1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/LiteralSupport.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/AnalysisBasedWarnings.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Designator.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/Lookup.h"
40 #include "clang/Sema/ParsedTemplate.h"
41 #include "clang/Sema/Scope.h"
42 #include "clang/Sema/ScopeInfo.h"
43 #include "clang/Sema/SemaFixItUtils.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/Support/ConvertUTF.h"
47 using namespace clang;
48 using namespace sema;
49 
50 /// \brief Determine whether the use of this declaration is valid, without
51 /// emitting diagnostics.
52 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
53   // See if this is an auto-typed variable whose initializer we are parsing.
54   if (ParsingInitForAutoVars.count(D))
55     return false;
56 
57   // See if this is a deleted function.
58   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
59     if (FD->isDeleted())
60       return false;
61 
62     // If the function has a deduced return type, and we can't deduce it,
63     // then we can't use it either.
64     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
65         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
66       return false;
67   }
68 
69   // See if this function is unavailable.
70   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
71       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
72     return false;
73 
74   return true;
75 }
76 
77 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
78   // Warn if this is used but marked unused.
79   if (const auto *A = D->getAttr<UnusedAttr>()) {
80     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
81     // should diagnose them.
82     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused) {
83       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
84       if (DC && !DC->hasAttr<UnusedAttr>())
85         S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
86     }
87   }
88 }
89 
90 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
91   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
92   if (!OMD)
93     return false;
94   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
95   if (!OID)
96     return false;
97 
98   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
99     if (ObjCMethodDecl *CatMeth =
100             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
101       if (!CatMeth->hasAttr<AvailabilityAttr>())
102         return true;
103   return false;
104 }
105 
106 AvailabilityResult Sema::ShouldDiagnoseAvailabilityOfDecl(
107     NamedDecl *&D, VersionTuple ContextVersion, std::string *Message) {
108   AvailabilityResult Result = D->getAvailability(Message, ContextVersion);
109 
110   // For typedefs, if the typedef declaration appears available look
111   // to the underlying type to see if it is more restrictive.
112   while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
113     if (Result == AR_Available) {
114       if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
115         D = TT->getDecl();
116         Result = D->getAvailability(Message, ContextVersion);
117         continue;
118       }
119     }
120     break;
121   }
122 
123   // Forward class declarations get their attributes from their definition.
124   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
125     if (IDecl->getDefinition()) {
126       D = IDecl->getDefinition();
127       Result = D->getAvailability(Message, ContextVersion);
128     }
129   }
130 
131   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
132     if (Result == AR_Available) {
133       const DeclContext *DC = ECD->getDeclContext();
134       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
135         Result = TheEnumDecl->getAvailability(Message, ContextVersion);
136     }
137 
138   switch (Result) {
139   case AR_Available:
140     return Result;
141 
142   case AR_Unavailable:
143   case AR_Deprecated:
144     return getCurContextAvailability() != Result ? Result : AR_Available;
145 
146   case AR_NotYetIntroduced: {
147     // Don't do this for enums, they can't be redeclared.
148     if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
149       return AR_Available;
150 
151     bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
152     // Objective-C method declarations in categories are not modelled as
153     // redeclarations, so manually look for a redeclaration in a category
154     // if necessary.
155     if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
156       Warn = false;
157     // In general, D will point to the most recent redeclaration. However,
158     // for `@class A;` decls, this isn't true -- manually go through the
159     // redecl chain in that case.
160     if (Warn && isa<ObjCInterfaceDecl>(D))
161       for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
162            Redecl = Redecl->getPreviousDecl())
163         if (!Redecl->hasAttr<AvailabilityAttr>() ||
164             Redecl->getAttr<AvailabilityAttr>()->isInherited())
165           Warn = false;
166 
167     return Warn ? AR_NotYetIntroduced : AR_Available;
168   }
169   }
170   llvm_unreachable("Unknown availability result!");
171 }
172 
173 static void
174 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
175                            const ObjCInterfaceDecl *UnknownObjCClass,
176                            bool ObjCPropertyAccess) {
177   VersionTuple ContextVersion;
178   if (const DeclContext *DC = S.getCurObjCLexicalContext())
179     ContextVersion = S.getVersionForDecl(cast<Decl>(DC));
180 
181   std::string Message;
182   // See if this declaration is unavailable, deprecated, or partial in the
183   // current context.
184   if (AvailabilityResult Result =
185           S.ShouldDiagnoseAvailabilityOfDecl(D, ContextVersion, &Message)) {
186 
187     if (Result == AR_NotYetIntroduced && S.getCurFunctionOrMethodDecl()) {
188       S.getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
189       return;
190     }
191 
192     const ObjCPropertyDecl *ObjCPDecl = nullptr;
193     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
194       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
195         AvailabilityResult PDeclResult =
196             PD->getAvailability(nullptr, ContextVersion);
197         if (PDeclResult == Result)
198           ObjCPDecl = PD;
199       }
200     }
201 
202     S.EmitAvailabilityWarning(Result, D, Message, Loc, UnknownObjCClass,
203                               ObjCPDecl, ObjCPropertyAccess);
204   }
205 }
206 
207 /// \brief Emit a note explaining that this function is deleted.
208 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
209   assert(Decl->isDeleted());
210 
211   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
212 
213   if (Method && Method->isDeleted() && Method->isDefaulted()) {
214     // If the method was explicitly defaulted, point at that declaration.
215     if (!Method->isImplicit())
216       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
217 
218     // Try to diagnose why this special member function was implicitly
219     // deleted. This might fail, if that reason no longer applies.
220     CXXSpecialMember CSM = getSpecialMember(Method);
221     if (CSM != CXXInvalid)
222       ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
223 
224     return;
225   }
226 
227   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
228   if (Ctor && Ctor->isInheritingConstructor())
229     return NoteDeletedInheritingConstructor(Ctor);
230 
231   Diag(Decl->getLocation(), diag::note_availability_specified_here)
232     << Decl << true;
233 }
234 
235 /// \brief Determine whether a FunctionDecl was ever declared with an
236 /// explicit storage class.
237 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
238   for (auto I : D->redecls()) {
239     if (I->getStorageClass() != SC_None)
240       return true;
241   }
242   return false;
243 }
244 
245 /// \brief Check whether we're in an extern inline function and referring to a
246 /// variable or function with internal linkage (C11 6.7.4p3).
247 ///
248 /// This is only a warning because we used to silently accept this code, but
249 /// in many cases it will not behave correctly. This is not enabled in C++ mode
250 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
251 /// and so while there may still be user mistakes, most of the time we can't
252 /// prove that there are errors.
253 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
254                                                       const NamedDecl *D,
255                                                       SourceLocation Loc) {
256   // This is disabled under C++; there are too many ways for this to fire in
257   // contexts where the warning is a false positive, or where it is technically
258   // correct but benign.
259   if (S.getLangOpts().CPlusPlus)
260     return;
261 
262   // Check if this is an inlined function or method.
263   FunctionDecl *Current = S.getCurFunctionDecl();
264   if (!Current)
265     return;
266   if (!Current->isInlined())
267     return;
268   if (!Current->isExternallyVisible())
269     return;
270 
271   // Check if the decl has internal linkage.
272   if (D->getFormalLinkage() != InternalLinkage)
273     return;
274 
275   // Downgrade from ExtWarn to Extension if
276   //  (1) the supposedly external inline function is in the main file,
277   //      and probably won't be included anywhere else.
278   //  (2) the thing we're referencing is a pure function.
279   //  (3) the thing we're referencing is another inline function.
280   // This last can give us false negatives, but it's better than warning on
281   // wrappers for simple C library functions.
282   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
283   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
284   if (!DowngradeWarning && UsedFn)
285     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
286 
287   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
288                                : diag::ext_internal_in_extern_inline)
289     << /*IsVar=*/!UsedFn << D;
290 
291   S.MaybeSuggestAddingStaticToDecl(Current);
292 
293   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
294       << D;
295 }
296 
297 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
298   const FunctionDecl *First = Cur->getFirstDecl();
299 
300   // Suggest "static" on the function, if possible.
301   if (!hasAnyExplicitStorageClass(First)) {
302     SourceLocation DeclBegin = First->getSourceRange().getBegin();
303     Diag(DeclBegin, diag::note_convert_inline_to_static)
304       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
305   }
306 }
307 
308 /// \brief Determine whether the use of this declaration is valid, and
309 /// emit any corresponding diagnostics.
310 ///
311 /// This routine diagnoses various problems with referencing
312 /// declarations that can occur when using a declaration. For example,
313 /// it might warn if a deprecated or unavailable declaration is being
314 /// used, or produce an error (and return true) if a C++0x deleted
315 /// function is being used.
316 ///
317 /// \returns true if there was an error (this declaration cannot be
318 /// referenced), false otherwise.
319 ///
320 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
321                              const ObjCInterfaceDecl *UnknownObjCClass,
322                              bool ObjCPropertyAccess) {
323   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
324     // If there were any diagnostics suppressed by template argument deduction,
325     // emit them now.
326     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
327     if (Pos != SuppressedDiagnostics.end()) {
328       for (const PartialDiagnosticAt &Suppressed : Pos->second)
329         Diag(Suppressed.first, Suppressed.second);
330 
331       // Clear out the list of suppressed diagnostics, so that we don't emit
332       // them again for this specialization. However, we don't obsolete this
333       // entry from the table, because we want to avoid ever emitting these
334       // diagnostics again.
335       Pos->second.clear();
336     }
337 
338     // C++ [basic.start.main]p3:
339     //   The function 'main' shall not be used within a program.
340     if (cast<FunctionDecl>(D)->isMain())
341       Diag(Loc, diag::ext_main_used);
342   }
343 
344   // See if this is an auto-typed variable whose initializer we are parsing.
345   if (ParsingInitForAutoVars.count(D)) {
346     if (isa<BindingDecl>(D)) {
347       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
348         << D->getDeclName();
349     } else {
350       const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
351 
352       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
353         << D->getDeclName() << (unsigned)AT->getKeyword();
354     }
355     return true;
356   }
357 
358   // See if this is a deleted function.
359   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
360     if (FD->isDeleted()) {
361       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
362       if (Ctor && Ctor->isInheritingConstructor())
363         Diag(Loc, diag::err_deleted_inherited_ctor_use)
364             << Ctor->getParent()
365             << Ctor->getInheritedConstructor().getConstructor()->getParent();
366       else
367         Diag(Loc, diag::err_deleted_function_use);
368       NoteDeletedFunction(FD);
369       return true;
370     }
371 
372     // If the function has a deduced return type, and we can't deduce it,
373     // then we can't use it either.
374     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
375         DeduceReturnType(FD, Loc))
376       return true;
377 
378     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
379       return true;
380   }
381 
382   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
383   // Only the variables omp_in and omp_out are allowed in the combiner.
384   // Only the variables omp_priv and omp_orig are allowed in the
385   // initializer-clause.
386   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
387   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
388       isa<VarDecl>(D)) {
389     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
390         << getCurFunction()->HasOMPDeclareReductionCombiner;
391     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
392     return true;
393   }
394   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
395                              ObjCPropertyAccess);
396 
397   DiagnoseUnusedOfDecl(*this, D, Loc);
398 
399   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
400 
401   return false;
402 }
403 
404 /// \brief Retrieve the message suffix that should be added to a
405 /// diagnostic complaining about the given function being deleted or
406 /// unavailable.
407 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
408   std::string Message;
409   if (FD->getAvailability(&Message))
410     return ": " + Message;
411 
412   return std::string();
413 }
414 
415 /// DiagnoseSentinelCalls - This routine checks whether a call or
416 /// message-send is to a declaration with the sentinel attribute, and
417 /// if so, it checks that the requirements of the sentinel are
418 /// satisfied.
419 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
420                                  ArrayRef<Expr *> Args) {
421   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
422   if (!attr)
423     return;
424 
425   // The number of formal parameters of the declaration.
426   unsigned numFormalParams;
427 
428   // The kind of declaration.  This is also an index into a %select in
429   // the diagnostic.
430   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
431 
432   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
433     numFormalParams = MD->param_size();
434     calleeType = CT_Method;
435   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
436     numFormalParams = FD->param_size();
437     calleeType = CT_Function;
438   } else if (isa<VarDecl>(D)) {
439     QualType type = cast<ValueDecl>(D)->getType();
440     const FunctionType *fn = nullptr;
441     if (const PointerType *ptr = type->getAs<PointerType>()) {
442       fn = ptr->getPointeeType()->getAs<FunctionType>();
443       if (!fn) return;
444       calleeType = CT_Function;
445     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
446       fn = ptr->getPointeeType()->castAs<FunctionType>();
447       calleeType = CT_Block;
448     } else {
449       return;
450     }
451 
452     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
453       numFormalParams = proto->getNumParams();
454     } else {
455       numFormalParams = 0;
456     }
457   } else {
458     return;
459   }
460 
461   // "nullPos" is the number of formal parameters at the end which
462   // effectively count as part of the variadic arguments.  This is
463   // useful if you would prefer to not have *any* formal parameters,
464   // but the language forces you to have at least one.
465   unsigned nullPos = attr->getNullPos();
466   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
467   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
468 
469   // The number of arguments which should follow the sentinel.
470   unsigned numArgsAfterSentinel = attr->getSentinel();
471 
472   // If there aren't enough arguments for all the formal parameters,
473   // the sentinel, and the args after the sentinel, complain.
474   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
475     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
476     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
477     return;
478   }
479 
480   // Otherwise, find the sentinel expression.
481   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
482   if (!sentinelExpr) return;
483   if (sentinelExpr->isValueDependent()) return;
484   if (Context.isSentinelNullExpr(sentinelExpr)) return;
485 
486   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
487   // or 'NULL' if those are actually defined in the context.  Only use
488   // 'nil' for ObjC methods, where it's much more likely that the
489   // variadic arguments form a list of object pointers.
490   SourceLocation MissingNilLoc
491     = getLocForEndOfToken(sentinelExpr->getLocEnd());
492   std::string NullValue;
493   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
494     NullValue = "nil";
495   else if (getLangOpts().CPlusPlus11)
496     NullValue = "nullptr";
497   else if (PP.isMacroDefined("NULL"))
498     NullValue = "NULL";
499   else
500     NullValue = "(void*) 0";
501 
502   if (MissingNilLoc.isInvalid())
503     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
504   else
505     Diag(MissingNilLoc, diag::warn_missing_sentinel)
506       << int(calleeType)
507       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
508   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
509 }
510 
511 SourceRange Sema::getExprRange(Expr *E) const {
512   return E ? E->getSourceRange() : SourceRange();
513 }
514 
515 //===----------------------------------------------------------------------===//
516 //  Standard Promotions and Conversions
517 //===----------------------------------------------------------------------===//
518 
519 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
520 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
521   // Handle any placeholder expressions which made it here.
522   if (E->getType()->isPlaceholderType()) {
523     ExprResult result = CheckPlaceholderExpr(E);
524     if (result.isInvalid()) return ExprError();
525     E = result.get();
526   }
527 
528   QualType Ty = E->getType();
529   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
530 
531   if (Ty->isFunctionType()) {
532     // If we are here, we are not calling a function but taking
533     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
534     if (getLangOpts().OpenCL) {
535       if (Diagnose)
536         Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
537       return ExprError();
538     }
539 
540     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
541       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
542         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
543           return ExprError();
544 
545     E = ImpCastExprToType(E, Context.getPointerType(Ty),
546                           CK_FunctionToPointerDecay).get();
547   } else if (Ty->isArrayType()) {
548     // In C90 mode, arrays only promote to pointers if the array expression is
549     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
550     // type 'array of type' is converted to an expression that has type 'pointer
551     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
552     // that has type 'array of type' ...".  The relevant change is "an lvalue"
553     // (C90) to "an expression" (C99).
554     //
555     // C++ 4.2p1:
556     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
557     // T" can be converted to an rvalue of type "pointer to T".
558     //
559     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
560       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
561                             CK_ArrayToPointerDecay).get();
562   }
563   return E;
564 }
565 
566 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
567   // Check to see if we are dereferencing a null pointer.  If so,
568   // and if not volatile-qualified, this is undefined behavior that the
569   // optimizer will delete, so warn about it.  People sometimes try to use this
570   // to get a deterministic trap and are surprised by clang's behavior.  This
571   // only handles the pattern "*null", which is a very syntactic check.
572   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
573     if (UO->getOpcode() == UO_Deref &&
574         UO->getSubExpr()->IgnoreParenCasts()->
575           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
576         !UO->getType().isVolatileQualified()) {
577     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
578                           S.PDiag(diag::warn_indirection_through_null)
579                             << UO->getSubExpr()->getSourceRange());
580     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
581                         S.PDiag(diag::note_indirection_through_null));
582   }
583 }
584 
585 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
586                                     SourceLocation AssignLoc,
587                                     const Expr* RHS) {
588   const ObjCIvarDecl *IV = OIRE->getDecl();
589   if (!IV)
590     return;
591 
592   DeclarationName MemberName = IV->getDeclName();
593   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
594   if (!Member || !Member->isStr("isa"))
595     return;
596 
597   const Expr *Base = OIRE->getBase();
598   QualType BaseType = Base->getType();
599   if (OIRE->isArrow())
600     BaseType = BaseType->getPointeeType();
601   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
602     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
603       ObjCInterfaceDecl *ClassDeclared = nullptr;
604       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
605       if (!ClassDeclared->getSuperClass()
606           && (*ClassDeclared->ivar_begin()) == IV) {
607         if (RHS) {
608           NamedDecl *ObjectSetClass =
609             S.LookupSingleName(S.TUScope,
610                                &S.Context.Idents.get("object_setClass"),
611                                SourceLocation(), S.LookupOrdinaryName);
612           if (ObjectSetClass) {
613             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
614             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
615             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
616             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
617                                                      AssignLoc), ",") <<
618             FixItHint::CreateInsertion(RHSLocEnd, ")");
619           }
620           else
621             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
622         } else {
623           NamedDecl *ObjectGetClass =
624             S.LookupSingleName(S.TUScope,
625                                &S.Context.Idents.get("object_getClass"),
626                                SourceLocation(), S.LookupOrdinaryName);
627           if (ObjectGetClass)
628             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
629             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
630             FixItHint::CreateReplacement(
631                                          SourceRange(OIRE->getOpLoc(),
632                                                      OIRE->getLocEnd()), ")");
633           else
634             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
635         }
636         S.Diag(IV->getLocation(), diag::note_ivar_decl);
637       }
638     }
639 }
640 
641 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
642   // Handle any placeholder expressions which made it here.
643   if (E->getType()->isPlaceholderType()) {
644     ExprResult result = CheckPlaceholderExpr(E);
645     if (result.isInvalid()) return ExprError();
646     E = result.get();
647   }
648 
649   // C++ [conv.lval]p1:
650   //   A glvalue of a non-function, non-array type T can be
651   //   converted to a prvalue.
652   if (!E->isGLValue()) return E;
653 
654   QualType T = E->getType();
655   assert(!T.isNull() && "r-value conversion on typeless expression?");
656 
657   // We don't want to throw lvalue-to-rvalue casts on top of
658   // expressions of certain types in C++.
659   if (getLangOpts().CPlusPlus &&
660       (E->getType() == Context.OverloadTy ||
661        T->isDependentType() ||
662        T->isRecordType()))
663     return E;
664 
665   // The C standard is actually really unclear on this point, and
666   // DR106 tells us what the result should be but not why.  It's
667   // generally best to say that void types just doesn't undergo
668   // lvalue-to-rvalue at all.  Note that expressions of unqualified
669   // 'void' type are never l-values, but qualified void can be.
670   if (T->isVoidType())
671     return E;
672 
673   // OpenCL usually rejects direct accesses to values of 'half' type.
674   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
675       T->isHalfType()) {
676     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
677       << 0 << T;
678     return ExprError();
679   }
680 
681   CheckForNullPointerDereference(*this, E);
682   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
683     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
684                                      &Context.Idents.get("object_getClass"),
685                                      SourceLocation(), LookupOrdinaryName);
686     if (ObjectGetClass)
687       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
688         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
689         FixItHint::CreateReplacement(
690                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
691     else
692       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
693   }
694   else if (const ObjCIvarRefExpr *OIRE =
695             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
696     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
697 
698   // C++ [conv.lval]p1:
699   //   [...] If T is a non-class type, the type of the prvalue is the
700   //   cv-unqualified version of T. Otherwise, the type of the
701   //   rvalue is T.
702   //
703   // C99 6.3.2.1p2:
704   //   If the lvalue has qualified type, the value has the unqualified
705   //   version of the type of the lvalue; otherwise, the value has the
706   //   type of the lvalue.
707   if (T.hasQualifiers())
708     T = T.getUnqualifiedType();
709 
710   // Under the MS ABI, lock down the inheritance model now.
711   if (T->isMemberPointerType() &&
712       Context.getTargetInfo().getCXXABI().isMicrosoft())
713     (void)isCompleteType(E->getExprLoc(), T);
714 
715   UpdateMarkingForLValueToRValue(E);
716 
717   // Loading a __weak object implicitly retains the value, so we need a cleanup to
718   // balance that.
719   if (getLangOpts().ObjCAutoRefCount &&
720       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
721     Cleanup.setExprNeedsCleanups(true);
722 
723   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
724                                             nullptr, VK_RValue);
725 
726   // C11 6.3.2.1p2:
727   //   ... if the lvalue has atomic type, the value has the non-atomic version
728   //   of the type of the lvalue ...
729   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
730     T = Atomic->getValueType().getUnqualifiedType();
731     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
732                                    nullptr, VK_RValue);
733   }
734 
735   return Res;
736 }
737 
738 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
739   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
740   if (Res.isInvalid())
741     return ExprError();
742   Res = DefaultLvalueConversion(Res.get());
743   if (Res.isInvalid())
744     return ExprError();
745   return Res;
746 }
747 
748 /// CallExprUnaryConversions - a special case of an unary conversion
749 /// performed on a function designator of a call expression.
750 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
751   QualType Ty = E->getType();
752   ExprResult Res = E;
753   // Only do implicit cast for a function type, but not for a pointer
754   // to function type.
755   if (Ty->isFunctionType()) {
756     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
757                             CK_FunctionToPointerDecay).get();
758     if (Res.isInvalid())
759       return ExprError();
760   }
761   Res = DefaultLvalueConversion(Res.get());
762   if (Res.isInvalid())
763     return ExprError();
764   return Res.get();
765 }
766 
767 /// UsualUnaryConversions - Performs various conversions that are common to most
768 /// operators (C99 6.3). The conversions of array and function types are
769 /// sometimes suppressed. For example, the array->pointer conversion doesn't
770 /// apply if the array is an argument to the sizeof or address (&) operators.
771 /// In these instances, this routine should *not* be called.
772 ExprResult Sema::UsualUnaryConversions(Expr *E) {
773   // First, convert to an r-value.
774   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
775   if (Res.isInvalid())
776     return ExprError();
777   E = Res.get();
778 
779   QualType Ty = E->getType();
780   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
781 
782   // Half FP have to be promoted to float unless it is natively supported
783   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
784     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
785 
786   // Try to perform integral promotions if the object has a theoretically
787   // promotable type.
788   if (Ty->isIntegralOrUnscopedEnumerationType()) {
789     // C99 6.3.1.1p2:
790     //
791     //   The following may be used in an expression wherever an int or
792     //   unsigned int may be used:
793     //     - an object or expression with an integer type whose integer
794     //       conversion rank is less than or equal to the rank of int
795     //       and unsigned int.
796     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
797     //
798     //   If an int can represent all values of the original type, the
799     //   value is converted to an int; otherwise, it is converted to an
800     //   unsigned int. These are called the integer promotions. All
801     //   other types are unchanged by the integer promotions.
802 
803     QualType PTy = Context.isPromotableBitField(E);
804     if (!PTy.isNull()) {
805       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
806       return E;
807     }
808     if (Ty->isPromotableIntegerType()) {
809       QualType PT = Context.getPromotedIntegerType(Ty);
810       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
811       return E;
812     }
813   }
814   return E;
815 }
816 
817 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
818 /// do not have a prototype. Arguments that have type float or __fp16
819 /// are promoted to double. All other argument types are converted by
820 /// UsualUnaryConversions().
821 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
822   QualType Ty = E->getType();
823   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
824 
825   ExprResult Res = UsualUnaryConversions(E);
826   if (Res.isInvalid())
827     return ExprError();
828   E = Res.get();
829 
830   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
831   // double.
832   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
833   if (BTy && (BTy->getKind() == BuiltinType::Half ||
834               BTy->getKind() == BuiltinType::Float))
835     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
836 
837   // C++ performs lvalue-to-rvalue conversion as a default argument
838   // promotion, even on class types, but note:
839   //   C++11 [conv.lval]p2:
840   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
841   //     operand or a subexpression thereof the value contained in the
842   //     referenced object is not accessed. Otherwise, if the glvalue
843   //     has a class type, the conversion copy-initializes a temporary
844   //     of type T from the glvalue and the result of the conversion
845   //     is a prvalue for the temporary.
846   // FIXME: add some way to gate this entire thing for correctness in
847   // potentially potentially evaluated contexts.
848   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
849     ExprResult Temp = PerformCopyInitialization(
850                        InitializedEntity::InitializeTemporary(E->getType()),
851                                                 E->getExprLoc(), E);
852     if (Temp.isInvalid())
853       return ExprError();
854     E = Temp.get();
855   }
856 
857   return E;
858 }
859 
860 /// Determine the degree of POD-ness for an expression.
861 /// Incomplete types are considered POD, since this check can be performed
862 /// when we're in an unevaluated context.
863 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
864   if (Ty->isIncompleteType()) {
865     // C++11 [expr.call]p7:
866     //   After these conversions, if the argument does not have arithmetic,
867     //   enumeration, pointer, pointer to member, or class type, the program
868     //   is ill-formed.
869     //
870     // Since we've already performed array-to-pointer and function-to-pointer
871     // decay, the only such type in C++ is cv void. This also handles
872     // initializer lists as variadic arguments.
873     if (Ty->isVoidType())
874       return VAK_Invalid;
875 
876     if (Ty->isObjCObjectType())
877       return VAK_Invalid;
878     return VAK_Valid;
879   }
880 
881   if (Ty.isCXX98PODType(Context))
882     return VAK_Valid;
883 
884   // C++11 [expr.call]p7:
885   //   Passing a potentially-evaluated argument of class type (Clause 9)
886   //   having a non-trivial copy constructor, a non-trivial move constructor,
887   //   or a non-trivial destructor, with no corresponding parameter,
888   //   is conditionally-supported with implementation-defined semantics.
889   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
890     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
891       if (!Record->hasNonTrivialCopyConstructor() &&
892           !Record->hasNonTrivialMoveConstructor() &&
893           !Record->hasNonTrivialDestructor())
894         return VAK_ValidInCXX11;
895 
896   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
897     return VAK_Valid;
898 
899   if (Ty->isObjCObjectType())
900     return VAK_Invalid;
901 
902   if (getLangOpts().MSVCCompat)
903     return VAK_MSVCUndefined;
904 
905   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
906   // permitted to reject them. We should consider doing so.
907   return VAK_Undefined;
908 }
909 
910 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
911   // Don't allow one to pass an Objective-C interface to a vararg.
912   const QualType &Ty = E->getType();
913   VarArgKind VAK = isValidVarArgType(Ty);
914 
915   // Complain about passing non-POD types through varargs.
916   switch (VAK) {
917   case VAK_ValidInCXX11:
918     DiagRuntimeBehavior(
919         E->getLocStart(), nullptr,
920         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
921           << Ty << CT);
922     // Fall through.
923   case VAK_Valid:
924     if (Ty->isRecordType()) {
925       // This is unlikely to be what the user intended. If the class has a
926       // 'c_str' member function, the user probably meant to call that.
927       DiagRuntimeBehavior(E->getLocStart(), nullptr,
928                           PDiag(diag::warn_pass_class_arg_to_vararg)
929                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
930     }
931     break;
932 
933   case VAK_Undefined:
934   case VAK_MSVCUndefined:
935     DiagRuntimeBehavior(
936         E->getLocStart(), nullptr,
937         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
938           << getLangOpts().CPlusPlus11 << Ty << CT);
939     break;
940 
941   case VAK_Invalid:
942     if (Ty->isObjCObjectType())
943       DiagRuntimeBehavior(
944           E->getLocStart(), nullptr,
945           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
946             << Ty << CT);
947     else
948       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
949         << isa<InitListExpr>(E) << Ty << CT;
950     break;
951   }
952 }
953 
954 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
955 /// will create a trap if the resulting type is not a POD type.
956 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
957                                                   FunctionDecl *FDecl) {
958   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
959     // Strip the unbridged-cast placeholder expression off, if applicable.
960     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
961         (CT == VariadicMethod ||
962          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
963       E = stripARCUnbridgedCast(E);
964 
965     // Otherwise, do normal placeholder checking.
966     } else {
967       ExprResult ExprRes = CheckPlaceholderExpr(E);
968       if (ExprRes.isInvalid())
969         return ExprError();
970       E = ExprRes.get();
971     }
972   }
973 
974   ExprResult ExprRes = DefaultArgumentPromotion(E);
975   if (ExprRes.isInvalid())
976     return ExprError();
977   E = ExprRes.get();
978 
979   // Diagnostics regarding non-POD argument types are
980   // emitted along with format string checking in Sema::CheckFunctionCall().
981   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
982     // Turn this into a trap.
983     CXXScopeSpec SS;
984     SourceLocation TemplateKWLoc;
985     UnqualifiedId Name;
986     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
987                        E->getLocStart());
988     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
989                                           Name, true, false);
990     if (TrapFn.isInvalid())
991       return ExprError();
992 
993     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
994                                     E->getLocStart(), None,
995                                     E->getLocEnd());
996     if (Call.isInvalid())
997       return ExprError();
998 
999     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
1000                                   Call.get(), E);
1001     if (Comma.isInvalid())
1002       return ExprError();
1003     return Comma.get();
1004   }
1005 
1006   if (!getLangOpts().CPlusPlus &&
1007       RequireCompleteType(E->getExprLoc(), E->getType(),
1008                           diag::err_call_incomplete_argument))
1009     return ExprError();
1010 
1011   return E;
1012 }
1013 
1014 /// \brief Converts an integer to complex float type.  Helper function of
1015 /// UsualArithmeticConversions()
1016 ///
1017 /// \return false if the integer expression is an integer type and is
1018 /// successfully converted to the complex type.
1019 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1020                                                   ExprResult &ComplexExpr,
1021                                                   QualType IntTy,
1022                                                   QualType ComplexTy,
1023                                                   bool SkipCast) {
1024   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1025   if (SkipCast) return false;
1026   if (IntTy->isIntegerType()) {
1027     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1028     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1029     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1030                                   CK_FloatingRealToComplex);
1031   } else {
1032     assert(IntTy->isComplexIntegerType());
1033     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1034                                   CK_IntegralComplexToFloatingComplex);
1035   }
1036   return false;
1037 }
1038 
1039 /// \brief Handle arithmetic conversion with complex types.  Helper function of
1040 /// UsualArithmeticConversions()
1041 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1042                                              ExprResult &RHS, QualType LHSType,
1043                                              QualType RHSType,
1044                                              bool IsCompAssign) {
1045   // if we have an integer operand, the result is the complex type.
1046   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1047                                              /*skipCast*/false))
1048     return LHSType;
1049   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1050                                              /*skipCast*/IsCompAssign))
1051     return RHSType;
1052 
1053   // This handles complex/complex, complex/float, or float/complex.
1054   // When both operands are complex, the shorter operand is converted to the
1055   // type of the longer, and that is the type of the result. This corresponds
1056   // to what is done when combining two real floating-point operands.
1057   // The fun begins when size promotion occur across type domains.
1058   // From H&S 6.3.4: When one operand is complex and the other is a real
1059   // floating-point type, the less precise type is converted, within it's
1060   // real or complex domain, to the precision of the other type. For example,
1061   // when combining a "long double" with a "double _Complex", the
1062   // "double _Complex" is promoted to "long double _Complex".
1063 
1064   // Compute the rank of the two types, regardless of whether they are complex.
1065   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1066 
1067   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1068   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1069   QualType LHSElementType =
1070       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1071   QualType RHSElementType =
1072       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1073 
1074   QualType ResultType = S.Context.getComplexType(LHSElementType);
1075   if (Order < 0) {
1076     // Promote the precision of the LHS if not an assignment.
1077     ResultType = S.Context.getComplexType(RHSElementType);
1078     if (!IsCompAssign) {
1079       if (LHSComplexType)
1080         LHS =
1081             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1082       else
1083         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1084     }
1085   } else if (Order > 0) {
1086     // Promote the precision of the RHS.
1087     if (RHSComplexType)
1088       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1089     else
1090       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1091   }
1092   return ResultType;
1093 }
1094 
1095 /// \brief Hande arithmetic conversion from integer to float.  Helper function
1096 /// of UsualArithmeticConversions()
1097 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1098                                            ExprResult &IntExpr,
1099                                            QualType FloatTy, QualType IntTy,
1100                                            bool ConvertFloat, bool ConvertInt) {
1101   if (IntTy->isIntegerType()) {
1102     if (ConvertInt)
1103       // Convert intExpr to the lhs floating point type.
1104       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1105                                     CK_IntegralToFloating);
1106     return FloatTy;
1107   }
1108 
1109   // Convert both sides to the appropriate complex float.
1110   assert(IntTy->isComplexIntegerType());
1111   QualType result = S.Context.getComplexType(FloatTy);
1112 
1113   // _Complex int -> _Complex float
1114   if (ConvertInt)
1115     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1116                                   CK_IntegralComplexToFloatingComplex);
1117 
1118   // float -> _Complex float
1119   if (ConvertFloat)
1120     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1121                                     CK_FloatingRealToComplex);
1122 
1123   return result;
1124 }
1125 
1126 /// \brief Handle arithmethic conversion with floating point types.  Helper
1127 /// function of UsualArithmeticConversions()
1128 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1129                                       ExprResult &RHS, QualType LHSType,
1130                                       QualType RHSType, bool IsCompAssign) {
1131   bool LHSFloat = LHSType->isRealFloatingType();
1132   bool RHSFloat = RHSType->isRealFloatingType();
1133 
1134   // If we have two real floating types, convert the smaller operand
1135   // to the bigger result.
1136   if (LHSFloat && RHSFloat) {
1137     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1138     if (order > 0) {
1139       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1140       return LHSType;
1141     }
1142 
1143     assert(order < 0 && "illegal float comparison");
1144     if (!IsCompAssign)
1145       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1146     return RHSType;
1147   }
1148 
1149   if (LHSFloat) {
1150     // Half FP has to be promoted to float unless it is natively supported
1151     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1152       LHSType = S.Context.FloatTy;
1153 
1154     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1155                                       /*convertFloat=*/!IsCompAssign,
1156                                       /*convertInt=*/ true);
1157   }
1158   assert(RHSFloat);
1159   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1160                                     /*convertInt=*/ true,
1161                                     /*convertFloat=*/!IsCompAssign);
1162 }
1163 
1164 /// \brief Diagnose attempts to convert between __float128 and long double if
1165 /// there is no support for such conversion. Helper function of
1166 /// UsualArithmeticConversions().
1167 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1168                                       QualType RHSType) {
1169   /*  No issue converting if at least one of the types is not a floating point
1170       type or the two types have the same rank.
1171   */
1172   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1173       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1174     return false;
1175 
1176   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1177          "The remaining types must be floating point types.");
1178 
1179   auto *LHSComplex = LHSType->getAs<ComplexType>();
1180   auto *RHSComplex = RHSType->getAs<ComplexType>();
1181 
1182   QualType LHSElemType = LHSComplex ?
1183     LHSComplex->getElementType() : LHSType;
1184   QualType RHSElemType = RHSComplex ?
1185     RHSComplex->getElementType() : RHSType;
1186 
1187   // No issue if the two types have the same representation
1188   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1189       &S.Context.getFloatTypeSemantics(RHSElemType))
1190     return false;
1191 
1192   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1193                                 RHSElemType == S.Context.LongDoubleTy);
1194   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1195                             RHSElemType == S.Context.Float128Ty);
1196 
1197   /* We've handled the situation where __float128 and long double have the same
1198      representation. The only other allowable conversion is if long double is
1199      really just double.
1200   */
1201   return Float128AndLongDouble &&
1202     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) !=
1203      &llvm::APFloat::IEEEdouble);
1204 }
1205 
1206 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1207 
1208 namespace {
1209 /// These helper callbacks are placed in an anonymous namespace to
1210 /// permit their use as function template parameters.
1211 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1212   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1213 }
1214 
1215 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1216   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1217                              CK_IntegralComplexCast);
1218 }
1219 }
1220 
1221 /// \brief Handle integer arithmetic conversions.  Helper function of
1222 /// UsualArithmeticConversions()
1223 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1224 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1225                                         ExprResult &RHS, QualType LHSType,
1226                                         QualType RHSType, bool IsCompAssign) {
1227   // The rules for this case are in C99 6.3.1.8
1228   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1229   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1230   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1231   if (LHSSigned == RHSSigned) {
1232     // Same signedness; use the higher-ranked type
1233     if (order >= 0) {
1234       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1235       return LHSType;
1236     } else if (!IsCompAssign)
1237       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1238     return RHSType;
1239   } else if (order != (LHSSigned ? 1 : -1)) {
1240     // The unsigned type has greater than or equal rank to the
1241     // signed type, so use the unsigned type
1242     if (RHSSigned) {
1243       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1244       return LHSType;
1245     } else if (!IsCompAssign)
1246       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1247     return RHSType;
1248   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1249     // The two types are different widths; if we are here, that
1250     // means the signed type is larger than the unsigned type, so
1251     // use the signed type.
1252     if (LHSSigned) {
1253       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1254       return LHSType;
1255     } else if (!IsCompAssign)
1256       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1257     return RHSType;
1258   } else {
1259     // The signed type is higher-ranked than the unsigned type,
1260     // but isn't actually any bigger (like unsigned int and long
1261     // on most 32-bit systems).  Use the unsigned type corresponding
1262     // to the signed type.
1263     QualType result =
1264       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1265     RHS = (*doRHSCast)(S, RHS.get(), result);
1266     if (!IsCompAssign)
1267       LHS = (*doLHSCast)(S, LHS.get(), result);
1268     return result;
1269   }
1270 }
1271 
1272 /// \brief Handle conversions with GCC complex int extension.  Helper function
1273 /// of UsualArithmeticConversions()
1274 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1275                                            ExprResult &RHS, QualType LHSType,
1276                                            QualType RHSType,
1277                                            bool IsCompAssign) {
1278   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1279   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1280 
1281   if (LHSComplexInt && RHSComplexInt) {
1282     QualType LHSEltType = LHSComplexInt->getElementType();
1283     QualType RHSEltType = RHSComplexInt->getElementType();
1284     QualType ScalarType =
1285       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1286         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1287 
1288     return S.Context.getComplexType(ScalarType);
1289   }
1290 
1291   if (LHSComplexInt) {
1292     QualType LHSEltType = LHSComplexInt->getElementType();
1293     QualType ScalarType =
1294       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1295         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1296     QualType ComplexType = S.Context.getComplexType(ScalarType);
1297     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1298                               CK_IntegralRealToComplex);
1299 
1300     return ComplexType;
1301   }
1302 
1303   assert(RHSComplexInt);
1304 
1305   QualType RHSEltType = RHSComplexInt->getElementType();
1306   QualType ScalarType =
1307     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1308       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1309   QualType ComplexType = S.Context.getComplexType(ScalarType);
1310 
1311   if (!IsCompAssign)
1312     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1313                               CK_IntegralRealToComplex);
1314   return ComplexType;
1315 }
1316 
1317 /// UsualArithmeticConversions - Performs various conversions that are common to
1318 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1319 /// routine returns the first non-arithmetic type found. The client is
1320 /// responsible for emitting appropriate error diagnostics.
1321 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1322                                           bool IsCompAssign) {
1323   if (!IsCompAssign) {
1324     LHS = UsualUnaryConversions(LHS.get());
1325     if (LHS.isInvalid())
1326       return QualType();
1327   }
1328 
1329   RHS = UsualUnaryConversions(RHS.get());
1330   if (RHS.isInvalid())
1331     return QualType();
1332 
1333   // For conversion purposes, we ignore any qualifiers.
1334   // For example, "const float" and "float" are equivalent.
1335   QualType LHSType =
1336     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1337   QualType RHSType =
1338     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1339 
1340   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1341   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1342     LHSType = AtomicLHS->getValueType();
1343 
1344   // If both types are identical, no conversion is needed.
1345   if (LHSType == RHSType)
1346     return LHSType;
1347 
1348   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1349   // The caller can deal with this (e.g. pointer + int).
1350   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1351     return QualType();
1352 
1353   // Apply unary and bitfield promotions to the LHS's type.
1354   QualType LHSUnpromotedType = LHSType;
1355   if (LHSType->isPromotableIntegerType())
1356     LHSType = Context.getPromotedIntegerType(LHSType);
1357   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1358   if (!LHSBitfieldPromoteTy.isNull())
1359     LHSType = LHSBitfieldPromoteTy;
1360   if (LHSType != LHSUnpromotedType && !IsCompAssign)
1361     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1362 
1363   // If both types are identical, no conversion is needed.
1364   if (LHSType == RHSType)
1365     return LHSType;
1366 
1367   // At this point, we have two different arithmetic types.
1368 
1369   // Diagnose attempts to convert between __float128 and long double where
1370   // such conversions currently can't be handled.
1371   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1372     return QualType();
1373 
1374   // Handle complex types first (C99 6.3.1.8p1).
1375   if (LHSType->isComplexType() || RHSType->isComplexType())
1376     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1377                                         IsCompAssign);
1378 
1379   // Now handle "real" floating types (i.e. float, double, long double).
1380   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1381     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1382                                  IsCompAssign);
1383 
1384   // Handle GCC complex int extension.
1385   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1386     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1387                                       IsCompAssign);
1388 
1389   // Finally, we have two differing integer types.
