitialization(
850                        InitializedEntity::InitializeTemporary(E->getType()),
851                                                 E->getExprLoc(), E);
852     if (Temp.isInvalid())
853       return ExprError();
854     E = Temp.get();
855   }
856 
857   return E;
858 }
859 
860 /// Determine the degree of POD-ness for an expression.
861 /// Incomplete types are considered POD, since this check can be performed
862 /// when we're in an unevaluated context.
863 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
864   if (Ty->isIncompleteType()) {
865     // C++11 [expr.call]p7:
866     //   After these conversions, if the argument does not have arithmetic,
867     //   enumeration, pointer, pointer to member, or class type, the program
868     //   is ill-formed.
869     //
870     // Since we've already performed array-to-pointer and function-to-pointer
871     // decay, the only such type in C++ is cv void. This also handles
872     // initializer lists as variadic arguments.
873     if (Ty->isVoidType())
874       return VAK_Invalid;
875 
876     if (Ty->isObjCObjectType())
877       return VAK_Invalid;
878     return VAK_Valid;
879   }
880 
881   if (Ty.isCXX98PODType(Context))
882     return VAK_Valid;
883 
884   // C++11 [expr.call]p7:
885   //   Passing a potentially-evaluated argument of class type (Clause 9)
886   //   having a non-trivial copy constructor, a non-trivial move constructor,
887   //   or a non-trivial destructor, with no corresponding parameter,
888   //   is conditionally-supported with implementation-defined semantics.
889   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
890     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
891       if (!Record->hasNonTrivialCopyConstructor() &&
892           !Record->hasNonTrivialMoveConstructor() &&
893           !Record->hasNonTrivialDestructor())
894         return VAK_ValidInCXX11;
895 
896   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
897     return VAK_Valid;
898 
899   if (Ty->isObjCObjectType())
900     return VAK_Invalid;
901 
902   if (getLangOpts().MSVCCompat)
903     return VAK_MSVCUndefined;
904 
905   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
906   // permitted to reject them. We should consider doing so.
907   return VAK_Undefined;
908 }
909 
910 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
911   // Don't allow one to pass an Objective-C interface to a vararg.
912   const QualType &Ty = E->getType();
913   VarArgKind VAK = isValidVarArgType(Ty);
914 
915   // Complain about passing non-POD types through varargs.
916   switch (VAK) {
917   case VAK_ValidInCXX11:
918     DiagRuntimeBehavior(
919         E->getLocStart(), nullptr,
920         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
921           << Ty << CT);
922     // Fall through.
923   case VAK_Valid:
924     if (Ty->isRecordType()) {
925       // This is unlikely to be what the user intended. If the class has a
926       // 'c_str' member function, the user probably meant to call that.
927       DiagRuntimeBehavior(E->getLocStart(), nullptr,
928                           PDiag(diag::warn_pass_class_arg_to_vararg)
929                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
930     }
931     break;
932 
933   case VAK_Undefined:
934   case VAK_MSVCUndefined:
935     DiagRuntimeBehavior(
936         E->getLocStart(), nullptr,
937         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
938           << getLangOpts().CPlusPlus11 << Ty << CT);
939     break;
940 
941   case VAK_Invalid:
942     if (Ty->isObjCObjectType())
943       DiagRuntimeBehavior(
944           E->getLocStart(), nullptr,
945           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
946             << Ty << CT);
947     else
948       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
949         << isa<InitListExpr>(E) << Ty << CT;
950     break;
951   }
952 }
953 
954 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
955 /// will create a trap if the resulting type is not a POD type.
956 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
957                                                   FunctionDecl *FDecl) {
958   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
959     // Strip the unbridged-cast placeholder expression off, if applicable.
960     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
961         (CT == VariadicMethod ||
962          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
963       E = stripARCUnbridgedCast(E);
964 
965     // Otherwise, do normal placeholder checking.
966     } else {
967       ExprResult ExprRes = CheckPlaceholderExpr(E);
968       if (ExprRes.isInvalid())
969         return ExprError();
970       E = ExprRes.get();
971     }
972   }
973 
974   ExprResult ExprRes = DefaultArgumentPromotion(E);
975   if (ExprRes.isInvalid())
976     return ExprError();
977   E = ExprRes.get();
978 
979   // Diagnostics regarding non-POD argument types are
980   // emitted along with format string checking in Sema::CheckFunctionCall().
981   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
982     // Turn this into a trap.
983     CXXScopeSpec SS;
984     SourceLocation TemplateKWLoc;
985     UnqualifiedId Name;
986     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
987                        E->getLocStart());
988     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
989                                           Name, true, false);
990     if (TrapFn.isInvalid())
991       return ExprError();
992 
993     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
994                                     E->getLocStart(), None,
995                                     E->getLocEnd());
996     if (Call.isInvalid())
997       return ExprError();
998 
999     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
1000                                   Call.get(), E);
1001     if (Comma.isInvalid())
1002       return ExprError();
1003     return Comma.get();
1004   }
1005 
1006   if (!getLangOpts().CPlusPlus &&
1007       RequireCompleteType(E->getExprLoc(), E->getType(),
1008                           diag::err_call_incomplete_argument))
1009     return ExprError();
1010 
1011   return E;
1012 }
1013 
1014 /// \brief Converts an integer to complex float type.  Helper function of
1015 /// UsualArithmeticConversions()
1016 ///
1017 /// \return false if the integer expression is an integer type and is
1018 /// successfully converted to the complex type.
1019 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1020                                                   ExprResult &ComplexExpr,
1021                                                   QualType IntTy,
1022                                                   QualType ComplexTy,
1023                                                   bool SkipCast) {
1024   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1025   if (SkipCast) return false;
1026   if (IntTy->isIntegerType()) {
1027     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1028     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1029     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1030                                   CK_FloatingRealToComplex);
1031   } else {
1032     assert(IntTy->isComplexIntegerType());
1033     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1034                                   CK_IntegralComplexToFloatingComplex);
1035   }
1036   return false;
1037 }
1038 
1039 /// \brief Handle arithmetic conversion with complex types.  Helper function of
1040 /// UsualArithmeticConversions()
1041 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1042                                              ExprResult &RHS, QualType LHSType,
1043                                              QualType RHSType,
1044                                              bool IsCompAssign) {
1045   // if we have an integer operand, the result is the complex type.
1046   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1047                                              /*skipCast*/false))
1048     return LHSType;
1049   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1050                                              /*skipCast*/IsCompAssign))
1051     return RHSType;
1052 
1053   // This handles complex/complex, complex/float, or float/complex.
1054   // When both operands are complex, the shorter operand is converted to the
1055   // type of the longer, and that is the type of the result. This corresponds
1056   // to what is done when combining two real floating-point operands.
1057   // The fun begins when size promotion occur across type domains.
1058   // From H&S 6.3.4: When one operand is complex and the other is a real
1059   // floating-point type, the less precise type is converted, within it's
1060   // real or complex domain, to the precision of the other type. For example,
1061   // when combining a "long double" with a "double _Complex", the
1062   // "double _Complex" is promoted to "long double _Complex".
1063 
1064   // Compute the rank of the two types, regardless of whether they are complex.
1065   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1066 
1067   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1068   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1069   QualType LHSElementType =
1070       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1071   QualType RHSElementType =
1072       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1073 
1074   QualType ResultType = S.Context.getComplexType(LHSElementType);
1075   if (Order < 0) {
1076     // Promote the precision of the LHS if not an assignment.
1077     ResultType = S.Context.getComplexType(RHSElementType);
1078     if (!IsCompAssign) {
1079       if (LHSComplexType)
1080         LHS =
1081             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1082       else
1083         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1084     }
1085   } else if (Order > 0) {
1086     // Promote the precision of the RHS.
1087     if (RHSComplexType)
1088       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1089     else
1090       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1091   }
1092   return ResultType;
1093 }
1094 
1095 /// \brief Hande arithmetic conversion from integer to float.  Helper function
1096 /// of UsualArithmeticConversions()
1097 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1098                                            ExprResult &IntExpr,
1099                                            QualType FloatTy, QualType IntTy,
1100                                            bool ConvertFloat, bool ConvertInt) {
1101   if (IntTy->isIntegerType()) {
1102     if (ConvertInt)
1103       // Convert intExpr to the lhs floating point type.
1104       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1105                                     CK_IntegralToFloating);
1106     return FloatTy;
1107   }
1108 
1109   // Convert both sides to the appropriate complex float.
1110   assert(IntTy->isComplexIntegerType());
1111   QualType result = S.Context.getComplexType(FloatTy);
1112 
1113   // _Complex int -> _Complex float
1114   if (ConvertInt)
1115     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1116                                   CK_IntegralComplexToFloatingComplex);
1117 
1118   // float -> _Complex float
1119   if (ConvertFloat)
1120     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1121                                     CK_FloatingRealToComplex);
1122 
1123   return result;
1124 }
1125 
1126 /// \brief Handle arithmethic conversion with floating point types.  Helper
1127 /// function of UsualArithmeticConversions()
1128 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1129                                       ExprResult &RHS, QualType LHSType,
1130                                       QualType RHSType, bool IsCompAssign) {
1131   bool LHSFloat = LHSType->isRealFloatingType();
1132   bool RHSFloat = RHSType->isRealFloatingType();
1133 
1134   // If we have two real floating types, convert the smaller operand
1135   // to the bigger result.
1136   if (LHSFloat && RHSFloat) {
1137     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1138     if (order > 0) {
1139       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1140       return LHSType;
1141     }
1142 
1143     assert(order < 0 && "illegal float comparison");
1144     if (!IsCompAssign)
1145       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1146     return RHSType;
1147   }
1148 
1149   if (LHSFloat) {
1150     // Half FP has to be promoted to float unless it is natively supported
1151     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1152       LHSType = S.Context.FloatTy;
1153 
1154     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1155                                       /*convertFloat=*/!IsCompAssign,
1156                                       /*convertInt=*/ true);
1157   }
1158   assert(RHSFloat);
1159   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1160                                     /*convertInt=*/ true,
1161                                     /*convertFloat=*/!IsCompAssign);
1162 }
1163 
1164 /// \brief Diagnose attempts to convert between __float128 and long double if
1165 /// there is no support for such conversion. Helper function of
1166 /// UsualArithmeticConversions().
1167 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1168                                       QualType RHSType) {
1169   /*  No issue converting if at least one of the types is not a floating point
1170       type or the two types have the same rank.
1171   */
1172   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1173       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1174     return false;
1175 
1176   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1177          "The remaining types must be floating point types.");
1178 
1179   auto *LHSComplex = LHSType->getAs<ComplexType>();
1180   auto *RHSComplex = RHSType->getAs<ComplexType>();
1181 
1182   QualType LHSElemType = LHSComplex ?
1183     LHSComplex->getElementType() : LHSType;
1184   QualType RHSElemType = RHSComplex ?
1185     RHSComplex->getElementType() : RHSType;
1186 
1187   // No issue if the two types have the same representation
1188   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1189       &S.Context.getFloatTypeSemantics(RHSElemType))
1190     return false;
1191 
1192   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1193                                 RHSElemType == S.Context.LongDoubleTy);
1194   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1195                             RHSElemType == S.Context.Float128Ty);
1196 
1197   /* We've handled the situation where __float128 and long double have the same
1198      representation. The only other allowable conversion is if long double is
1199      really just double.
1200   */
1201   return Float128AndLongDouble &&
1202     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) !=
1203      &llvm::APFloat::IEEEdouble);
1204 }
1205 
1206 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1207 
1208 namespace {
1209 /// These helper callbacks are placed in an anonymous namespace to
1210 /// permit their use as function template parameters.
1211 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1212   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1213 }
1214 
1215 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1216   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1217                              CK_IntegralComplexCast);
1218 }
1219 }
1220 
1221 /// \brief Handle integer arithmetic conversions.  Helper function of
1222 /// UsualArithmeticConversions()
1223 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1224 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1225                                         ExprResult &RHS, QualType LHSType,
1226                                         QualType RHSType, bool IsCompAssign) {
1227   // The rules for this case are in C99 6.3.1.8
1228   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1229   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1230   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1231   if (LHSSigned == RHSSigned) {
1232     // Same signedness; use the higher-ranked type
1233     if (order >= 0) {
1234       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1235       return LHSType;
1236     } else if (!IsCompAssign)
1237       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1238     return RHSType;
1239   } else if (order != (LHSSigned ? 1 : -1)) {
1240     // The unsigned type has greater than or equal rank to the
1241     // signed type, so use the unsigned type
1242     if (RHSSigned) {
1243       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1244       return LHSType;
1245     } else if (!IsCompAssign)
1246       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1247     return RHSType;
1248   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1249     // The two types are different widths; if we are here, that
1250     // means the signed type is larger than the unsigned type, so
1251     // use the signed type.
1252     if (LHSSigned) {
1253       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1254       return LHSType;
1255     } else if (!IsCompAssign)
1256       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1257     return RHSType;
1258   } else {
1259     // The signed type is higher-ranked than the unsigned type,
1260     // but isn't actually any bigger (like unsigned int and long
1261     // on most 32-bit systems).  Use the unsigned type corresponding
1262     // to the signed type.
1263     QualType result =
1264       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1265     RHS = (*doRHSCast)(S, RHS.get(), result);
1266     if (!IsCompAssign)
1267       LHS = (*doLHSCast)(S, LHS.get(), result);
1268     return result;
1269   }
1270 }
1271 
1272 /// \brief Handle conversions with GCC complex int extension.  Helper function
1273 /// of UsualArithmeticConversions()
1274 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1275                                            ExprResult &RHS, QualType LHSType,
1276                                            QualType RHSType,
1277                                            bool IsCompAssign) {
1278   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1279   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1280 
1281   if (LHSComplexInt && RHSComplexInt) {
1282     QualType LHSEltType = LHSComplexInt->getElementType();
1283     QualType RHSEltType = RHSComplexInt->getElementType();
1284     QualType ScalarType =
1285       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1286         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1287 
1288     return S.Context.getComplexType(ScalarType);
1289   }
1290 
1291   if (LHSComplexInt) {
1292     QualType LHSEltType = LHSComplexInt->getElementType();
1293     QualType ScalarType =
1294       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1295         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1296     QualType ComplexType = S.Context.getComplexType(ScalarType);
1297     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1298                               CK_IntegralRealToComplex);
1299 
1300     return ComplexType;
1301   }
1302 
1303   assert(RHSComplexInt);
1304 
1305   QualType RHSEltType = RHSComplexInt->getElementType();
1306   QualType ScalarType =
1307     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1308       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1309   QualType ComplexType = S.Context.getComplexType(ScalarType);
1310 
1311   if (!IsCompAssign)
1312     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1313                               CK_IntegralRealToComplex);
1314   return ComplexType;
1315 }
1316 
1317 /// UsualArithmeticConversions - Performs various conversions that are common to
1318 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1319 /// routine returns the first non-arithmetic type found. The client is
1320 /// responsible for emitting appropriate error diagnostics.
1321 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1322                                           bool IsCompAssign) {
1323   if (!IsCompAssign) {
1324     LHS = UsualUnaryConversions(LHS.get());
1325     if (LHS.isInvalid())
1326       return QualType();
1327   }
1328 
1329   RHS = UsualUnaryConversions(RHS.get());
1330   if (RHS.isInvalid())
1331     return QualType();
1332 
1333   // For conversion purposes, we ignore any qualifiers.
1334   // For example, "const float" and "float" are equivalent.
1335   QualType LHSType =
1336     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1337   QualType RHSType =
1338     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1339 
1340   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1341   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1342     LHSType = AtomicLHS->getValueType();
1343 
1344   // If both types are identical, no conversion is needed.
1345   if (LHSType == RHSType)
1346     return LHSType;
1347 
1348   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1349   // The caller can deal with this (e.g. pointer + int).
1350   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1351     return QualType();
1352 
1353   // Apply unary and bitfield promotions to the LHS's type.
1354   QualType LHSUnpromotedType = LHSType;
1355   if (LHSType->isPromotableIntegerType())
1356     LHSType = Context.getPromotedIntegerType(LHSType);
1357   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1358   if (!LHSBitfieldPromoteTy.isNull())
1359     LHSType = LHSBitfieldPromoteTy;
1360   if (LHSType != LHSUnpromotedType && !IsCompAssign)
1361     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1362 
1363   // If both types are identical, no conversion is needed.
1364   if (LHSType == RHSType)
1365     return LHSType;
1366 
1367   // At this point, we have two different arithmetic types.
1368 
1369   // Diagnose attempts to convert between __float128 and long double where
1370   // such conversions currently can't be handled.
1371   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1372     return QualType();
1373 
1374   // Handle complex types first (C99 6.3.1.8p1).
1375   if (LHSType->isComplexType() || RHSType->isComplexType())
1376     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1377                                         IsCompAssign);
1378 
1379   // Now handle "real" floating types (i.e. float, double, long double).
1380   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1381     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1382                                  IsCompAssign);
1383 
1384   // Handle GCC complex int extension.
1385   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1386     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1387                                       IsCompAssign);
1388 
1389   // Finally, we have two differing integer types.
1390   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1391            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1392 }
1393 
1394 
1395 //===----------------------------------------------------------------------===//
1396 //  Semantic Analysis for various Expression Types
1397 //===----------------------------------------------------------------------===//
1398 
1399 
1400 ExprResult
1401 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1402                                 SourceLocation DefaultLoc,
1403                                 SourceLocation RParenLoc,
1404                                 Expr *ControllingExpr,
1405                                 ArrayRef<ParsedType> ArgTypes,
1406                                 ArrayRef<Expr *> ArgExprs) {
1407   unsigned NumAssocs = ArgTypes.size();
1408   assert(NumAssocs == ArgExprs.size());
1409 
1410   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1411   for (unsigned i = 0; i < NumAssocs; ++i) {
1412     if (ArgTypes[i])
1413       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1414     else
1415       Types[i] = nullptr;
1416   }
1417 
1418   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1419                                              ControllingExpr,
1420                                              llvm::makeArrayRef(Types, NumAssocs),
1421                                              ArgExprs);
1422   delete [] Types;
1423   return ER;
1424 }
1425 
1426 ExprResult
1427 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1428                                  SourceLocation DefaultLoc,
1429                                  SourceLocation RParenLoc,
1430                                  Expr *ControllingExpr,
1431                                  ArrayRef<TypeSourceInfo *> Types,
1432                                  ArrayRef<Expr *> Exprs) {
1433   unsigned NumAssocs = Types.size();
1434   assert(NumAssocs == Exprs.size());
1435 
1436   // Decay and strip qualifiers for the controlling expression type, and handle
1437   // placeholder type replacement. See committee discussion from WG14 DR423.
1438   {
1439     EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
1440     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1441     if (R.isInvalid())
1442       return ExprError();
1443     ControllingExpr = R.get();
1444   }
1445 
1446   // The controlling expression is an unevaluated operand, so side effects are
1447   // likely unintended.
1448   if (ActiveTemplateInstantiations.empty() &&
1449       ControllingExpr->HasSideEffects(Context, false))
1450     Diag(ControllingExpr->getExprLoc(),
1451          diag::warn_side_effects_unevaluated_context);
1452 
1453   bool TypeErrorFound = false,
1454        IsResultDependent = ControllingExpr->isTypeDependent(),
1455        ContainsUnexpandedParameterPack
1456          = ControllingExpr->containsUnexpandedParameterPack();
1457 
1458   for (unsigned i = 0; i < NumAssocs; ++i) {
1459     if (Exprs[i]->containsUnexpandedParameterPack())
1460       ContainsUnexpandedParameterPack = true;
1461 
1462     if (Types[i]) {
1463       if (Types[i]->getType()->containsUnexpandedParameterPack())
1464         ContainsUnexpandedParameterPack = true;
1465 
1466       if (Types[i]->getType()->isDependentType()) {
1467         IsResultDependent = true;
1468       } else {
1469         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1470         // complete object type other than a variably modified type."
1471         unsigned D = 0;
1472         if (Types[i]->getType()->isIncompleteType())
1473           D = diag::err_assoc_type_incomplete;
1474         else if (!Types[i]->getType()->isObjectType())
1475           D = diag::err_assoc_type_nonobject;
1476         else if (Types[i]->getType()->isVariablyModifiedType())
1477           D = diag::err_assoc_type_variably_modified;
1478 
1479         if (D != 0) {
1480           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1481             << Types[i]->getTypeLoc().getSourceRange()
1482             << Types[i]->getType();
1483           TypeErrorFound = true;
1484         }
1485 
1486         // C11 6.5.1.1p2 "No two generic associations in the same generic
1487         // selection shall specify compatible types."
1488         for (unsigned j = i+1; j < NumAssocs; ++j)
1489           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1490               Context.typesAreCompatible(Types[i]->getType(),
1491                                          Types[j]->getType())) {
1492             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1493                  diag::err_assoc_compatible_types)
1494               << Types[j]->getTypeLoc().getSourceRange()
1495               << Types[j]->getType()
1496               << Types[i]->getType();
1497             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1498                  diag::note_compat_assoc)
1499               << Types[i]->getTypeLoc().getSourceRange()
1500               << Types[i]->getType();
1501             TypeErrorFound = true;
1502           }
1503       }
1504     }
1505   }
1506   if (TypeErrorFound)
1507     return ExprError();
1508 
1509   // If we determined that the generic selection is result-dependent, don't
1510   // try to compute the result expression.
1511   if (IsResultDependent)
1512     return new (Context) GenericSelectionExpr(
1513         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1514         ContainsUnexpandedParameterPack);
1515 
1516   SmallVector<unsigned, 1> CompatIndices;
1517   unsigned DefaultIndex = -1U;
1518   for (unsigned i = 0; i < NumAssocs; ++i) {
1519     if (!Types[i])
1520       DefaultIndex = i;
1521     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1522                                         Types[i]->getType()))
1523       CompatIndices.push_back(i);
1524   }
1525 
1526   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1527   // type compatible with at most one of the types named in its generic
1528   // association list."
1529   if (CompatIndices.size() > 1) {
1530     // We strip parens here because the controlling expression is typically
1531     // parenthesized in macro definitions.
1532     ControllingExpr = ControllingExpr->IgnoreParens();
1533     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1534       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1535       << (unsigned) CompatIndices.size();
1536     for (unsigned I : CompatIndices) {
1537       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1538            diag::note_compat_assoc)
1539         << Types[I]->getTypeLoc().getSourceRange()
1540         << Types[I]->getType();
1541     }
1542     return ExprError();
1543   }
1544 
1545   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1546   // its controlling expression shall have type compatible with exactly one of
1547   // the types named in its generic association list."
1548   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1549     // We strip parens here because the controlling expression is typically
1550     // parenthesized in macro definitions.
1551     ControllingExpr = ControllingExpr->IgnoreParens();
1552     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1553       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1554     return ExprError();
1555   }
1556 
1557   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1558   // type name that is compatible with the type of the controlling expression,
1559   // then the result expression of the generic selection is the expression
1560   // in that generic association. Otherwise, the result expression of the
1561   // generic selection is the expression in the default generic association."
1562   unsigned ResultIndex =
1563     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1564 
1565   return new (Context) GenericSelectionExpr(
1566       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1567       ContainsUnexpandedParameterPack, ResultIndex);
1568 }
1569 
1570 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1571 /// location of the token and the offset of the ud-suffix within it.
1572 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1573                                      unsigned Offset) {
1574   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1575                                         S.getLangOpts());
1576 }
1577 
1578 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1579 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1580 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1581                                                  IdentifierInfo *UDSuffix,
1582                                                  SourceLocation UDSuffixLoc,
1583                                                  ArrayRef<Expr*> Args,
1584                                                  SourceLocation LitEndLoc) {
1585   assert(Args.size() <= 2 && "too many arguments for literal operator");
1586 
1587   QualType ArgTy[2];
1588   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1589     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1590     if (ArgTy[ArgIdx]->isArrayType())
1591       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1592   }
1593 
1594   DeclarationName OpName =
1595     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1596   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1597   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1598 
1599   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1600   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1601                               /*AllowRaw*/false, /*AllowTemplate*/false,
1602                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1603     return ExprError();
1604 
1605   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1606 }
1607 
1608 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1609 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1610 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1611 /// multiple tokens.  However, the common case is that StringToks points to one
1612 /// string.
1613 ///
1614 ExprResult
1615 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1616   assert(!StringToks.empty() && "Must have at least one string!");
1617 
1618   StringLiteralParser Literal(StringToks, PP);
1619   if (Literal.hadError)
1620     return ExprError();
1621 
1622   SmallVector<SourceLocation, 4> StringTokLocs;
1623   for (const Token &Tok : StringToks)
1624     StringTokLocs.push_back(Tok.getLocation());
1625 
1626   QualType CharTy = Context.CharTy;
1627   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1628   if (Literal.isWide()) {
1629     CharTy = Context.getWideCharType();
1630     Kind = StringLiteral::Wide;
1631   } else if (Literal.isUTF8()) {
1632     Kind = StringLiteral::UTF8;
1633   } else if (Literal.isUTF16()) {
1634     CharTy = Context.Char16Ty;
1635     Kind = StringLiteral::UTF16;
1636   } else if (Literal.isUTF32()) {
1637     CharTy = Context.Char32Ty;
1638     Kind = StringLiteral::UTF32;
1639   } else if (Literal.isPascal()) {
1640     CharTy = Context.UnsignedCharTy;
1641   }
1642 
1643   QualType CharTyConst = CharTy;
1644   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1645   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1646     CharTyConst.addConst();
1647 
1648   // Get an array type for the string, according to C99 6.4.5.  This includes
1649   // the nul terminator character as well as the string length for pascal
1650   // strings.
1651   QualType StrTy = Context.getConstantArrayType(CharTyConst,
1652                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
1653                                  ArrayType::Normal, 0);
1654 
1655   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
1656   if (getLangOpts().OpenCL) {
1657     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
1658   }
1659 
1660   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1661   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1662                                              Kind, Literal.Pascal, StrTy,
1663                                              &StringTokLocs[0],
1664                                              StringTokLocs.size());
1665   if (Literal.getUDSuffix().empty())
1666     return Lit;
1667 
1668   // We're building a user-defined literal.
1669   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1670   SourceLocation UDSuffixLoc =
1671     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1672                    Literal.getUDSuffixOffset());
1673 
1674   // Make sure we're allowed user-defined literals here.
1675   if (!UDLScope)
1676     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1677 
1678   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1679   //   operator "" X (str, len)
1680   QualType SizeType = Context.getSizeType();
1681 
1682   DeclarationName OpName =
1683     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1684   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1685   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1686 
1687   QualType ArgTy[] = {
1688     Context.getArrayDecayedType(StrTy), SizeType
1689   };
1690 
1691   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1692   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1693                                 /*AllowRaw*/false, /*AllowTemplate*/false,
1694                                 /*AllowStringTemplate*/true)) {
1695 
1696   case LOLR_Cooked: {
1697     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1698     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1699                                                     StringTokLocs[0]);
1700     Expr *Args[] = { Lit, LenArg };
1701 
1702     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1703   }
1704 
1705   case LOLR_StringTemplate: {
1706     TemplateArgumentListInfo ExplicitArgs;
1707 
1708     unsigned CharBits = Context.getIntWidth(CharTy);
1709     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1710     llvm::APSInt Value(CharBits, CharIsUnsigned);
1711 
1712     TemplateArgument TypeArg(CharTy);
1713     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1714     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1715 
1716     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1717       Value = Lit->getCodeUnit(I);
1718       TemplateArgument Arg(Context, Value, CharTy);
1719       TemplateArgumentLocInfo ArgInfo;
1720       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1721     }
1722     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1723                                     &ExplicitArgs);
1724   }
1725   case LOLR_Raw:
1726   case LOLR_Template:
1727     llvm_unreachable("unexpected literal operator lookup result");
1728   case LOLR_Error:
1729     return ExprError();
1730   }
1731   llvm_unreachable("unexpected literal operator lookup result");
1732 }
1733 
1734 ExprResult
1735 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1736                        SourceLocation Loc,
1737                        const CXXScopeSpec *SS) {
1738   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1739   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1740 }
1741 
1742 /// BuildDeclRefExpr - Build an expression that references a
1743 /// declaration that does not require a closure capture.
1744 ExprResult
1745 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1746                        const DeclarationNameInfo &NameInfo,
1747                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1748                        const TemplateArgumentListInfo *TemplateArgs) {
1749   bool RefersToCapturedVariable =
1750       isa<VarDecl>(D) &&
1751       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1752 
1753   DeclRefExpr *E;
1754   if (isa<VarTemplateSpecializationDecl>(D)) {
1755     VarTemplateSpecializationDecl *VarSpec =
1756         cast<VarTemplateSpecializationDecl>(D);
1757 
1758     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1759                                         : NestedNameSpecifierLoc(),
1760                             VarSpec->getTemplateKeywordLoc(), D,
1761                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
1762                             FoundD, TemplateArgs);
1763   } else {
1764     assert(!TemplateArgs && "No template arguments for non-variable"
1765                             " template specialization references");
1766     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1767                                         : NestedNameSpecifierLoc(),
1768                             SourceLocation(), D, RefersToCapturedVariable,
1769                             NameInfo, Ty, VK, FoundD);
1770   }
1771 
1772   MarkDeclRefReferenced(E);
1773 
1774   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1775       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
1776       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
1777       recordUseOfEvaluatedWeak(E);
1778 
1779   if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1780     UnusedPrivateFields.remove(FD);
1781     // Just in case we're building an illegal pointer-to-member.
1782     if (FD->isBitField())
1783       E->setObjectKind(OK_BitField);
1784   }
1785 
1786   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
1787   // designates a bit-field.
1788   if (auto *BD = dyn_cast<BindingDecl>(D))
1789     if (auto *BE = BD->getBinding())
1790       E->setObjectKind(BE->getObjectKind());
1791 
1792   return E;
1793 }
1794 
1795 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1796 /// possibly a list of template arguments.
1797 ///
1798 /// If this produces template arguments, it is permitted to call
1799 /// DecomposeTemplateName.
1800 ///
1801 /// This actually loses a lot of source location information for
1802 /// non-standard name kinds; we should consider preserving that in
1803 /// some way.
1804 void
1805 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1806                              TemplateArgumentListInfo &Buffer,
1807                              DeclarationNameInfo &NameInfo,
1808                              const TemplateArgumentListInfo *&TemplateArgs) {
1809   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1810     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1811     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1812 
1813     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1814                                        Id.TemplateId->NumArgs);
1815     translateTemplateArguments(TemplateArgsPtr, Buffer);
1816 
1817     TemplateName TName = Id.TemplateId->Template.get();
1818     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1819     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1820     TemplateArgs = &Buffer;
1821   } else {
1822     NameInfo = GetNameFromUnqualifiedId(Id);
1823     TemplateArgs = nullptr;
1824   }
1825 }
1826 
1827 static void emitEmptyLookupTypoDiagnostic(
1828     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1829     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1830     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1831   DeclContext *Ctx =
1832       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1833   if (!TC) {
1834     // Emit a special diagnostic for failed member lookups.
1835     // FIXME: computing the declaration context might fail here (?)
1836     if (Ctx)
1837       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1838                                                  << SS.getRange();
1839     else
1840       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1841     return;
1842   }
1843 
1844   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1845   bool DroppedSpecifier =
1846       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1847   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
1848                         ? diag::note_implicit_param_decl
1849                         : diag::note_previous_decl;
1850   if (!Ctx)
1851     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1852                          SemaRef.PDiag(NoteID));
1853   else
1854     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1855                                  << Typo << Ctx << DroppedSpecifier
1856                                  << SS.getRange(),
1857                          SemaRef.PDiag(NoteID));
1858 }
1859 
1860 /// Diagnose an empty lookup.
1861 ///
1862 /// \return false if new lookup candidates were found
1863 bool
1864 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1865                           std::unique_ptr<CorrectionCandidateCallback> CCC,
1866                           TemplateArgumentListInfo *ExplicitTemplateArgs,
1867                           ArrayRef<Expr *> Args, TypoExpr **Out) {
1868   DeclarationName Name = R.getLookupName();
1869 
1870   unsigned diagnostic = diag::err_undeclared_var_use;
1871   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1872   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1873       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1874       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1875     diagnostic = diag::err_undeclared_use;
1876     diagnostic_suggest = diag::err_undeclared_use_suggest;
1877   }
1878 
1879   // If the original lookup was an unqualified lookup, fake an
1880   // unqualified lookup.  This is useful when (for example) the
1881   // original lookup would not have found something because it was a
1882   // dependent name.
1883   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
1884   while (DC) {
1885     if (isa<CXXRecordDecl>(DC)) {
1886       LookupQualifiedName(R, DC);
1887 
1888       if (!R.empty()) {
1889         // Don't give errors about ambiguities in this lookup.
1890         R.suppressDiagnostics();
1891 
1892         // During a default argument instantiation the CurContext points
1893         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1894         // function parameter list, hence add an explicit check.
1895         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1896                               ActiveTemplateInstantiations.back().Kind ==
1897             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1898         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1899         bool isInstance = CurMethod &&
1900                           CurMethod->isInstance() &&
1901                           DC == CurMethod->getParent() && !isDefaultArgument;
1902 
1903         // Give a code modification hint to insert 'this->'.
1904         // TODO: fixit for inserting 'Base<T>::' in the other cases.
1905         // Actually quite difficult!
1906         if (getLangOpts().MSVCCompat)
1907           diagnostic = diag::ext_found_via_dependent_bases_lookup;
1908         if (isInstance) {
1909           Diag(R.getNameLoc(), diagnostic) << Name
1910             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1911           CheckCXXThisCapture(R.getNameLoc());
1912         } else {
1913           Diag(R.getNameLoc(), diagnostic) << Name;
1914         }
1915 
1916         // Do we really want to note all of these?
1917         for (NamedDecl *D : R)
1918           Diag(D->getLocation(), diag::note_dependent_var_use);
1919 
1920         // Return true if we are inside a default argument instantiation
1921         // and the found name refers to an instance member function, otherwise
1922         // the function calling DiagnoseEmptyLookup will try to create an
1923         // implicit member call and this is wrong for default argument.
1924         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1925           Diag(R.getNameLoc(), diag::err_member_call_without_object);
1926           return true;
1927         }
1928 
1929         // Tell the callee to try to recover.
1930         return false;
1931       }
1932 
1933       R.clear();
1934     }
1935 
1936     // In Microsoft mode, if we are performing lookup from within a friend
1937     // function definition declared at class scope then we must set
1938     // DC to the lexical parent to be able to search into the parent
1939     // class.
1940     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
1941         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1942         DC->getLexicalParent()->isRecord())
1943       DC = DC->getLexicalParent();
1944     else
1945       DC = DC->getParent();
1946   }
1947 
1948   // We didn't find anything, so try to correct for a typo.
1949   TypoCorrection Corrected;
1950   if (S && Out) {
1951     SourceLocation TypoLoc = R.getNameLoc();
1952     assert(!ExplicitTemplateArgs &&
1953            "Diagnosing an empty lookup with explicit template args!");
1954     *Out = CorrectTypoDelayed(
1955         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
1956         [=](const TypoCorrection &TC) {
1957           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
1958                                         diagnostic, diagnostic_suggest);
1959         },
1960         nullptr, CTK_ErrorRecovery);
1961     if (*Out)
1962       return true;
1963   } else if (S && (Corrected =
1964                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
1965                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
1966     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1967     bool DroppedSpecifier =
1968         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1969     R.setLookupName(Corrected.getCorrection());
1970 
1971     bool AcceptableWithRecovery = false;
1972     bool AcceptableWithoutRecovery = false;
1973     NamedDecl *ND = Corrected.getFoundDecl();
1974     if (ND) {
1975       if (Corrected.isOverloaded()) {
1976         OverloadCandidateSet OCS(R.getNameLoc(),
1977                                  OverloadCandidateSet::CSK_Normal);
1978         OverloadCandidateSet::iterator Best;
1979         for (NamedDecl *CD : Corrected) {
1980           if (FunctionTemplateDecl *FTD =
1981                    dyn_cast<FunctionTemplateDecl>(CD))
1982             AddTemplateOverloadCandidate(
1983                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1984                 Args, OCS);
1985           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
1986             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1987               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1988                                    Args, OCS);
1989         }
1990         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1991         case OR_Success:
1992           ND = Best->FoundDecl;
1993           Corrected.setCorrectionDecl(ND);
1994           break;
1995         default:
1996           // FIXME: Arbitrarily pick the first declaration for the note.
1997           Corrected.setCorrectionDecl(ND);
1998           break;
1999         }
2000       }
2001       R.addDecl(ND);
2002       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2003         CXXRecordDecl *Record = nullptr;
2004         if (Corrected.getCorrectionSpecifier()) {
2005           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2006           Record = Ty->getAsCXXRecordDecl();
2007         }
2008         if (!Record)
2009           Record = cast<CXXRecordDecl>(
2010               ND->getDeclContext()->getRedeclContext());
2011         R.setNamingClass(Record);
2012       }
2013 
2014       auto *UnderlyingND = ND->getUnderlyingDecl();
2015       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2016                                isa<FunctionTemplateDecl>(UnderlyingND);
2017       // FIXME: If we ended up with a typo for a type name or
2018       // Objective-C class name, we're in trouble because the parser
2019       // is in the wrong place to recover. Suggest the typo
2020       // correction, but don't make it a fix-it since we're not going
2021       // to recover well anyway.
2022       AcceptableWithoutRecovery =
2023           isa<TypeDecl>(UnderlyingND) || isa<ObjCInterfaceDecl>(UnderlyingND);
2024     } else {
2025       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2026       // because we aren't able to recover.
2027       AcceptableWithoutRecovery = true;
2028     }
2029 
2030     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2031       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2032                             ? diag::note_implicit_param_decl
2033                             : diag::note_previous_decl;
2034       if (SS.isEmpty())
2035         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2036                      PDiag(NoteID), AcceptableWithRecovery);
2037       else
2038         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2039                                   << Name << computeDeclContext(SS, false)
2040                                   << DroppedSpecifier << SS.getRange(),
2041                      PDiag(NoteID), AcceptableWithRecovery);
2042 
2043       // Tell the callee whether to try to recover.
2044       return !AcceptableWithRecovery;
2045     }
2046   }
2047   R.clear();
2048 
2049   // Emit a special diagnostic for failed member lookups.
2050   // FIXME: computing the declaration context might fail here (?)
2051   if (!SS.isEmpty()) {
2052     Diag(R.getNameLoc(), diag::err_no_member)
2053       << Name << computeDeclContext(SS, false)
2054       << SS.getRange();
2055     return true;
2056   }
2057 
2058   // Give up, we can't recover.
2059   Diag(R.getNameLoc(), diagnostic) << Name;
2060   return true;
2061 }
2062 
2063 /// In Microsoft mode, if we are inside a template class whose parent class has
2064 /// dependent base classes, and we can't resolve an unqualified identifier, then
2065 /// assume the identifier is a member of a dependent base class.  We can only
2066 /// recover successfully in static methods, instance methods, and other contexts
2067 /// where 'this' is available.  This doesn't precisely match MSVC's
2068 /// instantiation model, but it's close enough.
2069 static Expr *
2070 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2071                                DeclarationNameInfo &NameInfo,
2072                                SourceLocation TemplateKWLoc,
2073                                const TemplateArgumentListInfo *TemplateArgs) {
2074   // Only try to recover from lookup into dependent bases in static methods or
2075   // contexts where 'this' is available.
2076   QualType ThisType = S.getCurrentThisType();
2077   const CXXRecordDecl *RD = nullptr;
2078   if (!ThisType.isNull())
2079     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2080   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2081     RD = MD->getParent();
2082   if (!RD || !RD->hasAnyDependentBases())
2083     return nullptr;
2084 
2085   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2086   // is available, suggest inserting 'this->' as a fixit.
2087   SourceLocation Loc = NameInfo.getLoc();
2088   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2089   DB << NameInfo.getName() << RD;
2090 
2091   if (!ThisType.isNull()) {
2092     DB << FixItHint::CreateInsertion(Loc, "this->");
2093     return CXXDependentScopeMemberExpr::Create(
2094         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2095         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2096         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
2097   }
2098 
2099   // Synthesize a fake NNS that points to the derived class.  This will
2100   // perform name lookup during template instantiation.
2101   CXXScopeSpec SS;
2102   auto *NNS =
2103       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2104   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2105   return DependentScopeDeclRefExpr::Create(
2106       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2107       TemplateArgs);
2108 }
2109 
2110 ExprResult
2111 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2112                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2113                         bool HasTrailingLParen, bool IsAddressOfOperand,
2114                         std::unique_ptr<CorrectionCandidateCallback> CCC,
2115                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2116   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2117          "cannot be direct & operand and have a trailing lparen");
2118   if (SS.isInvalid())
2119     return ExprError();
2120 
2121   TemplateArgumentListInfo TemplateArgsBuffer;
2122 
2123   // Decompose the UnqualifiedId into the following data.
2124   DeclarationNameInfo NameInfo;
2125   const TemplateArgumentListInfo *TemplateArgs;
2126   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2127 
2128   DeclarationName Name = NameInfo.getName();
2129   IdentifierInfo *II = Name.getAsIdentifierInfo();
2130   SourceLocation NameLoc = NameInfo.getLoc();
2131 
2132   // C++ [temp.dep.expr]p3:
2133   //   An id-expression is type-dependent if it contains:
2134   //     -- an identifier that was declared with a dependent type,
2135   //        (note: handled after lookup)
2136   //     -- a template-id that is dependent,
2137   //        (note: handled in BuildTemplateIdExpr)
2138   //     -- a conversion-function-id that specifies a dependent type,
2139   //     -- a nested-name-specifier that contains a class-name that
2140   //        names a dependent type.
2141   // Determine whether this is a member of an unknown specialization;
2142   // we need to handle these differently.
2143   bool DependentID = false;
2144   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2145       Name.getCXXNameType()->isDependentType()) {
2146     DependentID = true;
2147   } else if (SS.isSet()) {
2148     if (DeclContext *DC = computeDeclContext(SS, false)) {
2149       if (RequireCompleteDeclContext(SS, DC))
2150         return ExprError();
2151     } else {
2152       DependentID = true;
2153     }
2154   }
2155 
2156   if (DependentID)
2157     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2158                                       IsAddressOfOperand, TemplateArgs);
2159 
2160   // Perform the required lookup.
2161   LookupResult R(*this, NameInfo,
2162                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
2163                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
2164   if (TemplateArgs) {
2165     // Lookup the template name again to correctly establish the context in
2166     // which it was found. This is really unfortunate as we already did the
2167     // lookup to determine that it was a template name in the first place. If
2168     // this becomes a performance hit, we can work harder to preserve those
2169     // results until we get here but it's likely not worth it.
2170     bool MemberOfUnknownSpecialization;
2171     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2172                        MemberOfUnknownSpecialization);
2173 
2174     if (MemberOfUnknownSpecialization ||
2175         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2176       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2177                                         IsAddressOfOperand, TemplateArgs);
2178   } else {
2179     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2180     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2181 
2182     // If the result might be in a dependent base class, this is a dependent
2183     // id-expression.
2184     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2185       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2186                                         IsAddressOfOperand, TemplateArgs);
2187 
2188     // If this reference is in an Objective-C method, then we need to do
2189     // some special Objective-C lookup, too.
2190     if (IvarLookupFollowUp) {
2191       ExprResult E(LookupInObjCMethod(R, S, II, true));
2192       if (E.isInvalid())
2193         return ExprError();
2194 
2195       if (Expr *Ex = E.getAs<Expr>())
2196         return Ex;
2197     }
2198   }
2199 
2200   if (R.isAmbiguous())
2201     return ExprError();
2202 
2203   // This could be an implicitly declared function reference (legal in C90,
2204   // extension in C99, forbidden in C++).
2205   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2206     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2207     if (D) R.addDecl(D);
2208   }
2209 
2210   // Determine whether this name might be a candidate for
2211   // argument-dependent lookup.
2212   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2213 
2214   if (R.empty() && !ADL) {
2215     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2216       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2217                                                    TemplateKWLoc, TemplateArgs))
2218         return E;
2219     }
2220 
2221     // Don't diagnose an empty lookup for inline assembly.
2222     if (IsInlineAsmIdentifier)
2223       return ExprError();
2224 
2225     // If this name wasn't predeclared and if this is not a function
2226     // call, diagnose the problem.
2227     TypoExpr *TE = nullptr;
2228     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
2229         II, SS.isValid() ? SS.getScopeRep() : nullptr);
2230     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
2231     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2232            "Typo correction callback misconfigured");
2233     if (CCC) {
2234       // Make sure the callback knows what the typo being diagnosed is.
2235       CCC->setTypoName(II);
2236       if (SS.isValid())
2237         CCC->setTypoNNS(SS.getScopeRep());
2238     }
2239     if (DiagnoseEmptyLookup(S, SS, R,
2240                             CCC ? std::move(CCC) : std::move(DefaultValidator),
2241                             nullptr, None, &TE)) {
2242       if (TE && KeywordReplacement) {
2243         auto &State = getTypoExprState(TE);
2244         auto BestTC = State.Consumer->getNextCorrection();
2245         if (BestTC.isKeyword()) {
2246           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2247           if (State.DiagHandler)
2248             State.DiagHandler(BestTC);
2249           KeywordReplacement->startToken();
2250           KeywordReplacement->setKind(II->getTokenID());
2251           KeywordReplacement->setIdentifierInfo(II);
2252           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2253           // Clean up the state associated with the TypoExpr, since it has
2254           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2255           clearDelayedTypo(TE);
2256           // Signal that a correction to a keyword was performed by returning a
2257           // valid-but-null ExprResult.
2258           return (Expr*)nullptr;
2259         }
2260         State.Consumer->resetCorrectionStream();
2261       }
2262       return TE ? TE : ExprError();
2263     }
2264 
2265     assert(!R.empty() &&
2266            "DiagnoseEmptyLookup returned false but added no results");
2267 
2268     // If we found an Objective-C instance variable, let
2269     // LookupInObjCMethod build the appropriate expression to
2270     // reference the ivar.
2271     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2272       R.clear();
2273       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2274       // In a hopelessly buggy code, Objective-C instance variable
2275       // lookup fails and no expression will be built to reference it.
2276       if (!E.isInvalid() && !E.get())
2277         return ExprError();
2278       return E;
2279     }
2280   }
2281 
2282   // This is guaranteed from this point on.
2283   assert(!R.empty() || ADL);
2284 
2285   // Check whether this might be a C++ implicit instance member access.
2286   // C++ [class.mfct.non-static]p3:
2287   //   When an id-expression that is not part of a class member access
2288   //   syntax and not used to form a pointer to member is used in the
2289   //   body of a non-static member function of class X, if name lookup
2290   //   resolves the name in the id-expression to a non-static non-type
2291   //   member of some class C, the id-expression is transformed into a
2292   //   class member access expression using (*this) as the
2293   //   postfix-expression to the left of the . operator.
2294   //
2295   // But we don't actually need to do this for '&' operands if R
2296   // resolved to a function or overloaded function set, because the
2297   // expression is ill-formed if it actually works out to be a
2298   // non-static member function:
2299   //
2300   // C++ [expr.ref]p4:
2301   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2302   //   [t]he expression can be used only as the left-hand operand of a
2303   //   member function call.
2304   //
2305   // There are other safeguards against such uses, but it's important
2306   // to get this right here so that we don't end up making a
2307   // spuriously dependent expression if we're inside a dependent
2308   // instance method.
2309   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2310     bool MightBeImplicitMember;
2311     if (!IsAddressOfOperand)
2312       MightBeImplicitMember = true;
2313     else if (!SS.isEmpty())
2314       MightBeImplicitMember = false;
2315     else if (R.isOverloadedResult())
2316       MightBeImplicitMember = false;
2317     else if (R.isUnresolvableResult())
2318       MightBeImplicitMember = true;
2319     else
2320       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2321                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2322                               isa<MSPropertyDecl>(R.getFoundDecl());
2323 
2324     if (MightBeImplicitMember)
2325       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2326                                              R, TemplateArgs, S);
2327   }
2328 
2329   if (TemplateArgs || TemplateKWLoc.isValid()) {
2330 
2331     // In C++1y, if this is a variable template id, then check it
2332     // in BuildTemplateIdExpr().
2333     // The single lookup result must be a variable template declaration.
2334     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2335         Id.TemplateId->Kind == TNK_Var_template) {
2336       assert(R.getAsSingle<VarTemplateDecl>() &&
2337              "There should only be one declaration found.");
2338     }
2339 
2340     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2341   }
2342 
2343   return BuildDeclarationNameExpr(SS, R, ADL);
2344 }
2345 
2346 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2347 /// declaration name, generally during template instantiation.
2348 /// There's a large number of things which don't need to be done along
2349 /// this path.
2350 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2351     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2352     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2353   DeclContext *DC = computeDeclContext(SS, false);
2354   if (!DC)
2355     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2356                                      NameInfo, /*TemplateArgs=*/nullptr);
2357 
2358   if (RequireCompleteDeclContext(SS, DC))
2359     return ExprError();
2360 
2361   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2362   LookupQualifiedName(R, DC);
2363 
2364   if (R.isAmbiguous())
2365     return ExprError();
2366 
2367   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2368     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2369                                      NameInfo, /*TemplateArgs=*/nullptr);
2370 
2371   if (R.empty()) {
2372     Diag(NameInfo.getLoc(), diag::err_no_member)
2373       << NameInfo.getName() << DC << SS.getRange();
2374     return ExprError();
2375   }
2376 
2377   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2378     // Diagnose a missing typename if this resolved unambiguously to a type in
2379     // a dependent context.  If we can recover with a type, downgrade this to
2380     // a warning in Microsoft compatibility mode.
2381     unsigned DiagID = diag::err_typename_missing;
2382     if (RecoveryTSI && getLangOpts().MSVCCompat)
2383       DiagID = diag::ext_typename_missing;
2384     SourceLocation Loc = SS.getBeginLoc();
2385     auto D = Diag(Loc, DiagID);
2386     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2387       << SourceRange(Loc, NameInfo.getEndLoc());
2388 
2389     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2390     // context.
2391     if (!RecoveryTSI)
2392       return ExprError();
2393 
2394     // Only issue the fixit if we're prepared to recover.
2395     D << FixItHint::CreateInsertion(Loc, "typename ");
2396 
2397     // Recover by pretending this was an elaborated type.
2398     QualType Ty = Context.getTypeDeclType(TD);
2399     TypeLocBuilder TLB;
2400     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2401 
2402     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2403     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2404     QTL.setElaboratedKeywordLoc(SourceLocation());
2405     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2406 
2407     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2408 
2409     return ExprEmpty();
2410   }
2411 
2412   // Defend against this resolving to an implicit member access. We usually
2413   // won't get here if this might be a legitimate a class member (we end up in
2414   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2415   // a pointer-to-member or in an unevaluated context in C++11.
2416   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2417     return BuildPossibleImplicitMemberExpr(SS,
2418                                            /*TemplateKWLoc=*/SourceLocation(),
2419                                            R, /*TemplateArgs=*/nullptr, S);
2420 
2421   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2422 }
2423 
2424 /// LookupInObjCMethod - The parser has read a name in, and Sema has
2425 /// detected that we're currently inside an ObjC method.  Perform some
2426 /// additional lookup.
2427 ///
2428 /// Ideally, most of this would be done by lookup, but there's
2429 /// actually quite a lot of extra work involved.
2430 ///
2431 /// Returns a null sentinel to indicate trivial success.
2432 ExprResult
2433 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2434                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2435   SourceLocation Loc = Lookup.getNameLoc();
2436   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2437 
2438   // Check for error condition which is already reported.
2439   if (!CurMethod)
2440     return ExprError();
2441 
2442   // There are two cases to handle here.  1) scoped lookup could have failed,
2443   // in which case we should look for an ivar.  2) scoped lookup could have
2444   // found a decl, but that decl is outside the current instance method (i.e.
2445   // a global variable).  In these two cases, we do a lookup for an ivar with
2446   // this name, if the lookup sucedes, we replace it our current decl.
2447 
2448   // If we're in a class method, we don't normally want to look for
2449   // ivars.  But if we don't find anything else, and there's an
2450   // ivar, that's an error.
2451   bool IsClassMethod = CurMethod->isClassMethod();
2452 
2453   bool LookForIvars;
2454   if (Lookup.empty())
2455     LookForIvars = true;
2456   else if (IsClassMethod)
2457     LookForIvars = false;
2458   else
2459     LookForIvars = (Lookup.isSingleResult() &&
2460                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2461   ObjCInterfaceDecl *IFace = nullptr;
2462   if (LookForIvars) {
2463     IFace = CurMethod->getClassInterface();
2464     ObjCInterfaceDecl *ClassDeclared;
2465     ObjCIvarDecl *IV = nullptr;
2466     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2467       // Diagnose using an ivar in a class method.
2468       if (IsClassMethod)
2469         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2470                          << IV->getDeclName());
2471 
2472       // If we're referencing an invalid decl, just return this as a silent
2473       // error node.  The error diagnostic was already emitted on the decl.
2474       if (IV->isInvalidDecl())
2475         return ExprError();
2476 
2477       // Check if referencing a field with __attribute__((deprecated)).
2478       if (DiagnoseUseOfDecl(IV, Loc))
2479         return ExprError();
2480 
2481       // Diagnose the use of an ivar outside of the declaring class.
2482       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2483           !declaresSameEntity(ClassDeclared, IFace) &&
2484           !getLangOpts().DebuggerSupport)
2485         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2486 
2487       // FIXME: This should use a new expr for a direct reference, don't
2488       // turn this into Self->ivar, just return a BareIVarExpr or something.
2489       IdentifierInfo &II = Context.Idents.get("self");
2490       UnqualifiedId SelfName;
2491       SelfName.setIdentifier(&II, SourceLocation());
2492       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2493       CXXScopeSpec SelfScopeSpec;
2494       SourceLocation TemplateKWLoc;
2495       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2496                                               SelfName, false, false);
2497       if (SelfExpr.isInvalid())
2498         return ExprError();
2499 
2500       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2501       if (SelfExpr.isInvalid())
2502         return ExprError();
2503 
2504       MarkAnyDeclReferenced(Loc, IV, true);
2505 
2506       ObjCMethodFamily MF = CurMethod->getMethodFamily();
2507       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2508           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2509         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2510 
2511       ObjCIvarRefExpr *Result = new (Context)
2512           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2513                           IV->getLocation(), SelfExpr.get(), true, true);
2514 
2515       if (getLangOpts().ObjCAutoRefCount) {
2516         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2517           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2518             recordUseOfEvaluatedWeak(Result);
2519         }
2520         if (CurContext->isClosure())
2521           Diag(Loc, diag::warn_implicitly_retains_self)
2522             << FixItHint::CreateInsertion(Loc, "self->");
2523       }
2524 
2525       return Result;
2526     }
2527   } else if (CurMethod->isInstanceMethod()) {
2528     // We should warn if a local variable hides an ivar.
2529     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2530       ObjCInterfaceDecl *ClassDeclared;
2531       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2532         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2533             declaresSameEntity(IFace, ClassDeclared))
2534           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2535       }
2536     }
2537   } else if (Lookup.isSingleResult() &&
2538              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2539     // If accessing a stand-alone ivar in a class method, this is an error.
2540     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2541       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2542                        << IV->getDeclName());
2543   }
2544 
2545   if (Lookup.empty() && II && AllowBuiltinCreation) {
2546     // FIXME. Consolidate this with similar code in LookupName.
2547     if (unsigned BuiltinID = II->getBuiltinID()) {
2548       if (!(getLangOpts().CPlusPlus &&
2549             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2550         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2551                                            S, Lookup.isForRedeclaration(),
2552                                            Lookup.getNameLoc());
2553         if (D) Lookup.addDecl(D);
2554       }
2555     }
2556   }
2557   // Sentinel value saying that we didn't do anything special.
2558   return ExprResult((Expr *)nullptr);
2559 }
2560 
2561 /// \brief Cast a base object to a member's actual type.
2562 ///
2563 /// Logically this happens in three phases:
2564 ///
2565 /// * First we cast from the base type to the naming class.
2566 ///   The naming class is the class into which we were looking
2567 ///   when we found the member;  it's the qualifier type if a
2568 ///   qualifier was provided, and otherwise it's the base type.
2569 ///
2570 /// * Next we cast from the naming class to the declaring class.
2571 ///   If the member we found was brought into a class's scope by
2572 ///   a using declaration, this is that class;  otherwise it's
2573 ///   the class declaring the member.
2574 ///
2575 /// * Finally we cast from the declaring class to the "true"
2576 ///   declaring class of the member.  This conversion does not
2577 ///   obey access control.
2578 ExprResult
2579 Sema::PerformObjectMemberConversion(Expr *From,
2580                                     NestedNameSpecifier *Qualifier,
2581                                     NamedDecl *FoundDecl,
2582                                     NamedDecl *Member) {
2583   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2584   if (!RD)
2585     return From;
2586 
2587   QualType DestRecordType;
2588   QualType DestType;
2589   QualType FromRecordType;
2590   QualType FromType = From->getType();
2591   bool PointerConversions = false;
2592   if (isa<FieldDecl>(Member)) {
2593     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2594 
2595     if (FromType->getAs<PointerType>()) {
2596       DestType = Context.getPointerType(DestRecordType);
2597       FromRecordType = FromType->getPointeeType();
2598       PointerConversions = true;
2599     } else {
2600       DestType = DestRecordType;
2601       FromRecordType = FromType;
2602     }
2603   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2604     if (Method->isStatic())
2605       return From;
2606 
2607     DestType = Method->getThisType(Context);
2608     DestRecordType = DestType->getPointeeType();
2609 
2610     if (FromType->getAs<PointerType>()) {
2611       FromRecordType = FromType->getPointeeType();
2612       PointerConversions = true;
2613     } else {
2614       FromRecordType = FromType;
2615       DestType = DestRecordType;
2616     }
2617   } else {
2618     // No conversion necessary.
2619     return From;
2620   }
2621 
2622   if (DestType->isDependentType() || FromType->isDependentType())
2623     return From;
2624 
2625   // If the unqualified types are the same, no conversion is necessary.
2626   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2627     return From;
2628 
2629   SourceRange FromRange = From->getSourceRange();
2630   SourceLocation FromLoc = FromRange.getBegin();
2631 
2632   ExprValueKind VK = From->getValueKind();
2633 
2634   // C++ [class.member.lookup]p8:
2635   //   [...] Ambiguities can often be resolved by qualifying a name with its
2636   //   class name.
2637   //
2638   // If the member was a qualified name and the qualified referred to a
2639   // specific base subobject type, we'll cast to that intermediate type
2640   // first and then to the object in which the member is declared. That allows
2641   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2642   //
2643   //   class Base { public: int x; };
2644   //   class Derived1 : public Base { };
2645   //   class Derived2 : public Base { };
2646   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2647   //
2648   //   void VeryDerived::f() {
2649   //     x = 17; // error: ambiguous base subobjects
2650   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2651   //   }
2652   if (Qualifier && Qualifier->getAsType()) {
2653     QualType QType = QualType(Qualifier->getAsType(), 0);
2654     assert(QType->isRecordType() && "lookup done with non-record type");
2655 
2656     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2657 
2658     // In C++98, the qualifier type doesn't actually have to be a base
2659     // type of the object type, in which case we just ignore it.
2660     // Otherwise build the appropriate casts.
2661     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2662       CXXCastPath BasePath;
2663       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2664                                        FromLoc, FromRange, &BasePath))
2665         return ExprError();
2666 
2667       if (PointerConversions)
2668         QType = Context.getPointerType(QType);
2669       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2670                                VK, &BasePath).get();
2671 
2672       FromType = QType;
2673       FromRecordType = QRecordType;
2674 
2675       // If the qualifier type was the same as the destination type,
2676       // we're done.
2677       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2678         return From;
2679     }
2680   }
2681 
2682   bool IgnoreAccess = false;
2683 
2684   // If we actually found the member through a using declaration, cast
2685   // down to the using declaration's type.
2686   //
2687   // Pointer equality is fine here because only one declaration of a
2688   // class ever has member declarations.
2689   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2690     assert(isa<UsingShadowDecl>(FoundDecl));
2691     QualType URecordType = Context.getTypeDeclType(
2692                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2693 
2694     // We only need to do this if the naming-class to declaring-class
2695     // conversion is non-trivial.
2696     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2697       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2698       CXXCastPath BasePath;
2699       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2700                                        FromLoc, FromRange, &BasePath))
2701         return ExprError();
2702 
2703       QualType UType = URecordType;
2704       if (PointerConversions)
2705         UType = Context.getPointerType(UType);
2706       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2707                                VK, &BasePath).get();
2708       FromType = UType;
2709       FromRecordType = URecordType;
2710     }
2711 
2712     // We don't do access control for the conversion from the
2713     // declaring class to the true declaring class.
2714     IgnoreAccess = true;
2715   }
2716 
2717   CXXCastPath BasePath;
2718   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2719                                    FromLoc, FromRange, &BasePath,
2720                                    IgnoreAccess))
2721     return ExprError();
2722 
2723   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2724                            VK, &BasePath);
2725 }
2726 
2727 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2728                                       const LookupResult &R,
2729                                       bool HasTrailingLParen) {
2730   // Only when used directly as the postfix-expression of a call.
2731   if (!HasTrailingLParen)
2732     return false;
2733 
2734   // Never if a scope specifier was provided.
2735   if (SS.isSet())
2736     return false;
2737 
2738   // Only in C++ or ObjC++.
2739   if (!getLangOpts().CPlusPlus)
2740     return false;
2741 
2742   // Turn off ADL when we find certain kinds of declarations during
2743   // normal lookup:
2744   for (NamedDecl *D : R) {
2745     // C++0x [basic.lookup.argdep]p3:
2746     //     -- a declaration of a class member
2747     // Since using decls preserve this property, we check this on the
2748     // original decl.
2749     if (D->isCXXClassMember())
2750       return false;
2751 
2752     // C++0x [basic.lookup.argdep]p3:
2753     //     -- a block-scope function declaration that is not a
2754     //        using-declaration
2755     // NOTE: we also trigger this for function templates (in fact, we
2756     // don't check the decl type at all, since all other decl types
2757     // turn off ADL anyway).
2758     if (isa<UsingShadowDecl>(D))
2759       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2760     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2761       return false;
2762 
2763     // C++0x [basic.lookup.argdep]p3:
2764     //     -- a declaration that is neither a function or a function
2765     //        template
2766     // And also for builtin functions.
2767     if (isa<FunctionDecl>(D)) {
2768       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2769 
2770       // But also builtin functions.
2771       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2772         return false;
2773     } else if (!isa<FunctionTemplateDecl>(D))
2774       return false;
2775   }
2776 
2777   return true;
2778 }
2779 
2780 
2781 /// Diagnoses obvious problems with the use of the given declaration
2782 /// as an expression.  This is only actually called for lookups that
2783 /// were not overloaded, and it doesn't promise that the declaration
2784 /// will in fact be used.
2785 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2786   if (isa<TypedefNameDecl>(D)) {
2787     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2788     return true;
2789   }
2790 
2791   if (isa<ObjCInterfaceDecl>(D)) {
2792     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2793     return true;
2794   }
2795 
2796   if (isa<NamespaceDecl>(D)) {
2797     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2798     return true;
2799   }
2800 
2801   return false;
2802 }
2803 
2804 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2805                                           LookupResult &R, bool NeedsADL,
2806                                           bool AcceptInvalidDecl) {
2807   // If this is a single, fully-resolved result and we don't need ADL,
2808   // just build an ordinary singleton decl ref.
2809   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2810     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2811                                     R.getRepresentativeDecl(), nullptr,
2812                                     AcceptInvalidDecl);
2813 
2814   // We only need to check the declaration if there's exactly one
2815   // result, because in the overloaded case the results can only be
2816   // functions and function templates.
2817   if (R.isSingleResult() &&
2818       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2819     return ExprError();
2820 
2821   // Otherwise, just build an unresolved lookup expression.  Suppress
2822   // any lookup-related diagnostics; we'll hash these out later, when
2823   // we've picked a target.
2824   R.suppressDiagnostics();
2825 
2826   UnresolvedLookupExpr *ULE
2827     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2828                                    SS.getWithLocInContext(Context),
2829                                    R.getLookupNameInfo(),
2830                                    NeedsADL, R.isOverloadedResult(),
2831                                    R.begin(), R.end());
2832 
2833   return ULE;
2834 }
2835 
2836 static void
2837 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
2838                                    ValueDecl *var, DeclContext *DC);
2839 
2840 /// \brief Complete semantic analysis for a reference to the given declaration.
2841 ExprResult Sema::BuildDeclarationNameExpr(
2842     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2843     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2844     bool AcceptInvalidDecl) {
2845   assert(D && "Cannot refer to a NULL declaration");
2846   assert(!isa<FunctionTemplateDecl>(D) &&
2847          "Cannot refer unambiguously to a function template");
2848 
2849   SourceLocation Loc = NameInfo.getLoc();
2850   if (CheckDeclInExpr(*this, Loc, D))
2851     return ExprError();
2852 
2853   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2854     // Specifically diagnose references to class templates that are missing
2855     // a template argument list.
2856     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2857                                            << Template << SS.getRange();
2858     Diag(Template->getLocation(), diag::note_template_decl_here);
2859     return ExprError();
2860   }
2861 
2862   // Make sure that we're referring to a value.
2863   ValueDecl *VD = dyn_cast<ValueDecl>(D);
2864   if (!VD) {
2865     Diag(Loc, diag::err_ref_non_value)
2866       << D << SS.getRange();
2867     Diag(D->getLocation(), diag::note_declared_at);
2868     return ExprError();
2869   }
2870 
2871   // Check whether this declaration can be used. Note that we suppress
2872   // this check when we're going to perform argument-dependent lookup
2873   // on this function name, because this might not be the function
2874   // that overload resolution actually selects.
2875   if (DiagnoseUseOfDecl(VD, Loc))
2876     return ExprError();
2877 
2878   // Only create DeclRefExpr's for valid Decl's.
2879   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2880     return ExprError();
2881 
2882   // Handle members of anonymous structs and unions.  If we got here,
2883   // and the reference is to a class member indirect field, then this
2884   // must be the subject of a pointer-to-member expression.
2885   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2886     if (!indirectField->isCXXClassMember())
2887       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2888                                                       indirectField);
2889 
2890   {
2891     QualType type = VD->getType();
2892     if (auto *FPT = type->getAs<FunctionProtoType>()) {
2893       // C++ [except.spec]p17:
2894       //   An exception-specification is considered to be needed when:
2895       //   - in an expression, the function is the unique lookup result or
2896       //     the selected member of a set of overloaded functions.
2897       ResolveExceptionSpec(Loc, FPT);
2898       type = VD->getType();
2899     }
2900     ExprValueKind valueKind = VK_RValue;
2901 
2902     switch (D->getKind()) {
2903     // Ignore all the non-ValueDecl kinds.
2904 #define ABSTRACT_DECL(kind)
2905 #define VALUE(type, base)
2906 #define DECL(type, base) \
2907     case Decl::type:
2908 #include "clang/AST/DeclNodes.inc"
2909       llvm_unreachable("invalid value decl kind");
2910 
2911     // These shouldn't make it here.
2912     case Decl::ObjCAtDefsField:
2913     case Decl::ObjCIvar:
2914       llvm_unreachable("forming non-member reference to ivar?");
2915 
2916     // Enum constants are always r-values and never references.
2917     // Unresolved using declarations are dependent.
2918     case Decl::EnumConstant:
2919     case Decl::UnresolvedUsingValue:
2920     case Decl::OMPDeclareReduction:
2921       valueKind = VK_RValue;
2922       break;
2923 
2924     // Fields and indirect fields that got here must be for
2925     // pointer-to-member expressions; we just call them l-values for
2926     // internal consistency, because this subexpression doesn't really
2927     // exist in the high-level semantics.
2928     case Decl::Field:
2929     case Decl::IndirectField:
2930       assert(getLangOpts().CPlusPlus &&
2931              "building reference to field in C?");
2932 
2933       // These can't have reference type in well-formed programs, but
2934       // for internal consistency we do this anyway.
2935       type = type.getNonReferenceType();
2936       valueKind = VK_LValue;
2937       break;
2938 
2939     // Non-type template parameters are either l-values or r-values
2940     // depending on the type.
2941     case Decl::NonTypeTemplateParm: {
2942       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2943         type = reftype->getPointeeType();
2944         valueKind = VK_LValue; // even if the parameter is an r-value reference
2945         break;
2946       }
2947 
2948       // For non-references, we need to strip qualifiers just in case
2949       // the template parameter was declared as 'const int' or whatever.
2950       valueKind = VK_RValue;
2951       type = type.getUnqualifiedType();
2952       break;
2953     }
2954 
2955     case Decl::Var:
2956     case Decl::VarTemplateSpecialization:
2957     case Decl::VarTemplatePartialSpecialization:
2958     case Decl::Decomposition:
2959     case Decl::OMPCapturedExpr:
2960       // In C, "extern void blah;" is valid and is an r-value.
2961       if (!getLangOpts().CPlusPlus &&
2962           !type.hasQualifiers() &&
2963           type->isVoidType()) {
2964         valueKind = VK_RValue;
2965         break;
2966       }
2967       // fallthrough
2968 
2969     case Decl::ImplicitParam:
2970     case Decl::ParmVar: {
2971       // These are always l-values.
2972       valueKind = VK_LValue;
2973       type = type.getNonReferenceType();
2974 
2975       // FIXME: Does the addition of const really only apply in
2976       // potentially-evaluated contexts? Since the variable isn't actually
2977       // captured in an unevaluated context, it seems that the answer is no.
2978       if (!isUnevaluatedContext()) {
2979         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2980         if (!CapturedType.isNull())
2981           type = CapturedType;
2982       }
2983 
2984       break;
2985     }
2986 
2987     case Decl::Binding: {
2988       // These are always lvalues.
2989       valueKind = VK_LValue;
2990       type = type.getNonReferenceType();
2991       // FIXME: Support lambda-capture of BindingDecls, once CWG actually
2992       // decides how that's supposed to work.
2993       auto *BD = cast<BindingDecl>(VD);
2994       if (BD->getDeclContext()->isFunctionOrMethod() &&
2995           BD->getDeclContext() != CurContext)
2996         diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
2997       break;
2998     }
2999 
3000     case Decl::Function: {
3001       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3002         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3003           type = Context.BuiltinFnTy;
3004           valueKind = VK_RValue;
3005           break;
3006         }
3007       }
3008 
3009       const FunctionType *fty = type->castAs<FunctionType>();
3010 
3011       // If we're referring to a function with an __unknown_anytype
3012       // result type, make the entire expression __unknown_anytype.
3013       if (fty->getReturnType() == Context.UnknownAnyTy) {
3014         type = Context.UnknownAnyTy;
3015         valueKind = VK_RValue;
3016         break;
3017       }
3018 
3019       // Functions are l-values in C++.
3020       if (getLangOpts().CPlusPlus) {
3021         valueKind = VK_LValue;
3022         break;
3023       }
3024 
3025       // C99 DR 316 says that, if a function type comes from a
3026       // function definition (without a prototype), that type is only
3027       // used for checking compatibility. Therefore, when referencing
3028       // the function, we pretend that we don't have the full function
3029       // type.
3030       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3031           isa<FunctionProtoType>(fty))
3032         type = Context.getFunctionNoProtoType(fty->getReturnType(),
3033                                               fty->getExtInfo());
3034 
3035       // Functions are r-values in C.
3036       valueKind = VK_RValue;
3037       break;
3038     }
3039 
3040     case Decl::MSProperty:
3041       valueKind = VK_LValue;
3042       break;
3043 
3044     case Decl::CXXMethod:
3045       // If we're referring to a method with an __unknown_anytype
3046       // result type, make the entire expression __unknown_anytype.
3047       // This should only be possible with a type written directly.
3048       if (const FunctionProtoType *proto
3049             = dyn_cast<FunctionProtoType>(VD->getType()))
3050         if (proto->getReturnType() == Context.UnknownAnyTy) {
3051           type = Context.UnknownAnyTy;
3052           valueKind = VK_RValue;
3053           break;
3054         }
3055 
3056       // C++ methods are l-values if static, r-values if non-static.
3057       if (cast<CXXMethodDecl>(VD)->isStatic()) {
3058         valueKind = VK_LValue;
3059         break;
3060       }
3061       // fallthrough
3062 
3063     case Decl::CXXConversion:
3064     case Decl::CXXDestructor:
3065     case Decl::CXXConstructor:
3066       valueKind = VK_RValue;
3067       break;
3068     }
3069 
3070     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3071                             TemplateArgs);
3072   }
3073 }
3074 
3075 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3076                                     SmallString<32> &Target) {
3077   Target.resize(CharByteWidth * (Source.size() + 1));
3078   char *ResultPtr = &Target[0];
3079   const llvm::UTF8 *ErrorPtr;
3080   bool success =
3081       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3082   (void)success;
3083   assert(success);
3084   Target.resize(ResultPtr - &Target[0]);
3085 }
3086 
3087 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3088                                      PredefinedExpr::IdentType IT) {
3089   // Pick the current block, lambda, captured statement or function.
3090   Decl *currentDecl = nullptr;
3091   if (const BlockScopeInfo *BSI = getCurBlock())
3092     currentDecl = BSI->TheDecl;
3093   else if (const LambdaScopeInfo *LSI = getCurLambda())
3094     currentDecl = LSI->CallOperator;
3095   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3096     currentDecl = CSI->TheCapturedDecl;
3097   else
3098     currentDecl = getCurFunctionOrMethodDecl();
3099 
3100   if (!currentDecl) {
3101     Diag(Loc, diag::ext_predef_outside_function);
3102     currentDecl = Context.getTranslationUnitDecl();
3103   }
3104 
3105   QualType ResTy;
3106   StringLiteral *SL = nullptr;
3107   if (cast<DeclContext>(currentDecl)->isDependentContext())
3108     ResTy = Context.DependentTy;
3109   else {
3110     // Pre-defined identifiers are of type char[x], where x is the length of
3111     // the string.
3112     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
3113     unsigned Length = Str.length();
3114 
3115     llvm::APInt LengthI(32, Length + 1);
3116     if (IT == PredefinedExpr::LFunction) {
3117       ResTy = Context.WideCharTy.withConst();
3118       SmallString<32> RawChars;
3119       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3120                               Str, RawChars);
3121       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3122                                            /*IndexTypeQuals*/ 0);
3123       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3124                                  /*Pascal*/ false, ResTy, Loc);
3125     } else {
3126       ResTy = Context.CharTy.withConst();
3127       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3128                                            /*IndexTypeQuals*/ 0);
3129       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3130                                  /*Pascal*/ false, ResTy, Loc);
3131     }
3132   }
3133 
3134   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
3135 }
3136 
3137 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3138   PredefinedExpr::IdentType IT;
3139 
3140   switch (Kind) {
3141   default: llvm_unreachable("Unknown simple primary expr!");
3142   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3143   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
3144   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
3145   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
3146   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
3147   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
3148   }
3149 
3150   return BuildPredefinedExpr(Loc, IT);
3151 }
3152 
3153 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3154   SmallString<16> CharBuffer;
3155   bool Invalid = false;
3156   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3157   if (Invalid)
3158     return ExprError();
3159 
3160   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3161                             PP, Tok.getKind());
3162   if (Literal.hadError())
3163     return ExprError();
3164 
3165   QualType Ty;
3166   if (Literal.isWide())
3167     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3168   else if (Literal.isUTF16())
3169     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3170   else if (Literal.isUTF32())
3171     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3172   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3173     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3174   else
3175     Ty = Context.CharTy;  // 'x' -> char in C++
3176 
3177   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3178   if (Literal.isWide())
3179     Kind = CharacterLiteral::Wide;
3180   else if (Literal.isUTF16())
3181     Kind = CharacterLiteral::UTF16;
3182   else if (Literal.isUTF32())
3183     Kind = CharacterLiteral::UTF32;
3184   else if (Literal.isUTF8())
3185     Kind = CharacterLiteral::UTF8;
3186 
3187   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3188                                              Tok.getLocation());
3189 
3190   if (Literal.getUDSuffix().empty())
3191     return Lit;
3192 
3193   // We're building a user-defined literal.
3194   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3195   SourceLocation UDSuffixLoc =
3196     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3197 
3198   // Make sure we're allowed user-defined literals here.
3199   if (!UDLScope)
3200     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3201 
3202   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3203   //   operator "" X (ch)
3204   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3205                                         Lit, Tok.getLocation());
3206 }
3207 
3208 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3209   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3210   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3211                                 Context.IntTy, Loc);
3212 }
3213 
3214 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3215                                   QualType Ty, SourceLocation Loc) {
3216   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3217 
3218   using llvm::APFloat;
3219   APFloat Val(Format);
3220 
3221   APFloat::opStatus result = Literal.GetFloatValue(Val);
3222 
3223   // Overflow is always an error, but underflow is only an error if
3224   // we underflowed to zero (APFloat reports denormals as underflow).
3225   if ((result & APFloat::opOverflow) ||
3226       ((result & APFloat::opUnderflow) && Val.isZero())) {
3227     unsigned diagnostic;
3228     SmallString<20> buffer;
3229     if (result & APFloat::opOverflow) {
3230       diagnostic = diag::warn_float_overflow;
3231       APFloat::getLargest(Format).toString(buffer);
3232     } else {
3233       diagnostic = diag::warn_float_underflow;
3234       APFloat::getSmallest(Format).toString(buffer);
3235     }
3236 
3237     S.Diag(Loc, diagnostic)
3238       << Ty
3239       << StringRef(buffer.data(), buffer.size());
3240   }
3241 
3242   bool isExact = (result == APFloat::opOK);
3243   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3244 }
3245 
3246 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3247   assert(E && "Invalid expression");
3248 
3249   if (E->isValueDependent())
3250     return false;
3251 
3252   QualType QT = E->getType();
3253   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3254     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3255     return true;
3256   }
3257 
3258   llvm::APSInt ValueAPS;
3259   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3260 
3261   if (R.isInvalid())
3262     return true;
3263 
3264   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3265   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3266     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3267         << ValueAPS.toString(10) << ValueIsPositive;
3268     return true;
3269   }
3270 
3271   return false;
3272 }
3273 
3274 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3275   // Fast path for a single digit (which is quite common).  A single digit
3276   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3277   if (Tok.getLength() == 1) {
3278     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3279     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3280   }
3281 
3282   SmallString<128> SpellingBuffer;
3283   // NumericLiteralParser wants to overread by one character.  Add padding to
3284   // the buffer in case the token is copied to the buffer.  If getSpelling()
3285   // returns a StringRef to the memory buffer, it should have a null char at
3286   // the EOF, so it is also safe.
3287   SpellingBuffer.resize(Tok.getLength() + 1);
3288 
3289   // Get the spelling of the token, which eliminates trigraphs, etc.
3290   bool Invalid = false;
3291   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3292   if (Invalid)
3293     return ExprError();
3294 
3295   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3296   if (Literal.hadError)
3297     return ExprError();
3298 
3299   if (Literal.hasUDSuffix()) {
3300     // We're building a user-defined literal.
3301     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3302     SourceLocation UDSuffixLoc =
3303       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3304 
3305     // Make sure we're allowed user-defined literals here.
3306     if (!UDLScope)
3307       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3308 
3309     QualType CookedTy;
3310     if (Literal.isFloatingLiteral()) {
3311       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3312       // long double, the literal is treated as a call of the form
3313       //   operator "" X (f L)
3314       CookedTy = Context.LongDoubleTy;
3315     } else {
3316       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3317       // unsigned long long, the literal is treated as a call of the form
3318       //   operator "" X (n ULL)
3319       CookedTy = Context.UnsignedLongLongTy;
3320     }
3321 
3322     DeclarationName OpName =
3323       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3324     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3325     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3326 
3327     SourceLocation TokLoc = Tok.getLocation();
3328 
3329     // Perform literal operator lookup to determine if we're building a raw
3330     // literal or a cooked one.
3331     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3332     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3333                                   /*AllowRaw*/true, /*AllowTemplate*/true,
3334                                   /*AllowStringTemplate*/false)) {
3335     case LOLR_Error:
3336       return ExprError();
3337 
3338     case LOLR_Cooked: {
3339       Expr *Lit;
3340       if (Literal.isFloatingLiteral()) {
3341         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3342       } else {
3343         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3344         if (Literal.GetIntegerValue(ResultVal))
3345           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3346               << /* Unsigned */ 1;
3347         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3348                                      Tok.getLocation());
3349       }
3350       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3351     }
3352 
3353     case LOLR_Raw: {
3354       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3355       // literal is treated as a call of the form
3356       //   operator "" X ("n")
3357       unsigned Length = Literal.getUDSuffixOffset();
3358       QualType StrTy = Context.getConstantArrayType(
3359           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3360           ArrayType::Normal, 0);
3361       Expr *Lit = StringLiteral::Create(
3362           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3363           /*Pascal*/false, StrTy, &TokLoc, 1);
3364       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3365     }
3366 
3367     case LOLR_Template: {
3368       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3369       // template), L is treated as a call fo the form
3370       //   operator "" X <'c1', 'c2', ... 'ck'>()
3371       // where n is the source character sequence c1 c2 ... ck.
3372       TemplateArgumentListInfo ExplicitArgs;
3373       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3374       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3375       llvm::APSInt Value(CharBits, CharIsUnsigned);
3376       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3377         Value = TokSpelling[I];
3378         TemplateArgument Arg(Context, Value, Context.CharTy);
3379         TemplateArgumentLocInfo ArgInfo;
3380         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3381       }
3382       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3383                                       &ExplicitArgs);
3384     }
3385     case LOLR_StringTemplate:
3386       llvm_unreachable("unexpected literal operator lookup result");
3387     }
3388   }
3389 
3390   Expr *Res;
3391 
3392   if (Literal.isFloatingLiteral()) {
3393     QualType Ty;
3394     if (Literal.isHalf){
3395       if (getOpenCLOptions().cl_khr_fp16)
3396         Ty = Context.HalfTy;
3397       else {
3398         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3399         return ExprError();
3400       }
3401     } else if (Literal.isFloat)
3402       Ty = Context.FloatTy;
3403     else if (Literal.isLong)
3404       Ty = Context.LongDoubleTy;
3405     else if (Literal.isFloat128)
3406       Ty = Context.Float128Ty;
3407     else
3408       Ty = Context.DoubleTy;
3409 
3410     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3411 
3412     if (Ty == Context.DoubleTy) {
3413       if (getLangOpts().SinglePrecisionConstants) {
3414         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3415       } else if (getLangOpts().OpenCL &&
3416                  !((getLangOpts().OpenCLVersion >= 120) ||
3417                    getOpenCLOptions().cl_khr_fp64)) {
3418         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3419         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3420       }
3421     }
3422   } else if (!Literal.isIntegerLiteral()) {
3423     return ExprError();
3424   } else {
3425     QualType Ty;
3426 
3427     // 'long long' is a C99 or C++11 feature.
3428     if (!getLangOpts().C99 && Literal.isLongLong) {
3429       if (getLangOpts().CPlusPlus)
3430         Diag(Tok.getLocation(),
3431              getLangOpts().CPlusPlus11 ?
3432              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3433       else
3434         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3435     }
3436 
3437     // Get the value in the widest-possible width.
3438     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3439     llvm::APInt ResultVal(MaxWidth, 0);
3440 
3441     if (Literal.GetIntegerValue(ResultVal)) {
3442       // If this value didn't fit into uintmax_t, error and force to ull.
3443       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3444           << /* Unsigned */ 1;
3445       Ty = Context.UnsignedLongLongTy;
3446       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3447              "long long is not intmax_t?");
3448     } else {
3449       // If this value fits into a ULL, try to figure out what else it fits into
3450       // according to the rules of C99 6.4.4.1p5.
3451 
3452       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3453       // be an unsigned int.
3454       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3455 
3456       // Check from smallest to largest, picking the smallest type we can.
3457       unsigned Width = 0;
3458 
3459       // Microsoft specific integer suffixes are explicitly sized.
3460       if (Literal.MicrosoftInteger) {
3461         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3462           Width = 8;
3463           Ty = Context.CharTy;
3464         } else {
3465           Width = Literal.MicrosoftInteger;
3466           Ty = Context.getIntTypeForBitwidth(Width,
3467                                              /*Signed=*/!Literal.isUnsigned);
3468         }
3469       }
3470 
3471       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3472         // Are int/unsigned possibilities?
3473         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3474 
3475         // Does it fit in a unsigned int?
3476         if (ResultVal.isIntN(IntSize)) {
3477           // Does it fit in a signed int?
3478           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3479             Ty = Context.IntTy;
3480           else if (AllowUnsigned)
3481             Ty = Context.UnsignedIntTy;
3482           Width = IntSize;
3483         }
3484       }
3485 
3486       // Are long/unsigned long possibilities?
3487       if (Ty.isNull() && !Literal.isLongLong) {
3488         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3489 
3490         // Does it fit in a unsigned long?
3491         if (ResultVal.isIntN(LongSize)) {
3492           // Does it fit in a signed long?
3493           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3494             Ty = Context.LongTy;
3495           else if (AllowUnsigned)
3496             Ty = Context.UnsignedLongTy;
3497           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3498           // is compatible.
3499           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3500             const unsigned LongLongSize =
3501                 Context.getTargetInfo().getLongLongWidth();
3502             Diag(Tok.getLocation(),
3503                  getLangOpts().CPlusPlus
3504                      ? Literal.isLong
3505                            ? diag::warn_old_implicitly_unsigned_long_cxx
3506                            : /*C++98 UB*/ diag::
3507                                  ext_old_implicitly_unsigned_long_cxx
3508                      : diag::warn_old_implicitly_unsigned_long)
3509                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3510                                             : /*will be ill-formed*/ 1);
3511             Ty = Context.UnsignedLongTy;
3512           }
3513           Width = LongSize;
3514         }
3515       }
3516 
3517       // Check long long if needed.
3518       if (Ty.isNull()) {
3519         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3520 
3521         // Does it fit in a unsigned long long?
3522         if (ResultVal.isIntN(LongLongSize)) {
3523           // Does it fit in a signed long long?
3524           // To be compatible with MSVC, hex integer literals ending with the
3525           // LL or i64 suffix are always signed in Microsoft mode.
3526           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3527               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3528             Ty = Context.LongLongTy;
3529           else if (AllowUnsigned)
3530             Ty = Context.UnsignedLongLongTy;
3531           Width = LongLongSize;
3532         }
3533       }
3534 
3535       // If we still couldn't decide a type, we probably have something that
3536       // does not fit in a signed long long, but has no U suffix.
3537       if (Ty.isNull()) {
3538         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3539         Ty = Context.UnsignedLongLongTy;
3540         Width = Context.getTargetInfo().getLongLongWidth();
3541       }
3542 
3543       if (ResultVal.getBitWidth() != Width)
3544         ResultVal = ResultVal.trunc(Width);
3545     }
3546     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3547   }
3548 
3549   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3550   if (Literal.isImaginary)
3551     Res = new (Context) ImaginaryLiteral(Res,
3552                                         Context.getComplexType(Res->getType()));
3553 
3554   return Res;
3555 }
3556 
3557 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3558   assert(E && "ActOnParenExpr() missing expr");
3559   return new (Context) ParenExpr(L, R, E);
3560 }
3561 
3562 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3563                                          SourceLocation Loc,
3564                                          SourceRange ArgRange) {
3565   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3566   // scalar or vector data type argument..."
3567   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3568   // type (C99 6.2.5p18) or void.
3569   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3570     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3571       << T << ArgRange;
3572     return true;
3573   }
3574 
3575   assert((T->isVoidType() || !T->isIncompleteType()) &&
3576          "Scalar types should always be complete");
3577   return false;
3578 }
3579 
3580 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3581                                            SourceLocation Loc,
3582                                            SourceRange ArgRange,
3583                                            UnaryExprOrTypeTrait TraitKind) {
3584   // Invalid types must be hard errors for SFINAE in C++.
3585   if (S.LangOpts.CPlusPlus)
3586     return true;
3587 
3588   // C99 6.5.3.4p1:
3589   if (T->isFunctionType() &&
3590       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3591     // sizeof(function)/alignof(function) is allowed as an extension.
3592     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3593       << TraitKind << ArgRange;
3594     return false;
3595   }
3596 
3597   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3598   // this is an error (OpenCL v1.1 s6.3.k)
3599   if (T->isVoidType()) {
3600     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3601                                         : diag::ext_sizeof_alignof_void_type;
3602     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3603     return false;
3604   }
3605 
3606   return true;
3607 }
3608 
3609 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3610                                              SourceLocation Loc,
3611                                              SourceRange ArgRange,
3612                                              UnaryExprOrTypeTrait TraitKind) {
3613   // Reject sizeof(interface) and sizeof(interface<proto>) if the
3614   // runtime doesn't allow it.
3615   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3616     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3617       << T << (TraitKind == UETT_SizeOf)
3618       << ArgRange;
3619     return true;
3620   }
3621 
3622   return false;
3623 }
3624 
3625 /// \brief Check whether E is a pointer from a decayed array type (the decayed
3626 /// pointer type is equal to T) and emit a warning if it is.
3627 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3628                                      Expr *E) {
3629   // Don't warn if the operation changed the type.
3630   if (T != E->getType())
3631     return;
3632 
3633   // Now look for array decays.
3634   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3635   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3636     return;
3637 
3638   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3639                                              << ICE->getType()
3640                                              << ICE->getSubExpr()->getType();
3641 }
3642 
3643 /// \brief Check the constraints on expression operands to unary type expression
3644 /// and type traits.
3645 ///
3646 /// Completes any types necessary and validates the constraints on the operand
3647 /// expression. The logic mostly mirrors the type-based overload, but may modify
3648 /// the expression as it completes the type for that expression through template
3649 /// instantiation, etc.
3650 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3651                                             UnaryExprOrTypeTrait ExprKind) {
3652   QualType ExprTy = E->getType();
3653   assert(!ExprTy->isReferenceType());
3654 
3655   if (ExprKind == UETT_VecStep)
3656     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3657                                         E->getSourceRange());
3658 
3659   // Whitelist some types as extensions
3660   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3661                                       E->getSourceRange(), ExprKind))
3662     return false;
3663 
3664   // 'alignof' applied to an expression only requires the base element type of
3665   // the expression to be complete. 'sizeof' requires the expression's type to
3666   // be complete (and will attempt to complete it if it's an array of unknown
3667   // bound).
3668   if (ExprKind == UETT_AlignOf) {
3669     if (RequireCompleteType(E->getExprLoc(),
3670                             Context.getBaseElementType(E->getType()),
3671                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
3672                             E->getSourceRange()))
3673       return true;
3674   } else {
3675     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3676                                 ExprKind, E->getSourceRange()))
3677       return true;
3678   }
3679 
3680   // Completing the expression's type may have changed it.
3681   ExprTy = E->getType();
3682   assert(!ExprTy->isReferenceType());
3683 
3684   if (ExprTy->isFunctionType()) {
3685     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3686       << ExprKind << E->getSourceRange();
3687     return true;
3688   }
3689 
3690   // The operand for sizeof and alignof is in an unevaluated expression context,
3691   // so side effects could result in unintended consequences.
3692   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
3693       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
3694     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3695 
3696   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3697                                        E->getSourceRange(), ExprKind))
3698     return true;
3699 
3700   if (ExprKind == UETT_SizeOf) {
3701     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3702       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3703         QualType OType = PVD->getOriginalType();
3704         QualType Type = PVD->getType();
3705         if (Type->isPointerType() && OType->isArrayType()) {
3706           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3707             << Type << OType;
3708           Diag(PVD->getLocation(), diag::note_declared_at);
3709         }
3710       }
3711     }
3712 
3713     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3714     // decays into a pointer and returns an unintended result. This is most
3715     // likely a typo for "sizeof(array) op x".
3716     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3717       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3718                                BO->getLHS());
3719       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3720                                BO->getRHS());
3721     }
3722   }
3723 
3724   return false;
3725 }
3726 
3727 /// \brief Check the constraints on operands to unary expression and type
3728 /// traits.
3729 ///
3730 /// This will complete any types necessary, and validate the various constraints
3731 /// on those operands.
3732 ///
3733 /// The UsualUnaryConversions() function is *not* called by this routine.
3734 /// C99 6.3.2.1p[2-4] all state:
3735 ///   Except when it is the operand of the sizeof operator ...
3736 ///
3737 /// C++ [expr.sizeof]p4
3738 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3739 ///   standard conversions are not applied to the operand of sizeof.
3740 ///
3741 /// This policy is followed for all of the unary trait expressions.
3742 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3743                                             SourceLocation OpLoc,
3744                                             SourceRange ExprRange,
3745                                             UnaryExprOrTypeTrait ExprKind) {
3746   if (ExprType->isDependentType())
3747     return false;
3748 
3749   // C++ [expr.sizeof]p2:
3750   //     When applied to a reference or a reference type, the result
3751   //     is the size of the referenced type.
3752   // C++11 [expr.alignof]p3:
3753   //     When alignof is applied to a reference type, the result
3754   //     shall be the alignment of the referenced type.
3755   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3756     ExprType = Ref->getPointeeType();
3757 
3758   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3759   //   When alignof or _Alignof is applied to an array type, the result
3760   //   is the alignment of the element type.
3761   if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
3762     ExprType = Context.getBaseElementType(ExprType);
3763 
3764   if (ExprKind == UETT_VecStep)
3765     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3766 
3767   // Whitelist some types as extensions
3768   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3769                                       ExprKind))
3770     return false;
3771 
3772   if (RequireCompleteType(OpLoc, ExprType,
3773                           diag::err_sizeof_alignof_incomplete_type,
3774                           ExprKind, ExprRange))
3775     return true;
3776 
3777   if (ExprType->isFunctionType()) {
3778     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3779       << ExprKind << ExprRange;
3780     return true;
3781   }
3782 
3783   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3784                                        ExprKind))
3785     return true;
3786 
3787   return false;
3788 }
3789 
3790 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3791   E = E->IgnoreParens();
3792 
3793   // Cannot know anything else if the expression is dependent.
3794   if (E->isTypeDependent())
3795     return false;
3796 
3797   if (E->getObjectKind() == OK_BitField) {
3798     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
3799        << 1 << E->getSourceRange();
3800     return true;
3801   }
3802 
3803   ValueDecl *D = nullptr;
3804   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3805     D = DRE->getDecl();
3806   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3807     D = ME->getMemberDecl();
3808   }
3809 
3810   // If it's a field, require the containing struct to have a
3811   // complete definition so that we can compute the layout.
3812   //
3813   // This can happen in C++11 onwards, either by naming the member
3814   // in a way that is not transformed into a member access expression
3815   // (in an unevaluated operand, for instance), or by naming the member
3816   // in a trailing-return-type.
3817   //
3818   // For the record, since __alignof__ on expressions is a GCC
3819   // extension, GCC seems to permit this but always gives the
3820   // nonsensical answer 0.
3821   //
3822   // We don't really need the layout here --- we could instead just
3823   // directly check for all the appropriate alignment-lowing
3824   // attributes --- but that would require duplicating a lot of
3825   // logic that just isn't worth duplicating for such a marginal
3826   // use-case.
3827   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3828     // Fast path this check, since we at least know the record has a
3829     // definition if we can find a member of it.
3830     if (!FD->getParent()->isCompleteDefinition()) {
3831       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3832         << E->getSourceRange();
3833       return true;
3834     }
3835 
3836     // Otherwise, if it's a field, and the field doesn't have
3837     // reference type, then it must have a complete type (or be a
3838     // flexible array member, which we explicitly want to
3839     // white-list anyway), which makes the following checks trivial.
3840     if (!FD->getType()->isReferenceType())
3841       return false;
3842   }
3843 
3844   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3845 }
3846 
3847 bool Sema::CheckVecStepExpr(Expr *E) {
3848   E = E->IgnoreParens();
3849 
3850   // Cannot know anything else if the expression is dependent.
3851   if (E->isTypeDependent())
3852     return false;
3853 
3854   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3855 }
3856 
3857 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
3858                                         CapturingScopeInfo *CSI) {
3859   assert(T->isVariablyModifiedType());
3860   assert(CSI != nullptr);
3861 
3862   // We're going to walk down into the type and look for VLA expressions.
3863   do {
3864     const Type *Ty = T.getTypePtr();
3865     switch (Ty->getTypeClass()) {
3866 #define TYPE(Class, Base)
3867 #define ABSTRACT_TYPE(Class, Base)
3868 #define NON_CANONICAL_TYPE(Class, Base)
3869 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3870 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
3871 #include "clang/AST/TypeNodes.def"
3872       T = QualType();
3873       break;
3874     // These types are never variably-modified.
3875     case Type::Builtin:
3876     case Type::Complex:
3877     case Type::Vector:
3878     case Type::ExtVector:
3879     case Type::Record:
3880     case Type::Enum:
3881     case Type::Elaborated:
3882     case Type::TemplateSpecialization:
3883     case Type::ObjCObject:
3884     case Type::ObjCInterface:
3885     case Type::ObjCObjectPointer:
3886     case Type::ObjCTypeParam:
3887     case Type::Pipe:
3888       llvm_unreachable("type class is never variably-modified!");
3889     case Type::Adjusted:
3890       T = cast<AdjustedType>(Ty)->getOriginalType();
3891       break;
3892     case Type::Decayed:
3893       T = cast<DecayedType>(Ty)->getPointeeType();
3894       break;
3895     case Type::Pointer:
3896       T = cast<PointerType>(Ty)->getPointeeType();
3897       break;
3898     case Type::BlockPointer:
3899       T = cast<BlockPointerType>(Ty)->getPointeeType();
3900       break;
3901     case Type::LValueReference:
3902     case Type::RValueReference:
3903       T = cast<ReferenceType>(Ty)->getPointeeType();
3904       break;
3905     case Type::MemberPointer:
3906       T = cast<MemberPointerType>(Ty)->getPointeeType();
3907       break;
3908     case Type::ConstantArray:
3909     case Type::IncompleteArray:
3910       // Losing element qualification here is fine.
3911       T = cast<ArrayType>(Ty)->getElementType();
3912       break;
3913     case Type::VariableArray: {
3914       // Losing element qualification here is fine.
3915       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
3916 
3917       // Unknown size indication requires no size computation.
3918       // Otherwise, evaluate and record it.
3919       if (auto Size = VAT->getSizeExpr()) {
3920         if (!CSI->isVLATypeCaptured(VAT)) {
3921           RecordDecl *CapRecord = nullptr;
3922           if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
3923             CapRecord = LSI->Lambda;
3924           } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
3925             CapRecord = CRSI->TheRecordDecl;
3926           }
3927           if (CapRecord) {
3928             auto ExprLoc = Size->getExprLoc();
3929             auto SizeType = Context.getSizeType();
3930             // Build the non-static data member.
3931             auto Field =
3932                 FieldDecl::Create(Context, CapRecord, ExprLoc, ExprLoc,
3933                                   /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
3934                                   /*BW*/ nullptr, /*Mutable*/ false,
3935                                   /*InitStyle*/ ICIS_NoInit);
3936             Field->setImplicit(true);
3937             Field->setAccess(AS_private);
3938             Field->setCapturedVLAType(VAT);
3939             CapRecord->addDecl(Field);
3940 
3941             CSI->addVLATypeCapture(ExprLoc, SizeType);
3942           }
3943         }
3944       }
3945       T = VAT->getElementType();
3946       break;
3947     }
3948     case Type::FunctionProto:
3949     case Type::FunctionNoProto:
3950       T = cast<FunctionType>(Ty)->getReturnType();
3951       break;
3952     case Type::Paren:
3953     case Type::TypeOf:
3954     case Type::UnaryTransform:
3955     case Type::Attributed:
3956     case Type::SubstTemplateTypeParm:
3957     case Type::PackExpansion:
3958       // Keep walking after single level desugaring.
3959       T = T.getSingleStepDesugaredType(Context);
3960       break;
3961     case Type::Typedef:
3962       T = cast<TypedefType>(Ty)->desugar();
3963       break;
3964     case Type::Decltype:
3965       T = cast<DecltypeType>(Ty)->desugar();
3966       break;
3967     case Type::Auto:
3968       T = cast<AutoType>(Ty)->getDeducedType();
3969       break;
3970     case Type::TypeOfExpr:
3971       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
3972       break;
3973     case Type::Atomic:
3974       T = cast<AtomicType>(Ty)->getValueType();
3975       break;
3976     }
3977   } while (!T.isNull() && T->isVariablyModifiedType());
3978 }
3979 
3980 /// \brief Build a sizeof or alignof expression given a type operand.
3981 ExprResult
3982 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3983                                      SourceLocation OpLoc,
3984                                      UnaryExprOrTypeTrait ExprKind,
3985                                      SourceRange R) {
3986   if (!TInfo)
3987     return ExprError();
3988 
3989   QualType T = TInfo->getType();
3990 
3991   if (!T->isDependentType() &&
3992       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3993     return ExprError();
3994 
3995   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
3996     if (auto *TT = T->getAs<TypedefType>()) {
3997       for (auto I = FunctionScopes.rbegin(),
3998                 E = std::prev(FunctionScopes.rend());
3999            I != E; ++I) {
4000         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4001         if (CSI == nullptr)
4002           break;
4003         DeclContext *DC = nullptr;
4004         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4005           DC = LSI->CallOperator;
4006         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4007           DC = CRSI->TheCapturedDecl;
4008         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4009           DC = BSI->TheDecl;
4010         if (DC) {
4011           if (DC->containsDecl(TT->getDecl()))
4012             break;
4013           captureVariablyModifiedType(Context, T, CSI);
4014         }
4015       }
4016     }
4017   }
4018 
4019   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4020   return new (Context) UnaryExprOrTypeTraitExpr(
4021       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4022 }
4023 
4024 /// \brief Build a sizeof or alignof expression given an expression
4025 /// operand.
4026 ExprResult
4027 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4028                                      UnaryExprOrTypeTrait ExprKind) {
4029   ExprResult PE = CheckPlaceholderExpr(E);
4030   if (PE.isInvalid())
4031     return ExprError();
4032 
4033   E = PE.get();
4034 
4035   // Verify that the operand is valid.
4036   bool isInvalid = false;
4037   if (E->isTypeDependent()) {
4038     // Delay type-checking for type-dependent expressions.
4039   } else if (ExprKind == UETT_AlignOf) {
4040     isInvalid = CheckAlignOfExpr(*this, E);
4041   } else if (ExprKind == UETT_VecStep) {
4042     isInvalid = CheckVecStepExpr(E);
4043   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4044       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4045       isInvalid = true;
4046   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4047     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4048     isInvalid = true;
4049   } else {
4050     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4051   }
4052 
4053   if (isInvalid)
4054     return ExprError();
4055 
4056   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4057     PE = TransformToPotentiallyEvaluated(E);
4058     if (PE.isInvalid()) return ExprError();
4059     E = PE.get();
4060   }
4061 
4062   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4063   return new (Context) UnaryExprOrTypeTraitExpr(
4064       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4065 }
4066 
4067 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4068 /// expr and the same for @c alignof and @c __alignof
4069 /// Note that the ArgRange is invalid if isType is false.
4070 ExprResult
4071 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4072                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4073                                     void *TyOrEx, SourceRange ArgRange) {
4074   // If error parsing type, ignore.
4075   if (!TyOrEx) return ExprError();
4076 
4077   if (IsType) {
4078     TypeSourceInfo *TInfo;
4079     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4080     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4081   }
4082 
4083   Expr *ArgEx = (Expr *)TyOrEx;
4084   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4085   return Result;
4086 }
4087 
4088 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4089                                      bool IsReal) {
4090   if (V.get()->isTypeDependent())
4091     return S.Context.DependentTy;
4092 
4093   // _Real and _Imag are only l-values for normal l-values.
4094   if (V.get()->getObjectKind() != OK_Ordinary) {
4095     V = S.DefaultLvalueConversion(V.get());
4096     if (V.isInvalid())
4097       return QualType();
4098   }
4099 
4100   // These operators return the element type of a complex type.
4101   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4102     return CT->getElementType();
4103 
4104   // Otherwise they pass through real integer and floating point types here.
4105   if (V.get()->getType()->isArithmeticType())
4106     return V.get()->getType();
4107 
4108   // Test for placeholders.
4109   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4110   if (PR.isInvalid()) return QualType();
4111   if (PR.get() != V.get()) {
4112     V = PR;
4113     return CheckRealImagOperand(S, V, Loc, IsReal);
4114   }
4115 
4116   // Reject anything else.
4117   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4118     << (IsReal ? "__real" : "__imag");
4119   return QualType();
4120 }
4121 
4122 
4123 
4124 ExprResult
4125 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4126                           tok::TokenKind Kind, Expr *Input) {
4127   UnaryOperatorKind Opc;
4128   switch (Kind) {
4129   default: llvm_unreachable("Unknown unary op!");
4130   case tok::plusplus:   Opc = UO_PostInc; break;
4131   case tok::minusminus: Opc = UO_PostDec; break;
4132   }
4133 
4134   // Since this might is a postfix expression, get rid of ParenListExprs.
4135   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4136   if (Result.isInvalid()) return ExprError();
4137   Input = Result.get();
4138 
4139   return BuildUnaryOp(S, OpLoc, Opc, Input);
4140 }
4141 
4142 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
4143 ///
4144 /// \return true on error
4145 static bool checkArithmeticOnObjCPointer(Sema &S,
4146                                          SourceLocation opLoc,
4147                                          Expr *op) {
4148   assert(op->getType()->isObjCObjectPointerType());
4149   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4150       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4151     return false;
4152 
4153   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4154     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4155     << op->getSourceRange();
4156   return true;
4157 }
4158 
4159 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4160   auto *BaseNoParens = Base->IgnoreParens();
4161   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4162     return MSProp->getPropertyDecl()->getType()->isArrayType();
4163   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4164 }
4165 
4166 ExprResult
4167 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4168                               Expr *idx, SourceLocation rbLoc) {
4169   if (base && !base->getType().isNull() &&
4170       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4171     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4172                                     /*Length=*/nullptr, rbLoc);
4173 
4174   // Since this might be a postfix expression, get rid of ParenListExprs.
4175   if (isa<ParenListExpr>(base)) {
4176     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4177     if (result.isInvalid()) return ExprError();
4178     base = result.get();
4179   }
4180 
4181   // Handle any non-overload placeholder types in the base and index
4182   // expressions.  We can't handle overloads here because the other
4183   // operand might be an overloadable type, in which case the overload
4184   // resolution for the operator overload should get the first crack
4185   // at the overload.
4186   bool IsMSPropertySubscript = false;
4187   if (base->getType()->isNonOverloadPlaceholderType()) {
4188     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4189     if (!IsMSPropertySubscript) {
4190       ExprResult result = CheckPlaceholderExpr(base);
4191       if (result.isInvalid())
4192         return ExprError();
4193       base = result.get();
4194     }
4195   }
4196   if (idx->getType()->isNonOverloadPlaceholderType()) {
4197     ExprResult result = CheckPlaceholderExpr(idx);
4198     if (result.isInvalid()) return ExprError();
4199     idx = result.get();
4200   }
4201 
4202   // Build an unanalyzed expression if either operand is type-dependent.
4203   if (getLangOpts().CPlusPlus &&
4204       (base->isTypeDependent() || idx->isTypeDependent())) {
4205     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4206                                             VK_LValue, OK_Ordinary, rbLoc);
4207   }
4208 
4209   // MSDN, property (C++)
4210   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4211   // This attribute can also be used in the declaration of an empty array in a
4212   // class or structure definition. For example:
4213   // __declspec(property(get=GetX, put=PutX)) int x[];
4214   // The above statement indicates that x[] can be used with one or more array
4215   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4216   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4217   if (IsMSPropertySubscript) {
4218     // Build MS property subscript expression if base is MS property reference
4219     // or MS property subscript.
4220     return new (Context) MSPropertySubscriptExpr(
4221         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4222   }
4223 
4224   // Use C++ overloaded-operator rules if either operand has record
4225   // type.  The spec says to do this if either type is *overloadable*,
4226   // but enum types can't declare subscript operators or conversion
4227   // operators, so there's nothing interesting for overload resolution
4228   // to do if there aren't any record types involved.
4229   //
4230   // ObjC pointers have their own subscripting logic that is not tied
4231   // to overload resolution and so should not take this path.
4232   if (getLangOpts().CPlusPlus &&
4233       (base->getType()->isRecordType() ||
4234        (!base->getType()->isObjCObjectPointerType() &&
4235         idx->getType()->isRecordType()))) {
4236     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4237   }
4238 
4239   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4240 }
4241 
4242 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4243                                           Expr *LowerBound,
4244                                           SourceLocation ColonLoc, Expr *Length,
4245                                           SourceLocation RBLoc) {
4246   if (Base->getType()->isPlaceholderType() &&
4247       !Base->getType()->isSpecificPlaceholderType(
4248           BuiltinType::OMPArraySection)) {
4249     ExprResult Result = CheckPlaceholderExpr(Base);
4250     if (Result.isInvalid())
4251       return ExprError();
4252     Base = Result.get();
4253   }
4254   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4255     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4256     if (Result.isInvalid())
4257       return ExprError();
4258     Result = DefaultLvalueConversion(Result.get());
4259     if (Result.isInvalid())
4260       return ExprError();
4261     LowerBound = Result.get();
4262   }
4263   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4264     ExprResult Result = CheckPlaceholderExpr(Length);
4265     if (Result.isInvalid())
4266       return ExprError();
4267     Result = DefaultLvalueConversion(Result.get());
4268     if (Result.isInvalid())
4269       return ExprError();
4270     Length = Result.get();
4271   }
4272 
4273   // Build an unanalyzed expression if either operand is type-dependent.
4274   if (Base->isTypeDependent() ||
4275       (LowerBound &&
4276        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4277       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4278     return new (Context)
4279         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4280                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4281   }
4282 
4283   // Perform default conversions.
4284   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4285   QualType ResultTy;
4286   if (OriginalTy->isAnyPointerType()) {
4287     ResultTy = OriginalTy->getPointeeType();
4288   } else if (OriginalTy->isArrayType()) {
4289     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4290   } else {
4291     return ExprError(
4292         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4293         << Base->getSourceRange());
4294   }
4295   // C99 6.5.2.1p1
4296   if (LowerBound) {
4297     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4298                                                       LowerBound);
4299     if (Res.isInvalid())
4300       return ExprError(Diag(LowerBound->getExprLoc(),
4301                             diag::err_omp_typecheck_section_not_integer)
4302                        << 0 << LowerBound->getSourceRange());
4303     LowerBound = Res.get();
4304 
4305     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4306         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4307       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4308           << 0 << LowerBound->getSourceRange();
4309   }
4310   if (Length) {
4311     auto Res =
4312         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4313     if (Res.isInvalid())
4314       return ExprError(Diag(Length->getExprLoc(),
4315                             diag::err_omp_typecheck_section_not_integer)
4316                        << 1 << Length->getSourceRange());
4317     Length = Res.get();
4318 
4319     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4320         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4321       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4322           << 1 << Length->getSourceRange();
4323   }
4324 
4325   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4326   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4327   // type. Note that functions are not objects, and that (in C99 parlance)
4328   // incomplete types are not object types.
4329   if (ResultTy->isFunctionType()) {
4330     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4331         << ResultTy << Base->getSourceRange();
4332     return ExprError();
4333   }
4334 
4335   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4336                           diag::err_omp_section_incomplete_type, Base))
4337     return ExprError();
4338 
4339   if (LowerBound && !OriginalTy->isAnyPointerType()) {
4340     llvm::APSInt LowerBoundValue;
4341     if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
4342       // OpenMP 4.5, [2.4 Array Sections]
4343       // The array section must be a subset of the original array.
4344       if (LowerBoundValue.isNegative()) {
4345         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4346             << LowerBound->getSourceRange();
4347         return ExprError();
4348       }
4349     }
4350   }
4351 
4352   if (Length) {
4353     llvm::APSInt LengthValue;
4354     if (Length->EvaluateAsInt(LengthValue, Context)) {
4355       // OpenMP 4.5, [2.4 Array Sections]
4356       // The length must evaluate to non-negative integers.
4357       if (LengthValue.isNegative()) {
4358         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4359             << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4360             << Length->getSourceRange();
4361         return ExprError();
4362       }
4363     }
4364   } else if (ColonLoc.isValid() &&
4365              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4366                                       !OriginalTy->isVariableArrayType()))) {
4367     // OpenMP 4.5, [2.4 Array Sections]
4368     // When the size of the array dimension is not known, the length must be
4369     // specified explicitly.
4370     Diag(ColonLoc, diag::err_omp_section_length_undefined)
4371         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4372     return ExprError();
4373   }
4374 
4375   if (!Base->getType()->isSpecificPlaceholderType(
4376           BuiltinType::OMPArraySection)) {
4377     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
4378     if (Result.isInvalid())
4379       return ExprError();
4380     Base = Result.get();
4381   }
4382   return new (Context)
4383       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4384                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4385 }
4386 
4387 ExprResult
4388 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4389                                       Expr *Idx, SourceLocation RLoc) {
4390   Expr *LHSExp = Base;
4391   Expr *RHSExp = Idx;
4392 
4393   // Perform default conversions.
4394   if (!LHSExp->getType()->getAs<VectorType>()) {
4395     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4396     if (Result.isInvalid())
4397       return ExprError();
4398     LHSExp = Result.get();
4399   }
4400   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4401   if (Result.isInvalid())
4402     return ExprError();
4403   RHSExp = Result.get();
4404 
4405   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4406   ExprValueKind VK = VK_LValue;
4407   ExprObjectKind OK = OK_Ordinary;
4408 
4409   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4410   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4411   // in the subscript position. As a result, we need to derive the array base
4412   // and index from the expression types.
4413   Expr *BaseExpr, *IndexExpr;
4414   QualType ResultType;
4415   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4416     BaseExpr = LHSExp;
4417     IndexExpr = RHSExp;
4418     ResultType = Context.DependentTy;
4419   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4420     BaseExpr = LHSExp;
4421     IndexExpr = RHSExp;
4422     ResultType = PTy->getPointeeType();
4423   } else if (const ObjCObjectPointerType *PTy =
4424                LHSTy->getAs<ObjCObjectPointerType>()) {
4425     BaseExpr = LHSExp;
4426     IndexExpr = RHSExp;
4427 
4428     // Use custom logic if this should be the pseudo-object subscript
4429     // expression.
4430     if (!LangOpts.isSubscriptPointerArithmetic())
4431       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4432                                           nullptr);
4433 
4434     ResultType = PTy->getPointeeType();
4435   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4436      // Handle the uncommon case of "123[Ptr]".
4437     BaseExpr = RHSExp;
4438     IndexExpr = LHSExp;
4439     ResultType = PTy->getPointeeType();
4440   } else if (const ObjCObjectPointerType *PTy =
4441                RHSTy->getAs<ObjCObjectPointerType>()) {
4442      // Handle the uncommon case of "123[Ptr]".
4443     BaseExpr = RHSExp;
4444     IndexExpr = LHSExp;
4445     ResultType = PTy->getPointeeType();
4446     if (!LangOpts.isSubscriptPointerArithmetic()) {
4447       Diag(LLoc, diag::err_subscript_nonfragile_interface)
4448         << ResultType << BaseExpr->getSourceRange();
4449       return ExprError();
4450     }
4451   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4452     BaseExpr = LHSExp;    // vectors: V[123]
4453     IndexExpr = RHSExp;
4454     VK = LHSExp->getValueKind();
4455     if (VK != VK_RValue)
4456       OK = OK_VectorComponent;
4457 
4458     // FIXME: need to deal with const...
4459     ResultType = VTy->getElementType();
4460   } else if (LHSTy->isArrayType()) {
4461     // If we see an array that wasn't promoted by
4462     // DefaultFunctionArrayLvalueConversion, it must be an array that
4463     // wasn't promoted because of the C90 rule that doesn't
4464     // allow promoting non-lvalue arrays.  Warn, then
4465     // force the promotion here.
4466     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4467         LHSExp->getSourceRange();
4468     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4469                                CK_ArrayToPointerDecay).get();
4470     LHSTy = LHSExp->getType();
4471 
4472     BaseExpr = LHSExp;
4473     IndexExpr = RHSExp;
4474     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4475   } else if (RHSTy->isArrayType()) {
4476     // Same as previous, except for 123[f().a] case
4477     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4478         RHSExp->getSourceRange();
4479     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4480                                CK_ArrayToPointerDecay).get();
4481     RHSTy = RHSExp->getType();
4482 
4483     BaseExpr = RHSExp;
4484     IndexExpr = LHSExp;
4485     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4486   } else {
4487     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4488        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4489   }
4490   // C99 6.5.2.1p1
4491   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4492     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4493                      << IndexExpr->getSourceRange());
4494 
4495   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4496        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4497          && !IndexExpr->isTypeDependent())
4498     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4499 
4500   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4501   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4502   // type. Note that Functions are not objects, and that (in C99 parlance)
4503   // incomplete types are not object types.
4504   if (ResultType->isFunctionType()) {
4505     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
4506       << ResultType << BaseExpr->getSourceRange();
4507     return ExprError();
4508   }
4509 
4510   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4511     // GNU extension: subscripting on pointer to void
4512     Diag(LLoc, diag::ext_gnu_subscript_void_type)
4513       << BaseExpr->getSourceRange();
4514 
4515     // C forbids expressions of unqualified void type from being l-values.
4516     // See IsCForbiddenLValueType.
4517     if (!ResultType.hasQualifiers()) VK = VK_RValue;
4518   } else if (!ResultType->isDependentType() &&
4519       RequireCompleteType(LLoc, ResultType,
4520                           diag::err_subscript_incomplete_type, BaseExpr))
4521     return ExprError();
4522 
4523   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4524          !ResultType.isCForbiddenLValueType());
4525 
4526   return new (Context)
4527       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4528 }
4529 
4530 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4531                                         FunctionDecl *FD,
4532                                         ParmVarDecl *Param) {
4533   if (Param->hasUnparsedDefaultArg()) {
4534     Diag(CallLoc,
4535          diag::err_use_of_default_argument_to_function_declared_later) <<
4536       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4537     Diag(UnparsedDefaultArgLocs[Param],
4538          diag::note_default_argument_declared_here);
4539     return ExprError();
4540   }
4541 
4542   if (Param->hasUninstantiatedDefaultArg()) {
4543     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4544 
4545     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
4546                                                  Param);
4547 
4548     // Instantiate the expression.
4549     MultiLevelTemplateArgumentList MutiLevelArgList
4550       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4551 
4552     InstantiatingTemplate Inst(*this, CallLoc, Param,
4553                                MutiLevelArgList.getInnermost());
4554     if (Inst.isInvalid())
4555       return ExprError();
4556     if (Inst.isAlreadyInstantiating()) {
4557       Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD;
4558       Param->setInvalidDecl();
4559       return ExprError();
4560     }
4561 
4562     ExprResult Result;
4563     {
4564       // C++ [dcl.fct.default]p5:
4565       //   The names in the [default argument] expression are bound, and
4566       //   the semantic constraints are checked, at the point where the
4567       //   default argument expression appears.
4568       ContextRAII SavedContext(*this, FD);
4569       LocalInstantiationScope Local(*this);
4570       Result = SubstInitializer(UninstExpr, MutiLevelArgList,
4571                                 /*DirectInit*/false);
4572     }
4573     if (Result.isInvalid())
4574       return ExprError();
4575 
4576     // Check the expression as an initializer for the parameter.