1390   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1391            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1392 }
1393 
1394 
1395 //===----------------------------------------------------------------------===//
1396 //  Semantic Analysis for various Expression Types
1397 //===----------------------------------------------------------------------===//
1398 
1399 
1400 ExprResult
1401 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1402                                 SourceLocation DefaultLoc,
1403                                 SourceLocation RParenLoc,
1404                                 Expr *ControllingExpr,
1405                                 ArrayRef<ParsedType> ArgTypes,
1406                                 ArrayRef<Expr *> ArgExprs) {
1407   unsigned NumAssocs = ArgTypes.size();
1408   assert(NumAssocs == ArgExprs.size());
1409 
1410   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1411   for (unsigned i = 0; i < NumAssocs; ++i) {
1412     if (ArgTypes[i])
1413       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1414     else
1415       Types[i] = nullptr;
1416   }
1417 
1418   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1419                                              ControllingExpr,
1420                                              llvm::makeArrayRef(Types, NumAssocs),
1421                                              ArgExprs);
1422   delete [] Types;
1423   return ER;
1424 }
1425 
1426 ExprResult
1427 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1428                                  SourceLocation DefaultLoc,
1429                                  SourceLocation RParenLoc,
1430                                  Expr *ControllingExpr,
1431                                  ArrayRef<TypeSourceInfo *> Types,
1432                                  ArrayRef<Expr *> Exprs) {
1433   unsigned NumAssocs = Types.size();
1434   assert(NumAssocs == Exprs.size());
1435 
1436   // Decay and strip qualifiers for the controlling expression type, and handle
1437   // placeholder type replacement. See committee discussion from WG14 DR423.
1438   {
1439     EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
1440     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1441     if (R.isInvalid())
1442       return ExprError();
1443     ControllingExpr = R.get();
1444   }
1445 
1446   // The controlling expression is an unevaluated operand, so side effects are
1447   // likely unintended.
1448   if (ActiveTemplateInstantiations.empty() &&
1449       ControllingExpr->HasSideEffects(Context, false))
1450     Diag(ControllingExpr->getExprLoc(),
1451          diag::warn_side_effects_unevaluated_context);
1452 
1453   bool TypeErrorFound = false,
1454        IsResultDependent = ControllingExpr->isTypeDependent(),
1455        ContainsUnexpandedParameterPack
1456          = ControllingExpr->containsUnexpandedParameterPack();
1457 
1458   for (unsigned i = 0; i < NumAssocs; ++i) {
1459     if (Exprs[i]->containsUnexpandedParameterPack())
1460       ContainsUnexpandedParameterPack = true;
1461 
1462     if (Types[i]) {
1463       if (Types[i]->getType()->containsUnexpandedParameterPack())
1464         ContainsUnexpandedParameterPack = true;
1465 
1466       if (Types[i]->getType()->isDependentType()) {
1467         IsResultDependent = true;
1468       } else {
1469         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1470         // complete object type other than a variably modified type."
1471         unsigned D = 0;
1472         if (Types[i]->getType()->isIncompleteType())
1473           D = diag::err_assoc_type_incomplete;
1474         else if (!Types[i]->getType()->isObjectType())
1475           D = diag::err_assoc_type_nonobject;
1476         else if (Types[i]->getType()->isVariablyModifiedType())
1477           D = diag::err_assoc_type_variably_modified;
1478 
1479         if (D != 0) {
1480           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1481             << Types[i]->getTypeLoc().getSourceRange()
1482             << Types[i]->getType();
1483           TypeErrorFound = true;
1484         }
1485 
1486         // C11 6.5.1.1p2 "No two generic associations in the same generic
1487         // selection shall specify compatible types."
1488         for (unsigned j = i+1; j < NumAssocs; ++j)
1489           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1490               Context.typesAreCompatible(Types[i]->getType(),
1491                                          Types[j]->getType())) {
1492             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1493                  diag::err_assoc_compatible_types)
1494               << Types[j]->getTypeLoc().getSourceRange()
1495               << Types[j]->getType()
1496               << Types[i]->getType();
1497             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1498                  diag::note_compat_assoc)
1499               << Types[i]->getTypeLoc().getSourceRange()
1500               << Types[i]->getType();
1501             TypeErrorFound = true;
1502           }
1503       }
1504     }
1505   }
1506   if (TypeErrorFound)
1507     return ExprError();
1508 
1509   // If we determined that the generic selection is result-dependent, don't
1510   // try to compute the result expression.
1511   if (IsResultDependent)
1512     return new (Context) GenericSelectionExpr(
1513         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1514         ContainsUnexpandedParameterPack);
1515 
1516   SmallVector<unsigned, 1> CompatIndices;
1517   unsigned DefaultIndex = -1U;
1518   for (unsigned i = 0; i < NumAssocs; ++i) {
1519     if (!Types[i])
1520       DefaultIndex = i;
1521     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1522                                         Types[i]->getType()))
1523       CompatIndices.push_back(i);
1524   }
1525 
1526   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1527   // type compatible with at most one of the types named in its generic
1528   // association list."
1529   if (CompatIndices.size() > 1) {
1530     // We strip parens here because the controlling expression is typically
1531     // parenthesized in macro definitions.
1532     ControllingExpr = ControllingExpr->IgnoreParens();
1533     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1534       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1535       << (unsigned) CompatIndices.size();
1536     for (unsigned I : CompatIndices) {
1537       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1538            diag::note_compat_assoc)
1539         << Types[I]->getTypeLoc().getSourceRange()
1540         << Types[I]->getType();
1541     }
1542     return ExprError();
1543   }
1544 
1545   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1546   // its controlling expression shall have type compatible with exactly one of
1547   // the types named in its generic association list."
1548   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1549     // We strip parens here because the controlling expression is typically
1550     // parenthesized in macro definitions.
1551     ControllingExpr = ControllingExpr->IgnoreParens();
1552     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1553       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1554     return ExprError();
1555   }
1556 
1557   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1558   // type name that is compatible with the type of the controlling expression,
1559   // then the result expression of the generic selection is the expression
1560   // in that generic association. Otherwise, the result expression of the
1561   // generic selection is the expression in the default generic association."
1562   unsigned ResultIndex =
1563     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1564 
1565   return new (Context) GenericSelectionExpr(
1566       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1567       ContainsUnexpandedParameterPack, ResultIndex);
1568 }
1569 
1570 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1571 /// location of the token and the offset of the ud-suffix within it.
1572 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1573                                      unsigned Offset) {
1574   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1575                                         S.getLangOpts());
1576 }
1577 
1578 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1579 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1580 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1581                                                  IdentifierInfo *UDSuffix,
1582                                                  SourceLocation UDSuffixLoc,
1583                                                  ArrayRef<Expr*> Args,
1584                                                  SourceLocation LitEndLoc) {
1585   assert(Args.size() <= 2 && "too many arguments for literal operator");
1586 
1587   QualType ArgTy[2];
1588   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1589     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1590     if (ArgTy[ArgIdx]->isArrayType())
1591       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1592   }
1593 
1594   DeclarationName OpName =
1595     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1596   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1597   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1598 
1599   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1600   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1601                               /*AllowRaw*/false, /*AllowTemplate*/false,
1602                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1603     return ExprError();
1604 
1605   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1606 }
1607 
1608 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1609 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1610 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1611 /// multiple tokens.  However, the common case is that StringToks points to one
1612 /// string.
1613 ///
1614 ExprResult
1615 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1616   assert(!StringToks.empty() && "Must have at least one string!");
1617 
1618   StringLiteralParser Literal(StringToks, PP);
1619   if (Literal.hadError)
1620     return ExprError();
1621 
1622   SmallVector<SourceLocation, 4> StringTokLocs;
1623   for (const Token &Tok : StringToks)
1624     StringTokLocs.push_back(Tok.getLocation());
1625 
1626   QualType CharTy = Context.CharTy;
1627   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1628   if (Literal.isWide()) {
1629     CharTy = Context.getWideCharType();
1630     Kind = StringLiteral::Wide;
1631   } else if (Literal.isUTF8()) {
1632     Kind = StringLiteral::UTF8;
1633   } else if (Literal.isUTF16()) {
1634     CharTy = Context.Char16Ty;
1635     Kind = StringLiteral::UTF16;
1636   } else if (Literal.isUTF32()) {
1637     CharTy = Context.Char32Ty;
1638     Kind = StringLiteral::UTF32;
1639   } else if (Literal.isPascal()) {
1640     CharTy = Context.UnsignedCharTy;
1641   }
1642 
1643   QualType CharTyConst = CharTy;
1644   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1645   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1646     CharTyConst.addConst();
1647 
1648   // Get an array type for the string, according to C99 6.4.5.  This includes
1649   // the nul terminator character as well as the string length for pascal
1650   // strings.
1651   QualType StrTy = Context.getConstantArrayType(CharTyConst,
1652                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
1653                                  ArrayType::Normal, 0);
1654 
1655   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
1656   if (getLangOpts().OpenCL) {
1657     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
1658   }
1659 
1660   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1661   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1662                                              Kind, Literal.Pascal, StrTy,
1663                                              &StringTokLocs[0],
1664                                              StringTokLocs.size());
1665   if (Literal.getUDSuffix().empty())
1666     return Lit;
1667 
1668   // We're building a user-defined literal.
1669   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1670   SourceLocation UDSuffixLoc =
1671     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1672                    Literal.getUDSuffixOffset());
1673 
1674   // Make sure we're allowed user-defined literals here.
1675   if (!UDLScope)
1676     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1677 
1678   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1679   //   operator "" X (str, len)
1680   QualType SizeType = Context.getSizeType();
1681 
1682   DeclarationName OpName =
1683     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1684   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1685   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1686 
1687   QualType ArgTy[] = {
1688     Context.getArrayDecayedType(StrTy), SizeType
1689   };
1690 
1691   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1692   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1693                                 /*AllowRaw*/false, /*AllowTemplate*/false,
1694                                 /*AllowStringTemplate*/true)) {
1695 
1696   case LOLR_Cooked: {
1697     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1698     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1699                                                     StringTokLocs[0]);
1700     Expr *Args[] = { Lit, LenArg };
1701 
1702     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1703   }
1704 
1705   case LOLR_StringTemplate: {
1706     TemplateArgumentListInfo ExplicitArgs;
1707 
1708     unsigned CharBits = Context.getIntWidth(CharTy);
1709     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1710     llvm::APSInt Value(CharBits, CharIsUnsigned);
1711 
1712     TemplateArgument TypeArg(CharTy);
1713     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1714     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1715 
1716     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1717       Value = Lit->getCodeUnit(I);
1718       TemplateArgument Arg(Context, Value, CharTy);
1719       TemplateArgumentLocInfo ArgInfo;
1720       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1721     }
1722     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1723                                     &ExplicitArgs);
1724   }
1725   case LOLR_Raw:
1726   case LOLR_Template:
1727     llvm_unreachable("unexpected literal operator lookup result");
1728   case LOLR_Error:
1729     return ExprError();
1730   }
1731   llvm_unreachable("unexpected literal operator lookup result");
1732 }
1733 
1734 ExprResult
1735 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1736                        SourceLocation Loc,
1737                        const CXXScopeSpec *SS) {
1738   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1739   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1740 }
1741 
1742 /// BuildDeclRefExpr - Build an expression that references a
1743 /// declaration that does not require a closure capture.
1744 ExprResult
1745 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1746                        const DeclarationNameInfo &NameInfo,
1747                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1748                        const TemplateArgumentListInfo *TemplateArgs) {
1749   bool RefersToCapturedVariable =
1750       isa<VarDecl>(D) &&
1751       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1752 
1753   DeclRefExpr *E;
1754   if (isa<VarTemplateSpecializationDecl>(D)) {
1755     VarTemplateSpecializationDecl *VarSpec =
1756         cast<VarTemplateSpecializationDecl>(D);
1757 
1758     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1759                                         : NestedNameSpecifierLoc(),
1760                             VarSpec->getTemplateKeywordLoc(), D,
1761                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
1762                             FoundD, TemplateArgs);
1763   } else {
1764     assert(!TemplateArgs && "No template arguments for non-variable"
1765                             " template specialization references");
1766     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1767                                         : NestedNameSpecifierLoc(),
1768                             SourceLocation(), D, RefersToCapturedVariable,
1769                             NameInfo, Ty, VK, FoundD);
1770   }
1771 
1772   MarkDeclRefReferenced(E);
1773 
1774   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1775       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
1776       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
1777       recordUseOfEvaluatedWeak(E);
1778 
1779   if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1780     UnusedPrivateFields.remove(FD);
1781     // Just in case we're building an illegal pointer-to-member.
1782     if (FD->isBitField())
1783       E->setObjectKind(OK_BitField);
1784   }
1785 
1786   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
1787   // designates a bit-field.
1788   if (auto *BD = dyn_cast<BindingDecl>(D))
1789     if (auto *BE = BD->getBinding())
1790       E->setObjectKind(BE->getObjectKind());
1791 
1792   return E;
1793 }
1794 
1795 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1796 /// possibly a list of template arguments.
1797 ///
1798 /// If this produces template arguments, it is permitted to call
1799 /// DecomposeTemplateName.
1800 ///
1801 /// This actually loses a lot of source location information for
1802 /// non-standard name kinds; we should consider preserving that in
1803 /// some way.
1804 void
1805 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1806                              TemplateArgumentListInfo &Buffer,
1807                              DeclarationNameInfo &NameInfo,
1808                              const TemplateArgumentListInfo *&TemplateArgs) {
1809   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1810     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1811     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1812 
1813     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1814                                        Id.TemplateId->NumArgs);
1815     translateTemplateArguments(TemplateArgsPtr, Buffer);
1816 
1817     TemplateName TName = Id.TemplateId->Template.get();
1818     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1819     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1820     TemplateArgs = &Buffer;
1821   } else {
1822     NameInfo = GetNameFromUnqualifiedId(Id);
1823     TemplateArgs = nullptr;
1824   }
1825 }
1826 
1827 static void emitEmptyLookupTypoDiagnostic(
1828     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1829     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1830     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1831   DeclContext *Ctx =
1832       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1833   if (!TC) {
1834     // Emit a special diagnostic for failed member lookups.
1835     // FIXME: computing the declaration context might fail here (?)
1836     if (Ctx)
1837       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1838                                                  << SS.getRange();
1839     else
1840       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1841     return;
1842   }
1843 
1844   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1845   bool DroppedSpecifier =
1846       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1847   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
1848                         ? diag::note_implicit_param_decl
1849                         : diag::note_previous_decl;
1850   if (!Ctx)
1851     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1852                          SemaRef.PDiag(NoteID));
1853   else
1854     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1855                                  << Typo << Ctx << DroppedSpecifier
1856                                  << SS.getRange(),
1857                          SemaRef.PDiag(NoteID));
1858 }
1859 
1860 /// Diagnose an empty lookup.
1861 ///
1862 /// \return false if new lookup candidates were found
1863 bool
1864 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1865                           std::unique_ptr<CorrectionCandidateCallback> CCC,
1866                           TemplateArgumentListInfo *ExplicitTemplateArgs,
1867                           ArrayRef<Expr *> Args, TypoExpr **Out) {
1868   DeclarationName Name = R.getLookupName();
1869 
1870   unsigned diagnostic = diag::err_undeclared_var_use;
1871   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1872   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1873       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1874       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1875     diagnostic = diag::err_undeclared_use;
1876     diagnostic_suggest = diag::err_undeclared_use_suggest;
1877   }
1878 
1879   // If the original lookup was an unqualified lookup, fake an
1880   // unqualified lookup.  This is useful when (for example) the
1881   // original lookup would not have found something because it was a
1882   // dependent name.
1883   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
1884   while (DC) {
1885     if (isa<CXXRecordDecl>(DC)) {
1886       LookupQualifiedName(R, DC);
1887 
1888       if (!R.empty()) {
1889         // Don't give errors about ambiguities in this lookup.
1890         R.suppressDiagnostics();
1891 
1892         // During a default argument instantiation the CurContext points
1893         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1894         // function parameter list, hence add an explicit check.
1895         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1896                               ActiveTemplateInstantiations.back().Kind ==
1897             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1898         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1899         bool isInstance = CurMethod &&
1900                           CurMethod->isInstance() &&
1901                           DC == CurMethod->getParent() && !isDefaultArgument;
1902 
1903         // Give a code modification hint to insert 'this->'.
1904         // TODO: fixit for inserting 'Base<T>::' in the other cases.
1905         // Actually quite difficult!
1906         if (getLangOpts().MSVCCompat)
1907           diagnostic = diag::ext_found_via_dependent_bases_lookup;
1908         if (isInstance) {
1909           Diag(R.getNameLoc(), diagnostic) << Name
1910             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1911           CheckCXXThisCapture(R.getNameLoc());
1912         } else {
1913           Diag(R.getNameLoc(), diagnostic) << Name;
1914         }
1915 
1916         // Do we really want to note all of these?
1917         for (NamedDecl *D : R)
1918           Diag(D->getLocation(), diag::note_dependent_var_use);
1919 
1920         // Return true if we are inside a default argument instantiation
1921         // and the found name refers to an instance member function, otherwise
1922         // the function calling DiagnoseEmptyLookup will try to create an
1923         // implicit member call and this is wrong for default argument.
1924         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1925           Diag(R.getNameLoc(), diag::err_member_call_without_object);
1926           return true;
1927         }
1928 
1929         // Tell the callee to try to recover.
1930         return false;
1931       }
1932 
1933       R.clear();
1934     }
1935 
1936     // In Microsoft mode, if we are performing lookup from within a friend
1937     // function definition declared at class scope then we must set
1938     // DC to the lexical parent to be able to search into the parent
1939     // class.
1940     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
1941         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1942         DC->getLexicalParent()->isRecord())
1943       DC = DC->getLexicalParent();
1944     else
1945       DC = DC->getParent();
1946   }
1947 
1948   // We didn't find anything, so try to correct for a typo.
1949   TypoCorrection Corrected;
1950   if (S && Out) {
1951     SourceLocation TypoLoc = R.getNameLoc();
1952     assert(!ExplicitTemplateArgs &&
1953            "Diagnosing an empty lookup with explicit template args!");
1954     *Out = CorrectTypoDelayed(
1955         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
1956         [=](const TypoCorrection &TC) {
1957           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
1958                                         diagnostic, diagnostic_suggest);
1959         },
1960         nullptr, CTK_ErrorRecovery);
1961     if (*Out)
1962       return true;
1963   } else if (S && (Corrected =
1964                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
1965                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
1966     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1967     bool DroppedSpecifier =
1968         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1969     R.setLookupName(Corrected.getCorrection());
1970 
1971     bool AcceptableWithRecovery = false;
1972     bool AcceptableWithoutRecovery = false;
1973     NamedDecl *ND = Corrected.getFoundDecl();
1974     if (ND) {
1975       if (Corrected.isOverloaded()) {
1976         OverloadCandidateSet OCS(R.getNameLoc(),
1977                                  OverloadCandidateSet::CSK_Normal);
1978         OverloadCandidateSet::iterator Best;
1979         for (NamedDecl *CD : Corrected) {
1980           if (FunctionTemplateDecl *FTD =
1981                    dyn_cast<FunctionTemplateDecl>(CD))
1982             AddTemplateOverloadCandidate(
1983                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1984                 Args, OCS);
1985           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
1986             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1987               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1988                                    Args, OCS);
1989         }
1990         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1991         case OR_Success:
1992           ND = Best->FoundDecl;
1993           Corrected.setCorrectionDecl(ND);
1994           break;
1995         default:
1996           // FIXME: Arbitrarily pick the first declaration for the note.
1997           Corrected.setCorrectionDecl(ND);
1998           break;
1999         }
2000       }
2001       R.addDecl(ND);
2002       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2003         CXXRecordDecl *Record = nullptr;
2004         if (Corrected.getCorrectionSpecifier()) {
2005           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2006           Record = Ty->getAsCXXRecordDecl();
2007         }
2008         if (!Record)
2009           Record = cast<CXXRecordDecl>(
2010               ND->getDeclContext()->getRedeclContext());
2011         R.setNamingClass(Record);
2012       }
2013 
2014       auto *UnderlyingND = ND->getUnderlyingDecl();
2015       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2016                                isa<FunctionTemplateDecl>(UnderlyingND);
2017       // FIXME: If we ended up with a typo for a type name or
2018       // Objective-C class name, we're in trouble because the parser
2019       // is in the wrong place to recover. Suggest the typo
2020       // correction, but don't make it a fix-it since we're not going
2021       // to recover well anyway.
2022       AcceptableWithoutRecovery =
2023           isa<TypeDecl>(UnderlyingND) || isa<ObjCInterfaceDecl>(UnderlyingND);
2024     } else {
2025       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2026       // because we aren't able to recover.
2027       AcceptableWithoutRecovery = true;
2028     }
2029 
2030     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2031       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2032                             ? diag::note_implicit_param_decl
2033                             : diag::note_previous_decl;
2034       if (SS.isEmpty())
2035         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2036                      PDiag(NoteID), AcceptableWithRecovery);
2037       else
2038         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2039                                   << Name << computeDeclContext(SS, false)
2040                                   << DroppedSpecifier << SS.getRange(),
2041                      PDiag(NoteID), AcceptableWithRecovery);
2042 
2043       // Tell the callee whether to try to recover.
2044       return !AcceptableWithRecovery;
2045     }
2046   }
2047   R.clear();
2048 
2049   // Emit a special diagnostic for failed member lookups.
2050   // FIXME: computing the declaration context might fail here (?)
2051   if (!SS.isEmpty()) {
2052     Diag(R.getNameLoc(), diag::err_no_member)
2053       << Name << computeDeclContext(SS, false)
2054       << SS.getRange();
2055     return true;
2056   }
2057 
2058   // Give up, we can't recover.
2059   Diag(R.getNameLoc(), diagnostic) << Name;
2060   return true;
2061 }
2062 
2063 /// In Microsoft mode, if we are inside a template class whose parent class has
2064 /// dependent base classes, and we can't resolve an unqualified identifier, then
2065 /// assume the identifier is a member of a dependent base class.  We can only
2066 /// recover successfully in static methods, instance methods, and other contexts
2067 /// where 'this' is available.  This doesn't precisely match MSVC's
2068 /// instantiation model, but it's close enough.
2069 static Expr *
2070 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2071                                DeclarationNameInfo &NameInfo,
2072                                SourceLocation TemplateKWLoc,
2073                                const TemplateArgumentListInfo *TemplateArgs) {
2074   // Only try to recover from lookup into dependent bases in static methods or
2075   // contexts where 'this' is available.
2076   QualType ThisType = S.getCurrentThisType();
2077   const CXXRecordDecl *RD = nullptr;
2078   if (!ThisType.isNull())
2079     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2080   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2081     RD = MD->getParent();
2082   if (!RD || !RD->hasAnyDependentBases())
2083     return nullptr;
2084 
2085   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2086   // is available, suggest inserting 'this->' as a fixit.
2087   SourceLocation Loc = NameInfo.getLoc();
2088   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2089   DB << NameInfo.getName() << RD;
2090 
2091   if (!ThisType.isNull()) {
2092     DB << FixItHint::CreateInsertion(Loc, "this->");
2093     return CXXDependentScopeMemberExpr::Create(
2094         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2095         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2096         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
2097   }
2098 
2099   // Synthesize a fake NNS that points to the derived class.  This will
2100   // perform name lookup during template instantiation.
2101   CXXScopeSpec SS;
2102   auto *NNS =
2103       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2104   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2105   return DependentScopeDeclRefExpr::Create(
2106       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2107       TemplateArgs);
2108 }
2109 
2110 ExprResult
2111 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2112                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2113                         bool HasTrailingLParen, bool IsAddressOfOperand,
2114                         std::unique_ptr<CorrectionCandidateCallback> CCC,
2115                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2116   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2117          "cannot be direct & operand and have a trailing lparen");
2118   if (SS.isInvalid())
2119     return ExprError();
2120 
2121   TemplateArgumentListInfo TemplateArgsBuffer;
2122 
2123   // Decompose the UnqualifiedId into the following data.
2124   DeclarationNameInfo NameInfo;
2125   const TemplateArgumentListInfo *TemplateArgs;
2126   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2127 
2128   DeclarationName Name = NameInfo.getName();
2129   IdentifierInfo *II = Name.getAsIdentifierInfo();
2130   SourceLocation NameLoc = NameInfo.getLoc();
2131 
2132   // C++ [temp.dep.expr]p3:
2133   //   An id-expression is type-dependent if it contains:
2134   //     -- an identifier that was declared with a dependent type,
2135   //        (note: handled after lookup)
2136   //     -- a template-id that is dependent,
2137   //        (note: handled in BuildTemplateIdExpr)
2138   //     -- a conversion-function-id that specifies a dependent type,
2139   //     -- a nested-name-specifier that contains a class-name that
2140   //        names a dependent type.
2141   // Determine whether this is a member of an unknown specialization;
2142   // we need to handle these differently.
2143   bool DependentID = false;
2144   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2145       Name.getCXXNameType()->isDependentType()) {
2146     DependentID = true;
2147   } else if (SS.isSet()) {
2148     if (DeclContext *DC = computeDeclContext(SS, false)) {
2149       if (RequireCompleteDeclContext(SS, DC))
2150         return ExprError();
2151     } else {
2152       DependentID = true;
2153     }
2154   }
2155 
2156   if (DependentID)
2157     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2158                                       IsAddressOfOperand, TemplateArgs);
2159 
2160   // Perform the required lookup.
2161   LookupResult R(*this, NameInfo,
2162                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
2163                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
2164   if (TemplateArgs) {
2165     // Lookup the template name again to correctly establish the context in
2166     // which it was found. This is really unfortunate as we already did the
2167     // lookup to determine that it was a template name in the first place. If
2168     // this becomes a performance hit, we can work harder to preserve those
2169     // results until we get here but it's likely not worth it.
2170     bool MemberOfUnknownSpecialization;
2171     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2172                        MemberOfUnknownSpecialization);
2173 
2174     if (MemberOfUnknownSpecialization ||
2175         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2176       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2177                                         IsAddressOfOperand, TemplateArgs);
2178   } else {
2179     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2180     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2181 
2182     // If the result might be in a dependent base class, this is a dependent
2183     // id-expression.
2184     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2185       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2186                                         IsAddressOfOperand, TemplateArgs);
2187 
2188     // If this reference is in an Objective-C method, then we need to do
2189     // some special Objective-C lookup, too.
2190     if (IvarLookupFollowUp) {
2191       ExprResult E(LookupInObjCMethod(R, S, II, true));
2192       if (E.isInvalid())
2193         return ExprError();
2194 
2195       if (Expr *Ex = E.getAs<Expr>())
2196         return Ex;
2197     }
2198   }
2199 
2200   if (R.isAmbiguous())
2201     return ExprError();
2202 
2203   // This could be an implicitly declared function reference (legal in C90,
2204   // extension in C99, forbidden in C++).
2205   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2206     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2207     if (D) R.addDecl(D);
2208   }
2209 
2210   // Determine whether this name might be a candidate for
2211   // argument-dependent lookup.
2212   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2213 
2214   if (R.empty() && !ADL) {
2215     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2216       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2217                                                    TemplateKWLoc, TemplateArgs))
2218         return E;
2219     }
2220 
2221     // Don't diagnose an empty lookup for inline assembly.
2222     if (IsInlineAsmIdentifier)
2223       return ExprError();
2224 
2225     // If this name wasn't predeclared and if this is not a function
2226     // call, diagnose the problem.
2227     TypoExpr *TE = nullptr;
2228     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
2229         II, SS.isValid() ? SS.getScopeRep() : nullptr);
2230     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
2231     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2232            "Typo correction callback misconfigured");
2233     if (CCC) {
2234       // Make sure the callback knows what the typo being diagnosed is.
2235       CCC->setTypoName(II);
2236       if (SS.isValid())
2237         CCC->setTypoNNS(SS.getScopeRep());
2238     }
2239     if (DiagnoseEmptyLookup(S, SS, R,
2240                             CCC ? std::move(CCC) : std::move(DefaultValidator),
2241                             nullptr, None, &TE)) {
2242       if (TE && KeywordReplacement) {
2243         auto &State = getTypoExprState(TE);
2244         auto BestTC = State.Consumer->getNextCorrection();
2245         if (BestTC.isKeyword()) {
2246           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2247           if (State.DiagHandler)
2248             State.DiagHandler(BestTC);
2249           KeywordReplacement->startToken();
2250           KeywordReplacement->setKind(II->getTokenID());
2251           KeywordReplacement->setIdentifierInfo(II);
2252           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2253           // Clean up the state associated with the TypoExpr, since it has
2254           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2255           clearDelayedTypo(TE);
2256           // Signal that a correction to a keyword was performed by returning a
2257           // valid-but-null ExprResult.
2258           return (Expr*)nullptr;
2259         }
2260         State.Consumer->resetCorrectionStream();
2261       }
2262       return TE ? TE : ExprError();
2263     }
2264 
2265     assert(!R.empty() &&
2266            "DiagnoseEmptyLookup returned false but added no results");
2267 
2268     // If we found an Objective-C instance variable, let
2269     // LookupInObjCMethod build the appropriate expression to
2270     // reference the ivar.
2271     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2272       R.clear();
2273       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2274       // In a hopelessly buggy code, Objective-C instance variable
2275       // lookup fails and no expression will be built to reference it.
2276       if (!E.isInvalid() && !E.get())
2277         return ExprError();
2278       return E;
2279     }
2280   }
2281 
2282   // This is guaranteed from this point on.
2283   assert(!R.empty() || ADL);
2284 
2285   // Check whether this might be a C++ implicit instance member access.
2286   // C++ [class.mfct.non-static]p3:
2287   //   When an id-expression that is not part of a class member access
2288   //   syntax and not used to form a pointer to member is used in the
2289   //   body of a non-static member function of class X, if name lookup
2290   //   resolves the name in the id-expression to a non-static non-type
2291   //   member of some class C, the id-expression is transformed into a
2292   //   class member access expression using (*this) as the
2293   //   postfix-expression to the left of the . operator.
2294   //
2295   // But we don't actually need to do this for '&' operands if R
2296   // resolved to a function or overloaded function set, because the
2297   // expression is ill-formed if it actually works out to be a
2298   // non-static member function:
2299   //
2300   // C++ [expr.ref]p4:
2301   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2302   //   [t]he expression can be used only as the left-hand operand of a
2303   //   member function call.
2304   //
2305   // There are other safeguards against such uses, but it's important
2306   // to get this right here so that we don't end up making a
2307   // spuriously dependent expression if we're inside a dependent
2308   // instance method.
2309   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2310     bool MightBeImplicitMember;
2311     if (!IsAddressOfOperand)
2312       MightBeImplicitMember = true;
2313     else if (!SS.isEmpty())
2314       MightBeImplicitMember = false;
2315     else if (R.isOverloadedResult())
2316       MightBeImplicitMember = false;
2317     else if (R.isUnresolvableResult())
2318       MightBeImplicitMember = true;
2319     else
2320       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2321                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2322                               isa<MSPropertyDecl>(R.getFoundDecl());
2323 
2324     if (MightBeImplicitMember)
2325       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2326                                              R, TemplateArgs, S);
2327   }
2328 
2329   if (TemplateArgs || TemplateKWLoc.isValid()) {
2330 
2331     // In C++1y, if this is a variable template id, then check it
2332     // in BuildTemplateIdExpr().
2333     // The single lookup result must be a variable template declaration.
2334     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2335         Id.TemplateId->Kind == TNK_Var_template) {
2336       assert(R.getAsSingle<VarTemplateDecl>() &&
2337              "There should only be one declaration found.");
2338     }
2339 
2340     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2341   }
2342 
2343   return BuildDeclarationNameExpr(SS, R, ADL);
2344 }
2345 
2346 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2347 /// declaration name, generally during template instantiation.
2348 /// There's a large number of things which don't need to be done along
2349 /// this path.
2350 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2351     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2352     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2353   DeclContext *DC = computeDeclContext(SS, false);
2354   if (!DC)
2355     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2356                                      NameInfo, /*TemplateArgs=*/nullptr);
2357 
2358   if (RequireCompleteDeclContext(SS, DC))
2359     return ExprError();
2360 
2361   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2362   LookupQualifiedName(R, DC);
2363 
2364   if (R.isAmbiguous())
2365     return ExprError();
2366 
2367   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2368     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2369                                      NameInfo, /*TemplateArgs=*/nullptr);
2370 
2371   if (R.empty()) {
2372     Diag(NameInfo.getLoc(), diag::err_no_member)
2373       << NameInfo.getName() << DC << SS.getRange();
2374     return ExprError();
2375   }
2376 
2377   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2378     // Diagnose a missing typename if this resolved unambiguously to a type in
2379     // a dependent context.  If we can recover with a type, downgrade this to
2380     // a warning in Microsoft compatibility mode.
2381     unsigned DiagID = diag::err_typename_missing;
2382     if (RecoveryTSI && getLangOpts().MSVCCompat)
2383       DiagID = diag::ext_typename_missing;
2384     SourceLocation Loc = SS.getBeginLoc();
2385     auto D = Diag(Loc, DiagID);
2386     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2387       << SourceRange(Loc, NameInfo.getEndLoc());
2388 
2389     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2390     // context.
2391     if (!RecoveryTSI)
2392       return ExprError();
2393 
2394     // Only issue the fixit if we're prepared to recover.
2395     D << FixItHint::CreateInsertion(Loc, "typename ");
2396 
2397     // Recover by pretending this was an elaborated type.
2398     QualType Ty = Context.getTypeDeclType(TD);
2399     TypeLocBuilder TLB;
2400     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2401 
2402     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2403     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2404     QTL.setElaboratedKeywordLoc(SourceLocation());
2405     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2406 
2407     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2408 
2409     return ExprEmpty();
2410   }
2411 
2412   // Defend against this resolving to an implicit member access. We usually
2413   // won't get here if this might be a legitimate a class member (we end up in
2414   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2415   // a pointer-to-member or in an unevaluated context in C++11.
2416   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2417     return BuildPossibleImplicitMemberExpr(SS,
2418                                            /*TemplateKWLoc=*/SourceLocation(),
2419                                            R, /*TemplateArgs=*/nullptr, S);
2420 
2421   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2422 }
2423 
2424 /// LookupInObjCMethod - The parser has read a name in, and Sema has
2425 /// detected that we're currently inside an ObjC method.  Perform some
2426 /// additional lookup.
2427 ///
2428 /// Ideally, most of this would be done by lookup, but there's
2429 /// actually quite a lot of extra work involved.
2430 ///
2431 /// Returns a null sentinel to indicate trivial success.
2432 ExprResult
2433 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2434                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2435   SourceLocation Loc = Lookup.getNameLoc();
2436   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2437 
2438   // Check for error condition which is already reported.
2439   if (!CurMethod)
2440     return ExprError();
2441 
2442   // There are two cases to handle here.  1) scoped lookup could have failed,
2443   // in which case we should look for an ivar.  2) scoped lookup could have
2444   // found a decl, but that decl is outside the current instance method (i.e.
2445   // a global variable).  In these two cases, we do a lookup for an ivar with
2446   // this name, if the lookup sucedes, we replace it our current decl.
2447 
2448   // If we're in a class method, we don't normally want to look for
2449   // ivars.  But if we don't find anything else, and there's an
2450   // ivar, that's an error.
2451   bool IsClassMethod = CurMethod->isClassMethod();
2452 
2453   bool LookForIvars;
2454   if (Lookup.empty())
2455     LookForIvars = true;
2456   else if (IsClassMethod)
2457     LookForIvars = false;
2458   else
2459     LookForIvars = (Lookup.isSingleResult() &&
2460                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2461   ObjCInterfaceDecl *IFace = nullptr;
2462   if (LookForIvars) {
2463     IFace = CurMethod->getClassInterface();
2464     ObjCInterfaceDecl *ClassDeclared;
2465     ObjCIvarDecl *IV = nullptr;
2466     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2467       // Diagnose using an ivar in a class method.
2468       if (IsClassMethod)
2469         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2470                          << IV->getDeclName());
2471 
2472       // If we're referencing an invalid decl, just return this as a silent
2473       // error node.  The error diagnostic was already emitted on the decl.
2474       if (IV->isInvalidDecl())
2475         return ExprError();
2476 
2477       // Check if referencing a field with __attribute__((deprecated)).
2478       if (DiagnoseUseOfDecl(IV, Loc))
2479         return ExprError();
2480 
2481       // Diagnose the use of an ivar outside of the declaring class.
2482       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2483           !declaresSameEntity(ClassDeclared, IFace) &&
2484           !getLangOpts().DebuggerSupport)
2485         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2486 
2487       // FIXME: This should use a new expr for a direct reference, don't
2488       // turn this into Self->ivar, just return a BareIVarExpr or something.
2489       IdentifierInfo &II = Context.Idents.get("self");
2490       UnqualifiedId SelfName;
2491       SelfName.setIdentifier(&II, SourceLocation());
2492       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2493       CXXScopeSpec SelfScopeSpec;
2494       SourceLocation TemplateKWLoc;
2495       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2496                                               SelfName, false, false);
2497       if (SelfExpr.isInvalid())
2498         return ExprError();
2499 
2500       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2501       if (SelfExpr.isInvalid())
2502         return ExprError();
2503 
2504       MarkAnyDeclReferenced(Loc, IV, true);
2505 
2506       ObjCMethodFamily MF = CurMethod->getMethodFamily();
2507       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2508           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2509         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2510 
2511       ObjCIvarRefExpr *Result = new (Context)
2512           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2513                           IV->getLocation(), SelfExpr.get(), true, true);
2514 
2515       if (getLangOpts().ObjCAutoRefCount) {
2516         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2517           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2518             recordUseOfEvaluatedWeak(Result);
2519         }
2520         if (CurContext->isClosure())
2521           Diag(Loc, diag::warn_implicitly_retains_self)
2522             << FixItHint::CreateInsertion(Loc, "self->");
2523       }
2524 
2525       return Result;
2526     }
2527   } else if (CurMethod->isInstanceMethod()) {
2528     // We should warn if a local variable hides an ivar.
2529     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2530       ObjCInterfaceDecl *ClassDeclared;
2531       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2532         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2533             declaresSameEntity(IFace, ClassDeclared))
2534           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2535       }
2536     }
2537   } else if (Lookup.isSingleResult() &&
2538              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2539     // If accessing a stand-alone ivar in a class method, this is an error.
2540     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2541       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2542                        << IV->getDeclName());
2543   }
2544 
2545   if (Lookup.empty() && II && AllowBuiltinCreation) {
2546     // FIXME. Consolidate this with similar code in LookupName.
2547     if (unsigned BuiltinID = II->getBuiltinID()) {
2548       if (!(getLangOpts().CPlusPlus &&
2549             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2550         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2551                                            S, Lookup.isForRedeclaration(),
2552                                            Lookup.getNameLoc());
2553         if (D) Lookup.addDecl(D);
2554       }
2555     }
2556   }
2557   // Sentinel value saying that we didn't do anything special.
2558   return ExprResult((Expr *)nullptr);
2559 }
2560 
2561 /// \brief Cast a base object to a member's actual type.
2562 ///
2563 /// Logically this happens in three phases:
2564 ///
2565 /// * First we cast from the base type to the naming class.
2566 ///   The naming class is the class into which we were looking
2567 ///   when we found the member;  it's the qualifier type if a
2568 ///   qualifier was provided, and otherwise it's the base type.
2569 ///
2570 /// * Next we cast from the naming class to the declaring class.
2571 ///   If the member we found was brought into a class's scope by
2572 ///   a using declaration, this is that class;  otherwise it's
2573 ///   the class declaring the member.
2574 ///
2575 /// * Finally we cast from the declaring class to the "true"
2576 ///   declaring class of the member.  This conversion does not
2577 ///   obey access control.
2578 ExprResult
2579 Sema::PerformObjectMemberConversion(Expr *From,
2580                                     NestedNameSpecifier *Qualifier,
2581                                     NamedDecl *FoundDecl,
2582                                     NamedDecl *Member) {
2583   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2584   if (!RD)
2585     return From;
2586 
2587   QualType DestRecordType;
2588   QualType DestType;
2589   QualType FromRecordType;
2590   QualType FromType = From->getType();
2591   bool PointerConversions = false;
2592   if (isa<FieldDecl>(Member)) {
2593     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2594 
2595     if (FromType->getAs<PointerType>()) {
2596       DestType = Context.getPointerType(DestRecordType);
2597       FromRecordType = FromType->getPointeeType();
2598       PointerConversions = true;
2599     } else {
2600       DestType = DestRecordType;
2601       FromRecordType = FromType;
2602     }
2603   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2604     if (Method->isStatic())
2605       return From;
2606 
2607     DestType = Method->getThisType(Context);
2608     DestRecordType = DestType->getPointeeType();
2609 
2610     if (FromType->getAs<PointerType>()) {
2611       FromRecordType = FromType->getPointeeType();
2612       PointerConversions = true;
2613     } else {
2614       FromRecordType = FromType;
2615       DestType = DestRecordType;
2616     }
2617   } else {
2618     // No conversion necessary.
2619     return From;
2620   }
2621 
2622   if (DestType->isDependentType() || FromType->isDependentType())
2623     return From;
2624 
2625   // If the unqualified types are the same, no conversion is necessary.
2626   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2627     return From;
2628 
2629   SourceRange FromRange = From->getSourceRange();
2630   SourceLocation FromLoc = FromRange.getBegin();
2631 
2632   ExprValueKind VK = From->getValueKind();
2633 
2634   // C++ [class.member.lookup]p8:
2635   //   [...] Ambiguities can often be resolved by qualifying a name with its
2636   //   class name.
2637   //
2638   // If the member was a qualified name and the qualified referred to a
2639   // specific base subobject type, we'll cast to that intermediate type
2640   // first and then to the object in which the member is declared. That allows
2641   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2642   //
2643   //   class Base { public: int x; };
2644   //   class Derived1 : public Base { };
2645   //   class Derived2 : public Base { };
2646   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2647   //
2648   //   void VeryDerived::f() {
2649   //     x = 17; // error: ambiguous base subobjects
2650   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2651   //   }
2652   if (Qualifier && Qualifier->getAsType()) {
2653     QualType QType = QualType(Qualifier->getAsType(), 0);
2654     assert(QType->isRecordType() && "lookup done with non-record type");
2655 
2656     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2657 
2658     // In C++98, the qualifier type doesn't actually have to be a base
2659     // type of the object type, in which case we just ignore it.
2660     // Otherwise build the appropriate casts.