4577     InitializedEntity Entity
4578       = InitializedEntity::InitializeParameter(Context, Param);
4579     InitializationKind Kind
4580       = InitializationKind::CreateCopy(Param->getLocation(),
4581              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
4582     Expr *ResultE = Result.getAs<Expr>();
4583 
4584     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4585     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4586     if (Result.isInvalid())
4587       return ExprError();
4588 
4589     Result = ActOnFinishFullExpr(Result.getAs<Expr>(),
4590                                  Param->getOuterLocStart());
4591     if (Result.isInvalid())
4592       return ExprError();
4593 
4594     // Remember the instantiated default argument.
4595     Param->setDefaultArg(Result.getAs<Expr>());
4596     if (ASTMutationListener *L = getASTMutationListener()) {
4597       L->DefaultArgumentInstantiated(Param);
4598     }
4599   }
4600 
4601   // If the default argument expression is not set yet, we are building it now.
4602   if (!Param->hasInit()) {
4603     Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD;
4604     Param->setInvalidDecl();
4605     return ExprError();
4606   }
4607 
4608   // If the default expression creates temporaries, we need to
4609   // push them to the current stack of expression temporaries so they'll
4610   // be properly destroyed.
4611   // FIXME: We should really be rebuilding the default argument with new
4612   // bound temporaries; see the comment in PR5810.
4613   // We don't need to do that with block decls, though, because
4614   // blocks in default argument expression can never capture anything.
4615   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
4616     // Set the "needs cleanups" bit regardless of whether there are
4617     // any explicit objects.
4618     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
4619 
4620     // Append all the objects to the cleanup list.  Right now, this
4621     // should always be a no-op, because blocks in default argument
4622     // expressions should never be able to capture anything.
4623     assert(!Init->getNumObjects() &&
4624            "default argument expression has capturing blocks?");
4625   }
4626 
4627   // We already type-checked the argument, so we know it works.
4628   // Just mark all of the declarations in this potentially-evaluated expression
4629   // as being "referenced".
4630   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4631                                    /*SkipLocalVariables=*/true);
4632   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
4633 }
4634 
4635 
4636 Sema::VariadicCallType
4637 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4638                           Expr *Fn) {
4639   if (Proto && Proto->isVariadic()) {
4640     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4641       return VariadicConstructor;
4642     else if (Fn && Fn->getType()->isBlockPointerType())
4643       return VariadicBlock;
4644     else if (FDecl) {
4645       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4646         if (Method->isInstance())
4647           return VariadicMethod;
4648     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4649       return VariadicMethod;
4650     return VariadicFunction;
4651   }
4652   return VariadicDoesNotApply;
4653 }
4654 
4655 namespace {
4656 class FunctionCallCCC : public FunctionCallFilterCCC {
4657 public:
4658   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4659                   unsigned NumArgs, MemberExpr *ME)
4660       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4661         FunctionName(FuncName) {}
4662 
4663   bool ValidateCandidate(const TypoCorrection &candidate) override {
4664     if (!candidate.getCorrectionSpecifier() ||
4665         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4666       return false;
4667     }
4668 
4669     return FunctionCallFilterCCC::ValidateCandidate(candidate);
4670   }
4671 
4672 private:
4673   const IdentifierInfo *const FunctionName;
4674 };
4675 }
4676 
4677 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4678                                                FunctionDecl *FDecl,
4679                                                ArrayRef<Expr *> Args) {
4680   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4681   DeclarationName FuncName = FDecl->getDeclName();
4682   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
4683 
4684   if (TypoCorrection Corrected = S.CorrectTypo(
4685           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4686           S.getScopeForContext(S.CurContext), nullptr,
4687           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
4688                                              Args.size(), ME),
4689           Sema::CTK_ErrorRecovery)) {
4690     if (NamedDecl *ND = Corrected.getFoundDecl()) {
4691       if (Corrected.isOverloaded()) {
4692         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4693         OverloadCandidateSet::iterator Best;
4694         for (NamedDecl *CD : Corrected) {
4695           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
4696             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
4697                                    OCS);
4698         }
4699         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
4700         case OR_Success:
4701           ND = Best->FoundDecl;
4702           Corrected.setCorrectionDecl(ND);
4703           break;
4704         default:
4705           break;
4706         }
4707       }
4708       ND = ND->getUnderlyingDecl();
4709       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
4710         return Corrected;
4711     }
4712   }
4713   return TypoCorrection();
4714 }
4715 
4716 /// ConvertArgumentsForCall - Converts the arguments specified in
4717 /// Args/NumArgs to the parameter types of the function FDecl with
4718 /// function prototype Proto. Call is the call expression itself, and
4719 /// Fn is the function expression. For a C++ member function, this
4720 /// routine does not attempt to convert the object argument. Returns
4721 /// true if the call is ill-formed.
4722 bool
4723 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4724                               FunctionDecl *FDecl,
4725                               const FunctionProtoType *Proto,
4726                               ArrayRef<Expr *> Args,
4727                               SourceLocation RParenLoc,
4728                               bool IsExecConfig) {
4729   // Bail out early if calling a builtin with custom typechecking.
4730   if (FDecl)
4731     if (unsigned ID = FDecl->getBuiltinID())
4732       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4733         return false;
4734 
4735   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4736   // assignment, to the types of the corresponding parameter, ...
4737   unsigned NumParams = Proto->getNumParams();
4738   bool Invalid = false;
4739   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
4740   unsigned FnKind = Fn->getType()->isBlockPointerType()
4741                        ? 1 /* block */
4742                        : (IsExecConfig ? 3 /* kernel function (exec config) */
4743                                        : 0 /* function */);
4744 
4745   // If too few arguments are available (and we don't have default
4746   // arguments for the remaining parameters), don't make the call.
4747   if (Args.size() < NumParams) {
4748     if (Args.size() < MinArgs) {
4749       TypoCorrection TC;
4750       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4751         unsigned diag_id =
4752             MinArgs == NumParams && !Proto->isVariadic()
4753                 ? diag::err_typecheck_call_too_few_args_suggest
4754                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
4755         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4756                                         << static_cast<unsigned>(Args.size())
4757                                         << TC.getCorrectionRange());
4758       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4759         Diag(RParenLoc,
4760              MinArgs == NumParams && !Proto->isVariadic()
4761                  ? diag::err_typecheck_call_too_few_args_one
4762                  : diag::err_typecheck_call_too_few_args_at_least_one)
4763             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
4764       else
4765         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
4766                             ? diag::err_typecheck_call_too_few_args
4767                             : diag::err_typecheck_call_too_few_args_at_least)
4768             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
4769             << Fn->getSourceRange();
4770 
4771       // Emit the location of the prototype.
4772       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4773         Diag(FDecl->getLocStart(), diag::note_callee_decl)
4774           << FDecl;
4775 
4776       return true;
4777     }
4778     Call->setNumArgs(Context, NumParams);
4779   }
4780 
4781   // If too many are passed and not variadic, error on the extras and drop
4782   // them.
4783   if (Args.size() > NumParams) {
4784     if (!Proto->isVariadic()) {
4785       TypoCorrection TC;
4786       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4787         unsigned diag_id =
4788             MinArgs == NumParams && !Proto->isVariadic()
4789                 ? diag::err_typecheck_call_too_many_args_suggest
4790                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
4791         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
4792                                         << static_cast<unsigned>(Args.size())
4793                                         << TC.getCorrectionRange());
4794       } else if (NumParams == 1 && FDecl &&
4795                  FDecl->getParamDecl(0)->getDeclName())
4796         Diag(Args[NumParams]->getLocStart(),
4797              MinArgs == NumParams
4798                  ? diag::err_typecheck_call_too_many_args_one
4799                  : diag::err_typecheck_call_too_many_args_at_most_one)
4800             << FnKind << FDecl->getParamDecl(0)
4801             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
4802             << SourceRange(Args[NumParams]->getLocStart(),
4803                            Args.back()->getLocEnd());
4804       else
4805         Diag(Args[NumParams]->getLocStart(),
4806              MinArgs == NumParams
4807                  ? diag::err_typecheck_call_too_many_args
4808                  : diag::err_typecheck_call_too_many_args_at_most)
4809             << FnKind << NumParams << static_cast<unsigned>(Args.size())
4810             << Fn->getSourceRange()
4811             << SourceRange(Args[NumParams]->getLocStart(),
4812                            Args.back()->getLocEnd());
4813 
4814       // Emit the location of the prototype.
4815       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4816         Diag(FDecl->getLocStart(), diag::note_callee_decl)
4817           << FDecl;
4818 
4819       // This deletes the extra arguments.
4820       Call->setNumArgs(Context, NumParams);
4821       return true;
4822     }
4823   }
4824   SmallVector<Expr *, 8> AllArgs;
4825   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4826 
4827   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4828                                    Proto, 0, Args, AllArgs, CallType);
4829   if (Invalid)
4830     return true;
4831   unsigned TotalNumArgs = AllArgs.size();
4832   for (unsigned i = 0; i < TotalNumArgs; ++i)
4833     Call->setArg(i, AllArgs[i]);
4834 
4835   return false;
4836 }
4837 
4838 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
4839                                   const FunctionProtoType *Proto,
4840                                   unsigned FirstParam, ArrayRef<Expr *> Args,
4841                                   SmallVectorImpl<Expr *> &AllArgs,
4842                                   VariadicCallType CallType, bool AllowExplicit,
4843                                   bool IsListInitialization) {
4844   unsigned NumParams = Proto->getNumParams();
4845   bool Invalid = false;
4846   size_t ArgIx = 0;
4847   // Continue to check argument types (even if we have too few/many args).
4848   for (unsigned i = FirstParam; i < NumParams; i++) {
4849     QualType ProtoArgType = Proto->getParamType(i);
4850 
4851     Expr *Arg;
4852     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
4853     if (ArgIx < Args.size()) {
4854       Arg = Args[ArgIx++];
4855 
4856       if (RequireCompleteType(Arg->getLocStart(),
4857                               ProtoArgType,
4858                               diag::err_call_incomplete_argument, Arg))
4859         return true;
4860 
4861       // Strip the unbridged-cast placeholder expression off, if applicable.
4862       bool CFAudited = false;
4863       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4864           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4865           (!Param || !Param->hasAttr<CFConsumedAttr>()))
4866         Arg = stripARCUnbridgedCast(Arg);
4867       else if (getLangOpts().ObjCAutoRefCount &&
4868                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4869                (!Param || !Param->hasAttr<CFConsumedAttr>()))
4870         CFAudited = true;
4871 
4872       InitializedEntity Entity =
4873           Param ? InitializedEntity::InitializeParameter(Context, Param,
4874                                                          ProtoArgType)
4875                 : InitializedEntity::InitializeParameter(
4876                       Context, ProtoArgType, Proto->isParamConsumed(i));
4877 
4878       // Remember that parameter belongs to a CF audited API.
4879       if (CFAudited)
4880         Entity.setParameterCFAudited();
4881 
4882       ExprResult ArgE = PerformCopyInitialization(
4883           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
4884       if (ArgE.isInvalid())
4885         return true;
4886 
4887       Arg = ArgE.getAs<Expr>();
4888     } else {
4889       assert(Param && "can't use default arguments without a known callee");
4890 
4891       ExprResult ArgExpr =
4892         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4893       if (ArgExpr.isInvalid())
4894         return true;
4895 
4896       Arg = ArgExpr.getAs<Expr>();
4897     }
4898 
4899     // Check for array bounds violations for each argument to the call. This
4900     // check only triggers warnings when the argument isn't a more complex Expr
4901     // with its own checking, such as a BinaryOperator.
4902     CheckArrayAccess(Arg);
4903 
4904     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4905     CheckStaticArrayArgument(CallLoc, Param, Arg);
4906 
4907     AllArgs.push_back(Arg);
4908   }
4909 
4910   // If this is a variadic call, handle args passed through "...".
4911   if (CallType != VariadicDoesNotApply) {
4912     // Assume that extern "C" functions with variadic arguments that
4913     // return __unknown_anytype aren't *really* variadic.
4914     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
4915         FDecl->isExternC()) {
4916       for (Expr *A : Args.slice(ArgIx)) {
4917         QualType paramType; // ignored
4918         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
4919         Invalid |= arg.isInvalid();
4920         AllArgs.push_back(arg.get());
4921       }
4922 
4923     // Otherwise do argument promotion, (C99 6.5.2.2p7).
4924     } else {
4925       for (Expr *A : Args.slice(ArgIx)) {
4926         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
4927         Invalid |= Arg.isInvalid();
4928         AllArgs.push_back(Arg.get());
4929       }
4930     }
4931 
4932     // Check for array bounds violations.
4933     for (Expr *A : Args.slice(ArgIx))
4934       CheckArrayAccess(A);
4935   }
4936   return Invalid;
4937 }
4938 
4939 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4940   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4941   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4942     TL = DTL.getOriginalLoc();
4943   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4944     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4945       << ATL.getLocalSourceRange();
4946 }
4947 
4948 /// CheckStaticArrayArgument - If the given argument corresponds to a static
4949 /// array parameter, check that it is non-null, and that if it is formed by
4950 /// array-to-pointer decay, the underlying array is sufficiently large.
4951 ///
4952 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4953 /// array type derivation, then for each call to the function, the value of the
4954 /// corresponding actual argument shall provide access to the first element of
4955 /// an array with at least as many elements as specified by the size expression.
4956 void
4957 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4958                                ParmVarDecl *Param,
4959                                const Expr *ArgExpr) {
4960   // Static array parameters are not supported in C++.
4961   if (!Param || getLangOpts().CPlusPlus)
4962     return;
4963 
4964   QualType OrigTy = Param->getOriginalType();
4965 
4966   const ArrayType *AT = Context.getAsArrayType(OrigTy);
4967   if (!AT || AT->getSizeModifier() != ArrayType::Static)
4968     return;
4969 
4970   if (ArgExpr->isNullPointerConstant(Context,
4971                                      Expr::NPC_NeverValueDependent)) {
4972     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4973     DiagnoseCalleeStaticArrayParam(*this, Param);
4974     return;
4975   }
4976 
4977   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4978   if (!CAT)
4979     return;
4980 
4981   const ConstantArrayType *ArgCAT =
4982     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4983   if (!ArgCAT)
4984     return;
4985 
4986   if (ArgCAT->getSize().ult(CAT->getSize())) {
4987     Diag(CallLoc, diag::warn_static_array_too_small)
4988       << ArgExpr->getSourceRange()
4989       << (unsigned) ArgCAT->getSize().getZExtValue()
4990       << (unsigned) CAT->getSize().getZExtValue();
4991     DiagnoseCalleeStaticArrayParam(*this, Param);
4992   }
4993 }
4994 
4995 /// Given a function expression of unknown-any type, try to rebuild it
4996 /// to have a function type.
4997 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4998 
4999 /// Is the given type a placeholder that we need to lower out
5000 /// immediately during argument processing?
5001 static bool isPlaceholderToRemoveAsArg(QualType type) {
5002   // Placeholders are never sugared.
5003   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
5004   if (!placeholder) return false;
5005 
5006   switch (placeholder->getKind()) {
5007   // Ignore all the non-placeholder types.
5008 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5009   case BuiltinType::Id:
5010 #include "clang/Basic/OpenCLImageTypes.def"
5011 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
5012 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
5013 #include "clang/AST/BuiltinTypes.def"
5014     return false;
5015 
5016   // We cannot lower out overload sets; they might validly be resolved
5017   // by the call machinery.
5018   case BuiltinType::Overload:
5019     return false;
5020 
5021   // Unbridged casts in ARC can be handled in some call positions and
5022   // should be left in place.
5023   case BuiltinType::ARCUnbridgedCast:
5024     return false;
5025 
5026   // Pseudo-objects should be converted as soon as possible.
5027   case BuiltinType::PseudoObject:
5028     return true;
5029 
5030   // The debugger mode could theoretically but currently does not try
5031   // to resolve unknown-typed arguments based on known parameter types.
5032   case BuiltinType::UnknownAny:
5033     return true;
5034 
5035   // These are always invalid as call arguments and should be reported.
5036   case BuiltinType::BoundMember:
5037   case BuiltinType::BuiltinFn:
5038   case BuiltinType::OMPArraySection:
5039     return true;
5040 
5041   }
5042   llvm_unreachable("bad builtin type kind");
5043 }
5044 
5045 /// Check an argument list for placeholders that we won't try to
5046 /// handle later.
5047 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
5048   // Apply this processing to all the arguments at once instead of
5049   // dying at the first failure.
5050   bool hasInvalid = false;
5051   for (size_t i = 0, e = args.size(); i != e; i++) {
5052     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
5053       ExprResult result = S.CheckPlaceholderExpr(args[i]);
5054       if (result.isInvalid()) hasInvalid = true;
5055       else args[i] = result.get();
5056     } else if (hasInvalid) {
5057       (void)S.CorrectDelayedTyposInExpr(args[i]);
5058     }
5059   }
5060   return hasInvalid;
5061 }
5062 
5063 /// If a builtin function has a pointer argument with no explicit address
5064 /// space, then it should be able to accept a pointer to any address
5065 /// space as input.  In order to do this, we need to replace the
5066 /// standard builtin declaration with one that uses the same address space
5067 /// as the call.
5068 ///
5069 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
5070 ///                  it does not contain any pointer arguments without
5071 ///                  an address space qualifer.  Otherwise the rewritten
5072 ///                  FunctionDecl is returned.
5073 /// TODO: Handle pointer return types.
5074 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
5075                                                 const FunctionDecl *FDecl,
5076                                                 MultiExprArg ArgExprs) {
5077 
5078   QualType DeclType = FDecl->getType();
5079   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
5080 
5081   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
5082       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
5083     return nullptr;
5084 
5085   bool NeedsNewDecl = false;
5086   unsigned i = 0;
5087   SmallVector<QualType, 8> OverloadParams;
5088 
5089   for (QualType ParamType : FT->param_types()) {
5090 
5091     // Convert array arguments to pointer to simplify type lookup.
5092     ExprResult ArgRes =
5093         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
5094     if (ArgRes.isInvalid())
5095       return nullptr;
5096     Expr *Arg = ArgRes.get();
5097     QualType ArgType = Arg->getType();
5098     if (!ParamType->isPointerType() ||
5099         ParamType.getQualifiers().hasAddressSpace() ||
5100         !ArgType->isPointerType() ||
5101         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
5102       OverloadParams.push_back(ParamType);
5103       continue;
5104     }
5105 
5106     NeedsNewDecl = true;
5107     unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
5108 
5109     QualType PointeeType = ParamType->getPointeeType();
5110     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
5111     OverloadParams.push_back(Context.getPointerType(PointeeType));
5112   }
5113 
5114   if (!NeedsNewDecl)
5115     return nullptr;
5116 
5117   FunctionProtoType::ExtProtoInfo EPI;
5118   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
5119                                                 OverloadParams, EPI);
5120   DeclContext *Parent = Context.getTranslationUnitDecl();
5121   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
5122                                                     FDecl->getLocation(),
5123                                                     FDecl->getLocation(),
5124                                                     FDecl->getIdentifier(),
5125                                                     OverloadTy,
5126                                                     /*TInfo=*/nullptr,
5127                                                     SC_Extern, false,
5128                                                     /*hasPrototype=*/true);
5129   SmallVector<ParmVarDecl*, 16> Params;
5130   FT = cast<FunctionProtoType>(OverloadTy);
5131   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
5132     QualType ParamType = FT->getParamType(i);
5133     ParmVarDecl *Parm =
5134         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
5135                                 SourceLocation(), nullptr, ParamType,
5136                                 /*TInfo=*/nullptr, SC_None, nullptr);
5137     Parm->setScopeInfo(0, i);
5138     Params.push_back(Parm);
5139   }
5140   OverloadDecl->setParams(Params);
5141   return OverloadDecl;
5142 }
5143 
5144 static bool isNumberOfArgsValidForCall(Sema &S, const FunctionDecl *Callee,
5145                                        std::size_t NumArgs) {
5146   if (S.TooManyArguments(Callee->getNumParams(), NumArgs,
5147                          /*PartialOverloading=*/false))
5148     return Callee->isVariadic();
5149   return Callee->getMinRequiredArguments() <= NumArgs;
5150 }
5151 
5152 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5153 /// This provides the location of the left/right parens and a list of comma
5154 /// locations.
5155 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5156                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
5157                                Expr *ExecConfig, bool IsExecConfig) {
5158   // Since this might be a postfix expression, get rid of ParenListExprs.
5159   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
5160   if (Result.isInvalid()) return ExprError();
5161   Fn = Result.get();
5162 
5163   if (checkArgsForPlaceholders(*this, ArgExprs))
5164     return ExprError();
5165 
5166   if (getLangOpts().CPlusPlus) {
5167     // If this is a pseudo-destructor expression, build the call immediately.
5168     if (isa<CXXPseudoDestructorExpr>(Fn)) {
5169       if (!ArgExprs.empty()) {
5170         // Pseudo-destructor calls should not have any arguments.
5171         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
5172             << FixItHint::CreateRemoval(
5173                    SourceRange(ArgExprs.front()->getLocStart(),
5174                                ArgExprs.back()->getLocEnd()));
5175       }
5176 
5177       return new (Context)
5178           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
5179     }
5180     if (Fn->getType() == Context.PseudoObjectTy) {
5181       ExprResult result = CheckPlaceholderExpr(Fn);
5182       if (result.isInvalid()) return ExprError();
5183       Fn = result.get();
5184     }
5185 
5186     // Determine whether this is a dependent call inside a C++ template,
5187     // in which case we won't do any semantic analysis now.
5188     bool Dependent = false;
5189     if (Fn->isTypeDependent())
5190       Dependent = true;
5191     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
5192       Dependent = true;
5193 
5194     if (Dependent) {
5195       if (ExecConfig) {
5196         return new (Context) CUDAKernelCallExpr(
5197             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
5198             Context.DependentTy, VK_RValue, RParenLoc);
5199       } else {
5200         return new (Context) CallExpr(
5201             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
5202       }
5203     }
5204 
5205     // Determine whether this is a call to an object (C++ [over.call.object]).
5206     if (Fn->getType()->isRecordType())
5207       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
5208                                           RParenLoc);
5209 
5210     if (Fn->getType() == Context.UnknownAnyTy) {
5211       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5212       if (result.isInvalid()) return ExprError();
5213       Fn = result.get();
5214     }
5215 
5216     if (Fn->getType() == Context.BoundMemberTy) {
5217       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5218                                        RParenLoc);
5219     }
5220   }
5221 
5222   // Check for overloaded calls.  This can happen even in C due to extensions.
5223   if (Fn->getType() == Context.OverloadTy) {
5224     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
5225 
5226     // We aren't supposed to apply this logic for if there'Scope an '&'
5227     // involved.
5228     if (!find.HasFormOfMemberPointer) {
5229       OverloadExpr *ovl = find.Expression;
5230       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
5231         return BuildOverloadedCallExpr(
5232             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
5233             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
5234       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5235                                        RParenLoc);
5236     }
5237   }
5238 
5239   // If we're directly calling a function, get the appropriate declaration.
5240   if (Fn->getType() == Context.UnknownAnyTy) {
5241     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5242     if (result.isInvalid()) return ExprError();
5243     Fn = result.get();
5244   }
5245 
5246   Expr *NakedFn = Fn->IgnoreParens();
5247 
5248   bool CallingNDeclIndirectly = false;
5249   NamedDecl *NDecl = nullptr;
5250   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
5251     if (UnOp->getOpcode() == UO_AddrOf) {
5252       CallingNDeclIndirectly = true;
5253       NakedFn = UnOp->getSubExpr()->IgnoreParens();
5254     }
5255   }
5256 
5257   if (isa<DeclRefExpr>(NakedFn)) {
5258     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
5259 
5260     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
5261     if (FDecl && FDecl->getBuiltinID()) {
5262       // Rewrite the function decl for this builtin by replacing parameters
5263       // with no explicit address space with the address space of the arguments
5264       // in ArgExprs.
5265       if ((FDecl =
5266                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
5267         NDecl = FDecl;
5268         Fn = DeclRefExpr::Create(
5269             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
5270             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl);
5271       }
5272     }
5273   } else if (isa<MemberExpr>(NakedFn))
5274     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
5275 
5276   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
5277     if (CallingNDeclIndirectly &&
5278         !checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
5279                                            Fn->getLocStart()))
5280       return ExprError();
5281 
5282     // CheckEnableIf assumes that the we're passing in a sane number of args for
5283     // FD, but that doesn't always hold true here. This is because, in some
5284     // cases, we'll emit a diag about an ill-formed function call, but then
5285     // we'll continue on as if the function call wasn't ill-formed. So, if the
5286     // number of args looks incorrect, don't do enable_if checks; we should've
5287     // already emitted an error about the bad call.
5288     if (FD->hasAttr<EnableIfAttr>() &&
5289         isNumberOfArgsValidForCall(*this, FD, ArgExprs.size())) {
5290       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
5291         Diag(Fn->getLocStart(),
5292              isa<CXXMethodDecl>(FD)
5293                  ? diag::err_ovl_no_viable_member_function_in_call
5294                  : diag::err_ovl_no_viable_function_in_call)
5295             << FD << FD->getSourceRange();
5296         Diag(FD->getLocation(),
5297              diag::note_ovl_candidate_disabled_by_enable_if_attr)
5298             << Attr->getCond()->getSourceRange() << Attr->getMessage();
5299       }
5300     }
5301   }
5302 
5303   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
5304                                ExecConfig, IsExecConfig);
5305 }
5306 
5307 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
5308 ///
5309 /// __builtin_astype( value, dst type )
5310 ///
5311 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5312                                  SourceLocation BuiltinLoc,
5313                                  SourceLocation RParenLoc) {
5314   ExprValueKind VK = VK_RValue;
5315   ExprObjectKind OK = OK_Ordinary;
5316   QualType DstTy = GetTypeFromParser(ParsedDestTy);
5317   QualType SrcTy = E->getType();
5318   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5319     return ExprError(Diag(BuiltinLoc,
5320                           diag::err_invalid_astype_of_different_size)
5321                      << DstTy
5322                      << SrcTy
5323                      << E->getSourceRange());
5324   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5325 }
5326 
5327 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
5328 /// provided arguments.
5329 ///
5330 /// __builtin_convertvector( value, dst type )
5331 ///
5332 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5333                                         SourceLocation BuiltinLoc,
5334                                         SourceLocation RParenLoc) {
5335   TypeSourceInfo *TInfo;
5336   GetTypeFromParser(ParsedDestTy, &TInfo);
5337   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5338 }
5339 
5340 /// BuildResolvedCallExpr - Build a call to a resolved expression,
5341 /// i.e. an expression not of \p OverloadTy.  The expression should
5342 /// unary-convert to an expression of function-pointer or
5343 /// block-pointer type.
5344 ///
5345 /// \param NDecl the declaration being called, if available
5346 ExprResult
5347 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5348                             SourceLocation LParenLoc,
5349                             ArrayRef<Expr *> Args,
5350                             SourceLocation RParenLoc,
5351                             Expr *Config, bool IsExecConfig) {
5352   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5353   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5354 
5355   // Functions with 'interrupt' attribute cannot be called directly.
5356   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
5357     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
5358     return ExprError();
5359   }
5360 
5361   // Promote the function operand.
5362   // We special-case function promotion here because we only allow promoting
5363   // builtin functions to function pointers in the callee of a call.
5364   ExprResult Result;
5365   if (BuiltinID &&
5366       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5367     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
5368                                CK_BuiltinFnToFnPtr).get();
5369   } else {
5370     Result = CallExprUnaryConversions(Fn);
5371   }
5372   if (Result.isInvalid())
5373     return ExprError();
5374   Fn = Result.get();
5375 
5376   // Make the call expr early, before semantic checks.  This guarantees cleanup
5377   // of arguments and function on error.
5378   CallExpr *TheCall;
5379   if (Config)
5380     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
5381                                                cast<CallExpr>(Config), Args,
5382                                                Context.BoolTy, VK_RValue,
5383                                                RParenLoc);
5384   else
5385     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
5386                                      VK_RValue, RParenLoc);
5387 
5388   if (!getLangOpts().CPlusPlus) {
5389     // C cannot always handle TypoExpr nodes in builtin calls and direct
5390     // function calls as their argument checking don't necessarily handle
5391     // dependent types properly, so make sure any TypoExprs have been
5392     // dealt with.
5393     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
5394     if (!Result.isUsable()) return ExprError();
5395     TheCall = dyn_cast<CallExpr>(Result.get());
5396     if (!TheCall) return Result;
5397     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
5398   }
5399 
5400   // Bail out early if calling a builtin with custom typechecking.
5401   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
5402     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5403 
5404  retry:
5405   const FunctionType *FuncT;
5406   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5407     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5408     // have type pointer to function".
5409     FuncT = PT->getPointeeType()->getAs<FunctionType>();
5410     if (!FuncT)
5411       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5412                          << Fn->getType() << Fn->getSourceRange());
5413   } else if (const BlockPointerType *BPT =
5414                Fn->getType()->getAs<BlockPointerType>()) {
5415     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5416   } else {
5417     // Handle calls to expressions of unknown-any type.
5418     if (Fn->getType() == Context.UnknownAnyTy) {
5419       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5420       if (rewrite.isInvalid()) return ExprError();
5421       Fn = rewrite.get();
5422       TheCall->setCallee(Fn);
5423       goto retry;
5424     }
5425 
5426     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5427       << Fn->getType() << Fn->getSourceRange());
5428   }
5429 
5430   if (getLangOpts().CUDA) {
5431     if (Config) {
5432       // CUDA: Kernel calls must be to global functions
5433       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
5434         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
5435             << FDecl->getName() << Fn->getSourceRange());
5436 
5437       // CUDA: Kernel function must have 'void' return type
5438       if (!FuncT->getReturnType()->isVoidType())
5439         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
5440             << Fn->getType() << Fn->getSourceRange());
5441     } else {
5442       // CUDA: Calls to global functions must be configured
5443       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
5444         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
5445             << FDecl->getName() << Fn->getSourceRange());
5446     }
5447   }
5448 
5449   // Check for a valid return type
5450   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
5451                           FDecl))
5452     return ExprError();
5453 
5454   // We know the result type of the call, set it.
5455   TheCall->setType(FuncT->getCallResultType(Context));
5456   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
5457 
5458   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
5459   if (Proto) {
5460     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
5461                                 IsExecConfig))
5462       return ExprError();
5463   } else {
5464     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
5465 
5466     if (FDecl) {
5467       // Check if we have too few/too many template arguments, based
5468       // on our knowledge of the function definition.
5469       const FunctionDecl *Def = nullptr;
5470       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
5471         Proto = Def->getType()->getAs<FunctionProtoType>();
5472        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
5473           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
5474           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
5475       }
5476 
5477       // If the function we're calling isn't a function prototype, but we have
5478       // a function prototype from a prior declaratiom, use that prototype.
5479       if (!FDecl->hasPrototype())
5480         Proto = FDecl->getType()->getAs<FunctionProtoType>();
5481     }
5482 
5483     // Promote the arguments (C99 6.5.2.2p6).
5484     for (unsigned i = 0, e = Args.size(); i != e; i++) {
5485       Expr *Arg = Args[i];
5486 
5487       if (Proto && i < Proto->getNumParams()) {
5488         InitializedEntity Entity = InitializedEntity::InitializeParameter(
5489             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
5490         ExprResult ArgE =
5491             PerformCopyInitialization(Entity, SourceLocation(), Arg);
5492         if (ArgE.isInvalid())
5493           return true;
5494 
5495         Arg = ArgE.getAs<Expr>();
5496 
5497       } else {
5498         ExprResult ArgE = DefaultArgumentPromotion(Arg);
5499 
5500         if (ArgE.isInvalid())
5501           return true;
5502 
5503         Arg = ArgE.getAs<Expr>();
5504       }
5505 
5506       if (RequireCompleteType(Arg->getLocStart(),
5507                               Arg->getType(),
5508                               diag::err_call_incomplete_argument, Arg))
5509         return ExprError();
5510 
5511       TheCall->setArg(i, Arg);
5512     }
5513   }
5514 
5515   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5516     if (!Method->isStatic())
5517       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
5518         << Fn->getSourceRange());
5519 
5520   // Check for sentinels
5521   if (NDecl)
5522     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
5523 
5524   // Do special checking on direct calls to functions.
5525   if (FDecl) {
5526     if (CheckFunctionCall(FDecl, TheCall, Proto))
5527       return ExprError();
5528 
5529     if (BuiltinID)
5530       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5531   } else if (NDecl) {
5532     if (CheckPointerCall(NDecl, TheCall, Proto))
5533       return ExprError();
5534   } else {
5535     if (CheckOtherCall(TheCall, Proto))
5536       return ExprError();
5537   }
5538 
5539   return MaybeBindToTemporary(TheCall);
5540 }
5541 
5542 ExprResult
5543 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
5544                            SourceLocation RParenLoc, Expr *InitExpr) {
5545   assert(Ty && "ActOnCompoundLiteral(): missing type");
5546   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
5547 
5548   TypeSourceInfo *TInfo;
5549   QualType literalType = GetTypeFromParser(Ty, &TInfo);
5550   if (!TInfo)
5551     TInfo = Context.getTrivialTypeSourceInfo(literalType);
5552 
5553   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
5554 }
5555 
5556 ExprResult
5557 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
5558                                SourceLocation RParenLoc, Expr *LiteralExpr) {
5559   QualType literalType = TInfo->getType();
5560 
5561   if (literalType->isArrayType()) {
5562     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
5563           diag::err_illegal_decl_array_incomplete_type,
5564           SourceRange(LParenLoc,
5565                       LiteralExpr->getSourceRange().getEnd())))
5566       return ExprError();
5567     if (literalType->isVariableArrayType())
5568       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
5569         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
5570   } else if (!literalType->isDependentType() &&
5571              RequireCompleteType(LParenLoc, literalType,
5572                diag::err_typecheck_decl_incomplete_type,
5573                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
5574     return ExprError();
5575 
5576   InitializedEntity Entity
5577     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
5578   InitializationKind Kind
5579     = InitializationKind::CreateCStyleCast(LParenLoc,
5580                                            SourceRange(LParenLoc, RParenLoc),
5581                                            /*InitList=*/true);
5582   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
5583   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
5584                                       &literalType);
5585   if (Result.isInvalid())
5586     return ExprError();
5587   LiteralExpr = Result.get();
5588 
5589   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
5590   if (isFileScope &&
5591       !LiteralExpr->isTypeDependent() &&
5592       !LiteralExpr->isValueDependent() &&
5593       !literalType->isDependentType()) { // 6.5.2.5p3
5594     if (CheckForConstantInitializer(LiteralExpr, literalType))
5595       return ExprError();
5596   }
5597 
5598   // In C, compound literals are l-values for some reason.
5599   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
5600 
5601   return MaybeBindToTemporary(
5602            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
5603                                              VK, LiteralExpr, isFileScope));
5604 }
5605 
5606 ExprResult
5607 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
5608                     SourceLocation RBraceLoc) {
5609   // Immediately handle non-overload placeholders.  Overloads can be
5610   // resolved contextually, but everything else here can't.
5611   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
5612     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
5613       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
5614 
5615       // Ignore failures; dropping the entire initializer list because
5616       // of one failure would be terrible for indexing/etc.
5617       if (result.isInvalid()) continue;
5618 
5619       InitArgList[I] = result.get();
5620     }
5621   }
5622 
5623   // Semantic analysis for initializers is done by ActOnDeclarator() and
5624   // CheckInitializer() - it requires knowledge of the object being intialized.
5625 
5626   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
5627                                                RBraceLoc);
5628   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
5629   return E;
5630 }
5631 
5632 /// Do an explicit extend of the given block pointer if we're in ARC.
5633 void Sema::maybeExtendBlockObject(ExprResult &E) {
5634   assert(E.get()->getType()->isBlockPointerType());
5635   assert(E.get()->isRValue());
5636 
5637   // Only do this in an r-value context.
5638   if (!getLangOpts().ObjCAutoRefCount) return;
5639 
5640   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
5641                                CK_ARCExtendBlockObject, E.get(),
5642                                /*base path*/ nullptr, VK_RValue);
5643   Cleanup.setExprNeedsCleanups(true);
5644 }
5645 
5646 /// Prepare a conversion of the given expression to an ObjC object
5647 /// pointer type.
5648 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
5649   QualType type = E.get()->getType();
5650   if (type->isObjCObjectPointerType()) {
5651     return CK_BitCast;
5652   } else if (type->isBlockPointerType()) {
5653     maybeExtendBlockObject(E);
5654     return CK_BlockPointerToObjCPointerCast;
5655   } else {
5656     assert(type->isPointerType());
5657     return CK_CPointerToObjCPointerCast;
5658   }
5659 }
5660 
5661 /// Prepares for a scalar cast, performing all the necessary stages
5662 /// except the final cast and returning the kind required.
5663 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
5664   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
5665   // Also, callers should have filtered out the invalid cases with
5666   // pointers.  Everything else should be possible.
5667 
5668   QualType SrcTy = Src.get()->getType();
5669   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
5670     return CK_NoOp;
5671 
5672   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
5673   case Type::STK_MemberPointer:
5674     llvm_unreachable("member pointer type in C");
5675 
5676   case Type::STK_CPointer:
5677   case Type::STK_BlockPointer:
5678   case Type::STK_ObjCObjectPointer:
5679     switch (DestTy->getScalarTypeKind()) {
5680     case Type::STK_CPointer: {
5681       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
5682       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
5683       if (SrcAS != DestAS)
5684         return CK_AddressSpaceConversion;
5685       return CK_BitCast;
5686     }
5687     case Type::STK_BlockPointer:
5688       return (SrcKind == Type::STK_BlockPointer
5689                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
5690     case Type::STK_ObjCObjectPointer:
5691       if (SrcKind == Type::STK_ObjCObjectPointer)
5692         return CK_BitCast;
5693       if (SrcKind == Type::STK_CPointer)
5694         return CK_CPointerToObjCPointerCast;
5695       maybeExtendBlockObject(Src);
5696       return CK_BlockPointerToObjCPointerCast;
5697     case Type::STK_Bool:
5698       return CK_PointerToBoolean;
5699     case Type::STK_Integral:
5700       return CK_PointerToIntegral;
5701     case Type::STK_Floating:
5702     case Type::STK_FloatingComplex:
5703     case Type::STK_IntegralComplex:
5704     case Type::STK_MemberPointer:
5705       llvm_unreachable("illegal cast from pointer");
5706     }
5707     llvm_unreachable("Should have returned before this");
5708 
5709   case Type::STK_Bool: // casting from bool is like casting from an integer
5710   case Type::STK_Integral:
5711     switch (DestTy->getScalarTypeKind()) {
5712     case Type::STK_CPointer:
5713     case Type::STK_ObjCObjectPointer:
5714     case Type::STK_BlockPointer:
5715       if (Src.get()->isNullPointerConstant(Context,
5716                                            Expr::NPC_ValueDependentIsNull))
5717         return CK_NullToPointer;
5718       return CK_IntegralToPointer;
5719     case Type::STK_Bool:
5720       return CK_IntegralToBoolean;
5721     case Type::STK_Integral:
5722       return CK_IntegralCast;
5723     case Type::STK_Floating:
5724       return CK_IntegralToFloating;
5725     case Type::STK_IntegralComplex:
5726       Src = ImpCastExprToType(Src.get(),
5727                       DestTy->castAs<ComplexType>()->getElementType(),
5728                       CK_IntegralCast);
5729       return CK_IntegralRealToComplex;
5730     case Type::STK_FloatingComplex:
5731       Src = ImpCastExprToType(Src.get(),
5732                       DestTy->castAs<ComplexType>()->getElementType(),
5733                       CK_IntegralToFloating);
5734       return CK_FloatingRealToComplex;
5735     case Type::STK_MemberPointer:
5736       llvm_unreachable("member pointer type in C");
5737     }
5738     llvm_unreachable("Should have returned before this");
5739 
5740   case Type::STK_Floating:
5741     switch (DestTy->getScalarTypeKind()) {
5742     case Type::STK_Floating:
5743       return CK_FloatingCast;
5744     case Type::STK_Bool:
5745       return CK_FloatingToBoolean;
5746     case Type::STK_Integral:
5747       return CK_FloatingToIntegral;
5748     case Type::STK_FloatingComplex:
5749       Src = ImpCastExprToType(Src.get(),
5750                               DestTy->castAs<ComplexType>()->getElementType(),
5751                               CK_FloatingCast);
5752       return CK_FloatingRealToComplex;
5753     case Type::STK_IntegralComplex:
5754       Src = ImpCastExprToType(Src.get(),
5755                               DestTy->castAs<ComplexType>()->getElementType(),
5756                               CK_FloatingToIntegral);
5757       return CK_IntegralRealToComplex;
5758     case Type::STK_CPointer:
5759     case Type::STK_ObjCObjectPointer:
5760     case Type::STK_BlockPointer:
5761       llvm_unreachable("valid float->pointer cast?");
5762     case Type::STK_MemberPointer:
5763       llvm_unreachable("member pointer type in C");
5764     }
5765     llvm_unreachable("Should have returned before this");
5766 
5767   case Type::STK_FloatingComplex:
5768     switch (DestTy->getScalarTypeKind()) {
5769     case Type::STK_FloatingComplex:
5770       return CK_FloatingComplexCast;
5771     case Type::STK_IntegralComplex:
5772       return CK_FloatingComplexToIntegralComplex;
5773     case Type::STK_Floating: {
5774       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5775       if (Context.hasSameType(ET, DestTy))
5776         return CK_FloatingComplexToReal;
5777       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
5778       return CK_FloatingCast;
5779     }
5780     case Type::STK_Bool:
5781       return CK_FloatingComplexToBoolean;
5782     case Type::STK_Integral:
5783       Src = ImpCastExprToType(Src.get(),
5784                               SrcTy->castAs<ComplexType>()->getElementType(),
5785                               CK_FloatingComplexToReal);
5786       return CK_FloatingToIntegral;
5787     case Type::STK_CPointer:
5788     case Type::STK_ObjCObjectPointer:
5789     case Type::STK_BlockPointer:
5790       llvm_unreachable("valid complex float->pointer cast?");
5791     case Type::STK_MemberPointer:
5792       llvm_unreachable("member pointer type in C");
5793     }
5794     llvm_unreachable("Should have returned before this");
5795 
5796   case Type::STK_IntegralComplex:
5797     switch (DestTy->getScalarTypeKind()) {
5798     case Type::STK_FloatingComplex:
5799       return CK_IntegralComplexToFloatingComplex;
5800     case Type::STK_IntegralComplex:
5801       return CK_IntegralComplexCast;
5802     case Type::STK_Integral: {
5803       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5804       if (Context.hasSameType(ET, DestTy))
5805         return CK_IntegralComplexToReal;
5806       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
5807       return CK_IntegralCast;
5808     }
5809     case Type::STK_Bool:
5810       return CK_IntegralComplexToBoolean;
5811     case Type::STK_Floating:
5812       Src = ImpCastExprToType(Src.get(),
5813                               SrcTy->castAs<ComplexType>()->getElementType(),
5814                               CK_IntegralComplexToReal);
5815       return CK_IntegralToFloating;
5816     case Type::STK_CPointer:
5817     case Type::STK_ObjCObjectPointer:
5818     case Type::STK_BlockPointer:
5819       llvm_unreachable("valid complex int->pointer cast?");
5820     case Type::STK_MemberPointer:
5821       llvm_unreachable("member pointer type in C");
5822     }
5823     llvm_unreachable("Should have returned before this");
5824   }
5825 
5826   llvm_unreachable("Unhandled scalar cast");
5827 }
5828 
5829 static bool breakDownVectorType(QualType type, uint64_t &len,
5830                                 QualType &eltType) {
5831   // Vectors are simple.
5832   if (const VectorType *vecType = type->getAs<VectorType>()) {
5833     len = vecType->getNumElements();
5834     eltType = vecType->getElementType();
5835     assert(eltType->isScalarType());
5836     return true;
5837   }
5838 
5839   // We allow lax conversion to and from non-vector types, but only if
5840   // they're real types (i.e. non-complex, non-pointer scalar types).
5841   if (!type->isRealType()) return false;
5842 
5843   len = 1;
5844   eltType = type;
5845   return true;
5846 }
5847 
5848 /// Are the two types lax-compatible vector types?  That is, given
5849 /// that one of them is a vector, do they have equal storage sizes,
5850 /// where the storage size is the number of elements times the element
5851 /// size?
5852 ///
5853 /// This will also return false if either of the types is neither a
5854 /// vector nor a real type.
5855 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
5856   assert(destTy->isVectorType() || srcTy->isVectorType());
5857 
5858   // Disallow lax conversions between scalars and ExtVectors (these
5859   // conversions are allowed for other vector types because common headers
5860   // depend on them).  Most scalar OP ExtVector cases are handled by the
5861   // splat path anyway, which does what we want (convert, not bitcast).
5862   // What this rules out for ExtVectors is crazy things like char4*float.
5863   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
5864   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
5865 
5866   uint64_t srcLen, destLen;
5867   QualType srcEltTy, destEltTy;
5868   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
5869   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
5870 
5871   // ASTContext::getTypeSize will return the size rounded up to a
5872   // power of 2, so instead of using that, we need to use the raw
5873   // element size multiplied by the element count.
5874   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
5875   uint64_t destEltSize = Context.getTypeSize(destEltTy);
5876 
5877   return (srcLen * srcEltSize == destLen * destEltSize);
5878 }
5879 
5880 /// Is this a legal conversion between two types, one of which is
5881 /// known to be a vector type?
5882 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
5883   assert(destTy->isVectorType() || srcTy->isVectorType());
5884 
5885   if (!Context.getLangOpts().LaxVectorConversions)
5886     return false;
5887   return areLaxCompatibleVectorTypes(srcTy, destTy);
5888 }
5889 
5890 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5891                            CastKind &Kind) {
5892   assert(VectorTy->isVectorType() && "Not a vector type!");
5893 
5894   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
5895     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
5896       return Diag(R.getBegin(),
5897                   Ty->isVectorType() ?
5898                   diag::err_invalid_conversion_between_vectors :
5899                   diag::err_invalid_conversion_between_vector_and_integer)
5900         << VectorTy << Ty << R;
5901   } else
5902     return Diag(R.getBegin(),
5903                 diag::err_invalid_conversion_between_vector_and_scalar)
5904       << VectorTy << Ty << R;
5905 
5906   Kind = CK_BitCast;
5907   return false;
5908 }
5909 
5910 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
5911   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
5912 
5913   if (DestElemTy == SplattedExpr->getType())
5914     return SplattedExpr;
5915 
5916   assert(DestElemTy->isFloatingType() ||
5917          DestElemTy->isIntegralOrEnumerationType());
5918 
5919   CastKind CK;
5920   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
5921     // OpenCL requires that we convert `true` boolean expressions to -1, but
5922     // only when splatting vectors.
5923     if (DestElemTy->isFloatingType()) {
5924       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
5925       // in two steps: boolean to signed integral, then to floating.
5926       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
5927                                                  CK_BooleanToSignedIntegral);
5928       SplattedExpr = CastExprRes.get();
5929       CK = CK_IntegralToFloating;
5930     } else {
5931       CK = CK_BooleanToSignedIntegral;
5932     }
5933   } else {
5934     ExprResult CastExprRes = SplattedExpr;
5935     CK = PrepareScalarCast(CastExprRes, DestElemTy);
5936     if (CastExprRes.isInvalid())
5937       return ExprError();
5938     SplattedExpr = CastExprRes.get();
5939   }
5940   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
5941 }
5942 
5943 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5944                                     Expr *CastExpr, CastKind &Kind) {
5945   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5946 
5947   QualType SrcTy = CastExpr->getType();
5948 
5949   // If SrcTy is a VectorType, the total size must match to explicitly cast to
5950   // an ExtVectorType.
5951   // In OpenCL, casts between vectors of different types are not allowed.
5952   // (See OpenCL 6.2).
5953   if (SrcTy->isVectorType()) {
5954     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy)
5955         || (getLangOpts().OpenCL &&
5956             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5957       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5958         << DestTy << SrcTy << R;
5959       return ExprError();
5960     }
5961     Kind = CK_BitCast;
5962     return CastExpr;
5963   }
5964 
5965   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
5966   // conversion will take place first from scalar to elt type, and then
5967   // splat from elt type to vector.
5968   if (SrcTy->isPointerType())
5969     return Diag(R.getBegin(),
5970                 diag::err_invalid_conversion_between_vector_and_scalar)
5971       << DestTy << SrcTy << R;
5972 
5973   Kind = CK_VectorSplat;
5974   return prepareVectorSplat(DestTy, CastExpr);
5975 }
5976 
5977 ExprResult
5978 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5979                     Declarator &D, ParsedType &Ty,
5980                     SourceLocation RParenLoc, Expr *CastExpr) {
5981   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
5982          "ActOnCastExpr(): missing type or expr");
5983 
5984   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5985   if (D.isInvalidType())
5986     return ExprError();
5987 
5988   if (getLangOpts().CPlusPlus) {
5989     // Check that there are no default arguments (C++ only).
5990     CheckExtraCXXDefaultArguments(D);
5991   } else {
5992     // Make sure any TypoExprs have been dealt with.
5993     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
5994     if (!Res.isUsable())
5995       return ExprError();
5996     CastExpr = Res.get();
5997   }
5998 
5999   checkUnusedDeclAttributes(D);
6000 
6001   QualType castType = castTInfo->getType();
6002   Ty = CreateParsedType(castType, castTInfo);
6003 
6004   bool isVectorLiteral = false;
6005 
6006   // Check for an altivec or OpenCL literal,
6007   // i.e. all the elements are integer constants.
6008   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
6009   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
6010   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
6011        && castType->isVectorType() && (PE || PLE)) {
6012     if (PLE && PLE->getNumExprs() == 0) {
6013       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
6014       return ExprError();
6015     }
6016     if (PE || PLE->getNumExprs() == 1) {
6017       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
6018       if (!E->getType()->isVectorType())
6019         isVectorLiteral = true;
6020     }
6021     else
6022       isVectorLiteral = true;
6023   }
6024 
6025   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
6026   // then handle it as such.
6027   if (isVectorLiteral)
6028     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
6029 
6030   // If the Expr being casted is a ParenListExpr, handle it specially.
6031   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
6032   // sequence of BinOp comma operators.
6033   if (isa<ParenListExpr>(CastExpr)) {
6034     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
6035     if (Result.isInvalid()) return ExprError();
6036     CastExpr = Result.get();
6037   }
6038 
6039   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
6040       !getSourceManager().isInSystemMacro(LParenLoc))
6041     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
6042 
6043   CheckTollFreeBridgeCast(castType, CastExpr);
6044 
6045   CheckObjCBridgeRelatedCast(castType, CastExpr);
6046 
6047   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
6048 
6049   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
6050 }
6051 
6052 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
6053                                     SourceLocation RParenLoc, Expr *E,
6054                                     TypeSourceInfo *TInfo) {
6055   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
6056          "Expected paren or paren list expression");
6057 
6058   Expr **exprs;
6059   unsigned numExprs;
6060   Expr *subExpr;
6061   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
6062   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
6063     LiteralLParenLoc = PE->getLParenLoc();
6064     LiteralRParenLoc = PE->getRParenLoc();
6065     exprs = PE->getExprs();
6066     numExprs = PE->getNumExprs();
6067   } else { // isa<ParenExpr> by assertion at function entrance
6068     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
6069     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
6070     subExpr = cast<ParenExpr>(E)->getSubExpr();
6071     exprs = &subExpr;
6072     numExprs = 1;
6073   }
6074 
6075   QualType Ty = TInfo->getType();
6076   assert(Ty->isVectorType() && "Expected vector type");
6077 
6078   SmallVector<Expr *, 8> initExprs;
6079   const VectorType *VTy = Ty->getAs<VectorType>();
6080   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
6081 
6082   // '(...)' form of vector initialization in AltiVec: the number of
6083   // initializers must be one or must match the size of the vector.
6084   // If a single value is specified in the initializer then it will be
6085   // replicated to all the components of the vector
6086   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
6087     // The number of initializers must be one or must match the size of the
6088     // vector. If a single value is specified in the initializer then it will
6089     // be replicated to all the components of the vector
6090     if (numExprs == 1) {
6091       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
6092       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6093       if (Literal.isInvalid())
6094         return ExprError();
6095       Literal = ImpCastExprToType(Literal.get(), ElemTy,
6096                                   PrepareScalarCast(Literal, ElemTy));
6097       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6098     }
6099     else if (numExprs < numElems) {
6100       Diag(E->getExprLoc(),
6101            diag::err_incorrect_number_of_vector_initializers);
6102       return ExprError();
6103     }
6104     else
6105       initExprs.append(exprs, exprs + numExprs);
6106   }
6107   else {
6108     // For OpenCL, when the number of initializers is a single value,
6109     // it will be replicated to all components of the vector.
6110     if (getLangOpts().OpenCL &&
6111         VTy->getVectorKind() == VectorType::GenericVector &&
6112         numExprs == 1) {
6113         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
6114         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6115         if (Literal.isInvalid())
6116           return ExprError();
6117         Literal = ImpCastExprToType(Literal.get(), ElemTy,
6118                                     PrepareScalarCast(Literal, ElemTy));
6119         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6120     }
6121 
6122     initExprs.append(exprs, exprs + numExprs);
6123   }
6124   // FIXME: This means that pretty-printing the final AST will produce curly
6125   // braces instead of the original commas.
6126   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
6127                                                    initExprs, LiteralRParenLoc);
6128   initE->setType(Ty);
6129   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
6130 }
6131 
6132 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
6133 /// the ParenListExpr into a sequence of comma binary operators.
6134 ExprResult
6135 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
6136   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
6137   if (!E)
6138     return OrigExpr;
6139 
6140   ExprResult Result(E->getExpr(0));
6141 
6142   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
6143     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
6144                         E->getExpr(i));
6145 
6146   if (Result.isInvalid()) return ExprError();
6147 
6148   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
6149 }
6150 
6151 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
6152                                     SourceLocation R,
6153                                     MultiExprArg Val) {
6154   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
6155   return expr;
6156 }
6157 
6158 /// \brief Emit a specialized diagnostic when one expression is a null pointer
6159 /// constant and the other is not a pointer.  Returns true if a diagnostic is
6160 /// emitted.
6161 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
6162                                       SourceLocation QuestionLoc) {
6163   Expr *NullExpr = LHSExpr;
6164   Expr *NonPointerExpr = RHSExpr;
6165   Expr::NullPointerConstantKind NullKind =
6166       NullExpr->isNullPointerConstant(Context,
6167                                       Expr::NPC_ValueDependentIsNotNull);
6168 
6169   if (NullKind == Expr::NPCK_NotNull) {
6170     NullExpr = RHSExpr;
6171     NonPointerExpr = LHSExpr;
6172     NullKind =
6173         NullExpr->isNullPointerConstant(Context,
6174                                         Expr::NPC_ValueDependentIsNotNull);
6175   }
6176 
6177   if (NullKind == Expr::NPCK_NotNull)
6178     return false;
6179 
6180   if (NullKind == Expr::NPCK_ZeroExpression)
6181     return false;
6182 
6183   if (NullKind == Expr::NPCK_ZeroLiteral) {
6184     // In this case, check to make sure that we got here from a "NULL"
6185     // string in the source code.
6186     NullExpr = NullExpr->IgnoreParenImpCasts();
6187     SourceLocation loc = NullExpr->getExprLoc();
6188     if (!findMacroSpelling(loc, "NULL"))
6189       return false;
6190   }
6191 
6192   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
6193   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
6194       << NonPointerExpr->getType() << DiagType
6195       << NonPointerExpr->getSourceRange();
6196   return true;
6197 }
6198 
6199 /// \brief Return false if the condition expression is valid, true otherwise.
6200 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
6201   QualType CondTy = Cond->getType();
6202 
6203   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
6204   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
6205     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6206       << CondTy << Cond->getSourceRange();
6207     return true;
6208   }
6209 
6210   // C99 6.5.15p2
6211   if (CondTy->isScalarType()) return false;
6212 
6213   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
6214     << CondTy << Cond->getSourceRange();
6215   return true;
6216 }
6217 
6218 /// \brief Handle when one or both operands are void type.
6219 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
6220                                          ExprResult &RHS) {
6221     Expr *LHSExpr = LHS.get();
6222     Expr *RHSExpr = RHS.get();
6223 
6224     if (!LHSExpr->getType()->isVoidType())
6225       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
6226         << RHSExpr->getSourceRange();
6227     if (!RHSExpr->getType()->isVoidType())
6228       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
6229         << LHSExpr->getSourceRange();
6230     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
6231     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
6232     return S.Context.VoidTy;
6233 }
6234 
6235 /// \brief Return false if the NullExpr can be promoted to PointerTy,
6236 /// true otherwise.
6237 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
6238                                         QualType PointerTy) {
6239   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
6240       !NullExpr.get()->isNullPointerConstant(S.Context,
6241                                             Expr::NPC_ValueDependentIsNull))
6242     return true;
6243 
6244   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
6245   return false;
6246 }
6247 
6248 /// \brief Checks compatibility between two pointers and return the resulting
6249 /// type.
6250 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
6251                                                      ExprResult &RHS,
6252                                                      SourceLocation Loc) {
6253   QualType LHSTy = LHS.get()->getType();
6254   QualType RHSTy = RHS.get()->getType();
6255 
6256   if (S.Context.hasSameType(LHSTy, RHSTy)) {
6257     // Two identical pointers types are always compatible.
6258     return LHSTy;
6259   }
6260 
6261   QualType lhptee, rhptee;
6262 
6263   // Get the pointee types.
6264   bool IsBlockPointer = false;
6265   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
6266     lhptee = LHSBTy->getPointeeType();
6267     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
6268     IsBlockPointer = true;
6269   } else {
6270     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
6271     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
6272   }
6273 
6274   // C99 6.5.15p6: If both operands are pointers to compatible types or to
6275   // differently qualified versions of compatible types, the result type is
6276   // a pointer to an appropriately qualified version of the composite
6277   // type.
6278 
6279   // Only CVR-qualifiers exist in the standard, and the differently-qualified
6280   // clause doesn't make sense for our extensions. E.g. address space 2 should
6281   // be incompatible with address space 3: they may live on different devices or
6282   // anything.
6283   Qualifiers lhQual = lhptee.getQualifiers();
6284   Qualifiers rhQual = rhptee.getQualifiers();
6285 
6286   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
6287   lhQual.removeCVRQualifiers();
6288   rhQual.removeCVRQualifiers();
6289 
6290   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
6291   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
6292 
6293   // For OpenCL:
6294   // 1. If LHS and RHS types match exactly and:
6295   //  (a) AS match => use standard C rules, no bitcast or addrspacecast
6296   //  (b) AS overlap => generate addrspacecast
6297   //  (c) AS don't overlap => give an error
6298   // 2. if LHS and RHS types don't match:
6299   //  (a) AS match => use standard C rules, generate bitcast
6300   //  (b) AS overlap => generate addrspacecast instead of bitcast
6301   //  (c) AS don't overlap => give an error
6302 
6303   // For OpenCL, non-null composite type is returned only for cases 1a and 1b.
6304   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
6305 
6306   // OpenCL cases 1c, 2a, 2b, and 2c.
6307   if (CompositeTy.isNull()) {
6308     // In this situation, we assume void* type. No especially good
6309     // reason, but this is what gcc does, and we do have to pick
6310     // to get a consistent AST.
6311     QualType incompatTy;
6312     if (S.getLangOpts().OpenCL) {
6313       // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
6314       // spaces is disallowed.
6315       unsigned ResultAddrSpace;
6316       if (lhQual.isAddressSpaceSupersetOf(rhQual)) {
6317         // Cases 2a and 2b.
6318         ResultAddrSpace = lhQual.getAddressSpace();
6319       } else if (rhQual.isAddressSpaceSupersetOf(lhQual)) {
6320         // Cases 2a and 2b.
6321         ResultAddrSpace = rhQual.getAddressSpace();
6322       } else {
6323         // Cases 1c and 2c.
6324         S.Diag(Loc,
6325                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
6326             << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
6327             << RHS.get()->getSourceRange();
6328         return QualType();
6329       }
6330 
6331       // Continue handling cases 2a and 2b.
6332       incompatTy = S.Context.getPointerType(
6333           S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
6334       LHS = S.ImpCastExprToType(LHS.get(), incompatTy,
6335                                 (lhQual.getAddressSpace() != ResultAddrSpace)
6336                                     ? CK_AddressSpaceConversion /* 2b */
6337                                     : CK_BitCast /* 2a */);
6338       RHS = S.ImpCastExprToType(RHS.get(), incompatTy,
6339                                 (rhQual.getAddressSpace() != ResultAddrSpace)
6340                                     ? CK_AddressSpaceConversion /* 2b */
6341                                     : CK_BitCast /* 2a */);
6342     } else {
6343       S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
6344           << LHSTy << RHSTy << LHS.get()->getSourceRange()
6345           << RHS.get()->getSourceRange();
6346       incompatTy = S.Context.getPointerType(S.Context.VoidTy);
6347       LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
6348       RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
6349     }
6350     return incompatTy;
6351   }
6352 
6353   // The pointer types are compatible.
6354   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
6355   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
6356   if (IsBlockPointer)
6357     ResultTy = S.Context.getBlockPointerType(ResultTy);
6358   else {
6359     // Cases 1a and 1b for OpenCL.
6360     auto ResultAddrSpace = ResultTy.getQualifiers().getAddressSpace();
6361     LHSCastKind = lhQual.getAddressSpace() == ResultAddrSpace
6362                       ? CK_BitCast /* 1a */
6363                       : CK_AddressSpaceConversion /* 1b */;
6364     RHSCastKind = rhQual.getAddressSpace() == ResultAddrSpace
6365                       ? CK_BitCast /* 1a */
6366                       : CK_AddressSpaceConversion /* 1b */;
6367     ResultTy = S.Context.getPointerType(ResultTy);
6368   }
6369 
6370   // For case 1a of OpenCL, S.ImpCastExprToType will not insert bitcast
6371   // if the target type does not change.
6372   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
6373   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
6374   return ResultTy;
6375 }
6376 
6377 /// \brief Return the resulting type when the operands are both block pointers.
6378 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
6379                                                           ExprResult &LHS,
6380                                                           ExprResult &RHS,
6381                                                           SourceLocation Loc) {
6382   QualType LHSTy = LHS.get()->getType();
6383   QualType RHSTy = RHS.get()->getType();
6384 
6385   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
6386     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
6387       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
6388       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6389       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6390       return destType;
6391     }
6392     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
6393       << LHSTy << RHSTy << LHS.get()->getSourceRange()
6394       << RHS.get()->getSourceRange();
6395     return QualType();
6396   }
6397 
6398   // We have 2 block pointer types.
6399   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6400 }
6401 
6402 /// \brief Return the resulting type when the operands are both pointers.
6403 static QualType
6404 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
6405                                             ExprResult &RHS,
6406                                             SourceLocation Loc) {
6407   // get the pointer types
6408   QualType LHSTy = LHS.get()->getType();
6409   QualType RHSTy = RHS.get()->getType();
6410 
6411   // get the "pointed to" types
6412   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6413   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6414 
6415   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
6416   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
6417     // Figure out necessary qualifiers (C99 6.5.15p6)
6418     QualType destPointee
6419       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6420     QualType destType = S.Context.getPointerType(destPointee);
6421     // Add qualifiers if necessary.
6422     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6423     // Promote to void*.
6424     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6425     return destType;
6426   }
6427   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
6428     QualType destPointee
6429       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6430     QualType destType = S.Context.getPointerType(destPointee);
6431     // Add qualifiers if necessary.
6432     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6433     // Promote to void*.
6434     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6435     return destType;
6436   }
6437 
6438   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6439 }
6440 
6441 /// \brief Return false if the first expression is not an integer and the second
6442 /// expression is not a pointer, true otherwise.
6443 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
6444                                         Expr* PointerExpr, SourceLocation Loc,
6445                                         bool IsIntFirstExpr) {
6446   if (!PointerExpr->getType()->isPointerType() ||
6447       !Int.get()->getType()->isIntegerType())
6448     return false;
6449 
6450   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
6451   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
6452 
6453   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
6454     << Expr1->getType() << Expr2->getType()
6455     << Expr1->getSourceRange() << Expr2->getSourceRange();
6456   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
6457                             CK_IntegralToPointer);
6458   return true;
6459 }
6460 
6461 /// \brief Simple conversion between integer and floating point types.
6462 ///
6463 /// Used when handling the OpenCL conditional operator where the
6464 /// condition is a vector while the other operands are scalar.
6465 ///
6466 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
6467 /// types are either integer or floating type. Between the two
6468 /// operands, the type with the higher rank is defined as the "result
6469 /// type". The other operand needs to be promoted to the same type. No
6470 /// other type promotion is allowed. We cannot use
6471 /// UsualArithmeticConversions() for this purpose, since it always
6472 /// promotes promotable types.
6473 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
6474                                             ExprResult &RHS,
6475                                             SourceLocation QuestionLoc) {
6476   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
6477   if (LHS.isInvalid())
6478     return QualType();
6479   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
6480   if (RHS.isInvalid())
6481     return QualType();
6482 
6483   // For conversion purposes, we ignore any qualifiers.
6484   // For example, "const float" and "float" are equivalent.
6485   QualType LHSType =
6486     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6487   QualType RHSType =
6488     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6489 
6490   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
6491     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6492       << LHSType << LHS.get()->getSourceRange();
6493     return QualType();
6494   }
6495 
6496   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
6497     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6498       << RHSType << RHS.get()->getSourceRange();
6499     return QualType();
6500   }
6501 
6502   // If both types are identical, no conversion is needed.
6503   if (LHSType == RHSType)
6504     return LHSType;
6505 
6506   // Now handle "real" floating types (i.e. float, double, long double).
6507   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
6508     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
6509                                  /*IsCompAssign = */ false);
6510 
6511   // Finally, we have two differing integer types.
6512   return handleIntegerConversion<doIntegralCast, doIntegralCast>
6513   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
6514 }
6515 
6516 /// \brief Convert scalar operands to a vector that matches the
6517 ///        condition in length.
6518 ///
6519 /// Used when handling the OpenCL conditional operator where the
6520 /// condition is a vector while the other operands are scalar.
6521 ///
6522 /// We first compute the "result type" for the scalar operands
6523 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
6524 /// into a vector of that type where the length matches the condition
6525 /// vector type. s6.11.6 requires that the element types of the result
6526 /// and the condition must have the same number of bits.
6527 static QualType
6528 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
6529                               QualType CondTy, SourceLocation QuestionLoc) {
6530   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
6531   if (ResTy.isNull()) return QualType();
6532 
6533   const VectorType *CV = CondTy->getAs<VectorType>();
6534   assert(CV);
6535 
6536   // Determine the vector result type
6537   unsigned NumElements = CV->getNumElements();
6538   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
6539 
6540   // Ensure that all types have the same number of bits
6541   if (S.Context.getTypeSize(CV->getElementType())
6542       != S.Context.getTypeSize(ResTy)) {
6543     // Since VectorTy is created internally, it does not pretty print
6544     // with an OpenCL name. Instead, we just print a description.
6545     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
6546     SmallString<64> Str;
6547     llvm::raw_svector_ostream OS(Str);
6548     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
6549     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6550       << CondTy << OS.str();
6551     return QualType();
6552   }
6553 
6554   // Convert operands to the vector result type
6555   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
6556   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
6557 
6558   return VectorTy;
6559 }
6560 
6561 /// \brief Return false if this is a valid OpenCL condition vector
6562 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
6563                                        SourceLocation QuestionLoc) {
6564   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
6565   // integral type.
6566   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
6567   assert(CondTy);
6568   QualType EleTy = CondTy->getElementType();
6569   if (EleTy->isIntegerType()) return false;
6570 
6571   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6572     << Cond->getType() << Cond->getSourceRange();
6573   return true;
6574 }
6575 
6576 /// \brief Return false if the vector condition type and the vector
6577 ///        result type are compatible.
6578 ///
6579 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
6580 /// number of elements, and their element types have the same number
6581 /// of bits.
6582 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
6583                               SourceLocation QuestionLoc) {
6584   const VectorType *CV = CondTy->getAs<VectorType>();
6585   const VectorType *RV = VecResTy->getAs<VectorType>();
6586   assert(CV && RV);
6587 
6588   if (CV->getNumElements() != RV->getNumElements()) {
6589     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
6590       << CondTy << VecResTy;
6591     return true;
6592   }
6593 
6594   QualType CVE = CV->getElementType();
6595   QualType RVE = RV->getElementType();
6596 
6597   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
6598     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6599       << CondTy << VecResTy;
6600     return true;
6601   }
6602 
6603   return false;
6604 }
6605 
6606 /// \brief Return the resulting type for the conditional operator in
6607 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
6608 ///        s6.3.i) when the condition is a vector type.
6609 static QualType
6610 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
6611                              ExprResult &LHS, ExprResult &RHS,
6612                              SourceLocation QuestionLoc) {
6613   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
6614   if (Cond.isInvalid())
6615     return QualType();
6616   QualType CondTy = Cond.get()->getType();
6617 
6618   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
6619     return QualType();
6620 
6621   // If either operand is a vector then find the vector type of the
6622   // result as specified in OpenCL v1.1 s6.3.i.
6623   if (LHS.get()->getType()->isVectorType() ||
6624       RHS.get()->getType()->isVectorType()) {
6625     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
6626                                               /*isCompAssign*/false,
6627                                               /*AllowBothBool*/true,
6628                                               /*AllowBoolConversions*/false);
6629     if (VecResTy.isNull()) return QualType();
6630     // The result type must match the condition type as specified in
6631     // OpenCL v1.1 s6.11.6.
6632     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
6633       return QualType();
6634     return VecResTy;
6635   }
6636 
6637   // Both operands are scalar.
6638   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
6639 }
6640 
6641 /// \brief Return true if the Expr is block type
6642 static bool checkBlockType(Sema &S, const Expr *E) {
6643   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
6644     QualType Ty = CE->getCallee()->getType();
6645     if (Ty->isBlockPointerType()) {
6646       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
6647       return true;
6648     }
6649   }
6650   return false;
6651 }
6652 
6653 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
6654 /// In that case, LHS = cond.
6655 /// C99 6.5.15
6656 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6657                                         ExprResult &RHS, ExprValueKind &VK,
6658                                         ExprObjectKind &OK,
6659                                         SourceLocation QuestionLoc) {
6660 
6661   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
6662   if (!LHSResult.isUsable()) return QualType();
6663   LHS = LHSResult;
6664 
6665   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
6666   if (!RHSResult.isUsable()) return QualType();
6667   RHS = RHSResult;
6668 
6669   // C++ is sufficiently different to merit its own checker.
6670   if (getLangOpts().CPlusPlus)
6671     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
6672 
6673   VK = VK_RValue;
6674   OK = OK_Ordinary;
6675 
6676   // The OpenCL operator with a vector condition is sufficiently
6677   // different to merit its own checker.
6678   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
6679     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
6680 
6681   // First, check the condition.
6682   Cond = UsualUnaryConversions(Cond.get());
6683   if (Cond.isInvalid())
6684     return QualType();
6685   if (checkCondition(*this, Cond.get(), QuestionLoc))
6686     return QualType();
6687 
6688   // Now check the two expressions.
6689   if (LHS.get()->getType()->isVectorType() ||
6690       RHS.get()->getType()->isVectorType())
6691     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6692                                /*AllowBothBool*/true,
6693                                /*AllowBoolConversions*/false);
6694 
6695   QualType ResTy = UsualArithmeticConversions(LHS, RHS);
6696   if (LHS.isInvalid() || RHS.isInvalid())
6697     return QualType();
6698 
6699   QualType LHSTy = LHS.get()->getType();
6700   QualType RHSTy = RHS.get()->getType();
6701 
6702   // Diagnose attempts to convert between __float128 and long double where
6703   // such conversions currently can't be handled.
6704   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
6705     Diag(QuestionLoc,
6706          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
6707       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6708     return QualType();
6709   }
6710 
6711   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
6712   // selection operator (?:).
6713   if (getLangOpts().OpenCL &&
6714       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
6715     return QualType();
6716   }
6717 
6718   // If both operands have arithmetic type, do the usual arithmetic conversions
6719   // to find a common type: C99 6.5.15p3,5.
6720   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
6721     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6722     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6723 
6724     return ResTy;
6725   }
6726 
6727   // If both operands are the same structure or union type, the result is that
6728   // type.
6729   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
6730     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
6731       if (LHSRT->getDecl() == RHSRT->getDecl())
6732         // "If both the operands have structure or union type, the result has
6733         // that type."  This implies that CV qualifiers are dropped.
6734         return LHSTy.getUnqualifiedType();
6735     // FIXME: Type of conditional expression must be complete in C mode.
6736   }
6737 
6738   // C99 6.5.15p5: "If both operands have void type, the result has void type."
6739   // The following || allows only one side to be void (a GCC-ism).
6740   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
6741     return checkConditionalVoidType(*this, LHS, RHS);
6742   }
6743 
6744   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
6745   // the type of the other operand."
6746   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
6747   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
6748 
6749   // All objective-c pointer type analysis is done here.
6750   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
6751                                                         QuestionLoc);
6752   if (LHS.isInvalid() || RHS.isInvalid())
6753     return QualType();
6754   if (!compositeType.isNull())
6755     return compositeType;
6756 
6757 
6758   // Handle block pointer types.
6759   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
6760     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
6761                                                      QuestionLoc);
6762 
6763   // Check constraints for C object pointers types (C99 6.5.15p3,6).
6764   if (LHSTy->isPointerType() && RHSTy->isPointerType())
6765     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
6766                                                        QuestionLoc);
6767 
6768   // GCC compatibility: soften pointer/integer mismatch.  Note that
6769   // null pointers have been filtered out by this point.
6770   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
6771       /*isIntFirstExpr=*/true))
6772     return RHSTy;
6773   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
6774       /*isIntFirstExpr=*/false))
6775     return LHSTy;
6776 
6777   // Emit a better diagnostic if one of the expressions is a null pointer
6778   // constant and the other is not a pointer type. In this case, the user most
6779   // likely forgot to take the address of the other expression.
6780   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6781     return QualType();
6782 
6783   // Otherwise, the operands are not compatible.
6784   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6785     << LHSTy << RHSTy << LHS.get()->getSourceRange()
6786     << RHS.get()->getSourceRange();
6787   return QualType();
6788 }
6789 
6790 /// FindCompositeObjCPointerType - Helper method to find composite type of
6791 /// two objective-c pointer types of the two input expressions.
6792 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
6793                                             SourceLocation QuestionLoc) {
6794   QualType LHSTy = LHS.get()->getType();
6795   QualType RHSTy = RHS.get()->getType();
6796 
6797   // Handle things like Class and struct objc_class*.  Here we case the result
6798   // to the pseudo-builtin, because that will be implicitly cast back to the
6799   // redefinition type if an attempt is made to access its fields.
6800   if (LHSTy->isObjCClassType() &&
6801       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
6802     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6803     return LHSTy;
6804   }
6805   if (RHSTy->isObjCClassType() &&
6806       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
6807     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6808     return RHSTy;
6809   }
6810   // And the same for struct objc_object* / id
6811   if (LHSTy->isObjCIdType() &&
6812       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
6813     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6814     return LHSTy;
6815   }
6816   if (RHSTy->isObjCIdType() &&
6817       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
6818     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6819     return RHSTy;
6820   }
6821   // And the same for struct objc_selector* / SEL
6822   if (Context.isObjCSelType(LHSTy) &&
6823       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
6824     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
6825     return LHSTy;
6826   }
6827   if (Context.isObjCSelType(RHSTy) &&
6828       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
6829     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
6830     return RHSTy;
6831   }
6832   // Check constraints for Objective-C object pointers types.
6833   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
6834 
6835     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
6836       // Two identical object pointer types are always compatible.
6837       return LHSTy;
6838     }
6839     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
6840     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
6841     QualType compositeType = LHSTy;
6842 
6843     // If both operands are interfaces and either operand can be
6844     // assigned to the other, use that type as the composite
6845     // type. This allows
6846     //   xxx ? (A*) a : (B*) b
6847     // where B is a subclass of A.
6848     //
6849     // Additionally, as for assignment, if either type is 'id'
6850     // allow silent coercion. Finally, if the types are
6851     // incompatible then make sure to use 'id' as the composite
6852     // type so the result is acceptable for sending messages to.
6853 
6854     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
6855     // It could return the composite type.
6856     if (!(compositeType =
6857           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
6858       // Nothing more to do.
6859     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
6860       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
6861     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
6862       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
6863     } else if ((LHSTy->isObjCQualifiedIdType() ||
6864                 RHSTy->isObjCQualifiedIdType()) &&
6865                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
6866       // Need to handle "id<xx>" explicitly.
6867       // GCC allows qualified id and any Objective-C type to devolve to
6868       // id. Currently localizing to here until clear this should be
6869       // part of ObjCQualifiedIdTypesAreCompatible.
6870       compositeType = Context.getObjCIdType();
6871     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
6872       compositeType = Context.getObjCIdType();
6873     } else {
6874       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
6875       << LHSTy << RHSTy
6876       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6877       QualType incompatTy = Context.getObjCIdType();
6878       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
6879       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
6880       return incompatTy;
6881     }
6882     // The object pointer types are compatible.
6883     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
6884     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
6885     return compositeType;
6886   }
6887   // Check Objective-C object pointer types and 'void *'
6888   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
6889     if (getLangOpts().ObjCAutoRefCount) {
6890       // ARC forbids the implicit conversion of object pointers to 'void *',
6891       // so these types are not compatible.
6892       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6893           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6894       LHS = RHS = true;
6895       return QualType();
6896     }
6897     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6898     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6899     QualType destPointee
6900     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6901     QualType destType = Context.getPointerType(destPointee);
6902     // Add qualifiers if necessary.
6903     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6904     // Promote to void*.
6905     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6906     return destType;
6907   }
6908   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
6909     if (getLangOpts().ObjCAutoRefCount) {
6910       // ARC forbids the implicit conversion of object pointers to 'void *',
6911       // so these types are not compatible.
6912       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6913           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6914       LHS = RHS = true;
6915       return QualType();
6916     }
6917     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6918     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6919     QualType destPointee
6920     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6921     QualType destType = Context.getPointerType(destPointee);
6922     // Add qualifiers if necessary.
6923     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6924     // Promote to void*.
6925     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6926     return destType;
6927   }
6928   return QualType();
6929 }
6930 
6931 /// SuggestParentheses - Emit a note with a fixit hint that wraps
6932 /// ParenRange in parentheses.
6933 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6934                                const PartialDiagnostic &Note,
6935                                SourceRange ParenRange) {
6936   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
6937   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
6938       EndLoc.isValid()) {
6939     Self.Diag(Loc, Note)
6940       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
6941       << FixItHint::CreateInsertion(EndLoc, ")");
6942   } else {
6943     // We can't display the parentheses, so just show the bare note.
6944     Self.Diag(Loc, Note) << ParenRange;
6945   }
6946 }
6947 
6948 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
6949   return BinaryOperator::isAdditiveOp(Opc) ||
6950          BinaryOperator::isMultiplicativeOp(Opc) ||
6951          BinaryOperator::isShiftOp(Opc);
6952 }
6953 
6954 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
6955 /// expression, either using a built-in or overloaded operator,
6956 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
6957 /// expression.
6958 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
6959                                    Expr **RHSExprs) {
6960   // Don't strip parenthesis: we should not warn if E is in parenthesis.
6961   E = E->IgnoreImpCasts();
6962   E = E->IgnoreConversionOperator();
6963   E = E->IgnoreImpCasts();
6964 
6965   // Built-in binary operator.
6966   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
6967     if (IsArithmeticOp(OP->getOpcode())) {
6968       *Opcode = OP->getOpcode();
6969       *RHSExprs = OP->getRHS();
6970       return true;
6971     }
6972   }
6973 
6974   // Overloaded operator.
6975   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
6976     if (Call->getNumArgs() != 2)
6977       return false;
6978 
6979     // Make sure this is really a binary operator that is safe to pass into
6980     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
6981     OverloadedOperatorKind OO = Call->getOperator();
6982     if (OO < OO_Plus || OO > OO_Arrow ||
6983         OO == OO_PlusPlus || OO == OO_MinusMinus)
6984       return false;
6985 
6986     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
6987     if (IsArithmeticOp(OpKind)) {
6988       *Opcode = OpKind;
6989       *RHSExprs = Call->getArg(1);
6990       return true;
6991     }
6992   }
6993 
6994   return false;
6995 }
6996 
6997 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
6998 /// or is a logical expression such as (x==y) which has int type, but is
6999 /// commonly interpreted as boolean.
7000 static bool ExprLooksBoolean(Expr *E) {
7001   E = E->IgnoreParenImpCasts();
7002 
7003   if (E->getType()->isBooleanType())
7004     return true;
7005   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
7006     return OP->isComparisonOp() || OP->isLogicalOp();
7007   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
7008     return OP->getOpcode() == UO_LNot;
7009   if (E->getType()->isPointerType())
7010     return true;
7011 
7012   return false;
7013 }
7014 
7015 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
7016 /// and binary operator are mixed in a way that suggests the programmer assumed
7017 /// the conditional operator has higher precedence, for example:
7018 /// "int x = a + someBinaryCondition ? 1 : 2".
7019 static void DiagnoseConditionalPrecedence(Sema &Self,
7020                                           SourceLocation OpLoc,
7021                                           Expr *Condition,
7022                                           Expr *LHSExpr,
7023                                           Expr *RHSExpr) {
7024   BinaryOperatorKind CondOpcode;
7025   Expr *CondRHS;
7026 
7027   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
7028     return;
7029   if (!ExprLooksBoolean(CondRHS))
7030     return;
7031 
7032   // The condition is an arithmetic binary expression, with a right-
7033   // hand side that looks boolean, so warn.
7034 
7035   Self.Diag(OpLoc, diag::warn_precedence_conditional)
7036       << Condition->getSourceRange()
7037       << BinaryOperator::getOpcodeStr(CondOpcode);
7038 
7039   SuggestParentheses(Self, OpLoc,
7040     Self.PDiag(diag::note_precedence_silence)
7041       << BinaryOperator::getOpcodeStr(CondOpcode),
7042     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
7043 
7044   SuggestParentheses(Self, OpLoc,
7045     Self.PDiag(diag::note_precedence_conditional_first),
7046     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
7047 }
7048 
7049 /// Compute the nullability of a conditional expression.
7050 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
7051                                               QualType LHSTy, QualType RHSTy,
7052                                               ASTContext &Ctx) {
7053   if (!ResTy->isAnyPointerType())
7054     return ResTy;
7055 
7056   auto GetNullability = [&Ctx](QualType Ty) {
7057     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
7058     if (Kind)
7059       return *Kind;
7060     return NullabilityKind::Unspecified;
7061   };
7062 
7063   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
7064   NullabilityKind MergedKind;
7065 
7066   // Compute nullability of a binary conditional expression.
7067   if (IsBin) {
7068     if (LHSKind == NullabilityKind::NonNull)
7069       MergedKind = NullabilityKind::NonNull;
7070     else
7071       MergedKind = RHSKind;
7072   // Compute nullability of a normal conditional expression.
7073   } else {
7074     if (LHSKind == NullabilityKind::Nullable ||
7075         RHSKind == NullabilityKind::Nullable)
7076       MergedKind = NullabilityKind::Nullable;
7077     else if (LHSKind == NullabilityKind::NonNull)
7078       MergedKind = RHSKind;
7079     else if (RHSKind == NullabilityKind::NonNull)
7080       MergedKind = LHSKind;
7081     else
7082       MergedKind = NullabilityKind::Unspecified;
7083   }
7084 
7085   // Return if ResTy already has the correct nullability.
7086   if (GetNullability(ResTy) == MergedKind)
7087     return ResTy;
7088 
7089   // Strip all nullability from ResTy.
7090   while (ResTy->getNullability(Ctx))
7091     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
7092 
7093   // Create a new AttributedType with the new nullability kind.
7094   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
7095   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
7096 }
7097 
7098 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
7099 /// in the case of a the GNU conditional expr extension.
7100 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
7101                                     SourceLocation ColonLoc,
7102                                     Expr *CondExpr, Expr *LHSExpr,
7103                                     Expr *RHSExpr) {
7104   if (!getLangOpts().CPlusPlus) {
7105     // C cannot handle TypoExpr nodes in the condition because it
7106     // doesn't handle dependent types properly, so make sure any TypoExprs have
7107     // been dealt with before checking the operands.
7108     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
7109     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
7110     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
7111 
7112     if (!CondResult.isUsable())
7113       return ExprError();
7114 
7115     if (LHSExpr) {
7116       if (!LHSResult.isUsable())
7117         return ExprError();
7118     }
7119 
7120     if (!RHSResult.isUsable())
7121       return ExprError();
7122 
7123     CondExpr = CondResult.get();
7124     LHSExpr = LHSResult.get();
7125     RHSExpr = RHSResult.get();
7126   }
7127 
7128   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
7129   // was the condition.
7130   OpaqueValueExpr *opaqueValue = nullptr;
7131   Expr *commonExpr = nullptr;
7132   if (!LHSExpr) {
7133     commonExpr = CondExpr;
7134     // Lower out placeholder types first.  This is important so that we don't
7135     // try to capture a placeholder. This happens in few cases in C++; such
7136     // as Objective-C++'s dictionary subscripting syntax.
7137     if (commonExpr->hasPlaceholderType()) {
7138       ExprResult result = CheckPlaceholderExpr(commonExpr);
7139       if (!result.isUsable()) return ExprError();
7140       commonExpr = result.get();
7141     }
7142     // We usually want to apply unary conversions *before* saving, except
7143     // in the special case of a C++ l-value conditional.
7144     if (!(getLangOpts().CPlusPlus
7145           && !commonExpr->isTypeDependent()
7146           && commonExpr->getValueKind() == RHSExpr->getValueKind()
7147           && commonExpr->isGLValue()
7148           && commonExpr->isOrdinaryOrBitFieldObject()
7149           && RHSExpr->isOrdinaryOrBitFieldObject()
7150           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
7151       ExprResult commonRes = UsualUnaryConversions(commonExpr);
7152       if (commonRes.isInvalid())
7153         return ExprError();
7154       commonExpr = commonRes.get();
7155     }
7156 
7157     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
7158                                                 commonExpr->getType(),
7159                                                 commonExpr->getValueKind(),
7160                                                 commonExpr->getObjectKind(),
7161                                                 commonExpr);
7162     LHSExpr = CondExpr = opaqueValue;
7163   }
7164 
7165   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
7166   ExprValueKind VK = VK_RValue;
7167   ExprObjectKind OK = OK_Ordinary;
7168   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
7169   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
7170                                              VK, OK, QuestionLoc);
7171   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
7172       RHS.isInvalid())
7173     return ExprError();
7174 
7175   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
7176                                 RHS.get());
7177 
7178   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
7179 
7180   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
7181                                          Context);
7182 
7183   if (!commonExpr)
7184     return new (Context)
7185         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
7186                             RHS.get(), result, VK, OK);
7187 
7188   return new (Context) BinaryConditionalOperator(
7189       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
7190       ColonLoc, result, VK, OK);
7191 }
7192 
7193 // checkPointerTypesForAssignment - This is a very tricky routine (despite
7194 // being closely modeled after the C99 spec:-). The odd characteristic of this
7195 // routine is it effectively iqnores the qualifiers on the top level pointee.
7196 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
7197 // FIXME: add a couple examples in this comment.
7198 static Sema::AssignConvertType
7199 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
7200   assert(LHSType.isCanonical() && "LHS not canonicalized!");
7201   assert(RHSType.isCanonical() && "RHS not canonicalized!");
7202 
7203   // get the "pointed to" type (ignoring qualifiers at the top level)
7204   const Type *lhptee, *rhptee;
7205   Qualifiers lhq, rhq;
7206   std::tie(lhptee, lhq) =
7207       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
7208   std::tie(rhptee, rhq) =
7209       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
7210 
7211   Sema::AssignConvertType ConvTy = Sema::Compatible;
7212 
7213   // C99 6.5.16.1p1: This following citation is common to constraints
7214   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
7215   // qualifiers of the type *pointed to* by the right;
7216 
7217   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
7218   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
7219       lhq.compatiblyIncludesObjCLifetime(rhq)) {
7220     // Ignore lifetime for further calculation.
7221     lhq.removeObjCLifetime();
7222     rhq.removeObjCLifetime();
7223   }
7224 
7225   if (!lhq.compatiblyIncludes(rhq)) {
7226     // Treat address-space mismatches as fatal.  TODO: address subspaces
7227     if (!lhq.isAddressSpaceSupersetOf(rhq))
7228       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
7229 
7230     // It's okay to add or remove GC or lifetime qualifiers when converting to
7231     // and from void*.
7232     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
7233                         .compatiblyIncludes(
7234                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
7235              && (lhptee->isVoidType() || rhptee->isVoidType()))
7236       ; // keep old
7237 
7238     // Treat lifetime mismatches as fatal.
7239     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
7240       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
7241 
7242     // For GCC/MS compatibility, other qualifier mismatches are treated
7243     // as still compatible in C.
7244     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
7245   }
7246 
7247   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
7248   // incomplete type and the other is a pointer to a qualified or unqualified
7249   // version of void...
7250   if (lhptee->isVoidType()) {
7251     if (rhptee->isIncompleteOrObjectType())
7252       return ConvTy;
7253 
7254     // As an extension, we allow cast to/from void* to function pointer.
7255     assert(rhptee->isFunctionType());
7256     return Sema::FunctionVoidPointer;
7257   }
7258 
7259   if (rhptee->isVoidType()) {
7260     if (lhptee->isIncompleteOrObjectType())
7261       return ConvTy;
7262 
7263     // As an extension, we allow cast to/from void* to function pointer.
7264     assert(lhptee->isFunctionType());
7265     return Sema::FunctionVoidPointer;
7266   }
7267 
7268   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
7269   // unqualified versions of compatible types, ...
7270   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
7271   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
7272     // Check if the pointee types are compatible ignoring the sign.
7273     // We explicitly check for char so that we catch "char" vs
7274     // "unsigned char" on systems where "char" is unsigned.
7275     if (lhptee->isCharType())
7276       ltrans = S.Context.UnsignedCharTy;
7277     else if (lhptee->hasSignedIntegerRepresentation())
7278       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
7279 
7280     if (rhptee->isCharType())
7281       rtrans = S.Context.UnsignedCharTy;
7282     else if (rhptee->hasSignedIntegerRepresentation())
7283       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
7284 
7285     if (ltrans == rtrans) {
7286       // Types are compatible ignoring the sign. Qualifier incompatibility
7287       // takes priority over sign incompatibility because the sign
7288       // warning can be disabled.
7289       if (ConvTy != Sema::Compatible)
7290         return ConvTy;
7291 
7292       return Sema::IncompatiblePointerSign;
7293     }
7294 
7295     // If we are a multi-level pointer, it's possible that our issue is simply
7296     // one of qualification - e.g. char ** -> const char ** is not allowed. If
7297     // the eventual target type is the same and the pointers have the same
7298     // level of indirection, this must be the issue.
7299     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
7300       do {
7301         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
7302         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
7303       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
7304 
7305       if (lhptee == rhptee)
7306         return Sema::IncompatibleNestedPointerQualifiers;
7307     }
7308 
7309     // General pointer incompatibility takes priority over qualifiers.
7310     return Sema::IncompatiblePointer;
7311   }
7312   if (!S.getLangOpts().CPlusPlus &&
7313       S.IsFunctionConversion(ltrans, rtrans, ltrans))
7314     return Sema::IncompatiblePointer;
7315   return ConvTy;
7316 }
7317 
7318 /// checkBlockPointerTypesForAssignment - This routine determines whether two
7319 /// block pointer types are compatible or whether a block and normal pointer
7320 /// are compatible. It is more restrict than comparing two function pointer
7321 // types.
7322 static Sema::AssignConvertType
7323 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
7324                                     QualType RHSType) {
7325   assert(LHSType.isCanonical() && "LHS not canonicalized!");
7326   assert(RHSType.isCanonical() && "RHS not canonicalized!");
7327 
7328   QualType lhptee, rhptee;
7329 
7330   // get the "pointed to" type (ignoring qualifiers at the top level)
7331   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
7332   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
7333 
7334   // In C++, the types have to match exactly.
7335   if (S.getLangOpts().CPlusPlus)
7336     return Sema::IncompatibleBlockPointer;
7337 
7338   Sema::AssignConvertType ConvTy = Sema::Compatible;
7339 
7340   // For blocks we enforce that qualifiers are identical.
7341   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
7342     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
7343 
7344   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
7345     return Sema::IncompatibleBlockPointer;
7346 
7347   return ConvTy;
7348 }
7349 
7350 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
7351 /// for assignment compatibility.
7352 static Sema::AssignConvertType
7353 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
7354                                    QualType RHSType) {
7355   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
7356   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
7357 
7358   if (LHSType->isObjCBuiltinType()) {
7359     // Class is not compatible with ObjC object pointers.
7360     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
7361         !RHSType->isObjCQualifiedClassType())
7362       return Sema::IncompatiblePointer;
7363     return Sema::Compatible;
7364   }
7365   if (RHSType->isObjCBuiltinType()) {
7366     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
7367         !LHSType->isObjCQualifiedClassType())
7368       return Sema::IncompatiblePointer;
7369     return Sema::Compatible;
7370   }
7371   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
7372   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
7373 
7374   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
7375       // make an exception for id<P>
7376       !LHSType->isObjCQualifiedIdType())
7377     return Sema::CompatiblePointerDiscardsQualifiers;
7378 
7379   if (S.Context.typesAreCompatible(LHSType, RHSType))
7380     return Sema::Compatible;
7381   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
7382     return Sema::IncompatibleObjCQualifiedId;
7383   return Sema::IncompatiblePointer;
7384 }
7385 
7386 Sema::AssignConvertType
7387 Sema::CheckAssignmentConstraints(SourceLocation Loc,
7388                                  QualType LHSType, QualType RHSType) {
7389   // Fake up an opaque expression.  We don't actually care about what
7390   // cast operations are required, so if CheckAssignmentConstraints
7391   // adds casts to this they'll be wasted, but fortunately that doesn't
7392   // usually happen on valid code.
7393   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
7394   ExprResult RHSPtr = &RHSExpr;
7395   CastKind K = CK_Invalid;
7396 
7397   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
7398 }
7399 
7400 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
7401 /// has code to accommodate several GCC extensions when type checking
7402 /// pointers. Here are some objectionable examples that GCC considers warnings:
7403 ///
7404 ///  int a, *pint;
7405 ///  short *pshort;
7406 ///  struct foo *pfoo;
7407 ///
7408 ///  pint = pshort; // warning: assignment from incompatible pointer type
7409 ///  a = pint; // warning: assignment makes integer from pointer without a cast
7410 ///  pint = a; // warning: assignment makes pointer from integer without a cast
7411 ///  pint = pfoo; // warning: assignment from incompatible pointer type
7412 ///
7413 /// As a result, the code for dealing with pointers is more complex than the
7414 /// C99 spec dictates.
7415 ///
7416 /// Sets 'Kind' for any result kind except Incompatible.
7417 Sema::AssignConvertType
7418 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
7419                                  CastKind &Kind, bool ConvertRHS) {
7420   QualType RHSType = RHS.get()->getType();
7421   QualType OrigLHSType = LHSType;
7422 
7423   // Get canonical types.  We're not formatting these types, just comparing
7424   // them.
7425   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
7426   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
7427 
7428   // Common case: no conversion required.
7429   if (LHSType == RHSType) {
7430     Kind = CK_NoOp;
7431     return Compatible;
7432   }
7433 
7434   // If we have an atomic type, try a non-atomic assignment, then just add an
7435   // atomic qualification step.
7436   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
7437     Sema::AssignConvertType result =
7438       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
7439     if (result != Compatible)
7440       return result;
7441     if (Kind != CK_NoOp && ConvertRHS)
7442       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
7443     Kind = CK_NonAtomicToAtomic;
7444     return Compatible;
7445   }
7446 
7447   // If the left-hand side is a reference type, then we are in a
7448   // (rare!) case where we've allowed the use of references in C,
7449   // e.g., as a parameter type in a built-in function. In this case,
7450   // just make sure that the type referenced is compatible with the
7451   // right-hand side type. The caller is responsible for adjusting
7452   // LHSType so that the resulting expression does not have reference
7453   // type.
7454   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
7455     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
7456       Kind = CK_LValueBitCast;
7457       return Compatible;
7458     }
7459     return Incompatible;
7460   }
7461 
7462   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
7463   // to the same ExtVector type.
7464   if (LHSType->isExtVectorType()) {
7465     if (RHSType->isExtVectorType())
7466       return Incompatible;
7467     if (RHSType->isArithmeticType()) {
7468       // CK_VectorSplat does T -> vector T, so first cast to the element type.
7469       if (ConvertRHS)
7470         RHS = prepareVectorSplat(LHSType, RHS.get());
7471       Kind = CK_VectorSplat;
7472       return Compatible;
7473     }
7474   }
7475 
7476   // Conversions to or from vector type.
7477   if (LHSType->isVectorType() || RHSType->isVectorType()) {
7478     if (LHSType->isVectorType() && RHSType->isVectorType()) {
7479       // Allow assignments of an AltiVec vector type to an equivalent GCC
7480       // vector type and vice versa
7481       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
7482         Kind = CK_BitCast;
7483         return Compatible;
7484       }
7485 
7486       // If we are allowing lax vector conversions, and LHS and RHS are both
7487       // vectors, the total size only needs to be the same. This is a bitcast;
7488       // no bits are changed but the result type is different.
7489       if (isLaxVectorConversion(RHSType, LHSType)) {
7490         Kind = CK_BitCast;
7491         return IncompatibleVectors;
7492       }
7493     }
7494 
7495     // When the RHS comes from another lax conversion (e.g. binops between
7496     // scalars and vectors) the result is canonicalized as a vector. When the
7497     // LHS is also a vector, the lax is allowed by the condition above. Handle
7498     // the case where LHS is a scalar.
7499     if (LHSType->isScalarType()) {
7500       const VectorType *VecType = RHSType->getAs<VectorType>();
7501       if (VecType && VecType->getNumElements() == 1 &&
7502           isLaxVectorConversion(RHSType, LHSType)) {
7503         ExprResult *VecExpr = &RHS;
7504         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
7505         Kind = CK_BitCast;
7506         return Compatible;
7507       }
7508     }
7509 
7510     return Incompatible;
7511   }
7512 
7513   // Diagnose attempts to convert between __float128 and long double where
7514   // such conversions currently can't be handled.
7515   if (unsupportedTypeConversion(*this, LHSType, RHSType))
7516     return Incompatible;
7517 
7518   // Arithmetic conversions.
7519   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
7520       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
7521     if (ConvertRHS)
7522       Kind = PrepareScalarCast(RHS, LHSType);
7523     return Compatible;
7524   }
7525 
7526   // Conversions to normal pointers.
7527   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
7528     // U* -> T*
7529     if (isa<PointerType>(RHSType)) {
7530       unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
7531       unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
7532       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
7533       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
7534     }
7535 
7536     // int -> T*
7537     if (RHSType->isIntegerType()) {
7538       Kind = CK_IntegralToPointer; // FIXME: null?
7539       return IntToPointer;
7540     }
7541 
7542     // C pointers are not compatible with ObjC object pointers,
7543     // with two exceptions:
7544     if (isa<ObjCObjectPointerType>(RHSType)) {
7545       //  - conversions to void*
7546       if (LHSPointer->getPointeeType()->isVoidType()) {
7547         Kind = CK_BitCast;
7548         return Compatible;
7549       }
7550 
7551       //  - conversions from 'Class' to the redefinition type
7552       if (RHSType->isObjCClassType() &&
7553           Context.hasSameType(LHSType,
7554                               Context.getObjCClassRedefinitionType())) {
7555         Kind = CK_BitCast;
7556         return Compatible;
7557       }
7558 
7559       Kind = CK_BitCast;
7560       return IncompatiblePointer;
7561     }
7562 
7563     // U^ -> void*
7564     if (RHSType->getAs<BlockPointerType>()) {
7565       if (LHSPointer->getPointeeType()->isVoidType()) {
7566         Kind = CK_BitCast;
7567         return Compatible;
7568       }
7569     }
7570 
7571     return Incompatible;
7572   }
7573 
7574   // Conversions to block pointers.
7575   if (isa<BlockPointerType>(LHSType)) {
7576     // U^ -> T^
7577     if (RHSType->isBlockPointerType()) {
7578       Kind = CK_BitCast;
7579       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
7580     }
7581 
7582     // int or null -> T^
7583     if (RHSType->isIntegerType()) {
7584       Kind = CK_IntegralToPointer; // FIXME: null
7585       return IntToBlockPointer;
7586     }
7587 
7588     // id -> T^
7589     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
7590       Kind = CK_AnyPointerToBlockPointerCast;
7591       return Compatible;
7592     }
7593 
7594     // void* -> T^
7595     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
7596       if (RHSPT->getPointeeType()->isVoidType()) {
7597         Kind = CK_AnyPointerToBlockPointerCast;
7598         return Compatible;
7599       }
7600 
7601     return Incompatible;
7602   }
7603 
7604   // Conversions to Objective-C pointers.
7605   if (isa<ObjCObjectPointerType>(LHSType)) {
7606     // A* -> B*
7607     if (RHSType->isObjCObjectPointerType()) {
7608       Kind = CK_BitCast;
7609       Sema::AssignConvertType result =
7610         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
7611       if (getLangOpts().ObjCAutoRefCount &&
7612           result == Compatible &&
7613           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
7614         result = IncompatibleObjCWeakRef;
7615       return result;
7616     }
7617 
7618     // int or null -> A*
7619     if (RHSType->isIntegerType()) {
7620       Kind = CK_IntegralToPointer; // FIXME: null
7621       return IntToPointer;
7622     }
7623 
7624     // In general, C pointers are not compatible with ObjC object pointers,
7625     // with two exceptions:
7626     if (isa<PointerType>(RHSType)) {
7627       Kind = CK_CPointerToObjCPointerCast;
7628 
7629       //  - conversions from 'void*'
7630       if (RHSType->isVoidPointerType()) {
7631         return Compatible;
7632       }
7633 
7634       //  - conversions to 'Class' from its redefinition type
7635       if (LHSType->isObjCClassType() &&
7636           Context.hasSameType(RHSType,
7637                               Context.getObjCClassRedefinitionType())) {
7638         return Compatible;
7639       }
7640 
7641       return IncompatiblePointer;
7642     }
7643 
7644     // Only under strict condition T^ is compatible with an Objective-C pointer.
7645     if (RHSType->isBlockPointerType() &&
7646         LHSType->isBlockCompatibleObjCPointerType(Context)) {
7647       if (ConvertRHS)
7648         maybeExtendBlockObject(RHS);
7649       Kind = CK_BlockPointerToObjCPointerCast;
7650       return Compatible;
7651     }
7652 
7653     return Incompatible;
7654   }
7655 
7656   // Conversions from pointers that are not covered by the above.
7657   if (isa<PointerType>(RHSType)) {
7658     // T* -> _Bool
7659     if (LHSType == Context.BoolTy) {
7660       Kind = CK_PointerToBoolean;
7661       return Compatible;
7662     }
7663 
7664     // T* -> int
7665     if (LHSType->isIntegerType()) {
7666       Kind = CK_PointerToIntegral;
7667       return PointerToInt;
7668     }
7669 
7670     return Incompatible;
7671   }
7672 
7673   // Conversions from Objective-C pointers that are not covered by the above.
7674   if (isa<ObjCObjectPointerType>(RHSType)) {
7675     // T* -> _Bool
7676     if (LHSType == Context.BoolTy) {
7677       Kind = CK_PointerToBoolean;
7678       return Compatible;
7679     }
7680 
7681     // T* -> int
7682     if (LHSType->isIntegerType()) {
7683       Kind = CK_PointerToIntegral;
7684       return PointerToInt;
7685     }
7686 
7687     return Incompatible;
7688   }
7689 
7690   // struct A -> struct B
7691   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
7692     if (Context.typesAreCompatible(LHSType, RHSType)) {
7693       Kind = CK_NoOp;
7694       return Compatible;
7695     }
7696   }
7697 
7698   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
7699     Kind = CK_IntToOCLSampler;
7700     return Compatible;
7701   }
7702 
7703   return Incompatible;
7704 }
7705 
7706 /// \brief Constructs a transparent union from an expression that is
7707 /// used to initialize the transparent union.
7708 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
7709                                       ExprResult &EResult, QualType UnionType,
7710                                       FieldDecl *Field) {
7711   // Build an initializer list that designates the appropriate member
7712   // of the transparent union.
7713   Expr *E = EResult.get();
7714   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
7715                                                    E, SourceLocation());
7716   Initializer->setType(UnionType);
7717   Initializer->setInitializedFieldInUnion(Field);
7718 
7719   // Build a compound literal constructing a value of the transparent
7720   // union type from this initializer list.
7721   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
7722   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
7723                                         VK_RValue, Initializer, false);
7724 }
7725 
7726 Sema::AssignConvertType
7727 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
7728                                                ExprResult &RHS) {
7729   QualType RHSType = RHS.get()->getType();
7730 
7731   // If the ArgType is a Union type, we want to handle a potential
7732   // transparent_union GCC extension.
7733   const RecordType *UT = ArgType->getAsUnionType();
7734   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
7735     return Incompatible;
7736 
7737   // The field to initialize within the transparent union.
7738   RecordDecl *UD = UT->getDecl();
7739   FieldDecl *InitField = nullptr;
7740   // It's compatible if the expression matches any of the fields.
7741   for (auto *it : UD->fields()) {
7742     if (it->getType()->isPointerType()) {
7743       // If the transparent union contains a pointer type, we allow:
7744       // 1) void pointer
7745       // 2) null pointer constant
7746       if (RHSType->isPointerType())
7747         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
7748           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
7749           InitField = it;
7750           break;
7751         }
7752 
7753       if (RHS.get()->isNullPointerConstant(Context,
7754                                            Expr::NPC_ValueDependentIsNull)) {
7755         RHS = ImpCastExprToType(RHS.get(), it->getType(),
7756                                 CK_NullToPointer);
7757         InitField = it;
7758         break;
7759       }
7760     }
7761 
7762     CastKind Kind = CK_Invalid;
7763     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
7764           == Compatible) {
7765       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
7766       InitField = it;
7767       break;
7768     }
7769   }
7770 
7771   if (!InitField)
7772     return Incompatible;
7773 
7774   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
7775   return Compatible;
7776 }
7777 
7778 Sema::AssignConvertType
7779 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
7780                                        bool Diagnose,
7781                                        bool DiagnoseCFAudited,
7782                                        bool ConvertRHS) {
7783   // We need to be able to tell the caller whether we diagnosed a problem, if
7784   // they ask us to issue diagnostics.
7785   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
7786 
7787   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
7788   // we can't avoid *all* modifications at the moment, so we need some somewhere
7789   // to put the updated value.
7790   ExprResult LocalRHS = CallerRHS;
7791   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
7792 
7793   if (getLangOpts().CPlusPlus) {
7794     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
7795       // C++ 5.17p3: If the left operand is not of class type, the
7796       // expression is implicitly converted (C++ 4) to the
7797       // cv-unqualified type of the left operand.
7798       QualType RHSType = RHS.get()->getType();
7799       if (Diagnose) {
7800         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7801                                         AA_Assigning);
7802       } else {
7803         ImplicitConversionSequence ICS =
7804             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7805                                   /*SuppressUserConversions=*/false,
7806                                   /*AllowExplicit=*/false,
7807                                   /*InOverloadResolution=*/false,
7808                                   /*CStyle=*/false,
7809                                   /*AllowObjCWritebackConversion=*/false);
7810         if (ICS.isFailure())
7811           return Incompatible;
7812         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7813                                         ICS, AA_Assigning);
7814       }
7815       if (RHS.isInvalid())
7816         return Incompatible;
7817       Sema::AssignConvertType result = Compatible;
7818       if (getLangOpts().ObjCAutoRefCount &&
7819           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
7820         result = IncompatibleObjCWeakRef;
7821       return result;
7822     }
7823 
7824     // FIXME: Currently, we fall through and treat C++ classes like C
7825     // structures.
7826     // FIXME: We also fall through for atomics; not sure what should
7827     // happen there, though.
7828   } else if (RHS.get()->getType() == Context.OverloadTy) {
7829     // As a set of extensions to C, we support overloading on functions. These
7830     // functions need to be resolved here.
7831     DeclAccessPair DAP;
7832     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
7833             RHS.get(), LHSType, /*Complain=*/false, DAP))
7834       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
7835     else
7836       return Incompatible;
7837   }
7838 
7839   // C99 6.5.16.1p1: the left operand is a pointer and the right is
7840   // a null pointer constant.
7841   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
7842        LHSType->isBlockPointerType()) &&
7843       RHS.get()->isNullPointerConstant(Context,
7844                                        Expr::NPC_ValueDependentIsNull)) {
7845     if (Diagnose || ConvertRHS) {
7846       CastKind Kind;
7847       CXXCastPath Path;
7848       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
7849                              /*IgnoreBaseAccess=*/false, Diagnose);
7850       if (ConvertRHS)
7851         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
7852     }
7853     return Compatible;
7854   }
7855 
7856   // This check seems unnatural, however it is necessary to ensure the proper
7857   // conversion of functions/arrays. If the conversion were done for all
7858   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
7859   // expressions that suppress this implicit conversion (&, sizeof).
7860   //
7861   // Suppress this for references: C++ 8.5.3p5.
7862   if (!LHSType->isReferenceType()) {
7863     // FIXME: We potentially allocate here even if ConvertRHS is false.
7864     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
7865     if (RHS.isInvalid())
7866       return Incompatible;
7867   }
7868 
7869   Expr *PRE = RHS.get()->IgnoreParenCasts();
7870   if (Diagnose && isa<ObjCProtocolExpr>(PRE)) {
7871     ObjCProtocolDecl *PDecl = cast<ObjCProtocolExpr>(PRE)->getProtocol();
7872     if (PDecl && !PDecl->hasDefinition()) {
7873       Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
7874       Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
7875     }
7876   }
7877 
7878   CastKind Kind = CK_Invalid;
7879   Sema::AssignConvertType result =
7880     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
7881 
7882   // C99 6.5.16.1p2: The value of the right operand is converted to the
7883   // type of the assignment expression.
7884   // CheckAssignmentConstraints allows the left-hand side to be a reference,
7885   // so that we can use references in built-in functions even in C.
7886   // The getNonReferenceType() call makes sure that the resulting expression
7887   // does not have reference type.
7888   if (result != Incompatible && RHS.get()->getType() != LHSType) {
7889     QualType Ty = LHSType.getNonLValueExprType(Context);
7890     Expr *E = RHS.get();
7891 
7892     // Check for various Objective-C errors. If we are not reporting
7893     // diagnostics and just checking for errors, e.g., during overload
7894     // resolution, return Incompatible to indicate the failure.
7895     if (getLangOpts().ObjCAutoRefCount &&
7896         CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
7897                                Diagnose, DiagnoseCFAudited) != ACR_okay) {
7898       if (!Diagnose)
7899         return Incompatible;
7900     }
7901     if (getLangOpts().ObjC1 &&
7902         (CheckObjCBridgeRelatedConversions(E->getLocStart(), LHSType,
7903                                            E->getType(), E, Diagnose) ||
7904          ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
7905       if (!Diagnose)
7906         return Incompatible;
7907       // Replace the expression with a corrected version and continue so we
7908       // can find further errors.
7909       RHS = E;
7910       return Compatible;
7911     }
7912 
7913     if (ConvertRHS)
7914       RHS = ImpCastExprToType(E, Ty, Kind);
7915   }
7916   return result;
7917 }
7918 
7919 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
7920                                ExprResult &RHS) {
7921   Diag(Loc, diag::err_typecheck_invalid_operands)
7922     << LHS.get()->getType() << RHS.get()->getType()
7923     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7924   return QualType();
7925 }
7926 
7927 /// Try to convert a value of non-vector type to a vector type by converting
7928 /// the type to the element type of the vector and then performing a splat.
7929 /// If the language is OpenCL, we only use conversions that promote scalar
7930 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
7931 /// for float->int.
7932 ///
7933 /// \param scalar - if non-null, actually perform the conversions
7934 /// \return true if the operation fails (but without diagnosing the failure)
7935 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
7936                                      QualType scalarTy,
7937                                      QualType vectorEltTy,
7938                                      QualType vectorTy) {
7939   // The conversion to apply to the scalar before splatting it,
7940   // if necessary.
7941   CastKind scalarCast = CK_Invalid;
7942 
7943   if (vectorEltTy->isIntegralType(S.Context)) {
7944     if (!scalarTy->isIntegralType(S.Context))
7945       return true;
7946     if (S.getLangOpts().OpenCL &&
7947         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
7948       return true;
7949     scalarCast = CK_IntegralCast;
7950   } else if (vectorEltTy->isRealFloatingType()) {
7951     if (scalarTy->isRealFloatingType()) {
7952       if (S.getLangOpts().OpenCL &&
7953           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
7954         return true;
7955       scalarCast = CK_FloatingCast;
7956     }
7957     else if (scalarTy->isIntegralType(S.Context))
7958       scalarCast = CK_IntegralToFloating;
7959     else
7960       return true;
7961   } else {
7962     return true;
7963   }
7964 
7965   // Adjust scalar if desired.
7966   if (scalar) {
7967     if (scalarCast != CK_Invalid)
7968       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
7969     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
7970   }
7971   return false;
7972 }
7973 
7974 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
7975                                    SourceLocation Loc, bool IsCompAssign,
7976                                    bool AllowBothBool,
7977                                    bool AllowBoolConversions) {
7978   if (!IsCompAssign) {
7979     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
7980     if (LHS.isInvalid())
7981       return QualType();
7982   }
7983   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
7984   if (RHS.isInvalid())
7985     return QualType();
7986 
7987   // For conversion purposes, we ignore any qualifiers.
7988   // For example, "const float" and "float" are equivalent.
7989   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
7990   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
7991 
7992   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
7993   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
7994   assert(LHSVecType || RHSVecType);
7995 
7996   // AltiVec-style "vector bool op vector bool" combinations are allowed
7997   // for some operators but not others.
7998   if (!AllowBothBool &&
7999       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
8000       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
8001     return InvalidOperands(Loc, LHS, RHS);
8002 
8003   // If the vector types are identical, return.
8004   if (Context.hasSameType(LHSType, RHSType))
8005     return LHSType;
8006 
8007   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
8008   if (LHSVecType && RHSVecType &&
8009       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
8010     if (isa<ExtVectorType>(LHSVecType)) {
8011       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8012       return LHSType;
8013     }
8014 
8015     if (!IsCompAssign)
8016       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8017     return RHSType;
8018   }
8019 
8020   // AllowBoolConversions says that bool and non-bool AltiVec vectors
8021   // can be mixed, with the result being the non-bool type.  The non-bool
8022   // operand must have integer element type.
8023   if (AllowBoolConversions && LHSVecType && RHSVecType &&
8024       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
8025       (Context.getTypeSize(LHSVecType->getElementType()) ==
8026        Context.getTypeSize(RHSVecType->getElementType()))) {
8027     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
8028         LHSVecType->getElementType()->isIntegerType() &&
8029         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
8030       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8031       return LHSType;
8032     }
8033     if (!IsCompAssign &&
8034         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
8035         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
8036         RHSVecType->getElementType()->isIntegerType()) {
8037       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8038       return RHSType;
8039     }
8040   }
8041 
8042   // If there's an ext-vector type and a scalar, try to convert the scalar to
8043   // the vector element type and splat.
8044   // FIXME: this should also work for regular vector types as supported in GCC.
8045   if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
8046     if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
8047                                   LHSVecType->getElementType(), LHSType))
8048       return LHSType;
8049   }
8050   if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
8051     if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
8052                                   LHSType, RHSVecType->getElementType(),
8053                                   RHSType))
8054       return RHSType;
8055   }
8056 
8057   // FIXME: The code below also handles convertion between vectors and
8058   // non-scalars, we should break this down into fine grained specific checks
8059   // and emit proper diagnostics.
8060   QualType VecType = LHSVecType ? LHSType : RHSType;
8061   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
8062   QualType OtherType = LHSVecType ? RHSType : LHSType;
8063   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
8064   if (isLaxVectorConversion(OtherType, VecType)) {
8065     // If we're allowing lax vector conversions, only the total (data) size
8066     // needs to be the same. For non compound assignment, if one of the types is
8067     // scalar, the result is always the vector type.
8068     if (!IsCompAssign) {
8069       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
8070       return VecType;
8071     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
8072     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
8073     // type. Note that this is already done by non-compound assignments in
8074     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
8075     // <1 x T> -> T. The result is also a vector type.
8076     } else if (OtherType->isExtVectorType() ||
8077                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
8078       ExprResult *RHSExpr = &RHS;
8079       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
8080       return VecType;
8081     }
8082   }
8083 
8084   // Okay, the expression is invalid.
8085 
8086   // If there's a non-vector, non-real operand, diagnose that.
8087   if ((!RHSVecType && !RHSType->isRealType()) ||
8088       (!LHSVecType && !LHSType->isRealType())) {
8089     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
8090       << LHSType << RHSType
8091       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8092     return QualType();
8093   }
8094 
8095   // OpenCL V1.1 6.2.6.p1:
8096   // If the operands are of more than one vector type, then an error shall
8097   // occur. Implicit conversions between vector types are not permitted, per
8098   // section 6.2.1.
8099   if (getLangOpts().OpenCL &&
8100       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
8101       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
8102     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
8103                                                            << RHSType;
8104     return QualType();
8105   }
8106 
8107   // Otherwise, use the generic diagnostic.
8108   Diag(Loc, diag::err_typecheck_vector_not_convertable)
8109     << LHSType << RHSType
8110     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8111   return QualType();
8112 }
8113 
8114 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
8115 // expression.  These are mainly cases where the null pointer is used as an
8116 // integer instead of a pointer.
8117 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
8118                                 SourceLocation Loc, bool IsCompare) {
8119   // The canonical way to check for a GNU null is with isNullPointerConstant,
8120   // but we use a bit of a hack here for speed; this is a relatively
8121   // hot path, and isNullPointerConstant is slow.
8122   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
8123   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
8124 
8125   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
8126 
8127   // Avoid analyzing cases where the result will either be invalid (and
8128   // diagnosed as such) or entirely valid and not something to warn about.
8129   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
8130       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
8131     return;
8132 
8133   // Comparison operations would not make sense with a null pointer no matter
8134   // what the other expression is.
8135   if (!IsCompare) {
8136     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
8137         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
8138         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
8139     return;
8140   }
8141 
8142   // The rest of the operations only make sense with a null pointer
8143   // if the other expression is a pointer.
8144   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
8145       NonNullType->canDecayToPointerType())
8146     return;
8147 
8148   S.Diag(Loc, diag::warn_null_in_comparison_operation)
8149       << LHSNull /* LHS is NULL */ << NonNullType
8150       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8151 }
8152 
8153 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
8154                                                ExprResult &RHS,
8155                                                SourceLocation Loc, bool IsDiv) {
8156   // Check for division/remainder by zero.