2661     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2662       CXXCastPath BasePath;
2663       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2664                                        FromLoc, FromRange, &BasePath))
2665         return ExprError();
2666 
2667       if (PointerConversions)
2668         QType = Context.getPointerType(QType);
2669       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2670                                VK, &BasePath).get();
2671 
2672       FromType = QType;
2673       FromRecordType = QRecordType;
2674 
2675       // If the qualifier type was the same as the destination type,
2676       // we're done.
2677       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2678         return From;
2679     }
2680   }
2681 
2682   bool IgnoreAccess = false;
2683 
2684   // If we actually found the member through a using declaration, cast
2685   // down to the using declaration's type.
2686   //
2687   // Pointer equality is fine here because only one declaration of a
2688   // class ever has member declarations.
2689   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2690     assert(isa<UsingShadowDecl>(FoundDecl));
2691     QualType URecordType = Context.getTypeDeclType(
2692                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2693 
2694     // We only need to do this if the naming-class to declaring-class
2695     // conversion is non-trivial.
2696     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2697       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2698       CXXCastPath BasePath;
2699       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2700                                        FromLoc, FromRange, &BasePath))
2701         return ExprError();
2702 
2703       QualType UType = URecordType;
2704       if (PointerConversions)
2705         UType = Context.getPointerType(UType);
2706       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2707                                VK, &BasePath).get();
2708       FromType = UType;
2709       FromRecordType = URecordType;
2710     }
2711 
2712     // We don't do access control for the conversion from the
2713     // declaring class to the true declaring class.
2714     IgnoreAccess = true;
2715   }
2716 
2717   CXXCastPath BasePath;
2718   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2719                                    FromLoc, FromRange, &BasePath,
2720                                    IgnoreAccess))
2721     return ExprError();
2722 
2723   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2724                            VK, &BasePath);
2725 }
2726 
2727 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2728                                       const LookupResult &R,
2729                                       bool HasTrailingLParen) {
2730   // Only when used directly as the postfix-expression of a call.
2731   if (!HasTrailingLParen)
2732     return false;
2733 
2734   // Never if a scope specifier was provided.
2735   if (SS.isSet())
2736     return false;
2737 
2738   // Only in C++ or ObjC++.
2739   if (!getLangOpts().CPlusPlus)
2740     return false;
2741 
2742   // Turn off ADL when we find certain kinds of declarations during
2743   // normal lookup:
2744   for (NamedDecl *D : R) {
2745     // C++0x [basic.lookup.argdep]p3:
2746     //     -- a declaration of a class member
2747     // Since using decls preserve this property, we check this on the
2748     // original decl.
2749     if (D->isCXXClassMember())
2750       return false;
2751 
2752     // C++0x [basic.lookup.argdep]p3:
2753     //     -- a block-scope function declaration that is not a
2754     //        using-declaration
2755     // NOTE: we also trigger this for function templates (in fact, we
2756     // don't check the decl type at all, since all other decl types
2757     // turn off ADL anyway).
2758     if (isa<UsingShadowDecl>(D))
2759       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2760     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2761       return false;
2762 
2763     // C++0x [basic.lookup.argdep]p3:
2764     //     -- a declaration that is neither a function or a function
2765     //        template
2766     // And also for builtin functions.
2767     if (isa<FunctionDecl>(D)) {
2768       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2769 
2770       // But also builtin functions.
2771       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2772         return false;
2773     } else if (!isa<FunctionTemplateDecl>(D))
2774       return false;
2775   }
2776 
2777   return true;
2778 }
2779 
2780 
2781 /// Diagnoses obvious problems with the use of the given declaration
2782 /// as an expression.  This is only actually called for lookups that
2783 /// were not overloaded, and it doesn't promise that the declaration
2784 /// will in fact be used.
2785 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2786   if (isa<TypedefNameDecl>(D)) {
2787     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2788     return true;
2789   }
2790 
2791   if (isa<ObjCInterfaceDecl>(D)) {
2792     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2793     return true;
2794   }
2795 
2796   if (isa<NamespaceDecl>(D)) {
2797     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2798     return true;
2799   }
2800 
2801   return false;
2802 }
2803 
2804 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2805                                           LookupResult &R, bool NeedsADL,
2806                                           bool AcceptInvalidDecl) {
2807   // If this is a single, fully-resolved result and we don't need ADL,
2808   // just build an ordinary singleton decl ref.
2809   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2810     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2811                                     R.getRepresentativeDecl(), nullptr,
2812                                     AcceptInvalidDecl);
2813 
2814   // We only need to check the declaration if there's exactly one
2815   // result, because in the overloaded case the results can only be
2816   // functions and function templates.
2817   if (R.isSingleResult() &&
2818       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2819     return ExprError();
2820 
2821   // Otherwise, just build an unresolved lookup expression.  Suppress
2822   // any lookup-related diagnostics; we'll hash these out later, when
2823   // we've picked a target.
2824   R.suppressDiagnostics();
2825 
2826   UnresolvedLookupExpr *ULE
2827     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2828                                    SS.getWithLocInContext(Context),
2829                                    R.getLookupNameInfo(),
2830                                    NeedsADL, R.isOverloadedResult(),
2831                                    R.begin(), R.end());
2832 
2833   return ULE;
2834 }
2835 
2836 static void
2837 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
2838                                    ValueDecl *var, DeclContext *DC);
2839 
2840 /// \brief Complete semantic analysis for a reference to the given declaration.
2841 ExprResult Sema::BuildDeclarationNameExpr(
2842     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2843     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2844     bool AcceptInvalidDecl) {
2845   assert(D && "Cannot refer to a NULL declaration");
2846   assert(!isa<FunctionTemplateDecl>(D) &&
2847          "Cannot refer unambiguously to a function template");
2848 
2849   SourceLocation Loc = NameInfo.getLoc();
2850   if (CheckDeclInExpr(*this, Loc, D))
2851     return ExprError();
2852 
2853   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2854     // Specifically diagnose references to class templates that are missing
2855     // a template argument list.
2856     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2857                                            << Template << SS.getRange();
2858     Diag(Template->getLocation(), diag::note_template_decl_here);
2859     return ExprError();
2860   }
2861 
2862   // Make sure that we're referring to a value.
2863   ValueDecl *VD = dyn_cast<ValueDecl>(D);
2864   if (!VD) {
2865     Diag(Loc, diag::err_ref_non_value)
2866       << D << SS.getRange();
2867     Diag(D->getLocation(), diag::note_declared_at);
2868     return ExprError();
2869   }
2870 
2871   // Check whether this declaration can be used. Note that we suppress
2872   // this check when we're going to perform argument-dependent lookup
2873   // on this function name, because this might not be the function
2874   // that overload resolution actually selects.
2875   if (DiagnoseUseOfDecl(VD, Loc))
2876     return ExprError();
2877 
2878   // Only create DeclRefExpr's for valid Decl's.
2879   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2880     return ExprError();
2881 
2882   // Handle members of anonymous structs and unions.  If we got here,
2883   // and the reference is to a class member indirect field, then this
2884   // must be the subject of a pointer-to-member expression.
2885   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2886     if (!indirectField->isCXXClassMember())
2887       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2888                                                       indirectField);
2889 
2890   {
2891     QualType type = VD->getType();
2892     ExprValueKind valueKind = VK_RValue;
2893 
2894     switch (D->getKind()) {
2895     // Ignore all the non-ValueDecl kinds.
2896 #define ABSTRACT_DECL(kind)
2897 #define VALUE(type, base)
2898 #define DECL(type, base) \
2899     case Decl::type:
2900 #include "clang/AST/DeclNodes.inc"
2901       llvm_unreachable("invalid value decl kind");
2902 
2903     // These shouldn't make it here.
2904     case Decl::ObjCAtDefsField:
2905     case Decl::ObjCIvar:
2906       llvm_unreachable("forming non-member reference to ivar?");
2907 
2908     // Enum constants are always r-values and never references.
2909     // Unresolved using declarations are dependent.
2910     case Decl::EnumConstant:
2911     case Decl::UnresolvedUsingValue:
2912     case Decl::OMPDeclareReduction:
2913       valueKind = VK_RValue;
2914       break;
2915 
2916     // Fields and indirect fields that got here must be for
2917     // pointer-to-member expressions; we just call them l-values for
2918     // internal consistency, because this subexpression doesn't really
2919     // exist in the high-level semantics.
2920     case Decl::Field:
2921     case Decl::IndirectField:
2922       assert(getLangOpts().CPlusPlus &&
2923              "building reference to field in C?");
2924 
2925       // These can't have reference type in well-formed programs, but
2926       // for internal consistency we do this anyway.
2927       type = type.getNonReferenceType();
2928       valueKind = VK_LValue;
2929       break;
2930 
2931     // Non-type template parameters are either l-values or r-values
2932     // depending on the type.
2933     case Decl::NonTypeTemplateParm: {
2934       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2935         type = reftype->getPointeeType();
2936         valueKind = VK_LValue; // even if the parameter is an r-value reference
2937         break;
2938       }
2939 
2940       // For non-references, we need to strip qualifiers just in case
2941       // the template parameter was declared as 'const int' or whatever.
2942       valueKind = VK_RValue;
2943       type = type.getUnqualifiedType();
2944       break;
2945     }
2946 
2947     case Decl::Var:
2948     case Decl::VarTemplateSpecialization:
2949     case Decl::VarTemplatePartialSpecialization:
2950     case Decl::Decomposition:
2951     case Decl::OMPCapturedExpr:
2952       // In C, "extern void blah;" is valid and is an r-value.
2953       if (!getLangOpts().CPlusPlus &&
2954           !type.hasQualifiers() &&
2955           type->isVoidType()) {
2956         valueKind = VK_RValue;
2957         break;
2958       }
2959       // fallthrough
2960 
2961     case Decl::ImplicitParam:
2962     case Decl::ParmVar: {
2963       // These are always l-values.
2964       valueKind = VK_LValue;
2965       type = type.getNonReferenceType();
2966 
2967       // FIXME: Does the addition of const really only apply in
2968       // potentially-evaluated contexts? Since the variable isn't actually
2969       // captured in an unevaluated context, it seems that the answer is no.
2970       if (!isUnevaluatedContext()) {
2971         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2972         if (!CapturedType.isNull())
2973           type = CapturedType;
2974       }
2975 
2976       break;
2977     }
2978 
2979     case Decl::Binding: {
2980       // These are always lvalues.
2981       valueKind = VK_LValue;
2982       type = type.getNonReferenceType();
2983       // FIXME: Support lambda-capture of BindingDecls, once CWG actually
2984       // decides how that's supposed to work.
2985       auto *BD = cast<BindingDecl>(VD);
2986       if (BD->getDeclContext()->isFunctionOrMethod() &&
2987           BD->getDeclContext() != CurContext)
2988         diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
2989       break;
2990     }
2991 
2992     case Decl::Function: {
2993       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2994         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2995           type = Context.BuiltinFnTy;
2996           valueKind = VK_RValue;
2997           break;
2998         }
2999       }
3000 
3001       const FunctionType *fty = type->castAs<FunctionType>();
3002 
3003       // If we're referring to a function with an __unknown_anytype
3004       // result type, make the entire expression __unknown_anytype.
3005       if (fty->getReturnType() == Context.UnknownAnyTy) {
3006         type = Context.UnknownAnyTy;
3007         valueKind = VK_RValue;
3008         break;
3009       }
3010 
3011       // Functions are l-values in C++.
3012       if (getLangOpts().CPlusPlus) {
3013         valueKind = VK_LValue;
3014         break;
3015       }
3016 
3017       // C99 DR 316 says that, if a function type comes from a
3018       // function definition (without a prototype), that type is only
3019       // used for checking compatibility. Therefore, when referencing
3020       // the function, we pretend that we don't have the full function
3021       // type.
3022       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3023           isa<FunctionProtoType>(fty))
3024         type = Context.getFunctionNoProtoType(fty->getReturnType(),
3025                                               fty->getExtInfo());
3026 
3027       // Functions are r-values in C.
3028       valueKind = VK_RValue;
3029       break;
3030     }
3031 
3032     case Decl::MSProperty:
3033       valueKind = VK_LValue;
3034       break;
3035 
3036     case Decl::CXXMethod:
3037       // If we're referring to a method with an __unknown_anytype
3038       // result type, make the entire expression __unknown_anytype.
3039       // This should only be possible with a type written directly.
3040       if (const FunctionProtoType *proto
3041             = dyn_cast<FunctionProtoType>(VD->getType()))
3042         if (proto->getReturnType() == Context.UnknownAnyTy) {
3043           type = Context.UnknownAnyTy;
3044           valueKind = VK_RValue;
3045           break;
3046         }
3047 
3048       // C++ methods are l-values if static, r-values if non-static.
3049       if (cast<CXXMethodDecl>(VD)->isStatic()) {
3050         valueKind = VK_LValue;
3051         break;
3052       }
3053       // fallthrough
3054 
3055     case Decl::CXXConversion:
3056     case Decl::CXXDestructor:
3057     case Decl::CXXConstructor:
3058       valueKind = VK_RValue;
3059       break;
3060     }
3061 
3062     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3063                             TemplateArgs);
3064   }
3065 }
3066 
3067 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3068                                     SmallString<32> &Target) {
3069   Target.resize(CharByteWidth * (Source.size() + 1));
3070   char *ResultPtr = &Target[0];
3071   const llvm::UTF8 *ErrorPtr;
3072   bool success =
3073       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3074   (void)success;
3075   assert(success);
3076   Target.resize(ResultPtr - &Target[0]);
3077 }
3078 
3079 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3080                                      PredefinedExpr::IdentType IT) {
3081   // Pick the current block, lambda, captured statement or function.
3082   Decl *currentDecl = nullptr;
3083   if (const BlockScopeInfo *BSI = getCurBlock())
3084     currentDecl = BSI->TheDecl;
3085   else if (const LambdaScopeInfo *LSI = getCurLambda())
3086     currentDecl = LSI->CallOperator;
3087   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3088     currentDecl = CSI->TheCapturedDecl;
3089   else
3090     currentDecl = getCurFunctionOrMethodDecl();
3091 
3092   if (!currentDecl) {
3093     Diag(Loc, diag::ext_predef_outside_function);
3094     currentDecl = Context.getTranslationUnitDecl();
3095   }
3096 
3097   QualType ResTy;
3098   StringLiteral *SL = nullptr;
3099   if (cast<DeclContext>(currentDecl)->isDependentContext())
3100     ResTy = Context.DependentTy;
3101   else {
3102     // Pre-defined identifiers are of type char[x], where x is the length of
3103     // the string.
3104     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
3105     unsigned Length = Str.length();
3106 
3107     llvm::APInt LengthI(32, Length + 1);
3108     if (IT == PredefinedExpr::LFunction) {
3109       ResTy = Context.WideCharTy.withConst();
3110       SmallString<32> RawChars;
3111       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3112                               Str, RawChars);
3113       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3114                                            /*IndexTypeQuals*/ 0);
3115       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3116                                  /*Pascal*/ false, ResTy, Loc);
3117     } else {
3118       ResTy = Context.CharTy.withConst();
3119       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3120                                            /*IndexTypeQuals*/ 0);
3121       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3122                                  /*Pascal*/ false, ResTy, Loc);
3123     }
3124   }
3125 
3126   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
3127 }
3128 
3129 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3130   PredefinedExpr::IdentType IT;
3131 
3132   switch (Kind) {
3133   default: llvm_unreachable("Unknown simple primary expr!");
3134   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3135   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
3136   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
3137   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
3138   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
3139   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
3140   }
3141 
3142   return BuildPredefinedExpr(Loc, IT);
3143 }
3144 
3145 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3146   SmallString<16> CharBuffer;
3147   bool Invalid = false;
3148   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3149   if (Invalid)
3150     return ExprError();
3151 
3152   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3153                             PP, Tok.getKind());
3154   if (Literal.hadError())
3155     return ExprError();
3156 
3157   QualType Ty;
3158   if (Literal.isWide())
3159     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3160   else if (Literal.isUTF16())
3161     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3162   else if (Literal.isUTF32())
3163     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3164   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3165     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3166   else
3167     Ty = Context.CharTy;  // 'x' -> char in C++
3168 
3169   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3170   if (Literal.isWide())
3171     Kind = CharacterLiteral::Wide;
3172   else if (Literal.isUTF16())
3173     Kind = CharacterLiteral::UTF16;
3174   else if (Literal.isUTF32())
3175     Kind = CharacterLiteral::UTF32;
3176   else if (Literal.isUTF8())
3177     Kind = CharacterLiteral::UTF8;
3178 
3179   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3180                                              Tok.getLocation());
3181 
3182   if (Literal.getUDSuffix().empty())
3183     return Lit;
3184 
3185   // We're building a user-defined literal.
3186   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3187   SourceLocation UDSuffixLoc =
3188     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3189 
3190   // Make sure we're allowed user-defined literals here.
3191   if (!UDLScope)
3192     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3193 
3194   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3195   //   operator "" X (ch)
3196   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3197                                         Lit, Tok.getLocation());
3198 }
3199 
3200 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3201   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3202   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3203                                 Context.IntTy, Loc);
3204 }
3205 
3206 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3207                                   QualType Ty, SourceLocation Loc) {
3208   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3209 
3210   using llvm::APFloat;
3211   APFloat Val(Format);
3212 
3213   APFloat::opStatus result = Literal.GetFloatValue(Val);
3214 
3215   // Overflow is always an error, but underflow is only an error if
3216   // we underflowed to zero (APFloat reports denormals as underflow).
3217   if ((result & APFloat::opOverflow) ||
3218       ((result & APFloat::opUnderflow) && Val.isZero())) {
3219     unsigned diagnostic;
3220     SmallString<20> buffer;
3221     if (result & APFloat::opOverflow) {
3222       diagnostic = diag::warn_float_overflow;
3223       APFloat::getLargest(Format).toString(buffer);
3224     } else {
3225       diagnostic = diag::warn_float_underflow;
3226       APFloat::getSmallest(Format).toString(buffer);
3227     }
3228 
3229     S.Diag(Loc, diagnostic)
3230       << Ty
3231       << StringRef(buffer.data(), buffer.size());
3232   }
3233 
3234   bool isExact = (result == APFloat::opOK);
3235   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3236 }
3237 
3238 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3239   assert(E && "Invalid expression");
3240 
3241   if (E->isValueDependent())
3242     return false;
3243 
3244   QualType QT = E->getType();
3245   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3246     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3247     return true;
3248   }
3249 
3250   llvm::APSInt ValueAPS;
3251   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3252 
3253   if (R.isInvalid())
3254     return true;
3255 
3256   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3257   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3258     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3259         << ValueAPS.toString(10) << ValueIsPositive;
3260     return true;
3261   }
3262 
3263   return false;
3264 }
3265 
3266 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3267   // Fast path for a single digit (which is quite common).  A single digit
3268   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3269   if (Tok.getLength() == 1) {
3270     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3271     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3272   }
3273 
3274   SmallString<128> SpellingBuffer;
3275   // NumericLiteralParser wants to overread by one character.  Add padding to
3276   // the buffer in case the token is copied to the buffer.  If getSpelling()
3277   // returns a StringRef to the memory buffer, it should have a null char at
3278   // the EOF, so it is also safe.
3279   SpellingBuffer.resize(Tok.getLength() + 1);
3280 
3281   // Get the spelling of the token, which eliminates trigraphs, etc.
3282   bool Invalid = false;
3283   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3284   if (Invalid)
3285     return ExprError();
3286 
3287   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3288   if (Literal.hadError)
3289     return ExprError();
3290 
3291   if (Literal.hasUDSuffix()) {
3292     // We're building a user-defined literal.
3293     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3294     SourceLocation UDSuffixLoc =
3295       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3296 
3297     // Make sure we're allowed user-defined literals here.
3298     if (!UDLScope)
3299       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3300 
3301     QualType CookedTy;
3302     if (Literal.isFloatingLiteral()) {
3303       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3304       // long double, the literal is treated as a call of the form
3305       //   operator "" X (f L)
3306       CookedTy = Context.LongDoubleTy;
3307     } else {
3308       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3309       // unsigned long long, the literal is treated as a call of the form
3310       //   operator "" X (n ULL)
3311       CookedTy = Context.UnsignedLongLongTy;
3312     }
3313 
3314     DeclarationName OpName =
3315       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3316     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3317     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3318 
3319     SourceLocation TokLoc = Tok.getLocation();
3320 
3321     // Perform literal operator lookup to determine if we're building a raw
3322     // literal or a cooked one.
3323     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3324     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3325                                   /*AllowRaw*/true, /*AllowTemplate*/true,
3326                                   /*AllowStringTemplate*/false)) {
3327     case LOLR_Error:
3328       return ExprError();
3329 
3330     case LOLR_Cooked: {
3331       Expr *Lit;
3332       if (Literal.isFloatingLiteral()) {
3333         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3334       } else {
3335         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3336         if (Literal.GetIntegerValue(ResultVal))
3337           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3338               << /* Unsigned */ 1;
3339         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3340                                      Tok.getLocation());
3341       }
3342       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3343     }
3344 
3345     case LOLR_Raw: {
3346       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3347       // literal is treated as a call of the form
3348       //   operator "" X ("n")
3349       unsigned Length = Literal.getUDSuffixOffset();
3350       QualType StrTy = Context.getConstantArrayType(
3351           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3352           ArrayType::Normal, 0);
3353       Expr *Lit = StringLiteral::Create(
3354           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3355           /*Pascal*/false, StrTy, &TokLoc, 1);
3356       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3357     }
3358 
3359     case LOLR_Template: {
3360       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3361       // template), L is treated as a call fo the form
3362       //   operator "" X <'c1', 'c2', ... 'ck'>()
3363       // where n is the source character sequence c1 c2 ... ck.
3364       TemplateArgumentListInfo ExplicitArgs;
3365       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3366       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3367       llvm::APSInt Value(CharBits, CharIsUnsigned);
3368       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3369         Value = TokSpelling[I];
3370         TemplateArgument Arg(Context, Value, Context.CharTy);
3371         TemplateArgumentLocInfo ArgInfo;
3372         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3373       }
3374       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3375                                       &ExplicitArgs);
3376     }
3377     case LOLR_StringTemplate:
3378       llvm_unreachable("unexpected literal operator lookup result");
3379     }
3380   }
3381 
3382   Expr *Res;
3383 
3384   if (Literal.isFloatingLiteral()) {
3385     QualType Ty;
3386     if (Literal.isHalf){
3387       if (getOpenCLOptions().cl_khr_fp16)
3388         Ty = Context.HalfTy;
3389       else {
3390         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3391         return ExprError();
3392       }
3393     } else if (Literal.isFloat)
3394       Ty = Context.FloatTy;
3395     else if (Literal.isLong)
3396       Ty = Context.LongDoubleTy;
3397     else if (Literal.isFloat128)
3398       Ty = Context.Float128Ty;
3399     else
3400       Ty = Context.DoubleTy;
3401 
3402     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3403 
3404     if (Ty == Context.DoubleTy) {
3405       if (getLangOpts().SinglePrecisionConstants) {
3406         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3407       } else if (getLangOpts().OpenCL &&
3408                  !((getLangOpts().OpenCLVersion >= 120) ||
3409                    getOpenCLOptions().cl_khr_fp64)) {
3410         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3411         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3412       }
3413     }
3414   } else if (!Literal.isIntegerLiteral()) {
3415     return ExprError();
3416   } else {
3417     QualType Ty;
3418 
3419     // 'long long' is a C99 or C++11 feature.
3420     if (!getLangOpts().C99 && Literal.isLongLong) {
3421       if (getLangOpts().CPlusPlus)
3422         Diag(Tok.getLocation(),
3423              getLangOpts().CPlusPlus11 ?
3424              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3425       else
3426         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3427     }
3428 
3429     // Get the value in the widest-possible width.
3430     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3431     llvm::APInt ResultVal(MaxWidth, 0);
3432 
3433     if (Literal.GetIntegerValue(ResultVal)) {
3434       // If this value didn't fit into uintmax_t, error and force to ull.
3435       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3436           << /* Unsigned */ 1;
3437       Ty = Context.UnsignedLongLongTy;
3438       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3439              "long long is not intmax_t?");
3440     } else {
3441       // If this value fits into a ULL, try to figure out what else it fits into
3442       // according to the rules of C99 6.4.4.1p5.
3443 
3444       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3445       // be an unsigned int.
3446       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3447 
3448       // Check from smallest to largest, picking the smallest type we can.
3449       unsigned Width = 0;
3450 
3451       // Microsoft specific integer suffixes are explicitly sized.
3452       if (Literal.MicrosoftInteger) {
3453         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3454           Width = 8;
3455           Ty = Context.CharTy;
3456         } else {
3457           Width = Literal.MicrosoftInteger;
3458           Ty = Context.getIntTypeForBitwidth(Width,
3459                                              /*Signed=*/!Literal.isUnsigned);
3460         }
3461       }
3462 
3463       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3464         // Are int/unsigned possibilities?
3465         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3466 
3467         // Does it fit in a unsigned int?
3468         if (ResultVal.isIntN(IntSize)) {
3469           // Does it fit in a signed int?
3470           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3471             Ty = Context.IntTy;
3472           else if (AllowUnsigned)
3473             Ty = Context.UnsignedIntTy;
3474           Width = IntSize;
3475         }
3476       }
3477 
3478       // Are long/unsigned long possibilities?
3479       if (Ty.isNull() && !Literal.isLongLong) {
3480         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3481 
3482         // Does it fit in a unsigned long?
3483         if (ResultVal.isIntN(LongSize)) {
3484           // Does it fit in a signed long?
3485           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3486             Ty = Context.LongTy;
3487           else if (AllowUnsigned)
3488             Ty = Context.UnsignedLongTy;
3489           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3490           // is compatible.
3491           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3492             const unsigned LongLongSize =
3493                 Context.getTargetInfo().getLongLongWidth();
3494             Diag(Tok.getLocation(),
3495                  getLangOpts().CPlusPlus
3496                      ? Literal.isLong
3497                            ? diag::warn_old_implicitly_unsigned_long_cxx
3498                            : /*C++98 UB*/ diag::
3499                                  ext_old_implicitly_unsigned_long_cxx
3500                      : diag::warn_old_implicitly_unsigned_long)
3501                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3502                                             : /*will be ill-formed*/ 1);
3503             Ty = Context.UnsignedLongTy;
3504           }
3505           Width = LongSize;
3506         }
3507       }
3508 
3509       // Check long long if needed.
3510       if (Ty.isNull()) {
3511         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3512 
3513         // Does it fit in a unsigned long long?
3514         if (ResultVal.isIntN(LongLongSize)) {
3515           // Does it fit in a signed long long?
3516           // To be compatible with MSVC, hex integer literals ending with the
3517           // LL or i64 suffix are always signed in Microsoft mode.
3518           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3519               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3520             Ty = Context.LongLongTy;
3521           else if (AllowUnsigned)
3522             Ty = Context.UnsignedLongLongTy;
3523           Width = LongLongSize;
3524         }
3525       }
3526 
3527       // If we still couldn't decide a type, we probably have something that
3528       // does not fit in a signed long long, but has no U suffix.
3529       if (Ty.isNull()) {
3530         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3531         Ty = Context.UnsignedLongLongTy;
3532         Width = Context.getTargetInfo().getLongLongWidth();
3533       }
3534 
3535       if (ResultVal.getBitWidth() != Width)
3536         ResultVal = ResultVal.trunc(Width);
3537     }
3538     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3539   }
3540 
3541   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3542   if (Literal.isImaginary)
3543     Res = new (Context) ImaginaryLiteral(Res,
3544                                         Context.getComplexType(Res->getType()));
3545 
3546   return Res;
3547 }
3548 
3549 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3550   assert(E && "ActOnParenExpr() missing expr");
3551   return new (Context) ParenExpr(L, R, E);
3552 }
3553 
3554 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3555                                          SourceLocation Loc,
3556                                          SourceRange ArgRange) {
3557   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3558   // scalar or vector data type argument..."
3559   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3560   // type (C99 6.2.5p18) or void.
3561   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3562     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3563       << T << ArgRange;
3564     return true;
3565   }
3566 
3567   assert((T->isVoidType() || !T->isIncompleteType()) &&
3568          "Scalar types should always be complete");
3569   return false;
3570 }
3571 
3572 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3573                                            SourceLocation Loc,
3574                                            SourceRange ArgRange,
3575                                            UnaryExprOrTypeTrait TraitKind) {
3576   // Invalid types must be hard errors for SFINAE in C++.
3577   if (S.LangOpts.CPlusPlus)
3578     return true;
3579 
3580   // C99 6.5.3.4p1:
3581   if (T->isFunctionType() &&
3582       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3583     // sizeof(function)/alignof(function) is allowed as an extension.
3584     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3585       << TraitKind << ArgRange;
3586     return false;
3587   }
3588 
3589   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3590   // this is an error (OpenCL v1.1 s6.3.k)
3591   if (T->isVoidType()) {
3592     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3593                                         : diag::ext_sizeof_alignof_void_type;
3594     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3595     return false;
3596   }
3597 
3598   return true;
3599 }
3600 
3601 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3602                                              SourceLocation Loc,
3603                                              SourceRange ArgRange,
3604                                              UnaryExprOrTypeTrait TraitKind) {
3605   // Reject sizeof(interface) and sizeof(interface<proto>) if the
3606   // runtime doesn't allow it.
3607   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3608     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3609       << T << (TraitKind == UETT_SizeOf)
3610       << ArgRange;
3611     return true;
3612   }
3613 
3614   return false;
3615 }
3616 
3617 /// \brief Check whether E is a pointer from a decayed array type (the decayed
3618 /// pointer type is equal to T) and emit a warning if it is.
3619 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3620                                      Expr *E) {
3621   // Don't warn if the operation changed the type.
3622   if (T != E->getType())
3623     return;
3624 
3625   // Now look for array decays.
3626   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3627   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3628     return;
3629 
3630   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3631                                              << ICE->getType()
3632                                              << ICE->getSubExpr()->getType();
3633 }
3634 
3635 /// \brief Check the constraints on expression operands to unary type expression
3636 /// and type traits.
3637 ///
3638 /// Completes any types necessary and validates the constraints on the operand
3639 /// expression. The logic mostly mirrors the type-based overload, but may modify
3640 /// the expression as it completes the type for that expression through template
3641 /// instantiation, etc.
3642 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3643                                             UnaryExprOrTypeTrait ExprKind) {
3644   QualType ExprTy = E->getType();
3645   assert(!ExprTy->isReferenceType());
3646 
3647   if (ExprKind == UETT_VecStep)
3648     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3649                                         E->getSourceRange());
3650 
3651   // Whitelist some types as extensions
3652   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3653                                       E->getSourceRange(), ExprKind))
3654     return false;
3655 
3656   // 'alignof' applied to an expression only requires the base element type of
3657   // the expression to be complete. 'sizeof' requires the expression's type to
3658   // be complete (and will attempt to complete it if it's an array of unknown
3659   // bound).
3660   if (ExprKind == UETT_AlignOf) {
3661     if (RequireCompleteType(E->getExprLoc(),
3662                             Context.getBaseElementType(E->getType()),
3663                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
3664                             E->getSourceRange()))
3665       return true;
3666   } else {
3667     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3668                                 ExprKind, E->getSourceRange()))
3669       return true;
3670   }
3671 
3672   // Completing the expression's type may have changed it.
3673   ExprTy = E->getType();
3674   assert(!ExprTy->isReferenceType());
3675 
3676   if (ExprTy->isFunctionType()) {
3677     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3678       << ExprKind << E->getSourceRange();
3679     return true;
3680   }
3681 
3682   // The operand for sizeof and alignof is in an unevaluated expression context,
3683   // so side effects could result in unintended consequences.
3684   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
3685       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
3686     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3687 
3688   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3689                                        E->getSourceRange(), ExprKind))
3690     return true;
3691 
3692   if (ExprKind == UETT_SizeOf) {
3693     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3694       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3695         QualType OType = PVD->getOriginalType();
3696         QualType Type = PVD->getType();
3697         if (Type->isPointerType() && OType->isArrayType()) {
3698           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3699             << Type << OType;
3700           Diag(PVD->getLocation(), diag::note_declared_at);
3701         }
3702       }
3703     }
3704 
3705     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3706     // decays into a pointer and returns an unintended result. This is most
3707     // likely a typo for "sizeof(array) op x".
3708     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3709       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3710                                BO->getLHS());
3711       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3712                                BO->getRHS());
3713     }
3714   }
3715 
3716   return false;
3717 }
3718 
3719 /// \brief Check the constraints on operands to unary expression and type
3720 /// traits.
3721 ///
3722 /// This will complete any types necessary, and validate the various constraints
3723 /// on those operands.
3724 ///
3725 /// The UsualUnaryConversions() function is *not* called by this routine.
3726 /// C99 6.3.2.1p[2-4] all state:
3727 ///   Except when it is the operand of the sizeof operator ...
3728 ///
3729 /// C++ [expr.sizeof]p4
3730 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3731 ///   standard conversions are not applied to the operand of sizeof.
3732 ///
3733 /// This policy is followed for all of the unary trait expressions.
3734 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3735                                             SourceLocation OpLoc,
3736                                             SourceRange ExprRange,
3737                                             UnaryExprOrTypeTrait ExprKind) {
3738   if (ExprType->isDependentType())
3739     return false;
3740 
3741   // C++ [expr.sizeof]p2:
3742   //     When applied to a reference or a reference type, the result
3743   //     is the size of the referenced type.
3744   // C++11 [expr.alignof]p3:
3745   //     When alignof is applied to a reference type, the result
3746   //     shall be the alignment of the referenced type.
3747   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3748     ExprType = Ref->getPointeeType();
3749 
3750   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3751   //   When alignof or _Alignof is applied to an array type, the result
3752   //   is the alignment of the element type.
3753   if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
3754     ExprType = Context.getBaseElementType(ExprType);
3755 
3756   if (ExprKind == UETT_VecStep)
3757     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3758 
3759   // Whitelist some types as extensions
3760   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3761                                       ExprKind))
3762     return false;
3763 
3764   if (RequireCompleteType(OpLoc, ExprType,
3765                           diag::err_sizeof_alignof_incomplete_type,
3766                           ExprKind, ExprRange))
3767     return true;
3768 
3769   if (ExprType->isFunctionType()) {
3770     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3771       << ExprKind << ExprRange;
3772     return true;
3773   }
3774 
3775   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3776                                        ExprKind))
3777     return true;
3778 
3779   return false;
3780 }
3781 
3782 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3783   E = E->IgnoreParens();
3784 
3785   // Cannot know anything else if the expression is dependent.
3786   if (E->isTypeDependent())
3787     return false;
3788 
3789   if (E->getObjectKind() == OK_BitField) {
3790     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
3791        << 1 << E->getSourceRange();
3792     return true;
3793   }
3794 
3795   ValueDecl *D = nullptr;
3796   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3797     D = DRE->getDecl();
3798   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3799     D = ME->getMemberDecl();
3800   }
3801 
3802   // If it's a field, require the containing struct to have a
3803   // complete definition so that we can compute the layout.
3804   //
3805   // This can happen in C++11 onwards, either by naming the member
3806   // in a way that is not transformed into a member access expression
3807   // (in an unevaluated operand, for instance), or by naming the member
3808   // in a trailing-return-type.
3809   //
3810   // For the record, since __alignof__ on expressions is a GCC
3811   // extension, GCC seems to permit this but always gives the
3812   // nonsensical answer 0.
3813   //
3814   // We don't really need the layout here --- we could instead just
3815   // directly check for all the appropriate alignment-lowing
3816   // attributes --- but that would require duplicating a lot of
3817   // logic that just isn't worth duplicating for such a marginal
3818   // use-case.
3819   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3820     // Fast path this check, since we at least know the record has a
3821     // definition if we can find a member of it.
3822     if (!FD->getParent()->isCompleteDefinition()) {
3823       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3824         << E->getSourceRange();
3825       return true;
3826     }
3827 
3828     // Otherwise, if it's a field, and the field doesn't have
3829     // reference type, then it must have a complete type (or be a
3830     // flexible array member, which we explicitly want to
3831     // white-list anyway), which makes the following checks trivial.
3832     if (!FD->getType()->isReferenceType())
3833       return false;
3834   }
3835 
3836   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3837 }
3838 
3839 bool Sema::CheckVecStepExpr(Expr *E) {
3840   E = E->IgnoreParens();
3841 
3842   // Cannot know anything else if the expression is dependent.
3843   if (E->isTypeDependent())
3844     return false;
3845 
3846   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3847 }
3848 
3849 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
3850                                         CapturingScopeInfo *CSI) {
3851   assert(T->isVariablyModifiedType());
3852   assert(CSI != nullptr);
3853 
3854   // We're going to walk down into the type and look for VLA expressions.
3855   do {
3856     const Type *Ty = T.getTypePtr();
3857     switch (Ty->getTypeClass()) {
3858 #define TYPE(Class, Base)
3859 #define ABSTRACT_TYPE(Class, Base)
3860 #define NON_CANONICAL_TYPE(Class, Base)
3861 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3862 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
3863 #include "clang/AST/TypeNodes.def"
3864       T = QualType();
3865       break;
3866     // These types are never variably-modified.
3867     case Type::Builtin:
3868     case Type::Complex:
3869     case Type::Vector:
3870     case Type::ExtVector:
3871     case Type::Record:
3872     case Type::Enum:
3873     case Type::Elaborated:
3874     case Type::TemplateSpecialization:
3875     case Type::ObjCObject:
3876     case Type::ObjCInterface:
3877     case Type::ObjCObjectPointer:
3878     case Type::ObjCTypeParam:
3879     case Type::Pipe:
3880       llvm_unreachable("type class is never variably-modified!");
3881     case Type::Adjusted:
3882       T = cast<AdjustedType>(Ty)->getOriginalType();
3883       break;
3884     case Type::Decayed:
3885       T = cast<DecayedType>(Ty)->getPointeeType();
3886       break;
3887     case Type::Pointer:
3888       T = cast<PointerType>(Ty)->getPointeeType();
3889       break;
3890     case Type::BlockPointer:
3891       T = cast<BlockPointerType>(Ty)->getPointeeType();
3892       break;
3893     case Type::LValueReference:
3894     case Type::RValueReference:
3895       T = cast<ReferenceType>(Ty)->getPointeeType();
3896       break;
3897     case Type::MemberPointer:
3898       T = cast<MemberPointerType>(Ty)->getPointeeType();
3899       break;
3900     case Type::ConstantArray:
3901     case Type::IncompleteArray:
3902       // Losing element qualification here is fine.
3903       T = cast<ArrayType>(Ty)->getElementType();
3904       break;
3905     case Type::VariableArray: {
3906       // Losing element qualification here is fine.
3907       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
3908 
3909       // Unknown size indication requires no size computation.
3910       // Otherwise, evaluate and record it.
3911       if (auto Size = VAT->getSizeExpr()) {
3912         if (!CSI->isVLATypeCaptured(VAT)) {
3913           RecordDecl *CapRecord = nullptr;
3914           if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
3915             CapRecord = LSI->Lambda;
3916           } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
3917             CapRecord = CRSI->TheRecordDecl;
3918           }
3919           if (CapRecord) {
3920             auto ExprLoc = Size->getExprLoc();
3921             auto SizeType = Context.getSizeType();
3922             // Build the non-static data member.
3923             auto Field =
3924                 FieldDecl::Create(Context, CapRecord, ExprLoc, ExprLoc,
3925                                   /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
3926                                   /*BW*/ nullptr, /*Mutable*/ false,
3927                                   /*InitStyle*/ ICIS_NoInit);
3928             Field->setImplicit(true);
3929             Field->setAccess(AS_private);
3930             Field->setCapturedVLAType(VAT);
3931             CapRecord->addDecl(Field);
3932 
3933             CSI->addVLATypeCapture(ExprLoc, SizeType);
3934           }
3935         }
3936       }
3937       T = VAT->getElementType();
3938       break;
3939     }
3940     case Type::FunctionProto:
3941     case Type::FunctionNoProto:
3942       T = cast<FunctionType>(Ty)->getReturnType();
3943       break;
3944     case Type::Paren:
3945     case Type::TypeOf:
3946     case Type::UnaryTransform:
3947     case Type::Attributed:
3948     case Type::SubstTemplateTypeParm:
3949     case Type::PackExpansion:
3950       // Keep walking after single level desugaring.
3951       T = T.getSingleStepDesugaredType(Context);
3952       break;
3953     case Type::Typedef:
3954       T = cast<TypedefType>(Ty)->desugar();
3955       break;
3956     case Type::Decltype:
3957       T = cast<DecltypeType>(Ty)->desugar();
3958       break;
3959     case Type::Auto:
3960       T = cast<AutoType>(Ty)->getDeducedType();
3961       break;
3962     case Type::TypeOfExpr:
3963       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
3964       break;
3965     case Type::Atomic:
3966       T = cast<AtomicType>(Ty)->getValueType();
3967       break;
3968     }
3969   } while (!T.isNull() && T->isVariablyModifiedType());
3970 }
3971 
3972 /// \brief Build a sizeof or alignof expression given a type operand.
3973 ExprResult
3974 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3975                                      SourceLocation OpLoc,
3976                                      UnaryExprOrTypeTrait ExprKind,
3977                                      SourceRange R) {
3978   if (!TInfo)
3979     return ExprError();
3980 
3981   QualType T = TInfo->getType();
3982 
3983   if (!T->isDependentType() &&
3984       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3985     return ExprError();
3986 
3987   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
3988     if (auto *TT = T->getAs<TypedefType>()) {
3989       for (auto I = FunctionScopes.rbegin(),
3990                 E = std::prev(FunctionScopes.rend());
3991            I != E; ++I) {
3992         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
3993         if (CSI == nullptr)
3994           break;
3995         DeclContext *DC = nullptr;
3996         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
3997           DC = LSI->CallOperator;
3998         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
3999           DC = CRSI->TheCapturedDecl;
4000         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4001           DC = BSI->TheDecl;
4002         if (DC) {
4003           if (DC->containsDecl(TT->getDecl()))
4004             break;
4005           captureVariablyModifiedType(Context, T, CSI);
4006         }
4007       }
4008     }
4009   }
4010 
4011   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4012   return new (Context) UnaryExprOrTypeTraitExpr(
4013       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4014 }
4015 
4016 /// \brief Build a sizeof or alignof expression given an expression
4017 /// operand.