8157   llvm::APSInt RHSValue;
8158   if (!RHS.get()->isValueDependent() &&
8159       RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue == 0)
8160     S.DiagRuntimeBehavior(Loc, RHS.get(),
8161                           S.PDiag(diag::warn_remainder_division_by_zero)
8162                             << IsDiv << RHS.get()->getSourceRange());
8163 }
8164 
8165 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
8166                                            SourceLocation Loc,
8167                                            bool IsCompAssign, bool IsDiv) {
8168   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8169 
8170   if (LHS.get()->getType()->isVectorType() ||
8171       RHS.get()->getType()->isVectorType())
8172     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
8173                                /*AllowBothBool*/getLangOpts().AltiVec,
8174                                /*AllowBoolConversions*/false);
8175 
8176   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
8177   if (LHS.isInvalid() || RHS.isInvalid())
8178     return QualType();
8179 
8180 
8181   if (compType.isNull() || !compType->isArithmeticType())
8182     return InvalidOperands(Loc, LHS, RHS);
8183   if (IsDiv)
8184     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
8185   return compType;
8186 }
8187 
8188 QualType Sema::CheckRemainderOperands(
8189   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
8190   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8191 
8192   if (LHS.get()->getType()->isVectorType() ||
8193       RHS.get()->getType()->isVectorType()) {
8194     if (LHS.get()->getType()->hasIntegerRepresentation() &&
8195         RHS.get()->getType()->hasIntegerRepresentation())
8196       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
8197                                  /*AllowBothBool*/getLangOpts().AltiVec,
8198                                  /*AllowBoolConversions*/false);
8199     return InvalidOperands(Loc, LHS, RHS);
8200   }
8201 
8202   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
8203   if (LHS.isInvalid() || RHS.isInvalid())
8204     return QualType();
8205 
8206   if (compType.isNull() || !compType->isIntegerType())
8207     return InvalidOperands(Loc, LHS, RHS);
8208   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
8209   return compType;
8210 }
8211 
8212 /// \brief Diagnose invalid arithmetic on two void pointers.
8213 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
8214                                                 Expr *LHSExpr, Expr *RHSExpr) {
8215   S.Diag(Loc, S.getLangOpts().CPlusPlus
8216                 ? diag::err_typecheck_pointer_arith_void_type
8217                 : diag::ext_gnu_void_ptr)
8218     << 1 /* two pointers */ << LHSExpr->getSourceRange()
8219                             << RHSExpr->getSourceRange();
8220 }
8221 
8222 /// \brief Diagnose invalid arithmetic on a void pointer.
8223 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
8224                                             Expr *Pointer) {
8225   S.Diag(Loc, S.getLangOpts().CPlusPlus
8226                 ? diag::err_typecheck_pointer_arith_void_type
8227                 : diag::ext_gnu_void_ptr)
8228     << 0 /* one pointer */ << Pointer->getSourceRange();
8229 }
8230 
8231 /// \brief Diagnose invalid arithmetic on two function pointers.
8232 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
8233                                                     Expr *LHS, Expr *RHS) {
8234   assert(LHS->getType()->isAnyPointerType());
8235   assert(RHS->getType()->isAnyPointerType());
8236   S.Diag(Loc, S.getLangOpts().CPlusPlus
8237                 ? diag::err_typecheck_pointer_arith_function_type
8238                 : diag::ext_gnu_ptr_func_arith)
8239     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
8240     // We only show the second type if it differs from the first.
8241     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
8242                                                    RHS->getType())
8243     << RHS->getType()->getPointeeType()
8244     << LHS->getSourceRange() << RHS->getSourceRange();
8245 }
8246 
8247 /// \brief Diagnose invalid arithmetic on a function pointer.
8248 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
8249                                                 Expr *Pointer) {
8250   assert(Pointer->getType()->isAnyPointerType());
8251   S.Diag(Loc, S.getLangOpts().CPlusPlus
8252                 ? diag::err_typecheck_pointer_arith_function_type
8253                 : diag::ext_gnu_ptr_func_arith)
8254     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
8255     << 0 /* one pointer, so only one type */
8256     << Pointer->getSourceRange();
8257 }
8258 
8259 /// \brief Emit error if Operand is incomplete pointer type
8260 ///
8261 /// \returns True if pointer has incomplete type
8262 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
8263                                                  Expr *Operand) {
8264   QualType ResType = Operand->getType();
8265   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8266     ResType = ResAtomicType->getValueType();
8267 
8268   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
8269   QualType PointeeTy = ResType->getPointeeType();
8270   return S.RequireCompleteType(Loc, PointeeTy,
8271                                diag::err_typecheck_arithmetic_incomplete_type,
8272                                PointeeTy, Operand->getSourceRange());
8273 }
8274 
8275 /// \brief Check the validity of an arithmetic pointer operand.
8276 ///
8277 /// If the operand has pointer type, this code will check for pointer types
8278 /// which are invalid in arithmetic operations. These will be diagnosed
8279 /// appropriately, including whether or not the use is supported as an
8280 /// extension.
8281 ///
8282 /// \returns True when the operand is valid to use (even if as an extension).
8283 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
8284                                             Expr *Operand) {
8285   QualType ResType = Operand->getType();
8286   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8287     ResType = ResAtomicType->getValueType();
8288 
8289   if (!ResType->isAnyPointerType()) return true;
8290 
8291   QualType PointeeTy = ResType->getPointeeType();
8292   if (PointeeTy->isVoidType()) {
8293     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
8294     return !S.getLangOpts().CPlusPlus;
8295   }
8296   if (PointeeTy->isFunctionType()) {
8297     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
8298     return !S.getLangOpts().CPlusPlus;
8299   }
8300 
8301   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
8302 
8303   return true;
8304 }
8305 
8306 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
8307 /// operands.
8308 ///
8309 /// This routine will diagnose any invalid arithmetic on pointer operands much
8310 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
8311 /// for emitting a single diagnostic even for operations where both LHS and RHS
8312 /// are (potentially problematic) pointers.
8313 ///
8314 /// \returns True when the operand is valid to use (even if as an extension).
8315 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
8316                                                 Expr *LHSExpr, Expr *RHSExpr) {
8317   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
8318   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
8319   if (!isLHSPointer && !isRHSPointer) return true;
8320 
8321   QualType LHSPointeeTy, RHSPointeeTy;
8322   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
8323   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
8324 
8325   // if both are pointers check if operation is valid wrt address spaces
8326   if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
8327     const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
8328     const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
8329     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
8330       S.Diag(Loc,
8331              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8332           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
8333           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8334       return false;
8335     }
8336   }
8337 
8338   // Check for arithmetic on pointers to incomplete types.
8339   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
8340   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
8341   if (isLHSVoidPtr || isRHSVoidPtr) {
8342     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
8343     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
8344     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
8345 
8346     return !S.getLangOpts().CPlusPlus;
8347   }
8348 
8349   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
8350   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
8351   if (isLHSFuncPtr || isRHSFuncPtr) {
8352     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
8353     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
8354                                                                 RHSExpr);
8355     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
8356 
8357     return !S.getLangOpts().CPlusPlus;
8358   }
8359 
8360   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
8361     return false;
8362   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
8363     return false;
8364 
8365   return true;
8366 }
8367 
8368 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
8369 /// literal.
8370 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
8371                                   Expr *LHSExpr, Expr *RHSExpr) {
8372   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
8373   Expr* IndexExpr = RHSExpr;
8374   if (!StrExpr) {
8375     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
8376     IndexExpr = LHSExpr;
8377   }
8378 
8379   bool IsStringPlusInt = StrExpr &&
8380       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
8381   if (!IsStringPlusInt || IndexExpr->isValueDependent())
8382     return;
8383 
8384   llvm::APSInt index;
8385   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
8386     unsigned StrLenWithNull = StrExpr->getLength() + 1;
8387     if (index.isNonNegative() &&
8388         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
8389                               index.isUnsigned()))
8390       return;
8391   }
8392 
8393   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
8394   Self.Diag(OpLoc, diag::warn_string_plus_int)
8395       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
8396 
8397   // Only print a fixit for "str" + int, not for int + "str".
8398   if (IndexExpr == RHSExpr) {
8399     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
8400     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
8401         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
8402         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
8403         << FixItHint::CreateInsertion(EndLoc, "]");
8404   } else
8405     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
8406 }
8407 
8408 /// \brief Emit a warning when adding a char literal to a string.
8409 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
8410                                    Expr *LHSExpr, Expr *RHSExpr) {
8411   const Expr *StringRefExpr = LHSExpr;
8412   const CharacterLiteral *CharExpr =
8413       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
8414 
8415   if (!CharExpr) {
8416     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
8417     StringRefExpr = RHSExpr;
8418   }
8419 
8420   if (!CharExpr || !StringRefExpr)
8421     return;
8422 
8423   const QualType StringType = StringRefExpr->getType();
8424 
8425   // Return if not a PointerType.
8426   if (!StringType->isAnyPointerType())
8427     return;
8428 
8429   // Return if not a CharacterType.
8430   if (!StringType->getPointeeType()->isAnyCharacterType())
8431     return;
8432 
8433   ASTContext &Ctx = Self.getASTContext();
8434   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
8435 
8436   const QualType CharType = CharExpr->getType();
8437   if (!CharType->isAnyCharacterType() &&
8438       CharType->isIntegerType() &&
8439       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
8440     Self.Diag(OpLoc, diag::warn_string_plus_char)
8441         << DiagRange << Ctx.CharTy;
8442   } else {
8443     Self.Diag(OpLoc, diag::warn_string_plus_char)
8444         << DiagRange << CharExpr->getType();
8445   }
8446 
8447   // Only print a fixit for str + char, not for char + str.
8448   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
8449     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
8450     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
8451         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
8452         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
8453         << FixItHint::CreateInsertion(EndLoc, "]");
8454   } else {
8455     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
8456   }
8457 }
8458 
8459 /// \brief Emit error when two pointers are incompatible.
8460 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
8461                                            Expr *LHSExpr, Expr *RHSExpr) {
8462   assert(LHSExpr->getType()->isAnyPointerType());
8463   assert(RHSExpr->getType()->isAnyPointerType());
8464   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
8465     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
8466     << RHSExpr->getSourceRange();
8467 }
8468 
8469 // C99 6.5.6
8470 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
8471                                      SourceLocation Loc, BinaryOperatorKind Opc,
8472                                      QualType* CompLHSTy) {
8473   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8474 
8475   if (LHS.get()->getType()->isVectorType() ||
8476       RHS.get()->getType()->isVectorType()) {
8477     QualType compType = CheckVectorOperands(
8478         LHS, RHS, Loc, CompLHSTy,
8479         /*AllowBothBool*/getLangOpts().AltiVec,
8480         /*AllowBoolConversions*/getLangOpts().ZVector);
8481     if (CompLHSTy) *CompLHSTy = compType;
8482     return compType;
8483   }
8484 
8485   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
8486   if (LHS.isInvalid() || RHS.isInvalid())
8487     return QualType();
8488 
8489   // Diagnose "string literal" '+' int and string '+' "char literal".
8490   if (Opc == BO_Add) {
8491     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
8492     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
8493   }
8494 
8495   // handle the common case first (both operands are arithmetic).
8496   if (!compType.isNull() && compType->isArithmeticType()) {
8497     if (CompLHSTy) *CompLHSTy = compType;
8498     return compType;
8499   }
8500 
8501   // Type-checking.  Ultimately the pointer's going to be in PExp;
8502   // note that we bias towards the LHS being the pointer.
8503   Expr *PExp = LHS.get(), *IExp = RHS.get();
8504 
8505   bool isObjCPointer;
8506   if (PExp->getType()->isPointerType()) {
8507     isObjCPointer = false;
8508   } else if (PExp->getType()->isObjCObjectPointerType()) {
8509     isObjCPointer = true;
8510   } else {
8511     std::swap(PExp, IExp);
8512     if (PExp->getType()->isPointerType()) {
8513       isObjCPointer = false;
8514     } else if (PExp->getType()->isObjCObjectPointerType()) {
8515       isObjCPointer = true;
8516     } else {
8517       return InvalidOperands(Loc, LHS, RHS);
8518     }
8519   }
8520   assert(PExp->getType()->isAnyPointerType());
8521 
8522   if (!IExp->getType()->isIntegerType())
8523     return InvalidOperands(Loc, LHS, RHS);
8524 
8525   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
8526     return QualType();
8527 
8528   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
8529     return QualType();
8530 
8531   // Check array bounds for pointer arithemtic
8532   CheckArrayAccess(PExp, IExp);
8533 
8534   if (CompLHSTy) {
8535     QualType LHSTy = Context.isPromotableBitField(LHS.get());
8536     if (LHSTy.isNull()) {
8537       LHSTy = LHS.get()->getType();
8538       if (LHSTy->isPromotableIntegerType())
8539         LHSTy = Context.getPromotedIntegerType(LHSTy);
8540     }
8541     *CompLHSTy = LHSTy;
8542   }
8543 
8544   return PExp->getType();
8545 }
8546 
8547 // C99 6.5.6
8548 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
8549                                         SourceLocation Loc,
8550                                         QualType* CompLHSTy) {
8551   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8552 
8553   if (LHS.get()->getType()->isVectorType() ||
8554       RHS.get()->getType()->isVectorType()) {
8555     QualType compType = CheckVectorOperands(
8556         LHS, RHS, Loc, CompLHSTy,
8557         /*AllowBothBool*/getLangOpts().AltiVec,
8558         /*AllowBoolConversions*/getLangOpts().ZVector);
8559     if (CompLHSTy) *CompLHSTy = compType;
8560     return compType;
8561   }
8562 
8563   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
8564   if (LHS.isInvalid() || RHS.isInvalid())
8565     return QualType();
8566 
8567   // Enforce type constraints: C99 6.5.6p3.
8568 
8569   // Handle the common case first (both operands are arithmetic).
8570   if (!compType.isNull() && compType->isArithmeticType()) {
8571     if (CompLHSTy) *CompLHSTy = compType;
8572     return compType;
8573   }
8574 
8575   // Either ptr - int   or   ptr - ptr.
8576   if (LHS.get()->getType()->isAnyPointerType()) {
8577     QualType lpointee = LHS.get()->getType()->getPointeeType();
8578 
8579     // Diagnose bad cases where we step over interface counts.
8580     if (LHS.get()->getType()->isObjCObjectPointerType() &&
8581         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
8582       return QualType();
8583 
8584     // The result type of a pointer-int computation is the pointer type.
8585     if (RHS.get()->getType()->isIntegerType()) {
8586       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
8587         return QualType();
8588 
8589       // Check array bounds for pointer arithemtic
8590       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
8591                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
8592 
8593       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8594       return LHS.get()->getType();
8595     }
8596 
8597     // Handle pointer-pointer subtractions.
8598     if (const PointerType *RHSPTy
8599           = RHS.get()->getType()->getAs<PointerType>()) {
8600       QualType rpointee = RHSPTy->getPointeeType();
8601 
8602       if (getLangOpts().CPlusPlus) {
8603         // Pointee types must be the same: C++ [expr.add]
8604         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
8605           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8606         }
8607       } else {
8608         // Pointee types must be compatible C99 6.5.6p3
8609         if (!Context.typesAreCompatible(
8610                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
8611                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
8612           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8613           return QualType();
8614         }
8615       }
8616 
8617       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
8618                                                LHS.get(), RHS.get()))
8619         return QualType();
8620 
8621       // The pointee type may have zero size.  As an extension, a structure or
8622       // union may have zero size or an array may have zero length.  In this
8623       // case subtraction does not make sense.
8624       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
8625         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
8626         if (ElementSize.isZero()) {
8627           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
8628             << rpointee.getUnqualifiedType()
8629             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8630         }
8631       }
8632 
8633       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8634       return Context.getPointerDiffType();
8635     }
8636   }
8637 
8638   return InvalidOperands(Loc, LHS, RHS);
8639 }
8640 
8641 static bool isScopedEnumerationType(QualType T) {
8642   if (const EnumType *ET = T->getAs<EnumType>())
8643     return ET->getDecl()->isScoped();
8644   return false;
8645 }
8646 
8647 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
8648                                    SourceLocation Loc, BinaryOperatorKind Opc,
8649                                    QualType LHSType) {
8650   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
8651   // so skip remaining warnings as we don't want to modify values within Sema.
8652   if (S.getLangOpts().OpenCL)
8653     return;
8654 
8655   llvm::APSInt Right;
8656   // Check right/shifter operand
8657   if (RHS.get()->isValueDependent() ||
8658       !RHS.get()->EvaluateAsInt(Right, S.Context))
8659     return;
8660 
8661   if (Right.isNegative()) {
8662     S.DiagRuntimeBehavior(Loc, RHS.get(),
8663                           S.PDiag(diag::warn_shift_negative)
8664                             << RHS.get()->getSourceRange());
8665     return;
8666   }
8667   llvm::APInt LeftBits(Right.getBitWidth(),
8668                        S.Context.getTypeSize(LHS.get()->getType()));
8669   if (Right.uge(LeftBits)) {
8670     S.DiagRuntimeBehavior(Loc, RHS.get(),
8671                           S.PDiag(diag::warn_shift_gt_typewidth)
8672                             << RHS.get()->getSourceRange());
8673     return;
8674   }
8675   if (Opc != BO_Shl)
8676     return;
8677 
8678   // When left shifting an ICE which is signed, we can check for overflow which
8679   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
8680   // integers have defined behavior modulo one more than the maximum value
8681   // representable in the result type, so never warn for those.
8682   llvm::APSInt Left;
8683   if (LHS.get()->isValueDependent() ||
8684       LHSType->hasUnsignedIntegerRepresentation() ||
8685       !LHS.get()->EvaluateAsInt(Left, S.Context))
8686     return;
8687 
8688   // If LHS does not have a signed type and non-negative value
8689   // then, the behavior is undefined. Warn about it.
8690   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined()) {
8691     S.DiagRuntimeBehavior(Loc, LHS.get(),
8692                           S.PDiag(diag::warn_shift_lhs_negative)
8693                             << LHS.get()->getSourceRange());
8694     return;
8695   }
8696 
8697   llvm::APInt ResultBits =
8698       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
8699   if (LeftBits.uge(ResultBits))
8700     return;
8701   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
8702   Result = Result.shl(Right);
8703 
8704   // Print the bit representation of the signed integer as an unsigned
8705   // hexadecimal number.
8706   SmallString<40> HexResult;
8707   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
8708 
8709   // If we are only missing a sign bit, this is less likely to result in actual
8710   // bugs -- if the result is cast back to an unsigned type, it will have the
8711   // expected value. Thus we place this behind a different warning that can be
8712   // turned off separately if needed.
8713   if (LeftBits == ResultBits - 1) {
8714     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
8715         << HexResult << LHSType
8716         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8717     return;
8718   }
8719 
8720   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
8721     << HexResult.str() << Result.getMinSignedBits() << LHSType
8722     << Left.getBitWidth() << LHS.get()->getSourceRange()
8723     << RHS.get()->getSourceRange();
8724 }
8725 
8726 /// \brief Return the resulting type when a vector is shifted
8727 ///        by a scalar or vector shift amount.
8728 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
8729                                  SourceLocation Loc, bool IsCompAssign) {
8730   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
8731   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
8732       !LHS.get()->getType()->isVectorType()) {
8733     S.Diag(Loc, diag::err_shift_rhs_only_vector)
8734       << RHS.get()->getType() << LHS.get()->getType()
8735       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8736     return QualType();
8737   }
8738 
8739   if (!IsCompAssign) {
8740     LHS = S.UsualUnaryConversions(LHS.get());
8741     if (LHS.isInvalid()) return QualType();
8742   }
8743 
8744   RHS = S.UsualUnaryConversions(RHS.get());
8745   if (RHS.isInvalid()) return QualType();
8746 
8747   QualType LHSType = LHS.get()->getType();
8748   // Note that LHS might be a scalar because the routine calls not only in
8749   // OpenCL case.
8750   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
8751   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
8752 
8753   // Note that RHS might not be a vector.
8754   QualType RHSType = RHS.get()->getType();
8755   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
8756   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
8757 
8758   // The operands need to be integers.
8759   if (!LHSEleType->isIntegerType()) {
8760     S.Diag(Loc, diag::err_typecheck_expect_int)
8761       << LHS.get()->getType() << LHS.get()->getSourceRange();
8762     return QualType();
8763   }
8764 
8765   if (!RHSEleType->isIntegerType()) {
8766     S.Diag(Loc, diag::err_typecheck_expect_int)
8767       << RHS.get()->getType() << RHS.get()->getSourceRange();
8768     return QualType();
8769   }
8770 
8771   if (!LHSVecTy) {
8772     assert(RHSVecTy);
8773     if (IsCompAssign)
8774       return RHSType;
8775     if (LHSEleType != RHSEleType) {
8776       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
8777       LHSEleType = RHSEleType;
8778     }
8779     QualType VecTy =
8780         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
8781     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
8782     LHSType = VecTy;
8783   } else if (RHSVecTy) {
8784     // OpenCL v1.1 s6.3.j says that for vector types, the operators
8785     // are applied component-wise. So if RHS is a vector, then ensure
8786     // that the number of elements is the same as LHS...
8787     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
8788       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
8789         << LHS.get()->getType() << RHS.get()->getType()
8790         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8791       return QualType();
8792     }
8793     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
8794       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
8795       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
8796       if (LHSBT != RHSBT &&
8797           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
8798         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
8799             << LHS.get()->getType() << RHS.get()->getType()
8800             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8801       }
8802     }
8803   } else {
8804     // ...else expand RHS to match the number of elements in LHS.
8805     QualType VecTy =
8806       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
8807     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
8808   }
8809 
8810   return LHSType;
8811 }
8812 
8813 // C99 6.5.7
8814 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
8815                                   SourceLocation Loc, BinaryOperatorKind Opc,
8816                                   bool IsCompAssign) {
8817   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8818 
8819   // Vector shifts promote their scalar inputs to vector type.
8820   if (LHS.get()->getType()->isVectorType() ||
8821       RHS.get()->getType()->isVectorType()) {
8822     if (LangOpts.ZVector) {
8823       // The shift operators for the z vector extensions work basically
8824       // like general shifts, except that neither the LHS nor the RHS is
8825       // allowed to be a "vector bool".
8826       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
8827         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
8828           return InvalidOperands(Loc, LHS, RHS);
8829       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
8830         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
8831           return InvalidOperands(Loc, LHS, RHS);
8832     }
8833     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
8834   }
8835 
8836   // Shifts don't perform usual arithmetic conversions, they just do integer
8837   // promotions on each operand. C99 6.5.7p3
8838 
8839   // For the LHS, do usual unary conversions, but then reset them away
8840   // if this is a compound assignment.
8841   ExprResult OldLHS = LHS;
8842   LHS = UsualUnaryConversions(LHS.get());
8843   if (LHS.isInvalid())
8844     return QualType();
8845   QualType LHSType = LHS.get()->getType();
8846   if (IsCompAssign) LHS = OldLHS;
8847 
8848   // The RHS is simpler.
8849   RHS = UsualUnaryConversions(RHS.get());
8850   if (RHS.isInvalid())
8851     return QualType();
8852   QualType RHSType = RHS.get()->getType();
8853 
8854   // C99 6.5.7p2: Each of the operands shall have integer type.
8855   if (!LHSType->hasIntegerRepresentation() ||
8856       !RHSType->hasIntegerRepresentation())
8857     return InvalidOperands(Loc, LHS, RHS);
8858 
8859   // C++0x: Don't allow scoped enums. FIXME: Use something better than
8860   // hasIntegerRepresentation() above instead of this.
8861   if (isScopedEnumerationType(LHSType) ||
8862       isScopedEnumerationType(RHSType)) {
8863     return InvalidOperands(Loc, LHS, RHS);
8864   }
8865   // Sanity-check shift operands
8866   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
8867 
8868   // "The type of the result is that of the promoted left operand."
8869   return LHSType;
8870 }
8871 
8872 static bool IsWithinTemplateSpecialization(Decl *D) {
8873   if (DeclContext *DC = D->getDeclContext()) {
8874     if (isa<ClassTemplateSpecializationDecl>(DC))
8875       return true;
8876     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
8877       return FD->isFunctionTemplateSpecialization();
8878   }
8879   return false;
8880 }
8881 
8882 /// If two different enums are compared, raise a warning.
8883 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
8884                                 Expr *RHS) {
8885   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
8886   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
8887 
8888   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
8889   if (!LHSEnumType)
8890     return;
8891   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
8892   if (!RHSEnumType)
8893     return;
8894 
8895   // Ignore anonymous enums.
8896   if (!LHSEnumType->getDecl()->getIdentifier())
8897     return;
8898   if (!RHSEnumType->getDecl()->getIdentifier())
8899     return;
8900 
8901   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
8902     return;
8903 
8904   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
8905       << LHSStrippedType << RHSStrippedType
8906       << LHS->getSourceRange() << RHS->getSourceRange();
8907 }
8908 
8909 /// \brief Diagnose bad pointer comparisons.
8910 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
8911                                               ExprResult &LHS, ExprResult &RHS,
8912                                               bool IsError) {
8913   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
8914                       : diag::ext_typecheck_comparison_of_distinct_pointers)
8915     << LHS.get()->getType() << RHS.get()->getType()
8916     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8917 }
8918 
8919 /// \brief Returns false if the pointers are converted to a composite type,
8920 /// true otherwise.
8921 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
8922                                            ExprResult &LHS, ExprResult &RHS) {
8923   // C++ [expr.rel]p2:
8924   //   [...] Pointer conversions (4.10) and qualification
8925   //   conversions (4.4) are performed on pointer operands (or on
8926   //   a pointer operand and a null pointer constant) to bring
8927   //   them to their composite pointer type. [...]
8928   //
8929   // C++ [expr.eq]p1 uses the same notion for (in)equality
8930   // comparisons of pointers.
8931 
8932   // C++ [expr.eq]p2:
8933   //   In addition, pointers to members can be compared, or a pointer to
8934   //   member and a null pointer constant. Pointer to member conversions
8935   //   (4.11) and qualification conversions (4.4) are performed to bring
8936   //   them to a common type. If one operand is a null pointer constant,
8937   //   the common type is the type of the other operand. Otherwise, the
8938   //   common type is a pointer to member type similar (4.4) to the type
8939   //   of one of the operands, with a cv-qualification signature (4.4)
8940   //   that is the union of the cv-qualification signatures of the operand
8941   //   types.
8942 
8943   QualType LHSType = LHS.get()->getType();
8944   QualType RHSType = RHS.get()->getType();
8945   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
8946          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
8947 
8948   bool NonStandardCompositeType = false;
8949   bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
8950   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
8951   if (T.isNull()) {
8952     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
8953     return true;
8954   }
8955 
8956   if (NonStandardCompositeType)
8957     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
8958       << LHSType << RHSType << T << LHS.get()->getSourceRange()
8959       << RHS.get()->getSourceRange();
8960 
8961   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
8962   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
8963   return false;
8964 }
8965 
8966 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
8967                                                     ExprResult &LHS,
8968                                                     ExprResult &RHS,
8969                                                     bool IsError) {
8970   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
8971                       : diag::ext_typecheck_comparison_of_fptr_to_void)
8972     << LHS.get()->getType() << RHS.get()->getType()
8973     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8974 }
8975 
8976 static bool isObjCObjectLiteral(ExprResult &E) {
8977   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
8978   case Stmt::ObjCArrayLiteralClass:
8979   case Stmt::ObjCDictionaryLiteralClass:
8980   case Stmt::ObjCStringLiteralClass:
8981   case Stmt::ObjCBoxedExprClass:
8982     return true;
8983   default:
8984     // Note that ObjCBoolLiteral is NOT an object literal!
8985     return false;
8986   }
8987 }
8988 
8989 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
8990   const ObjCObjectPointerType *Type =
8991     LHS->getType()->getAs<ObjCObjectPointerType>();
8992 
8993   // If this is not actually an Objective-C object, bail out.
8994   if (!Type)
8995     return false;
8996 
8997   // Get the LHS object's interface type.
8998   QualType InterfaceType = Type->getPointeeType();
8999 
9000   // If the RHS isn't an Objective-C object, bail out.
9001   if (!RHS->getType()->isObjCObjectPointerType())
9002     return false;
9003 
9004   // Try to find the -isEqual: method.
9005   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
9006   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
9007                                                       InterfaceType,
9008                                                       /*instance=*/true);
9009   if (!Method) {
9010     if (Type->isObjCIdType()) {
9011       // For 'id', just check the global pool.
9012       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
9013                                                   /*receiverId=*/true);
9014     } else {
9015       // Check protocols.
9016       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
9017                                              /*instance=*/true);
9018     }
9019   }
9020 
9021   if (!Method)
9022     return false;
9023 
9024   QualType T = Method->parameters()[0]->getType();
9025   if (!T->isObjCObjectPointerType())
9026     return false;
9027 
9028   QualType R = Method->getReturnType();
9029   if (!R->isScalarType())
9030     return false;
9031 
9032   return true;
9033 }
9034 
9035 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
9036   FromE = FromE->IgnoreParenImpCasts();
9037   switch (FromE->getStmtClass()) {
9038     default:
9039       break;
9040     case Stmt::ObjCStringLiteralClass:
9041       // "string literal"
9042       return LK_String;
9043     case Stmt::ObjCArrayLiteralClass:
9044       // "array literal"
9045       return LK_Array;
9046     case Stmt::ObjCDictionaryLiteralClass:
9047       // "dictionary literal"
9048       return LK_Dictionary;
9049     case Stmt::BlockExprClass:
9050       return LK_Block;
9051     case Stmt::ObjCBoxedExprClass: {
9052       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
9053       switch (Inner->getStmtClass()) {
9054         case Stmt::IntegerLiteralClass:
9055         case Stmt::FloatingLiteralClass:
9056         case Stmt::CharacterLiteralClass:
9057         case Stmt::ObjCBoolLiteralExprClass:
9058         case Stmt::CXXBoolLiteralExprClass:
9059           // "numeric literal"
9060           return LK_Numeric;
9061         case Stmt::ImplicitCastExprClass: {
9062           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
9063           // Boolean literals can be represented by implicit casts.
9064           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
9065             return LK_Numeric;
9066           break;
9067         }
9068         default:
9069           break;
9070       }
9071       return LK_Boxed;
9072     }
9073   }
9074   return LK_None;
9075 }
9076 
9077 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
9078                                           ExprResult &LHS, ExprResult &RHS,
9079                                           BinaryOperator::Opcode Opc){
9080   Expr *Literal;
9081   Expr *Other;
9082   if (isObjCObjectLiteral(LHS)) {
9083     Literal = LHS.get();
9084     Other = RHS.get();
9085   } else {
9086     Literal = RHS.get();
9087     Other = LHS.get();
9088   }
9089 
9090   // Don't warn on comparisons against nil.
9091   Other = Other->IgnoreParenCasts();
9092   if (Other->isNullPointerConstant(S.getASTContext(),
9093                                    Expr::NPC_ValueDependentIsNotNull))
9094     return;
9095 
9096   // This should be kept in sync with warn_objc_literal_comparison.
9097   // LK_String should always be after the other literals, since it has its own
9098   // warning flag.
9099   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
9100   assert(LiteralKind != Sema::LK_Block);
9101   if (LiteralKind == Sema::LK_None) {
9102     llvm_unreachable("Unknown Objective-C object literal kind");
9103   }
9104 
9105   if (LiteralKind == Sema::LK_String)
9106     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
9107       << Literal->getSourceRange();
9108   else
9109     S.Diag(Loc, diag::warn_objc_literal_comparison)
9110       << LiteralKind << Literal->getSourceRange();
9111 
9112   if (BinaryOperator::isEqualityOp(Opc) &&
9113       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
9114     SourceLocation Start = LHS.get()->getLocStart();
9115     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getLocEnd());
9116     CharSourceRange OpRange =
9117       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
9118 
9119     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
9120       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
9121       << FixItHint::CreateReplacement(OpRange, " isEqual:")
9122       << FixItHint::CreateInsertion(End, "]");
9123   }
9124 }
9125 
9126 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
9127                                                 ExprResult &RHS,
9128                                                 SourceLocation Loc,
9129                                                 BinaryOperatorKind Opc) {
9130   // Check that left hand side is !something.
9131   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
9132   if (!UO || UO->getOpcode() != UO_LNot) return;
9133 
9134   // Only check if the right hand side is non-bool arithmetic type.
9135   if (RHS.get()->isKnownToHaveBooleanValue()) return;
9136 
9137   // Make sure that the something in !something is not bool.
9138   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
9139   if (SubExpr->isKnownToHaveBooleanValue()) return;
9140 
9141   // Emit warning.
9142   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
9143       << Loc;
9144 
9145   // First note suggest !(x < y)
9146   SourceLocation FirstOpen = SubExpr->getLocStart();
9147   SourceLocation FirstClose = RHS.get()->getLocEnd();
9148   FirstClose = S.getLocForEndOfToken(FirstClose);
9149   if (FirstClose.isInvalid())
9150     FirstOpen = SourceLocation();
9151   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
9152       << FixItHint::CreateInsertion(FirstOpen, "(")
9153       << FixItHint::CreateInsertion(FirstClose, ")");
9154 
9155   // Second note suggests (!x) < y
9156   SourceLocation SecondOpen = LHS.get()->getLocStart();
9157   SourceLocation SecondClose = LHS.get()->getLocEnd();
9158   SecondClose = S.getLocForEndOfToken(SecondClose);
9159   if (SecondClose.isInvalid())
9160     SecondOpen = SourceLocation();
9161   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
9162       << FixItHint::CreateInsertion(SecondOpen, "(")
9163       << FixItHint::CreateInsertion(SecondClose, ")");
9164 }
9165 
9166 // Get the decl for a simple expression: a reference to a variable,
9167 // an implicit C++ field reference, or an implicit ObjC ivar reference.
9168 static ValueDecl *getCompareDecl(Expr *E) {
9169   if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
9170     return DR->getDecl();
9171   if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
9172     if (Ivar->isFreeIvar())
9173       return Ivar->getDecl();
9174   }
9175   if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
9176     if (Mem->isImplicitAccess())
9177       return Mem->getMemberDecl();
9178   }
9179   return nullptr;
9180 }
9181 
9182 // C99 6.5.8, C++ [expr.rel]
9183 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
9184                                     SourceLocation Loc, BinaryOperatorKind Opc,
9185                                     bool IsRelational) {
9186   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
9187 
9188   // Handle vector comparisons separately.
9189   if (LHS.get()->getType()->isVectorType() ||
9190       RHS.get()->getType()->isVectorType())
9191     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
9192 
9193   QualType LHSType = LHS.get()->getType();
9194   QualType RHSType = RHS.get()->getType();
9195 
9196   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
9197   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
9198 
9199   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
9200   diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, Opc);
9201 
9202   if (!LHSType->hasFloatingRepresentation() &&
9203       !(LHSType->isBlockPointerType() && IsRelational) &&
9204       !LHS.get()->getLocStart().isMacroID() &&
9205       !RHS.get()->getLocStart().isMacroID() &&
9206       ActiveTemplateInstantiations.empty()) {
9207     // For non-floating point types, check for self-comparisons of the form
9208     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
9209     // often indicate logic errors in the program.
9210     //
9211     // NOTE: Don't warn about comparison expressions resulting from macro
9212     // expansion. Also don't warn about comparisons which are only self
9213     // comparisons within a template specialization. The warnings should catch
9214     // obvious cases in the definition of the template anyways. The idea is to
9215     // warn when the typed comparison operator will always evaluate to the same
9216     // result.
9217     ValueDecl *DL = getCompareDecl(LHSStripped);
9218     ValueDecl *DR = getCompareDecl(RHSStripped);
9219     if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
9220       DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
9221                           << 0 // self-
9222                           << (Opc == BO_EQ
9223                               || Opc == BO_LE
9224                               || Opc == BO_GE));
9225     } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
9226                !DL->getType()->isReferenceType() &&
9227                !DR->getType()->isReferenceType()) {
9228         // what is it always going to eval to?
9229         char always_evals_to;
9230         switch(Opc) {
9231         case BO_EQ: // e.g. array1 == array2
9232           always_evals_to = 0; // false
9233           break;
9234         case BO_NE: // e.g. array1 != array2
9235           always_evals_to = 1; // true
9236           break;
9237         default:
9238           // best we can say is 'a constant'
9239           always_evals_to = 2; // e.g. array1 <= array2
9240           break;
9241         }
9242         DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
9243                             << 1 // array
9244                             << always_evals_to);
9245     }
9246 
9247     if (isa<CastExpr>(LHSStripped))
9248       LHSStripped = LHSStripped->IgnoreParenCasts();
9249     if (isa<CastExpr>(RHSStripped))
9250       RHSStripped = RHSStripped->IgnoreParenCasts();
9251 
9252     // Warn about comparisons against a string constant (unless the other
9253     // operand is null), the user probably wants strcmp.
9254     Expr *literalString = nullptr;
9255     Expr *literalStringStripped = nullptr;
9256     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
9257         !RHSStripped->isNullPointerConstant(Context,
9258                                             Expr::NPC_ValueDependentIsNull)) {
9259       literalString = LHS.get();
9260       literalStringStripped = LHSStripped;
9261     } else if ((isa<StringLiteral>(RHSStripped) ||
9262                 isa<ObjCEncodeExpr>(RHSStripped)) &&
9263                !LHSStripped->isNullPointerConstant(Context,
9264                                             Expr::NPC_ValueDependentIsNull)) {
9265       literalString = RHS.get();
9266       literalStringStripped = RHSStripped;
9267     }
9268 
9269     if (literalString) {
9270       DiagRuntimeBehavior(Loc, nullptr,
9271         PDiag(diag::warn_stringcompare)
9272           << isa<ObjCEncodeExpr>(literalStringStripped)
9273           << literalString->getSourceRange());
9274     }
9275   }
9276 
9277   // C99 6.5.8p3 / C99 6.5.9p4
9278   UsualArithmeticConversions(LHS, RHS);
9279   if (LHS.isInvalid() || RHS.isInvalid())
9280     return QualType();
9281 
9282   LHSType = LHS.get()->getType();
9283   RHSType = RHS.get()->getType();
9284 
9285   // The result of comparisons is 'bool' in C++, 'int' in C.
9286   QualType ResultTy = Context.getLogicalOperationType();
9287 
9288   if (IsRelational) {
9289     if (LHSType->isRealType() && RHSType->isRealType())
9290       return ResultTy;
9291   } else {
9292     // Check for comparisons of floating point operands using != and ==.
9293     if (LHSType->hasFloatingRepresentation())
9294       CheckFloatComparison(Loc, LHS.get(), RHS.get());
9295 
9296     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
9297       return ResultTy;
9298   }
9299 
9300   const Expr::NullPointerConstantKind LHSNullKind =
9301       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
9302   const Expr::NullPointerConstantKind RHSNullKind =
9303       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
9304   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
9305   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
9306 
9307   if (!IsRelational && LHSIsNull != RHSIsNull) {
9308     bool IsEquality = Opc == BO_EQ;
9309     if (RHSIsNull)
9310       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
9311                                    RHS.get()->getSourceRange());
9312     else
9313       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
9314                                    LHS.get()->getSourceRange());
9315   }
9316 
9317   // All of the following pointer-related warnings are GCC extensions, except
9318   // when handling null pointer constants.
9319   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
9320     QualType LCanPointeeTy =
9321       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
9322     QualType RCanPointeeTy =
9323       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
9324 
9325     if (getLangOpts().CPlusPlus) {
9326       if (LCanPointeeTy == RCanPointeeTy)
9327         return ResultTy;
9328       if (!IsRelational &&
9329           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
9330         // Valid unless comparison between non-null pointer and function pointer
9331         // This is a gcc extension compatibility comparison.
9332         // In a SFINAE context, we treat this as a hard error to maintain
9333         // conformance with the C++ standard.
9334         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
9335             && !LHSIsNull && !RHSIsNull) {
9336           diagnoseFunctionPointerToVoidComparison(
9337               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
9338 
9339           if (isSFINAEContext())
9340             return QualType();
9341 
9342           RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9343           return ResultTy;
9344         }
9345       }
9346 
9347       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
9348         return QualType();
9349       else
9350         return ResultTy;
9351     }
9352     // C99 6.5.9p2 and C99 6.5.8p2
9353     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
9354                                    RCanPointeeTy.getUnqualifiedType())) {
9355       // Valid unless a relational comparison of function pointers
9356       if (IsRelational && LCanPointeeTy->isFunctionType()) {
9357         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
9358           << LHSType << RHSType << LHS.get()->getSourceRange()
9359           << RHS.get()->getSourceRange();
9360       }
9361     } else if (!IsRelational &&
9362                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
9363       // Valid unless comparison between non-null pointer and function pointer
9364       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
9365           && !LHSIsNull && !RHSIsNull)
9366         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
9367                                                 /*isError*/false);
9368     } else {
9369       // Invalid
9370       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
9371     }
9372     if (LCanPointeeTy != RCanPointeeTy) {
9373       // Treat NULL constant as a special case in OpenCL.
9374       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
9375         const PointerType *LHSPtr = LHSType->getAs<PointerType>();
9376         if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
9377           Diag(Loc,
9378                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
9379               << LHSType << RHSType << 0 /* comparison */
9380               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9381         }
9382       }
9383       unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
9384       unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
9385       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
9386                                                : CK_BitCast;
9387       if (LHSIsNull && !RHSIsNull)
9388         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
9389       else
9390         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
9391     }
9392     return ResultTy;
9393   }
9394 
9395   if (getLangOpts().CPlusPlus) {
9396     // Comparison of nullptr_t with itself.
9397     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
9398       return ResultTy;
9399 
9400     // Comparison of pointers with null pointer constants and equality
9401     // comparisons of member pointers to null pointer constants.
9402     if (RHSIsNull &&
9403         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
9404          (!IsRelational &&
9405           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
9406       RHS = ImpCastExprToType(RHS.get(), LHSType,
9407                         LHSType->isMemberPointerType()
9408                           ? CK_NullToMemberPointer
9409                           : CK_NullToPointer);
9410       return ResultTy;
9411     }
9412     if (LHSIsNull &&
9413         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
9414          (!IsRelational &&
9415           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
9416       LHS = ImpCastExprToType(LHS.get(), RHSType,
9417                         RHSType->isMemberPointerType()
9418                           ? CK_NullToMemberPointer
9419                           : CK_NullToPointer);
9420       return ResultTy;
9421     }
9422 
9423     // Comparison of member pointers.
9424     if (!IsRelational &&
9425         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
9426       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
9427         return QualType();
9428       else
9429         return ResultTy;
9430     }
9431 
9432     // Handle scoped enumeration types specifically, since they don't promote
9433     // to integers.
9434     if (LHS.get()->getType()->isEnumeralType() &&
9435         Context.hasSameUnqualifiedType(LHS.get()->getType(),
9436                                        RHS.get()->getType()))
9437       return ResultTy;
9438   }
9439 
9440   // Handle block pointer types.
9441   if (!IsRelational && LHSType->isBlockPointerType() &&
9442       RHSType->isBlockPointerType()) {
9443     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
9444     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
9445 
9446     if (!LHSIsNull && !RHSIsNull &&
9447         !Context.typesAreCompatible(lpointee, rpointee)) {
9448       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
9449         << LHSType << RHSType << LHS.get()->getSourceRange()
9450         << RHS.get()->getSourceRange();
9451     }
9452     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9453     return ResultTy;
9454   }
9455 
9456   // Allow block pointers to be compared with null pointer constants.
9457   if (!IsRelational
9458       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
9459           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
9460     if (!LHSIsNull && !RHSIsNull) {
9461       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
9462              ->getPointeeType()->isVoidType())
9463             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
9464                 ->getPointeeType()->isVoidType())))
9465         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
9466           << LHSType << RHSType << LHS.get()->getSourceRange()
9467           << RHS.get()->getSourceRange();
9468     }
9469     if (LHSIsNull && !RHSIsNull)
9470       LHS = ImpCastExprToType(LHS.get(), RHSType,
9471                               RHSType->isPointerType() ? CK_BitCast
9472                                 : CK_AnyPointerToBlockPointerCast);
9473     else
9474       RHS = ImpCastExprToType(RHS.get(), LHSType,
9475                               LHSType->isPointerType() ? CK_BitCast
9476                                 : CK_AnyPointerToBlockPointerCast);
9477     return ResultTy;
9478   }
9479 
9480   if (LHSType->isObjCObjectPointerType() ||
9481       RHSType->isObjCObjectPointerType()) {
9482     const PointerType *LPT = LHSType->getAs<PointerType>();
9483     const PointerType *RPT = RHSType->getAs<PointerType>();
9484     if (LPT || RPT) {
9485       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
9486       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
9487 
9488       if (!LPtrToVoid && !RPtrToVoid &&
9489           !Context.typesAreCompatible(LHSType, RHSType)) {
9490         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
9491                                           /*isError*/false);
9492       }
9493       if (LHSIsNull && !RHSIsNull) {
9494         Expr *E = LHS.get();
9495         if (getLangOpts().ObjCAutoRefCount)
9496           CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
9497         LHS = ImpCastExprToType(E, RHSType,
9498                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
9499       }
9500       else {
9501         Expr *E = RHS.get();
9502         if (getLangOpts().ObjCAutoRefCount)
9503           CheckObjCARCConversion(SourceRange(), LHSType, E,
9504                                  CCK_ImplicitConversion, /*Diagnose=*/true,
9505                                  /*DiagnoseCFAudited=*/false, Opc);
9506         RHS = ImpCastExprToType(E, LHSType,
9507                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
9508       }
9509       return ResultTy;
9510     }
9511     if (LHSType->isObjCObjectPointerType() &&
9512         RHSType->isObjCObjectPointerType()) {
9513       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
9514         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
9515                                           /*isError*/false);
9516       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
9517         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
9518 
9519       if (LHSIsNull && !RHSIsNull)
9520         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9521       else
9522         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9523       return ResultTy;
9524     }
9525   }
9526   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
9527       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
9528     unsigned DiagID = 0;
9529     bool isError = false;
9530     if (LangOpts.DebuggerSupport) {
9531       // Under a debugger, allow the comparison of pointers to integers,
9532       // since users tend to want to compare addresses.
9533     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
9534         (RHSIsNull && RHSType->isIntegerType())) {
9535       if (IsRelational && !getLangOpts().CPlusPlus)
9536         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
9537     } else if (IsRelational && !getLangOpts().CPlusPlus)
9538       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
9539     else if (getLangOpts().CPlusPlus) {
9540       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
9541       isError = true;
9542     } else
9543       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
9544 
9545     if (DiagID) {
9546       Diag(Loc, DiagID)
9547         << LHSType << RHSType << LHS.get()->getSourceRange()
9548         << RHS.get()->getSourceRange();
9549       if (isError)
9550         return QualType();
9551     }
9552 
9553     if (LHSType->isIntegerType())
9554       LHS = ImpCastExprToType(LHS.get(), RHSType,
9555                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
9556     else
9557       RHS = ImpCastExprToType(RHS.get(), LHSType,
9558                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
9559     return ResultTy;
9560   }
9561 
9562   // Handle block pointers.
9563   if (!IsRelational && RHSIsNull
9564       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
9565     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9566     return ResultTy;
9567   }
9568   if (!IsRelational && LHSIsNull
9569       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
9570     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
9571     return ResultTy;
9572   }
9573 
9574   return InvalidOperands(Loc, LHS, RHS);
9575 }
9576 
9577 
9578 // Return a signed type that is of identical size and number of elements.
9579 // For floating point vectors, return an integer type of identical size
9580 // and number of elements.
9581 QualType Sema::GetSignedVectorType(QualType V) {
9582   const VectorType *VTy = V->getAs<VectorType>();
9583   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
9584   if (TypeSize == Context.getTypeSize(Context.CharTy))
9585     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
9586   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
9587     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
9588   else if (TypeSize == Context.getTypeSize(Context.IntTy))
9589     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
9590   else if (TypeSize == Context.getTypeSize(Context.LongTy))
9591     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
9592   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
9593          "Unhandled vector element size in vector compare");
9594   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
9595 }
9596 
9597 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
9598 /// operates on extended vector types.  Instead of producing an IntTy result,
9599 /// like a scalar comparison, a vector comparison produces a vector of integer
9600 /// types.
9601 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
9602                                           SourceLocation Loc,
9603                                           bool IsRelational) {
9604   // Check to make sure we're operating on vectors of the same type and width,
9605   // Allowing one side to be a scalar of element type.
9606   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
9607                               /*AllowBothBool*/true,
9608                               /*AllowBoolConversions*/getLangOpts().ZVector);
9609   if (vType.isNull())
9610     return vType;
9611 
9612   QualType LHSType = LHS.get()->getType();
9613 
9614   // If AltiVec, the comparison results in a numeric type, i.e.
9615   // bool for C++, int for C
9616   if (getLangOpts().AltiVec &&
9617       vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
9618     return Context.getLogicalOperationType();
9619 
9620   // For non-floating point types, check for self-comparisons of the form
9621   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
9622   // often indicate logic errors in the program.
9623   if (!LHSType->hasFloatingRepresentation() &&
9624       ActiveTemplateInstantiations.empty()) {
9625     if (DeclRefExpr* DRL
9626           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
9627       if (DeclRefExpr* DRR
9628             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
9629         if (DRL->getDecl() == DRR->getDecl())
9630           DiagRuntimeBehavior(Loc, nullptr,
9631                               PDiag(diag::warn_comparison_always)
9632                                 << 0 // self-
9633                                 << 2 // "a constant"
9634                               );
9635   }
9636 
9637   // Check for comparisons of floating point operands using != and ==.
9638   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
9639     assert (RHS.get()->getType()->hasFloatingRepresentation());
9640     CheckFloatComparison(Loc, LHS.get(), RHS.get());
9641   }
9642 
9643   // Return a signed type for the vector.
9644   return GetSignedVectorType(vType);
9645 }
9646 
9647 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9648                                           SourceLocation Loc) {
9649   // Ensure that either both operands are of the same vector type, or
9650   // one operand is of a vector type and the other is of its element type.
9651   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
9652                                        /*AllowBothBool*/true,
9653                                        /*AllowBoolConversions*/false);
9654   if (vType.isNull())
9655     return InvalidOperands(Loc, LHS, RHS);
9656   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
9657       vType->hasFloatingRepresentation())
9658     return InvalidOperands(Loc, LHS, RHS);
9659 
9660   return GetSignedVectorType(LHS.get()->getType());
9661 }
9662 
9663 inline QualType Sema::CheckBitwiseOperands(
9664   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
9665   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
9666 
9667   if (LHS.get()->getType()->isVectorType() ||
9668       RHS.get()->getType()->isVectorType()) {
9669     if (LHS.get()->getType()->hasIntegerRepresentation() &&
9670         RHS.get()->getType()->hasIntegerRepresentation())
9671       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9672                         /*AllowBothBool*/true,
9673                         /*AllowBoolConversions*/getLangOpts().ZVector);
9674     return InvalidOperands(Loc, LHS, RHS);
9675   }
9676 
9677   ExprResult LHSResult = LHS, RHSResult = RHS;
9678   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
9679                                                  IsCompAssign);
9680   if (LHSResult.isInvalid() || RHSResult.isInvalid())
9681     return QualType();
9682   LHS = LHSResult.get();
9683   RHS = RHSResult.get();
9684 
9685   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
9686     return compType;
9687   return InvalidOperands(Loc, LHS, RHS);
9688 }
9689 
9690 // C99 6.5.[13,14]
9691 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9692                                            SourceLocation Loc,
9693                                            BinaryOperatorKind Opc) {
9694   // Check vector operands differently.
9695   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
9696     return CheckVectorLogicalOperands(LHS, RHS, Loc);
9697 
9698   // Diagnose cases where the user write a logical and/or but probably meant a
9699   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
9700   // is a constant.
9701   if (LHS.get()->getType()->isIntegerType() &&
9702       !LHS.get()->getType()->isBooleanType() &&
9703       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
9704       // Don't warn in macros or template instantiations.
9705       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
9706     // If the RHS can be constant folded, and if it constant folds to something
9707     // that isn't 0 or 1 (which indicate a potential logical operation that
9708     // happened to fold to true/false) then warn.
9709     // Parens on the RHS are ignored.
9710     llvm::APSInt Result;
9711     if (RHS.get()->EvaluateAsInt(Result, Context))
9712       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
9713            !RHS.get()->getExprLoc().isMacroID()) ||
9714           (Result != 0 && Result != 1)) {
9715         Diag(Loc, diag::warn_logical_instead_of_bitwise)
9716           << RHS.get()->getSourceRange()
9717           << (Opc == BO_LAnd ? "&&" : "||");
9718         // Suggest replacing the logical operator with the bitwise version
9719         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
9720             << (Opc == BO_LAnd ? "&" : "|")
9721             << FixItHint::CreateReplacement(SourceRange(
9722                                                  Loc, getLocForEndOfToken(Loc)),
9723                                             Opc == BO_LAnd ? "&" : "|");
9724         if (Opc == BO_LAnd)
9725           // Suggest replacing "Foo() && kNonZero" with "Foo()"
9726           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
9727               << FixItHint::CreateRemoval(
9728                   SourceRange(getLocForEndOfToken(LHS.get()->getLocEnd()),
9729                               RHS.get()->getLocEnd()));
9730       }
9731   }
9732 
9733   if (!Context.getLangOpts().CPlusPlus) {
9734     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
9735     // not operate on the built-in scalar and vector float types.
9736     if (Context.getLangOpts().OpenCL &&
9737         Context.getLangOpts().OpenCLVersion < 120) {
9738       if (LHS.get()->getType()->isFloatingType() ||
9739           RHS.get()->getType()->isFloatingType())
9740         return InvalidOperands(Loc, LHS, RHS);
9741     }
9742 
9743     LHS = UsualUnaryConversions(LHS.get());
9744     if (LHS.isInvalid())
9745       return QualType();
9746 
9747     RHS = UsualUnaryConversions(RHS.get());
9748     if (RHS.isInvalid())
9749       return QualType();
9750 
9751     if (!LHS.get()->getType()->isScalarType() ||
9752         !RHS.get()->getType()->isScalarType())
9753       return InvalidOperands(Loc, LHS, RHS);
9754 
9755     return Context.IntTy;
9756   }
9757 
9758   // The following is safe because we only use this method for
9759   // non-overloadable operands.
9760 
9761   // C++ [expr.log.and]p1
9762   // C++ [expr.log.or]p1
9763   // The operands are both contextually converted to type bool.
9764   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
9765   if (LHSRes.isInvalid())
9766     return InvalidOperands(Loc, LHS, RHS);
9767   LHS = LHSRes;
9768 
9769   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
9770   if (RHSRes.isInvalid())
9771     return InvalidOperands(Loc, LHS, RHS);
9772   RHS = RHSRes;
9773 
9774   // C++ [expr.log.and]p2
9775   // C++ [expr.log.or]p2
9776   // The result is a bool.
9777   return Context.BoolTy;
9778 }
9779 
9780 static bool IsReadonlyMessage(Expr *E, Sema &S) {
9781   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
9782   if (!ME) return false;
9783   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
9784   ObjCMessageExpr *Base =
9785     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
9786   if (!Base) return false;
9787   return Base->getMethodDecl() != nullptr;
9788 }
9789 
9790 /// Is the given expression (which must be 'const') a reference to a
9791 /// variable which was originally non-const, but which has become
9792 /// 'const' due to being captured within a block?
9793 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
9794 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
9795   assert(E->isLValue() && E->getType().isConstQualified());
9796   E = E->IgnoreParens();
9797 
9798   // Must be a reference to a declaration from an enclosing scope.
9799   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
9800   if (!DRE) return NCCK_None;
9801   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
9802 
9803   // The declaration must be a variable which is not declared 'const'.
9804   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
9805   if (!var) return NCCK_None;
9806   if (var->getType().isConstQualified()) return NCCK_None;
9807   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
9808 
9809   // Decide whether the first capture was for a block or a lambda.
9810   DeclContext *DC = S.CurContext, *Prev = nullptr;
9811   // Decide whether the first capture was for a block or a lambda.
9812   while (DC) {
9813     // For init-capture, it is possible that the variable belongs to the
9814     // template pattern of the current context.
9815     if (auto *FD = dyn_cast<FunctionDecl>(DC))
9816       if (var->isInitCapture() &&
9817           FD->getTemplateInstantiationPattern() == var->getDeclContext())
9818         break;
9819     if (DC == var->getDeclContext())
9820       break;
9821     Prev = DC;
9822     DC = DC->getParent();
9823   }
9824   // Unless we have an init-capture, we've gone one step too far.
9825   if (!var->isInitCapture())
9826     DC = Prev;
9827   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
9828 }
9829 
9830 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
9831   Ty = Ty.getNonReferenceType();
9832   if (IsDereference && Ty->isPointerType())
9833     Ty = Ty->getPointeeType();
9834   return !Ty.isConstQualified();
9835 }
9836 
9837 /// Emit the "read-only variable not assignable" error and print notes to give
9838 /// more information about why the variable is not assignable, such as pointing
9839 /// to the declaration of a const variable, showing that a method is const, or
9840 /// that the function is returning a const reference.
9841 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
9842                                     SourceLocation Loc) {
9843   // Update err_typecheck_assign_const and note_typecheck_assign_const
9844   // when this enum is changed.
9845   enum {
9846     ConstFunction,
9847     ConstVariable,
9848     ConstMember,
9849     ConstMethod,
9850     ConstUnknown,  // Keep as last element
9851   };
9852 
9853   SourceRange ExprRange = E->getSourceRange();
9854 
9855   // Only emit one error on the first const found.  All other consts will emit
9856   // a note to the error.
9857   bool DiagnosticEmitted = false;
9858 
9859   // Track if the current expression is the result of a derefence, and if the
9860   // next checked expression is the result of a derefence.
9861   bool IsDereference = false;
9862   bool NextIsDereference = false;
9863 
9864   // Loop to process MemberExpr chains.
9865   while (true) {
9866     IsDereference = NextIsDereference;
9867     NextIsDereference = false;
9868 
9869     E = E->IgnoreParenImpCasts();
9870     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
9871       NextIsDereference = ME->isArrow();
9872       const ValueDecl *VD = ME->getMemberDecl();
9873       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
9874         // Mutable fields can be modified even if the class is const.
9875         if (Field->isMutable()) {
9876           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
9877           break;
9878         }
9879 
9880         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
9881           if (!DiagnosticEmitted) {
9882             S.Diag(Loc, diag::err_typecheck_assign_const)
9883                 << ExprRange << ConstMember << false /*static*/ << Field
9884                 << Field->getType();
9885             DiagnosticEmitted = true;
9886           }
9887           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9888               << ConstMember << false /*static*/ << Field << Field->getType()
9889               << Field->getSourceRange();
9890         }
9891         E = ME->getBase();
9892         continue;
9893       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
9894         if (VDecl->getType().isConstQualified()) {
9895           if (!DiagnosticEmitted) {
9896             S.Diag(Loc, diag::err_typecheck_assign_const)
9897                 << ExprRange << ConstMember << true /*static*/ << VDecl
9898                 << VDecl->getType();
9899             DiagnosticEmitted = true;
9900           }
9901           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9902               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
9903               << VDecl->getSourceRange();
9904         }
9905         // Static fields do not inherit constness from parents.
9906         break;
9907       }
9908       break;
9909     } // End MemberExpr
9910     break;
9911   }
9912 
9913   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9914     // Function calls
9915     const FunctionDecl *FD = CE->getDirectCallee();
9916     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
9917       if (!DiagnosticEmitted) {
9918         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9919                                                       << ConstFunction << FD;
9920         DiagnosticEmitted = true;
9921       }
9922       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
9923              diag::note_typecheck_assign_const)
9924           << ConstFunction << FD << FD->getReturnType()
9925           << FD->getReturnTypeSourceRange();
9926     }
9927   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9928     // Point to variable declaration.
9929     if (const ValueDecl *VD = DRE->getDecl()) {
9930       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
9931         if (!DiagnosticEmitted) {
9932           S.Diag(Loc, diag::err_typecheck_assign_const)
9933               << ExprRange << ConstVariable << VD << VD->getType();
9934           DiagnosticEmitted = true;
9935         }
9936         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9937             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
9938       }
9939     }
9940   } else if (isa<CXXThisExpr>(E)) {
9941     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
9942       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
9943         if (MD->isConst()) {
9944           if (!DiagnosticEmitted) {
9945             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9946                                                           << ConstMethod << MD;
9947             DiagnosticEmitted = true;
9948           }
9949           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
9950               << ConstMethod << MD << MD->getSourceRange();
9951         }
9952       }
9953     }
9954   }
9955 
9956   if (DiagnosticEmitted)
9957     return;
9958 
9959   // Can't determine a more specific message, so display the generic error.