4018 ExprResult
4019 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4020                                      UnaryExprOrTypeTrait ExprKind) {
4021   ExprResult PE = CheckPlaceholderExpr(E);
4022   if (PE.isInvalid())
4023     return ExprError();
4024 
4025   E = PE.get();
4026 
4027   // Verify that the operand is valid.
4028   bool isInvalid = false;
4029   if (E->isTypeDependent()) {
4030     // Delay type-checking for type-dependent expressions.
4031   } else if (ExprKind == UETT_AlignOf) {
4032     isInvalid = CheckAlignOfExpr(*this, E);
4033   } else if (ExprKind == UETT_VecStep) {
4034     isInvalid = CheckVecStepExpr(E);
4035   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4036       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4037       isInvalid = true;
4038   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4039     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4040     isInvalid = true;
4041   } else {
4042     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4043   }
4044 
4045   if (isInvalid)
4046     return ExprError();
4047 
4048   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4049     PE = TransformToPotentiallyEvaluated(E);
4050     if (PE.isInvalid()) return ExprError();
4051     E = PE.get();
4052   }
4053 
4054   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4055   return new (Context) UnaryExprOrTypeTraitExpr(
4056       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4057 }
4058 
4059 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4060 /// expr and the same for @c alignof and @c __alignof
4061 /// Note that the ArgRange is invalid if isType is false.
4062 ExprResult
4063 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4064                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4065                                     void *TyOrEx, SourceRange ArgRange) {
4066   // If error parsing type, ignore.
4067   if (!TyOrEx) return ExprError();
4068 
4069   if (IsType) {
4070     TypeSourceInfo *TInfo;
4071     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4072     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4073   }
4074 
4075   Expr *ArgEx = (Expr *)TyOrEx;
4076   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4077   return Result;
4078 }
4079 
4080 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4081                                      bool IsReal) {
4082   if (V.get()->isTypeDependent())
4083     return S.Context.DependentTy;
4084 
4085   // _Real and _Imag are only l-values for normal l-values.
4086   if (V.get()->getObjectKind() != OK_Ordinary) {
4087     V = S.DefaultLvalueConversion(V.get());
4088     if (V.isInvalid())
4089       return QualType();
4090   }
4091 
4092   // These operators return the element type of a complex type.
4093   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4094     return CT->getElementType();
4095 
4096   // Otherwise they pass through real integer and floating point types here.
4097   if (V.get()->getType()->isArithmeticType())
4098     return V.get()->getType();
4099 
4100   // Test for placeholders.
4101   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4102   if (PR.isInvalid()) return QualType();
4103   if (PR.get() != V.get()) {
4104     V = PR;
4105     return CheckRealImagOperand(S, V, Loc, IsReal);
4106   }
4107 
4108   // Reject anything else.
4109   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4110     << (IsReal ? "__real" : "__imag");
4111   return QualType();
4112 }
4113 
4114 
4115 
4116 ExprResult
4117 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4118                           tok::TokenKind Kind, Expr *Input) {
4119   UnaryOperatorKind Opc;
4120   switch (Kind) {
4121   default: llvm_unreachable("Unknown unary op!");
4122   case tok::plusplus:   Opc = UO_PostInc; break;
4123   case tok::minusminus: Opc = UO_PostDec; break;
4124   }
4125 
4126   // Since this might is a postfix expression, get rid of ParenListExprs.
4127   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4128   if (Result.isInvalid()) return ExprError();
4129   Input = Result.get();
4130 
4131   return BuildUnaryOp(S, OpLoc, Opc, Input);
4132 }
4133 
4134 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
4135 ///
4136 /// \return true on error
4137 static bool checkArithmeticOnObjCPointer(Sema &S,
4138                                          SourceLocation opLoc,
4139                                          Expr *op) {
4140   assert(op->getType()->isObjCObjectPointerType());
4141   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4142       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4143     return false;
4144 
4145   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4146     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4147     << op->getSourceRange();
4148   return true;
4149 }
4150 
4151 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4152   auto *BaseNoParens = Base->IgnoreParens();
4153   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4154     return MSProp->getPropertyDecl()->getType()->isArrayType();
4155   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4156 }
4157 
4158 ExprResult
4159 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4160                               Expr *idx, SourceLocation rbLoc) {
4161   if (base && !base->getType().isNull() &&
4162       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4163     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4164                                     /*Length=*/nullptr, rbLoc);
4165 
4166   // Since this might be a postfix expression, get rid of ParenListExprs.
4167   if (isa<ParenListExpr>(base)) {
4168     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4169     if (result.isInvalid()) return ExprError();
4170     base = result.get();
4171   }
4172 
4173   // Handle any non-overload placeholder types in the base and index
4174   // expressions.  We can't handle overloads here because the other
4175   // operand might be an overloadable type, in which case the overload
4176   // resolution for the operator overload should get the first crack
4177   // at the overload.
4178   bool IsMSPropertySubscript = false;
4179   if (base->getType()->isNonOverloadPlaceholderType()) {
4180     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4181     if (!IsMSPropertySubscript) {
4182       ExprResult result = CheckPlaceholderExpr(base);
4183       if (result.isInvalid())
4184         return ExprError();
4185       base = result.get();
4186     }
4187   }
4188   if (idx->getType()->isNonOverloadPlaceholderType()) {
4189     ExprResult result = CheckPlaceholderExpr(idx);
4190     if (result.isInvalid()) return ExprError();
4191     idx = result.get();
4192   }
4193 
4194   // Build an unanalyzed expression if either operand is type-dependent.
4195   if (getLangOpts().CPlusPlus &&
4196       (base->isTypeDependent() || idx->isTypeDependent())) {
4197     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4198                                             VK_LValue, OK_Ordinary, rbLoc);
4199   }
4200 
4201   // MSDN, property (C++)
4202   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4203   // This attribute can also be used in the declaration of an empty array in a
4204   // class or structure definition. For example:
4205   // __declspec(property(get=GetX, put=PutX)) int x[];
4206   // The above statement indicates that x[] can be used with one or more array
4207   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4208   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4209   if (IsMSPropertySubscript) {
4210     // Build MS property subscript expression if base is MS property reference
4211     // or MS property subscript.
4212     return new (Context) MSPropertySubscriptExpr(
4213         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4214   }
4215 
4216   // Use C++ overloaded-operator rules if either operand has record
4217   // type.  The spec says to do this if either type is *overloadable*,
4218   // but enum types can't declare subscript operators or conversion
4219   // operators, so there's nothing interesting for overload resolution
4220   // to do if there aren't any record types involved.
4221   //
4222   // ObjC pointers have their own subscripting logic that is not tied
4223   // to overload resolution and so should not take this path.
4224   if (getLangOpts().CPlusPlus &&
4225       (base->getType()->isRecordType() ||
4226        (!base->getType()->isObjCObjectPointerType() &&
4227         idx->getType()->isRecordType()))) {
4228     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4229   }
4230 
4231   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4232 }
4233 
4234 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4235                                           Expr *LowerBound,
4236                                           SourceLocation ColonLoc, Expr *Length,
4237                                           SourceLocation RBLoc) {
4238   if (Base->getType()->isPlaceholderType() &&
4239       !Base->getType()->isSpecificPlaceholderType(
4240           BuiltinType::OMPArraySection)) {
4241     ExprResult Result = CheckPlaceholderExpr(Base);
4242     if (Result.isInvalid())
4243       return ExprError();
4244     Base = Result.get();
4245   }
4246   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4247     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4248     if (Result.isInvalid())
4249       return ExprError();
4250     Result = DefaultLvalueConversion(Result.get());
4251     if (Result.isInvalid())
4252       return ExprError();
4253     LowerBound = Result.get();
4254   }
4255   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4256     ExprResult Result = CheckPlaceholderExpr(Length);
4257     if (Result.isInvalid())
4258       return ExprError();
4259     Result = DefaultLvalueConversion(Result.get());
4260     if (Result.isInvalid())
4261       return ExprError();
4262     Length = Result.get();
4263   }
4264 
4265   // Build an unanalyzed expression if either operand is type-dependent.
4266   if (Base->isTypeDependent() ||
4267       (LowerBound &&
4268        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4269       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4270     return new (Context)
4271         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4272                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4273   }
4274 
4275   // Perform default conversions.
4276   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4277   QualType ResultTy;
4278   if (OriginalTy->isAnyPointerType()) {
4279     ResultTy = OriginalTy->getPointeeType();
4280   } else if (OriginalTy->isArrayType()) {
4281     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4282   } else {
4283     return ExprError(
4284         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4285         << Base->getSourceRange());
4286   }
4287   // C99 6.5.2.1p1
4288   if (LowerBound) {
4289     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4290                                                       LowerBound);
4291     if (Res.isInvalid())
4292       return ExprError(Diag(LowerBound->getExprLoc(),
4293                             diag::err_omp_typecheck_section_not_integer)
4294                        << 0 << LowerBound->getSourceRange());
4295     LowerBound = Res.get();
4296 
4297     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4298         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4299       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4300           << 0 << LowerBound->getSourceRange();
4301   }
4302   if (Length) {
4303     auto Res =
4304         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4305     if (Res.isInvalid())
4306       return ExprError(Diag(Length->getExprLoc(),
4307                             diag::err_omp_typecheck_section_not_integer)
4308                        << 1 << Length->getSourceRange());
4309     Length = Res.get();
4310 
4311     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4312         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4313       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4314           << 1 << Length->getSourceRange();
4315   }
4316 
4317   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4318   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4319   // type. Note that functions are not objects, and that (in C99 parlance)
4320   // incomplete types are not object types.
4321   if (ResultTy->isFunctionType()) {
4322     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4323         << ResultTy << Base->getSourceRange();
4324     return ExprError();
4325   }
4326 
4327   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4328                           diag::err_omp_section_incomplete_type, Base))
4329     return ExprError();
4330 
4331   if (LowerBound && !OriginalTy->isAnyPointerType()) {
4332     llvm::APSInt LowerBoundValue;
4333     if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
4334       // OpenMP 4.5, [2.4 Array Sections]
4335       // The array section must be a subset of the original array.
4336       if (LowerBoundValue.isNegative()) {
4337         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4338             << LowerBound->getSourceRange();
4339         return ExprError();
4340       }
4341     }
4342   }
4343 
4344   if (Length) {
4345     llvm::APSInt LengthValue;
4346     if (Length->EvaluateAsInt(LengthValue, Context)) {
4347       // OpenMP 4.5, [2.4 Array Sections]
4348       // The length must evaluate to non-negative integers.
4349       if (LengthValue.isNegative()) {
4350         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4351             << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4352             << Length->getSourceRange();
4353         return ExprError();
4354       }
4355     }
4356   } else if (ColonLoc.isValid() &&
4357              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4358                                       !OriginalTy->isVariableArrayType()))) {
4359     // OpenMP 4.5, [2.4 Array Sections]
4360     // When the size of the array dimension is not known, the length must be
4361     // specified explicitly.
4362     Diag(ColonLoc, diag::err_omp_section_length_undefined)
4363         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4364     return ExprError();
4365   }
4366 
4367   if (!Base->getType()->isSpecificPlaceholderType(
4368           BuiltinType::OMPArraySection)) {
4369     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
4370     if (Result.isInvalid())
4371       return ExprError();
4372     Base = Result.get();
4373   }
4374   return new (Context)
4375       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4376                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4377 }
4378 
4379 ExprResult
4380 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4381                                       Expr *Idx, SourceLocation RLoc) {
4382   Expr *LHSExp = Base;
4383   Expr *RHSExp = Idx;
4384 
4385   // Perform default conversions.
4386   if (!LHSExp->getType()->getAs<VectorType>()) {
4387     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4388     if (Result.isInvalid())
4389       return ExprError();
4390     LHSExp = Result.get();
4391   }
4392   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4393   if (Result.isInvalid())
4394     return ExprError();
4395   RHSExp = Result.get();
4396 
4397   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4398   ExprValueKind VK = VK_LValue;
4399   ExprObjectKind OK = OK_Ordinary;
4400 
4401   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4402   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4403   // in the subscript position. As a result, we need to derive the array base
4404   // and index from the expression types.
4405   Expr *BaseExpr, *IndexExpr;
4406   QualType ResultType;
4407   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4408     BaseExpr = LHSExp;
4409     IndexExpr = RHSExp;
4410     ResultType = Context.DependentTy;
4411   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4412     BaseExpr = LHSExp;
4413     IndexExpr = RHSExp;
4414     ResultType = PTy->getPointeeType();
4415   } else if (const ObjCObjectPointerType *PTy =
4416                LHSTy->getAs<ObjCObjectPointerType>()) {
4417     BaseExpr = LHSExp;
4418     IndexExpr = RHSExp;
4419 
4420     // Use custom logic if this should be the pseudo-object subscript
4421     // expression.
4422     if (!LangOpts.isSubscriptPointerArithmetic())
4423       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4424                                           nullptr);
4425 
4426     ResultType = PTy->getPointeeType();
4427   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4428      // Handle the uncommon case of "123[Ptr]".
4429     BaseExpr = RHSExp;
4430     IndexExpr = LHSExp;
4431     ResultType = PTy->getPointeeType();
4432   } else if (const ObjCObjectPointerType *PTy =
4433                RHSTy->getAs<ObjCObjectPointerType>()) {
4434      // Handle the uncommon case of "123[Ptr]".
4435     BaseExpr = RHSExp;
4436     IndexExpr = LHSExp;
4437     ResultType = PTy->getPointeeType();
4438     if (!LangOpts.isSubscriptPointerArithmetic()) {
4439       Diag(LLoc, diag::err_subscript_nonfragile_interface)
4440         << ResultType << BaseExpr->getSourceRange();
4441       return ExprError();
4442     }
4443   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4444     BaseExpr = LHSExp;    // vectors: V[123]
4445     IndexExpr = RHSExp;
4446     VK = LHSExp->getValueKind();
4447     if (VK != VK_RValue)
4448       OK = OK_VectorComponent;
4449 
4450     // FIXME: need to deal with const...
4451     ResultType = VTy->getElementType();
4452   } else if (LHSTy->isArrayType()) {
4453     // If we see an array that wasn't promoted by
4454     // DefaultFunctionArrayLvalueConversion, it must be an array that
4455     // wasn't promoted because of the C90 rule that doesn't
4456     // allow promoting non-lvalue arrays.  Warn, then
4457     // force the promotion here.
4458     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4459         LHSExp->getSourceRange();
4460     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4461                                CK_ArrayToPointerDecay).get();
4462     LHSTy = LHSExp->getType();
4463 
4464     BaseExpr = LHSExp;
4465     IndexExpr = RHSExp;
4466     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4467   } else if (RHSTy->isArrayType()) {
4468     // Same as previous, except for 123[f().a] case
4469     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4470         RHSExp->getSourceRange();
4471     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4472                                CK_ArrayToPointerDecay).get();
4473     RHSTy = RHSExp->getType();
4474 
4475     BaseExpr = RHSExp;
4476     IndexExpr = LHSExp;
4477     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4478   } else {
4479     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4480        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4481   }
4482   // C99 6.5.2.1p1
4483   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4484     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4485                      << IndexExpr->getSourceRange());
4486 
4487   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4488        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4489          && !IndexExpr->isTypeDependent())
4490     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4491 
4492   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4493   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4494   // type. Note that Functions are not objects, and that (in C99 parlance)
4495   // incomplete types are not object types.
4496   if (ResultType->isFunctionType()) {
4497     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
4498       << ResultType << BaseExpr->getSourceRange();
4499     return ExprError();
4500   }
4501 
4502   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4503     // GNU extension: subscripting on pointer to void
4504     Diag(LLoc, diag::ext_gnu_subscript_void_type)
4505       << BaseExpr->getSourceRange();
4506 
4507     // C forbids expressions of unqualified void type from being l-values.
4508     // See IsCForbiddenLValueType.
4509     if (!ResultType.hasQualifiers()) VK = VK_RValue;
4510   } else if (!ResultType->isDependentType() &&
4511       RequireCompleteType(LLoc, ResultType,
4512                           diag::err_subscript_incomplete_type, BaseExpr))
4513     return ExprError();
4514 
4515   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4516          !ResultType.isCForbiddenLValueType());
4517 
4518   return new (Context)
4519       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4520 }
4521 
4522 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4523                                         FunctionDecl *FD,
4524                                         ParmVarDecl *Param) {
4525   if (Param->hasUnparsedDefaultArg()) {
4526     Diag(CallLoc,
4527          diag::err_use_of_default_argument_to_function_declared_later) <<
4528       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4529     Diag(UnparsedDefaultArgLocs[Param],
4530          diag::note_default_argument_declared_here);
4531     return ExprError();
4532   }
4533 
4534   if (Param->hasUninstantiatedDefaultArg()) {
4535     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4536 
4537     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
4538                                                  Param);
4539 
4540     // Instantiate the expression.
4541     MultiLevelTemplateArgumentList MutiLevelArgList
4542       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4543 
4544     InstantiatingTemplate Inst(*this, CallLoc, Param,
4545                                MutiLevelArgList.getInnermost());
4546     if (Inst.isInvalid())
4547       return ExprError();
4548     if (Inst.isAlreadyInstantiating()) {
4549       Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD;
4550       Param->setInvalidDecl();
4551       return ExprError();
4552     }
4553 
4554     ExprResult Result;
4555     {
4556       // C++ [dcl.fct.default]p5:
4557       //   The names in the [default argument] expression are bound, and
4558       //   the semantic constraints are checked, at the point where the
4559       //   default argument expression appears.
4560       ContextRAII SavedContext(*this, FD);
4561       LocalInstantiationScope Local(*this);
4562       Result = SubstInitializer(UninstExpr, MutiLevelArgList,
4563                                 /*DirectInit*/false);
4564     }
4565     if (Result.isInvalid())
4566       return ExprError();
4567 
4568     // Check the expression as an initializer for the parameter.
4569     InitializedEntity Entity
4570       = InitializedEntity::InitializeParameter(Context, Param);
4571     InitializationKind Kind
4572       = InitializationKind::CreateCopy(Param->getLocation(),
4573              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
4574     Expr *ResultE = Result.getAs<Expr>();
4575 
4576     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4577     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4578     if (Result.isInvalid())
4579       return ExprError();
4580 
4581     Result = ActOnFinishFullExpr(Result.getAs<Expr>(),
4582                                  Param->getOuterLocStart());
4583     if (Result.isInvalid())
4584       return ExprError();
4585 
4586     // Remember the instantiated default argument.
4587     Param->setDefaultArg(Result.getAs<Expr>());
4588     if (ASTMutationListener *L = getASTMutationListener()) {
4589       L->DefaultArgumentInstantiated(Param);
4590     }
4591   }
4592 
4593   // If the default argument expression is not set yet, we are building it now.
4594   if (!Param->hasInit()) {
4595     Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD;
4596     Param->setInvalidDecl();
4597     return ExprError();
4598   }
4599 
4600   // If the default expression creates temporaries, we need to
4601   // push them to the current stack of expression temporaries so they'll
4602   // be properly destroyed.
4603   // FIXME: We should really be rebuilding the default argument with new
4604   // bound temporaries; see the comment in PR5810.
4605   // We don't need to do that with block decls, though, because
4606   // blocks in default argument expression can never capture anything.
4607   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
4608     // Set the "needs cleanups" bit regardless of whether there are
4609     // any explicit objects.
4610     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
4611 
4612     // Append all the objects to the cleanup list.  Right now, this
4613     // should always be a no-op, because blocks in default argument
4614     // expressions should never be able to capture anything.
4615     assert(!Init->getNumObjects() &&
4616            "default argument expression has capturing blocks?");
4617   }
4618 
4619   // We already type-checked the argument, so we know it works.
4620   // Just mark all of the declarations in this potentially-evaluated expression
4621   // as being "referenced".
4622   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4623                                    /*SkipLocalVariables=*/true);
4624   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
4625 }
4626 
4627 
4628 Sema::VariadicCallType
4629 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4630                           Expr *Fn) {
4631   if (Proto && Proto->isVariadic()) {
4632     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4633       return VariadicConstructor;
4634     else if (Fn && Fn->getType()->isBlockPointerType())
4635       return VariadicBlock;
4636     else if (FDecl) {
4637       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4638         if (Method->isInstance())
4639           return VariadicMethod;
4640     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4641       return VariadicMethod;
4642     return VariadicFunction;
4643   }
4644   return VariadicDoesNotApply;
4645 }
4646 
4647 namespace {
4648 class FunctionCallCCC : public FunctionCallFilterCCC {
4649 public:
4650   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4651                   unsigned NumArgs, MemberExpr *ME)
4652       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4653         FunctionName(FuncName) {}
4654 
4655   bool ValidateCandidate(const TypoCorrection &candidate) override {
4656     if (!candidate.getCorrectionSpecifier() ||
4657         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4658       return false;
4659     }
4660 
4661     return FunctionCallFilterCCC::ValidateCandidate(candidate);
4662   }
4663 
4664 private:
4665   const IdentifierInfo *const FunctionName;
4666 };
4667 }
4668 
4669 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4670                                                FunctionDecl *FDecl,
4671                                                ArrayRef<Expr *> Args) {
4672   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4673   DeclarationName FuncName = FDecl->getDeclName();
4674   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
4675 
4676   if (TypoCorrection Corrected = S.CorrectTypo(
4677           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4678           S.getScopeForContext(S.CurContext), nullptr,
4679           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
4680                                              Args.size(), ME),
4681           Sema::CTK_ErrorRecovery)) {
4682     if (NamedDecl *ND = Corrected.getFoundDecl()) {
4683       if (Corrected.isOverloaded()) {
4684         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4685         OverloadCandidateSet::iterator Best;
4686         for (NamedDecl *CD : Corrected) {
4687           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
4688             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
4689                                    OCS);
4690         }
4691         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
4692         case OR_Success:
4693           ND = Best->FoundDecl;
4694           Corrected.setCorrectionDecl(ND);
4695           break;
4696         default:
4697           break;
4698         }
4699       }
4700       ND = ND->getUnderlyingDecl();
4701       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
4702         return Corrected;
4703     }
4704   }
4705   return TypoCorrection();
4706 }
4707 
4708 /// ConvertArgumentsForCall - Converts the arguments specified in
4709 /// Args/NumArgs to the parameter types of the function FDecl with
4710 /// function prototype Proto. Call is the call expression itself, and
4711 /// Fn is the function expression. For a C++ member function, this
4712 /// routine does not attempt to convert the object argument. Returns
4713 /// true if the call is ill-formed.
4714 bool
4715 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4716                               FunctionDecl *FDecl,
4717                               const FunctionProtoType *Proto,
4718                               ArrayRef<Expr *> Args,
4719                               SourceLocation RParenLoc,
4720                               bool IsExecConfig) {
4721   // Bail out early if calling a builtin with custom typechecking.
4722   if (FDecl)
4723     if (unsigned ID = FDecl->getBuiltinID())
4724       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4725         return false;
4726 
4727   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4728   // assignment, to the types of the corresponding parameter, ...
4729   unsigned NumParams = Proto->getNumParams();
4730   bool Invalid = false;
4731   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
4732   unsigned FnKind = Fn->getType()->isBlockPointerType()
4733                        ? 1 /* block */
4734                        : (IsExecConfig ? 3 /* kernel function (exec config) */
4735                                        : 0 /* function */);
4736 
4737   // If too few arguments are available (and we don't have default
4738   // arguments for the remaining parameters), don't make the call.
4739   if (Args.size() < NumParams) {
4740     if (Args.size() < MinArgs) {
4741       TypoCorrection TC;
4742       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4743         unsigned diag_id =
4744             MinArgs == NumParams && !Proto->isVariadic()
4745                 ? diag::err_typecheck_call_too_few_args_suggest
4746                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
4747         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4748                                         << static_cast<unsigned>(Args.size())
4749                                         << TC.getCorrectionRange());
4750       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4751         Diag(RParenLoc,
4752              MinArgs == NumParams && !Proto->isVariadic()
4753                  ? diag::err_typecheck_call_too_few_args_one
4754                  : diag::err_typecheck_call_too_few_args_at_least_one)
4755             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
4756       else
4757         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
4758                             ? diag::err_typecheck_call_too_few_args
4759                             : diag::err_typecheck_call_too_few_args_at_least)
4760             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
4761             << Fn->getSourceRange();
4762 
4763       // Emit the location of the prototype.
4764       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4765         Diag(FDecl->getLocStart(), diag::note_callee_decl)
4766           << FDecl;
4767 
4768       return true;
4769     }
4770     Call->setNumArgs(Context, NumParams);
4771   }
4772 
4773   // If too many are passed and not variadic, error on the extras and drop
4774   // them.
4775   if (Args.size() > NumParams) {
4776     if (!Proto->isVariadic()) {
4777       TypoCorrection TC;
4778       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4779         unsigned diag_id =
4780             MinArgs == NumParams && !Proto->isVariadic()
4781                 ? diag::err_typecheck_call_too_many_args_suggest
4782                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
4783         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
4784                                         << static_cast<unsigned>(Args.size())
4785                                         << TC.getCorrectionRange());
4786       } else if (NumParams == 1 && FDecl &&
4787                  FDecl->getParamDecl(0)->getDeclName())
4788         Diag(Args[NumParams]->getLocStart(),
4789              MinArgs == NumParams
4790                  ? diag::err_typecheck_call_too_many_args_one
4791                  : diag::err_typecheck_call_too_many_args_at_most_one)
4792             << FnKind << FDecl->getParamDecl(0)
4793             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
4794             << SourceRange(Args[NumParams]->getLocStart(),
4795                            Args.back()->getLocEnd());
4796       else
4797         Diag(Args[NumParams]->getLocStart(),
4798              MinArgs == NumParams
4799                  ? diag::err_typecheck_call_too_many_args
4800                  : diag::err_typecheck_call_too_many_args_at_most)
4801             << FnKind << NumParams << static_cast<unsigned>(Args.size())
4802             << Fn->getSourceRange()
4803             << SourceRange(Args[NumParams]->getLocStart(),
4804                            Args.back()->getLocEnd());
4805 
4806       // Emit the location of the prototype.
4807       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4808         Diag(FDecl->getLocStart(), diag::note_callee_decl)
4809           << FDecl;
4810 
4811       // This deletes the extra arguments.
4812       Call->setNumArgs(Context, NumParams);
4813       return true;
4814     }
4815   }
4816   SmallVector<Expr *, 8> AllArgs;
4817   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4818 
4819   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4820                                    Proto, 0, Args, AllArgs, CallType);
4821   if (Invalid)
4822     return true;
4823   unsigned TotalNumArgs = AllArgs.size();
4824   for (unsigned i = 0; i < TotalNumArgs; ++i)
4825     Call->setArg(i, AllArgs[i]);
4826 
4827   return false;
4828 }
4829 
4830 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
4831                                   const FunctionProtoType *Proto,
4832                                   unsigned FirstParam, ArrayRef<Expr *> Args,
4833                                   SmallVectorImpl<Expr *> &AllArgs,
4834                                   VariadicCallType CallType, bool AllowExplicit,
4835                                   bool IsListInitialization) {
4836   unsigned NumParams = Proto->getNumParams();
4837   bool Invalid = false;
4838   size_t ArgIx = 0;
4839   // Continue to check argument types (even if we have too few/many args).
4840   for (unsigned i = FirstParam; i < NumParams; i++) {
4841     QualType ProtoArgType = Proto->getParamType(i);
4842 
4843     Expr *Arg;
4844     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
4845     if (ArgIx < Args.size()) {
4846       Arg = Args[ArgIx++];
4847 
4848       if (RequireCompleteType(Arg->getLocStart(),
4849                               ProtoArgType,
4850                               diag::err_call_incomplete_argument, Arg))
4851         return true;
4852 
4853       // Strip the unbridged-cast placeholder expression off, if applicable.
4854       bool CFAudited = false;
4855       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4856           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4857           (!Param || !Param->hasAttr<CFConsumedAttr>()))
4858         Arg = stripARCUnbridgedCast(Arg);
4859       else if (getLangOpts().ObjCAutoRefCount &&
4860                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4861                (!Param || !Param->hasAttr<CFConsumedAttr>()))
4862         CFAudited = true;
4863 
4864       InitializedEntity Entity =
4865           Param ? InitializedEntity::InitializeParameter(Context, Param,
4866                                                          ProtoArgType)
4867                 : InitializedEntity::InitializeParameter(
4868                       Context, ProtoArgType, Proto->isParamConsumed(i));
4869 
4870       // Remember that parameter belongs to a CF audited API.
4871       if (CFAudited)
4872         Entity.setParameterCFAudited();
4873 
4874       ExprResult ArgE = PerformCopyInitialization(
4875           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
4876       if (ArgE.isInvalid())
4877         return true;
4878 
4879       Arg = ArgE.getAs<Expr>();
4880     } else {
4881       assert(Param && "can't use default arguments without a known callee");
4882 
4883       ExprResult ArgExpr =
4884         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4885       if (ArgExpr.isInvalid())
4886         return true;
4887 
4888       Arg = ArgExpr.getAs<Expr>();
4889     }
4890 
4891     // Check for array bounds violations for each argument to the call. This
4892     // check only triggers warnings when the argument isn't a more complex Expr
4893     // with its own checking, such as a BinaryOperator.
4894     CheckArrayAccess(Arg);
4895 
4896     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4897     CheckStaticArrayArgument(CallLoc, Param, Arg);
4898 
4899     AllArgs.push_back(Arg);
4900   }
4901 
4902   // If this is a variadic call, handle args passed through "...".
4903   if (CallType != VariadicDoesNotApply) {
4904     // Assume that extern "C" functions with variadic arguments that
4905     // return __unknown_anytype aren't *really* variadic.
4906     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
4907         FDecl->isExternC()) {
4908       for (Expr *A : Args.slice(ArgIx)) {
4909         QualType paramType; // ignored
4910         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
4911         Invalid |= arg.isInvalid();
4912         AllArgs.push_back(arg.get());
4913       }
4914 
4915     // Otherwise do argument promotion, (C99 6.5.2.2p7).
4916     } else {
4917       for (Expr *A : Args.slice(ArgIx)) {
4918         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
4919         Invalid |= Arg.isInvalid();
4920         AllArgs.push_back(Arg.get());
4921       }
4922     }
4923 
4924     // Check for array bounds violations.
4925     for (Expr *A : Args.slice(ArgIx))
4926       CheckArrayAccess(A);
4927   }
4928   return Invalid;
4929 }
4930 
4931 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4932   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4933   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4934     TL = DTL.getOriginalLoc();
4935   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4936     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4937       << ATL.getLocalSourceRange();
4938 }
4939 
4940 /// CheckStaticArrayArgument - If the given argument corresponds to a static
4941 /// array parameter, check that it is non-null, and that if it is formed by
4942 /// array-to-pointer decay, the underlying array is sufficiently large.
4943 ///
4944 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4945 /// array type derivation, then for each call to the function, the value of the
4946 /// corresponding actual argument shall provide access to the first element of
4947 /// an array with at least as many elements as specified by the size expression.
4948 void
4949 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4950                                ParmVarDecl *Param,
4951                                const Expr *ArgExpr) {
4952   // Static array parameters are not supported in C++.
4953   if (!Param || getLangOpts().CPlusPlus)
4954     return;
4955 
4956   QualType OrigTy = Param->getOriginalType();
4957 
4958   const ArrayType *AT = Context.getAsArrayType(OrigTy);
4959   if (!AT || AT->getSizeModifier() != ArrayType::Static)
4960     return;
4961 
4962   if (ArgExpr->isNullPointerConstant(Context,
4963                                      Expr::NPC_NeverValueDependent)) {
4964     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4965     DiagnoseCalleeStaticArrayParam(*this, Param);
4966     return;
4967   }
4968 
4969   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4970   if (!CAT)
4971     return;
4972 
4973   const ConstantArrayType *ArgCAT =
4974     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4975   if (!ArgCAT)
4976     return;
4977 
4978   if (ArgCAT->getSize().ult(CAT->getSize())) {
4979     Diag(CallLoc, diag::warn_static_array_too_small)
4980       << ArgExpr->getSourceRange()
4981       << (unsigned) ArgCAT->getSize().getZExtValue()
4982       << (unsigned) CAT->getSize().getZExtValue();
4983     DiagnoseCalleeStaticArrayParam(*this, Param);
4984   }
4985 }
4986 
4987 /// Given a function expression of unknown-any type, try to rebuild it
4988 /// to have a function type.
4989 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4990 
4991 /// Is the given type a placeholder that we need to lower out
4992 /// immediately during argument processing?
4993 static bool isPlaceholderToRemoveAsArg(QualType type) {
4994   // Placeholders are never sugared.
4995   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4996   if (!placeholder) return false;
4997 
4998   switch (placeholder->getKind()) {
4999   // Ignore all the non-placeholder types.
5000 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5001   case BuiltinType::Id:
5002 #include "clang/Basic/OpenCLImageTypes.def"
5003 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
5004 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
5005 #include "clang/AST/BuiltinTypes.def"
5006     return false;
5007 
5008   // We cannot lower out overload sets; they might validly be resolved
5009   // by the call machinery.
5010   case BuiltinType::Overload:
5011     return false;
5012 
5013   // Unbridged casts in ARC can be handled in some call positions and
5014   // should be left in place.
5015   case BuiltinType::ARCUnbridgedCast:
5016     return false;
5017 
5018   // Pseudo-objects should be converted as soon as possible.
5019   case BuiltinType::PseudoObject:
5020     return true;
5021 
5022   // The debugger mode could theoretically but currently does not try
5023   // to resolve unknown-typed arguments based on known parameter types.
5024   case BuiltinType::UnknownAny:
5025     return true;
5026 
5027   // These are always invalid as call arguments and should be reported.
5028   case BuiltinType::BoundMember:
5029   case BuiltinType::BuiltinFn:
5030   case BuiltinType::OMPArraySection:
5031     return true;
5032 
5033   }
5034   llvm_unreachable("bad builtin type kind");
5035 }
5036 
5037 /// Check an argument list for placeholders that we won't try to
5038 /// handle later.
5039 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
5040   // Apply this processing to all the arguments at once instead of
5041   // dying at the first failure.
5042   bool hasInvalid = false;
5043   for (size_t i = 0, e = args.size(); i != e; i++) {
5044     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
5045       ExprResult result = S.CheckPlaceholderExpr(args[i]);
5046       if (result.isInvalid()) hasInvalid = true;
5047       else args[i] = result.get();
5048     } else if (hasInvalid) {
5049       (void)S.CorrectDelayedTyposInExpr(args[i]);
5050     }
5051   }
5052   return hasInvalid;
5053 }
5054 
5055 /// If a builtin function has a pointer argument with no explicit address
5056 /// space, then it should be able to accept a pointer to any address
5057 /// space as input.  In order to do this, we need to replace the
5058 /// standard builtin declaration with one that uses the same address space
5059 /// as the call.
5060 ///
5061 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
5062 ///                  it does not contain any pointer arguments without
5063 ///                  an address space qualifer.  Otherwise the rewritten
5064 ///                  FunctionDecl is returned.
5065 /// TODO: Handle pointer return types.
5066 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
5067                                                 const FunctionDecl *FDecl,
5068                                                 MultiExprArg ArgExprs) {
5069 
5070   QualType DeclType = FDecl->getType();
5071   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
5072 
5073   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
5074       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
5075     return nullptr;
5076 
5077   bool NeedsNewDecl = false;
5078   unsigned i = 0;
5079   SmallVector<QualType, 8> OverloadParams;
5080 
5081   for (QualType ParamType : FT->param_types()) {
5082 
5083     // Convert array arguments to pointer to simplify type lookup.
5084     ExprResult ArgRes =
5085         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
5086     if (ArgRes.isInvalid())
5087       return nullptr;
5088     Expr *Arg = ArgRes.get();
5089     QualType ArgType = Arg->getType();
5090     if (!ParamType->isPointerType() ||
5091         ParamType.getQualifiers().hasAddressSpace() ||
5092         !ArgType->isPointerType() ||
5093         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
5094       OverloadParams.push_back(ParamType);
5095       continue;
5096     }
5097 
5098     NeedsNewDecl = true;
5099     unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
5100 
5101     QualType PointeeType = ParamType->getPointeeType();
5102     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
5103     OverloadParams.push_back(Context.getPointerType(PointeeType));
5104   }
5105 
5106   if (!NeedsNewDecl)
5107     return nullptr;
5108 
5109   FunctionProtoType::ExtProtoInfo EPI;
5110   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
5111                                                 OverloadParams, EPI);
5112   DeclContext *Parent = Context.getTranslationUnitDecl();
5113   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
5114                                                     FDecl->getLocation(),
5115                                                     FDecl->getLocation(),
5116                                                     FDecl->getIdentifier(),
5117                                                     OverloadTy,
5118                                                     /*TInfo=*/nullptr,
5119                                                     SC_Extern, false,
5120                                                     /*hasPrototype=*/true);
5121   SmallVector<ParmVarDecl*, 16> Params;
5122   FT = cast<FunctionProtoType>(OverloadTy);
5123   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
5124     QualType ParamType = FT->getParamType(i);
5125     ParmVarDecl *Parm =
5126         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
5127                                 SourceLocation(), nullptr, ParamType,
5128                                 /*TInfo=*/nullptr, SC_None, nullptr);
5129     Parm->setScopeInfo(0, i);
5130     Params.push_back(Parm);
5131   }
5132   OverloadDecl->setParams(Params);
5133   return OverloadDecl;
5134 }
5135 
5136 static bool isNumberOfArgsValidForCall(Sema &S, const FunctionDecl *Callee,
5137                                        std::size_t NumArgs) {
5138   if (S.TooManyArguments(Callee->getNumParams(), NumArgs,
5139                          /*PartialOverloading=*/false))
5140     return Callee->isVariadic();
5141   return Callee->getMinRequiredArguments() <= NumArgs;
5142 }
5143 
5144 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5145 /// This provides the location of the left/right parens and a list of comma
5146 /// locations.
5147 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5148                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
5149                                Expr *ExecConfig, bool IsExecConfig) {
5150   // Since this might be a postfix expression, get rid of ParenListExprs.
5151   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
5152   if (Result.isInvalid()) return ExprError();
5153   Fn = Result.get();
5154 
5155   if (checkArgsForPlaceholders(*this, ArgExprs))
5156     return ExprError();
5157 
5158   if (getLangOpts().CPlusPlus) {
5159     // If this is a pseudo-destructor expression, build the call immediately.
5160     if (isa<CXXPseudoDestructorExpr>(Fn)) {
5161       if (!ArgExprs.empty()) {
5162         // Pseudo-destructor calls should not have any arguments.
5163         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
5164             << FixItHint::CreateRemoval(
5165                    SourceRange(ArgExprs.front()->getLocStart(),
5166                                ArgExprs.back()->getLocEnd()));
5167       }
5168 
5169       return new (Context)
5170           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
5171     }
5172     if (Fn->getType() == Context.PseudoObjectTy) {
5173       ExprResult result = CheckPlaceholderExpr(Fn);
5174       if (result.isInvalid()) return ExprError();
5175       Fn = result.get();
5176     }
5177 
5178     // Determine whether this is a dependent call inside a C++ template,
5179     // in which case we won't do any semantic analysis now.
5180     bool Dependent = false;
5181     if (Fn->isTypeDependent())
5182       Dependent = true;
5183     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
5184       Dependent = true;
5185 
5186     if (Dependent) {
5187       if (ExecConfig) {
5188         return new (Context) CUDAKernelCallExpr(
5189             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
5190             Context.DependentTy, VK_RValue, RParenLoc);
5191       } else {
5192         return new (Context) CallExpr(
5193             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
5194       }
5195     }
5196 
5197     // Determine whether this is a call to an object (C++ [over.call.object]).
5198     if (Fn->getType()->isRecordType())
5199       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
5200                                           RParenLoc);
5201 
5202     if (Fn->getType() == Context.UnknownAnyTy) {
5203       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5204       if (result.isInvalid()) return ExprError();
5205       Fn = result.get();
5206     }
5207 
5208     if (Fn->getType() == Context.BoundMemberTy) {
5209       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5210                                        RParenLoc);
5211     }
5212   }
5213 
5214   // Check for overloaded calls.  This can happen even in C due to extensions.
5215   if (Fn->getType() == Context.OverloadTy) {
5216     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
5217 
5218     // We aren't supposed to apply this logic for if there'Scope an '&'
5219     // involved.
5220     if (!find.HasFormOfMemberPointer) {
5221       OverloadExpr *ovl = find.Expression;
5222       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
5223         return BuildOverloadedCallExpr(
5224             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
5225             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
5226       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5227                                        RParenLoc);
5228     }
5229   }
5230 
5231   // If we're directly calling a function, get the appropriate declaration.
5232   if (Fn->getType() == Context.UnknownAnyTy) {
5233     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5234     if (result.isInvalid()) return ExprError();
5235     Fn = result.get();
5236   }
5237 
5238   Expr *NakedFn = Fn->IgnoreParens();
5239 
5240   bool CallingNDeclIndirectly = false;
5241   NamedDecl *NDecl = nullptr;
5242   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
5243     if (UnOp->getOpcode() == UO_AddrOf) {
5244       CallingNDeclIndirectly = true;
5245       NakedFn = UnOp->getSubExpr()->IgnoreParens();
5246     }
5247   }
5248 
5249   if (isa<DeclRefExpr>(NakedFn)) {
5250     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
5251 
5252     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
5253     if (FDecl && FDecl->getBuiltinID()) {
5254       // Rewrite the function decl for this builtin by replacing parameters
5255       // with no explicit address space with the address space of the arguments
5256       // in ArgExprs.
5257       if ((FDecl =
5258                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
5259         NDecl = FDecl;
5260         Fn = DeclRefExpr::Create(
5261             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
5262             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl);
5263       }
5264     }
5265   } else if (isa<MemberExpr>(NakedFn))
5266     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
5267 
5268   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
5269     if (CallingNDeclIndirectly &&
5270         !checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
5271                                            Fn->getLocStart()))
5272       return ExprError();
5273 
5274     // CheckEnableIf assumes that the we're passing in a sane number of args for
5275     // FD, but that doesn't always hold true here. This is because, in some
5276     // cases, we'll emit a diag about an ill-formed function call, but then
5277     // we'll continue on as if the function call wasn't ill-formed. So, if the
5278     // number of args looks incorrect, don't do enable_if checks; we should've
5279     // already emitted an error about the bad call.