9960   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
9961 }
9962 
9963 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
9964 /// emit an error and return true.  If so, return false.
9965 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
9966   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
9967 
9968   S.CheckShadowingDeclModification(E, Loc);
9969 
9970   SourceLocation OrigLoc = Loc;
9971   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
9972                                                               &Loc);
9973   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
9974     IsLV = Expr::MLV_InvalidMessageExpression;
9975   if (IsLV == Expr::MLV_Valid)
9976     return false;
9977 
9978   unsigned DiagID = 0;
9979   bool NeedType = false;
9980   switch (IsLV) { // C99 6.5.16p2
9981   case Expr::MLV_ConstQualified:
9982     // Use a specialized diagnostic when we're assigning to an object
9983     // from an enclosing function or block.
9984     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
9985       if (NCCK == NCCK_Block)
9986         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
9987       else
9988         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
9989       break;
9990     }
9991 
9992     // In ARC, use some specialized diagnostics for occasions where we
9993     // infer 'const'.  These are always pseudo-strong variables.
9994     if (S.getLangOpts().ObjCAutoRefCount) {
9995       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
9996       if (declRef && isa<VarDecl>(declRef->getDecl())) {
9997         VarDecl *var = cast<VarDecl>(declRef->getDecl());
9998 
9999         // Use the normal diagnostic if it's pseudo-__strong but the
10000         // user actually wrote 'const'.
10001         if (var->isARCPseudoStrong() &&
10002             (!var->getTypeSourceInfo() ||
10003              !var->getTypeSourceInfo()->getType().isConstQualified())) {
10004           // There are two pseudo-strong cases:
10005           //  - self
10006           ObjCMethodDecl *method = S.getCurMethodDecl();
10007           if (method && var == method->getSelfDecl())
10008             DiagID = method->isClassMethod()
10009               ? diag::err_typecheck_arc_assign_self_class_method
10010               : diag::err_typecheck_arc_assign_self;
10011 
10012           //  - fast enumeration variables
10013           else
10014             DiagID = diag::err_typecheck_arr_assign_enumeration;
10015 
10016           SourceRange Assign;
10017           if (Loc != OrigLoc)
10018             Assign = SourceRange(OrigLoc, OrigLoc);
10019           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
10020           // We need to preserve the AST regardless, so migration tool
10021           // can do its job.
10022           return false;
10023         }
10024       }
10025     }
10026 
10027     // If none of the special cases above are triggered, then this is a
10028     // simple const assignment.
10029     if (DiagID == 0) {
10030       DiagnoseConstAssignment(S, E, Loc);
10031       return true;
10032     }
10033 
10034     break;
10035   case Expr::MLV_ConstAddrSpace:
10036     DiagnoseConstAssignment(S, E, Loc);
10037     return true;
10038   case Expr::MLV_ArrayType:
10039   case Expr::MLV_ArrayTemporary:
10040     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
10041     NeedType = true;
10042     break;
10043   case Expr::MLV_NotObjectType:
10044     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
10045     NeedType = true;
10046     break;
10047   case Expr::MLV_LValueCast:
10048     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
10049     break;
10050   case Expr::MLV_Valid:
10051     llvm_unreachable("did not take early return for MLV_Valid");
10052   case Expr::MLV_InvalidExpression:
10053   case Expr::MLV_MemberFunction:
10054   case Expr::MLV_ClassTemporary:
10055     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
10056     break;
10057   case Expr::MLV_IncompleteType:
10058   case Expr::MLV_IncompleteVoidType:
10059     return S.RequireCompleteType(Loc, E->getType(),
10060              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
10061   case Expr::MLV_DuplicateVectorComponents:
10062     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
10063     break;
10064   case Expr::MLV_NoSetterProperty:
10065     llvm_unreachable("readonly properties should be processed differently");
10066   case Expr::MLV_InvalidMessageExpression:
10067     DiagID = diag::error_readonly_message_assignment;
10068     break;
10069   case Expr::MLV_SubObjCPropertySetting:
10070     DiagID = diag::error_no_subobject_property_setting;
10071     break;
10072   }
10073 
10074   SourceRange Assign;
10075   if (Loc != OrigLoc)
10076     Assign = SourceRange(OrigLoc, OrigLoc);
10077   if (NeedType)
10078     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
10079   else
10080     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
10081   return true;
10082 }
10083 
10084 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
10085                                          SourceLocation Loc,
10086                                          Sema &Sema) {
10087   // C / C++ fields
10088   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
10089   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
10090   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
10091     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
10092       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
10093   }
10094 
10095   // Objective-C instance variables
10096   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
10097   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
10098   if (OL && OR && OL->getDecl() == OR->getDecl()) {
10099     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
10100     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
10101     if (RL && RR && RL->getDecl() == RR->getDecl())
10102       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
10103   }
10104 }
10105 
10106 // C99 6.5.16.1
10107 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
10108                                        SourceLocation Loc,
10109                                        QualType CompoundType) {
10110   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
10111 
10112   // Verify that LHS is a modifiable lvalue, and emit error if not.
10113   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
10114     return QualType();
10115 
10116   QualType LHSType = LHSExpr->getType();
10117   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
10118                                              CompoundType;
10119   // OpenCL v1.2 s6.1.1.1 p2:
10120   // The half data type can only be used to declare a pointer to a buffer that
10121   // contains half values
10122   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
10123     LHSType->isHalfType()) {
10124     Diag(Loc, diag::err_opencl_half_load_store) << 1
10125         << LHSType.getUnqualifiedType();
10126     return QualType();
10127   }
10128 
10129   AssignConvertType ConvTy;
10130   if (CompoundType.isNull()) {
10131     Expr *RHSCheck = RHS.get();
10132 
10133     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
10134 
10135     QualType LHSTy(LHSType);
10136     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
10137     if (RHS.isInvalid())
10138       return QualType();
10139     // Special case of NSObject attributes on c-style pointer types.
10140     if (ConvTy == IncompatiblePointer &&
10141         ((Context.isObjCNSObjectType(LHSType) &&
10142           RHSType->isObjCObjectPointerType()) ||
10143          (Context.isObjCNSObjectType(RHSType) &&
10144           LHSType->isObjCObjectPointerType())))
10145       ConvTy = Compatible;
10146 
10147     if (ConvTy == Compatible &&
10148         LHSType->isObjCObjectType())
10149         Diag(Loc, diag::err_objc_object_assignment)
10150           << LHSType;
10151 
10152     // If the RHS is a unary plus or minus, check to see if they = and + are
10153     // right next to each other.  If so, the user may have typo'd "x =+ 4"
10154     // instead of "x += 4".
10155     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
10156       RHSCheck = ICE->getSubExpr();
10157     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
10158       if ((UO->getOpcode() == UO_Plus ||
10159            UO->getOpcode() == UO_Minus) &&
10160           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
10161           // Only if the two operators are exactly adjacent.
10162           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
10163           // And there is a space or other character before the subexpr of the
10164           // unary +/-.  We don't want to warn on "x=-1".
10165           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
10166           UO->getSubExpr()->getLocStart().isFileID()) {
10167         Diag(Loc, diag::warn_not_compound_assign)
10168           << (UO->getOpcode() == UO_Plus ? "+" : "-")
10169           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
10170       }
10171     }
10172 
10173     if (ConvTy == Compatible) {
10174       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
10175         // Warn about retain cycles where a block captures the LHS, but
10176         // not if the LHS is a simple variable into which the block is
10177         // being stored...unless that variable can be captured by reference!
10178         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
10179         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
10180         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
10181           checkRetainCycles(LHSExpr, RHS.get());
10182 
10183         // It is safe to assign a weak reference into a strong variable.
10184         // Although this code can still have problems:
10185         //   id x = self.weakProp;
10186         //   id y = self.weakProp;
10187         // we do not warn to warn spuriously when 'x' and 'y' are on separate
10188         // paths through the function. This should be revisited if
10189         // -Wrepeated-use-of-weak is made flow-sensitive.
10190         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
10191                              RHS.get()->getLocStart()))
10192           getCurFunction()->markSafeWeakUse(RHS.get());
10193 
10194       } else if (getLangOpts().ObjCAutoRefCount) {
10195         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
10196       }
10197     }
10198   } else {
10199     // Compound assignment "x += y"
10200     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
10201   }
10202 
10203   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
10204                                RHS.get(), AA_Assigning))
10205     return QualType();
10206 
10207   CheckForNullPointerDereference(*this, LHSExpr);
10208 
10209   // C99 6.5.16p3: The type of an assignment expression is the type of the
10210   // left operand unless the left operand has qualified type, in which case
10211   // it is the unqualified version of the type of the left operand.
10212   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
10213   // is converted to the type of the assignment expression (above).
10214   // C++ 5.17p1: the type of the assignment expression is that of its left
10215   // operand.
10216   return (getLangOpts().CPlusPlus
10217           ? LHSType : LHSType.getUnqualifiedType());
10218 }
10219 
10220 // Only ignore explicit casts to void.
10221 static bool IgnoreCommaOperand(const Expr *E) {
10222   E = E->IgnoreParens();
10223 
10224   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
10225     if (CE->getCastKind() == CK_ToVoid) {
10226       return true;
10227     }
10228   }
10229 
10230   return false;
10231 }
10232 
10233 // Look for instances where it is likely the comma operator is confused with
10234 // another operator.  There is a whitelist of acceptable expressions for the
10235 // left hand side of the comma operator, otherwise emit a warning.
10236 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
10237   // No warnings in macros
10238   if (Loc.isMacroID())
10239     return;
10240 
10241   // Don't warn in template instantiations.
10242   if (!ActiveTemplateInstantiations.empty())
10243     return;
10244 
10245   // Scope isn't fine-grained enough to whitelist the specific cases, so
10246   // instead, skip more than needed, then call back into here with the
10247   // CommaVisitor in SemaStmt.cpp.
10248   // The whitelisted locations are the initialization and increment portions
10249   // of a for loop.  The additional checks are on the condition of
10250   // if statements, do/while loops, and for loops.
10251   const unsigned ForIncrementFlags =
10252       Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope;
10253   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
10254   const unsigned ScopeFlags = getCurScope()->getFlags();
10255   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
10256       (ScopeFlags & ForInitFlags) == ForInitFlags)
10257     return;
10258 
10259   // If there are multiple comma operators used together, get the RHS of the
10260   // of the comma operator as the LHS.
10261   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
10262     if (BO->getOpcode() != BO_Comma)
10263       break;
10264     LHS = BO->getRHS();
10265   }
10266 
10267   // Only allow some expressions on LHS to not warn.
10268   if (IgnoreCommaOperand(LHS))
10269     return;
10270 
10271   Diag(Loc, diag::warn_comma_operator);
10272   Diag(LHS->getLocStart(), diag::note_cast_to_void)
10273       << LHS->getSourceRange()
10274       << FixItHint::CreateInsertion(LHS->getLocStart(),
10275                                     LangOpts.CPlusPlus ? "static_cast<void>("
10276                                                        : "(void)(")
10277       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getLocEnd()),
10278                                     ")");
10279 }
10280 
10281 // C99 6.5.17
10282 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
10283                                    SourceLocation Loc) {
10284   LHS = S.CheckPlaceholderExpr(LHS.get());
10285   RHS = S.CheckPlaceholderExpr(RHS.get());
10286   if (LHS.isInvalid() || RHS.isInvalid())
10287     return QualType();
10288 
10289   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
10290   // operands, but not unary promotions.
10291   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
10292 
10293   // So we treat the LHS as a ignored value, and in C++ we allow the
10294   // containing site to determine what should be done with the RHS.
10295   LHS = S.IgnoredValueConversions(LHS.get());
10296   if (LHS.isInvalid())
10297     return QualType();
10298 
10299   S.DiagnoseUnusedExprResult(LHS.get());
10300 
10301   if (!S.getLangOpts().CPlusPlus) {
10302     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
10303     if (RHS.isInvalid())
10304       return QualType();
10305     if (!RHS.get()->getType()->isVoidType())
10306       S.RequireCompleteType(Loc, RHS.get()->getType(),
10307                             diag::err_incomplete_type);
10308   }
10309 
10310   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
10311     S.DiagnoseCommaOperator(LHS.get(), Loc);
10312 
10313   return RHS.get()->getType();
10314 }
10315 
10316 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
10317 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
10318 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
10319                                                ExprValueKind &VK,
10320                                                ExprObjectKind &OK,
10321                                                SourceLocation OpLoc,
10322                                                bool IsInc, bool IsPrefix) {
10323   if (Op->isTypeDependent())
10324     return S.Context.DependentTy;
10325 
10326   QualType ResType = Op->getType();
10327   // Atomic types can be used for increment / decrement where the non-atomic
10328   // versions can, so ignore the _Atomic() specifier for the purpose of
10329   // checking.
10330   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10331     ResType = ResAtomicType->getValueType();
10332 
10333   assert(!ResType.isNull() && "no type for increment/decrement expression");
10334 
10335   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
10336     // Decrement of bool is not allowed.
10337     if (!IsInc) {
10338       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
10339       return QualType();
10340     }
10341     // Increment of bool sets it to true, but is deprecated.
10342     S.Diag(OpLoc, S.getLangOpts().CPlusPlus1z ? diag::ext_increment_bool
10343                                               : diag::warn_increment_bool)
10344       << Op->getSourceRange();
10345   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
10346     // Error on enum increments and decrements in C++ mode
10347     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
10348     return QualType();
10349   } else if (ResType->isRealType()) {
10350     // OK!
10351   } else if (ResType->isPointerType()) {
10352     // C99 6.5.2.4p2, 6.5.6p2
10353     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
10354       return QualType();
10355   } else if (ResType->isObjCObjectPointerType()) {
10356     // On modern runtimes, ObjC pointer arithmetic is forbidden.
10357     // Otherwise, we just need a complete type.
10358     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
10359         checkArithmeticOnObjCPointer(S, OpLoc, Op))
10360       return QualType();
10361   } else if (ResType->isAnyComplexType()) {
10362     // C99 does not support ++/-- on complex types, we allow as an extension.
10363     S.Diag(OpLoc, diag::ext_integer_increment_complex)
10364       << ResType << Op->getSourceRange();
10365   } else if (ResType->isPlaceholderType()) {
10366     ExprResult PR = S.CheckPlaceholderExpr(Op);
10367     if (PR.isInvalid()) return QualType();
10368     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
10369                                           IsInc, IsPrefix);
10370   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
10371     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
10372   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
10373              (ResType->getAs<VectorType>()->getVectorKind() !=
10374               VectorType::AltiVecBool)) {
10375     // The z vector extensions allow ++ and -- for non-bool vectors.
10376   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
10377             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
10378     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
10379   } else {
10380     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
10381       << ResType << int(IsInc) << Op->getSourceRange();
10382     return QualType();
10383   }
10384   // At this point, we know we have a real, complex or pointer type.
10385   // Now make sure the operand is a modifiable lvalue.
10386   if (CheckForModifiableLvalue(Op, OpLoc, S))
10387     return QualType();
10388   // In C++, a prefix increment is the same type as the operand. Otherwise
10389   // (in C or with postfix), the increment is the unqualified type of the
10390   // operand.
10391   if (IsPrefix && S.getLangOpts().CPlusPlus) {
10392     VK = VK_LValue;
10393     OK = Op->getObjectKind();
10394     return ResType;
10395   } else {
10396     VK = VK_RValue;
10397     return ResType.getUnqualifiedType();
10398   }
10399 }
10400 
10401 
10402 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
10403 /// This routine allows us to typecheck complex/recursive expressions
10404 /// where the declaration is needed for type checking. We only need to
10405 /// handle cases when the expression references a function designator
10406 /// or is an lvalue. Here are some examples:
10407 ///  - &(x) => x
10408 ///  - &*****f => f for f a function designator.
10409 ///  - &s.xx => s
10410 ///  - &s.zz[1].yy -> s, if zz is an array
10411 ///  - *(x + 1) -> x, if x is an array
10412 ///  - &"123"[2] -> 0
10413 ///  - & __real__ x -> x
10414 static ValueDecl *getPrimaryDecl(Expr *E) {
10415   switch (E->getStmtClass()) {
10416   case Stmt::DeclRefExprClass:
10417     return cast<DeclRefExpr>(E)->getDecl();
10418   case Stmt::MemberExprClass:
10419     // If this is an arrow operator, the address is an offset from
10420     // the base's value, so the object the base refers to is
10421     // irrelevant.
10422     if (cast<MemberExpr>(E)->isArrow())
10423       return nullptr;
10424     // Otherwise, the expression refers to a part of the base
10425     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
10426   case Stmt::ArraySubscriptExprClass: {
10427     // FIXME: This code shouldn't be necessary!  We should catch the implicit
10428     // promotion of register arrays earlier.
10429     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
10430     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
10431       if (ICE->getSubExpr()->getType()->isArrayType())
10432         return getPrimaryDecl(ICE->getSubExpr());
10433     }
10434     return nullptr;
10435   }
10436   case Stmt::UnaryOperatorClass: {
10437     UnaryOperator *UO = cast<UnaryOperator>(E);
10438 
10439     switch(UO->getOpcode()) {
10440     case UO_Real:
10441     case UO_Imag:
10442     case UO_Extension:
10443       return getPrimaryDecl(UO->getSubExpr());
10444     default:
10445       return nullptr;
10446     }
10447   }
10448   case Stmt::ParenExprClass:
10449     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
10450   case Stmt::ImplicitCastExprClass:
10451     // If the result of an implicit cast is an l-value, we care about
10452     // the sub-expression; otherwise, the result here doesn't matter.
10453     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
10454   default:
10455     return nullptr;
10456   }
10457 }
10458 
10459 namespace {
10460   enum {
10461     AO_Bit_Field = 0,
10462     AO_Vector_Element = 1,
10463     AO_Property_Expansion = 2,
10464     AO_Register_Variable = 3,
10465     AO_No_Error = 4
10466   };
10467 }
10468 /// \brief Diagnose invalid operand for address of operations.
10469 ///
10470 /// \param Type The type of operand which cannot have its address taken.
10471 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
10472                                          Expr *E, unsigned Type) {
10473   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
10474 }
10475 
10476 /// CheckAddressOfOperand - The operand of & must be either a function
10477 /// designator or an lvalue designating an object. If it is an lvalue, the
10478 /// object cannot be declared with storage class register or be a bit field.
10479 /// Note: The usual conversions are *not* applied to the operand of the &
10480 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
10481 /// In C++, the operand might be an overloaded function name, in which case
10482 /// we allow the '&' but retain the overloaded-function type.
10483 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
10484   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
10485     if (PTy->getKind() == BuiltinType::Overload) {
10486       Expr *E = OrigOp.get()->IgnoreParens();
10487       if (!isa<OverloadExpr>(E)) {
10488         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
10489         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
10490           << OrigOp.get()->getSourceRange();
10491         return QualType();
10492       }
10493 
10494       OverloadExpr *Ovl = cast<OverloadExpr>(E);
10495       if (isa<UnresolvedMemberExpr>(Ovl))
10496         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
10497           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
10498             << OrigOp.get()->getSourceRange();
10499           return QualType();
10500         }
10501 
10502       return Context.OverloadTy;
10503     }
10504 
10505     if (PTy->getKind() == BuiltinType::UnknownAny)
10506       return Context.UnknownAnyTy;
10507 
10508     if (PTy->getKind() == BuiltinType::BoundMember) {
10509       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
10510         << OrigOp.get()->getSourceRange();
10511       return QualType();
10512     }
10513 
10514     OrigOp = CheckPlaceholderExpr(OrigOp.get());
10515     if (OrigOp.isInvalid()) return QualType();
10516   }
10517 
10518   if (OrigOp.get()->isTypeDependent())
10519     return Context.DependentTy;
10520 
10521   assert(!OrigOp.get()->getType()->isPlaceholderType());
10522 
10523   // Make sure to ignore parentheses in subsequent checks
10524   Expr *op = OrigOp.get()->IgnoreParens();
10525 
10526   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
10527   if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
10528     Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
10529     return QualType();
10530   }
10531 
10532   if (getLangOpts().C99) {
10533     // Implement C99-only parts of addressof rules.
10534     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
10535       if (uOp->getOpcode() == UO_Deref)
10536         // Per C99 6.5.3.2, the address of a deref always returns a valid result
10537         // (assuming the deref expression is valid).
10538         return uOp->getSubExpr()->getType();
10539     }
10540     // Technically, there should be a check for array subscript
10541     // expressions here, but the result of one is always an lvalue anyway.
10542   }
10543   ValueDecl *dcl = getPrimaryDecl(op);
10544 
10545   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
10546     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
10547                                            op->getLocStart()))
10548       return QualType();
10549 
10550   Expr::LValueClassification lval = op->ClassifyLValue(Context);
10551   unsigned AddressOfError = AO_No_Error;
10552 
10553   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
10554     bool sfinae = (bool)isSFINAEContext();
10555     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
10556                                   : diag::ext_typecheck_addrof_temporary)
10557       << op->getType() << op->getSourceRange();
10558     if (sfinae)
10559       return QualType();
10560     // Materialize the temporary as an lvalue so that we can take its address.
10561     OrigOp = op =
10562         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
10563   } else if (isa<ObjCSelectorExpr>(op)) {
10564     return Context.getPointerType(op->getType());
10565   } else if (lval == Expr::LV_MemberFunction) {
10566     // If it's an instance method, make a member pointer.
10567     // The expression must have exactly the form &A::foo.
10568 
10569     // If the underlying expression isn't a decl ref, give up.
10570     if (!isa<DeclRefExpr>(op)) {
10571       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
10572         << OrigOp.get()->getSourceRange();
10573       return QualType();
10574     }
10575     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
10576     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
10577 
10578     // The id-expression was parenthesized.
10579     if (OrigOp.get() != DRE) {
10580       Diag(OpLoc, diag::err_parens_pointer_member_function)
10581         << OrigOp.get()->getSourceRange();
10582 
10583     // The method was named without a qualifier.
10584     } else if (!DRE->getQualifier()) {
10585       if (MD->getParent()->getName().empty())
10586         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
10587           << op->getSourceRange();
10588       else {
10589         SmallString<32> Str;
10590         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
10591         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
10592           << op->getSourceRange()
10593           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
10594       }
10595     }
10596 
10597     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
10598     if (isa<CXXDestructorDecl>(MD))
10599       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
10600 
10601     QualType MPTy = Context.getMemberPointerType(
10602         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
10603     // Under the MS ABI, lock down the inheritance model now.
10604     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
10605       (void)isCompleteType(OpLoc, MPTy);
10606     return MPTy;
10607   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
10608     // C99 6.5.3.2p1
10609     // The operand must be either an l-value or a function designator
10610     if (!op->getType()->isFunctionType()) {
10611       // Use a special diagnostic for loads from property references.
10612       if (isa<PseudoObjectExpr>(op)) {
10613         AddressOfError = AO_Property_Expansion;
10614       } else {
10615         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
10616           << op->getType() << op->getSourceRange();
10617         return QualType();
10618       }
10619     }
10620   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
10621     // The operand cannot be a bit-field
10622     AddressOfError = AO_Bit_Field;
10623   } else if (op->getObjectKind() == OK_VectorComponent) {
10624     // The operand cannot be an element of a vector
10625     AddressOfError = AO_Vector_Element;
10626   } else if (dcl) { // C99 6.5.3.2p1
10627     // We have an lvalue with a decl. Make sure the decl is not declared
10628     // with the register storage-class specifier.
10629     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
10630       // in C++ it is not error to take address of a register
10631       // variable (c++03 7.1.1P3)
10632       if (vd->getStorageClass() == SC_Register &&
10633           !getLangOpts().CPlusPlus) {
10634         AddressOfError = AO_Register_Variable;
10635       }
10636     } else if (isa<MSPropertyDecl>(dcl)) {
10637       AddressOfError = AO_Property_Expansion;
10638     } else if (isa<FunctionTemplateDecl>(dcl)) {
10639       return Context.OverloadTy;
10640     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
10641       // Okay: we can take the address of a field.
10642       // Could be a pointer to member, though, if there is an explicit
10643       // scope qualifier for the class.
10644       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
10645         DeclContext *Ctx = dcl->getDeclContext();
10646         if (Ctx && Ctx->isRecord()) {
10647           if (dcl->getType()->isReferenceType()) {
10648             Diag(OpLoc,
10649                  diag::err_cannot_form_pointer_to_member_of_reference_type)
10650               << dcl->getDeclName() << dcl->getType();
10651             return QualType();
10652           }
10653 
10654           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
10655             Ctx = Ctx->getParent();
10656 
10657           QualType MPTy = Context.getMemberPointerType(
10658               op->getType(),
10659               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
10660           // Under the MS ABI, lock down the inheritance model now.
10661           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
10662             (void)isCompleteType(OpLoc, MPTy);
10663           return MPTy;
10664         }
10665       }
10666     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
10667                !isa<BindingDecl>(dcl))
10668       llvm_unreachable("Unknown/unexpected decl type");
10669   }
10670 
10671   if (AddressOfError != AO_No_Error) {
10672     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
10673     return QualType();
10674   }
10675 
10676   if (lval == Expr::LV_IncompleteVoidType) {
10677     // Taking the address of a void variable is technically illegal, but we
10678     // allow it in cases which are otherwise valid.
10679     // Example: "extern void x; void* y = &x;".
10680     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
10681   }
10682 
10683   // If the operand has type "type", the result has type "pointer to type".
10684   if (op->getType()->isObjCObjectType())
10685     return Context.getObjCObjectPointerType(op->getType());
10686 
10687   CheckAddressOfPackedMember(op);
10688 
10689   return Context.getPointerType(op->getType());
10690 }
10691 
10692 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
10693   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
10694   if (!DRE)
10695     return;
10696   const Decl *D = DRE->getDecl();
10697   if (!D)
10698     return;
10699   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
10700   if (!Param)
10701     return;
10702   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
10703     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
10704       return;
10705   if (FunctionScopeInfo *FD = S.getCurFunction())
10706     if (!FD->ModifiedNonNullParams.count(Param))
10707       FD->ModifiedNonNullParams.insert(Param);
10708 }
10709 
10710 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
10711 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
10712                                         SourceLocation OpLoc) {
10713   if (Op->isTypeDependent())
10714     return S.Context.DependentTy;
10715 
10716   ExprResult ConvResult = S.UsualUnaryConversions(Op);
10717   if (ConvResult.isInvalid())
10718     return QualType();
10719   Op = ConvResult.get();
10720   QualType OpTy = Op->getType();
10721   QualType Result;
10722 
10723   if (isa<CXXReinterpretCastExpr>(Op)) {
10724     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
10725     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
10726                                      Op->getSourceRange());
10727   }
10728 
10729   if (const PointerType *PT = OpTy->getAs<PointerType>())
10730   {
10731     Result = PT->getPointeeType();
10732   }
10733   else if (const ObjCObjectPointerType *OPT =
10734              OpTy->getAs<ObjCObjectPointerType>())
10735     Result = OPT->getPointeeType();
10736   else {
10737     ExprResult PR = S.CheckPlaceholderExpr(Op);
10738     if (PR.isInvalid()) return QualType();
10739     if (PR.get() != Op)
10740       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
10741   }
10742 
10743   if (Result.isNull()) {
10744     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
10745       << OpTy << Op->getSourceRange();
10746     return QualType();
10747   }
10748 
10749   // Note that per both C89 and C99, indirection is always legal, even if Result
10750   // is an incomplete type or void.  It would be possible to warn about
10751   // dereferencing a void pointer, but it's completely well-defined, and such a
10752   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
10753   // for pointers to 'void' but is fine for any other pointer type:
10754   //
10755   // C++ [expr.unary.op]p1:
10756   //   [...] the expression to which [the unary * operator] is applied shall
10757   //   be a pointer to an object type, or a pointer to a function type
10758   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
10759     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
10760       << OpTy << Op->getSourceRange();
10761 
10762   // Dereferences are usually l-values...
10763   VK = VK_LValue;
10764 
10765   // ...except that certain expressions are never l-values in C.
10766   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
10767     VK = VK_RValue;
10768 
10769   return Result;
10770 }
10771 
10772 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
10773   BinaryOperatorKind Opc;
10774   switch (Kind) {
10775   default: llvm_unreachable("Unknown binop!");
10776   case tok::periodstar:           Opc = BO_PtrMemD; break;
10777   case tok::arrowstar:            Opc = BO_PtrMemI; break;
10778   case tok::star:                 Opc = BO_Mul; break;
10779   case tok::slash:                Opc = BO_Div; break;
10780   case tok::percent:              Opc = BO_Rem; break;
10781   case tok::plus:                 Opc = BO_Add; break;
10782   case tok::minus:                Opc = BO_Sub; break;
10783   case tok::lessless:             Opc = BO_Shl; break;
10784   case tok::greatergreater:       Opc = BO_Shr; break;
10785   case tok::lessequal:            Opc = BO_LE; break;
10786   case tok::less:                 Opc = BO_LT; break;
10787   case tok::greaterequal:         Opc = BO_GE; break;
10788   case tok::greater:              Opc = BO_GT; break;
10789   case tok::exclaimequal:         Opc = BO_NE; break;
10790   case tok::equalequal:           Opc = BO_EQ; break;
10791   case tok::amp:                  Opc = BO_And; break;
10792   case tok::caret:                Opc = BO_Xor; break;
10793   case tok::pipe:                 Opc = BO_Or; break;
10794   case tok::ampamp:               Opc = BO_LAnd; break;
10795   case tok::pipepipe:             Opc = BO_LOr; break;
10796   case tok::equal:                Opc = BO_Assign; break;
10797   case tok::starequal:            Opc = BO_MulAssign; break;
10798   case tok::slashequal:           Opc = BO_DivAssign; break;
10799   case tok::percentequal:         Opc = BO_RemAssign; break;
10800   case tok::plusequal:            Opc = BO_AddAssign; break;
10801   case tok::minusequal:           Opc = BO_SubAssign; break;
10802   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
10803   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
10804   case tok::ampequal:             Opc = BO_AndAssign; break;
10805   case tok::caretequal:           Opc = BO_XorAssign; break;
10806   case tok::pipeequal:            Opc = BO_OrAssign; break;
10807   case tok::comma:                Opc = BO_Comma; break;
10808   }
10809   return Opc;
10810 }
10811 
10812 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
10813   tok::TokenKind Kind) {
10814   UnaryOperatorKind Opc;
10815   switch (Kind) {
10816   default: llvm_unreachable("Unknown unary op!");
10817   case tok::plusplus:     Opc = UO_PreInc; break;
10818   case tok::minusminus:   Opc = UO_PreDec; break;
10819   case tok::amp:          Opc = UO_AddrOf; break;
10820   case tok::star:         Opc = UO_Deref; break;
10821   case tok::plus:         Opc = UO_Plus; break;
10822   case tok::minus:        Opc = UO_Minus; break;
10823   case tok::tilde:        Opc = UO_Not; break;
10824   case tok::exclaim:      Opc = UO_LNot; break;
10825   case tok::kw___real:    Opc = UO_Real; break;
10826   case tok::kw___imag:    Opc = UO_Imag; break;
10827   case tok::kw___extension__: Opc = UO_Extension; break;
10828   }
10829   return Opc;
10830 }
10831 
10832 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
10833 /// This warning is only emitted for builtin assignment operations. It is also
10834 /// suppressed in the event of macro expansions.
10835 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
10836                                    SourceLocation OpLoc) {
10837   if (!S.ActiveTemplateInstantiations.empty())
10838     return;
10839   if (OpLoc.isInvalid() || OpLoc.isMacroID())
10840     return;
10841   LHSExpr = LHSExpr->IgnoreParenImpCasts();
10842   RHSExpr = RHSExpr->IgnoreParenImpCasts();
10843   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
10844   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
10845   if (!LHSDeclRef || !RHSDeclRef ||
10846       LHSDeclRef->getLocation().isMacroID() ||
10847       RHSDeclRef->getLocation().isMacroID())
10848     return;
10849   const ValueDecl *LHSDecl =
10850     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
10851   const ValueDecl *RHSDecl =
10852     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
10853   if (LHSDecl != RHSDecl)
10854     return;
10855   if (LHSDecl->getType().isVolatileQualified())
10856     return;
10857   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
10858     if (RefTy->getPointeeType().isVolatileQualified())
10859       return;
10860 
10861   S.Diag(OpLoc, diag::warn_self_assignment)
10862       << LHSDeclRef->getType()
10863       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10864 }
10865 
10866 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
10867 /// is usually indicative of introspection within the Objective-C pointer.
10868 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
10869                                           SourceLocation OpLoc) {
10870   if (!S.getLangOpts().ObjC1)
10871     return;
10872 
10873   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
10874   const Expr *LHS = L.get();
10875   const Expr *RHS = R.get();
10876 
10877   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10878     ObjCPointerExpr = LHS;
10879     OtherExpr = RHS;
10880   }
10881   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10882     ObjCPointerExpr = RHS;
10883     OtherExpr = LHS;
10884   }
10885 
10886   // This warning is deliberately made very specific to reduce false
10887   // positives with logic that uses '&' for hashing.  This logic mainly
10888   // looks for code trying to introspect into tagged pointers, which
10889   // code should generally never do.
10890   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
10891     unsigned Diag = diag::warn_objc_pointer_masking;
10892     // Determine if we are introspecting the result of performSelectorXXX.
10893     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
10894     // Special case messages to -performSelector and friends, which
10895     // can return non-pointer values boxed in a pointer value.
10896     // Some clients may wish to silence warnings in this subcase.
10897     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
10898       Selector S = ME->getSelector();
10899       StringRef SelArg0 = S.getNameForSlot(0);
10900       if (SelArg0.startswith("performSelector"))
10901         Diag = diag::warn_objc_pointer_masking_performSelector;
10902     }
10903 
10904     S.Diag(OpLoc, Diag)
10905       << ObjCPointerExpr->getSourceRange();
10906   }
10907 }
10908 
10909 static NamedDecl *getDeclFromExpr(Expr *E) {
10910   if (!E)
10911     return nullptr;
10912   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
10913     return DRE->getDecl();
10914   if (auto *ME = dyn_cast<MemberExpr>(E))
10915     return ME->getMemberDecl();
10916   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
10917     return IRE->getDecl();
10918   return nullptr;
10919 }
10920 
10921 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
10922 /// operator @p Opc at location @c TokLoc. This routine only supports
10923 /// built-in operations; ActOnBinOp handles overloaded operators.
10924 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
10925                                     BinaryOperatorKind Opc,
10926                                     Expr *LHSExpr, Expr *RHSExpr) {
10927   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
10928     // The syntax only allows initializer lists on the RHS of assignment,
10929     // so we don't need to worry about accepting invalid code for
10930     // non-assignment operators.
10931     // C++11 5.17p9:
10932     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
10933     //   of x = {} is x = T().
10934     InitializationKind Kind =
10935         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
10936     InitializedEntity Entity =
10937         InitializedEntity::InitializeTemporary(LHSExpr->getType());
10938     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
10939     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
10940     if (Init.isInvalid())
10941       return Init;
10942     RHSExpr = Init.get();
10943   }
10944 
10945   ExprResult LHS = LHSExpr, RHS = RHSExpr;
10946   QualType ResultTy;     // Result type of the binary operator.
10947   // The following two variables are used for compound assignment operators
10948   QualType CompLHSTy;    // Type of LHS after promotions for computation
10949   QualType CompResultTy; // Type of computation result
10950   ExprValueKind VK = VK_RValue;
10951   ExprObjectKind OK = OK_Ordinary;
10952 
10953   if (!getLangOpts().CPlusPlus) {
10954     // C cannot handle TypoExpr nodes on either side of a binop because it
10955     // doesn't handle dependent types properly, so make sure any TypoExprs have
10956     // been dealt with before checking the operands.
10957     LHS = CorrectDelayedTyposInExpr(LHSExpr);
10958     RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
10959       if (Opc != BO_Assign)
10960         return ExprResult(E);
10961       // Avoid correcting the RHS to the same Expr as the LHS.
10962       Decl *D = getDeclFromExpr(E);
10963       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
10964     });
10965     if (!LHS.isUsable() || !RHS.isUsable())
10966       return ExprError();
10967   }
10968 
10969   if (getLangOpts().OpenCL) {
10970     QualType LHSTy = LHSExpr->getType();
10971     QualType RHSTy = RHSExpr->getType();
10972     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
10973     // the ATOMIC_VAR_INIT macro.
10974     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
10975       SourceRange SR(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
10976       if (BO_Assign == Opc)
10977         Diag(OpLoc, diag::err_atomic_init_constant) << SR;
10978       else
10979         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
10980       return ExprError();
10981     }
10982 
10983     // OpenCL special types - image, sampler, pipe, and blocks are to be used
10984     // only with a builtin functions and therefore should be disallowed here.
10985     if (LHSTy->isImageType() || RHSTy->isImageType() ||
10986         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
10987         LHSTy->isPipeType() || RHSTy->isPipeType() ||
10988         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
10989       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
10990       return ExprError();
10991     }
10992   }
10993 
10994   switch (Opc) {
10995   case BO_Assign:
10996     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
10997     if (getLangOpts().CPlusPlus &&
10998         LHS.get()->getObjectKind() != OK_ObjCProperty) {
10999       VK = LHS.get()->getValueKind();
11000       OK = LHS.get()->getObjectKind();
11001     }
11002     if (!ResultTy.isNull()) {
11003       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
11004       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
11005     }
11006     RecordModifiableNonNullParam(*this, LHS.get());
11007     break;
11008   case BO_PtrMemD:
11009   case BO_PtrMemI:
11010     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
11011                                             Opc == BO_PtrMemI);
11012     break;
11013   case BO_Mul:
11014   case BO_Div:
11015     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
11016                                            Opc == BO_Div);
11017     break;
11018   case BO_Rem:
11019     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
11020     break;
11021   case BO_Add:
11022     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
11023     break;
11024   case BO_Sub:
11025     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
11026     break;
11027   case BO_Shl:
11028   case BO_Shr:
11029     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
11030     break;
11031   case BO_LE:
11032   case BO_LT:
11033   case BO_GE:
11034   case BO_GT:
11035     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
11036     break;
11037   case BO_EQ:
11038   case BO_NE:
11039     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
11040     break;
11041   case BO_And:
11042     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
11043   case BO_Xor:
11044   case BO_Or:
11045     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
11046     break;
11047   case BO_LAnd:
11048   case BO_LOr:
11049     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
11050     break;
11051   case BO_MulAssign:
11052   case BO_DivAssign:
11053     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
11054                                                Opc == BO_DivAssign);
11055     CompLHSTy = CompResultTy;
11056     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11057       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11058     break;
11059   case BO_RemAssign:
11060     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
11061     CompLHSTy = CompResultTy;
11062     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11063       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11064     break;
11065   case BO_AddAssign:
11066     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
11067     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11068       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11069     break;
11070   case BO_SubAssign:
11071     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
11072     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11073       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11074     break;
11075   case BO_ShlAssign:
11076   case BO_ShrAssign:
11077     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
11078     CompLHSTy = CompResultTy;
11079     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11080       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11081     break;
11082   case BO_AndAssign:
11083   case BO_OrAssign: // fallthrough
11084     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
11085   case BO_XorAssign:
11086     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
11087     CompLHSTy = CompResultTy;
11088     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11089       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11090     break;
11091   case BO_Comma:
11092     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
11093     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
11094       VK = RHS.get()->getValueKind();
11095       OK = RHS.get()->getObjectKind();
11096     }
11097     break;
11098   }
11099   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
11100     return ExprError();
11101 
11102   // Check for array bounds violations for both sides of the BinaryOperator
11103   CheckArrayAccess(LHS.get());
11104   CheckArrayAccess(RHS.get());
11105 
11106   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
11107     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
11108                                                  &Context.Idents.get("object_setClass"),
11109                                                  SourceLocation(), LookupOrdinaryName);
11110     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
11111       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getLocEnd());
11112       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
11113       FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
11114       FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
11115       FixItHint::CreateInsertion(RHSLocEnd, ")");
11116     }
11117     else
11118       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
11119   }
11120   else if (const ObjCIvarRefExpr *OIRE =
11121            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
11122     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
11123 
11124   if (CompResultTy.isNull())
11125     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
11126                                         OK, OpLoc, FPFeatures.fp_contract);
11127   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
11128       OK_ObjCProperty) {
11129     VK = VK_LValue;
11130     OK = LHS.get()->getObjectKind();
11131   }
11132   return new (Context) CompoundAssignOperator(
11133       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
11134       OpLoc, FPFeatures.fp_contract);
11135 }
11136 
11137 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
11138 /// operators are mixed in a way that suggests that the programmer forgot that
11139 /// comparison operators have higher precedence. The most typical example of
11140 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
11141 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
11142                                       SourceLocation OpLoc, Expr *LHSExpr,
11143                                       Expr *RHSExpr) {
11144   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
11145   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
11146 
11147   // Check that one of the sides is a comparison operator and the other isn't.
11148   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
11149   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
11150   if (isLeftComp == isRightComp)
11151     return;
11152 
11153   // Bitwise operations are sometimes used as eager logical ops.
11154   // Don't diagnose this.
11155   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
11156   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
11157   if (isLeftBitwise || isRightBitwise)
11158     return;
11159 
11160   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
11161                                                    OpLoc)
11162                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
11163   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
11164   SourceRange ParensRange = isLeftComp ?
11165       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
11166     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
11167 
11168   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
11169     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
11170   SuggestParentheses(Self, OpLoc,
11171     Self.PDiag(diag::note_precedence_silence) << OpStr,
11172     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
11173   SuggestParentheses(Self, OpLoc,
11174     Self.PDiag(diag::note_precedence_bitwise_first)
11175       << BinaryOperator::getOpcodeStr(Opc),
11176     ParensRange);
11177 }
11178 
11179 /// \brief It accepts a '&&' expr that is inside a '||' one.
11180 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
11181 /// in parentheses.
11182 static void
11183 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
11184                                        BinaryOperator *Bop) {
11185   assert(Bop->getOpcode() == BO_LAnd);
11186   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
11187       << Bop->getSourceRange() << OpLoc;
11188   SuggestParentheses(Self, Bop->getOperatorLoc(),
11189     Self.PDiag(diag::note_precedence_silence)
11190       << Bop->getOpcodeStr(),
11191     Bop->getSourceRange());
11192 }
11193 
11194 /// \brief Returns true if the given expression can be evaluated as a constant
11195 /// 'true'.
11196 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
11197   bool Res;
11198   return !E->isValueDependent() &&
11199          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
11200 }
11201 
11202 /// \brief Returns true if the given expression can be evaluated as a constant
11203 /// 'false'.
11204 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
11205   bool Res;
11206   return !E->isValueDependent() &&
11207          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
11208 }
11209 
11210 /// \brief Look for '&&' in the left hand of a '||' expr.
11211 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
11212                                              Expr *LHSExpr, Expr *RHSExpr) {
11213   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
11214     if (Bop->getOpcode() == BO_LAnd) {
11215       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
11216       if (EvaluatesAsFalse(S, RHSExpr))
11217         return;
11218       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
11219       if (!EvaluatesAsTrue(S, Bop->getLHS()))
11220         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
11221     } else if (Bop->getOpcode() == BO_LOr) {
11222       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
11223         // If it's "a || b && 1 || c" we didn't warn earlier for
11224         // "a || b && 1", but warn now.
11225         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
11226           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
11227       }
11228     }
11229   }
11230 }
11231 
11232 /// \brief Look for '&&' in the right hand of a '||' expr.
11233 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
11234                                              Expr *LHSExpr, Expr *RHSExpr) {
11235   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
11236     if (Bop->getOpcode() == BO_LAnd) {
11237       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
11238       if (EvaluatesAsFalse(S, LHSExpr))
11239         return;
11240       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
11241       if (!EvaluatesAsTrue(S, Bop->getRHS()))
11242         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
11243     }
11244   }
11245 }
11246 
11247 /// \brief Look for bitwise op in the left or right hand of a bitwise op with
11248 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
11249 /// the '&' expression in parentheses.
11250 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
11251                                          SourceLocation OpLoc, Expr *SubExpr) {
11252   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
11253     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
11254       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
11255         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
11256         << Bop->getSourceRange() << OpLoc;
11257       SuggestParentheses(S, Bop->getOperatorLoc(),
11258         S.PDiag(diag::note_precedence_silence)
11259           << Bop->getOpcodeStr(),
11260         Bop->getSourceRange());
11261     }
11262   }
11263 }
11264 
11265 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
11266                                     Expr *SubExpr, StringRef Shift) {
11267   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
11268     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
11269       StringRef Op = Bop->getOpcodeStr();
11270       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
11271           << Bop->getSourceRange() << OpLoc << Shift << Op;
11272       SuggestParentheses(S, Bop->getOperatorLoc(),
11273           S.PDiag(diag::note_precedence_silence) << Op,
11274           Bop->getSourceRange());
11275     }
11276   }
11277 }
11278 
11279 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
11280                                  Expr *LHSExpr, Expr *RHSExpr) {
11281   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
11282   if (!OCE)
11283     return;
11284 
11285   FunctionDecl *FD = OCE->getDirectCallee();
11286   if (!FD || !FD->isOverloadedOperator())
11287     return;
11288 
11289   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
11290   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
11291     return;
11292 
11293   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
11294       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
11295       << (Kind == OO_LessLess);
11296   SuggestParentheses(S, OCE->getOperatorLoc(),
11297                      S.PDiag(diag::note_precedence_silence)
11298                          << (Kind == OO_LessLess ? "<<" : ">>"),
11299                      OCE->getSourceRange());
11300   SuggestParentheses(S, OpLoc,
11301                      S.PDiag(diag::note_evaluate_comparison_first),
11302                      SourceRange(OCE->getArg(1)->getLocStart(),
11303                                  RHSExpr->getLocEnd()));
11304 }
11305 
11306 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
11307 /// precedence.
11308 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
11309                                     SourceLocation OpLoc, Expr *LHSExpr,
11310                                     Expr *RHSExpr){
11311   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
11312   if (BinaryOperator::isBitwiseOp(Opc))
11313     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
11314 
11315   // Diagnose "arg1 & arg2 | arg3"
11316   if ((Opc == BO_Or || Opc == BO_Xor) &&
11317       !OpLoc.isMacroID()/* Don't warn in macros. */) {
11318     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
11319     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
11320   }
11321 
11322   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
11323   // We don't warn for 'assert(a || b && "bad")' since this is safe.
11324   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
11325     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
11326     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
11327   }
11328 
11329   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
11330       || Opc == BO_Shr) {
11331     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
11332     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
11333     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
11334   }
11335 
11336   // Warn on overloaded shift operators and comparisons, such as:
11337   // cout << 5 == 4;
11338   if (BinaryOperator::isComparisonOp(Opc))
11339     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
11340 }
11341 
11342 // Binary Operators.  'Tok' is the token for the operator.
11343 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
11344                             tok::TokenKind Kind,
11345                             Expr *LHSExpr, Expr *RHSExpr) {
11346   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
11347   assert(LHSExpr && "ActOnBinOp(): missing left expression");
11348   assert(RHSExpr && "ActOnBinOp(): missing right expression");
11349 
11350   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
11351   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
11352 
11353   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
11354 }
11355 
11356 /// Build an overloaded binary operator expression in the given scope.
11357 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
11358                                        BinaryOperatorKind Opc,
11359                                        Expr *LHS, Expr *RHS) {
11360   // Find all of the overloaded operators visible from this
11361   // point. We perform both an operator-name lookup from the local
11362   // scope and an argument-dependent lookup based on the types of
11363   // the arguments.
11364   UnresolvedSet<16> Functions;
11365   OverloadedOperatorKind OverOp
11366     = BinaryOperator::getOverloadedOperator(Opc);
11367   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
11368     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
11369                                    RHS->getType(), Functions);
11370 
11371   // Build the (potentially-overloaded, potentially-dependent)
11372   // binary operation.
11373   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
11374 }
11375 
11376 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
11377                             BinaryOperatorKind Opc,
11378                             Expr *LHSExpr, Expr *RHSExpr) {
11379   // We want to end up calling one of checkPseudoObjectAssignment
11380   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
11381   // both expressions are overloadable or either is type-dependent),
11382   // or CreateBuiltinBinOp (in any other case).  We also want to get
11383   // any placeholder types out of the way.
11384 
11385   // Handle pseudo-objects in the LHS.
11386   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
11387     // Assignments with a pseudo-object l-value need special analysis.
11388     if (pty->getKind() == BuiltinType::PseudoObject &&
11389         BinaryOperator::isAssignmentOp(Opc))
11390       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
11391 
11392     // Don't resolve overloads if the other type is overloadable.
11393     if (pty->getKind() == BuiltinType::Overload) {
11394       // We can't actually test that if we still have a placeholder,
11395       // though.  Fortunately, none of the exceptions we see in that
11396       // code below are valid when the LHS is an overload set.  Note
11397       // that an overload set can be dependently-typed, but it never
11398       // instantiates to having an overloadable type.
11399       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
11400       if (resolvedRHS.isInvalid()) return ExprError();
11401       RHSExpr = resolvedRHS.get();
11402 
11403       if (RHSExpr->isTypeDependent() ||
11404           RHSExpr->getType()->isOverloadableType())
11405         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11406     }
11407 
11408     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
11409     if (LHS.isInvalid()) return ExprError();
11410     LHSExpr = LHS.get();
11411   }
11412 
11413   // Handle pseudo-objects in the RHS.
11414   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
11415     // An overload in the RHS can potentially be resolved by the type
11416     // being assigned to.
11417     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
11418       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
11419         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11420 
11421       if (LHSExpr->getType()->isOverloadableType())
11422         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11423 
11424       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
11425     }
11426 
11427     // Don't resolve overloads if the other type is overloadable.
11428     if (pty->getKind() == BuiltinType::Overload &&
11429         LHSExpr->getType()->isOverloadableType())
11430       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11431 
11432     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
11433     if (!resolvedRHS.isUsable()) return ExprError();
11434     RHSExpr = resolvedRHS.get();
11435   }
11436 
11437   if (getLangOpts().CPlusPlus) {
11438     // If either expression is type-dependent, always build an
11439     // overloaded op.
11440     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
11441       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11442 
11443     // Otherwise, build an overloaded op if either expression has an
11444     // overloadable type.
11445     if (LHSExpr->getType()->isOverloadableType() ||
11446         RHSExpr->getType()->isOverloadableType())
11447       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11448   }
11449 
11450   // Build a built-in binary operation.
11451   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
11452 }
11453 
11454 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
11455                                       UnaryOperatorKind Opc,
11456                                       Expr *InputExpr) {
11457   ExprResult Input = InputExpr;
11458   ExprValueKind VK = VK_RValue;
11459   ExprObjectKind OK = OK_Ordinary;
11460   QualType resultType;
11461   if (getLangOpts().OpenCL) {
11462     QualType Ty = InputExpr->getType();
11463     // The only legal unary operation for atomics is '&'.
11464     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
11465     // OpenCL special types - image, sampler, pipe, and blocks are to be used
11466     // only with a builtin functions and therefore should be disallowed here.
11467         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
11468         || Ty->isBlockPointerType())) {
11469       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11470                        << InputExpr->getType()
11471                        << Input.get()->getSourceRange());
11472     }
11473   }
11474   switch (Opc) {
11475   case UO_PreInc:
11476   case UO_PreDec:
11477   case UO_PostInc:
11478   case UO_PostDec:
11479     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
11480                                                 OpLoc,
11481                                                 Opc == UO_PreInc ||
11482                                                 Opc == UO_PostInc,
11483                                                 Opc == UO_PreInc ||
11484                                                 Opc == UO_PreDec);
11485     break;
11486   case UO_AddrOf:
11487     resultType = CheckAddressOfOperand(Input, OpLoc);
11488     RecordModifiableNonNullParam(*this, InputExpr);
11489     break;
11490   case UO_Deref: {
11491     Input = DefaultFunctionArrayLvalueConversion(Input.get());
11492     if (Input.isInvalid()) return ExprError();
11493     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
11494     break;
11495   }
11496   case UO_Plus:
11497   case UO_Minus:
11498     Input = UsualUnaryConversions(Input.get());
11499     if (Input.isInvalid()) return ExprError();
11500     resultType = Input.get()->getType();
11501     if (resultType->isDependentType())
11502       break;
11503     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
11504       break;
11505     else if (resultType->isVectorType() &&
11506              // The z vector extensions don't allow + or - with bool vectors.
11507              (!Context.getLangOpts().ZVector ||
11508               resultType->getAs<VectorType>()->getVectorKind() !=
11509               VectorType::AltiVecBool))
11510       break;
11511     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
11512              Opc == UO_Plus &&
11513              resultType->isPointerType())
11514       break;
11515 
11516     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11517       << resultType << Input.get()->getSourceRange());
11518 
11519   case UO_Not: // bitwise complement
11520     Input = UsualUnaryConversions(Input.get());
11521     if (Input.isInvalid())
11522       return ExprError();
11523     resultType = Input.get()->getType();
11524     if (resultType->isDependentType())
11525       break;
11526     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
11527     if (resultType->isComplexType() || resultType->isComplexIntegerType())
11528       // C99 does not support '~' for complex conjugation.
11529       Diag(OpLoc, diag::ext_integer_complement_complex)
11530           << resultType << Input.get()->getSourceRange();
11531     else if (resultType->hasIntegerRepresentation())
11532       break;
11533     else if (resultType->isExtVectorType()) {
11534       if (Context.getLangOpts().OpenCL) {
11535         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
11536         // on vector float types.
11537         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
11538         if (!T->isIntegerType())
11539           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11540                            << resultType << Input.get()->getSourceRange());
11541       }
11542       break;
11543     } else {
11544       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11545                        << resultType << Input.get()->getSourceRange());
11546     }
11547     break;
11548 
11549   case UO_LNot: // logical negation
11550     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
11551     Input = DefaultFunctionArrayLvalueConversion(Input.get());
11552     if (Input.isInvalid()) return ExprError();
11553     resultType = Input.get()->getType();
11554 
11555     // Though we still have to promote half FP to float...
11556     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
11557       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
11558       resultType = Context.FloatTy;
11559     }
11560 
11561     if (resultType->isDependentType())
11562       break;
11563     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
11564       // C99 6.5.3.3p1: ok, fallthrough;
11565       if (Context.getLangOpts().CPlusPlus) {
11566         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
11567         // operand contextually converted to bool.
11568         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
11569                                   ScalarTypeToBooleanCastKind(resultType));
11570       } else if (Context.getLangOpts().OpenCL &&
11571                  Context.getLangOpts().OpenCLVersion < 120) {
11572         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
11573         // operate on scalar float types.
11574         if (!resultType->isIntegerType())
11575           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11576                            << resultType << Input.get()->getSourceRange());
11577       }
11578     } else if (resultType->isExtVectorType()) {
11579       if (Context.getLangOpts().OpenCL &&
11580           Context.getLangOpts().OpenCLVersion < 120) {
11581         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
11582         // operate on vector float types.
11583         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
11584         if (!T->isIntegerType())
11585           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11586                            << resultType << Input.get()->getSourceRange());
11587       }
11588       // Vector logical not returns the signed variant of the operand type.
11589       resultType = GetSignedVectorType(resultType);
11590       break;
11591     } else {
11592       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11593         << resultType << Input.get()->getSourceRange());
11594     }
11595 
11596     // LNot always has type int. C99 6.5.3.3p5.
11597     // In C++, it's bool. C++ 5.3.1p8
11598     resultType = Context.getLogicalOperationType();
11599     break;
11600   case UO_Real:
11601   case UO_Imag:
11602     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
11603     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
11604     // complex l-values to ordinary l-values and all other values to r-values.
11605     if (Input.isInvalid()) return ExprError();
11606     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
11607       if (Input.get()->getValueKind() != VK_RValue &&
11608           Input.get()->getObjectKind() == OK_Ordinary)
11609         VK = Input.get()->getValueKind();
11610     } else if (!getLangOpts().CPlusPlus) {
11611       // In C, a volatile scalar is read by __imag. In C++, it is not.
11612       Input = DefaultLvalueConversion(Input.get());
11613     }
11614     break;
11615   case UO_Extension:
11616   case UO_Coawait:
11617     resultType = Input.get()->getType();
11618     VK = Input.get()->getValueKind();
11619     OK = Input.get()->getObjectKind();
11620     break;
11621   }
11622   if (resultType.isNull() || Input.isInvalid())
11623     return ExprError();
11624 
11625   // Check for array bounds violations in the operand of the UnaryOperator,
11626   // except for the '*' and '&' operators that have to be handled specially
11627   // by CheckArrayAccess (as there are special cases like &array[arraysize]
11628   // that are explicitly defined as valid by the standard).
11629   if (Opc != UO_AddrOf && Opc != UO_Deref)
11630     CheckArrayAccess(Input.get());
11631 
11632   return new (Context)
11633       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
11634 }
11635 
11636 /// \brief Determine whether the given expression is a qualified member
11637 /// access expression, of a form that could be turned into a pointer to member
11638 /// with the address-of operator.
11639 static bool isQualifiedMemberAccess(Expr *E) {
11640   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11641     if (!DRE->getQualifier())
11642       return false;
11643 
11644     ValueDecl *VD = DRE->getDecl();
11645     if (!VD->isCXXClassMember())
11646       return false;
11647 
11648     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
11649       return true;
11650     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
11651       return Method->isInstance();
11652 
11653     return false;
11654   }
11655 
11656   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11657     if (!ULE->getQualifier())
11658       return false;
11659 
11660     for (NamedDecl *D : ULE->decls()) {
11661       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
11662         if (Method->isInstance())
11663           return true;
11664       } else {
11665         // Overload set does not contain methods.
11666         break;
11667       }
11668     }
11669 
11670     return false;
11671   }
11672 
11673   return false;
11674 }
11675 
11676 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
11677                               UnaryOperatorKind Opc, Expr *Input) {
11678   // First things first: handle placeholders so that the
11679   // overloaded-operator check considers the right type.
11680   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
11681     // Increment and decrement of pseudo-object references.
11682     if (pty->getKind() == BuiltinType::PseudoObject &&
11683         UnaryOperator::isIncrementDecrementOp(Opc))
11684       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
11685 
11686     // extension is always a builtin operator.
11687     if (Opc == UO_Extension)
11688       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11689 
11690     // & gets special logic for several kinds of placeholder.
11691     // The builtin code knows what to do.
11692     if (Opc == UO_AddrOf &&
11693         (pty->getKind() == BuiltinType::Overload ||
11694          pty->getKind() == BuiltinType::UnknownAny ||
11695          pty->getKind() == BuiltinType::BoundMember))
11696       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11697 
11698     // Anything else needs to be handled now.
11699     ExprResult Result = CheckPlaceholderExpr(Input);
11700     if (Result.isInvalid()) return ExprError();
11701     Input = Result.get();
11702   }
11703 
11704   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
11705       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
11706       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
11707     // Find all of the overloaded operators visible from this
11708     // point. We perform both an operator-name lookup from the local
11709     // scope and an argument-dependent lookup based on the types of
11710     // the arguments.
11711     UnresolvedSet<16> Functions;
11712     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
11713     if (S && OverOp != OO_None)
11714       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
11715                                    Functions);
11716 
11717     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
11718   }
11719 
11720   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11721 }
11722 
11723 // Unary Operators.  'Tok' is the token for the operator.
11724 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
11725                               tok::TokenKind Op, Expr *Input) {
11726   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
11727 }
11728 
11729 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
11730 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
11731                                 LabelDecl *TheDecl) {
11732   TheDecl->markUsed(Context);
11733   // Create the AST node.  The address of a label always has type 'void*'.
11734   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
11735                                      Context.getPointerType(Context.VoidTy));
11736 }
11737 
11738 /// Given the last statement in a statement-expression, check whether
11739 /// the result is a producing expression (like a call to an
11740 /// ns_returns_retained function) and, if so, rebuild it to hoist the
11741 /// release out of the full-expression.  Otherwise, return null.
11742 /// Cannot fail.
11743 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
11744   // Should always be wrapped with one of these.
11745   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
11746   if (!cleanups) return nullptr;
11747 
11748   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
11749   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
11750     return nullptr;
11751 
11752   // Splice out the cast.  This shouldn't modify any interesting
11753   // features of the statement.
11754   Expr *producer = cast->getSubExpr();
11755   assert(producer->getType() == cast->getType());
11756   assert(producer->getValueKind() == cast->getValueKind());
11757   cleanups->setSubExpr(producer);
11758   return cleanups;
11759 }
11760 
11761 void Sema::ActOnStartStmtExpr() {
11762   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
11763 }
11764 
11765 void Sema::ActOnStmtExprError() {
11766   // Note that function is also called by TreeTransform when leaving a
11767   // StmtExpr scope without rebuilding anything.
11768 
11769   DiscardCleanupsInEvaluationContext();
11770   PopExpressionEvaluationContext();
11771 }
11772 
11773 ExprResult
11774 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
11775                     SourceLocation RPLoc) { // "({..})"
11776   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
11777   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
11778 
11779   if (hasAnyUnrecoverableErrorsInThisFunction())
11780     DiscardCleanupsInEvaluationContext();
11781   assert(!Cleanup.exprNeedsCleanups() &&
11782          "cleanups within StmtExpr not correctly bound!");
11783   PopExpressionEvaluationContext();
11784 
11785   // FIXME: there are a variety of strange constraints to enforce here, for
11786   // example, it is not possible to goto into a stmt expression apparently.
11787   // More semantic analysis is needed.
11788 
11789   // If there are sub-stmts in the compound stmt, take the type of the last one
11790   // as the type of the stmtexpr.
11791   QualType Ty = Context.VoidTy;
11792   bool StmtExprMayBindToTemp = false;
11793   if (!Compound->body_empty()) {
11794     Stmt *LastStmt = Compound->body_back();
11795     LabelStmt *LastLabelStmt = nullptr;
11796     // If LastStmt is a label, skip down through into the body.
11797     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
11798       LastLabelStmt = Label;
11799       LastStmt = Label->getSubStmt();
11800     }
11801 
11802     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
11803       // Do function/array conversion on the last expression, but not
11804       // lvalue-to-rvalue.  However, initialize an unqualified type.
11805       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
11806       if (LastExpr.isInvalid())
11807         return ExprError();
11808       Ty = LastExpr.get()->getType().getUnqualifiedType();
11809 
11810       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
11811         // In ARC, if the final expression ends in a consume, splice
11812         // the consume out and bind it later.  In the alternate case
11813         // (when dealing with a retainable type), the result
11814         // initialization will create a produce.  In both cases the
11815         // result will be +1, and we'll need to balance that out with
11816         // a bind.
11817         if (Expr *rebuiltLastStmt
11818               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
11819           LastExpr = rebuiltLastStmt;
11820         } else {
11821           LastExpr = PerformCopyInitialization(
11822                             InitializedEntity::InitializeResult(LPLoc,
11823                                                                 Ty,
11824                                                                 false),
11825                                                    SourceLocation(),
11826                                                LastExpr);
11827         }
11828 
11829         if (LastExpr.isInvalid())
11830           return ExprError();
11831         if (LastExpr.get() != nullptr) {
11832           if (!LastLabelStmt)
11833             Compound->setLastStmt(LastExpr.get());
11834           else
11835             LastLabelStmt->setSubStmt(LastExpr.get());
11836           StmtExprMayBindToTemp = true;
11837         }
11838       }
11839     }
11840   }
11841 
11842   // FIXME: Check that expression type is complete/non-abstract; statement
11843   // expressions are not lvalues.
11844   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
11845   if (StmtExprMayBindToTemp)
11846     return MaybeBindToTemporary(ResStmtExpr);
11847   return ResStmtExpr;
11848 }
11849 
11850 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
11851                                       TypeSourceInfo *TInfo,
11852                                       ArrayRef<OffsetOfComponent> Components,
11853                                       SourceLocation RParenLoc) {
11854   QualType ArgTy = TInfo->getType();
11855   bool Dependent = ArgTy->isDependentType();
11856   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
11857 
11858   // We must have at least one component that refers to the type, and the first
11859   // one is known to be a field designator.  Verify that the ArgTy represents
11860   // a struct/union/class.
11861   if (!Dependent && !ArgTy->isRecordType())
11862     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
11863                        << ArgTy << TypeRange);
11864 
11865   // Type must be complete per C99 7.17p3 because a declaring a variable
11866   // with an incomplete type would be ill-formed.
11867   if (!Dependent
11868       && RequireCompleteType(BuiltinLoc, ArgTy,
11869                              diag::err_offsetof_incomplete_type, TypeRange))
11870     return ExprError();
11871 
11872   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
11873   // GCC extension, diagnose them.
11874   // FIXME: This diagnostic isn't actually visible because the location is in
11875   // a system header!
11876   if (Components.size() != 1)
11877     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
11878       << SourceRange(Components[1].LocStart, Components.back().LocEnd);
11879 
11880   bool DidWarnAboutNonPOD = false;
11881   QualType CurrentType = ArgTy;
11882   SmallVector<OffsetOfNode, 4> Comps;
11883   SmallVector<Expr*, 4> Exprs;
11884   for (const OffsetOfComponent &OC : Components) {
11885     if (OC.isBrackets) {
11886       // Offset of an array sub-field.  TODO: Should we allow vector elements?
11887       if (!CurrentType->isDependentType()) {
11888         const ArrayType *AT = Context.getAsArrayType(CurrentType);
11889         if(!AT)
11890           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
11891                            << CurrentType);
11892         CurrentType = AT->getElementType();
11893       } else
11894         CurrentType = Context.DependentTy;
11895 
11896       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
11897       if (IdxRval.isInvalid())
11898         return ExprError();
11899       Expr *Idx = IdxRval.get();
11900 
11901       // The expression must be an integral expression.
11902       // FIXME: An integral constant expression?
11903       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
11904           !Idx->getType()->isIntegerType())
11905         return ExprError(Diag(Idx->getLocStart(),
11906                               diag::err_typecheck_subscript_not_integer)
11907                          << Idx->getSourceRange());
11908 
11909       // Record this array index.
11910       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
11911       Exprs.push_back(Idx);
11912       continue;
11913     }
11914 
11915     // Offset of a field.
11916     if (CurrentType->isDependentType()) {
11917       // We have the offset of a field, but we can't look into the dependent
11918       // type. Just record the identifier of the field.
11919       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
11920       CurrentType = Context.DependentTy;
11921       continue;
11922     }
11923 
11924     // We need to have a complete type to look into.
11925     if (RequireCompleteType(OC.LocStart, CurrentType,
11926                             diag::err_offsetof_incomplete_type))
11927       return ExprError();
11928 
11929     // Look for the designated field.
11930     const RecordType *RC = CurrentType->getAs<RecordType>();
11931     if (!RC)
11932       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
11933                        << CurrentType);
11934     RecordDecl *RD = RC->getDecl();
11935 
11936     // C++ [lib.support.types]p5:
11937     //   The macro offsetof accepts a restricted set of type arguments in this
11938     //   International Standard. type shall be a POD structure or a POD union
11939     //   (clause 9).
11940     // C++11 [support.types]p4:
11941     //   If type is not a standard-layout class (Clause 9), the results are
11942     //   undefined.
11943     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
11944       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
11945       unsigned DiagID =
11946         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
11947                             : diag::ext_offsetof_non_pod_type;
11948 
11949       if (!IsSafe && !DidWarnAboutNonPOD &&
11950           DiagRuntimeBehavior(BuiltinLoc, nullptr,
11951                               PDiag(DiagID)
11952                               << SourceRange(Components[0].LocStart, OC.LocEnd)
11953                               << CurrentType))
11954         DidWarnAboutNonPOD = true;
11955     }
11956 
11957     // Look for the field.
11958     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
11959     LookupQualifiedName(R, RD);
11960     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
11961     IndirectFieldDecl *IndirectMemberDecl = nullptr;
11962     if (!MemberDecl) {
11963       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
11964         MemberDecl = IndirectMemberDecl->getAnonField();
11965     }
11966 
11967     if (!MemberDecl)
11968       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
11969                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
11970                                                               OC.LocEnd));
11971 
11972     // C99 7.17p3:
11973     //   (If the specified member is a bit-field, the behavior is undefined.)
11974     //
11975     // We diagnose this as an error.
11976     if (MemberDecl->isBitField()) {
11977       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
11978         << MemberDecl->getDeclName()
11979         << SourceRange(BuiltinLoc, RParenLoc);
11980       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
11981       return ExprError();
11982     }
11983 
11984     RecordDecl *Parent = MemberDecl->getParent();
11985     if (IndirectMemberDecl)
11986       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
11987 
11988     // If the member was found in a base class, introduce OffsetOfNodes for
11989     // the base class indirections.
11990     CXXBasePaths Paths;
11991     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
11992                       Paths)) {
11993       if (Paths.getDetectedVirtual()) {
11994         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
11995           << MemberDecl->getDeclName()
11996           << SourceRange(BuiltinLoc, RParenLoc);
11997         return ExprError();
11998       }
11999 
12000       CXXBasePath &Path = Paths.front();
12001       for (const CXXBasePathElement &B : Path)
12002         Comps.push_back(OffsetOfNode(B.Base));
12003     }
12004 
12005     if (IndirectMemberDecl) {
12006       for (auto *FI : IndirectMemberDecl->chain()) {
12007         assert(isa<FieldDecl>(FI));
12008         Comps.push_back(OffsetOfNode(OC.LocStart,
12009                                      cast<FieldDecl>(FI), OC.LocEnd));
12010       }
12011     } else
12012       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
12013 
12014     CurrentType = MemberDecl->getType().getNonReferenceType();
12015   }
12016 
12017   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
12018                               Comps, Exprs, RParenLoc);
12019 }
12020 
12021 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
12022                                       SourceLocation BuiltinLoc,
12023                                       SourceLocation TypeLoc,
12024                                       ParsedType ParsedArgTy,
12025                                       ArrayRef<OffsetOfComponent> Components,
12026                                       SourceLocation RParenLoc) {
12027 
12028   TypeSourceInfo *ArgTInfo;
12029   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
12030   if (ArgTy.isNull())
12031     return ExprError();
12032 
12033   if (!ArgTInfo)
12034     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
12035 
12036   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
12037 }
12038 
12039 
12040 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
12041                                  Expr *CondExpr,
12042                                  Expr *LHSExpr, Expr *RHSExpr,
12043                                  SourceLocation RPLoc) {
12044   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
12045 
12046   ExprValueKind VK = VK_RValue;
12047   ExprObjectKind OK = OK_Ordinary;
12048   QualType resType;
12049   bool ValueDependent = false;
12050   bool CondIsTrue = false;
12051   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
12052     resType = Context.DependentTy;
12053     ValueDependent = true;
12054   } else {
12055     // The conditional expression is required to be a constant expression.
12056     llvm::APSInt condEval(32);
12057     ExprResult CondICE
12058       = VerifyIntegerConstantExpression(CondExpr, &condEval,
12059           diag::err_typecheck_choose_expr_requires_constant, false);
12060     if (CondICE.isInvalid())
12061       return ExprError();
12062     CondExpr = CondICE.get();
12063     CondIsTrue = condEval.getZExtValue();
12064 
12065     // If the condition is > zero, then the AST type is the same as the LSHExpr.
12066     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
12067 
12068     resType = ActiveExpr->getType();
12069     ValueDependent = ActiveExpr->isValueDependent();
12070     VK = ActiveExpr->getValueKind();
12071     OK = ActiveExpr->getObjectKind();
12072   }
12073 
12074   return new (Context)
12075       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
12076                  CondIsTrue, resType->isDependentType(), ValueDependent);
12077 }
12078 
12079 //===----------------------------------------------------------------------===//
12080 // Clang Extensions.
12081 //===----------------------------------------------------------------------===//
12082 
12083 /// ActOnBlockStart - This callback is invoked when a block literal is started.
12084 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
12085   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
12086 
12087   if (LangOpts.CPlusPlus) {
12088     Decl *ManglingContextDecl;
12089     if (MangleNumberingContext *MCtx =
12090             getCurrentMangleNumberContext(Block->getDeclContext(),
12091                                           ManglingContextDecl)) {
12092       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
12093       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
12094     }
12095   }
12096 
12097   PushBlockScope(CurScope, Block);
12098   CurContext->addDecl(Block);
12099   if (CurScope)
12100     PushDeclContext(CurScope, Block);
12101   else
12102     CurContext = Block;
12103 
12104   getCurBlock()->HasImplicitReturnType = true;
12105 
12106   // Enter a new evaluation context to insulate the block from any
12107   // cleanups from the enclosing full-expression.
12108   PushExpressionEvaluationContext(PotentiallyEvaluated);
12109 }
12110 
12111 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
12112                                Scope *CurScope) {
12113   assert(ParamInfo.getIdentifier() == nullptr &&
12114          "block-id should have no identifier!");
12115   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
12116   BlockScopeInfo *CurBlock = getCurBlock();
12117 
12118   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
12119   QualType T = Sig->getType();
12120 
12121   // FIXME: We should allow unexpanded parameter packs here, but that would,
12122   // in turn, make the block expression contain unexpanded parameter packs.
12123   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
12124     // Drop the parameters.
12125     FunctionProtoType::ExtProtoInfo EPI;
12126     EPI.HasTrailingReturn = false;
12127     EPI.TypeQuals |= DeclSpec::TQ_const;
12128     T = Context.getFunctionType(Context.DependentTy, None, EPI);
12129     Sig = Context.getTrivialTypeSourceInfo(T);
12130   }
12131 
12132   // GetTypeForDeclarator always produces a function type for a block
12133   // literal signature.  Furthermore, it is always a FunctionProtoType
12134   // unless the function was written with a typedef.
12135   assert(T->isFunctionType() &&
12136          "GetTypeForDeclarator made a non-function block signature");
12137 
12138   // Look for an explicit signature in that function type.
12139   FunctionProtoTypeLoc ExplicitSignature;
12140 
12141   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
12142   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
12143 
12144     // Check whether that explicit signature was synthesized by
12145     // GetTypeForDeclarator.  If so, don't save that as part of the
12146     // written signature.
12147     if (ExplicitSignature.getLocalRangeBegin() ==
12148         ExplicitSignature.getLocalRangeEnd()) {
12149       // This would be much cheaper if we stored TypeLocs instead of
12150       // TypeSourceInfos.
12151       TypeLoc Result = ExplicitSignature.getReturnLoc();
12152       unsigned Size = Result.getFullDataSize();
12153       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
12154       Sig->getTypeLoc().initializeFullCopy(Result, Size);
12155 
12156       ExplicitSignature = FunctionProtoTypeLoc();
12157     }
12158   }
12159 
12160   CurBlock->TheDecl->setSignatureAsWritten(Sig);
12161   CurBlock->FunctionType = T;
12162 
12163   const FunctionType *Fn = T->getAs<FunctionType>();
12164   QualType RetTy = Fn->getReturnType();
12165   bool isVariadic =
12166     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
12167 
12168   CurBlock->TheDecl->setIsVariadic(isVariadic);
12169 
12170   // Context.DependentTy is used as a placeholder for a missing block
12171   // return type.  TODO:  what should we do with declarators like:
12172   //   ^ * { ... }
12173   // If the answer is "apply template argument deduction"....
12174   if (RetTy != Context.DependentTy) {
12175     CurBlock->ReturnType = RetTy;
12176     CurBlock->TheDecl->setBlockMissingReturnType(false);
12177     CurBlock->HasImplicitReturnType = false;
12178   }
12179 
12180   // Push block parameters from the declarator if we had them.
12181   SmallVector<ParmVarDecl*, 8> Params;
12182   if (ExplicitSignature) {
12183     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
12184       ParmVarDecl *Param = ExplicitSignature.getParam(I);
12185       if (Param->getIdentifier() == nullptr &&
12186           !Param->isImplicit() &&
12187           !Param->isInvalidDecl() &&
12188           !getLangOpts().CPlusPlus)
12189         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
12190       Params.push_back(Param);
12191     }
12192 
12193   // Fake up parameter variables if we have a typedef, like
12194   //   ^ fntype { ... }
12195   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
12196     for (const auto &I : Fn->param_types()) {
12197       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
12198           CurBlock->TheDecl, ParamInfo.getLocStart(), I);
12199       Params.push_back(Param);
12200     }
12201   }
12202 
12203   // Set the parameters on the block decl.
12204   if (!Params.empty()) {
12205     CurBlock->TheDecl->setParams(Params);
12206     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
12207                              /*CheckParameterNames=*/false);
12208   }
12209 
12210   // Finally we can process decl attributes.
12211   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
12212 
12213   // Put the parameter variables in scope.
12214   for (auto AI : CurBlock->TheDecl->parameters()) {
12215     AI->setOwningFunction(CurBlock->TheDecl);
12216 
12217     // If this has an identifier, add it to the scope stack.
12218     if (AI->getIdentifier()) {
12219       CheckShadow(CurBlock->TheScope, AI);
12220 
12221       PushOnScopeChains(AI, CurBlock->TheScope);
12222     }
12223   }
12224 }
12225 
12226 /// ActOnBlockError - If there is an error parsing a block, this callback
12227 /// is invoked to pop the information about the block from the action impl.
12228 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
12229   // Leave the expression-evaluation context.
12230   DiscardCleanupsInEvaluationContext();
12231   PopExpressionEvaluationContext();
12232 
12233   // Pop off CurBlock, handle nested blocks.
12234   PopDeclContext();
12235   PopFunctionScopeInfo();
12236 }
12237 
12238 /// ActOnBlockStmtExpr - This is called when the body of a block statement
12239 /// literal was successfully completed.  ^(int x){...}
12240 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
12241                                     Stmt *Body, Scope *CurScope) {
12242   // If blocks are disabled, emit an error.
12243   if (!LangOpts.Blocks)
12244     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
12245 
12246   // Leave the expression-evaluation context.
12247   if (hasAnyUnrecoverableErrorsInThisFunction())
12248     DiscardCleanupsInEvaluationContext();
12249   assert(!Cleanup.exprNeedsCleanups() &&
12250          "cleanups within block not correctly bound!");
12251   PopExpressionEvaluationContext();
12252 
12253   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
12254 
12255   if (BSI->HasImplicitReturnType)
12256     deduceClosureReturnType(*BSI);
12257 
12258   PopDeclContext();
12259 
12260   QualType RetTy = Context.VoidTy;
12261   if (!BSI->ReturnType.isNull())
12262     RetTy = BSI->ReturnType;
12263 
12264   bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
12265   QualType BlockTy;
12266 
12267   // Set the captured variables on the block.
12268   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
12269   SmallVector<BlockDecl::Capture, 4> Captures;
12270   for (CapturingScopeInfo::Capture &Cap : BSI->Captures) {
12271     if (Cap.isThisCapture())
12272       continue;
12273     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
12274                               Cap.isNested(), Cap.getInitExpr());
12275     Captures.push_back(NewCap);
12276   }
12277   BSI->TheDecl->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
12278 
12279   // If the user wrote a function type in some form, try to use that.
12280   if (!BSI->FunctionType.isNull()) {
12281     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
12282 
12283     FunctionType::ExtInfo Ext = FTy->getExtInfo();
12284     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
12285 
12286     // Turn protoless block types into nullary block types.
12287     if (isa<FunctionNoProtoType>(FTy)) {
12288       FunctionProtoType::ExtProtoInfo EPI;
12289       EPI.ExtInfo = Ext;
12290       BlockTy = Context.getFunctionType(RetTy, None, EPI);
12291 
12292     // Otherwise, if we don't need to change anything about the function type,
12293     // preserve its sugar structure.
12294     } else if (FTy->getReturnType() == RetTy &&
12295                (!NoReturn || FTy->getNoReturnAttr())) {
12296       BlockTy = BSI->FunctionType;
12297 
12298     // Otherwise, make the minimal modifications to the function type.
12299     } else {
12300       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
12301       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12302       EPI.TypeQuals = 0; // FIXME: silently?
12303       EPI.ExtInfo = Ext;
12304       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
12305     }
12306 
12307   // If we don't have a function type, just build one from nothing.
12308   } else {
12309     FunctionProtoType::ExtProtoInfo EPI;
12310     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
12311     BlockTy = Context.getFunctionType(RetTy, None, EPI);
12312   }
12313 
12314   DiagnoseUnusedParameters(BSI->TheDecl->parameters());
12315   BlockTy = Context.getBlockPointerType(BlockTy);
12316 
12317   // If needed, diagnose invalid gotos and switches in the block.
12318   if (getCurFunction()->NeedsScopeChecking() &&
12319       !PP.isCodeCompletionEnabled())
12320     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
12321 
12322   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
12323 
12324   // Try to apply the named return value optimization. We have to check again
12325   // if we can do this, though, because blocks keep return statements around
12326   // to deduce an implicit return type.
12327   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
12328       !BSI->TheDecl->isDependentContext())
12329     computeNRVO(Body, BSI);
12330 
12331   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
12332   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
12333   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
12334 
12335   // If the block isn't obviously global, i.e. it captures anything at
12336   // all, then we need to do a few things in the surrounding context:
12337   if (Result->getBlockDecl()->hasCaptures()) {
12338     // First, this expression has a new cleanup object.
12339     ExprCleanupObjects.push_back(Result->getBlockDecl());
12340     Cleanup.setExprNeedsCleanups(true);
12341 
12342     // It also gets a branch-protected scope if any of the captured
12343     // variables needs destruction.
12344     for (const auto &CI : Result->getBlockDecl()->captures()) {
12345       const VarDecl *var = CI.getVariable();
12346       if (var->getType().isDestructedType() != QualType::DK_none) {
12347         getCurFunction()->setHasBranchProtectedScope();
12348         break;
12349       }
12350     }
12351   }
12352 
12353   return Result;
12354 }
12355 
12356 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
12357                             SourceLocation RPLoc) {
12358   TypeSourceInfo *TInfo;
12359   GetTypeFromParser(Ty, &TInfo);
12360   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
12361 }
12362 
12363 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
12364                                 Expr *E, TypeSourceInfo *TInfo,
12365                                 SourceLocation RPLoc) {
12366   Expr *OrigExpr = E;
12367   bool IsMS = false;
12368 
12369   // CUDA device code does not support varargs.
12370   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
12371     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
12372       CUDAFunctionTarget T = IdentifyCUDATarget(F);
12373       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
12374         return ExprError(Diag(E->getLocStart(), diag::err_va_arg_in_device));
12375     }
12376   }
12377 
12378   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
12379   // as Microsoft ABI on an actual Microsoft platform, where
12380   // __builtin_ms_va_list and __builtin_va_list are the same.)
12381   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
12382       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
12383     QualType MSVaListType = Context.getBuiltinMSVaListType();
12384     if (Context.hasSameType(MSVaListType, E->getType())) {
12385       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
12386         return ExprError();
12387       IsMS = true;
12388     }
12389   }
12390 
12391   // Get the va_list type
12392   QualType VaListType = Context.getBuiltinVaListType();
12393   if (!IsMS) {
12394     if (VaListType->isArrayType()) {
12395       // Deal with implicit array decay; for example, on x86-64,
12396       // va_list is an array, but it's supposed to decay to
12397       // a pointer for va_arg.
12398       VaListType = Context.getArrayDecayedType(VaListType);
12399       // Make sure the input expression also decays appropriately.
12400       ExprResult Result = UsualUnaryConversions(E);
12401       if (Result.isInvalid())
12402         return ExprError();
12403       E = Result.get();
12404     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
12405       // If va_list is a record type and we are compiling in C++ mode,
12406       // check the argument using reference binding.
12407       InitializedEntity Entity = InitializedEntity::InitializeParameter(
12408           Context, Context.getLValueReferenceType(VaListType), false);
12409       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
12410       if (Init.isInvalid())
12411         return ExprError();
12412       E = Init.getAs<Expr>();
12413     } else {
12414       // Otherwise, the va_list argument must be an l-value because
12415       // it is modified by va_arg.
12416       if (!E->isTypeDependent() &&
12417           CheckForModifiableLvalue(E, BuiltinLoc, *this))
12418         return ExprError();
12419     }
12420   }
12421 
12422   if (!IsMS && !E->isTypeDependent() &&
12423       !Context.hasSameType(VaListType, E->getType()))
12424     return ExprError(Diag(E->getLocStart(),
12425                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
12426       << OrigExpr->getType() << E->getSourceRange());
12427 
12428   if (!TInfo->getType()->isDependentType()) {
12429     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
12430                             diag::err_second_parameter_to_va_arg_incomplete,
12431                             TInfo->getTypeLoc()))
12432       return ExprError();
12433 
12434     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
12435                                TInfo->getType(),
12436                                diag::err_second_parameter_to_va_arg_abstract,
12437                                TInfo->getTypeLoc()))
12438       return ExprError();
12439 
12440     if (!TInfo->getType().isPODType(Context)) {
12441       Diag(TInfo->getTypeLoc().getBeginLoc(),
12442            TInfo->getType()->isObjCLifetimeType()
12443              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
12444              : diag::warn_second_parameter_to_va_arg_not_pod)
12445         << TInfo->getType()
12446         << TInfo->getTypeLoc().getSourceRange();
12447     }
12448 
12449     // Check for va_arg where arguments of the given type will be promoted
12450     // (i.e. this va_arg is guaranteed to have undefined behavior).
12451     QualType PromoteType;
12452     if (TInfo->getType()->isPromotableIntegerType()) {
12453       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
12454       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
12455         PromoteType = QualType();
12456     }
12457     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
12458       PromoteType = Context.DoubleTy;
12459     if (!PromoteType.isNull())
12460       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
12461                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
12462                           << TInfo->getType()
12463                           << PromoteType
12464                           << TInfo->getTypeLoc().getSourceRange());
12465   }
12466 
12467   QualType T = TInfo->getType().getNonLValueExprType(Context);
12468   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
12469 }
12470 
12471 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
12472   // The type of __null will be int or long, depending on the size of
12473   // pointers on the target.
12474   QualType Ty;
12475   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
12476   if (pw == Context.getTargetInfo().getIntWidth())
12477     Ty = Context.IntTy;
12478   else if (pw == Context.getTargetInfo().getLongWidth())
12479     Ty = Context.LongTy;
12480   else if (pw == Context.getTargetInfo().getLongLongWidth())
12481     Ty = Context.LongLongTy;
12482   else {
12483     llvm_unreachable("I don't know size of pointer!");
12484   }
12485 
12486   return new (Context) GNUNullExpr(Ty, TokenLoc);
12487 }
12488 
12489 bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
12490                                               bool Diagnose) {
12491   if (!getLangOpts().ObjC1)
12492     return false;
12493 
12494   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
12495   if (!PT)
12496     return false;
12497 
12498   if (!PT->isObjCIdType()) {
12499     // Check if the destination is the 'NSString' interface.
12500     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
12501     if (!ID || !ID->getIdentifier()->isStr("NSString"))
12502       return false;
12503   }
12504 
12505   // Ignore any parens, implicit casts (should only be
12506   // array-to-pointer decays), and not-so-opaque values.  The last is
12507   // important for making this trigger for property assignments.
12508   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
12509   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
12510     if (OV->getSourceExpr())
12511       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
12512 
12513   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
12514   if (!SL || !SL->isAscii())
12515     return false;
12516   if (Diagnose) {
12517     Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
12518       << FixItHint::CreateInsertion(SL->getLocStart(), "@");
12519     Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
12520   }
12521   return true;
12522 }
12523 
12524 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
12525                                               const Expr *SrcExpr) {
12526   if (!DstType->isFunctionPointerType() ||
12527       !SrcExpr->getType()->isFunctionType())
12528     return false;
12529 
12530   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
12531   if (!DRE)
12532     return false;
12533 
12534   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12535   if (!FD)
12536     return false;
12537 
12538   return !S.checkAddressOfFunctionIsAvailable(FD,
12539                                               /*Complain=*/true,
12540                                               SrcExpr->getLocStart());
12541 }
12542 
12543 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
12544                                     SourceLocation Loc,
12545                                     QualType DstType, QualType SrcType,
12546                                     Expr *SrcExpr, AssignmentAction Action,
12547                                     bool *Complained) {
12548   if (Complained)
12549     *Complained = false;
12550 
12551   // Decode the result (notice that AST's are still created for extensions).
12552   bool CheckInferredResultType = false;
12553   bool isInvalid = false;
12554   unsigned DiagKind = 0;
12555   FixItHint Hint;
12556   ConversionFixItGenerator ConvHints;
12557   bool MayHaveConvFixit = false;
12558   bool MayHaveFunctionDiff = false;
12559   const ObjCInterfaceDecl *IFace = nullptr;
12560   const ObjCProtocolDecl *PDecl = nullptr;
12561 
12562   switch (ConvTy) {
12563   case Compatible:
12564       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
12565       return false;
12566 
12567   case PointerToInt:
12568     DiagKind = diag::ext_typecheck_convert_pointer_int;
12569     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12570     MayHaveConvFixit = true;
12571     break;
12572   case IntToPointer:
12573     DiagKind = diag::ext_typecheck_convert_int_pointer;
12574     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12575     MayHaveConvFixit = true;
12576     break;
12577   case IncompatiblePointer:
12578     if (Action == AA_Passing_CFAudited)
12579       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
12580     else if (SrcType->isFunctionPointerType() &&
12581              DstType->isFunctionPointerType())
12582       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
12583     else
12584       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
12585 
12586     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
12587       SrcType->isObjCObjectPointerType();
12588     if (Hint.isNull() && !CheckInferredResultType) {
12589       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12590     }
12591     else if (CheckInferredResultType) {
12592       SrcType = SrcType.getUnqualifiedType();
12593       DstType = DstType.getUnqualifiedType();
12594     }
12595     MayHaveConvFixit = true;
12596     break;
12597   case IncompatiblePointerSign:
12598     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
12599     break;
12600   case FunctionVoidPointer:
12601     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
12602     break;
12603   case IncompatiblePointerDiscardsQualifiers: {
12604     // Perform array-to-pointer decay if necessary.
12605     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
12606 
12607     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
12608     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
12609     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
12610       DiagKind = diag::err_typecheck_incompatible_address_space;
12611       break;
12612 
12613 
12614     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
12615       DiagKind = diag::err_typecheck_incompatible_ownership;
12616       break;
12617     }
12618 
12619     llvm_unreachable("unknown error case for discarding qualifiers!");
12620     // fallthrough
12621   }
12622   case CompatiblePointerDiscardsQualifiers:
12623     // If the qualifiers lost were because we were applying the
12624     // (deprecated) C++ conversion from a string literal to a char*
12625     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
12626     // Ideally, this check would be performed in
12627     // checkPointerTypesForAssignment. However, that would require a
12628     // bit of refactoring (so that the second argument is an
12629     // expression, rather than a type), which should be done as part
12630     // of a larger effort to fix checkPointerTypesForAssignment for
12631     // C++ semantics.
12632     if (getLangOpts().CPlusPlus &&
12633         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
12634       return false;
12635     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
12636     break;
12637   case IncompatibleNestedPointerQualifiers:
12638     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
12639     break;
12640   case IntToBlockPointer:
12641     DiagKind = diag::err_int_to_block_pointer;
12642     break;
12643   case IncompatibleBlockPointer:
12644     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
12645     break;
12646   case IncompatibleObjCQualifiedId: {
12647     if (SrcType->isObjCQualifiedIdType()) {
12648       const ObjCObjectPointerType *srcOPT =
12649                 SrcType->getAs<ObjCObjectPointerType>();
12650       for (auto *srcProto : srcOPT->quals()) {
12651         PDecl = srcProto;
12652         break;
12653       }
12654       if (const ObjCInterfaceType *IFaceT =
12655             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
12656         IFace = IFaceT->getDecl();
12657     }
12658     else if (DstType->isObjCQualifiedIdType()) {
12659       const ObjCObjectPointerType *dstOPT =
12660         DstType->getAs<ObjCObjectPointerType>();
12661       for (auto *dstProto : dstOPT->quals()) {
12662         PDecl = dstProto;
12663         break;
12664       }
12665       if (const ObjCInterfaceType *IFaceT =
12666             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
12667         IFace = IFaceT->getDecl();
12668     }
12669     DiagKind = diag::warn_incompatible_qualified_id;
12670     break;
12671   }
12672   case IncompatibleVectors:
12673     DiagKind = diag::warn_incompatible_vectors;
12674     break;
12675   case IncompatibleObjCWeakRef:
12676     DiagKind = diag::err_arc_weak_unavailable_assign;
12677     break;
12678   case Incompatible:
12679     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
12680       if (Complained)
12681         *Complained = true;
12682       return true;
12683     }
12684 
12685     DiagKind = diag::err_typecheck_convert_incompatible;
12686     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12687     MayHaveConvFixit = true;
12688     isInvalid = true;
12689     MayHaveFunctionDiff = true;
12690     break;
12691   }
12692 
12693   QualType FirstType, SecondType;
12694   switch (Action) {
12695   case AA_Assigning:
12696   case AA_Initializing:
12697     // The destination type comes first.
12698     FirstType = DstType;
12699     SecondType = SrcType;
12700     break;
12701 
12702   case AA_Returning:
12703   case AA_Passing:
12704   case AA_Passing_CFAudited:
12705   case AA_Converting:
12706   case AA_Sending:
12707   case AA_Casting:
12708     // The source type comes first.
12709     FirstType = SrcType;
12710     SecondType = DstType;
12711     break;
12712   }
12713 
12714   PartialDiagnostic FDiag = PDiag(DiagKind);
12715   if (Action == AA_Passing_CFAudited)
12716     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
12717   else
12718     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
12719 
12720   // If we can fix the conversion, suggest the FixIts.
12721   assert(ConvHints.isNull() || Hint.isNull());
12722   if (!ConvHints.isNull()) {
12723     for (FixItHint &H : ConvHints.Hints)
12724       FDiag << H;
12725   } else {
12726     FDiag << Hint;
12727   }
12728   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
12729 
12730   if (MayHaveFunctionDiff)
12731     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
12732 
12733   Diag(Loc, FDiag);
12734   if (DiagKind == diag::warn_incompatible_qualified_id &&
12735       PDecl && IFace && !IFace->hasDefinition())
12736       Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
12737         << IFace->getName() << PDecl->getName();
12738 
12739   if (SecondType == Context.OverloadTy)
12740     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
12741                               FirstType, /*TakingAddress=*/true);
12742 
12743   if (CheckInferredResultType)
12744     EmitRelatedResultTypeNote(SrcExpr);
12745 
12746   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
12747     EmitRelatedResultTypeNoteForReturn(DstType);
12748 
12749   if (Complained)
12750     *Complained = true;
12751   return isInvalid;
12752 }
12753 
12754 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12755                                                  llvm::APSInt *Result) {
12756   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
12757   public:
12758     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12759       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
12760     }
12761   } Diagnoser;
12762 
12763   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
12764 }
12765 
12766 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12767                                                  llvm::APSInt *Result,
12768                                                  unsigned DiagID,
12769                                                  bool AllowFold) {
12770   class IDDiagnoser : public VerifyICEDiagnoser {
12771     unsigned DiagID;
12772 
12773   public:
12774     IDDiagnoser(unsigned DiagID)
12775       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
12776 
12777     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12778       S.Diag(Loc, DiagID) << SR;
12779     }
12780   } Diagnoser(DiagID);
12781 
12782   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
12783 }
12784 
12785 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
12786                                             SourceRange SR) {
12787   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
12788 }
12789 
12790 ExprResult
12791 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12792                                       VerifyICEDiagnoser &Diagnoser,
12793                                       bool AllowFold) {
12794   SourceLocation DiagLoc = E->getLocStart();
12795 
12796   if (getLangOpts().CPlusPlus11) {
12797     // C++11 [expr.const]p5:
12798     //   If an expression of literal class type is used in a context where an
12799     //   integral constant expression is required, then that class type shall
12800     //   have a single non-explicit conversion function to an integral or
12801     //   unscoped enumeration type
12802     ExprResult Converted;
12803     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
12804     public:
12805       CXX11ConvertDiagnoser(bool Silent)
12806           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
12807                                 Silent, true) {}
12808 
12809       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
12810                                            QualType T) override {
12811         return S.Diag(Loc, diag::err_ice_not_integral) << T;
12812       }
12813 
12814       SemaDiagnosticBuilder diagnoseIncomplete(
12815           Sema &S, SourceLocation Loc, QualType T) override {
12816         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
12817       }
12818 
12819       SemaDiagnosticBuilder diagnoseExplicitConv(
12820           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12821         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
12822       }
12823 
12824       SemaDiagnosticBuilder noteExplicitConv(
12825           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12826         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12827                  << ConvTy->isEnumeralType() << ConvTy;
12828       }
12829 
12830       SemaDiagnosticBuilder diagnoseAmbiguous(
12831           Sema &S, SourceLocation Loc, QualType T) override {
12832         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
12833       }
12834 
12835       SemaDiagnosticBuilder noteAmbiguous(
12836           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12837         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12838                  << ConvTy->isEnumeralType() << ConvTy;
12839       }
12840 
12841       SemaDiagnosticBuilder diagnoseConversion(
12842           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12843         llvm_unreachable("conversion functions are permitted");
12844       }
12845     } ConvertDiagnoser(Diagnoser.Suppress);
12846 
12847     Converted = PerformContextualImplicitConversion(DiagLoc, E,
12848                                                     ConvertDiagnoser);
12849     if (Converted.isInvalid())
12850       return Converted;
12851     E = Converted.get();
12852     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
12853       return ExprError();
12854   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
12855     // An ICE must be of integral or unscoped enumeration type.
12856     if (!Diagnoser.Suppress)
12857       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12858     return ExprError();
12859   }
12860 
12861   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
12862   // in the non-ICE case.
12863   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
12864     if (Result)
12865       *Result = E->EvaluateKnownConstInt(Context);
12866     return E;
12867   }
12868 
12869   Expr::EvalResult EvalResult;
12870   SmallVector<PartialDiagnosticAt, 8> Notes;
12871   EvalResult.Diag = &Notes;
12872 
12873   // Try to evaluate the expression, and produce diagnostics explaining why it's
12874   // not a constant expression as a side-effect.
12875   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
12876                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
12877 
12878   // In C++11, we can rely on diagnostics being produced for any expression
12879   // which is not a constant expression. If no diagnostics were produced, then
12880   // this is a constant expression.
12881   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
12882     if (Result)
12883       *Result = EvalResult.Val.getInt();
12884     return E;
12885   }
12886 
12887   // If our only note is the usual "invalid subexpression" note, just point
12888   // the caret at its location rather than producing an essentially
12889   // redundant note.
12890   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12891         diag::note_invalid_subexpr_in_const_expr) {
12892     DiagLoc = Notes[0].first;
12893     Notes.clear();
12894   }
12895 
12896   if (!Folded || !AllowFold) {
12897     if (!Diagnoser.Suppress) {
12898       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12899       for (const PartialDiagnosticAt &Note : Notes)
12900         Diag(Note.first, Note.second);
12901     }
12902 
12903     return ExprError();
12904   }
12905 
12906   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
12907   for (const PartialDiagnosticAt &Note : Notes)
12908     Diag(Note.first, Note.second);
12909 
12910   if (Result)
12911     *Result = EvalResult.Val.getInt();
12912   return E;
12913 }
12914 
12915 namespace {
12916   // Handle the case where we conclude a expression which we speculatively
12917   // considered to be unevaluated is actually evaluated.
12918   class TransformToPE : public TreeTransform<TransformToPE> {
12919     typedef TreeTransform<TransformToPE> BaseTransform;
12920 
12921   public:
12922     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
12923 
12924     // Make sure we redo semantic analysis
12925     bool AlwaysRebuild() { return true; }
12926 
12927     // Make sure we handle LabelStmts correctly.
12928     // FIXME: This does the right thing, but maybe we need a more general
12929     // fix to TreeTransform?
12930     StmtResult TransformLabelStmt(LabelStmt *S) {
12931       S->getDecl()->setStmt(nullptr);
12932       return BaseTransform::TransformLabelStmt(S);
12933     }
12934 
12935     // We need to special-case DeclRefExprs referring to FieldDecls which
12936     // are not part of a member pointer formation; normal TreeTransforming
12937     // doesn't catch this case because of the way we represent them in the AST.
12938     // FIXME: This is a bit ugly; is it really the best way to handle this
12939     // case?
12940     //
12941     // Error on DeclRefExprs referring to FieldDecls.
12942     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
12943       if (isa<FieldDecl>(E->getDecl()) &&
12944           !SemaRef.isUnevaluatedContext())
12945         return SemaRef.Diag(E->getLocation(),
12946                             diag::err_invalid_non_static_member_use)
12947             << E->getDecl() << E->getSourceRange();
12948 
12949       return BaseTransform::TransformDeclRefExpr(E);
12950     }
12951 
12952     // Exception: filter out member pointer formation
12953     ExprResult TransformUnaryOperator(UnaryOperator *E) {
12954       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
12955         return E;
12956 
12957       return BaseTransform::TransformUnaryOperator(E);
12958     }
12959 
12960     ExprResult TransformLambdaExpr(LambdaExpr *E) {
12961       // Lambdas never need to be transformed.
12962       return E;
12963     }
12964   };
12965 }
12966 
12967 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
12968   assert(isUnevaluatedContext() &&
12969          "Should only transform unevaluated expressions");
12970   ExprEvalContexts.back().Context =
12971       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
12972   if (isUnevaluatedContext())
12973     return E;
12974   return TransformToPE(*this).TransformExpr(E);
12975 }
12976 
12977 void
12978 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12979                                       Decl *LambdaContextDecl,
12980                                       bool IsDecltype) {
12981   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
12982                                 LambdaContextDecl, IsDecltype);
12983   Cleanup.reset();
12984   if (!MaybeODRUseExprs.empty())
12985     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
12986 }
12987 
12988 void
12989 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12990                                       ReuseLambdaContextDecl_t,
12991                                       bool IsDecltype) {
12992   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
12993   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
12994 }
12995 
12996 void Sema::PopExpressionEvaluationContext() {
12997   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
12998   unsigned NumTypos = Rec.NumTypos;
12999 
13000   if (!Rec.Lambdas.empty()) {
13001     if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
13002       unsigned D;
13003       if (Rec.isUnevaluated()) {
13004         // C++11 [expr.prim.lambda]p2:
13005         //   A lambda-expression shall not appear in an unevaluated operand
13006         //   (Clause 5).
13007         D = diag::err_lambda_unevaluated_operand;
13008       } else {
13009         // C++1y [expr.const]p2:
13010         //   A conditional-expression e is a core constant expression unless the
13011         //   evaluation of e, following the rules of the abstract machine, would
13012         //   evaluate [...] a lambda-expression.
13013         D = diag::err_lambda_in_constant_expression;
13014       }
13015       for (const auto *L : Rec.Lambdas)
13016         Diag(L->getLocStart(), D);
13017     } else {
13018       // Mark the capture expressions odr-used. This was deferred
13019       // during lambda expression creation.
13020       for (auto *Lambda : Rec.Lambdas) {
13021         for (auto *C : Lambda->capture_inits())
13022           MarkDeclarationsReferencedInExpr(C);
13023       }
13024     }
13025   }
13026 
13027   // When are coming out of an unevaluated context, clear out any
13028   // temporaries that we may have created as part of the evaluation of
13029   // the expression in that context: they aren't relevant because they
13030   // will never be constructed.
13031   if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
13032     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
13033                              ExprCleanupObjects.end());
13034     Cleanup = Rec.ParentCleanup;
13035     CleanupVarDeclMarking();
13036     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
13037   // Otherwise, merge the contexts together.
13038   } else {
13039     Cleanup.mergeFrom(Rec.ParentCleanup);
13040     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
13041                             Rec.SavedMaybeODRUseExprs.end());
13042   }
13043 
13044   // Pop the current expression evaluation context off the stack.
13045   ExprEvalContexts.pop_back();
13046 
13047   if (!ExprEvalContexts.empty())
13048     ExprEvalContexts.back().NumTypos += NumTypos;
13049   else
13050     assert(NumTypos == 0 && "There are outstanding typos after popping the "
13051                             "last ExpressionEvaluationContextRecord");
13052 }
13053 
13054 void Sema::DiscardCleanupsInEvaluationContext() {
13055   ExprCleanupObjects.erase(
13056          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
13057          ExprCleanupObjects.end());
13058   Cleanup.reset();
13059   MaybeODRUseExprs.clear();
13060 }
13061 
13062 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
13063   if (!E->getType()->isVariablyModifiedType())
13064     return E;
13065   return TransformToPotentiallyEvaluated(E);
13066 }
13067 
13068 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
13069   // Do not mark anything as "used" within a dependent context; wait for
13070   // an instantiation.
13071   if (SemaRef.CurContext->isDependentContext())
13072     return false;
13073 
13074   switch (SemaRef.ExprEvalContexts.back().Context) {
13075     case Sema::Unevaluated:
13076     case Sema::UnevaluatedAbstract:
13077       // We are in an expression that is not potentially evaluated; do nothing.
13078       // (Depending on how you read the standard, we actually do need to do
13079       // something here for null pointer constants, but the standard's
13080       // definition of a null pointer constant is completely crazy.)
13081       return false;
13082 
13083     case Sema::DiscardedStatement:
13084       // These are technically a potentially evaluated but they have the effect
13085       // of suppressing use marking.
13086       return false;
13087 
13088     case Sema::ConstantEvaluated:
13089     case Sema::PotentiallyEvaluated:
13090       // We are in a potentially evaluated expression (or a constant-expression
13091       // in C++03); we need to do implicit template instantiation, implicitly
13092       // define class members, and mark most declarations as used.
13093       return true;
13094 
13095     case Sema::PotentiallyEvaluatedIfUsed:
13096       // Referenced declarations will only be used if the construct in the
13097       // containing expression is used.
13098       return false;
13099   }
13100   llvm_unreachable("Invalid context");
13101 }
13102 
13103 /// \brief Mark a function referenced, and check whether it is odr-used
13104 /// (C++ [basic.def.odr]p2, C99 6.9p3)
13105 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
13106                                   bool MightBeOdrUse) {
13107   assert(Func && "No function?");
13108 
13109   Func->setReferenced();
13110 
13111   // C++11 [basic.def.odr]p3:
13112   //   A function whose name appears as a potentially-evaluated expression is
13113   //   odr-used if it is the unique lookup result or the selected member of a
13114   //   set of overloaded functions [...].
13115   //
13116   // We (incorrectly) mark overload resolution as an unevaluated context, so we
13117   // can just check that here.
13118   bool OdrUse = MightBeOdrUse && IsPotentiallyEvaluatedContext(*this);
13119 
13120   // Determine whether we require a function definition to exist, per
13121   // C++11 [temp.inst]p3:
13122   //   Unless a function template specialization has been explicitly
13123   //   instantiated or explicitly specialized, the function template
13124   //   specialization is implicitly instantiated when the specialization is
13125   //   referenced in a context that requires a function definition to exist.
13126   //
13127   // We consider constexpr function templates to be referenced in a context
13128   // that requires a definition to exist whenever they are referenced.
13129   //
13130   // FIXME: This instantiates constexpr functions too frequently. If this is
13131   // really an unevaluated context (and we're not just in the definition of a
13132   // function template or overload resolution or other cases which we
13133   // incorrectly consider to be unevaluated contexts), and we're not in a
13134   // subexpression which we actually need to evaluate (for instance, a
13135   // template argument, array bound or an expression in a braced-init-list),
13136   // we are not permitted to instantiate this constexpr function definition.
13137   //
13138   // FIXME: This also implicitly defines special members too frequently. They
13139   // are only supposed to be implicitly defined if they are odr-used, but they
13140   // are not odr-used from constant expressions in unevaluated contexts.
13141   // However, they cannot be referenced if they are deleted, and they are
13142   // deleted whenever the implicit definition of the special member would
13143   // fail (with very few exceptions).
13144   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
13145   bool NeedDefinition =
13146       OdrUse || (Func->isConstexpr() && (Func->isImplicitlyInstantiable() ||
13147                                          (MD && !MD->isUserProvided())));
13148 
13149   // C++14 [temp.expl.spec]p6:
13150   //   If a template [...] is explicitly specialized then that specialization
13151   //   shall be declared before the first use of that specialization that would
13152   //   cause an implicit instantiation to take place, in every translation unit
13153   //   in which such a use occurs
13154   if (NeedDefinition &&
13155       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
13156        Func->getMemberSpecializationInfo()))
13157     checkSpecializationVisibility(Loc, Func);
13158 
13159   // C++14 [except.spec]p17:
13160   //   An exception-specification is considered to be needed when:
13161   //   - the function is odr-used or, if it appears in an unevaluated operand,
13162   //     would be odr-used if the expression were potentially-evaluated;
13163   //
13164   // Note, we do this even if MightBeOdrUse is false. That indicates that the
13165   // function is a pure virtual function we're calling, and in that case the
13166   // function was selected by overload resolution and we need to resolve its
13167   // exception specification for a different reason.
13168   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
13169   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
13170     ResolveExceptionSpec(Loc, FPT);
13171 
13172   // If we don't need to mark the function as used, and we don't need to
13173   // try to provide a definition, there's nothing more to do.
13174   if ((Func->isUsed(/*CheckUsedAttr=*/false) || !OdrUse) &&
13175       (!NeedDefinition || Func->getBody()))
13176     return;
13177 
13178   // Note that this declaration has been used.
13179   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
13180     Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
13181     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
13182       if (Constructor->isDefaultConstructor()) {
13183         if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
13184           return;
13185         DefineImplicitDefaultConstructor(Loc, Constructor);
13186       } else if (Constructor->isCopyConstructor()) {
13187         DefineImplicitCopyConstructor(Loc, Constructor);
13188       } else if (Constructor->isMoveConstructor()) {
13189         DefineImplicitMoveConstructor(Loc, Constructor);
13190       }
13191     } else if (Constructor->getInheritedConstructor()) {
13192       DefineInheritingConstructor(Loc, Constructor);
13193     }
13194   } else if (CXXDestructorDecl *Destructor =
13195                  dyn_cast<CXXDestructorDecl>(Func)) {
13196     Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
13197     if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
13198       if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
13199         return;
13200       DefineImplicitDestructor(Loc, Destructor);
13201     }
13202     if (Destructor->isVirtual() && getLangOpts().AppleKext)
13203       MarkVTableUsed(Loc, Destructor->getParent());
13204   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
13205     if (MethodDecl->isOverloadedOperator() &&
13206         MethodDecl->getOverloadedOperator() == OO_Equal) {
13207       MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
13208       if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
13209         if (MethodDecl->isCopyAssignmentOperator())
13210           DefineImplicitCopyAssignment(Loc, MethodDecl);
13211         else if (MethodDecl->isMoveAssignmentOperator())
13212           DefineImplicitMoveAssignment(Loc, MethodDecl);
13213       }
13214     } else if (isa<CXXConversionDecl>(MethodDecl) &&
13215                MethodDecl->getParent()->isLambda()) {
13216       CXXConversionDecl *Conversion =
13217           cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
13218       if (Conversion->isLambdaToBlockPointerConversion())
13219         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
13220       else
13221         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
13222     } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
13223       MarkVTableUsed(Loc, MethodDecl->getParent());
13224   }
13225 
13226   // Recursive functions should be marked when used from another function.
13227   // FIXME: Is this really right?
13228   if (CurContext == Func) return;
13229 
13230   // Implicit instantiation of function templates and member functions of
13231   // class templates.
13232   if (Func->isImplicitlyInstantiable()) {
13233     bool AlreadyInstantiated = false;
13234     SourceLocation PointOfInstantiation = Loc;
13235     if (FunctionTemplateSpecializationInfo *SpecInfo
13236                               = Func->getTemplateSpecializationInfo()) {
13237       if (SpecInfo->getPointOfInstantiation().isInvalid())
13238         SpecInfo->setPointOfInstantiation(Loc);
13239       else if (SpecInfo->getTemplateSpecializationKind()
13240                  == TSK_ImplicitInstantiation) {
13241         AlreadyInstantiated = true;
13242         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
13243       }
13244     } else if (MemberSpecializationInfo *MSInfo
13245                                 = Func->getMemberSpecializationInfo()) {
13246       if (MSInfo->getPointOfInstantiation().isInvalid())
13247         MSInfo->setPointOfInstantiation(Loc);
13248       else if (MSInfo->getTemplateSpecializationKind()
13249                  == TSK_ImplicitInstantiation) {
13250         AlreadyInstantiated = true;
13251         PointOfInstantiation = MSInfo->getPointOfInstantiation();
13252       }
13253     }
13254 
13255     if (!AlreadyInstantiated || Func->isConstexpr()) {
13256       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
13257           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
13258           ActiveTemplateInstantiations.size())
13259         PendingLocalImplicitInstantiations.push_back(
13260             std::make_pair(Func, PointOfInstantiation));
13261       else if (Func->isConstexpr())
13262         // Do not defer instantiations of constexpr functions, to avoid the
13263         // expression evaluator needing to call back into Sema if it sees a
13264         // call to such a function.
13265         InstantiateFunctionDefinition(PointOfInstantiation, Func);
13266       else {
13267         PendingInstantiations.push_back(std::make_pair(Func,
13268                                                        PointOfInstantiation));
13269         // Notify the consumer that a function was implicitly instantiated.
13270         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
13271       }
13272     }
13273   } else {
13274     // Walk redefinitions, as some of them may be instantiable.
13275     for (auto i : Func->redecls()) {
13276       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
13277         MarkFunctionReferenced(Loc, i, OdrUse);
13278     }
13279   }
13280 
13281   if (!OdrUse) return;
13282 
13283   // Keep track of used but undefined functions.
13284   if (!Func->isDefined()) {
13285     if (mightHaveNonExternalLinkage(Func))
13286       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
13287     else if (Func->getMostRecentDecl()->isInlined() &&
13288              !LangOpts.GNUInline &&
13289              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
13290       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
13291   }
13292 
13293   Func->markUsed(Context);
13294 }
13295 
13296 static void
13297 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
13298                                    ValueDecl *var, DeclContext *DC) {
13299   DeclContext *VarDC = var->getDeclContext();
13300 
13301   //  If the parameter still belongs to the translation unit, then
13302   //  we're actually just using one parameter in the declaration of
13303   //  the next.
13304   if (isa<ParmVarDecl>(var) &&
13305       isa<TranslationUnitDecl>(VarDC))
13306     return;
13307 
13308   // For C code, don't diagnose about capture if we're not actually in code
13309   // right now; it's impossible to write a non-constant expression outside of
13310   // function context, so we'll get other (more useful) diagnostics later.
13311   //
13312   // For C++, things get a bit more nasty... it would be nice to suppress this
13313   // diagnostic for certain cases like using a local variable in an array bound
13314   // for a member of a local class, but the correct predicate is not obvious.
13315   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
13316     return;
13317 
13318   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
13319   unsigned ContextKind = 3; // unknown
13320   if (isa<CXXMethodDecl>(VarDC) &&
13321       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
13322     ContextKind = 2;
13323   } else if (isa<FunctionDecl>(VarDC)) {
13324     ContextKind = 0;
13325   } else if (isa<BlockDecl>(VarDC)) {
13326     ContextKind = 1;
13327   }
13328 
13329   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
13330     << var << ValueKind << ContextKind << VarDC;
13331   S.Diag(var->getLocation(), diag::note_entity_declared_at)
13332       << var;
13333 
13334   // FIXME: Add additional diagnostic info about class etc. which prevents
13335   // capture.
13336 }
13337 
13338 
13339 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
13340                                       bool &SubCapturesAreNested,
13341                                       QualType &CaptureType,
13342                                       QualType &DeclRefType) {
13343    // Check whether we've already captured it.
13344   if (CSI->CaptureMap.count(Var)) {
13345     // If we found a capture, any subcaptures are nested.
13346     SubCapturesAreNested = true;
13347 
13348     // Retrieve the capture type for this variable.
13349     CaptureType = CSI->getCapture(Var).getCaptureType();
13350 
13351     // Compute the type of an expression that refers to this variable.
13352     DeclRefType = CaptureType.getNonReferenceType();
13353 
13354     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
13355     // are mutable in the sense that user can change their value - they are
13356     // private instances of the captured declarations.
13357     const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
13358     if (Cap.isCopyCapture() &&
13359         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
13360         !(isa<CapturedRegionScopeInfo>(CSI) &&
13361           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
13362       DeclRefType.addConst();
13363     return true;
13364   }
13365   return false;
13366 }
13367 
13368 // Only block literals, captured statements, and lambda expressions can
13369 // capture; other scopes don't work.
13370 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
13371                                  SourceLocation Loc,
13372                                  const bool Diagnose, Sema &S) {
13373   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
13374     return getLambdaAwareParentOfDeclContext(DC);
13375   else if (Var->hasLocalStorage()) {
13376     if (Diagnose)
13377        diagnoseUncapturableValueReference(S, Loc, Var, DC);
13378   }
13379   return nullptr;
13380 }
13381 
13382 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
13383 // certain types of variables (unnamed, variably modified types etc.)
13384 // so check for eligibility.
13385 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
13386                                  SourceLocation Loc,
13387                                  const bool Diagnose, Sema &S) {
13388 
13389   bool IsBlock = isa<BlockScopeInfo>(CSI);
13390   bool IsLambda = isa<LambdaScopeInfo>(CSI);
13391 
13392   // Lambdas are not allowed to capture unnamed variables
13393   // (e.g. anonymous unions).
13394   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
13395   // assuming that's the intent.
13396   if (IsLambda && !Var->getDeclName()) {
13397     if (Diagnose) {
13398       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
13399       S.Diag(Var->getLocation(), diag::note_declared_at);
13400     }
13401     return false;
13402   }
13403 
13404   // Prohibit variably-modified types in blocks; they're difficult to deal with.
13405   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
13406     if (Diagnose) {
13407       S.Diag(Loc, diag::err_ref_vm_type);
13408       S.Diag(Var->getLocation(), diag::note_previous_decl)
13409         << Var->getDeclName();
13410     }
13411     return false;
13412   }
13413   // Prohibit structs with flexible array members too.
13414   // We cannot capture what is in the tail end of the struct.
13415   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
13416     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
13417       if (Diagnose) {
13418         if (IsBlock)
13419           S.Diag(Loc, diag::err_ref_flexarray_type);
13420         else
13421           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
13422             << Var->getDeclName();
13423         S.Diag(Var->getLocation(), diag::note_previous_decl)
13424           << Var->getDeclName();
13425       }
13426       return false;
13427     }
13428   }
13429   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
13430   // Lambdas and captured statements are not allowed to capture __block
13431   // variables; they don't support the expected semantics.
13432   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
13433     if (Diagnose) {
13434       S.Diag(Loc, diag::err_capture_block_variable)
13435         << Var->getDeclName() << !IsLambda;
13436       S.Diag(Var->getLocation(), diag::note_previous_decl)
13437         << Var->getDeclName();
13438     }
13439     return false;
13440   }
13441 
13442   return true;
13443 }
13444 
13445 // Returns true if the capture by block was successful.
13446 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
13447                                  SourceLocation Loc,
13448                                  const bool BuildAndDiagnose,
13449                                  QualType &CaptureType,
13450                                  QualType &DeclRefType,
13451                                  const bool Nested,
13452                                  Sema &S) {
13453   Expr *CopyExpr = nullptr;
13454   bool ByRef = false;
13455 
13456   // Blocks are not allowed to capture arrays.