5280     if (FD->hasAttr<EnableIfAttr>() &&
5281         isNumberOfArgsValidForCall(*this, FD, ArgExprs.size())) {
5282       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
5283         Diag(Fn->getLocStart(),
5284              isa<CXXMethodDecl>(FD)
5285                  ? diag::err_ovl_no_viable_member_function_in_call
5286                  : diag::err_ovl_no_viable_function_in_call)
5287             << FD << FD->getSourceRange();
5288         Diag(FD->getLocation(),
5289              diag::note_ovl_candidate_disabled_by_enable_if_attr)
5290             << Attr->getCond()->getSourceRange() << Attr->getMessage();
5291       }
5292     }
5293   }
5294 
5295   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
5296                                ExecConfig, IsExecConfig);
5297 }
5298 
5299 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
5300 ///
5301 /// __builtin_astype( value, dst type )
5302 ///
5303 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5304                                  SourceLocation BuiltinLoc,
5305                                  SourceLocation RParenLoc) {
5306   ExprValueKind VK = VK_RValue;
5307   ExprObjectKind OK = OK_Ordinary;
5308   QualType DstTy = GetTypeFromParser(ParsedDestTy);
5309   QualType SrcTy = E->getType();
5310   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5311     return ExprError(Diag(BuiltinLoc,
5312                           diag::err_invalid_astype_of_different_size)
5313                      << DstTy
5314                      << SrcTy
5315                      << E->getSourceRange());
5316   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5317 }
5318 
5319 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
5320 /// provided arguments.
5321 ///
5322 /// __builtin_convertvector( value, dst type )
5323 ///
5324 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5325                                         SourceLocation BuiltinLoc,
5326                                         SourceLocation RParenLoc) {
5327   TypeSourceInfo *TInfo;
5328   GetTypeFromParser(ParsedDestTy, &TInfo);
5329   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5330 }
5331 
5332 /// BuildResolvedCallExpr - Build a call to a resolved expression,
5333 /// i.e. an expression not of \p OverloadTy.  The expression should
5334 /// unary-convert to an expression of function-pointer or
5335 /// block-pointer type.
5336 ///
5337 /// \param NDecl the declaration being called, if available
5338 ExprResult
5339 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5340                             SourceLocation LParenLoc,
5341                             ArrayRef<Expr *> Args,
5342                             SourceLocation RParenLoc,
5343                             Expr *Config, bool IsExecConfig) {
5344   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5345   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5346 
5347   // Functions with 'interrupt' attribute cannot be called directly.
5348   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
5349     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
5350     return ExprError();
5351   }
5352 
5353   // Promote the function operand.
5354   // We special-case function promotion here because we only allow promoting
5355   // builtin functions to function pointers in the callee of a call.
5356   ExprResult Result;
5357   if (BuiltinID &&
5358       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5359     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
5360                                CK_BuiltinFnToFnPtr).get();
5361   } else {
5362     Result = CallExprUnaryConversions(Fn);
5363   }
5364   if (Result.isInvalid())
5365     return ExprError();
5366   Fn = Result.get();
5367 
5368   // Make the call expr early, before semantic checks.  This guarantees cleanup
5369   // of arguments and function on error.
5370   CallExpr *TheCall;
5371   if (Config)
5372     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
5373                                                cast<CallExpr>(Config), Args,
5374                                                Context.BoolTy, VK_RValue,
5375                                                RParenLoc);
5376   else
5377     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
5378                                      VK_RValue, RParenLoc);
5379 
5380   if (!getLangOpts().CPlusPlus) {
5381     // C cannot always handle TypoExpr nodes in builtin calls and direct
5382     // function calls as their argument checking don't necessarily handle
5383     // dependent types properly, so make sure any TypoExprs have been
5384     // dealt with.
5385     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
5386     if (!Result.isUsable()) return ExprError();
5387     TheCall = dyn_cast<CallExpr>(Result.get());
5388     if (!TheCall) return Result;
5389     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
5390   }
5391 
5392   // Bail out early if calling a builtin with custom typechecking.
5393   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
5394     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5395 
5396  retry:
5397   const FunctionType *FuncT;
5398   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5399     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5400     // have type pointer to function".
5401     FuncT = PT->getPointeeType()->getAs<FunctionType>();
5402     if (!FuncT)
5403       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5404                          << Fn->getType() << Fn->getSourceRange());
5405   } else if (const BlockPointerType *BPT =
5406                Fn->getType()->getAs<BlockPointerType>()) {
5407     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5408   } else {
5409     // Handle calls to expressions of unknown-any type.
5410     if (Fn->getType() == Context.UnknownAnyTy) {
5411       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5412       if (rewrite.isInvalid()) return ExprError();
5413       Fn = rewrite.get();
5414       TheCall->setCallee(Fn);
5415       goto retry;
5416     }
5417 
5418     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5419       << Fn->getType() << Fn->getSourceRange());
5420   }
5421 
5422   if (getLangOpts().CUDA) {
5423     if (Config) {
5424       // CUDA: Kernel calls must be to global functions
5425       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
5426         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
5427             << FDecl->getName() << Fn->getSourceRange());
5428 
5429       // CUDA: Kernel function must have 'void' return type
5430       if (!FuncT->getReturnType()->isVoidType())
5431         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
5432             << Fn->getType() << Fn->getSourceRange());
5433     } else {
5434       // CUDA: Calls to global functions must be configured
5435       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
5436         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
5437             << FDecl->getName() << Fn->getSourceRange());
5438     }
5439   }
5440 
5441   // Check for a valid return type
5442   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
5443                           FDecl))
5444     return ExprError();
5445 
5446   // We know the result type of the call, set it.
5447   TheCall->setType(FuncT->getCallResultType(Context));
5448   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
5449 
5450   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
5451   if (Proto) {
5452     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
5453                                 IsExecConfig))
5454       return ExprError();
5455   } else {
5456     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
5457 
5458     if (FDecl) {
5459       // Check if we have too few/too many template arguments, based
5460       // on our knowledge of the function definition.
5461       const FunctionDecl *Def = nullptr;
5462       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
5463         Proto = Def->getType()->getAs<FunctionProtoType>();
5464        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
5465           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
5466           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
5467       }
5468 
5469       // If the function we're calling isn't a function prototype, but we have
5470       // a function prototype from a prior declaratiom, use that prototype.
5471       if (!FDecl->hasPrototype())
5472         Proto = FDecl->getType()->getAs<FunctionProtoType>();
5473     }
5474 
5475     // Promote the arguments (C99 6.5.2.2p6).
5476     for (unsigned i = 0, e = Args.size(); i != e; i++) {
5477       Expr *Arg = Args[i];
5478 
5479       if (Proto && i < Proto->getNumParams()) {
5480         InitializedEntity Entity = InitializedEntity::InitializeParameter(
5481             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
5482         ExprResult ArgE =
5483             PerformCopyInitialization(Entity, SourceLocation(), Arg);
5484         if (ArgE.isInvalid())
5485           return true;
5486 
5487         Arg = ArgE.getAs<Expr>();
5488 
5489       } else {
5490         ExprResult ArgE = DefaultArgumentPromotion(Arg);
5491 
5492         if (ArgE.isInvalid())
5493           return true;
5494 
5495         Arg = ArgE.getAs<Expr>();
5496       }
5497 
5498       if (RequireCompleteType(Arg->getLocStart(),
5499                               Arg->getType(),
5500                               diag::err_call_incomplete_argument, Arg))
5501         return ExprError();
5502 
5503       TheCall->setArg(i, Arg);
5504     }
5505   }
5506 
5507   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5508     if (!Method->isStatic())
5509       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
5510         << Fn->getSourceRange());
5511 
5512   // Check for sentinels
5513   if (NDecl)
5514     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
5515 
5516   // Do special checking on direct calls to functions.
5517   if (FDecl) {
5518     if (CheckFunctionCall(FDecl, TheCall, Proto))
5519       return ExprError();
5520 
5521     if (BuiltinID)
5522       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5523   } else if (NDecl) {
5524     if (CheckPointerCall(NDecl, TheCall, Proto))
5525       return ExprError();
5526   } else {
5527     if (CheckOtherCall(TheCall, Proto))
5528       return ExprError();
5529   }
5530 
5531   return MaybeBindToTemporary(TheCall);
5532 }
5533 
5534 ExprResult
5535 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
5536                            SourceLocation RParenLoc, Expr *InitExpr) {
5537   assert(Ty && "ActOnCompoundLiteral(): missing type");
5538   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
5539 
5540   TypeSourceInfo *TInfo;
5541   QualType literalType = GetTypeFromParser(Ty, &TInfo);
5542   if (!TInfo)
5543     TInfo = Context.getTrivialTypeSourceInfo(literalType);
5544 
5545   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
5546 }
5547 
5548 ExprResult
5549 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
5550                                SourceLocation RParenLoc, Expr *LiteralExpr) {
5551   QualType literalType = TInfo->getType();
5552 
5553   if (literalType->isArrayType()) {
5554     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
5555           diag::err_illegal_decl_array_incomplete_type,
5556           SourceRange(LParenLoc,
5557                       LiteralExpr->getSourceRange().getEnd())))
5558       return ExprError();
5559     if (literalType->isVariableArrayType())
5560       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
5561         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
5562   } else if (!literalType->isDependentType() &&
5563              RequireCompleteType(LParenLoc, literalType,
5564                diag::err_typecheck_decl_incomplete_type,
5565                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
5566     return ExprError();
5567 
5568   InitializedEntity Entity
5569     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
5570   InitializationKind Kind
5571     = InitializationKind::CreateCStyleCast(LParenLoc,
5572                                            SourceRange(LParenLoc, RParenLoc),
5573                                            /*InitList=*/true);
5574   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
5575   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
5576                                       &literalType);
5577   if (Result.isInvalid())
5578     return ExprError();
5579   LiteralExpr = Result.get();
5580 
5581   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
5582   if (isFileScope &&
5583       !LiteralExpr->isTypeDependent() &&
5584       !LiteralExpr->isValueDependent() &&
5585       !literalType->isDependentType()) { // 6.5.2.5p3
5586     if (CheckForConstantInitializer(LiteralExpr, literalType))
5587       return ExprError();
5588   }
5589 
5590   // In C, compound literals are l-values for some reason.
5591   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
5592 
5593   return MaybeBindToTemporary(
5594            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
5595                                              VK, LiteralExpr, isFileScope));
5596 }
5597 
5598 ExprResult
5599 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
5600                     SourceLocation RBraceLoc) {
5601   // Immediately handle non-overload placeholders.  Overloads can be
5602   // resolved contextually, but everything else here can't.
5603   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
5604     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
5605       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
5606 
5607       // Ignore failures; dropping the entire initializer list because
5608       // of one failure would be terrible for indexing/etc.
5609       if (result.isInvalid()) continue;
5610 
5611       InitArgList[I] = result.get();
5612     }
5613   }
5614 
5615   // Semantic analysis for initializers is done by ActOnDeclarator() and
5616   // CheckInitializer() - it requires knowledge of the object being intialized.
5617 
5618   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
5619                                                RBraceLoc);
5620   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
5621   return E;
5622 }
5623 
5624 /// Do an explicit extend of the given block pointer if we're in ARC.
5625 void Sema::maybeExtendBlockObject(ExprResult &E) {
5626   assert(E.get()->getType()->isBlockPointerType());
5627   assert(E.get()->isRValue());
5628 
5629   // Only do this in an r-value context.
5630   if (!getLangOpts().ObjCAutoRefCount) return;
5631 
5632   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
5633                                CK_ARCExtendBlockObject, E.get(),
5634                                /*base path*/ nullptr, VK_RValue);
5635   Cleanup.setExprNeedsCleanups(true);
5636 }
5637 
5638 /// Prepare a conversion of the given expression to an ObjC object
5639 /// pointer type.
5640 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
5641   QualType type = E.get()->getType();
5642   if (type->isObjCObjectPointerType()) {
5643     return CK_BitCast;
5644   } else if (type->isBlockPointerType()) {
5645     maybeExtendBlockObject(E);
5646     return CK_BlockPointerToObjCPointerCast;
5647   } else {
5648     assert(type->isPointerType());
5649     return CK_CPointerToObjCPointerCast;
5650   }
5651 }
5652 
5653 /// Prepares for a scalar cast, performing all the necessary stages
5654 /// except the final cast and returning the kind required.
5655 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
5656   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
5657   // Also, callers should have filtered out the invalid cases with
5658   // pointers.  Everything else should be possible.
5659 
5660   QualType SrcTy = Src.get()->getType();
5661   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
5662     return CK_NoOp;
5663 
5664   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
5665   case Type::STK_MemberPointer:
5666     llvm_unreachable("member pointer type in C");
5667 
5668   case Type::STK_CPointer:
5669   case Type::STK_BlockPointer:
5670   case Type::STK_ObjCObjectPointer:
5671     switch (DestTy->getScalarTypeKind()) {
5672     case Type::STK_CPointer: {
5673       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
5674       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
5675       if (SrcAS != DestAS)
5676         return CK_AddressSpaceConversion;
5677       return CK_BitCast;
5678     }
5679     case Type::STK_BlockPointer:
5680       return (SrcKind == Type::STK_BlockPointer
5681                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
5682     case Type::STK_ObjCObjectPointer:
5683       if (SrcKind == Type::STK_ObjCObjectPointer)
5684         return CK_BitCast;
5685       if (SrcKind == Type::STK_CPointer)
5686         return CK_CPointerToObjCPointerCast;
5687       maybeExtendBlockObject(Src);
5688       return CK_BlockPointerToObjCPointerCast;
5689     case Type::STK_Bool:
5690       return CK_PointerToBoolean;
5691     case Type::STK_Integral:
5692       return CK_PointerToIntegral;
5693     case Type::STK_Floating:
5694     case Type::STK_FloatingComplex:
5695     case Type::STK_IntegralComplex:
5696     case Type::STK_MemberPointer:
5697       llvm_unreachable("illegal cast from pointer");
5698     }
5699     llvm_unreachable("Should have returned before this");
5700 
5701   case Type::STK_Bool: // casting from bool is like casting from an integer
5702   case Type::STK_Integral:
5703     switch (DestTy->getScalarTypeKind()) {
5704     case Type::STK_CPointer:
5705     case Type::STK_ObjCObjectPointer:
5706     case Type::STK_BlockPointer:
5707       if (Src.get()->isNullPointerConstant(Context,
5708                                            Expr::NPC_ValueDependentIsNull))
5709         return CK_NullToPointer;
5710       return CK_IntegralToPointer;
5711     case Type::STK_Bool:
5712       return CK_IntegralToBoolean;
5713     case Type::STK_Integral:
5714       return CK_IntegralCast;
5715     case Type::STK_Floating:
5716       return CK_IntegralToFloating;
5717     case Type::STK_IntegralComplex:
5718       Src = ImpCastExprToType(Src.get(),
5719                       DestTy->castAs<ComplexType>()->getElementType(),
5720                       CK_IntegralCast);
5721       return CK_IntegralRealToComplex;
5722     case Type::STK_FloatingComplex:
5723       Src = ImpCastExprToType(Src.get(),
5724                       DestTy->castAs<ComplexType>()->getElementType(),
5725                       CK_IntegralToFloating);
5726       return CK_FloatingRealToComplex;
5727     case Type::STK_MemberPointer:
5728       llvm_unreachable("member pointer type in C");
5729     }
5730     llvm_unreachable("Should have returned before this");
5731 
5732   case Type::STK_Floating:
5733     switch (DestTy->getScalarTypeKind()) {
5734     case Type::STK_Floating:
5735       return CK_FloatingCast;
5736     case Type::STK_Bool:
5737       return CK_FloatingToBoolean;
5738     case Type::STK_Integral:
5739       return CK_FloatingToIntegral;
5740     case Type::STK_FloatingComplex:
5741       Src = ImpCastExprToType(Src.get(),
5742                               DestTy->castAs<ComplexType>()->getElementType(),
5743                               CK_FloatingCast);
5744       return CK_FloatingRealToComplex;
5745     case Type::STK_IntegralComplex:
5746       Src = ImpCastExprToType(Src.get(),
5747                               DestTy->castAs<ComplexType>()->getElementType(),
5748                               CK_FloatingToIntegral);
5749       return CK_IntegralRealToComplex;
5750     case Type::STK_CPointer:
5751     case Type::STK_ObjCObjectPointer:
5752     case Type::STK_BlockPointer:
5753       llvm_unreachable("valid float->pointer cast?");
5754     case Type::STK_MemberPointer:
5755       llvm_unreachable("member pointer type in C");
5756     }
5757     llvm_unreachable("Should have returned before this");
5758 
5759   case Type::STK_FloatingComplex:
5760     switch (DestTy->getScalarTypeKind()) {
5761     case Type::STK_FloatingComplex:
5762       return CK_FloatingComplexCast;
5763     case Type::STK_IntegralComplex:
5764       return CK_FloatingComplexToIntegralComplex;
5765     case Type::STK_Floating: {
5766       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5767       if (Context.hasSameType(ET, DestTy))
5768         return CK_FloatingComplexToReal;
5769       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
5770       return CK_FloatingCast;
5771     }
5772     case Type::STK_Bool:
5773       return CK_FloatingComplexToBoolean;
5774     case Type::STK_Integral:
5775       Src = ImpCastExprToType(Src.get(),
5776                               SrcTy->castAs<ComplexType>()->getElementType(),
5777                               CK_FloatingComplexToReal);
5778       return CK_FloatingToIntegral;
5779     case Type::STK_CPointer:
5780     case Type::STK_ObjCObjectPointer:
5781     case Type::STK_BlockPointer:
5782       llvm_unreachable("valid complex float->pointer cast?");
5783     case Type::STK_MemberPointer:
5784       llvm_unreachable("member pointer type in C");
5785     }
5786     llvm_unreachable("Should have returned before this");
5787 
5788   case Type::STK_IntegralComplex:
5789     switch (DestTy->getScalarTypeKind()) {
5790     case Type::STK_FloatingComplex:
5791       return CK_IntegralComplexToFloatingComplex;
5792     case Type::STK_IntegralComplex:
5793       return CK_IntegralComplexCast;
5794     case Type::STK_Integral: {
5795       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5796       if (Context.hasSameType(ET, DestTy))
5797         return CK_IntegralComplexToReal;
5798       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
5799       return CK_IntegralCast;
5800     }
5801     case Type::STK_Bool:
5802       return CK_IntegralComplexToBoolean;
5803     case Type::STK_Floating:
5804       Src = ImpCastExprToType(Src.get(),
5805                               SrcTy->castAs<ComplexType>()->getElementType(),
5806                               CK_IntegralComplexToReal);
5807       return CK_IntegralToFloating;
5808     case Type::STK_CPointer:
5809     case Type::STK_ObjCObjectPointer:
5810     case Type::STK_BlockPointer:
5811       llvm_unreachable("valid complex int->pointer cast?");
5812     case Type::STK_MemberPointer:
5813       llvm_unreachable("member pointer type in C");
5814     }
5815     llvm_unreachable("Should have returned before this");
5816   }
5817 
5818   llvm_unreachable("Unhandled scalar cast");
5819 }
5820 
5821 static bool breakDownVectorType(QualType type, uint64_t &len,
5822                                 QualType &eltType) {
5823   // Vectors are simple.
5824   if (const VectorType *vecType = type->getAs<VectorType>()) {
5825     len = vecType->getNumElements();
5826     eltType = vecType->getElementType();
5827     assert(eltType->isScalarType());
5828     return true;
5829   }
5830 
5831   // We allow lax conversion to and from non-vector types, but only if
5832   // they're real types (i.e. non-complex, non-pointer scalar types).
5833   if (!type->isRealType()) return false;
5834 
5835   len = 1;
5836   eltType = type;
5837   return true;
5838 }
5839 
5840 /// Are the two types lax-compatible vector types?  That is, given
5841 /// that one of them is a vector, do they have equal storage sizes,
5842 /// where the storage size is the number of elements times the element
5843 /// size?
5844 ///
5845 /// This will also return false if either of the types is neither a
5846 /// vector nor a real type.
5847 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
5848   assert(destTy->isVectorType() || srcTy->isVectorType());
5849 
5850   // Disallow lax conversions between scalars and ExtVectors (these
5851   // conversions are allowed for other vector types because common headers
5852   // depend on them).  Most scalar OP ExtVector cases are handled by the
5853   // splat path anyway, which does what we want (convert, not bitcast).
5854   // What this rules out for ExtVectors is crazy things like char4*float.
5855   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
5856   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
5857 
5858   uint64_t srcLen, destLen;
5859   QualType srcEltTy, destEltTy;
5860   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
5861   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
5862 
5863   // ASTContext::getTypeSize will return the size rounded up to a
5864   // power of 2, so instead of using that, we need to use the raw
5865   // element size multiplied by the element count.
5866   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
5867   uint64_t destEltSize = Context.getTypeSize(destEltTy);
5868 
5869   return (srcLen * srcEltSize == destLen * destEltSize);
5870 }
5871 
5872 /// Is this a legal conversion between two types, one of which is
5873 /// known to be a vector type?
5874 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
5875   assert(destTy->isVectorType() || srcTy->isVectorType());
5876 
5877   if (!Context.getLangOpts().LaxVectorConversions)
5878     return false;
5879   return areLaxCompatibleVectorTypes(srcTy, destTy);
5880 }
5881 
5882 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5883                            CastKind &Kind) {
5884   assert(VectorTy->isVectorType() && "Not a vector type!");
5885 
5886   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
5887     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
5888       return Diag(R.getBegin(),
5889                   Ty->isVectorType() ?
5890                   diag::err_invalid_conversion_between_vectors :
5891                   diag::err_invalid_conversion_between_vector_and_integer)
5892         << VectorTy << Ty << R;
5893   } else
5894     return Diag(R.getBegin(),
5895                 diag::err_invalid_conversion_between_vector_and_scalar)
5896       << VectorTy << Ty << R;
5897 
5898   Kind = CK_BitCast;
5899   return false;
5900 }
5901 
5902 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
5903   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
5904 
5905   if (DestElemTy == SplattedExpr->getType())
5906     return SplattedExpr;
5907 
5908   assert(DestElemTy->isFloatingType() ||
5909          DestElemTy->isIntegralOrEnumerationType());
5910 
5911   CastKind CK;
5912   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
5913     // OpenCL requires that we convert `true` boolean expressions to -1, but
5914     // only when splatting vectors.
5915     if (DestElemTy->isFloatingType()) {
5916       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
5917       // in two steps: boolean to signed integral, then to floating.
5918       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
5919                                                  CK_BooleanToSignedIntegral);
5920       SplattedExpr = CastExprRes.get();
5921       CK = CK_IntegralToFloating;
5922     } else {
5923       CK = CK_BooleanToSignedIntegral;
5924     }
5925   } else {
5926     ExprResult CastExprRes = SplattedExpr;
5927     CK = PrepareScalarCast(CastExprRes, DestElemTy);
5928     if (CastExprRes.isInvalid())
5929       return ExprError();
5930     SplattedExpr = CastExprRes.get();
5931   }
5932   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
5933 }
5934 
5935 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5936                                     Expr *CastExpr, CastKind &Kind) {
5937   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5938 
5939   QualType SrcTy = CastExpr->getType();
5940 
5941   // If SrcTy is a VectorType, the total size must match to explicitly cast to
5942   // an ExtVectorType.
5943   // In OpenCL, casts between vectors of different types are not allowed.
5944   // (See OpenCL 6.2).
5945   if (SrcTy->isVectorType()) {
5946     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy)
5947         || (getLangOpts().OpenCL &&
5948             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5949       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5950         << DestTy << SrcTy << R;
5951       return ExprError();
5952     }
5953     Kind = CK_BitCast;
5954     return CastExpr;
5955   }
5956 
5957   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
5958   // conversion will take place first from scalar to elt type, and then
5959   // splat from elt type to vector.
5960   if (SrcTy->isPointerType())
5961     return Diag(R.getBegin(),
5962                 diag::err_invalid_conversion_between_vector_and_scalar)
5963       << DestTy << SrcTy << R;
5964 
5965   Kind = CK_VectorSplat;
5966   return prepareVectorSplat(DestTy, CastExpr);
5967 }
5968 
5969 ExprResult
5970 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5971                     Declarator &D, ParsedType &Ty,
5972                     SourceLocation RParenLoc, Expr *CastExpr) {
5973   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
5974          "ActOnCastExpr(): missing type or expr");
5975 
5976   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5977   if (D.isInvalidType())
5978     return ExprError();
5979 
5980   if (getLangOpts().CPlusPlus) {
5981     // Check that there are no default arguments (C++ only).
5982     CheckExtraCXXDefaultArguments(D);
5983   } else {
5984     // Make sure any TypoExprs have been dealt with.
5985     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
5986     if (!Res.isUsable())
5987       return ExprError();
5988     CastExpr = Res.get();
5989   }
5990 
5991   checkUnusedDeclAttributes(D);
5992 
5993   QualType castType = castTInfo->getType();
5994   Ty = CreateParsedType(castType, castTInfo);
5995 
5996   bool isVectorLiteral = false;
5997 
5998   // Check for an altivec or OpenCL literal,
5999   // i.e. all the elements are integer constants.
6000   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
6001   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
6002   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
6003        && castType->isVectorType() && (PE || PLE)) {
6004     if (PLE && PLE->getNumExprs() == 0) {
6005       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
6006       return ExprError();
6007     }
6008     if (PE || PLE->getNumExprs() == 1) {
6009       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
6010       if (!E->getType()->isVectorType())
6011         isVectorLiteral = true;
6012     }
6013     else
6014       isVectorLiteral = true;
6015   }
6016 
6017   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
6018   // then handle it as such.
6019   if (isVectorLiteral)
6020     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
6021 
6022   // If the Expr being casted is a ParenListExpr, handle it specially.
6023   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
6024   // sequence of BinOp comma operators.
6025   if (isa<ParenListExpr>(CastExpr)) {
6026     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
6027     if (Result.isInvalid()) return ExprError();
6028     CastExpr = Result.get();
6029   }
6030 
6031   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
6032       !getSourceManager().isInSystemMacro(LParenLoc))
6033     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
6034 
6035   CheckTollFreeBridgeCast(castType, CastExpr);
6036 
6037   CheckObjCBridgeRelatedCast(castType, CastExpr);
6038 
6039   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
6040 
6041   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
6042 }
6043 
6044 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
6045                                     SourceLocation RParenLoc, Expr *E,
6046                                     TypeSourceInfo *TInfo) {
6047   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
6048          "Expected paren or paren list expression");
6049 
6050   Expr **exprs;
6051   unsigned numExprs;
6052   Expr *subExpr;
6053   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
6054   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
6055     LiteralLParenLoc = PE->getLParenLoc();
6056     LiteralRParenLoc = PE->getRParenLoc();
6057     exprs = PE->getExprs();
6058     numExprs = PE->getNumExprs();
6059   } else { // isa<ParenExpr> by assertion at function entrance
6060     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
6061     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
6062     subExpr = cast<ParenExpr>(E)->getSubExpr();
6063     exprs = &subExpr;
6064     numExprs = 1;
6065   }
6066 
6067   QualType Ty = TInfo->getType();
6068   assert(Ty->isVectorType() && "Expected vector type");
6069 
6070   SmallVector<Expr *, 8> initExprs;
6071   const VectorType *VTy = Ty->getAs<VectorType>();
6072   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
6073 
6074   // '(...)' form of vector initialization in AltiVec: the number of
6075   // initializers must be one or must match the size of the vector.
6076   // If a single value is specified in the initializer then it will be
6077   // replicated to all the components of the vector
6078   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
6079     // The number of initializers must be one or must match the size of the
6080     // vector. If a single value is specified in the initializer then it will
6081     // be replicated to all the components of the vector
6082     if (numExprs == 1) {
6083       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
6084       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6085       if (Literal.isInvalid())
6086         return ExprError();
6087       Literal = ImpCastExprToType(Literal.get(), ElemTy,
6088                                   PrepareScalarCast(Literal, ElemTy));
6089       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6090     }
6091     else if (numExprs < numElems) {
6092       Diag(E->getExprLoc(),
6093            diag::err_incorrect_number_of_vector_initializers);
6094       return ExprError();
6095     }
6096     else
6097       initExprs.append(exprs, exprs + numExprs);
6098   }
6099   else {
6100     // For OpenCL, when the number of initializers is a single value,
6101     // it will be replicated to all components of the vector.
6102     if (getLangOpts().OpenCL &&
6103         VTy->getVectorKind() == VectorType::GenericVector &&
6104         numExprs == 1) {
6105         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
6106         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6107         if (Literal.isInvalid())
6108           return ExprError();
6109         Literal = ImpCastExprToType(Literal.get(), ElemTy,
6110                                     PrepareScalarCast(Literal, ElemTy));
6111         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6112     }
6113 
6114     initExprs.append(exprs, exprs + numExprs);
6115   }
6116   // FIXME: This means that pretty-printing the final AST will produce curly
6117   // braces instead of the original commas.
6118   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
6119                                                    initExprs, LiteralRParenLoc);
6120   initE->setType(Ty);
6121   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
6122 }
6123 
6124 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
6125 /// the ParenListExpr into a sequence of comma binary operators.
6126 ExprResult
6127 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
6128   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
6129   if (!E)
6130     return OrigExpr;
6131 
6132   ExprResult Result(E->getExpr(0));
6133 
6134   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
6135     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
6136                         E->getExpr(i));
6137 
6138   if (Result.isInvalid()) return ExprError();
6139 
6140   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
6141 }
6142 
6143 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
6144                                     SourceLocation R,
6145                                     MultiExprArg Val) {
6146   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
6147   return expr;
6148 }
6149 
6150 /// \brief Emit a specialized diagnostic when one expression is a null pointer
6151 /// constant and the other is not a pointer.  Returns true if a diagnostic is
6152 /// emitted.
6153 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
6154                                       SourceLocation QuestionLoc) {
6155   Expr *NullExpr = LHSExpr;
6156   Expr *NonPointerExpr = RHSExpr;
6157   Expr::NullPointerConstantKind NullKind =
6158       NullExpr->isNullPointerConstant(Context,
6159                                       Expr::NPC_ValueDependentIsNotNull);
6160 
6161   if (NullKind == Expr::NPCK_NotNull) {
6162     NullExpr = RHSExpr;
6163     NonPointerExpr = LHSExpr;
6164     NullKind =
6165         NullExpr->isNullPointerConstant(Context,
6166                                         Expr::NPC_ValueDependentIsNotNull);
6167   }
6168 
6169   if (NullKind == Expr::NPCK_NotNull)
6170     return false;
6171 
6172   if (NullKind == Expr::NPCK_ZeroExpression)
6173     return false;
6174 
6175   if (NullKind == Expr::NPCK_ZeroLiteral) {
6176     // In this case, check to make sure that we got here from a "NULL"
6177     // string in the source code.
6178     NullExpr = NullExpr->IgnoreParenImpCasts();
6179     SourceLocation loc = NullExpr->getExprLoc();
6180     if (!findMacroSpelling(loc, "NULL"))
6181       return false;
6182   }
6183 
6184   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
6185   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
6186       << NonPointerExpr->getType() << DiagType
6187       << NonPointerExpr->getSourceRange();
6188   return true;
6189 }
6190 
6191 /// \brief Return false if the condition expression is valid, true otherwise.
6192 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
6193   QualType CondTy = Cond->getType();
6194 
6195   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
6196   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
6197     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6198       << CondTy << Cond->getSourceRange();
6199     return true;
6200   }
6201 
6202   // C99 6.5.15p2
6203   if (CondTy->isScalarType()) return false;
6204 
6205   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
6206     << CondTy << Cond->getSourceRange();
6207   return true;
6208 }
6209 
6210 /// \brief Handle when one or both operands are void type.
6211 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
6212                                          ExprResult &RHS) {
6213     Expr *LHSExpr = LHS.get();
6214     Expr *RHSExpr = RHS.get();
6215 
6216     if (!LHSExpr->getType()->isVoidType())
6217       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
6218         << RHSExpr->getSourceRange();
6219     if (!RHSExpr->getType()->isVoidType())
6220       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
6221         << LHSExpr->getSourceRange();
6222     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
6223     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
6224     return S.Context.VoidTy;
6225 }
6226 
6227 /// \brief Return false if the NullExpr can be promoted to PointerTy,
6228 /// true otherwise.
6229 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
6230                                         QualType PointerTy) {
6231   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
6232       !NullExpr.get()->isNullPointerConstant(S.Context,
6233                                             Expr::NPC_ValueDependentIsNull))
6234     return true;
6235 
6236   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
6237   return false;
6238 }
6239 
6240 /// \brief Checks compatibility between two pointers and return the resulting
6241 /// type.
6242 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
6243                                                      ExprResult &RHS,
6244                                                      SourceLocation Loc) {
6245   QualType LHSTy = LHS.get()->getType();
6246   QualType RHSTy = RHS.get()->getType();
6247 
6248   if (S.Context.hasSameType(LHSTy, RHSTy)) {
6249     // Two identical pointers types are always compatible.
6250     return LHSTy;
6251   }
6252 
6253   QualType lhptee, rhptee;
6254 
6255   // Get the pointee types.
6256   bool IsBlockPointer = false;
6257   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
6258     lhptee = LHSBTy->getPointeeType();
6259     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
6260     IsBlockPointer = true;
6261   } else {
6262     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
6263     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
6264   }
6265 
6266   // C99 6.5.15p6: If both operands are pointers to compatible types or to
6267   // differently qualified versions of compatible types, the result type is
6268   // a pointer to an appropriately qualified version of the composite
6269   // type.
6270 
6271   // Only CVR-qualifiers exist in the standard, and the differently-qualified
6272   // clause doesn't make sense for our extensions. E.g. address space 2 should
6273   // be incompatible with address space 3: they may live on different devices or
6274   // anything.
6275   Qualifiers lhQual = lhptee.getQualifiers();
6276   Qualifiers rhQual = rhptee.getQualifiers();
6277 
6278   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
6279   lhQual.removeCVRQualifiers();
6280   rhQual.removeCVRQualifiers();
6281 
6282   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
6283   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
6284 
6285   // For OpenCL:
6286   // 1. If LHS and RHS types match exactly and:
6287   //  (a) AS match => use standard C rules, no bitcast or addrspacecast
6288   //  (b) AS overlap => generate addrspacecast
6289   //  (c) AS don't overlap => give an error
6290   // 2. if LHS and RHS types don't match:
6291   //  (a) AS match => use standard C rules, generate bitcast
6292   //  (b) AS overlap => generate addrspacecast instead of bitcast
6293   //  (c) AS don't overlap => give an error
6294 
6295   // For OpenCL, non-null composite type is returned only for cases 1a and 1b.
6296   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
6297 
6298   // OpenCL cases 1c, 2a, 2b, and 2c.
6299   if (CompositeTy.isNull()) {
6300     // In this situation, we assume void* type. No especially good
6301     // reason, but this is what gcc does, and we do have to pick
6302     // to get a consistent AST.
6303     QualType incompatTy;
6304     if (S.getLangOpts().OpenCL) {
6305       // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
6306       // spaces is disallowed.
6307       unsigned ResultAddrSpace;
6308       if (lhQual.isAddressSpaceSupersetOf(rhQual)) {
6309         // Cases 2a and 2b.
6310         ResultAddrSpace = lhQual.getAddressSpace();
6311       } else if (rhQual.isAddressSpaceSupersetOf(lhQual)) {
6312         // Cases 2a and 2b.
6313         ResultAddrSpace = rhQual.getAddressSpace();
6314       } else {
6315         // Cases 1c and 2c.
6316         S.Diag(Loc,
6317                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
6318             << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
6319             << RHS.get()->getSourceRange();
6320         return QualType();
6321       }
6322 
6323       // Continue handling cases 2a and 2b.
6324       incompatTy = S.Context.getPointerType(
6325           S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
6326       LHS = S.ImpCastExprToType(LHS.get(), incompatTy,
6327                                 (lhQual.getAddressSpace() != ResultAddrSpace)
6328                                     ? CK_AddressSpaceConversion /* 2b */
6329                                     : CK_BitCast /* 2a */);
6330       RHS = S.ImpCastExprToType(RHS.get(), incompatTy,
6331                                 (rhQual.getAddressSpace() != ResultAddrSpace)
6332                                     ? CK_AddressSpaceConversion /* 2b */
6333                                     : CK_BitCast /* 2a */);
6334     } else {
6335       S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
6336           << LHSTy << RHSTy << LHS.get()->getSourceRange()
6337           << RHS.get()->getSourceRange();
6338       incompatTy = S.Context.getPointerType(S.Context.VoidTy);
6339       LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
6340       RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
6341     }
6342     return incompatTy;
6343   }
6344 
6345   // The pointer types are compatible.
6346   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
6347   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
6348   if (IsBlockPointer)
6349     ResultTy = S.Context.getBlockPointerType(ResultTy);
6350   else {
6351     // Cases 1a and 1b for OpenCL.
6352     auto ResultAddrSpace = ResultTy.getQualifiers().getAddressSpace();
6353     LHSCastKind = lhQual.getAddressSpace() == ResultAddrSpace
6354                       ? CK_BitCast /* 1a */
6355                       : CK_AddressSpaceConversion /* 1b */;
6356     RHSCastKind = rhQual.getAddressSpace() == ResultAddrSpace
6357                       ? CK_BitCast /* 1a */
6358                       : CK_AddressSpaceConversion /* 1b */;
6359     ResultTy = S.Context.getPointerType(ResultTy);
6360   }
6361 
6362   // For case 1a of OpenCL, S.ImpCastExprToType will not insert bitcast
6363   // if the target type does not change.
6364   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
6365   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
6366   return ResultTy;
6367 }
6368 
6369 /// \brief Return the resulting type when the operands are both block pointers.
6370 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
6371                                                           ExprResult &LHS,
6372                                                           ExprResult &RHS,
6373                                                           SourceLocation Loc) {
6374   QualType LHSTy = LHS.get()->getType();
6375   QualType RHSTy = RHS.get()->getType();
6376 
6377   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
6378     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
6379       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
6380       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6381       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6382       return destType;
6383     }
6384     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
6385       << LHSTy << RHSTy << LHS.get()->getSourceRange()
6386       << RHS.get()->getSourceRange();
6387     return QualType();
6388   }
6389 
6390   // We have 2 block pointer types.
6391   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6392 }
6393 
6394 /// \brief Return the resulting type when the operands are both pointers.
6395 static QualType
6396 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
6397                                             ExprResult &RHS,
6398                                             SourceLocation Loc) {
6399   // get the pointer types
6400   QualType LHSTy = LHS.get()->getType();
6401   QualType RHSTy = RHS.get()->getType();
6402 
6403   // get the "pointed to" types
6404   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6405   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6406 
6407   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
6408   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
6409     // Figure out necessary qualifiers (C99 6.5.15p6)
6410     QualType destPointee
6411       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6412     QualType destType = S.Context.getPointerType(destPointee);
6413     // Add qualifiers if necessary.
6414     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6415     // Promote to void*.
6416     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6417     return destType;
6418   }
6419   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
6420     QualType destPointee
6421       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6422     QualType destType = S.Context.getPointerType(destPointee);
6423     // Add qualifiers if necessary.
6424     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6425     // Promote to void*.
6426     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6427     return destType;
6428   }
6429 
6430   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6431 }
6432 
6433 /// \brief Return false if the first expression is not an integer and the second
6434 /// expression is not a pointer, true otherwise.
6435 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
6436                                         Expr* PointerExpr, SourceLocation Loc,
6437                                         bool IsIntFirstExpr) {
6438   if (!PointerExpr->getType()->isPointerType() ||
6439       !Int.get()->getType()->isIntegerType())
6440     return false;
6441 
6442   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
6443   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
6444 
6445   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
6446     << Expr1->getType() << Expr2->getType()
6447     << Expr1->getSourceRange() << Expr2->getSourceRange();
6448   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
6449                             CK_IntegralToPointer);
6450   return true;
6451 }
6452 
6453 /// \brief Simple conversion between integer and floating point types.
6454 ///
6455 /// Used when handling the OpenCL conditional operator where the
6456 /// condition is a vector while the other operands are scalar.
6457 ///
6458 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
6459 /// types are either integer or floating type. Between the two
6460 /// operands, the type with the higher rank is defined as the "result
6461 /// type". The other operand needs to be promoted to the same type. No
6462 /// other type promotion is allowed. We cannot use
6463 /// UsualArithmeticConversions() for this purpose, since it always
6464 /// promotes promotable types.
6465 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
6466                                             ExprResult &RHS,
6467                                             SourceLocation QuestionLoc) {
6468   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
6469   if (LHS.isInvalid())
6470     return QualType();
6471   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
6472   if (RHS.isInvalid())
6473     return QualType();
6474 
6475   // For conversion purposes, we ignore any qualifiers.
6476   // For example, "const float" and "float" are equivalent.
6477   QualType LHSType =
6478     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6479   QualType RHSType =
6480     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6481 
6482   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
6483     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6484       << LHSType << LHS.get()->getSourceRange();
6485     return QualType();
6486   }
6487 
6488   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
6489     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6490       << RHSType << RHS.get()->getSourceRange();
6491     return QualType();
6492   }
6493 
6494   // If both types are identical, no conversion is needed.
6495   if (LHSType == RHSType)
6496     return LHSType;
6497 
6498   // Now handle "real" floating types (i.e. float, double, long double).
6499   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
6500     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
6501                                  /*IsCompAssign = */ false);
6502 
6503   // Finally, we have two differing integer types.
6504   return handleIntegerConversion<doIntegralCast, doIntegralCast>
6505   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
6506 }
6507 
6508 /// \brief Convert scalar operands to a vector that matches the
6509 ///        condition in length.
6510 ///
6511 /// Used when handling the OpenCL conditional operator where the
6512 /// condition is a vector while the other operands are scalar.
6513 ///
6514 /// We first compute the "result type" for the scalar operands
6515 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
6516 /// into a vector of that type where the length matches the condition
6517 /// vector type. s6.11.6 requires that the element types of the result
6518 /// and the condition must have the same number of bits.
6519 static QualType
6520 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
6521                               QualType CondTy, SourceLocation QuestionLoc) {
6522   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
6523   if (ResTy.isNull()) return QualType();
6524 
6525   const VectorType *CV = CondTy->getAs<VectorType>();
6526   assert(CV);
6527 
6528   // Determine the vector result type
6529   unsigned NumElements = CV->getNumElements();
6530   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
6531 
6532   // Ensure that all types have the same number of bits
6533   if (S.Context.getTypeSize(CV->getElementType())
6534       != S.Context.getTypeSize(ResTy)) {
6535     // Since VectorTy is created internally, it does not pretty print
6536     // with an OpenCL name. Instead, we just print a description.
6537     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
6538     SmallString<64> Str;
6539     llvm::raw_svector_ostream OS(Str);
6540     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
6541     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6542       << CondTy << OS.str();
6543     return QualType();
6544   }
6545 
6546   // Convert operands to the vector result type
6547   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
6548   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
6549 
6550   return VectorTy;
6551 }
6552 
6553 /// \brief Return false if this is a valid OpenCL condition vector
6554 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
6555                                        SourceLocation QuestionLoc) {
6556   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
6557   // integral type.
6558   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
6559   assert(CondTy);
6560   QualType EleTy = CondTy->getElementType();
6561   if (EleTy->isIntegerType()) return false;
6562 
6563   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6564     << Cond->getType() << Cond->getSourceRange();
6565   return true;
6566 }
6567 
6568 /// \brief Return false if the vector condition type and the vector
6569 ///        result type are compatible.
6570 ///
6571 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
6572 /// number of elements, and their element types have the same number
6573 /// of bits.
6574 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
6575                               SourceLocation QuestionLoc) {
6576   const VectorType *CV = CondTy->getAs<VectorType>();
6577   const VectorType *RV = VecResTy->getAs<VectorType>();
6578   assert(CV && RV);
6579 
6580   if (CV->getNumElements() != RV->getNumElements()) {
6581     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
6582       << CondTy << VecResTy;
6583     return true;
6584   }
6585 
6586   QualType CVE = CV->getElementType();
6587   QualType RVE = RV->getElementType();
6588 
6589   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
6590     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6591       << CondTy << VecResTy;
6592     return true;
6593   }
6594 
6595   return false;
6596 }
6597 
6598 /// \brief Return the resulting type for the conditional operator in
6599 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
6600 ///        s6.3.i) when the condition is a vector type.
6601 static QualType
6602 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
6603                              ExprResult &LHS, ExprResult &RHS,
6604                              SourceLocation QuestionLoc) {
6605   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
6606   if (Cond.isInvalid())
6607     return QualType();
6608   QualType CondTy = Cond.get()->getType();
6609 
6610   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
6611     return QualType();
6612 
6613   // If either operand is a vector then find the vector type of the
6614   // result as specified in OpenCL v1.1 s6.3.i.
6615   if (LHS.get()->getType()->isVectorType() ||
6616       RHS.get()->getType()->isVectorType()) {
6617     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
6618                                               /*isCompAssign*/false,
6619                                               /*AllowBothBool*/true,
6620                                               /*AllowBoolConversions*/false);
6621     if (VecResTy.isNull()) return QualType();
6622     // The result type must match the condition type as specified in
6623     // OpenCL v1.1 s6.11.6.
6624     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
6625       return QualType();
6626     return VecResTy;
6627   }
6628 
6629   // Both operands are scalar.
6630   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
6631 }
6632 
6633 /// \brief Return true if the Expr is block type
6634 static bool checkBlockType(Sema &S, const Expr *E) {
6635   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
6636     QualType Ty = CE->getCallee()->getType();
6637     if (Ty->isBlockPointerType()) {
6638       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
6639       return true;
6640     }
6641   }
6642   return false;
6643 }
6644 
6645 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
6646 /// In that case, LHS = cond.
6647 /// C99 6.5.15
6648 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6649                                         ExprResult &RHS, ExprValueKind &VK,
6650                                         ExprObjectKind &OK,
6651                                         SourceLocation QuestionLoc) {
6652 
6653   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
6654   if (!LHSResult.isUsable()) return QualType();
6655   LHS = LHSResult;
6656 
6657   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
6658   if (!RHSResult.isUsable()) return QualType();
6659   RHS = RHSResult;
6660 
6661   // C++ is sufficiently different to merit its own checker.
6662   if (getLangOpts().CPlusPlus)
6663     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
6664 
6665   VK = VK_RValue;
6666   OK = OK_Ordinary;
6667 
6668   // The OpenCL operator with a vector condition is sufficiently
6669   // different to merit its own checker.
6670   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
6671     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
6672 
6673   // First, check the condition.
6674   Cond = UsualUnaryConversions(Cond.get());
6675   if (Cond.isInvalid())
6676     return QualType();
6677   if (checkCondition(*this, Cond.get(), QuestionLoc))
6678     return QualType();
6679 
6680   // Now check the two expressions.
6681   if (LHS.get()->getType()->isVectorType() ||
6682       RHS.get()->getType()->isVectorType())
6683     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6684                                /*AllowBothBool*/true,
6685                                /*AllowBoolConversions*/false);
6686 
6687   QualType ResTy = UsualArithmeticConversions(LHS, RHS);
6688   if (LHS.isInvalid() || RHS.isInvalid())
6689     return QualType();
6690 
6691   QualType LHSTy = LHS.get()->getType();
6692   QualType RHSTy = RHS.get()->getType();
6693 
6694   // Diagnose attempts to convert between __float128 and long double where
6695   // such conversions currently can't be handled.
6696   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
6697     Diag(QuestionLoc,
6698          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
6699       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6700     return QualType();
6701   }
6702 
6703   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
6704   // selection operator (?:).
6705   if (getLangOpts().OpenCL &&
6706       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
6707     return QualType();
6708   }
6709 
6710   // If both operands have arithmetic type, do the usual arithmetic conversions
6711   // to find a common type: C99 6.5.15p3,5.
6712   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
6713     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6714     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6715 
6716     return ResTy;
6717   }
6718 
6719   // If both operands are the same structure or union type, the result is that
6720   // type.
6721   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
6722     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
6723       if (LHSRT->getDecl() == RHSRT->getDecl())
6724         // "If both the operands have structure or union type, the result has
6725         // that type."  This implies that CV qualifiers are dropped.
6726         return LHSTy.getUnqualifiedType();
6727     // FIXME: Type of conditional expression must be complete in C mode.
6728   }
6729 
6730   // C99 6.5.15p5: "If both operands have void type, the result has void type."
6731   // The following || allows only one side to be void (a GCC-ism).
6732   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
6733     return checkConditionalVoidType(*this, LHS, RHS);
6734   }
6735 
6736   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
6737   // the type of the other operand."
6738   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
6739   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
6740 
6741   // All objective-c pointer type analysis is done here.
6742   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
6743                                                         QuestionLoc);
6744   if (LHS.isInvalid() || RHS.isInvalid())
6745     return QualType();
6746   if (!compositeType.isNull())
6747     return compositeType;
6748 
6749 
6750   // Handle block pointer types.
6751   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
6752     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
6753                                                      QuestionLoc);
6754 
6755   // Check constraints for C object pointers types (C99 6.5.15p3,6).
6756   if (LHSTy->isPointerType() && RHSTy->isPointerType())
6757     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
6758                                                        QuestionLoc);
6759 
6760   // GCC compatibility: soften pointer/integer mismatch.  Note that
6761   // null pointers have been filtered out by this point.
6762   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
6763       /*isIntFirstExpr=*/true))
6764     return RHSTy;
6765   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
6766       /*isIntFirstExpr=*/false))
6767     return LHSTy;
6768 
6769   // Emit a better diagnostic if one of the expressions is a null pointer
6770   // constant and the other is not a pointer type. In this case, the user most
6771   // likely forgot to take the address of the other expression.
6772   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6773     return QualType();
6774 
6775   // Otherwise, the operands are not compatible.
6776   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6777     << LHSTy << RHSTy << LHS.get()->getSourceRange()
6778     << RHS.get()->getSourceRange();
6779   return QualType();
6780 }
6781 
6782 /// FindCompositeObjCPointerType - Helper method to find composite type of
6783 /// two objective-c pointer types of the two input expressions.
6784 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
6785                                             SourceLocation QuestionLoc) {
6786   QualType LHSTy = LHS.get()->getType();
6787   QualType RHSTy = RHS.get()->getType();
6788 
6789   // Handle things like Class and struct objc_class*.  Here we case the result
6790   // to the pseudo-builtin, because that will be implicitly cast back to the
6791   // redefinition type if an attempt is made to access its fields.
6792   if (LHSTy->isObjCClassType() &&
6793       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
6794     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6795     return LHSTy;
6796   }
6797   if (RHSTy->isObjCClassType() &&
6798       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
6799     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6800     return RHSTy;
6801   }
6802   // And the same for struct objc_object* / id
6803   if (LHSTy->isObjCIdType() &&
6804       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
6805     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6806     return LHSTy;
6807   }
6808   if (RHSTy->isObjCIdType() &&
6809       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
6810     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6811     return RHSTy;
6812   }
6813   // And the same for struct objc_selector* / SEL
6814   if (Context.isObjCSelType(LHSTy) &&
6815       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
6816     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
6817     return LHSTy;
6818   }
6819   if (Context.isObjCSelType(RHSTy) &&
6820       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
6821     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
6822     return RHSTy;
6823   }
6824   // Check constraints for Objective-C object pointers types.
6825   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
6826 
6827     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
6828       // Two identical object pointer types are always compatible.
6829       return LHSTy;
6830     }
6831     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
6832     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
6833     QualType compositeType = LHSTy;
6834 
6835     // If both operands are interfaces and either operand can be
6836     // assigned to the other, use that type as the composite
6837     // type. This allows
6838     //   xxx ? (A*) a : (B*) b
6839     // where B is a subclass of A.
6840     //
6841     // Additionally, as for assignment, if either type is 'id'
6842     // allow silent coercion. Finally, if the types are
6843     // incompatible then make sure to use 'id' as the composite
6844     // type so the result is acceptable for sending messages to.
6845 
6846     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
6847     // It could return the composite type.
6848     if (!(compositeType =
6849           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
6850       // Nothing more to do.
6851     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
6852       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
6853     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
6854       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
6855     } else if ((LHSTy->isObjCQualifiedIdType() ||
6856                 RHSTy->isObjCQualifiedIdType()) &&
6857                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
6858       // Need to handle "id<xx>" explicitly.
6859       // GCC allows qualified id and any Objective-C type to devolve to
6860       // id. Currently localizing to here until clear this should be
6861       // part of ObjCQualifiedIdTypesAreCompatible.
6862       compositeType = Context.getObjCIdType();
6863     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
6864       compositeType = Context.getObjCIdType();
6865     } else {
6866       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
6867       << LHSTy << RHSTy
6868       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6869       QualType incompatTy = Context.getObjCIdType();
6870       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
6871       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
6872       return incompatTy;
6873     }
6874     // The object pointer types are compatible.
6875     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
6876     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
6877     return compositeType;
6878   }
6879   // Check Objective-C object pointer types and 'void *'
6880   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
6881     if (getLangOpts().ObjCAutoRefCount) {
6882       // ARC forbids the implicit conversion of object pointers to 'void *',
6883       // so these types are not compatible.
6884       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6885           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6886       LHS = RHS = true;
6887       return QualType();
6888     }
6889     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6890     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6891     QualType destPointee
6892     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6893     QualType destType = Context.getPointerType(destPointee);
6894     // Add qualifiers if necessary.
6895     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6896     // Promote to void*.
6897     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6898     return destType;
6899   }
6900   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
6901     if (getLangOpts().ObjCAutoRefCount) {
6902       // ARC forbids the implicit conversion of object pointers to 'void *',
6903       // so these types are not compatible.
6904       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6905           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6906       LHS = RHS = true;
6907       return QualType();
6908     }
6909     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6910     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6911     QualType destPointee
6912     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6913     QualType destType = Context.getPointerType(destPointee);
6914     // Add qualifiers if necessary.
6915     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6916     // Promote to void*.
6917     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6918     return destType;
6919   }
6920   return QualType();
6921 }
6922 
6923 /// SuggestParentheses - Emit a note with a fixit hint that wraps
6924 /// ParenRange in parentheses.
6925 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6926                                const PartialDiagnostic &Note,
6927                                SourceRange ParenRange) {
6928   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
6929   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
6930       EndLoc.isValid()) {
6931     Self.Diag(Loc, Note)
6932       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
6933       << FixItHint::CreateInsertion(EndLoc, ")");
6934   } else {
6935     // We can't display the parentheses, so just show the bare note.
6936     Self.Diag(Loc, Note) << ParenRange;
6937   }
6938 }
6939 
6940 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
6941   return BinaryOperator::isAdditiveOp(Opc) ||
6942          BinaryOperator::isMultiplicativeOp(Opc) ||
6943          BinaryOperator::isShiftOp(Opc);
6944 }
6945 
6946 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
6947 /// expression, either using a built-in or overloaded operator,
6948 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
6949 /// expression.
6950 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
6951                                    Expr **RHSExprs) {
6952   // Don't strip parenthesis: we should not warn if E is in parenthesis.
6953   E = E->IgnoreImpCasts();
6954   E = E->IgnoreConversionOperator();
6955   E = E->IgnoreImpCasts();
6956 
6957   // Built-in binary operator.
6958   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
6959     if (IsArithmeticOp(OP->getOpcode())) {
6960       *Opcode = OP->getOpcode();
6961       *RHSExprs = OP->getRHS();
6962       return true;
6963     }
6964   }
6965 
6966   // Overloaded operator.
6967   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
6968     if (Call->getNumArgs() != 2)
6969       return false;
6970 
6971     // Make sure this is really a binary operator that is safe to pass into
6972     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
6973     OverloadedOperatorKind OO = Call->getOperator();
6974     if (OO < OO_Plus || OO > OO_Arrow ||
6975         OO == OO_PlusPlus || OO == OO_MinusMinus)
6976       return false;
6977 
6978     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
6979     if (IsArithmeticOp(OpKind)) {
6980       *Opcode = OpKind;
6981       *RHSExprs = Call->getArg(1);
6982       return true;
6983     }
6984   }
6985 
6986   return false;
6987 }
6988 
6989 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
6990 /// or is a logical expression such as (x==y) which has int type, but is
6991 /// commonly interpreted as boolean.
6992 static bool ExprLooksBoolean(Expr *E) {
6993   E = E->IgnoreParenImpCasts();
6994 
6995   if (E->getType()->isBooleanType())
6996     return true;
6997   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
6998     return OP->isComparisonOp() || OP->isLogicalOp();
6999   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
7000     return OP->getOpcode() == UO_LNot;
7001   if (E->getType()->isPointerType())
7002     return true;
7003 
7004   return false;
7005 }
7006 
7007 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
7008 /// and binary operator are mixed in a way that suggests the programmer assumed
7009 /// the conditional operator has higher precedence, for example:
7010 /// "int x = a + someBinaryCondition ? 1 : 2".
7011 static void DiagnoseConditionalPrecedence(Sema &Self,
7012                                           SourceLocation OpLoc,
7013                                           Expr *Condition,
7014                                           Expr *LHSExpr,
7015                                           Expr *RHSExpr) {
7016   BinaryOperatorKind CondOpcode;
7017   Expr *CondRHS;
7018 
7019   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
7020     return;
7021   if (!ExprLooksBoolean(CondRHS))
7022     return;
7023 
7024   // The condition is an arithmetic binary expression, with a right-
7025   // hand side that looks boolean, so warn.
7026 
7027   Self.Diag(OpLoc, diag::warn_precedence_conditional)
7028       << Condition->getSourceRange()
7029       << BinaryOperator::getOpcodeStr(CondOpcode);
7030 
7031   SuggestParentheses(Self, OpLoc,
7032     Self.PDiag(diag::note_precedence_silence)
7033       << BinaryOperator::getOpcodeStr(CondOpcode),
7034     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
7035 
7036   SuggestParentheses(Self, OpLoc,
7037     Self.PDiag(diag::note_precedence_conditional_first),
7038     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
7039 }
7040 
7041 /// Compute the nullability of a conditional expression.
7042 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
7043                                               QualType LHSTy, QualType RHSTy,
7044                                               ASTContext &Ctx) {
7045   if (!ResTy->isAnyPointerType())
7046     return ResTy;
7047 
7048   auto GetNullability = [&Ctx](QualType Ty) {
7049     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
7050     if (Kind)
7051       return *Kind;
7052     return NullabilityKind::Unspecified;
7053   };
7054 
7055   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
7056   NullabilityKind MergedKind;
7057 
7058   // Compute nullability of a binary conditional expression.
7059   if (IsBin) {
7060     if (LHSKind == NullabilityKind::NonNull)
7061       MergedKind = NullabilityKind::NonNull;
7062     else
7063       MergedKind = RHSKind;
7064   // Compute nullability of a normal conditional expression.
7065   } else {
7066     if (LHSKind == NullabilityKind::Nullable ||
7067         RHSKind == NullabilityKind::Nullable)
7068       MergedKind = NullabilityKind::Nullable;
7069     else if (LHSKind == NullabilityKind::NonNull)
7070       MergedKind = RHSKind;
7071     else if (RHSKind == NullabilityKind::NonNull)
7072       MergedKind = LHSKind;
7073     else
7074       MergedKind = NullabilityKind::Unspecified;
7075   }
7076 
7077   // Return if ResTy already has the correct nullability.
7078   if (GetNullability(ResTy) == MergedKind)
7079     return ResTy;
7080 
7081   // Strip all nullability from ResTy.
7082   while (ResTy->getNullability(Ctx))
7083     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
7084 
7085   // Create a new AttributedType with the new nullability kind.
7086   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
7087   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
7088 }
7089 
7090 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
7091 /// in the case of a the GNU conditional expr extension.
7092 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
7093                                     SourceLocation ColonLoc,
7094                                     Expr *CondExpr, Expr *LHSExpr,
7095                                     Expr *RHSExpr) {
7096   if (!getLangOpts().CPlusPlus) {
7097     // C cannot handle TypoExpr nodes in the condition because it
7098     // doesn't handle dependent types properly, so make sure any TypoExprs have
7099     // been dealt with before checking the operands.
7100     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
7101     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
7102     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
7103 
7104     if (!CondResult.isUsable())
7105       return ExprError();
7106 
7107     if (LHSExpr) {
7108       if (!LHSResult.isUsable())
7109         return ExprError();
7110     }
7111 
7112     if (!RHSResult.isUsable())
7113       return ExprError();
7114 
7115     CondExpr = CondResult.get();
7116     LHSExpr = LHSResult.get();
7117     RHSExpr = RHSResult.get();
7118   }
7119 
7120   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
7121   // was the condition.
7122   OpaqueValueExpr *opaqueValue = nullptr;
7123   Expr *commonExpr = nullptr;
7124   if (!LHSExpr) {
7125     commonExpr = CondExpr;
7126     // Lower out placeholder types first.  This is important so that we don't
7127     // try to capture a placeholder. This happens in few cases in C++; such
7128     // as Objective-C++'s dictionary subscripting syntax.
7129     if (commonExpr->hasPlaceholderType()) {
7130       ExprResult result = CheckPlaceholderExpr(commonExpr);
7131       if (!result.isUsable()) return ExprError();
7132       commonExpr = result.get();
7133     }
7134     // We usually want to apply unary conversions *before* saving, except
7135     // in the special case of a C++ l-value conditional.
7136     if (!(getLangOpts().CPlusPlus
7137           && !commonExpr->isTypeDependent()
7138           && commonExpr->getValueKind() == RHSExpr->getValueKind()
7139           && commonExpr->isGLValue()
7140           && commonExpr->isOrdinaryOrBitFieldObject()
7141           && RHSExpr->isOrdinaryOrBitFieldObject()
7142           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
7143       ExprResult commonRes = UsualUnaryConversions(commonExpr);
7144       if (commonRes.isInvalid())
7145         return ExprError();
7146       commonExpr = commonRes.get();
7147     }
7148 
7149     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
7150                                                 commonExpr->getType(),
7151                                                 commonExpr->getValueKind(),
7152                                                 commonExpr->getObjectKind(),
7153                                                 commonExpr);
7154     LHSExpr = CondExpr = opaqueValue;
7155   }
7156 
7157   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
7158   ExprValueKind VK = VK_RValue;
7159   ExprObjectKind OK = OK_Ordinary;
7160   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
7161   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
7162                                              VK, OK, QuestionLoc);
7163   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
7164       RHS.isInvalid())
7165     return ExprError();
7166 
7167   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
7168                                 RHS.get());
7169 
7170   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
7171 
7172   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
7173                                          Context);
7174 
7175   if (!commonExpr)
7176     return new (Context)
7177         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
7178                             RHS.get(), result, VK, OK);
7179 
7180   return new (Context) BinaryConditionalOperator(
7181       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
7182       ColonLoc, result, VK, OK);
7183 }
7184 
7185 // checkPointerTypesForAssignment - This is a very tricky routine (despite
7186 // being closely modeled after the C99 spec:-). The odd characteristic of this
7187 // routine is it effectively iqnores the qualifiers on the top level pointee.
7188 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
7189 // FIXME: add a couple examples in this comment.
7190 static Sema::AssignConvertType
7191 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
7192   assert(LHSType.isCanonical() && "LHS not canonicalized!");
7193   assert(RHSType.isCanonical() && "RHS not canonicalized!");
7194 
7195   // get the "pointed to" type (ignoring qualifiers at the top level)
7196   const Type *lhptee, *rhptee;
7197   Qualifiers lhq, rhq;
7198   std::tie(lhptee, lhq) =
7199       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
7200   std::tie(rhptee, rhq) =
7201       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
7202 
7203   Sema::AssignConvertType ConvTy = Sema::Compatible;
7204 
7205   // C99 6.5.16.1p1: This following citation is common to constraints
7206   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
7207   // qualifiers of the type *pointed to* by the right;
7208 
7209   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
7210   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
7211       lhq.compatiblyIncludesObjCLifetime(rhq)) {
7212     // Ignore lifetime for further calculation.
7213     lhq.removeObjCLifetime();
7214     rhq.removeObjCLifetime();
7215   }
7216 
7217   if (!lhq.compatiblyIncludes(rhq)) {
7218     // Treat address-space mismatches as fatal.  TODO: address subspaces
7219     if (!lhq.isAddressSpaceSupersetOf(rhq))
7220       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
7221 
7222     // It's okay to add or remove GC or lifetime qualifiers when converting to
7223     // and from void*.
7224     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
7225                         .compatiblyIncludes(
7226                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
7227              && (lhptee->isVoidType() || rhptee->isVoidType()))
7228       ; // keep old
7229 
7230     // Treat lifetime mismatches as fatal.
7231     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
7232       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
7233 
7234     // For GCC/MS compatibility, other qualifier mismatches are treated
7235     // as still compatible in C.
7236     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
7237   }
7238 
7239   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
7240   // incomplete type and the other is a pointer to a qualified or unqualified
7241   // version of void...
7242   if (lhptee->isVoidType()) {
7243     if (rhptee->isIncompleteOrObjectType())
7244       return ConvTy;
7245 
7246     // As an extension, we allow cast to/from void* to function pointer.
7247     assert(rhptee->isFunctionType());
7248     return Sema::FunctionVoidPointer;
7249   }
7250 
7251   if (rhptee->isVoidType()) {
7252     if (lhptee->isIncompleteOrObjectType())
7253       return ConvTy;
7254 
7255     // As an extension, we allow cast to/from void* to function pointer.
7256     assert(lhptee->isFunctionType());
7257     return Sema::FunctionVoidPointer;
7258   }
7259 
7260   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
7261   // unqualified versions of compatible types, ...
7262   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
7263   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
7264     // Check if the pointee types are compatible ignoring the sign.
7265     // We explicitly check for char so that we catch "char" vs
7266     // "unsigned char" on systems where "char" is unsigned.
7267     if (lhptee->isCharType())
7268       ltrans = S.Context.UnsignedCharTy;
7269     else if (lhptee->hasSignedIntegerRepresentation())
7270       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
7271 
7272     if (rhptee->isCharType())
7273       rtrans = S.Context.UnsignedCharTy;
7274     else if (rhptee->hasSignedIntegerRepresentation())
7275       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
7276 
7277     if (ltrans == rtrans) {
7278       // Types are compatible ignoring the sign. Qualifier incompatibility
7279       // takes priority over sign incompatibility because the sign
7280       // warning can be disabled.
7281       if (ConvTy != Sema::Compatible)
7282         return ConvTy;
7283 
7284       return Sema::IncompatiblePointerSign;
7285     }
7286 
7287     // If we are a multi-level pointer, it's possible that our issue is simply
7288     // one of qualification - e.g. char ** -> const char ** is not allowed. If
7289     // the eventual target type is the same and the pointers have the same
7290     // level of indirection, this must be the issue.
7291     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
7292       do {
7293         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
7294         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
7295       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
7296 
7297       if (lhptee == rhptee)
7298         return Sema::IncompatibleNestedPointerQualifiers;
7299     }
7300 
7301     // General pointer incompatibility takes priority over qualifiers.
7302     return Sema::IncompatiblePointer;
7303   }
7304   if (!S.getLangOpts().CPlusPlus &&
7305       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
7306     return Sema::IncompatiblePointer;
7307   return ConvTy;
7308 }
7309 
7310 /// checkBlockPointerTypesForAssignment - This routine determines whether two
7311 /// block pointer types are compatible or whether a block and normal pointer
7312 /// are compatible. It is more restrict than comparing two function pointer
7313 // types.
7314 static Sema::AssignConvertType
7315 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
7316                                     QualType RHSType) {
7317   assert(LHSType.isCanonical() && "LHS not canonicalized!");
7318   assert(RHSType.isCanonical() && "RHS not canonicalized!");
7319 
7320   QualType lhptee, rhptee;
7321 
7322   // get the "pointed to" type (ignoring qualifiers at the top level)
7323   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
7324   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
7325 
7326   // In C++, the types have to match exactly.
7327   if (S.getLangOpts().CPlusPlus)
7328     return Sema::IncompatibleBlockPointer;
7329 
7330   Sema::AssignConvertType ConvTy = Sema::Compatible;
7331 
7332   // For blocks we enforce that qualifiers are identical.
7333   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
7334     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
7335 
7336   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
7337     return Sema::IncompatibleBlockPointer;
7338 
7339   return ConvTy;
7340 }
7341 
7342 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
7343 /// for assignment compatibility.
7344 static Sema::AssignConvertType
7345 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
7346                                    QualType RHSType) {
7347   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
7348   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
7349 
7350   if (LHSType->isObjCBuiltinType()) {
7351     // Class is not compatible with ObjC object pointers.
7352     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
7353         !RHSType->isObjCQualifiedClassType())
7354       return Sema::IncompatiblePointer;
7355     return Sema::Compatible;
7356   }
7357   if (RHSType->isObjCBuiltinType()) {
7358     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
7359         !LHSType->isObjCQualifiedClassType())
7360       return Sema::IncompatiblePointer;
7361     return Sema::Compatible;
7362   }
7363   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
7364   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
7365 
7366   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
7367       // make an exception for id<P>
7368       !LHSType->isObjCQualifiedIdType())
7369     return Sema::CompatiblePointerDiscardsQualifiers;
7370 
7371   if (S.Context.typesAreCompatible(LHSType, RHSType))
7372     return Sema::Compatible;
7373   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
7374     return Sema::IncompatibleObjCQualifiedId;
7375   return Sema::IncompatiblePointer;
7376 }
7377 
7378 Sema::AssignConvertType
7379 Sema::CheckAssignmentConstraints(SourceLocation Loc,
7380                                  QualType LHSType, QualType RHSType) {
7381   // Fake up an opaque expression.  We don't actually care about what
7382   // cast operations are required, so if CheckAssignmentConstraints
7383   // adds casts to this they'll be wasted, but fortunately that doesn't
7384   // usually happen on valid code.
7385   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
7386   ExprResult RHSPtr = &RHSExpr;
7387   CastKind K = CK_Invalid;
7388 
7389   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
7390 }
7391 
7392 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
7393 /// has code to accommodate several GCC extensions when type checking
7394 /// pointers. Here are some objectionable examples that GCC considers warnings:
7395 ///
7396 ///  int a, *pint;
7397 ///  short *pshort;
7398 ///  struct foo *pfoo;
7399 ///
7400 ///  pint = pshort; // warning: assignment from incompatible pointer type
7401 ///  a = pint; // warning: assignment makes integer from pointer without a cast
7402 ///  pint = a; // warning: assignment makes pointer from integer without a cast
7403 ///  pint = pfoo; // warning: assignment from incompatible pointer type
7404 ///
7405 /// As a result, the code for dealing with pointers is more complex than the
7406 /// C99 spec dictates.
7407 ///
7408 /// Sets 'Kind' for any result kind except Incompatible.
7409 Sema::AssignConvertType
7410 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
7411                                  CastKind &Kind, bool ConvertRHS) {
7412   QualType RHSType = RHS.get()->getType();
7413   QualType OrigLHSType = LHSType;
7414 
7415   // Get canonical types.  We're not formatting these types, just comparing
7416   // them.
7417   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
7418   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
7419 
7420   // Common case: no conversion required.
7421   if (LHSType == RHSType) {
7422     Kind = CK_NoOp;
7423     return Compatible;
7424   }
7425 
7426   // If we have an atomic type, try a non-atomic assignment, then just add an
7427   // atomic qualification step.
7428   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
7429     Sema::AssignConvertType result =
7430       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
7431     if (result != Compatible)
7432       return result;
7433     if (Kind != CK_NoOp && ConvertRHS)
7434       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
7435     Kind = CK_NonAtomicToAtomic;
7436     return Compatible;
7437   }
7438 
7439   // If the left-hand side is a reference type, then we are in a
7440   // (rare!) case where we've allowed the use of references in C,
7441   // e.g., as a parameter type in a built-in function. In this case,
7442   // just make sure that the type referenced is compatible with the
7443   // right-hand side type. The caller is responsible for adjusting
7444   // LHSType so that the resulting expression does not have reference
7445   // type.
7446   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
7447     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
7448       Kind = CK_LValueBitCast;
7449       return Compatible;
7450     }
7451     return Incompatible;
7452   }
7453 
7454   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
7455   // to the same ExtVector type.
7456   if (LHSType->isExtVectorType()) {
7457     if (RHSType->isExtVectorType())
7458       return Incompatible;
7459     if (RHSType->isArithmeticType()) {
7460       // CK_VectorSplat does T -> vector T, so first cast to the element type.
7461       if (ConvertRHS)
7462         RHS = prepareVectorSplat(LHSType, RHS.get());
7463       Kind = CK_VectorSplat;
7464       return Compatible;
7465     }
7466   }
7467 
7468   // Conversions to or from vector type.
7469   if (LHSType->isVectorType() || RHSType->isVectorType()) {
7470     if (LHSType->isVectorType() && RHSType->isVectorType()) {
7471       // Allow assignments of an AltiVec vector type to an equivalent GCC
7472       // vector type and vice versa
7473       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
7474         Kind = CK_BitCast;
7475         return Compatible;
7476       }
7477 
7478       // If we are allowing lax vector conversions, and LHS and RHS are both
7479       // vectors, the total size only needs to be the same. This is a bitcast;
7480       // no bits are changed but the result type is different.
7481       if (isLaxVectorConversion(RHSType, LHSType)) {
7482         Kind = CK_BitCast;
7483         return IncompatibleVectors;
7484       }
7485     }
7486 
7487     // When the RHS comes from another lax conversion (e.g. binops between
7488     // scalars and vectors) the result is canonicalized as a vector. When the
7489     // LHS is also a vector, the lax is allowed by the condition above. Handle
7490     // the case where LHS is a scalar.
7491     if (LHSType->isScalarType()) {
7492       const VectorType *VecType = RHSType->getAs<VectorType>();
7493       if (VecType && VecType->getNumElements() == 1 &&
7494           isLaxVectorConversion(RHSType, LHSType)) {
7495         ExprResult *VecExpr = &RHS;
7496         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
7497         Kind = CK_BitCast;
7498         return Compatible;
7499       }
7500     }
7501 
7502     return Incompatible;
7503   }
7504 
7505   // Diagnose attempts to convert between __float128 and long double where
7506   // such conversions currently can't be handled.
7507   if (unsupportedTypeConversion(*this, LHSType, RHSType))
7508     return Incompatible;
7509 
7510   // Arithmetic conversions.
7511   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
7512       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
7513     if (ConvertRHS)
7514       Kind = PrepareScalarCast(RHS, LHSType);
7515     return Compatible;
7516   }
7517 
7518   // Conversions to normal pointers.
7519   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
7520     // U* -> T*
7521     if (isa<PointerType>(RHSType)) {
7522       unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
7523       unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
7524       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
7525       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
7526     }
7527 
7528     // int -> T*
7529     if (RHSType->isIntegerType()) {
7530       Kind = CK_IntegralToPointer; // FIXME: null?
7531       return IntToPointer;
7532     }
7533 
7534     // C pointers are not compatible with ObjC object pointers,
7535     // with two exceptions:
7536     if (isa<ObjCObjectPointerType>(RHSType)) {
7537       //  - conversions to void*
7538       if (LHSPointer->getPointeeType()->isVoidType()) {
7539         Kind = CK_BitCast;
7540         return Compatible;
7541       }
7542 
7543       //  - conversions from 'Class' to the redefinition type
7544       if (RHSType->isObjCClassType() &&
7545           Context.hasSameType(LHSType,
7546                               Context.getObjCClassRedefinitionType())) {
7547         Kind = CK_BitCast;
7548         return Compatible;
7549       }
7550 
7551       Kind = CK_BitCast;
7552       return IncompatiblePointer;
7553     }
7554 
7555     // U^ -> void*
7556     if (RHSType->getAs<BlockPointerType>()) {
7557       if (LHSPointer->getPointeeType()->isVoidType()) {
7558         Kind = CK_BitCast;
7559         return Compatible;
7560       }
7561     }
7562 
7563     return Incompatible;
7564   }
7565 
7566   // Conversions to block pointers.
7567   if (isa<BlockPointerType>(LHSType)) {
7568     // U^ -> T^
7569     if (RHSType->isBlockPointerType()) {
7570       Kind = CK_BitCast;
7571       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
7572     }
7573 
7574     // int or null -> T^
7575     if (RHSType->isIntegerType()) {
7576       Kind = CK_IntegralToPointer; // FIXME: null
7577       return IntToBlockPointer;
7578     }
7579 
7580     // id -> T^
7581     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
7582       Kind = CK_AnyPointerToBlockPointerCast;
7583       return Compatible;
7584     }
7585 
7586     // void* -> T^
7587     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
7588       if (RHSPT->getPointeeType()->isVoidType()) {
7589         Kind = CK_AnyPointerToBlockPointerCast;
7590         return Compatible;
7591       }
7592 
7593     return Incompatible;
7594   }
7595 
7596   // Conversions to Objective-C pointers.
7597   if (isa<ObjCObjectPointerType>(LHSType)) {
7598     // A* -> B*
7599     if (RHSType->isObjCObjectPointerType()) {
7600       Kind = CK_BitCast;
7601       Sema::AssignConvertType result =
7602         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
7603       if (getLangOpts().ObjCAutoRefCount &&
7604           result == Compatible &&
7605           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
7606         result = IncompatibleObjCWeakRef;
7607       return result;
7608     }
7609 
7610     // int or null -> A*
7611     if (RHSType->isIntegerType()) {
7612       Kind = CK_IntegralToPointer; // FIXME: null
7613       return IntToPointer;
7614     }
7615 
7616     // In general, C pointers are not compatible with ObjC object pointers,
7617     // with two exceptions:
7618     if (isa<PointerType>(RHSType)) {
7619       Kind = CK_CPointerToObjCPointerCast;
7620 
7621       //  - conversions from 'void*'
7622       if (RHSType->isVoidPointerType()) {
7623         return Compatible;
7624       }
7625 
7626       //  - conversions to 'Class' from its redefinition type
7627       if (LHSType->isObjCClassType() &&
7628           Context.hasSameType(RHSType,
7629                               Context.getObjCClassRedefinitionType())) {
7630         return Compatible;
7631       }
7632 
7633       return IncompatiblePointer;
7634     }
7635 
7636     // Only under strict condition T^ is compatible with an Objective-C pointer.
7637     if (RHSType->isBlockPointerType() &&
7638         LHSType->isBlockCompatibleObjCPointerType(Context)) {
7639       if (ConvertRHS)
7640         maybeExtendBlockObject(RHS);
7641       Kind = CK_BlockPointerToObjCPointerCast;
7642       return Compatible;
7643     }
7644 
7645     return Incompatible;
7646   }
7647 
7648   // Conversions from pointers that are not covered by the above.
7649   if (isa<PointerType>(RHSType)) {
7650     // T* -> _Bool
7651     if (LHSType == Context.BoolTy) {
7652       Kind = CK_PointerToBoolean;
7653       return Compatible;
7654     }
7655 
7656     // T* -> int
7657     if (LHSType->isIntegerType()) {
7658       Kind = CK_PointerToIntegral;
7659       return PointerToInt;
7660     }
7661 
7662     return Incompatible;
7663   }
7664 
7665   // Conversions from Objective-C pointers that are not covered by the above.
7666   if (isa<ObjCObjectPointerType>(RHSType)) {
7667     // T* -> _Bool
7668     if (LHSType == Context.BoolTy) {
7669       Kind = CK_PointerToBoolean;
7670       return Compatible;
7671     }
7672 
7673     // T* -> int
7674     if (LHSType->isIntegerType()) {
7675       Kind = CK_PointerToIntegral;
7676       return PointerToInt;
7677     }
7678 
7679     return Incompatible;
7680   }
7681 
7682   // struct A -> struct B
7683   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
7684     if (Context.typesAreCompatible(LHSType, RHSType)) {
7685       Kind = CK_NoOp;
7686       return Compatible;
7687     }
7688   }
7689 
7690   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
7691     Kind = CK_IntToOCLSampler;
7692     return Compatible;
7693   }
7694 
7695   return Incompatible;
7696 }
7697 
7698 /// \brief Constructs a transparent union from an expression that is
7699 /// used to initialize the transparent union.
7700 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
7701                                       ExprResult &EResult, QualType UnionType,
7702                                       FieldDecl *Field) {
7703   // Build an initializer list that designates the appropriate member
7704   // of the transparent union.
7705   Expr *E = EResult.get();
7706   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
7707                                                    E, SourceLocation());
7708   Initializer->setType(UnionType);
7709   Initializer->setInitializedFieldInUnion(Field);
7710 
7711   // Build a compound literal constructing a value of the transparent
7712   // union type from this initializer list.
7713   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
7714   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
7715                                         VK_RValue, Initializer, false);
7716 }
7717 
7718 Sema::AssignConvertType
7719 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
7720                                                ExprResult &RHS) {
7721   QualType RHSType = RHS.get()->getType();
7722 
7723   // If the ArgType is a Union type, we want to handle a potential
7724   // transparent_union GCC extension.
7725   const RecordType *UT = ArgType->getAsUnionType();
7726   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
7727     return Incompatible;
7728 
7729   // The field to initialize within the transparent union.
7730   RecordDecl *UD = UT->getDecl();
7731   FieldDecl *InitField = nullptr;
7732   // It's compatible if the expression matches any of the fields.
7733   for (auto *it : UD->fields()) {
7734     if (it->getType()->isPointerType()) {
7735       // If the transparent union contains a pointer type, we allow:
7736       // 1) void pointer
7737       // 2) null pointer constant
7738       if (RHSType->isPointerType())
7739         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
7740           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
7741           InitField = it;
7742           break;
7743         }
7744 
7745       if (RHS.get()->isNullPointerConstant(Context,
7746                                            Expr::NPC_ValueDependentIsNull)) {
7747         RHS = ImpCastExprToType(RHS.get(), it->getType(),
7748                                 CK_NullToPointer);
7749         InitField = it;
7750         break;
7751       }
7752     }
7753 
7754     CastKind Kind = CK_Invalid;
7755     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
7756           == Compatible) {
7757       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
7758       InitField = it;
7759       break;
7760     }
7761   }
7762 
7763   if (!InitField)
7764     return Incompatible;
7765 
7766   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
7767   return Compatible;
7768 }
7769 
7770 Sema::AssignConvertType
7771 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
7772                                        bool Diagnose,
7773                                        bool DiagnoseCFAudited,
7774                                        bool ConvertRHS) {
7775   // We need to be able to tell the caller whether we diagnosed a problem, if
7776   // they ask us to issue diagnostics.
7777   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
7778 
7779   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
7780   // we can't avoid *all* modifications at the moment, so we need some somewhere
7781   // to put the updated value.
7782   ExprResult LocalRHS = CallerRHS;
7783   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
7784 
7785   if (getLangOpts().CPlusPlus) {
7786     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
7787       // C++ 5.17p3: If the left operand is not of class type, the
7788       // expression is implicitly converted (C++ 4) to the
7789       // cv-unqualified type of the left operand.
7790       QualType RHSType = RHS.get()->getType();
7791       if (Diagnose) {
7792         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7793                                         AA_Assigning);
7794       } else {
7795         ImplicitConversionSequence ICS =
7796             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7797                                   /*SuppressUserConversions=*/false,
7798                                   /*AllowExplicit=*/false,
7799                                   /*InOverloadResolution=*/false,
7800                                   /*CStyle=*/false,
7801                                   /*AllowObjCWritebackConversion=*/false);
7802         if (ICS.isFailure())
7803           return Incompatible;
7804         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7805                                         ICS, AA_Assigning);
7806       }
7807       if (RHS.isInvalid())
7808         return Incompatible;
7809       Sema::AssignConvertType result = Compatible;
7810       if (getLangOpts().ObjCAutoRefCount &&
7811           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
7812         result = IncompatibleObjCWeakRef;
7813       return result;
7814     }
7815 
7816     // FIXME: Currently, we fall through and treat C++ classes like C
7817     // structures.
7818     // FIXME: We also fall through for atomics; not sure what should
7819     // happen there, though.
7820   } else if (RHS.get()->getType() == Context.OverloadTy) {
7821     // As a set of extensions to C, we support overloading on functions. These
7822     // functions need to be resolved here.
7823     DeclAccessPair DAP;
7824     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
7825             RHS.get(), LHSType, /*Complain=*/false, DAP))
7826       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
7827     else
7828       return Incompatible;
7829   }
7830 
7831   // C99 6.5.16.1p1: the left operand is a pointer and the right is
7832   // a null pointer constant.