13457   if (CaptureType->isArrayType()) {
13458     if (BuildAndDiagnose) {
13459       S.Diag(Loc, diag::err_ref_array_type);
13460       S.Diag(Var->getLocation(), diag::note_previous_decl)
13461       << Var->getDeclName();
13462     }
13463     return false;
13464   }
13465 
13466   // Forbid the block-capture of autoreleasing variables.
13467   if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
13468     if (BuildAndDiagnose) {
13469       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
13470         << /*block*/ 0;
13471       S.Diag(Var->getLocation(), diag::note_previous_decl)
13472         << Var->getDeclName();
13473     }
13474     return false;
13475   }
13476   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
13477   if (HasBlocksAttr || CaptureType->isReferenceType() ||
13478       (S.getLangOpts().OpenMP && S.IsOpenMPCapturedDecl(Var))) {
13479     // Block capture by reference does not change the capture or
13480     // declaration reference types.
13481     ByRef = true;
13482   } else {
13483     // Block capture by copy introduces 'const'.
13484     CaptureType = CaptureType.getNonReferenceType().withConst();
13485     DeclRefType = CaptureType;
13486 
13487     if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
13488       if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
13489         // The capture logic needs the destructor, so make sure we mark it.
13490         // Usually this is unnecessary because most local variables have
13491         // their destructors marked at declaration time, but parameters are
13492         // an exception because it's technically only the call site that
13493         // actually requires the destructor.
13494         if (isa<ParmVarDecl>(Var))
13495           S.FinalizeVarWithDestructor(Var, Record);
13496 
13497         // Enter a new evaluation context to insulate the copy
13498         // full-expression.
13499         EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
13500 
13501         // According to the blocks spec, the capture of a variable from
13502         // the stack requires a const copy constructor.  This is not true
13503         // of the copy/move done to move a __block variable to the heap.
13504         Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
13505                                                   DeclRefType.withConst(),
13506                                                   VK_LValue, Loc);
13507 
13508         ExprResult Result
13509           = S.PerformCopyInitialization(
13510               InitializedEntity::InitializeBlock(Var->getLocation(),
13511                                                   CaptureType, false),
13512               Loc, DeclRef);
13513 
13514         // Build a full-expression copy expression if initialization
13515         // succeeded and used a non-trivial constructor.  Recover from
13516         // errors by pretending that the copy isn't necessary.
13517         if (!Result.isInvalid() &&
13518             !cast<CXXConstructExpr>(Result.get())->getConstructor()
13519                 ->isTrivial()) {
13520           Result = S.MaybeCreateExprWithCleanups(Result);
13521           CopyExpr = Result.get();
13522         }
13523       }
13524     }
13525   }
13526 
13527   // Actually capture the variable.
13528   if (BuildAndDiagnose)
13529     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
13530                     SourceLocation(), CaptureType, CopyExpr);
13531 
13532   return true;
13533 
13534 }
13535 
13536 
13537 /// \brief Capture the given variable in the captured region.
13538 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
13539                                     VarDecl *Var,
13540                                     SourceLocation Loc,
13541                                     const bool BuildAndDiagnose,
13542                                     QualType &CaptureType,
13543                                     QualType &DeclRefType,
13544                                     const bool RefersToCapturedVariable,
13545                                     Sema &S) {
13546   // By default, capture variables by reference.
13547   bool ByRef = true;
13548   // Using an LValue reference type is consistent with Lambdas (see below).
13549   if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
13550     if (S.IsOpenMPCapturedDecl(Var))
13551       DeclRefType = DeclRefType.getUnqualifiedType();
13552     ByRef = S.IsOpenMPCapturedByRef(Var, RSI->OpenMPLevel);
13553   }
13554 
13555   if (ByRef)
13556     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
13557   else
13558     CaptureType = DeclRefType;
13559 
13560   Expr *CopyExpr = nullptr;
13561   if (BuildAndDiagnose) {
13562     // The current implementation assumes that all variables are captured
13563     // by references. Since there is no capture by copy, no expression
13564     // evaluation will be needed.
13565     RecordDecl *RD = RSI->TheRecordDecl;
13566 
13567     FieldDecl *Field
13568       = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
13569                           S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
13570                           nullptr, false, ICIS_NoInit);
13571     Field->setImplicit(true);
13572     Field->setAccess(AS_private);
13573     RD->addDecl(Field);
13574 
13575     CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
13576                                             DeclRefType, VK_LValue, Loc);
13577     Var->setReferenced(true);
13578     Var->markUsed(S.Context);
13579   }
13580 
13581   // Actually capture the variable.
13582   if (BuildAndDiagnose)
13583     RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
13584                     SourceLocation(), CaptureType, CopyExpr);
13585 
13586 
13587   return true;
13588 }
13589 
13590 /// \brief Create a field within the lambda class for the variable
13591 /// being captured.
13592 static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI,
13593                                     QualType FieldType, QualType DeclRefType,
13594                                     SourceLocation Loc,
13595                                     bool RefersToCapturedVariable) {
13596   CXXRecordDecl *Lambda = LSI->Lambda;
13597 
13598   // Build the non-static data member.
13599   FieldDecl *Field
13600     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
13601                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
13602                         nullptr, false, ICIS_NoInit);
13603   Field->setImplicit(true);
13604   Field->setAccess(AS_private);
13605   Lambda->addDecl(Field);
13606 }
13607 
13608 /// \brief Capture the given variable in the lambda.
13609 static bool captureInLambda(LambdaScopeInfo *LSI,
13610                             VarDecl *Var,
13611                             SourceLocation Loc,
13612                             const bool BuildAndDiagnose,
13613                             QualType &CaptureType,
13614                             QualType &DeclRefType,
13615                             const bool RefersToCapturedVariable,
13616                             const Sema::TryCaptureKind Kind,
13617                             SourceLocation EllipsisLoc,
13618                             const bool IsTopScope,
13619                             Sema &S) {
13620 
13621   // Determine whether we are capturing by reference or by value.
13622   bool ByRef = false;
13623   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
13624     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
13625   } else {
13626     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
13627   }
13628 
13629   // Compute the type of the field that will capture this variable.
13630   if (ByRef) {
13631     // C++11 [expr.prim.lambda]p15:
13632     //   An entity is captured by reference if it is implicitly or
13633     //   explicitly captured but not captured by copy. It is
13634     //   unspecified whether additional unnamed non-static data
13635     //   members are declared in the closure type for entities
13636     //   captured by reference.
13637     //
13638     // FIXME: It is not clear whether we want to build an lvalue reference
13639     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
13640     // to do the former, while EDG does the latter. Core issue 1249 will
13641     // clarify, but for now we follow GCC because it's a more permissive and
13642     // easily defensible position.
13643     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
13644   } else {
13645     // C++11 [expr.prim.lambda]p14:
13646     //   For each entity captured by copy, an unnamed non-static
13647     //   data member is declared in the closure type. The
13648     //   declaration order of these members is unspecified. The type
13649     //   of such a data member is the type of the corresponding
13650     //   captured entity if the entity is not a reference to an
13651     //   object, or the referenced type otherwise. [Note: If the
13652     //   captured entity is a reference to a function, the
13653     //   corresponding data member is also a reference to a
13654     //   function. - end note ]
13655     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
13656       if (!RefType->getPointeeType()->isFunctionType())
13657         CaptureType = RefType->getPointeeType();
13658     }
13659 
13660     // Forbid the lambda copy-capture of autoreleasing variables.
13661     if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
13662       if (BuildAndDiagnose) {
13663         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
13664         S.Diag(Var->getLocation(), diag::note_previous_decl)
13665           << Var->getDeclName();
13666       }
13667       return false;
13668     }
13669 
13670     // Make sure that by-copy captures are of a complete and non-abstract type.
13671     if (BuildAndDiagnose) {
13672       if (!CaptureType->isDependentType() &&
13673           S.RequireCompleteType(Loc, CaptureType,
13674                                 diag::err_capture_of_incomplete_type,
13675                                 Var->getDeclName()))
13676         return false;
13677 
13678       if (S.RequireNonAbstractType(Loc, CaptureType,
13679                                    diag::err_capture_of_abstract_type))
13680         return false;
13681     }
13682   }
13683 
13684   // Capture this variable in the lambda.
13685   if (BuildAndDiagnose)
13686     addAsFieldToClosureType(S, LSI, CaptureType, DeclRefType, Loc,
13687                             RefersToCapturedVariable);
13688 
13689   // Compute the type of a reference to this captured variable.
13690   if (ByRef)
13691     DeclRefType = CaptureType.getNonReferenceType();
13692   else {
13693     // C++ [expr.prim.lambda]p5:
13694     //   The closure type for a lambda-expression has a public inline
13695     //   function call operator [...]. This function call operator is
13696     //   declared const (9.3.1) if and only if the lambda-expression's
13697     //   parameter-declaration-clause is not followed by mutable.
13698     DeclRefType = CaptureType.getNonReferenceType();
13699     if (!LSI->Mutable && !CaptureType->isReferenceType())
13700       DeclRefType.addConst();
13701   }
13702 
13703   // Add the capture.
13704   if (BuildAndDiagnose)
13705     LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
13706                     Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
13707 
13708   return true;
13709 }
13710 
13711 bool Sema::tryCaptureVariable(
13712     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
13713     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
13714     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
13715   // An init-capture is notionally from the context surrounding its
13716   // declaration, but its parent DC is the lambda class.
13717   DeclContext *VarDC = Var->getDeclContext();
13718   if (Var->isInitCapture())
13719     VarDC = VarDC->getParent();
13720 
13721   DeclContext *DC = CurContext;
13722   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
13723       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
13724   // We need to sync up the Declaration Context with the
13725   // FunctionScopeIndexToStopAt
13726   if (FunctionScopeIndexToStopAt) {
13727     unsigned FSIndex = FunctionScopes.size() - 1;
13728     while (FSIndex != MaxFunctionScopesIndex) {
13729       DC = getLambdaAwareParentOfDeclContext(DC);
13730       --FSIndex;
13731     }
13732   }
13733 
13734 
13735   // If the variable is declared in the current context, there is no need to
13736   // capture it.
13737   if (VarDC == DC) return true;
13738 
13739   // Capture global variables if it is required to use private copy of this
13740   // variable.
13741   bool IsGlobal = !Var->hasLocalStorage();
13742   if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedDecl(Var)))
13743     return true;
13744 
13745   // Walk up the stack to determine whether we can capture the variable,
13746   // performing the "simple" checks that don't depend on type. We stop when
13747   // we've either hit the declared scope of the variable or find an existing
13748   // capture of that variable.  We start from the innermost capturing-entity
13749   // (the DC) and ensure that all intervening capturing-entities
13750   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
13751   // declcontext can either capture the variable or have already captured
13752   // the variable.
13753   CaptureType = Var->getType();
13754   DeclRefType = CaptureType.getNonReferenceType();
13755   bool Nested = false;
13756   bool Explicit = (Kind != TryCapture_Implicit);
13757   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
13758   do {
13759     // Only block literals, captured statements, and lambda expressions can
13760     // capture; other scopes don't work.
13761     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
13762                                                               ExprLoc,
13763                                                               BuildAndDiagnose,
13764                                                               *this);
13765     // We need to check for the parent *first* because, if we *have*
13766     // private-captured a global variable, we need to recursively capture it in
13767     // intermediate blocks, lambdas, etc.
13768     if (!ParentDC) {
13769       if (IsGlobal) {
13770         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
13771         break;
13772       }
13773       return true;
13774     }
13775 
13776     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
13777     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
13778 
13779 
13780     // Check whether we've already captured it.
13781     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
13782                                              DeclRefType))
13783       break;
13784     // If we are instantiating a generic lambda call operator body,
13785     // we do not want to capture new variables.  What was captured
13786     // during either a lambdas transformation or initial parsing
13787     // should be used.
13788     if (isGenericLambdaCallOperatorSpecialization(DC)) {
13789       if (BuildAndDiagnose) {
13790         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13791         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
13792           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13793           Diag(Var->getLocation(), diag::note_previous_decl)
13794              << Var->getDeclName();
13795           Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
13796         } else
13797           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
13798       }
13799       return true;
13800     }
13801     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
13802     // certain types of variables (unnamed, variably modified types etc.)
13803     // so check for eligibility.
13804     if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
13805        return true;
13806 
13807     // Try to capture variable-length arrays types.
13808     if (Var->getType()->isVariablyModifiedType()) {
13809       // We're going to walk down into the type and look for VLA
13810       // expressions.
13811       QualType QTy = Var->getType();
13812       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
13813         QTy = PVD->getOriginalType();
13814       captureVariablyModifiedType(Context, QTy, CSI);
13815     }
13816 
13817     if (getLangOpts().OpenMP) {
13818       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13819         // OpenMP private variables should not be captured in outer scope, so
13820         // just break here. Similarly, global variables that are captured in a
13821         // target region should not be captured outside the scope of the region.
13822         if (RSI->CapRegionKind == CR_OpenMP) {
13823           auto IsTargetCap = isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
13824           // When we detect target captures we are looking from inside the
13825           // target region, therefore we need to propagate the capture from the
13826           // enclosing region. Therefore, the capture is not initially nested.
13827           if (IsTargetCap)
13828             FunctionScopesIndex--;
13829 
13830           if (IsTargetCap || isOpenMPPrivateDecl(Var, RSI->OpenMPLevel)) {
13831             Nested = !IsTargetCap;
13832             DeclRefType = DeclRefType.getUnqualifiedType();
13833             CaptureType = Context.getLValueReferenceType(DeclRefType);
13834             break;
13835           }
13836         }
13837       }
13838     }
13839     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
13840       // No capture-default, and this is not an explicit capture
13841       // so cannot capture this variable.
13842       if (BuildAndDiagnose) {
13843         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13844         Diag(Var->getLocation(), diag::note_previous_decl)
13845           << Var->getDeclName();
13846         if (cast<LambdaScopeInfo>(CSI)->Lambda)
13847           Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
13848                diag::note_lambda_decl);
13849         // FIXME: If we error out because an outer lambda can not implicitly
13850         // capture a variable that an inner lambda explicitly captures, we
13851         // should have the inner lambda do the explicit capture - because
13852         // it makes for cleaner diagnostics later.  This would purely be done
13853         // so that the diagnostic does not misleadingly claim that a variable
13854         // can not be captured by a lambda implicitly even though it is captured
13855         // explicitly.  Suggestion:
13856         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
13857         //    at the function head
13858         //  - cache the StartingDeclContext - this must be a lambda
13859         //  - captureInLambda in the innermost lambda the variable.
13860       }
13861       return true;
13862     }
13863 
13864     FunctionScopesIndex--;
13865     DC = ParentDC;
13866     Explicit = false;
13867   } while (!VarDC->Equals(DC));
13868 
13869   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
13870   // computing the type of the capture at each step, checking type-specific
13871   // requirements, and adding captures if requested.
13872   // If the variable had already been captured previously, we start capturing
13873   // at the lambda nested within that one.
13874   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
13875        ++I) {
13876     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
13877 
13878     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
13879       if (!captureInBlock(BSI, Var, ExprLoc,
13880                           BuildAndDiagnose, CaptureType,
13881                           DeclRefType, Nested, *this))
13882         return true;
13883       Nested = true;
13884     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13885       if (!captureInCapturedRegion(RSI, Var, ExprLoc,
13886                                    BuildAndDiagnose, CaptureType,
13887                                    DeclRefType, Nested, *this))
13888         return true;
13889       Nested = true;
13890     } else {
13891       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13892       if (!captureInLambda(LSI, Var, ExprLoc,
13893                            BuildAndDiagnose, CaptureType,
13894                            DeclRefType, Nested, Kind, EllipsisLoc,
13895                             /*IsTopScope*/I == N - 1, *this))
13896         return true;
13897       Nested = true;
13898     }
13899   }
13900   return false;
13901 }
13902 
13903 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
13904                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
13905   QualType CaptureType;
13906   QualType DeclRefType;
13907   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
13908                             /*BuildAndDiagnose=*/true, CaptureType,
13909                             DeclRefType, nullptr);
13910 }
13911 
13912 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
13913   QualType CaptureType;
13914   QualType DeclRefType;
13915   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13916                              /*BuildAndDiagnose=*/false, CaptureType,
13917                              DeclRefType, nullptr);
13918 }
13919 
13920 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
13921   QualType CaptureType;
13922   QualType DeclRefType;
13923 
13924   // Determine whether we can capture this variable.
13925   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13926                          /*BuildAndDiagnose=*/false, CaptureType,
13927                          DeclRefType, nullptr))
13928     return QualType();
13929 
13930   return DeclRefType;
13931 }
13932 
13933 
13934 
13935 // If either the type of the variable or the initializer is dependent,
13936 // return false. Otherwise, determine whether the variable is a constant
13937 // expression. Use this if you need to know if a variable that might or
13938 // might not be dependent is truly a constant expression.
13939 static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
13940     ASTContext &Context) {
13941 
13942   if (Var->getType()->isDependentType())
13943     return false;
13944   const VarDecl *DefVD = nullptr;
13945   Var->getAnyInitializer(DefVD);
13946   if (!DefVD)
13947     return false;
13948   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
13949   Expr *Init = cast<Expr>(Eval->Value);
13950   if (Init->isValueDependent())
13951     return false;
13952   return IsVariableAConstantExpression(Var, Context);
13953 }
13954 
13955 
13956 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
13957   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
13958   // an object that satisfies the requirements for appearing in a
13959   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
13960   // is immediately applied."  This function handles the lvalue-to-rvalue
13961   // conversion part.
13962   MaybeODRUseExprs.erase(E->IgnoreParens());
13963 
13964   // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
13965   // to a variable that is a constant expression, and if so, identify it as
13966   // a reference to a variable that does not involve an odr-use of that
13967   // variable.
13968   if (LambdaScopeInfo *LSI = getCurLambda()) {
13969     Expr *SansParensExpr = E->IgnoreParens();
13970     VarDecl *Var = nullptr;
13971     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
13972       Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
13973     else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
13974       Var = dyn_cast<VarDecl>(ME->getMemberDecl());
13975 
13976     if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
13977       LSI->markVariableExprAsNonODRUsed(SansParensExpr);
13978   }
13979 }
13980 
13981 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
13982   Res = CorrectDelayedTyposInExpr(Res);
13983 
13984   if (!Res.isUsable())
13985     return Res;
13986 
13987   // If a constant-expression is a reference to a variable where we delay
13988   // deciding whether it is an odr-use, just assume we will apply the
13989   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
13990   // (a non-type template argument), we have special handling anyway.
13991   UpdateMarkingForLValueToRValue(Res.get());
13992   return Res;
13993 }
13994 
13995 void Sema::CleanupVarDeclMarking() {
13996   for (Expr *E : MaybeODRUseExprs) {
13997     VarDecl *Var;
13998     SourceLocation Loc;
13999     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14000       Var = cast<VarDecl>(DRE->getDecl());
14001       Loc = DRE->getLocation();
14002     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14003       Var = cast<VarDecl>(ME->getMemberDecl());
14004       Loc = ME->getMemberLoc();
14005     } else {
14006       llvm_unreachable("Unexpected expression");
14007     }
14008 
14009     MarkVarDeclODRUsed(Var, Loc, *this,
14010                        /*MaxFunctionScopeIndex Pointer*/ nullptr);
14011   }
14012 
14013   MaybeODRUseExprs.clear();
14014 }
14015 
14016 
14017 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
14018                                     VarDecl *Var, Expr *E) {
14019   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
14020          "Invalid Expr argument to DoMarkVarDeclReferenced");
14021   Var->setReferenced();
14022 
14023   TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
14024   bool MarkODRUsed = true;
14025 
14026   // If the context is not potentially evaluated, this is not an odr-use and
14027   // does not trigger instantiation.
14028   if (!IsPotentiallyEvaluatedContext(SemaRef)) {
14029     if (SemaRef.isUnevaluatedContext())
14030       return;
14031 
14032     // If we don't yet know whether this context is going to end up being an
14033     // evaluated context, and we're referencing a variable from an enclosing
14034     // scope, add a potential capture.
14035     //
14036     // FIXME: Is this necessary? These contexts are only used for default
14037     // arguments, where local variables can't be used.
14038     const bool RefersToEnclosingScope =
14039         (SemaRef.CurContext != Var->getDeclContext() &&
14040          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
14041     if (RefersToEnclosingScope) {
14042       if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
14043         // If a variable could potentially be odr-used, defer marking it so
14044         // until we finish analyzing the full expression for any
14045         // lvalue-to-rvalue
14046         // or discarded value conversions that would obviate odr-use.
14047         // Add it to the list of potential captures that will be analyzed
14048         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
14049         // unless the variable is a reference that was initialized by a constant
14050         // expression (this will never need to be captured or odr-used).
14051         assert(E && "Capture variable should be used in an expression.");
14052         if (!Var->getType()->isReferenceType() ||
14053             !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
14054           LSI->addPotentialCapture(E->IgnoreParens());
14055       }
14056     }
14057 
14058     if (!isTemplateInstantiation(TSK))
14059       return;
14060 
14061     // Instantiate, but do not mark as odr-used, variable templates.
14062     MarkODRUsed = false;
14063   }
14064 
14065   VarTemplateSpecializationDecl *VarSpec =
14066       dyn_cast<VarTemplateSpecializationDecl>(Var);
14067   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
14068          "Can't instantiate a partial template specialization.");
14069 
14070   // If this might be a member specialization of a static data member, check
14071   // the specialization is visible. We already did the checks for variable
14072   // template specializations when we created them.
14073   if (TSK != TSK_Undeclared && !isa<VarTemplateSpecializationDecl>(Var))
14074     SemaRef.checkSpecializationVisibility(Loc, Var);
14075 
14076   // Perform implicit instantiation of static data members, static data member
14077   // templates of class templates, and variable template specializations. Delay
14078   // instantiations of variable templates, except for those that could be used
14079   // in a constant expression.
14080   if (isTemplateInstantiation(TSK)) {
14081     bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
14082 
14083     if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
14084       if (Var->getPointOfInstantiation().isInvalid()) {
14085         // This is a modification of an existing AST node. Notify listeners.
14086         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
14087           L->StaticDataMemberInstantiated(Var);
14088       } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
14089         // Don't bother trying to instantiate it again, unless we might need
14090         // its initializer before we get to the end of the TU.
14091         TryInstantiating = false;
14092     }
14093 
14094     if (Var->getPointOfInstantiation().isInvalid())
14095       Var->setTemplateSpecializationKind(TSK, Loc);
14096 
14097     if (TryInstantiating) {
14098       SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
14099       bool InstantiationDependent = false;
14100       bool IsNonDependent =
14101           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
14102                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
14103                   : true;
14104 
14105       // Do not instantiate specializations that are still type-dependent.
14106       if (IsNonDependent) {
14107         if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
14108           // Do not defer instantiations of variables which could be used in a
14109           // constant expression.
14110           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
14111         } else {
14112           SemaRef.PendingInstantiations
14113               .push_back(std::make_pair(Var, PointOfInstantiation));
14114         }
14115       }
14116     }
14117   }
14118 
14119   if (!MarkODRUsed)
14120     return;
14121 
14122   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
14123   // the requirements for appearing in a constant expression (5.19) and, if
14124   // it is an object, the lvalue-to-rvalue conversion (4.1)
14125   // is immediately applied."  We check the first part here, and
14126   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
14127   // Note that we use the C++11 definition everywhere because nothing in
14128   // C++03 depends on whether we get the C++03 version correct. The second
14129   // part does not apply to references, since they are not objects.
14130   if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
14131     // A reference initialized by a constant expression can never be
14132     // odr-used, so simply ignore it.
14133     if (!Var->getType()->isReferenceType())
14134       SemaRef.MaybeODRUseExprs.insert(E);
14135   } else
14136     MarkVarDeclODRUsed(Var, Loc, SemaRef,
14137                        /*MaxFunctionScopeIndex ptr*/ nullptr);
14138 }
14139 
14140 /// \brief Mark a variable referenced, and check whether it is odr-used
14141 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
14142 /// used directly for normal expressions referring to VarDecl.
14143 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
14144   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
14145 }
14146 
14147 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
14148                                Decl *D, Expr *E, bool MightBeOdrUse) {
14149   if (SemaRef.isInOpenMPDeclareTargetContext())
14150     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
14151 
14152   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
14153     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
14154     return;
14155   }
14156 
14157   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
14158 
14159   // If this is a call to a method via a cast, also mark the method in the
14160   // derived class used in case codegen can devirtualize the call.
14161   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
14162   if (!ME)
14163     return;
14164   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
14165   if (!MD)
14166     return;
14167   // Only attempt to devirtualize if this is truly a virtual call.
14168   bool IsVirtualCall = MD->isVirtual() &&
14169                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
14170   if (!IsVirtualCall)
14171     return;
14172   const Expr *Base = ME->getBase();
14173   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
14174   if (!MostDerivedClassDecl)
14175     return;
14176   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
14177   if (!DM || DM->isPure())
14178     return;
14179   SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
14180 }
14181 
14182 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
14183 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
14184   // TODO: update this with DR# once a defect report is filed.
14185   // C++11 defect. The address of a pure member should not be an ODR use, even
14186   // if it's a qualified reference.
14187   bool OdrUse = true;
14188   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
14189     if (Method->isVirtual())
14190       OdrUse = false;
14191   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
14192 }
14193 
14194 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
14195 void Sema::MarkMemberReferenced(MemberExpr *E) {
14196   // C++11 [basic.def.odr]p2:
14197   //   A non-overloaded function whose name appears as a potentially-evaluated
14198   //   expression or a member of a set of candidate functions, if selected by
14199   //   overload resolution when referred to from a potentially-evaluated
14200   //   expression, is odr-used, unless it is a pure virtual function and its
14201   //   name is not explicitly qualified.
14202   bool MightBeOdrUse = true;
14203   if (E->performsVirtualDispatch(getLangOpts())) {
14204     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
14205       if (Method->isPure())
14206         MightBeOdrUse = false;
14207   }
14208   SourceLocation Loc = E->getMemberLoc().isValid() ?
14209                             E->getMemberLoc() : E->getLocStart();
14210   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
14211 }
14212 
14213 /// \brief Perform marking for a reference to an arbitrary declaration.  It
14214 /// marks the declaration referenced, and performs odr-use checking for
14215 /// functions and variables. This method should not be used when building a
14216 /// normal expression which refers to a variable.
14217 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
14218                                  bool MightBeOdrUse) {
14219   if (MightBeOdrUse) {
14220     if (auto *VD = dyn_cast<VarDecl>(D)) {
14221       MarkVariableReferenced(Loc, VD);
14222       return;
14223     }
14224   }
14225   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
14226     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
14227     return;
14228   }
14229   D->setReferenced();
14230 }
14231 
14232 namespace {
14233   // Mark all of the declarations referenced
14234   // FIXME: Not fully implemented yet! We need to have a better understanding
14235   // of when we're entering
14236   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
14237     Sema &S;
14238     SourceLocation Loc;
14239 
14240   public:
14241     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
14242 
14243     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
14244 
14245     bool TraverseTemplateArgument(const TemplateArgument &Arg);
14246     bool TraverseRecordType(RecordType *T);
14247   };
14248 }
14249 
14250 bool MarkReferencedDecls::TraverseTemplateArgument(
14251     const TemplateArgument &Arg) {
14252   if (Arg.getKind() == TemplateArgument::Declaration) {
14253     if (Decl *D = Arg.getAsDecl())
14254       S.MarkAnyDeclReferenced(Loc, D, true);
14255   }
14256 
14257   return Inherited::TraverseTemplateArgument(Arg);
14258 }
14259 
14260 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
14261   if (ClassTemplateSpecializationDecl *Spec
14262                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
14263     const TemplateArgumentList &Args = Spec->getTemplateArgs();
14264     return TraverseTemplateArguments(Args.data(), Args.size());
14265   }
14266 
14267   return true;
14268 }
14269 
14270 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
14271   MarkReferencedDecls Marker(*this, Loc);
14272   Marker.TraverseType(Context.getCanonicalType(T));
14273 }
14274 
14275 namespace {
14276   /// \brief Helper class that marks all of the declarations referenced by
14277   /// potentially-evaluated subexpressions as "referenced".
14278   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
14279     Sema &S;
14280     bool SkipLocalVariables;
14281 
14282   public:
14283     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
14284 
14285     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
14286       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
14287 
14288     void VisitDeclRefExpr(DeclRefExpr *E) {
14289       // If we were asked not to visit local variables, don't.
14290       if (SkipLocalVariables) {
14291         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
14292           if (VD->hasLocalStorage())
14293             return;
14294       }
14295 
14296       S.MarkDeclRefReferenced(E);
14297     }
14298 
14299     void VisitMemberExpr(MemberExpr *E) {
14300       S.MarkMemberReferenced(E);
14301       Inherited::VisitMemberExpr(E);
14302     }
14303 
14304     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
14305       S.MarkFunctionReferenced(E->getLocStart(),
14306             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
14307       Visit(E->getSubExpr());
14308     }
14309 
14310     void VisitCXXNewExpr(CXXNewExpr *E) {
14311       if (E->getOperatorNew())
14312         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
14313       if (E->getOperatorDelete())
14314         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
14315       Inherited::VisitCXXNewExpr(E);
14316     }
14317 
14318     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
14319       if (E->getOperatorDelete())
14320         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
14321       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
14322       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
14323         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
14324         S.MarkFunctionReferenced(E->getLocStart(),
14325                                     S.LookupDestructor(Record));
14326       }
14327 
14328       Inherited::VisitCXXDeleteExpr(E);
14329     }
14330 
14331     void VisitCXXConstructExpr(CXXConstructExpr *E) {
14332       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
14333       Inherited::VisitCXXConstructExpr(E);
14334     }
14335 
14336     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
14337       Visit(E->getExpr());
14338     }
14339 
14340     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
14341       Inherited::VisitImplicitCastExpr(E);
14342 
14343       if (E->getCastKind() == CK_LValueToRValue)
14344         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
14345     }
14346   };
14347 }
14348 
14349 /// \brief Mark any declarations that appear within this expression or any
14350 /// potentially-evaluated subexpressions as "referenced".
14351 ///
14352 /// \param SkipLocalVariables If true, don't mark local variables as
14353 /// 'referenced'.
14354 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
14355                                             bool SkipLocalVariables) {
14356   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
14357 }
14358 
14359 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
14360 /// of the program being compiled.
14361 ///
14362 /// This routine emits the given diagnostic when the code currently being
14363 /// type-checked is "potentially evaluated", meaning that there is a
14364 /// possibility that the code will actually be executable. Code in sizeof()
14365 /// expressions, code used only during overload resolution, etc., are not
14366 /// potentially evaluated. This routine will suppress such diagnostics or,
14367 /// in the absolutely nutty case of potentially potentially evaluated
14368 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
14369 /// later.
14370 ///
14371 /// This routine should be used for all diagnostics that describe the run-time
14372 /// behavior of a program, such as passing a non-POD value through an ellipsis.
14373 /// Failure to do so will likely result in spurious diagnostics or failures
14374 /// during overload resolution or within sizeof/alignof/typeof/typeid.
14375 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
14376                                const PartialDiagnostic &PD) {
14377   switch (ExprEvalContexts.back().Context) {
14378   case Unevaluated:
14379   case UnevaluatedAbstract:
14380   case DiscardedStatement:
14381     // The argument will never be evaluated, so don't complain.
14382     break;
14383 
14384   case ConstantEvaluated:
14385     // Relevant diagnostics should be produced by constant evaluation.
14386     break;
14387 
14388   case PotentiallyEvaluated:
14389   case PotentiallyEvaluatedIfUsed:
14390     if (Statement && getCurFunctionOrMethodDecl()) {
14391       FunctionScopes.back()->PossiblyUnreachableDiags.
14392         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
14393     }
14394     else
14395       Diag(Loc, PD);
14396 
14397     return true;
14398   }
14399 
14400   return false;
14401 }
14402 
14403 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
14404                                CallExpr *CE, FunctionDecl *FD) {
14405   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
14406     return false;
14407 
14408   // If we're inside a decltype's expression, don't check for a valid return
14409   // type or construct temporaries until we know whether this is the last call.
14410   if (ExprEvalContexts.back().IsDecltype) {
14411     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
14412     return false;
14413   }
14414 
14415   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
14416     FunctionDecl *FD;
14417     CallExpr *CE;
14418 
14419   public:
14420     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
14421       : FD(FD), CE(CE) { }
14422 
14423     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
14424       if (!FD) {
14425         S.Diag(Loc, diag::err_call_incomplete_return)
14426           << T << CE->getSourceRange();
14427         return;
14428       }
14429 
14430       S.Diag(Loc, diag::err_call_function_incomplete_return)
14431         << CE->getSourceRange() << FD->getDeclName() << T;
14432       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
14433           << FD->getDeclName();
14434     }
14435   } Diagnoser(FD, CE);
14436 
14437   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
14438     return true;
14439 
14440   return false;
14441 }
14442 
14443 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
14444 // will prevent this condition from triggering, which is what we want.
14445 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
14446   SourceLocation Loc;
14447 
14448   unsigned diagnostic = diag::warn_condition_is_assignment;
14449   bool IsOrAssign = false;
14450 
14451   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
14452     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
14453       return;
14454 
14455     IsOrAssign = Op->getOpcode() == BO_OrAssign;
14456 
14457     // Greylist some idioms by putting them into a warning subcategory.
14458     if (ObjCMessageExpr *ME
14459           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
14460       Selector Sel = ME->getSelector();
14461 
14462       // self = [<foo> init...]
14463       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
14464         diagnostic = diag::warn_condition_is_idiomatic_assignment;
14465 
14466       // <foo> = [<bar> nextObject]
14467       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
14468         diagnostic = diag::warn_condition_is_idiomatic_assignment;
14469     }
14470 
14471     Loc = Op->getOperatorLoc();
14472   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
14473     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
14474       return;
14475 
14476     IsOrAssign = Op->getOperator() == OO_PipeEqual;
14477     Loc = Op->getOperatorLoc();
14478   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
14479     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
14480   else {
14481     // Not an assignment.
14482     return;
14483   }
14484 
14485   Diag(Loc, diagnostic) << E->getSourceRange();
14486 
14487   SourceLocation Open = E->getLocStart();
14488   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
14489   Diag(Loc, diag::note_condition_assign_silence)
14490         << FixItHint::CreateInsertion(Open, "(")
14491         << FixItHint::CreateInsertion(Close, ")");
14492 
14493   if (IsOrAssign)
14494     Diag(Loc, diag::note_condition_or_assign_to_comparison)
14495       << FixItHint::CreateReplacement(Loc, "!=");
14496   else
14497     Diag(Loc, diag::note_condition_assign_to_comparison)
14498       << FixItHint::CreateReplacement(Loc, "==");
14499 }
14500 
14501 /// \brief Redundant parentheses over an equality comparison can indicate
14502 /// that the user intended an assignment used as condition.
14503 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
14504   // Don't warn if the parens came from a macro.
14505   SourceLocation parenLoc = ParenE->getLocStart();
14506   if (parenLoc.isInvalid() || parenLoc.isMacroID())
14507     return;
14508   // Don't warn for dependent expressions.
14509   if (ParenE->isTypeDependent())
14510     return;
14511 
14512   Expr *E = ParenE->IgnoreParens();
14513 
14514   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
14515     if (opE->getOpcode() == BO_EQ &&
14516         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
14517                                                            == Expr::MLV_Valid) {
14518       SourceLocation Loc = opE->getOperatorLoc();
14519 
14520       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
14521       SourceRange ParenERange = ParenE->getSourceRange();
14522       Diag(Loc, diag::note_equality_comparison_silence)
14523         << FixItHint::CreateRemoval(ParenERange.getBegin())
14524         << FixItHint::CreateRemoval(ParenERange.getEnd());
14525       Diag(Loc, diag::note_equality_comparison_to_assign)
14526         << FixItHint::CreateReplacement(Loc, "=");
14527     }
14528 }
14529 
14530 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
14531                                        bool IsConstexpr) {
14532   DiagnoseAssignmentAsCondition(E);
14533   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
14534     DiagnoseEqualityWithExtraParens(parenE);
14535 
14536   ExprResult result = CheckPlaceholderExpr(E);
14537   if (result.isInvalid()) return ExprError();
14538   E = result.get();
14539 
14540   if (!E->isTypeDependent()) {
14541     if (getLangOpts().CPlusPlus)
14542       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
14543 
14544     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
14545     if (ERes.isInvalid())
14546       return ExprError();
14547     E = ERes.get();
14548 
14549     QualType T = E->getType();
14550     if (!T->isScalarType()) { // C99 6.8.4.1p1
14551       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
14552         << T << E->getSourceRange();
14553       return ExprError();
14554     }
14555     CheckBoolLikeConversion(E, Loc);
14556   }
14557 
14558   return E;
14559 }
14560 
14561 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
14562                                            Expr *SubExpr, ConditionKind CK) {
14563   // Empty conditions are valid in for-statements.
14564   if (!SubExpr)
14565     return ConditionResult();
14566 
14567   ExprResult Cond;
14568   switch (CK) {
14569   case ConditionKind::Boolean:
14570     Cond = CheckBooleanCondition(Loc, SubExpr);
14571     break;
14572 
14573   case ConditionKind::ConstexprIf:
14574     Cond = CheckBooleanCondition(Loc, SubExpr, true);
14575     break;
14576 
14577   case ConditionKind::Switch:
14578     Cond = CheckSwitchCondition(Loc, SubExpr);
14579     break;
14580   }
14581   if (Cond.isInvalid())
14582     return ConditionError();
14583 
14584   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
14585   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
14586   if (!FullExpr.get())
14587     return ConditionError();
14588 
14589   return ConditionResult(*this, nullptr, FullExpr,
14590                          CK == ConditionKind::ConstexprIf);
14591 }
14592 
14593 namespace {
14594   /// A visitor for rebuilding a call to an __unknown_any expression
14595   /// to have an appropriate type.
14596   struct RebuildUnknownAnyFunction
14597     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
14598 
14599     Sema &S;
14600 
14601     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
14602 
14603     ExprResult VisitStmt(Stmt *S) {
14604       llvm_unreachable("unexpected statement!");
14605     }
14606 
14607     ExprResult VisitExpr(Expr *E) {
14608       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
14609         << E->getSourceRange();
14610       return ExprError();
14611     }
14612 
14613     /// Rebuild an expression which simply semantically wraps another
14614     /// expression which it shares the type and value kind of.
14615     template <class T> ExprResult rebuildSugarExpr(T *E) {
14616       ExprResult SubResult = Visit(E->getSubExpr());
14617       if (SubResult.isInvalid()) return ExprError();
14618 
14619       Expr *SubExpr = SubResult.get();
14620       E->setSubExpr(SubExpr);
14621       E->setType(SubExpr->getType());
14622       E->setValueKind(SubExpr->getValueKind());
14623       assert(E->getObjectKind() == OK_Ordinary);
14624       return E;
14625     }
14626 
14627     ExprResult VisitParenExpr(ParenExpr *E) {
14628       return rebuildSugarExpr(E);
14629     }
14630 
14631     ExprResult VisitUnaryExtension(UnaryOperator *E) {
14632       return rebuildSugarExpr(E);
14633     }
14634 
14635     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14636       ExprResult SubResult = Visit(E->getSubExpr());
14637       if (SubResult.isInvalid()) return ExprError();
14638 
14639       Expr *SubExpr = SubResult.get();
14640       E->setSubExpr(SubExpr);
14641       E->setType(S.Context.getPointerType(SubExpr->getType()));
14642       assert(E->getValueKind() == VK_RValue);
14643       assert(E->getObjectKind() == OK_Ordinary);
14644       return E;
14645     }
14646 
14647     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
14648       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
14649 
14650       E->setType(VD->getType());
14651 
14652       assert(E->getValueKind() == VK_RValue);
14653       if (S.getLangOpts().CPlusPlus &&
14654           !(isa<CXXMethodDecl>(VD) &&
14655             cast<CXXMethodDecl>(VD)->isInstance()))
14656         E->setValueKind(VK_LValue);
14657 
14658       return E;
14659     }
14660 
14661     ExprResult VisitMemberExpr(MemberExpr *E) {
14662       return resolveDecl(E, E->getMemberDecl());
14663     }
14664 
14665     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14666       return resolveDecl(E, E->getDecl());
14667     }
14668   };
14669 }
14670 
14671 /// Given a function expression of unknown-any type, try to rebuild it
14672 /// to have a function type.
14673 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
14674   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
14675   if (Result.isInvalid()) return ExprError();
14676   return S.DefaultFunctionArrayConversion(Result.get());
14677 }
14678 
14679 namespace {
14680   /// A visitor for rebuilding an expression of type __unknown_anytype
14681   /// into one which resolves the type directly on the referring
14682   /// expression.  Strict preservation of the original source
14683   /// structure is not a goal.
14684   struct RebuildUnknownAnyExpr
14685     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
14686 
14687     Sema &S;
14688 
14689     /// The current destination type.
14690     QualType DestType;
14691 
14692     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
14693       : S(S), DestType(CastType) {}
14694 
14695     ExprResult VisitStmt(Stmt *S) {
14696       llvm_unreachable("unexpected statement!");
14697     }
14698 
14699     ExprResult VisitExpr(Expr *E) {
14700       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
14701         << E->getSourceRange();
14702       return ExprError();
14703     }
14704 
14705     ExprResult VisitCallExpr(CallExpr *E);
14706     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
14707 
14708     /// Rebuild an expression which simply semantically wraps another
14709     /// expression which it shares the type and value kind of.
14710     template <class T> ExprResult rebuildSugarExpr(T *E) {
14711       ExprResult SubResult = Visit(E->getSubExpr());
14712       if (SubResult.isInvalid()) return ExprError();
14713       Expr *SubExpr = SubResult.get();
14714       E->setSubExpr(SubExpr);
14715       E->setType(SubExpr->getType());
14716       E->setValueKind(SubExpr->getValueKind());
14717       assert(E->getObjectKind() == OK_Ordinary);
14718       return E;
14719     }
14720 
14721     ExprResult VisitParenExpr(ParenExpr *E) {
14722       return rebuildSugarExpr(E);
14723     }
14724 
14725     ExprResult VisitUnaryExtension(UnaryOperator *E) {
14726       return rebuildSugarExpr(E);
14727     }
14728 
14729     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14730       const PointerType *Ptr = DestType->getAs<PointerType>();
14731       if (!Ptr) {
14732         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
14733           << E->getSourceRange();
14734         return ExprError();
14735       }
14736       assert(E->getValueKind() == VK_RValue);
14737       assert(E->getObjectKind() == OK_Ordinary);
14738       E->setType(DestType);
14739 
14740       // Build the sub-expression as if it were an object of the pointee type.
14741       DestType = Ptr->getPointeeType();
14742       ExprResult SubResult = Visit(E->getSubExpr());
14743       if (SubResult.isInvalid()) return ExprError();
14744       E->setSubExpr(SubResult.get());
14745       return E;
14746     }
14747 
14748     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
14749 
14750     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
14751 
14752     ExprResult VisitMemberExpr(MemberExpr *E) {
14753       return resolveDecl(E, E->getMemberDecl());
14754     }
14755 
14756     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14757       return resolveDecl(E, E->getDecl());
14758     }
14759   };
14760 }
14761 
14762 /// Rebuilds a call expression which yielded __unknown_anytype.
14763 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
14764   Expr *CalleeExpr = E->getCallee();
14765 
14766   enum FnKind {
14767     FK_MemberFunction,
14768     FK_FunctionPointer,
14769     FK_BlockPointer
14770   };
14771 
14772   FnKind Kind;
14773   QualType CalleeType = CalleeExpr->getType();
14774   if (CalleeType == S.Context.BoundMemberTy) {
14775     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
14776     Kind = FK_MemberFunction;
14777     CalleeType = Expr::findBoundMemberType(CalleeExpr);
14778   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
14779     CalleeType = Ptr->getPointeeType();
14780     Kind = FK_FunctionPointer;
14781   } else {
14782     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
14783     Kind = FK_BlockPointer;
14784   }
14785   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
14786 
14787   // Verify that this is a legal result type of a function.
14788   if (DestType->isArrayType() || DestType->isFunctionType()) {
14789     unsigned diagID = diag::err_func_returning_array_function;
14790     if (Kind == FK_BlockPointer)
14791       diagID = diag::err_block_returning_array_function;
14792 
14793     S.Diag(E->getExprLoc(), diagID)
14794       << DestType->isFunctionType() << DestType;
14795     return ExprError();
14796   }
14797 
14798   // Otherwise, go ahead and set DestType as the call's result.
14799   E->setType(DestType.getNonLValueExprType(S.Context));
14800   E->setValueKind(Expr::getValueKindForType(DestType));
14801   assert(E->getObjectKind() == OK_Ordinary);
14802 
14803   // Rebuild the function type, replacing the result type with DestType.
14804   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
14805   if (Proto) {
14806     // __unknown_anytype(...) is a special case used by the debugger when
14807     // it has no idea what a function's signature is.
14808     //
14809     // We want to build this call essentially under the K&R
14810     // unprototyped rules, but making a FunctionNoProtoType in C++
14811     // would foul up all sorts of assumptions.  However, we cannot
14812     // simply pass all arguments as variadic arguments, nor can we
14813     // portably just call the function under a non-variadic type; see
14814     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
14815     // However, it turns out that in practice it is generally safe to
14816     // call a function declared as "A foo(B,C,D);" under the prototype
14817     // "A foo(B,C,D,...);".  The only known exception is with the
14818     // Windows ABI, where any variadic function is implicitly cdecl
14819     // regardless of its normal CC.  Therefore we change the parameter
14820     // types to match the types of the arguments.
14821     //
14822     // This is a hack, but it is far superior to moving the
14823     // corresponding target-specific code from IR-gen to Sema/AST.
14824 
14825     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
14826     SmallVector<QualType, 8> ArgTypes;
14827     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
14828       ArgTypes.reserve(E->getNumArgs());
14829       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
14830         Expr *Arg = E->getArg(i);
14831         QualType ArgType = Arg->getType();
14832         if (E->isLValue()) {
14833           ArgType = S.Context.getLValueReferenceType(ArgType);
14834         } else if (E->isXValue()) {
14835           ArgType = S.Context.getRValueReferenceType(ArgType);
14836         }
14837         ArgTypes.push_back(ArgType);
14838       }
14839       ParamTypes = ArgTypes;
14840     }
14841     DestType = S.Context.getFunctionType(DestType, ParamTypes,
14842                                          Proto->getExtProtoInfo());
14843   } else {
14844     DestType = S.Context.getFunctionNoProtoType(DestType,
14845                                                 FnType->getExtInfo());
14846   }
14847 
14848   // Rebuild the appropriate pointer-to-function type.
14849   switch (Kind) {
14850   case FK_MemberFunction:
14851     // Nothing to do.
14852     break;
14853 
14854   case FK_FunctionPointer:
14855     DestType = S.Context.getPointerType(DestType);
14856     break;
14857 
14858   case FK_BlockPointer:
14859     DestType = S.Context.getBlockPointerType(DestType);
14860     break;
14861   }
14862 
14863   // Finally, we can recurse.
14864   ExprResult CalleeResult = Visit(CalleeExpr);
14865   if (!CalleeResult.isUsable()) return ExprError();
14866   E->setCallee(CalleeResult.get());
14867 
14868   // Bind a temporary if necessary.
14869   return S.MaybeBindToTemporary(E);
14870 }
14871 
14872 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
14873   // Verify that this is a legal result type of a call.
14874   if (DestType->isArrayType() || DestType->isFunctionType()) {
14875     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
14876       << DestType->isFunctionType() << DestType;
14877     return ExprError();
14878   }
14879 
14880   // Rewrite the method result type if available.
14881   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
14882     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
14883     Method->setReturnType(DestType);
14884   }
14885 
14886   // Change the type of the message.
14887   E->setType(DestType.getNonReferenceType());
14888   E->setValueKind(Expr::getValueKindForType(DestType));
14889 
14890   return S.MaybeBindToTemporary(E);
14891 }
14892 
14893 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
14894   // The only case we should ever see here is a function-to-pointer decay.
14895   if (E->getCastKind() == CK_FunctionToPointerDecay) {
14896     assert(E->getValueKind() == VK_RValue);
14897     assert(E->getObjectKind() == OK_Ordinary);
14898 
14899     E->setType(DestType);
14900 
14901     // Rebuild the sub-expression as the pointee (function) type.
14902     DestType = DestType->castAs<PointerType>()->getPointeeType();
14903 
14904     ExprResult Result = Visit(E->getSubExpr());
14905     if (!Result.isUsable()) return ExprError();
14906 
14907     E->setSubExpr(Result.get());
14908     return E;
14909   } else if (E->getCastKind() == CK_LValueToRValue) {
14910     assert(E->getValueKind() == VK_RValue);
14911     assert(E->getObjectKind() == OK_Ordinary);
14912 
14913     assert(isa<BlockPointerType>(E->getType()));
14914 
14915     E->setType(DestType);
14916 
14917     // The sub-expression has to be a lvalue reference, so rebuild it as such.
14918     DestType = S.Context.getLValueReferenceType(DestType);
14919 
14920     ExprResult Result = Visit(E->getSubExpr());
14921     if (!Result.isUsable()) return ExprError();
14922 
14923     E->setSubExpr(Result.get());
14924     return E;
14925   } else {
14926     llvm_unreachable("Unhandled cast type!");
14927   }
14928 }
14929 
14930 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
14931   ExprValueKind ValueKind = VK_LValue;
14932   QualType Type = DestType;
14933 
14934   // We know how to make this work for certain kinds of decls:
14935 
14936   //  - functions
14937   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
14938     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
14939       DestType = Ptr->getPointeeType();
14940       ExprResult Result = resolveDecl(E, VD);
14941       if (Result.isInvalid()) return ExprError();
14942       return S.ImpCastExprToType(Result.get(), Type,
14943                                  CK_FunctionToPointerDecay, VK_RValue);
14944     }
14945 
14946     if (!Type->isFunctionType()) {
14947       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
14948         << VD << E->getSourceRange();
14949       return ExprError();
14950     }
14951     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
14952       // We must match the FunctionDecl's type to the hack introduced in
14953       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
14954       // type. See the lengthy commentary in that routine.
14955       QualType FDT = FD->getType();
14956       const FunctionType *FnType = FDT->castAs<FunctionType>();
14957       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
14958       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14959       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
14960         SourceLocation Loc = FD->getLocation();
14961         FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
14962                                       FD->getDeclContext(),
14963                                       Loc, Loc, FD->getNameInfo().getName(),
14964                                       DestType, FD->getTypeSourceInfo(),
14965                                       SC_None, false/*isInlineSpecified*/,
14966                                       FD->hasPrototype(),
14967                                       false/*isConstexprSpecified*/);
14968 
14969         if (FD->getQualifier())
14970           NewFD->setQualifierInfo(FD->getQualifierLoc());
14971 
14972         SmallVector<ParmVarDecl*, 16> Params;
14973         for (const auto &AI : FT->param_types()) {
14974           ParmVarDecl *Param =
14975             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
14976           Param->setScopeInfo(0, Params.size());
14977           Params.push_back(Param);
14978         }
14979         NewFD->setParams(Params);
14980         DRE->setDecl(NewFD);
14981         VD = DRE->getDecl();
14982       }
14983     }
14984 
14985     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
14986       if (MD->isInstance()) {
14987         ValueKind = VK_RValue;
14988         Type = S.Context.BoundMemberTy;
14989       }
14990 
14991     // Function references aren't l-values in C.
14992     if (!S.getLangOpts().CPlusPlus)
14993       ValueKind = VK_RValue;
14994 
14995   //  - variables
14996   } else if (isa<VarDecl>(VD)) {
14997     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
14998       Type = RefTy->getPointeeType();
14999     } else if (Type->isFunctionType()) {
15000       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
15001         << VD << E->getSourceRange();
15002       return ExprError();
15003     }
15004 
15005   //  - nothing else
15006   } else {
15007     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
15008       << VD << E->getSourceRange();
15009     return ExprError();
15010   }
15011 
15012   // Modifying the declaration like this is friendly to IR-gen but
15013   // also really dangerous.
15014   VD->setType(DestType);
15015   E->setType(Type);
15016   E->setValueKind(ValueKind);
15017   return E;
15018 }
15019 
15020 /// Check a cast of an unknown-any type.  We intentionally only
15021 /// trigger this for C-style casts.
15022 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
15023                                      Expr *CastExpr, CastKind &CastKind,
15024                                      ExprValueKind &VK, CXXCastPath &Path) {
15025   // The type we're casting to must be either void or complete.
15026   if (!CastType->isVoidType() &&
15027       RequireCompleteType(TypeRange.getBegin(), CastType,
15028                           diag::err_typecheck_cast_to_incomplete))
15029     return ExprError();
15030 
15031   // Rewrite the casted expression from scratch.
15032   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
15033   if (!result.isUsable()) return ExprError();
15034 
15035   CastExpr = result.get();
15036   VK = CastExpr->getValueKind();
15037   CastKind = CK_NoOp;
15038 
15039   return CastExpr;
15040 }
15041 
15042 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
15043   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
15044 }
15045 
15046 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
15047                                     Expr *arg, QualType &paramType) {
15048   // If the syntactic form of the argument is not an explicit cast of
15049   // any sort, just do default argument promotion.
15050   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
15051   if (!castArg) {
15052     ExprResult result = DefaultArgumentPromotion(arg);
15053     if (result.isInvalid()) return ExprError();
15054     paramType = result.get()->getType();
15055     return result;
15056   }
15057 
15058   // Otherwise, use the type that was written in the explicit cast.
15059   assert(!arg->hasPlaceholderType());
15060   paramType = castArg->getTypeAsWritten();
15061 
15062   // Copy-initialize a parameter of that type.
15063   InitializedEntity entity =
15064     InitializedEntity::InitializeParameter(Context, paramType,
15065                                            /*consumed*/ false);
15066   return PerformCopyInitialization(entity, callLoc, arg);
15067 }
15068 
15069 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
15070   Expr *orig = E;
15071   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
15072   while (true) {
15073     E = E->IgnoreParenImpCasts();
15074     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
15075       E = call->getCallee();
15076       diagID = diag::err_uncasted_call_of_unknown_any;
15077     } else {
15078       break;
15079     }
15080   }
15081 
15082   SourceLocation loc;
15083   NamedDecl *d;
15084   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
15085     loc = ref->getLocation();
15086     d = ref->getDecl();
15087   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
15088     loc = mem->getMemberLoc();
15089     d = mem->getMemberDecl();
15090   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
15091     diagID = diag::err_uncasted_call_of_unknown_any;
15092     loc = msg->getSelectorStartLoc();
15093     d = msg->getMethodDecl();
15094     if (!d) {
15095       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
15096         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
15097         << orig->getSourceRange();
15098       return ExprError();
15099     }
15100   } else {
15101     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
15102       << E->getSourceRange();
15103     return ExprError();
15104   }
15105 
15106   S.Diag(loc, diagID) << d << orig->getSourceRange();
15107 
15108   // Never recoverable.
15109   return ExprError();
15110 }
15111 
15112 /// Check for operands with placeholder types and complain if found.
15113 /// Returns true if there was an error and no recovery was possible.
15114 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
15115   if (!getLangOpts().CPlusPlus) {
15116     // C cannot handle TypoExpr nodes on either side of a binop because it
15117     // doesn't handle dependent types properly, so make sure any TypoExprs have
15118     // been dealt with before checking the operands.
15119     ExprResult Result = CorrectDelayedTyposInExpr(E);
15120     if (!Result.isUsable()) return ExprError();
15121     E = Result.get();
15122   }
15123 
15124   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
15125   if (!placeholderType) return E;
15126 
15127   switch (placeholderType->getKind()) {
15128 
15129   // Overloaded expressions.
15130   case BuiltinType::Overload: {
15131     // Try to resolve a single function template specialization.
15132     // This is obligatory.
15133     ExprResult Result = E;
15134     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
15135       return Result;
15136 
15137     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
15138     // leaves Result unchanged on failure.
15139     Result = E;
15140     if (resolveAndFixAddressOfOnlyViableOverloadCandidate(Result))
15141       return Result;
15142 
15143     // If that failed, try to recover with a call.
15144     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
15145                          /*complain*/ true);
15146     return Result;
15147   }
15148 
15149   // Bound member functions.
15150   case BuiltinType::BoundMember: {
15151     ExprResult result = E;
15152     const Expr *BME = E->IgnoreParens();
15153     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
15154     // Try to give a nicer diagnostic if it is a bound member that we recognize.
15155     if (isa<CXXPseudoDestructorExpr>(BME)) {
15156       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
15157     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
15158       if (ME->getMemberNameInfo().getName().getNameKind() ==
15159           DeclarationName::CXXDestructorName)
15160         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
15161     }
15162     tryToRecoverWithCall(result, PD,
15163                          /*complain*/ true);
15164     return result;
15165   }
15166 
15167   // ARC unbridged casts.
15168   case BuiltinType::ARCUnbridgedCast: {
15169     Expr *realCast = stripARCUnbridgedCast(E);
15170     diagnoseARCUnbridgedCast(realCast);
15171     return realCast;
15172   }
15173 
15174   // Expressions of unknown type.
15175   case BuiltinType::UnknownAny:
15176     return diagnoseUnknownAnyExpr(*this, E);
15177 
15178   // Pseudo-objects.
15179   case BuiltinType::PseudoObject:
15180     return checkPseudoObjectRValue(E);
15181 
15182   case BuiltinType::BuiltinFn: {
15183     // Accept __noop without parens by implicitly converting it to a call expr.
15184     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
15185     if (DRE) {
15186       auto *FD = cast<FunctionDecl>(DRE->getDecl());
15187       if (FD->getBuiltinID() == Builtin::BI__noop) {
15188         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
15189                               CK_BuiltinFnToFnPtr).get();
15190         return new (Context) CallExpr(Context, E, None, Context.IntTy,
15191                                       VK_RValue, SourceLocation());
15192       }
15193     }
15194 
15195     Diag(E->getLocStart(), diag::err_builtin_fn_use);
15196     return ExprError();
15197   }
15198 
15199   // Expressions of unknown type.
15200   case BuiltinType::OMPArraySection:
15201     Diag(E->getLocStart(), diag::err_omp_array_section_use);
15202     return ExprError();
15203 
15204   // Everything else should be impossible.
15205 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
15206   case BuiltinType::Id:
15207 #include "clang/Basic/OpenCLImageTypes.def"
15208 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
15209 #define PLACEHOLDER_TYPE(Id, SingletonId)
15210 #include "clang/AST/BuiltinTypes.def"
15211     break;
15212   }
15213 
15214   llvm_unreachable("invalid placeholder type!");
15215 }
15216 
15217 bool Sema::CheckCaseExpression(Expr *E) {
15218   if (E->isTypeDependent())
15219     return true;
15220   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
15221     return E->getType()->isIntegralOrEnumerationType();
15222   return false;
15223 }
15224 
15225 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
15226 ExprResult
15227 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
15228   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
15229          "Unknown Objective-C Boolean value!");
15230   QualType BoolT = Context.ObjCBuiltinBoolTy;
15231   if (!Context.getBOOLDecl()) {
15232     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
15233                         Sema::LookupOrdinaryName);
15234     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
15235       NamedDecl *ND = Result.getFoundDecl();
15236       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
15237         Context.setBOOLDecl(TD);
15238     }
15239   }
15240   if (Context.getBOOLDecl())
15241     BoolT = Context.getBOOLType();
15242   return new (Context)
15243       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
15244 }
15245 
15246 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
15247     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
15248     SourceLocation RParen) {
15249 
15250   StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
15251 
15252   auto Spec = std::find_if(AvailSpecs.begin(), AvailSpecs.end(),
15253                            [&](const AvailabilitySpec &Spec) {
15254                              return Spec.getPlatform() == Platform;
15255                            });
15256 
15257   VersionTuple Version;
15258   if (Spec != AvailSpecs.end())
15259     Version = Spec->getVersion();
15260 
15261   return new (Context)
15262       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
15263 }
15264