7833   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
7834        LHSType->isBlockPointerType()) &&
7835       RHS.get()->isNullPointerConstant(Context,
7836                                        Expr::NPC_ValueDependentIsNull)) {
7837     if (Diagnose || ConvertRHS) {
7838       CastKind Kind;
7839       CXXCastPath Path;
7840       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
7841                              /*IgnoreBaseAccess=*/false, Diagnose);
7842       if (ConvertRHS)
7843         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
7844     }
7845     return Compatible;
7846   }
7847 
7848   // This check seems unnatural, however it is necessary to ensure the proper
7849   // conversion of functions/arrays. If the conversion were done for all
7850   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
7851   // expressions that suppress this implicit conversion (&, sizeof).
7852   //
7853   // Suppress this for references: C++ 8.5.3p5.
7854   if (!LHSType->isReferenceType()) {
7855     // FIXME: We potentially allocate here even if ConvertRHS is false.
7856     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
7857     if (RHS.isInvalid())
7858       return Incompatible;
7859   }
7860 
7861   Expr *PRE = RHS.get()->IgnoreParenCasts();
7862   if (Diagnose && isa<ObjCProtocolExpr>(PRE)) {
7863     ObjCProtocolDecl *PDecl = cast<ObjCProtocolExpr>(PRE)->getProtocol();
7864     if (PDecl && !PDecl->hasDefinition()) {
7865       Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
7866       Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
7867     }
7868   }
7869 
7870   CastKind Kind = CK_Invalid;
7871   Sema::AssignConvertType result =
7872     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
7873 
7874   // C99 6.5.16.1p2: The value of the right operand is converted to the
7875   // type of the assignment expression.
7876   // CheckAssignmentConstraints allows the left-hand side to be a reference,
7877   // so that we can use references in built-in functions even in C.
7878   // The getNonReferenceType() call makes sure that the resulting expression
7879   // does not have reference type.
7880   if (result != Incompatible && RHS.get()->getType() != LHSType) {
7881     QualType Ty = LHSType.getNonLValueExprType(Context);
7882     Expr *E = RHS.get();
7883 
7884     // Check for various Objective-C errors. If we are not reporting
7885     // diagnostics and just checking for errors, e.g., during overload
7886     // resolution, return Incompatible to indicate the failure.
7887     if (getLangOpts().ObjCAutoRefCount &&
7888         CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
7889                                Diagnose, DiagnoseCFAudited) != ACR_okay) {
7890       if (!Diagnose)
7891         return Incompatible;
7892     }
7893     if (getLangOpts().ObjC1 &&
7894         (CheckObjCBridgeRelatedConversions(E->getLocStart(), LHSType,
7895                                            E->getType(), E, Diagnose) ||
7896          ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
7897       if (!Diagnose)
7898         return Incompatible;
7899       // Replace the expression with a corrected version and continue so we
7900       // can find further errors.
7901       RHS = E;
7902       return Compatible;
7903     }
7904 
7905     if (ConvertRHS)
7906       RHS = ImpCastExprToType(E, Ty, Kind);
7907   }
7908   return result;
7909 }
7910 
7911 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
7912                                ExprResult &RHS) {
7913   Diag(Loc, diag::err_typecheck_invalid_operands)
7914     << LHS.get()->getType() << RHS.get()->getType()
7915     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7916   return QualType();
7917 }
7918 
7919 /// Try to convert a value of non-vector type to a vector type by converting
7920 /// the type to the element type of the vector and then performing a splat.
7921 /// If the language is OpenCL, we only use conversions that promote scalar
7922 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
7923 /// for float->int.
7924 ///
7925 /// \param scalar - if non-null, actually perform the conversions
7926 /// \return true if the operation fails (but without diagnosing the failure)
7927 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
7928                                      QualType scalarTy,
7929                                      QualType vectorEltTy,
7930                                      QualType vectorTy) {
7931   // The conversion to apply to the scalar before splatting it,
7932   // if necessary.
7933   CastKind scalarCast = CK_Invalid;
7934 
7935   if (vectorEltTy->isIntegralType(S.Context)) {
7936     if (!scalarTy->isIntegralType(S.Context))
7937       return true;
7938     if (S.getLangOpts().OpenCL &&
7939         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
7940       return true;
7941     scalarCast = CK_IntegralCast;
7942   } else if (vectorEltTy->isRealFloatingType()) {
7943     if (scalarTy->isRealFloatingType()) {
7944       if (S.getLangOpts().OpenCL &&
7945           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
7946         return true;
7947       scalarCast = CK_FloatingCast;
7948     }
7949     else if (scalarTy->isIntegralType(S.Context))
7950       scalarCast = CK_IntegralToFloating;
7951     else
7952       return true;
7953   } else {
7954     return true;
7955   }
7956 
7957   // Adjust scalar if desired.
7958   if (scalar) {
7959     if (scalarCast != CK_Invalid)
7960       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
7961     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
7962   }
7963   return false;
7964 }
7965 
7966 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
7967                                    SourceLocation Loc, bool IsCompAssign,
7968                                    bool AllowBothBool,
7969                                    bool AllowBoolConversions) {
7970   if (!IsCompAssign) {
7971     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
7972     if (LHS.isInvalid())
7973       return QualType();
7974   }
7975   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
7976   if (RHS.isInvalid())
7977     return QualType();
7978 
7979   // For conversion purposes, we ignore any qualifiers.
7980   // For example, "const float" and "float" are equivalent.
7981   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
7982   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
7983 
7984   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
7985   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
7986   assert(LHSVecType || RHSVecType);
7987 
7988   // AltiVec-style "vector bool op vector bool" combinations are allowed
7989   // for some operators but not others.
7990   if (!AllowBothBool &&
7991       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
7992       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
7993     return InvalidOperands(Loc, LHS, RHS);
7994 
7995   // If the vector types are identical, return.
7996   if (Context.hasSameType(LHSType, RHSType))
7997     return LHSType;
7998 
7999   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
8000   if (LHSVecType && RHSVecType &&
8001       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
8002     if (isa<ExtVectorType>(LHSVecType)) {
8003       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8004       return LHSType;
8005     }
8006 
8007     if (!IsCompAssign)
8008       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8009     return RHSType;
8010   }
8011 
8012   // AllowBoolConversions says that bool and non-bool AltiVec vectors
8013   // can be mixed, with the result being the non-bool type.  The non-bool
8014   // operand must have integer element type.
8015   if (AllowBoolConversions && LHSVecType && RHSVecType &&
8016       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
8017       (Context.getTypeSize(LHSVecType->getElementType()) ==
8018        Context.getTypeSize(RHSVecType->getElementType()))) {
8019     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
8020         LHSVecType->getElementType()->isIntegerType() &&
8021         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
8022       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8023       return LHSType;
8024     }
8025     if (!IsCompAssign &&
8026         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
8027         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
8028         RHSVecType->getElementType()->isIntegerType()) {
8029       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8030       return RHSType;
8031     }
8032   }
8033 
8034   // If there's an ext-vector type and a scalar, try to convert the scalar to
8035   // the vector element type and splat.
8036   // FIXME: this should also work for regular vector types as supported in GCC.
8037   if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
8038     if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
8039                                   LHSVecType->getElementType(), LHSType))
8040       return LHSType;
8041   }
8042   if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
8043     if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
8044                                   LHSType, RHSVecType->getElementType(),
8045                                   RHSType))
8046       return RHSType;
8047   }
8048 
8049   // FIXME: The code below also handles convertion between vectors and
8050   // non-scalars, we should break this down into fine grained specific checks
8051   // and emit proper diagnostics.
8052   QualType VecType = LHSVecType ? LHSType : RHSType;
8053   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
8054   QualType OtherType = LHSVecType ? RHSType : LHSType;
8055   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
8056   if (isLaxVectorConversion(OtherType, VecType)) {
8057     // If we're allowing lax vector conversions, only the total (data) size
8058     // needs to be the same. For non compound assignment, if one of the types is
8059     // scalar, the result is always the vector type.
8060     if (!IsCompAssign) {
8061       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
8062       return VecType;
8063     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
8064     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
8065     // type. Note that this is already done by non-compound assignments in
8066     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
8067     // <1 x T> -> T. The result is also a vector type.
8068     } else if (OtherType->isExtVectorType() ||
8069                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
8070       ExprResult *RHSExpr = &RHS;
8071       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
8072       return VecType;
8073     }
8074   }
8075 
8076   // Okay, the expression is invalid.
8077 
8078   // If there's a non-vector, non-real operand, diagnose that.
8079   if ((!RHSVecType && !RHSType->isRealType()) ||
8080       (!LHSVecType && !LHSType->isRealType())) {
8081     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
8082       << LHSType << RHSType
8083       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8084     return QualType();
8085   }
8086 
8087   // OpenCL V1.1 6.2.6.p1:
8088   // If the operands are of more than one vector type, then an error shall
8089   // occur. Implicit conversions between vector types are not permitted, per
8090   // section 6.2.1.
8091   if (getLangOpts().OpenCL &&
8092       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
8093       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
8094     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
8095                                                            << RHSType;
8096     return QualType();
8097   }
8098 
8099   // Otherwise, use the generic diagnostic.
8100   Diag(Loc, diag::err_typecheck_vector_not_convertable)
8101     << LHSType << RHSType
8102     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8103   return QualType();
8104 }
8105 
8106 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
8107 // expression.  These are mainly cases where the null pointer is used as an
8108 // integer instead of a pointer.
8109 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
8110                                 SourceLocation Loc, bool IsCompare) {
8111   // The canonical way to check for a GNU null is with isNullPointerConstant,
8112   // but we use a bit of a hack here for speed; this is a relatively
8113   // hot path, and isNullPointerConstant is slow.
8114   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
8115   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
8116 
8117   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
8118 
8119   // Avoid analyzing cases where the result will either be invalid (and
8120   // diagnosed as such) or entirely valid and not something to warn about.
8121   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
8122       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
8123     return;
8124 
8125   // Comparison operations would not make sense with a null pointer no matter
8126   // what the other expression is.
8127   if (!IsCompare) {
8128     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
8129         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
8130         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
8131     return;
8132   }
8133 
8134   // The rest of the operations only make sense with a null pointer
8135   // if the other expression is a pointer.
8136   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
8137       NonNullType->canDecayToPointerType())
8138     return;
8139 
8140   S.Diag(Loc, diag::warn_null_in_comparison_operation)
8141       << LHSNull /* LHS is NULL */ << NonNullType
8142       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8143 }
8144 
8145 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
8146                                                ExprResult &RHS,
8147                                                SourceLocation Loc, bool IsDiv) {
8148   // Check for division/remainder by zero.
8149   llvm::APSInt RHSValue;
8150   if (!RHS.get()->isValueDependent() &&
8151       RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue == 0)
8152     S.DiagRuntimeBehavior(Loc, RHS.get(),
8153                           S.PDiag(diag::warn_remainder_division_by_zero)
8154                             << IsDiv << RHS.get()->getSourceRange());
8155 }
8156 
8157 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
8158                                            SourceLocation Loc,
8159                                            bool IsCompAssign, bool IsDiv) {
8160   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8161 
8162   if (LHS.get()->getType()->isVectorType() ||
8163       RHS.get()->getType()->isVectorType())
8164     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
8165                                /*AllowBothBool*/getLangOpts().AltiVec,
8166                                /*AllowBoolConversions*/false);
8167 
8168   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
8169   if (LHS.isInvalid() || RHS.isInvalid())
8170     return QualType();
8171 
8172 
8173   if (compType.isNull() || !compType->isArithmeticType())
8174     return InvalidOperands(Loc, LHS, RHS);
8175   if (IsDiv)
8176     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
8177   return compType;
8178 }
8179 
8180 QualType Sema::CheckRemainderOperands(
8181   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
8182   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8183 
8184   if (LHS.get()->getType()->isVectorType() ||
8185       RHS.get()->getType()->isVectorType()) {
8186     if (LHS.get()->getType()->hasIntegerRepresentation() &&
8187         RHS.get()->getType()->hasIntegerRepresentation())
8188       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
8189                                  /*AllowBothBool*/getLangOpts().AltiVec,
8190                                  /*AllowBoolConversions*/false);
8191     return InvalidOperands(Loc, LHS, RHS);
8192   }
8193 
8194   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
8195   if (LHS.isInvalid() || RHS.isInvalid())
8196     return QualType();
8197 
8198   if (compType.isNull() || !compType->isIntegerType())
8199     return InvalidOperands(Loc, LHS, RHS);
8200   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
8201   return compType;
8202 }
8203 
8204 /// \brief Diagnose invalid arithmetic on two void pointers.
8205 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
8206                                                 Expr *LHSExpr, Expr *RHSExpr) {
8207   S.Diag(Loc, S.getLangOpts().CPlusPlus
8208                 ? diag::err_typecheck_pointer_arith_void_type
8209                 : diag::ext_gnu_void_ptr)
8210     << 1 /* two pointers */ << LHSExpr->getSourceRange()
8211                             << RHSExpr->getSourceRange();
8212 }
8213 
8214 /// \brief Diagnose invalid arithmetic on a void pointer.
8215 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
8216                                             Expr *Pointer) {
8217   S.Diag(Loc, S.getLangOpts().CPlusPlus
8218                 ? diag::err_typecheck_pointer_arith_void_type
8219                 : diag::ext_gnu_void_ptr)
8220     << 0 /* one pointer */ << Pointer->getSourceRange();
8221 }
8222 
8223 /// \brief Diagnose invalid arithmetic on two function pointers.
8224 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
8225                                                     Expr *LHS, Expr *RHS) {
8226   assert(LHS->getType()->isAnyPointerType());
8227   assert(RHS->getType()->isAnyPointerType());
8228   S.Diag(Loc, S.getLangOpts().CPlusPlus
8229                 ? diag::err_typecheck_pointer_arith_function_type
8230                 : diag::ext_gnu_ptr_func_arith)
8231     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
8232     // We only show the second type if it differs from the first.
8233     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
8234                                                    RHS->getType())
8235     << RHS->getType()->getPointeeType()
8236     << LHS->getSourceRange() << RHS->getSourceRange();
8237 }
8238 
8239 /// \brief Diagnose invalid arithmetic on a function pointer.
8240 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
8241                                                 Expr *Pointer) {
8242   assert(Pointer->getType()->isAnyPointerType());
8243   S.Diag(Loc, S.getLangOpts().CPlusPlus
8244                 ? diag::err_typecheck_pointer_arith_function_type
8245                 : diag::ext_gnu_ptr_func_arith)
8246     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
8247     << 0 /* one pointer, so only one type */
8248     << Pointer->getSourceRange();
8249 }
8250 
8251 /// \brief Emit error if Operand is incomplete pointer type
8252 ///
8253 /// \returns True if pointer has incomplete type
8254 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
8255                                                  Expr *Operand) {
8256   QualType ResType = Operand->getType();
8257   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8258     ResType = ResAtomicType->getValueType();
8259 
8260   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
8261   QualType PointeeTy = ResType->getPointeeType();
8262   return S.RequireCompleteType(Loc, PointeeTy,
8263                                diag::err_typecheck_arithmetic_incomplete_type,
8264                                PointeeTy, Operand->getSourceRange());
8265 }
8266 
8267 /// \brief Check the validity of an arithmetic pointer operand.
8268 ///
8269 /// If the operand has pointer type, this code will check for pointer types
8270 /// which are invalid in arithmetic operations. These will be diagnosed
8271 /// appropriately, including whether or not the use is supported as an
8272 /// extension.
8273 ///
8274 /// \returns True when the operand is valid to use (even if as an extension).
8275 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
8276                                             Expr *Operand) {
8277   QualType ResType = Operand->getType();
8278   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8279     ResType = ResAtomicType->getValueType();
8280 
8281   if (!ResType->isAnyPointerType()) return true;
8282 
8283   QualType PointeeTy = ResType->getPointeeType();
8284   if (PointeeTy->isVoidType()) {
8285     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
8286     return !S.getLangOpts().CPlusPlus;
8287   }
8288   if (PointeeTy->isFunctionType()) {
8289     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
8290     return !S.getLangOpts().CPlusPlus;
8291   }
8292 
8293   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
8294 
8295   return true;
8296 }
8297 
8298 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
8299 /// operands.
8300 ///
8301 /// This routine will diagnose any invalid arithmetic on pointer operands much
8302 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
8303 /// for emitting a single diagnostic even for operations where both LHS and RHS
8304 /// are (potentially problematic) pointers.
8305 ///
8306 /// \returns True when the operand is valid to use (even if as an extension).
8307 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
8308                                                 Expr *LHSExpr, Expr *RHSExpr) {
8309   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
8310   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
8311   if (!isLHSPointer && !isRHSPointer) return true;
8312 
8313   QualType LHSPointeeTy, RHSPointeeTy;
8314   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
8315   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
8316 
8317   // if both are pointers check if operation is valid wrt address spaces
8318   if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
8319     const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
8320     const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
8321     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
8322       S.Diag(Loc,
8323              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8324           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
8325           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8326       return false;
8327     }
8328   }
8329 
8330   // Check for arithmetic on pointers to incomplete types.
8331   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
8332   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
8333   if (isLHSVoidPtr || isRHSVoidPtr) {
8334     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
8335     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
8336     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
8337 
8338     return !S.getLangOpts().CPlusPlus;
8339   }
8340 
8341   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
8342   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
8343   if (isLHSFuncPtr || isRHSFuncPtr) {
8344     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
8345     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
8346                                                                 RHSExpr);
8347     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
8348 
8349     return !S.getLangOpts().CPlusPlus;
8350   }
8351 
8352   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
8353     return false;
8354   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
8355     return false;
8356 
8357   return true;
8358 }
8359 
8360 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
8361 /// literal.
8362 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
8363                                   Expr *LHSExpr, Expr *RHSExpr) {
8364   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
8365   Expr* IndexExpr = RHSExpr;
8366   if (!StrExpr) {
8367     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
8368     IndexExpr = LHSExpr;
8369   }
8370 
8371   bool IsStringPlusInt = StrExpr &&
8372       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
8373   if (!IsStringPlusInt || IndexExpr->isValueDependent())
8374     return;
8375 
8376   llvm::APSInt index;
8377   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
8378     unsigned StrLenWithNull = StrExpr->getLength() + 1;
8379     if (index.isNonNegative() &&
8380         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
8381                               index.isUnsigned()))
8382       return;
8383   }
8384 
8385   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
8386   Self.Diag(OpLoc, diag::warn_string_plus_int)
8387       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
8388 
8389   // Only print a fixit for "str" + int, not for int + "str".
8390   if (IndexExpr == RHSExpr) {
8391     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
8392     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
8393         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
8394         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
8395         << FixItHint::CreateInsertion(EndLoc, "]");
8396   } else
8397     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
8398 }
8399 
8400 /// \brief Emit a warning when adding a char literal to a string.
8401 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
8402                                    Expr *LHSExpr, Expr *RHSExpr) {
8403   const Expr *StringRefExpr = LHSExpr;
8404   const CharacterLiteral *CharExpr =
8405       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
8406 
8407   if (!CharExpr) {
8408     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
8409     StringRefExpr = RHSExpr;
8410   }
8411 
8412   if (!CharExpr || !StringRefExpr)
8413     return;
8414 
8415   const QualType StringType = StringRefExpr->getType();
8416 
8417   // Return if not a PointerType.
8418   if (!StringType->isAnyPointerType())
8419     return;
8420 
8421   // Return if not a CharacterType.
8422   if (!StringType->getPointeeType()->isAnyCharacterType())
8423     return;
8424 
8425   ASTContext &Ctx = Self.getASTContext();
8426   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
8427 
8428   const QualType CharType = CharExpr->getType();
8429   if (!CharType->isAnyCharacterType() &&
8430       CharType->isIntegerType() &&
8431       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
8432     Self.Diag(OpLoc, diag::warn_string_plus_char)
8433         << DiagRange << Ctx.CharTy;
8434   } else {
8435     Self.Diag(OpLoc, diag::warn_string_plus_char)
8436         << DiagRange << CharExpr->getType();
8437   }
8438 
8439   // Only print a fixit for str + char, not for char + str.
8440   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
8441     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
8442     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
8443         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
8444         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
8445         << FixItHint::CreateInsertion(EndLoc, "]");
8446   } else {
8447     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
8448   }
8449 }
8450 
8451 /// \brief Emit error when two pointers are incompatible.
8452 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
8453                                            Expr *LHSExpr, Expr *RHSExpr) {
8454   assert(LHSExpr->getType()->isAnyPointerType());
8455   assert(RHSExpr->getType()->isAnyPointerType());
8456   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
8457     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
8458     << RHSExpr->getSourceRange();
8459 }
8460 
8461 // C99 6.5.6
8462 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
8463                                      SourceLocation Loc, BinaryOperatorKind Opc,
8464                                      QualType* CompLHSTy) {
8465   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8466 
8467   if (LHS.get()->getType()->isVectorType() ||
8468       RHS.get()->getType()->isVectorType()) {
8469     QualType compType = CheckVectorOperands(
8470         LHS, RHS, Loc, CompLHSTy,
8471         /*AllowBothBool*/getLangOpts().AltiVec,
8472         /*AllowBoolConversions*/getLangOpts().ZVector);
8473     if (CompLHSTy) *CompLHSTy = compType;
8474     return compType;
8475   }
8476 
8477   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
8478   if (LHS.isInvalid() || RHS.isInvalid())
8479     return QualType();
8480 
8481   // Diagnose "string literal" '+' int and string '+' "char literal".
8482   if (Opc == BO_Add) {
8483     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
8484     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
8485   }
8486 
8487   // handle the common case first (both operands are arithmetic).
8488   if (!compType.isNull() && compType->isArithmeticType()) {
8489     if (CompLHSTy) *CompLHSTy = compType;
8490     return compType;
8491   }
8492 
8493   // Type-checking.  Ultimately the pointer's going to be in PExp;
8494   // note that we bias towards the LHS being the pointer.
8495   Expr *PExp = LHS.get(), *IExp = RHS.get();
8496 
8497   bool isObjCPointer;
8498   if (PExp->getType()->isPointerType()) {
8499     isObjCPointer = false;
8500   } else if (PExp->getType()->isObjCObjectPointerType()) {
8501     isObjCPointer = true;
8502   } else {
8503     std::swap(PExp, IExp);
8504     if (PExp->getType()->isPointerType()) {
8505       isObjCPointer = false;
8506     } else if (PExp->getType()->isObjCObjectPointerType()) {
8507       isObjCPointer = true;
8508     } else {
8509       return InvalidOperands(Loc, LHS, RHS);
8510     }
8511   }
8512   assert(PExp->getType()->isAnyPointerType());
8513 
8514   if (!IExp->getType()->isIntegerType())
8515     return InvalidOperands(Loc, LHS, RHS);
8516 
8517   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
8518     return QualType();
8519 
8520   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
8521     return QualType();
8522 
8523   // Check array bounds for pointer arithemtic
8524   CheckArrayAccess(PExp, IExp);
8525 
8526   if (CompLHSTy) {
8527     QualType LHSTy = Context.isPromotableBitField(LHS.get());
8528     if (LHSTy.isNull()) {
8529       LHSTy = LHS.get()->getType();
8530       if (LHSTy->isPromotableIntegerType())
8531         LHSTy = Context.getPromotedIntegerType(LHSTy);
8532     }
8533     *CompLHSTy = LHSTy;
8534   }
8535 
8536   return PExp->getType();
8537 }
8538 
8539 // C99 6.5.6
8540 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
8541                                         SourceLocation Loc,
8542                                         QualType* CompLHSTy) {
8543   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8544 
8545   if (LHS.get()->getType()->isVectorType() ||
8546       RHS.get()->getType()->isVectorType()) {
8547     QualType compType = CheckVectorOperands(
8548         LHS, RHS, Loc, CompLHSTy,
8549         /*AllowBothBool*/getLangOpts().AltiVec,
8550         /*AllowBoolConversions*/getLangOpts().ZVector);
8551     if (CompLHSTy) *CompLHSTy = compType;
8552     return compType;
8553   }
8554 
8555   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
8556   if (LHS.isInvalid() || RHS.isInvalid())
8557     return QualType();
8558 
8559   // Enforce type constraints: C99 6.5.6p3.
8560 
8561   // Handle the common case first (both operands are arithmetic).
8562   if (!compType.isNull() && compType->isArithmeticType()) {
8563     if (CompLHSTy) *CompLHSTy = compType;
8564     return compType;
8565   }
8566 
8567   // Either ptr - int   or   ptr - ptr.
8568   if (LHS.get()->getType()->isAnyPointerType()) {
8569     QualType lpointee = LHS.get()->getType()->getPointeeType();
8570 
8571     // Diagnose bad cases where we step over interface counts.
8572     if (LHS.get()->getType()->isObjCObjectPointerType() &&
8573         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
8574       return QualType();
8575 
8576     // The result type of a pointer-int computation is the pointer type.
8577     if (RHS.get()->getType()->isIntegerType()) {
8578       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
8579         return QualType();
8580 
8581       // Check array bounds for pointer arithemtic
8582       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
8583                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
8584 
8585       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8586       return LHS.get()->getType();
8587     }
8588 
8589     // Handle pointer-pointer subtractions.
8590     if (const PointerType *RHSPTy
8591           = RHS.get()->getType()->getAs<PointerType>()) {
8592       QualType rpointee = RHSPTy->getPointeeType();
8593 
8594       if (getLangOpts().CPlusPlus) {
8595         // Pointee types must be the same: C++ [expr.add]
8596         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
8597           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8598         }
8599       } else {
8600         // Pointee types must be compatible C99 6.5.6p3
8601         if (!Context.typesAreCompatible(
8602                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
8603                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
8604           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8605           return QualType();
8606         }
8607       }
8608 
8609       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
8610                                                LHS.get(), RHS.get()))
8611         return QualType();
8612 
8613       // The pointee type may have zero size.  As an extension, a structure or
8614       // union may have zero size or an array may have zero length.  In this
8615       // case subtraction does not make sense.
8616       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
8617         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
8618         if (ElementSize.isZero()) {
8619           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
8620             << rpointee.getUnqualifiedType()
8621             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8622         }
8623       }
8624 
8625       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8626       return Context.getPointerDiffType();
8627     }
8628   }
8629 
8630   return InvalidOperands(Loc, LHS, RHS);
8631 }
8632 
8633 static bool isScopedEnumerationType(QualType T) {
8634   if (const EnumType *ET = T->getAs<EnumType>())
8635     return ET->getDecl()->isScoped();
8636   return false;
8637 }
8638 
8639 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
8640                                    SourceLocation Loc, BinaryOperatorKind Opc,
8641                                    QualType LHSType) {
8642   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
8643   // so skip remaining warnings as we don't want to modify values within Sema.
8644   if (S.getLangOpts().OpenCL)
8645     return;
8646 
8647   llvm::APSInt Right;
8648   // Check right/shifter operand
8649   if (RHS.get()->isValueDependent() ||
8650       !RHS.get()->EvaluateAsInt(Right, S.Context))
8651     return;
8652 
8653   if (Right.isNegative()) {
8654     S.DiagRuntimeBehavior(Loc, RHS.get(),
8655                           S.PDiag(diag::warn_shift_negative)
8656                             << RHS.get()->getSourceRange());
8657     return;
8658   }
8659   llvm::APInt LeftBits(Right.getBitWidth(),
8660                        S.Context.getTypeSize(LHS.get()->getType()));
8661   if (Right.uge(LeftBits)) {
8662     S.DiagRuntimeBehavior(Loc, RHS.get(),
8663                           S.PDiag(diag::warn_shift_gt_typewidth)
8664                             << RHS.get()->getSourceRange());
8665     return;
8666   }
8667   if (Opc != BO_Shl)
8668     return;
8669 
8670   // When left shifting an ICE which is signed, we can check for overflow which
8671   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
8672   // integers have defined behavior modulo one more than the maximum value
8673   // representable in the result type, so never warn for those.
8674   llvm::APSInt Left;
8675   if (LHS.get()->isValueDependent() ||
8676       LHSType->hasUnsignedIntegerRepresentation() ||
8677       !LHS.get()->EvaluateAsInt(Left, S.Context))
8678     return;
8679 
8680   // If LHS does not have a signed type and non-negative value
8681   // then, the behavior is undefined. Warn about it.
8682   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined()) {
8683     S.DiagRuntimeBehavior(Loc, LHS.get(),
8684                           S.PDiag(diag::warn_shift_lhs_negative)
8685                             << LHS.get()->getSourceRange());
8686     return;
8687   }
8688 
8689   llvm::APInt ResultBits =
8690       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
8691   if (LeftBits.uge(ResultBits))
8692     return;
8693   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
8694   Result = Result.shl(Right);
8695 
8696   // Print the bit representation of the signed integer as an unsigned
8697   // hexadecimal number.
8698   SmallString<40> HexResult;
8699   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
8700 
8701   // If we are only missing a sign bit, this is less likely to result in actual
8702   // bugs -- if the result is cast back to an unsigned type, it will have the
8703   // expected value. Thus we place this behind a different warning that can be
8704   // turned off separately if needed.
8705   if (LeftBits == ResultBits - 1) {
8706     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
8707         << HexResult << LHSType
8708         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8709     return;
8710   }
8711 
8712   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
8713     << HexResult.str() << Result.getMinSignedBits() << LHSType
8714     << Left.getBitWidth() << LHS.get()->getSourceRange()
8715     << RHS.get()->getSourceRange();
8716 }
8717 
8718 /// \brief Return the resulting type when a vector is shifted
8719 ///        by a scalar or vector shift amount.
8720 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
8721                                  SourceLocation Loc, bool IsCompAssign) {
8722   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
8723   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
8724       !LHS.get()->getType()->isVectorType()) {
8725     S.Diag(Loc, diag::err_shift_rhs_only_vector)
8726       << RHS.get()->getType() << LHS.get()->getType()
8727       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8728     return QualType();
8729   }
8730 
8731   if (!IsCompAssign) {
8732     LHS = S.UsualUnaryConversions(LHS.get());
8733     if (LHS.isInvalid()) return QualType();
8734   }
8735 
8736   RHS = S.UsualUnaryConversions(RHS.get());
8737   if (RHS.isInvalid()) return QualType();
8738 
8739   QualType LHSType = LHS.get()->getType();
8740   // Note that LHS might be a scalar because the routine calls not only in
8741   // OpenCL case.
8742   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
8743   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
8744 
8745   // Note that RHS might not be a vector.
8746   QualType RHSType = RHS.get()->getType();
8747   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
8748   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
8749 
8750   // The operands need to be integers.
8751   if (!LHSEleType->isIntegerType()) {
8752     S.Diag(Loc, diag::err_typecheck_expect_int)
8753       << LHS.get()->getType() << LHS.get()->getSourceRange();
8754     return QualType();
8755   }
8756 
8757   if (!RHSEleType->isIntegerType()) {
8758     S.Diag(Loc, diag::err_typecheck_expect_int)
8759       << RHS.get()->getType() << RHS.get()->getSourceRange();
8760     return QualType();
8761   }
8762 
8763   if (!LHSVecTy) {
8764     assert(RHSVecTy);
8765     if (IsCompAssign)
8766       return RHSType;
8767     if (LHSEleType != RHSEleType) {
8768       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
8769       LHSEleType = RHSEleType;
8770     }
8771     QualType VecTy =
8772         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
8773     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
8774     LHSType = VecTy;
8775   } else if (RHSVecTy) {
8776     // OpenCL v1.1 s6.3.j says that for vector types, the operators
8777     // are applied component-wise. So if RHS is a vector, then ensure
8778     // that the number of elements is the same as LHS...
8779     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
8780       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
8781         << LHS.get()->getType() << RHS.get()->getType()
8782         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8783       return QualType();
8784     }
8785   } else {
8786     // ...else expand RHS to match the number of elements in LHS.
8787     QualType VecTy =
8788       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
8789     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
8790   }
8791 
8792   return LHSType;
8793 }
8794 
8795 // C99 6.5.7
8796 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
8797                                   SourceLocation Loc, BinaryOperatorKind Opc,
8798                                   bool IsCompAssign) {
8799   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8800 
8801   // Vector shifts promote their scalar inputs to vector type.
8802   if (LHS.get()->getType()->isVectorType() ||
8803       RHS.get()->getType()->isVectorType()) {
8804     if (LangOpts.ZVector) {
8805       // The shift operators for the z vector extensions work basically
8806       // like general shifts, except that neither the LHS nor the RHS is
8807       // allowed to be a "vector bool".
8808       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
8809         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
8810           return InvalidOperands(Loc, LHS, RHS);
8811       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
8812         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
8813           return InvalidOperands(Loc, LHS, RHS);
8814     }
8815     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
8816   }
8817 
8818   // Shifts don't perform usual arithmetic conversions, they just do integer
8819   // promotions on each operand. C99 6.5.7p3
8820 
8821   // For the LHS, do usual unary conversions, but then reset them away
8822   // if this is a compound assignment.
8823   ExprResult OldLHS = LHS;
8824   LHS = UsualUnaryConversions(LHS.get());
8825   if (LHS.isInvalid())
8826     return QualType();
8827   QualType LHSType = LHS.get()->getType();
8828   if (IsCompAssign) LHS = OldLHS;
8829 
8830   // The RHS is simpler.
8831   RHS = UsualUnaryConversions(RHS.get());
8832   if (RHS.isInvalid())
8833     return QualType();
8834   QualType RHSType = RHS.get()->getType();
8835 
8836   // C99 6.5.7p2: Each of the operands shall have integer type.
8837   if (!LHSType->hasIntegerRepresentation() ||
8838       !RHSType->hasIntegerRepresentation())
8839     return InvalidOperands(Loc, LHS, RHS);
8840 
8841   // C++0x: Don't allow scoped enums. FIXME: Use something better than
8842   // hasIntegerRepresentation() above instead of this.
8843   if (isScopedEnumerationType(LHSType) ||
8844       isScopedEnumerationType(RHSType)) {
8845     return InvalidOperands(Loc, LHS, RHS);
8846   }
8847   // Sanity-check shift operands
8848   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
8849 
8850   // "The type of the result is that of the promoted left operand."
8851   return LHSType;
8852 }
8853 
8854 static bool IsWithinTemplateSpecialization(Decl *D) {
8855   if (DeclContext *DC = D->getDeclContext()) {
8856     if (isa<ClassTemplateSpecializationDecl>(DC))
8857       return true;
8858     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
8859       return FD->isFunctionTemplateSpecialization();
8860   }
8861   return false;
8862 }
8863 
8864 /// If two different enums are compared, raise a warning.
8865 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
8866                                 Expr *RHS) {
8867   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
8868   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
8869 
8870   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
8871   if (!LHSEnumType)
8872     return;
8873   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
8874   if (!RHSEnumType)
8875     return;
8876 
8877   // Ignore anonymous enums.
8878   if (!LHSEnumType->getDecl()->getIdentifier())
8879     return;
8880   if (!RHSEnumType->getDecl()->getIdentifier())
8881     return;
8882 
8883   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
8884     return;
8885 
8886   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
8887       << LHSStrippedType << RHSStrippedType
8888       << LHS->getSourceRange() << RHS->getSourceRange();
8889 }
8890 
8891 /// \brief Diagnose bad pointer comparisons.
8892 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
8893                                               ExprResult &LHS, ExprResult &RHS,
8894                                               bool IsError) {
8895   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
8896                       : diag::ext_typecheck_comparison_of_distinct_pointers)
8897     << LHS.get()->getType() << RHS.get()->getType()
8898     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8899 }
8900 
8901 /// \brief Returns false if the pointers are converted to a composite type,
8902 /// true otherwise.
8903 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
8904                                            ExprResult &LHS, ExprResult &RHS) {
8905   // C++ [expr.rel]p2:
8906   //   [...] Pointer conversions (4.10) and qualification
8907   //   conversions (4.4) are performed on pointer operands (or on
8908   //   a pointer operand and a null pointer constant) to bring
8909   //   them to their composite pointer type. [...]
8910   //
8911   // C++ [expr.eq]p1 uses the same notion for (in)equality
8912   // comparisons of pointers.
8913 
8914   // C++ [expr.eq]p2:
8915   //   In addition, pointers to members can be compared, or a pointer to
8916   //   member and a null pointer constant. Pointer to member conversions
8917   //   (4.11) and qualification conversions (4.4) are performed to bring
8918   //   them to a common type. If one operand is a null pointer constant,
8919   //   the common type is the type of the other operand. Otherwise, the
8920   //   common type is a pointer to member type similar (4.4) to the type
8921   //   of one of the operands, with a cv-qualification signature (4.4)
8922   //   that is the union of the cv-qualification signatures of the operand
8923   //   types.
8924 
8925   QualType LHSType = LHS.get()->getType();
8926   QualType RHSType = RHS.get()->getType();
8927   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
8928          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
8929 
8930   bool NonStandardCompositeType = false;
8931   bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
8932   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
8933   if (T.isNull()) {
8934     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
8935     return true;
8936   }
8937 
8938   if (NonStandardCompositeType)
8939     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
8940       << LHSType << RHSType << T << LHS.get()->getSourceRange()
8941       << RHS.get()->getSourceRange();
8942 
8943   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
8944   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
8945   return false;
8946 }
8947 
8948 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
8949                                                     ExprResult &LHS,
8950                                                     ExprResult &RHS,
8951                                                     bool IsError) {
8952   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
8953                       : diag::ext_typecheck_comparison_of_fptr_to_void)
8954     << LHS.get()->getType() << RHS.get()->getType()
8955     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8956 }
8957 
8958 static bool isObjCObjectLiteral(ExprResult &E) {
8959   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
8960   case Stmt::ObjCArrayLiteralClass:
8961   case Stmt::ObjCDictionaryLiteralClass:
8962   case Stmt::ObjCStringLiteralClass:
8963   case Stmt::ObjCBoxedExprClass:
8964     return true;
8965   default:
8966     // Note that ObjCBoolLiteral is NOT an object literal!
8967     return false;
8968   }
8969 }
8970 
8971 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
8972   const ObjCObjectPointerType *Type =
8973     LHS->getType()->getAs<ObjCObjectPointerType>();
8974 
8975   // If this is not actually an Objective-C object, bail out.
8976   if (!Type)
8977     return false;
8978 
8979   // Get the LHS object's interface type.
8980   QualType InterfaceType = Type->getPointeeType();
8981 
8982   // If the RHS isn't an Objective-C object, bail out.
8983   if (!RHS->getType()->isObjCObjectPointerType())
8984     return false;
8985 
8986   // Try to find the -isEqual: method.
8987   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
8988   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
8989                                                       InterfaceType,
8990                                                       /*instance=*/true);
8991   if (!Method) {
8992     if (Type->isObjCIdType()) {
8993       // For 'id', just check the global pool.
8994       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
8995                                                   /*receiverId=*/true);
8996     } else {
8997       // Check protocols.
8998       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
8999                                              /*instance=*/true);
9000     }
9001   }
9002 
9003   if (!Method)
9004     return false;
9005 
9006   QualType T = Method->parameters()[0]->getType();
9007   if (!T->isObjCObjectPointerType())
9008     return false;
9009 
9010   QualType R = Method->getReturnType();
9011   if (!R->isScalarType())
9012     return false;
9013 
9014   return true;
9015 }
9016 
9017 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
9018   FromE = FromE->IgnoreParenImpCasts();
9019   switch (FromE->getStmtClass()) {
9020     default:
9021       break;
9022     case Stmt::ObjCStringLiteralClass:
9023       // "string literal"
9024       return LK_String;
9025     case Stmt::ObjCArrayLiteralClass:
9026       // "array literal"
9027       return LK_Array;
9028     case Stmt::ObjCDictionaryLiteralClass:
9029       // "dictionary literal"
9030       return LK_Dictionary;
9031     case Stmt::BlockExprClass:
9032       return LK_Block;
9033     case Stmt::ObjCBoxedExprClass: {
9034       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
9035       switch (Inner->getStmtClass()) {
9036         case Stmt::IntegerLiteralClass:
9037         case Stmt::FloatingLiteralClass:
9038         case Stmt::CharacterLiteralClass:
9039         case Stmt::ObjCBoolLiteralExprClass:
9040         case Stmt::CXXBoolLiteralExprClass:
9041           // "numeric literal"
9042           return LK_Numeric;
9043         case Stmt::ImplicitCastExprClass: {
9044           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
9045           // Boolean literals can be represented by implicit casts.
9046           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
9047             return LK_Numeric;
9048           break;
9049         }
9050         default:
9051           break;
9052       }
9053       return LK_Boxed;
9054     }
9055   }
9056   return LK_None;
9057 }
9058 
9059 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
9060                                           ExprResult &LHS, ExprResult &RHS,
9061                                           BinaryOperator::Opcode Opc){
9062   Expr *Literal;
9063   Expr *Other;
9064   if (isObjCObjectLiteral(LHS)) {
9065     Literal = LHS.get();
9066     Other = RHS.get();
9067   } else {
9068     Literal = RHS.get();
9069     Other = LHS.get();
9070   }
9071 
9072   // Don't warn on comparisons against nil.
9073   Other = Other->IgnoreParenCasts();
9074   if (Other->isNullPointerConstant(S.getASTContext(),
9075                                    Expr::NPC_ValueDependentIsNotNull))
9076     return;
9077 
9078   // This should be kept in sync with warn_objc_literal_comparison.
9079   // LK_String should always be after the other literals, since it has its own
9080   // warning flag.
9081   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
9082   assert(LiteralKind != Sema::LK_Block);
9083   if (LiteralKind == Sema::LK_None) {
9084     llvm_unreachable("Unknown Objective-C object literal kind");
9085   }
9086 
9087   if (LiteralKind == Sema::LK_String)
9088     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
9089       << Literal->getSourceRange();
9090   else
9091     S.Diag(Loc, diag::warn_objc_literal_comparison)
9092       << LiteralKind << Literal->getSourceRange();
9093 
9094   if (BinaryOperator::isEqualityOp(Opc) &&
9095       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
9096     SourceLocation Start = LHS.get()->getLocStart();
9097     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getLocEnd());
9098     CharSourceRange OpRange =
9099       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
9100 
9101     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
9102       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
9103       << FixItHint::CreateReplacement(OpRange, " isEqual:")
9104       << FixItHint::CreateInsertion(End, "]");
9105   }
9106 }
9107 
9108 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
9109                                                 ExprResult &RHS,
9110                                                 SourceLocation Loc,
9111                                                 BinaryOperatorKind Opc) {
9112   // Check that left hand side is !something.
9113   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
9114   if (!UO || UO->getOpcode() != UO_LNot) return;
9115 
9116   // Only check if the right hand side is non-bool arithmetic type.
9117   if (RHS.get()->isKnownToHaveBooleanValue()) return;
9118 
9119   // Make sure that the something in !something is not bool.
9120   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
9121   if (SubExpr->isKnownToHaveBooleanValue()) return;
9122 
9123   // Emit warning.
9124   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
9125       << Loc;
9126 
9127   // First note suggest !(x < y)
9128   SourceLocation FirstOpen = SubExpr->getLocStart();
9129   SourceLocation FirstClose = RHS.get()->getLocEnd();
9130   FirstClose = S.getLocForEndOfToken(FirstClose);
9131   if (FirstClose.isInvalid())
9132     FirstOpen = SourceLocation();
9133   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
9134       << FixItHint::CreateInsertion(FirstOpen, "(")
9135       << FixItHint::CreateInsertion(FirstClose, ")");
9136 
9137   // Second note suggests (!x) < y
9138   SourceLocation SecondOpen = LHS.get()->getLocStart();
9139   SourceLocation SecondClose = LHS.get()->getLocEnd();
9140   SecondClose = S.getLocForEndOfToken(SecondClose);
9141   if (SecondClose.isInvalid())
9142     SecondOpen = SourceLocation();
9143   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
9144       << FixItHint::CreateInsertion(SecondOpen, "(")
9145       << FixItHint::CreateInsertion(SecondClose, ")");
9146 }
9147 
9148 // Get the decl for a simple expression: a reference to a variable,
9149 // an implicit C++ field reference, or an implicit ObjC ivar reference.
9150 static ValueDecl *getCompareDecl(Expr *E) {
9151   if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
9152     return DR->getDecl();
9153   if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
9154     if (Ivar->isFreeIvar())
9155       return Ivar->getDecl();
9156   }
9157   if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
9158     if (Mem->isImplicitAccess())
9159       return Mem->getMemberDecl();
9160   }
9161   return nullptr;
9162 }
9163 
9164 // C99 6.5.8, C++ [expr.rel]
9165 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
9166                                     SourceLocation Loc, BinaryOperatorKind Opc,
9167                                     bool IsRelational) {
9168   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
9169 
9170   // Handle vector comparisons separately.
9171   if (LHS.get()->getType()->isVectorType() ||
9172       RHS.get()->getType()->isVectorType())
9173     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
9174 
9175   QualType LHSType = LHS.get()->getType();
9176   QualType RHSType = RHS.get()->getType();
9177 
9178   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
9179   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
9180 
9181   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
9182   diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, Opc);
9183 
9184   if (!LHSType->hasFloatingRepresentation() &&
9185       !(LHSType->isBlockPointerType() && IsRelational) &&
9186       !LHS.get()->getLocStart().isMacroID() &&
9187       !RHS.get()->getLocStart().isMacroID() &&
9188       ActiveTemplateInstantiations.empty()) {
9189     // For non-floating point types, check for self-comparisons of the form
9190     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
9191     // often indicate logic errors in the program.
9192     //
9193     // NOTE: Don't warn about comparison expressions resulting from macro
9194     // expansion. Also don't warn about comparisons which are only self
9195     // comparisons within a template specialization. The warnings should catch
9196     // obvious cases in the definition of the template anyways. The idea is to
9197     // warn when the typed comparison operator will always evaluate to the same
9198     // result.
9199     ValueDecl *DL = getCompareDecl(LHSStripped);
9200     ValueDecl *DR = getCompareDecl(RHSStripped);
9201     if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
9202       DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
9203                           << 0 // self-
9204                           << (Opc == BO_EQ
9205                               || Opc == BO_LE
9206                               || Opc == BO_GE));
9207     } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
9208                !DL->getType()->isReferenceType() &&
9209                !DR->getType()->isReferenceType()) {
9210         // what is it always going to eval to?
9211         char always_evals_to;
9212         switch(Opc) {
9213         case BO_EQ: // e.g. array1 == array2
9214           always_evals_to = 0; // false
9215           break;
9216         case BO_NE: // e.g. array1 != array2
9217           always_evals_to = 1; // true
9218           break;
9219         default:
9220           // best we can say is 'a constant'
9221           always_evals_to = 2; // e.g. array1 <= array2
9222           break;
9223         }
9224         DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
9225                             << 1 // array
9226                             << always_evals_to);
9227     }
9228 
9229     if (isa<CastExpr>(LHSStripped))
9230       LHSStripped = LHSStripped->IgnoreParenCasts();
9231     if (isa<CastExpr>(RHSStripped))
9232       RHSStripped = RHSStripped->IgnoreParenCasts();
9233 
9234     // Warn about comparisons against a string constant (unless the other
9235     // operand is null), the user probably wants strcmp.
9236     Expr *literalString = nullptr;
9237     Expr *literalStringStripped = nullptr;
9238     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
9239         !RHSStripped->isNullPointerConstant(Context,
9240                                             Expr::NPC_ValueDependentIsNull)) {
9241       literalString = LHS.get();
9242       literalStringStripped = LHSStripped;
9243     } else if ((isa<StringLiteral>(RHSStripped) ||
9244                 isa<ObjCEncodeExpr>(RHSStripped)) &&
9245                !LHSStripped->isNullPointerConstant(Context,
9246                                             Expr::NPC_ValueDependentIsNull)) {
9247       literalString = RHS.get();
9248       literalStringStripped = RHSStripped;
9249     }
9250 
9251     if (literalString) {
9252       DiagRuntimeBehavior(Loc, nullptr,
9253         PDiag(diag::warn_stringcompare)
9254           << isa<ObjCEncodeExpr>(literalStringStripped)
9255           << literalString->getSourceRange());
9256     }
9257   }
9258 
9259   // C99 6.5.8p3 / C99 6.5.9p4
9260   UsualArithmeticConversions(LHS, RHS);
9261   if (LHS.isInvalid() || RHS.isInvalid())
9262     return QualType();
9263 
9264   LHSType = LHS.get()->getType();
9265   RHSType = RHS.get()->getType();
9266 
9267   // The result of comparisons is 'bool' in C++, 'int' in C.
9268   QualType ResultTy = Context.getLogicalOperationType();
9269 
9270   if (IsRelational) {
9271     if (LHSType->isRealType() && RHSType->isRealType())
9272       return ResultTy;
9273   } else {
9274     // Check for comparisons of floating point operands using != and ==.
9275     if (LHSType->hasFloatingRepresentation())
9276       CheckFloatComparison(Loc, LHS.get(), RHS.get());
9277 
9278     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
9279       return ResultTy;
9280   }
9281 
9282   const Expr::NullPointerConstantKind LHSNullKind =
9283       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
9284   const Expr::NullPointerConstantKind RHSNullKind =
9285       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
9286   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
9287   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
9288 
9289   if (!IsRelational && LHSIsNull != RHSIsNull) {
9290     bool IsEquality = Opc == BO_EQ;
9291     if (RHSIsNull)
9292       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
9293                                    RHS.get()->getSourceRange());
9294     else
9295       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
9296                                    LHS.get()->getSourceRange());
9297   }
9298 
9299   // All of the following pointer-related warnings are GCC extensions, except
9300   // when handling null pointer constants.
9301   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
9302     QualType LCanPointeeTy =
9303       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
9304     QualType RCanPointeeTy =
9305       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
9306 
9307     if (getLangOpts().CPlusPlus) {
9308       if (LCanPointeeTy == RCanPointeeTy)
9309         return ResultTy;
9310       if (!IsRelational &&
9311           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
9312         // Valid unless comparison between non-null pointer and function pointer
9313         // This is a gcc extension compatibility comparison.
9314         // In a SFINAE context, we treat this as a hard error to maintain
9315         // conformance with the C++ standard.
9316         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
9317             && !LHSIsNull && !RHSIsNull) {
9318           diagnoseFunctionPointerToVoidComparison(
9319               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
9320 
9321           if (isSFINAEContext())
9322             return QualType();
9323 
9324           RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9325           return ResultTy;
9326         }
9327       }
9328 
9329       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
9330         return QualType();
9331       else
9332         return ResultTy;
9333     }
9334     // C99 6.5.9p2 and C99 6.5.8p2
9335     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
9336                                    RCanPointeeTy.getUnqualifiedType())) {
9337       // Valid unless a relational comparison of function pointers
9338       if (IsRelational && LCanPointeeTy->isFunctionType()) {
9339         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
9340           << LHSType << RHSType << LHS.get()->getSourceRange()
9341           << RHS.get()->getSourceRange();
9342       }
9343     } else if (!IsRelational &&
9344                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
9345       // Valid unless comparison between non-null pointer and function pointer
9346       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
9347           && !LHSIsNull && !RHSIsNull)
9348         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
9349                                                 /*isError*/false);
9350     } else {
9351       // Invalid
9352       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
9353     }
9354     if (LCanPointeeTy != RCanPointeeTy) {
9355       // Treat NULL constant as a special case in OpenCL.
9356       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
9357         const PointerType *LHSPtr = LHSType->getAs<PointerType>();
9358         if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
9359           Diag(Loc,
9360                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
9361               << LHSType << RHSType << 0 /* comparison */
9362               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9363         }
9364       }
9365       unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
9366       unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
9367       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
9368                                                : CK_BitCast;
9369       if (LHSIsNull && !RHSIsNull)
9370         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
9371       else
9372         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
9373     }
9374     return ResultTy;
9375   }
9376 
9377   if (getLangOpts().CPlusPlus) {
9378     // Comparison of nullptr_t with itself.
9379     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
9380       return ResultTy;
9381 
9382     // Comparison of pointers with null pointer constants and equality
9383     // comparisons of member pointers to null pointer constants.
9384     if (RHSIsNull &&
9385         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
9386          (!IsRelational &&
9387           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
9388       RHS = ImpCastExprToType(RHS.get(), LHSType,
9389                         LHSType->isMemberPointerType()
9390                           ? CK_NullToMemberPointer
9391                           : CK_NullToPointer);
9392       return ResultTy;
9393     }
9394     if (LHSIsNull &&
9395         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
9396          (!IsRelational &&
9397           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
9398       LHS = ImpCastExprToType(LHS.get(), RHSType,
9399                         RHSType->isMemberPointerType()
9400                           ? CK_NullToMemberPointer
9401                           : CK_NullToPointer);
9402       return ResultTy;
9403     }
9404 
9405     // Comparison of member pointers.
9406     if (!IsRelational &&
9407         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
9408       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
9409         return QualType();
9410       else
9411         return ResultTy;
9412     }
9413 
9414     // Handle scoped enumeration types specifically, since they don't promote
9415     // to integers.
9416     if (LHS.get()->getType()->isEnumeralType() &&
9417         Context.hasSameUnqualifiedType(LHS.get()->getType(),
9418                                        RHS.get()->getType()))
9419       return ResultTy;
9420   }
9421 
9422   // Handle block pointer types.
9423   if (!IsRelational && LHSType->isBlockPointerType() &&
9424       RHSType->isBlockPointerType()) {
9425     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
9426     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
9427 
9428     if (!LHSIsNull && !RHSIsNull &&
9429         !Context.typesAreCompatible(lpointee, rpointee)) {
9430       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
9431         << LHSType << RHSType << LHS.get()->getSourceRange()
9432         << RHS.get()->getSourceRange();
9433     }
9434     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9435     return ResultTy;
9436   }
9437 
9438   // Allow block pointers to be compared with null pointer constants.
9439   if (!IsRelational
9440       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
9441           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
9442     if (!LHSIsNull && !RHSIsNull) {
9443       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
9444              ->getPointeeType()->isVoidType())
9445             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
9446                 ->getPointeeType()->isVoidType())))
9447         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
9448           << LHSType << RHSType << LHS.get()->getSourceRange()
9449           << RHS.get()->getSourceRange();
9450     }
9451     if (LHSIsNull && !RHSIsNull)
9452       LHS = ImpCastExprToType(LHS.get(), RHSType,
9453                               RHSType->isPointerType() ? CK_BitCast
9454                                 : CK_AnyPointerToBlockPointerCast);
9455     else
9456       RHS = ImpCastExprToType(RHS.get(), LHSType,
9457                               LHSType->isPointerType() ? CK_BitCast
9458                                 : CK_AnyPointerToBlockPointerCast);
9459     return ResultTy;
9460   }
9461 
9462   if (LHSType->isObjCObjectPointerType() ||
9463       RHSType->isObjCObjectPointerType()) {
9464     const PointerType *LPT = LHSType->getAs<PointerType>();
9465     const PointerType *RPT = RHSType->getAs<PointerType>();
9466     if (LPT || RPT) {
9467       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
9468       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
9469 
9470       if (!LPtrToVoid && !RPtrToVoid &&
9471           !Context.typesAreCompatible(LHSType, RHSType)) {
9472         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
9473                                           /*isError*/false);
9474       }
9475       if (LHSIsNull && !RHSIsNull) {
9476         Expr *E = LHS.get();
9477         if (getLangOpts().ObjCAutoRefCount)
9478           CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
9479         LHS = ImpCastExprToType(E, RHSType,
9480                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
9481       }
9482       else {
9483         Expr *E = RHS.get();
9484         if (getLangOpts().ObjCAutoRefCount)
9485           CheckObjCARCConversion(SourceRange(), LHSType, E,
9486                                  CCK_ImplicitConversion, /*Diagnose=*/true,
9487                                  /*DiagnoseCFAudited=*/false, Opc);
9488         RHS = ImpCastExprToType(E, LHSType,
9489                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
9490       }
9491       return ResultTy;
9492     }
9493     if (LHSType->isObjCObjectPointerType() &&
9494         RHSType->isObjCObjectPointerType()) {
9495       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
9496         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
9497                                           /*isError*/false);
9498       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
9499         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
9500 
9501       if (LHSIsNull && !RHSIsNull)
9502         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9503       else
9504         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9505       return ResultTy;
9506     }
9507   }
9508   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
9509       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
9510     unsigned DiagID = 0;
9511     bool isError = false;
9512     if (LangOpts.DebuggerSupport) {
9513       // Under a debugger, allow the comparison of pointers to integers,
9514       // since users tend to want to compare addresses.
9515     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
9516         (RHSIsNull && RHSType->isIntegerType())) {
9517       if (IsRelational && !getLangOpts().CPlusPlus)
9518         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
9519     } else if (IsRelational && !getLangOpts().CPlusPlus)
9520       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
9521     else if (getLangOpts().CPlusPlus) {
9522       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
9523       isError = true;
9524     } else
9525       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
9526 
9527     if (DiagID) {
9528       Diag(Loc, DiagID)
9529         << LHSType << RHSType << LHS.get()->getSourceRange()
9530         << RHS.get()->getSourceRange();
9531       if (isError)
9532         return QualType();
9533     }
9534 
9535     if (LHSType->isIntegerType())
9536       LHS = ImpCastExprToType(LHS.get(), RHSType,
9537                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
9538     else
9539       RHS = ImpCastExprToType(RHS.get(), LHSType,
9540                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
9541     return ResultTy;
9542   }
9543 
9544   // Handle block pointers.
9545   if (!IsRelational && RHSIsNull
9546       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
9547     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9548     return ResultTy;
9549   }
9550   if (!IsRelational && LHSIsNull
9551       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
9552     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
9553     return ResultTy;
9554   }
9555 
9556   return InvalidOperands(Loc, LHS, RHS);
9557 }
9558 
9559 
9560 // Return a signed type that is of identical size and number of elements.
9561 // For floating point vectors, return an integer type of identical size
9562 // and number of elements.
9563 QualType Sema::GetSignedVectorType(QualType V) {
9564   const VectorType *VTy = V->getAs<VectorType>();
9565   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
9566   if (TypeSize == Context.getTypeSize(Context.CharTy))
9567     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
9568   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
9569     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
9570   else if (TypeSize == Context.getTypeSize(Context.IntTy))
9571     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
9572   else if (TypeSize == Context.getTypeSize(Context.LongTy))
9573     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
9574   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
9575          "Unhandled vector element size in vector compare");
9576   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
9577 }
9578 
9579 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
9580 /// operates on extended vector types.  Instead of producing an IntTy result,
9581 /// like a scalar comparison, a vector comparison produces a vector of integer
9582 /// types.
9583 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
9584                                           SourceLocation Loc,
9585                                           bool IsRelational) {
9586   // Check to make sure we're operating on vectors of the same type and width,
9587   // Allowing one side to be a scalar of element type.
9588   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
9589                               /*AllowBothBool*/true,
9590                               /*AllowBoolConversions*/getLangOpts().ZVector);
9591   if (vType.isNull())
9592     return vType;
9593 
9594   QualType LHSType = LHS.get()->getType();
9595 
9596   // If AltiVec, the comparison results in a numeric type, i.e.
9597   // bool for C++, int for C
9598   if (getLangOpts().AltiVec &&
9599       vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
9600     return Context.getLogicalOperationType();
9601 
9602   // For non-floating point types, check for self-comparisons of the form
9603   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
9604   // often indicate logic errors in the program.
9605   if (!LHSType->hasFloatingRepresentation() &&
9606       ActiveTemplateInstantiations.empty()) {
9607     if (DeclRefExpr* DRL
9608           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
9609       if (DeclRefExpr* DRR
9610             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
9611         if (DRL->getDecl() == DRR->getDecl())
9612           DiagRuntimeBehavior(Loc, nullptr,
9613                               PDiag(diag::warn_comparison_always)
9614                                 << 0 // self-
9615                                 << 2 // "a constant"
9616                               );
9617   }
9618 
9619   // Check for comparisons of floating point operands using != and ==.
9620   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
9621     assert (RHS.get()->getType()->hasFloatingRepresentation());
9622     CheckFloatComparison(Loc, LHS.get(), RHS.get());
9623   }
9624 
9625   // Return a signed type for the vector.
9626   return GetSignedVectorType(vType);
9627 }
9628 
9629 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9630                                           SourceLocation Loc) {
9631   // Ensure that either both operands are of the same vector type, or
9632   // one operand is of a vector type and the other is of its element type.
9633   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
9634                                        /*AllowBothBool*/true,
9635                                        /*AllowBoolConversions*/false);
9636   if (vType.isNull())
9637     return InvalidOperands(Loc, LHS, RHS);
9638   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
9639       vType->hasFloatingRepresentation())
9640     return InvalidOperands(Loc, LHS, RHS);
9641 
9642   return GetSignedVectorType(LHS.get()->getType());
9643 }
9644 
9645 inline QualType Sema::CheckBitwiseOperands(
9646   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
9647   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
9648 
9649   if (LHS.get()->getType()->isVectorType() ||
9650       RHS.get()->getType()->isVectorType()) {
9651     if (LHS.get()->getType()->hasIntegerRepresentation() &&
9652         RHS.get()->getType()->hasIntegerRepresentation())
9653       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9654                         /*AllowBothBool*/true,
9655                         /*AllowBoolConversions*/getLangOpts().ZVector);
9656     return InvalidOperands(Loc, LHS, RHS);
9657   }
9658 
9659   ExprResult LHSResult = LHS, RHSResult = RHS;
9660   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
9661                                                  IsCompAssign);
9662   if (LHSResult.isInvalid() || RHSResult.isInvalid())
9663     return QualType();
9664   LHS = LHSResult.get();
9665   RHS = RHSResult.get();
9666 
9667   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
9668     return compType;
9669   return InvalidOperands(Loc, LHS, RHS);
9670 }
9671 
9672 // C99 6.5.[13,14]
9673 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9674                                            SourceLocation Loc,
9675                                            BinaryOperatorKind Opc) {
9676   // Check vector operands differently.
9677   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
9678     return CheckVectorLogicalOperands(LHS, RHS, Loc);
9679 
9680   // Diagnose cases where the user write a logical and/or but probably meant a
9681   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
9682   // is a constant.
9683   if (LHS.get()->getType()->isIntegerType() &&
9684       !LHS.get()->getType()->isBooleanType() &&
9685       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
9686       // Don't warn in macros or template instantiations.
9687       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
9688     // If the RHS can be constant folded, and if it constant folds to something
9689     // that isn't 0 or 1 (which indicate a potential logical operation that
9690     // happened to fold to true/false) then warn.
9691     // Parens on the RHS are ignored.
9692     llvm::APSInt Result;
9693     if (RHS.get()->EvaluateAsInt(Result, Context))
9694       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
9695            !RHS.get()->getExprLoc().isMacroID()) ||
9696           (Result != 0 && Result != 1)) {
9697         Diag(Loc, diag::warn_logical_instead_of_bitwise)
9698           << RHS.get()->getSourceRange()
9699           << (Opc == BO_LAnd ? "&&" : "||");
9700         // Suggest replacing the logical operator with the bitwise version
9701         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
9702             << (Opc == BO_LAnd ? "&" : "|")
9703             << FixItHint::CreateReplacement(SourceRange(
9704                                                  Loc, getLocForEndOfToken(Loc)),
9705                                             Opc == BO_LAnd ? "&" : "|");
9706         if (Opc == BO_LAnd)
9707           // Suggest replacing "Foo() && kNonZero" with "Foo()"
9708           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
9709               << FixItHint::CreateRemoval(
9710                   SourceRange(getLocForEndOfToken(LHS.get()->getLocEnd()),
9711                               RHS.get()->getLocEnd()));
9712       }
9713   }
9714 
9715   if (!Context.getLangOpts().CPlusPlus) {
9716     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
9717     // not operate on the built-in scalar and vector float types.
9718     if (Context.getLangOpts().OpenCL &&
9719         Context.getLangOpts().OpenCLVersion < 120) {
9720       if (LHS.get()->getType()->isFloatingType() ||
9721           RHS.get()->getType()->isFloatingType())
9722         return InvalidOperands(Loc, LHS, RHS);
9723     }
9724 
9725     LHS = UsualUnaryConversions(LHS.get());
9726     if (LHS.isInvalid())
9727       return QualType();
9728 
9729     RHS = UsualUnaryConversions(RHS.get());
9730     if (RHS.isInvalid())
9731       return QualType();
9732 
9733     if (!LHS.get()->getType()->isScalarType() ||
9734         !RHS.get()->getType()->isScalarType())
9735       return InvalidOperands(Loc, LHS, RHS);
9736 
9737     return Context.IntTy;
9738   }
9739 
9740   // The following is safe because we only use this method for
9741   // non-overloadable operands.
9742 
9743   // C++ [expr.log.and]p1
9744   // C++ [expr.log.or]p1
9745   // The operands are both contextually converted to type bool.
9746   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
9747   if (LHSRes.isInvalid())
9748     return InvalidOperands(Loc, LHS, RHS);
9749   LHS = LHSRes;
9750 
9751   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
9752   if (RHSRes.isInvalid())
9753     return InvalidOperands(Loc, LHS, RHS);
9754   RHS = RHSRes;
9755 
9756   // C++ [expr.log.and]p2
9757   // C++ [expr.log.or]p2
9758   // The result is a bool.
9759   return Context.BoolTy;
9760 }
9761 
9762 static bool IsReadonlyMessage(Expr *E, Sema &S) {
9763   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
9764   if (!ME) return false;
9765   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
9766   ObjCMessageExpr *Base =
9767     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
9768   if (!Base) return false;
9769   return Base->getMethodDecl() != nullptr;
9770 }
9771 
9772 /// Is the given expression (which must be 'const') a reference to a
9773 /// variable which was originally non-const, but which has become
9774 /// 'const' due to being captured within a block?
9775 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
9776 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
9777   assert(E->isLValue() && E->getType().isConstQualified());
9778   E = E->IgnoreParens();
9779 
9780   // Must be a reference to a declaration from an enclosing scope.
9781   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
9782   if (!DRE) return NCCK_None;
9783   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
9784 
9785   // The declaration must be a variable which is not declared 'const'.
9786   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
9787   if (!var) return NCCK_None;
9788   if (var->getType().isConstQualified()) return NCCK_None;
9789   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
9790 
9791   // Decide whether the first capture was for a block or a lambda.
9792   DeclContext *DC = S.CurContext, *Prev = nullptr;
9793   // Decide whether the first capture was for a block or a lambda.
9794   while (DC) {
9795     // For init-capture, it is possible that the variable belongs to the
9796     // template pattern of the current context.
9797     if (auto *FD = dyn_cast<FunctionDecl>(DC))
9798       if (var->isInitCapture() &&
9799           FD->getTemplateInstantiationPattern() == var->getDeclContext())
9800         break;
9801     if (DC == var->getDeclContext())
9802       break;
9803     Prev = DC;
9804     DC = DC->getParent();
9805   }
9806   // Unless we have an init-capture, we've gone one step too far.
9807   if (!var->isInitCapture())
9808     DC = Prev;
9809   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
9810 }
9811 
9812 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
9813   Ty = Ty.getNonReferenceType();
9814   if (IsDereference && Ty->isPointerType())
9815     Ty = Ty->getPointeeType();
9816   return !Ty.isConstQualified();
9817 }
9818 
9819 /// Emit the "read-only variable not assignable" error and print notes to give
9820 /// more information about why the variable is not assignable, such as pointing
9821 /// to the declaration of a const variable, showing that a method is const, or
9822 /// that the function is returning a const reference.
9823 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
9824                                     SourceLocation Loc) {
9825   // Update err_typecheck_assign_const and note_typecheck_assign_const
9826   // when this enum is changed.
9827   enum {
9828     ConstFunction,
9829     ConstVariable,
9830     ConstMember,
9831     ConstMethod,
9832     ConstUnknown,  // Keep as last element
9833   };
9834 
9835   SourceRange ExprRange = E->getSourceRange();
9836 
9837   // Only emit one error on the first const found.  All other consts will emit
9838   // a note to the error.
9839   bool DiagnosticEmitted = false;
9840 
9841   // Track if the current expression is the result of a derefence, and if the
9842   // next checked expression is the result of a derefence.
9843   bool IsDereference = false;
9844   bool NextIsDereference = false;
9845 
9846   // Loop to process MemberExpr chains.
9847   while (true) {
9848     IsDereference = NextIsDereference;
9849     NextIsDereference = false;
9850 
9851     E = E->IgnoreParenImpCasts();
9852     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
9853       NextIsDereference = ME->isArrow();
9854       const ValueDecl *VD = ME->getMemberDecl();
9855       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
9856         // Mutable fields can be modified even if the class is const.
9857         if (Field->isMutable()) {
9858           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
9859           break;
9860         }
9861 
9862         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
9863           if (!DiagnosticEmitted) {
9864             S.Diag(Loc, diag::err_typecheck_assign_const)
9865                 << ExprRange << ConstMember << false /*static*/ << Field
9866                 << Field->getType();
9867             DiagnosticEmitted = true;
9868           }
9869           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9870               << ConstMember << false /*static*/ << Field << Field->getType()
9871               << Field->getSourceRange();
9872         }
9873         E = ME->getBase();
9874         continue;
9875       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
9876         if (VDecl->getType().isConstQualified()) {
9877           if (!DiagnosticEmitted) {
9878             S.Diag(Loc, diag::err_typecheck_assign_const)
9879                 << ExprRange << ConstMember << true /*static*/ << VDecl
9880                 << VDecl->getType();
9881             DiagnosticEmitted = true;
9882           }
9883           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9884               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
9885               << VDecl->getSourceRange();
9886         }
9887         // Static fields do not inherit constness from parents.
9888         break;
9889       }
9890       break;
9891     } // End MemberExpr
9892     break;
9893   }
9894 
9895   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9896     // Function calls
9897     const FunctionDecl *FD = CE->getDirectCallee();
9898     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
9899       if (!DiagnosticEmitted) {
9900         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9901                                                       << ConstFunction << FD;
9902         DiagnosticEmitted = true;
9903       }
9904       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
9905              diag::note_typecheck_assign_const)
9906           << ConstFunction << FD << FD->getReturnType()
9907           << FD->getReturnTypeSourceRange();
9908     }
9909   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9910     // Point to variable declaration.
9911     if (const ValueDecl *VD = DRE->getDecl()) {
9912       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
9913         if (!DiagnosticEmitted) {
9914           S.Diag(Loc, diag::err_typecheck_assign_const)
9915               << ExprRange << ConstVariable << VD << VD->getType();
9916           DiagnosticEmitted = true;
9917         }
9918         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9919             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
9920       }
9921     }
9922   } else if (isa<CXXThisExpr>(E)) {
9923     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
9924       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
9925         if (MD->isConst()) {
9926           if (!DiagnosticEmitted) {
9927             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9928                                                           << ConstMethod << MD;
9929             DiagnosticEmitted = true;
9930           }
9931           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
9932               << ConstMethod << MD << MD->getSourceRange();
9933         }
9934       }
9935     }
9936   }
9937 
9938   if (DiagnosticEmitted)
9939     return;
9940 
9941   // Can't determine a more specific message, so display the generic error.
9942   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
9943 }
9944 
9945 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
9946 /// emit an error and return true.  If so, return false.
9947 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
9948   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
9949 
9950   S.CheckShadowingDeclModification(E, Loc);
9951 
9952   SourceLocation OrigLoc = Loc;
9953   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
9954                                                               &Loc);
9955   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
9956     IsLV = Expr::MLV_InvalidMessageExpression;
9957   if (IsLV == Expr::MLV_Valid)
9958     return false;
9959 
9960   unsigned DiagID = 0;
9961   bool NeedType = false;
9962   switch (IsLV) { // C99 6.5.16p2
9963   case Expr::MLV_ConstQualified:
9964     // Use a specialized diagnostic when we're assigning to an object
9965     // from an enclosing function or block.
9966     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
9967       if (NCCK == NCCK_Block)
9968         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
9969       else
9970         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
9971       break;
9972     }
9973 
9974     // In ARC, use some specialized diagnostics for occasions where we
9975     // infer 'const'.  These are always pseudo-strong variables.
9976     if (S.getLangOpts().ObjCAutoRefCount) {
9977       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
9978       if (declRef && isa<VarDecl>(declRef->getDecl())) {
9979         VarDecl *var = cast<VarDecl>(declRef->getDecl());
9980 
9981         // Use the normal diagnostic if it's pseudo-__strong but the
9982         // user actually wrote 'const'.
9983         if (var->isARCPseudoStrong() &&
9984             (!var->getTypeSourceInfo() ||
9985              !var->getTypeSourceInfo()->getType().isConstQualified())) {
9986           // There are two pseudo-strong cases:
9987           //  - self
9988           ObjCMethodDecl *method = S.getCurMethodDecl();
9989           if (method && var == method->getSelfDecl())
9990             DiagID = method->isClassMethod()
9991               ? diag::err_typecheck_arc_assign_self_class_method
9992               : diag::err_typecheck_arc_assign_self;
9993 
9994           //  - fast enumeration variables
9995           else
9996             DiagID = diag::err_typecheck_arr_assign_enumeration;
9997 
9998           SourceRange Assign;
9999           if (Loc != OrigLoc)
10000             Assign = SourceRange(OrigLoc, OrigLoc);
10001           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
10002           // We need to preserve the AST regardless, so migration tool
10003           // can do its job.
10004           return false;
10005         }
10006       }
10007     }
10008 
10009     // If none of the special cases above are triggered, then this is a
10010     // simple const assignment.
10011     if (DiagID == 0) {
10012       DiagnoseConstAssignment(S, E, Loc);
10013       return true;
10014     }
10015 
10016     break;
10017   case Expr::MLV_ConstAddrSpace:
10018     DiagnoseConstAssignment(S, E, Loc);
10019     return true;
10020   case Expr::MLV_ArrayType:
10021   case Expr::MLV_ArrayTemporary:
10022     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
10023     NeedType = true;
10024     break;
10025   case Expr::MLV_NotObjectType:
10026     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
10027     NeedType = true;
10028     break;
10029   case Expr::MLV_LValueCast:
10030     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
10031     break;
10032   case Expr::MLV_Valid:
10033     llvm_unreachable("did not take early return for MLV_Valid");
10034   case Expr::MLV_InvalidExpression:
10035   case Expr::MLV_MemberFunction:
10036   case Expr::MLV_ClassTemporary:
10037     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
10038     break;
10039   case Expr::MLV_IncompleteType:
10040   case Expr::MLV_IncompleteVoidType:
10041     return S.RequireCompleteType(Loc, E->getType(),
10042              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
10043   case Expr::MLV_DuplicateVectorComponents:
10044     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
10045     break;
10046   case Expr::MLV_NoSetterProperty:
10047     llvm_unreachable("readonly properties should be processed differently");
10048   case Expr::MLV_InvalidMessageExpression:
10049     DiagID = diag::error_readonly_message_assignment;
10050     break;
10051   case Expr::MLV_SubObjCPropertySetting:
10052     DiagID = diag::error_no_subobject_property_setting;
10053     break;
10054   }
10055 
10056   SourceRange Assign;
10057   if (Loc != OrigLoc)
10058     Assign = SourceRange(OrigLoc, OrigLoc);
10059   if (NeedType)
10060     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
10061   else
10062     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
10063   return true;
10064 }
10065 
10066 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
10067                                          SourceLocation Loc,
10068                                          Sema &Sema) {
10069   // C / C++ fields
10070   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
10071   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
10072   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
10073     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
10074       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
10075   }
10076 
10077   // Objective-C instance variables
10078   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
10079   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
10080   if (OL && OR && OL->getDecl() == OR->getDecl()) {
10081     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
10082     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
10083     if (RL && RR && RL->getDecl() == RR->getDecl())
10084       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
10085   }
10086 }
10087 
10088 // C99 6.5.16.1
10089 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
10090                                        SourceLocation Loc,
10091                                        QualType CompoundType) {
10092   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
10093 
10094   // Verify that LHS is a modifiable lvalue, and emit error if not.
10095   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
10096     return QualType();
10097 
10098   QualType LHSType = LHSExpr->getType();
10099   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
10100                                              CompoundType;
10101   // OpenCL v1.2 s6.1.1.1 p2:
10102   // The half data type can only be used to declare a pointer to a buffer that
10103   // contains half values
10104   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
10105     LHSType->isHalfType()) {
10106     Diag(Loc, diag::err_opencl_half_load_store) << 1
10107         << LHSType.getUnqualifiedType();
10108     return QualType();
10109   }
10110 
10111   AssignConvertType ConvTy;
10112   if (CompoundType.isNull()) {
10113     Expr *RHSCheck = RHS.get();
10114 
10115     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
10116 
10117     QualType LHSTy(LHSType);
10118     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
10119     if (RHS.isInvalid())
10120       return QualType();
10121     // Special case of NSObject attributes on c-style pointer types.
10122     if (ConvTy == IncompatiblePointer &&
10123         ((Context.isObjCNSObjectType(LHSType) &&
10124           RHSType->isObjCObjectPointerType()) ||
10125          (Context.isObjCNSObjectType(RHSType) &&
10126           LHSType->isObjCObjectPointerType())))
10127       ConvTy = Compatible;
10128 
10129     if (ConvTy == Compatible &&
10130         LHSType->isObjCObjectType())
10131         Diag(Loc, diag::err_objc_object_assignment)
10132           << LHSType;
10133 
10134     // If the RHS is a unary plus or minus, check to see if they = and + are
10135     // right next to each other.  If so, the user may have typo'd "x =+ 4"
10136     // instead of "x += 4".
10137     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
10138       RHSCheck = ICE->getSubExpr();
10139     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
10140       if ((UO->getOpcode() == UO_Plus ||
10141            UO->getOpcode() == UO_Minus) &&
10142           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
10143           // Only if the two operators are exactly adjacent.
10144           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
10145           // And there is a space or other character before the subexpr of the
10146           // unary +/-.  We don't want to warn on "x=-1".
10147           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
10148           UO->getSubExpr()->getLocStart().isFileID()) {
10149         Diag(Loc, diag::warn_not_compound_assign)
10150           << (UO->getOpcode() == UO_Plus ? "+" : "-")
10151           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
10152       }
10153     }
10154 
10155     if (ConvTy == Compatible) {
10156       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
10157         // Warn about retain cycles where a block captures the LHS, but
10158         // not if the LHS is a simple variable into which the block is
10159         // being stored...unless that variable can be captured by reference!
10160         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
10161         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
10162         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
10163           checkRetainCycles(LHSExpr, RHS.get());
10164 
10165         // It is safe to assign a weak reference into a strong variable.
10166         // Although this code can still have problems:
10167         //   id x = self.weakProp;
10168         //   id y = self.weakProp;
10169         // we do not warn to warn spuriously when 'x' and 'y' are on separate
10170         // paths through the function. This should be revisited if
10171         // -Wrepeated-use-of-weak is made flow-sensitive.
10172         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
10173                              RHS.get()->getLocStart()))
10174           getCurFunction()->markSafeWeakUse(RHS.get());
10175 
10176       } else if (getLangOpts().ObjCAutoRefCount) {
10177         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
10178       }
10179     }
10180   } else {
10181     // Compound assignment "x += y"
10182     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
10183   }
10184 
10185   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
10186                                RHS.get(), AA_Assigning))
10187     return QualType();
10188 
10189   CheckForNullPointerDereference(*this, LHSExpr);
10190 
10191   // C99 6.5.16p3: The type of an assignment expression is the type of the
10192   // left operand unless the left operand has qualified type, in which case
10193   // it is the unqualified version of the type of the left operand.
10194   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
10195   // is converted to the type of the assignment expression (above).
10196   // C++ 5.17p1: the type of the assignment expression is that of its left
10197   // operand.
10198   return (getLangOpts().CPlusPlus
10199           ? LHSType : LHSType.getUnqualifiedType());
10200 }
10201 
10202 // Only ignore explicit casts to void.
10203 static bool IgnoreCommaOperand(const Expr *E) {
10204   E = E->IgnoreParens();
10205 
10206   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
10207     if (CE->getCastKind() == CK_ToVoid) {
10208       return true;
10209     }
10210   }
10211 
10212   return false;
10213 }
10214 
10215 // Look for instances where it is likely the comma operator is confused with
10216 // another operator.  There is a whitelist of acceptable expressions for the
10217 // left hand side of the comma operator, otherwise emit a warning.
10218 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
10219   // No warnings in macros
10220   if (Loc.isMacroID())
10221     return;
10222 
10223   // Don't warn in template instantiations.
10224   if (!ActiveTemplateInstantiations.empty())
10225     return;
10226 
10227   // Scope isn't fine-grained enough to whitelist the specific cases, so
10228   // instead, skip more than needed, then call back into here with the
10229   // CommaVisitor in SemaStmt.cpp.
10230   // The whitelisted locations are the initialization and increment portions
10231   // of a for loop.  The additional checks are on the condition of
10232   // if statements, do/while loops, and for loops.
10233   const unsigned ForIncrementFlags =
10234       Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope;
10235   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
10236   const unsigned ScopeFlags = getCurScope()->getFlags();
10237   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
10238       (ScopeFlags & ForInitFlags) == ForInitFlags)
10239     return;
10240 
10241   // If there are multiple comma operators used together, get the RHS of the
10242   // of the comma operator as the LHS.
10243   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
10244     if (BO->getOpcode() != BO_Comma)
10245       break;
10246     LHS = BO->getRHS();
10247   }
10248 
10249   // Only allow some expressions on LHS to not warn.
10250   if (IgnoreCommaOperand(LHS))
10251     return;
10252 
10253   Diag(Loc, diag::warn_comma_operator);
10254   Diag(LHS->getLocStart(), diag::note_cast_to_void)
10255       << LHS->getSourceRange()
10256       << FixItHint::CreateInsertion(LHS->getLocStart(),
10257                                     LangOpts.CPlusPlus ? "static_cast<void>("
10258                                                        : "(void)(")
10259       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getLocEnd()),
10260                                     ")");
10261 }
10262 
10263 // C99 6.5.17
10264 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
10265                                    SourceLocation Loc) {
10266   LHS = S.CheckPlaceholderExpr(LHS.get());
10267   RHS = S.CheckPlaceholderExpr(RHS.get());
10268   if (LHS.isInvalid() || RHS.isInvalid())
10269     return QualType();
10270 
10271   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
10272   // operands, but not unary promotions.
10273   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
10274 
10275   // So we treat the LHS as a ignored value, and in C++ we allow the
10276   // containing site to determine what should be done with the RHS.
10277   LHS = S.IgnoredValueConversions(LHS.get());
10278   if (LHS.isInvalid())
10279     return QualType();
10280 
10281   S.DiagnoseUnusedExprResult(LHS.get());
10282 
10283   if (!S.getLangOpts().CPlusPlus) {
10284     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
10285     if (RHS.isInvalid())
10286       return QualType();
10287     if (!RHS.get()->getType()->isVoidType())
10288       S.RequireCompleteType(Loc, RHS.get()->getType(),
10289                             diag::err_incomplete_type);
10290   }
10291 
10292   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
10293     S.DiagnoseCommaOperator(LHS.get(), Loc);
10294 
10295   return RHS.get()->getType();
10296 }
10297 
10298 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
10299 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
10300 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
10301                                                ExprValueKind &VK,
10302                                                ExprObjectKind &OK,
10303                                                SourceLocation OpLoc,
10304                                                bool IsInc, bool IsPrefix) {
10305   if (Op->isTypeDependent())
10306     return S.Context.DependentTy;
10307 
10308   QualType ResType = Op->getType();
10309   // Atomic types can be used for increment / decrement where the non-atomic
10310   // versions can, so ignore the _Atomic() specifier for the purpose of
10311   // checking.
10312   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10313     ResType = ResAtomicType->getValueType();
10314 
10315   assert(!ResType.isNull() && "no type for increment/decrement expression");
10316 
10317   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
10318     // Decrement of bool is not allowed.
10319     if (!IsInc) {
10320       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
10321       return QualType();
10322     }
10323     // Increment of bool sets it to true, but is deprecated.
10324     S.Diag(OpLoc, S.getLangOpts().CPlusPlus1z ? diag::ext_increment_bool
10325                                               : diag::warn_increment_bool)
10326       << Op->getSourceRange();
10327   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
10328     // Error on enum increments and decrements in C++ mode
10329     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
10330     return QualType();
10331   } else if (ResType->isRealType()) {
10332     // OK!
10333   } else if (ResType->isPointerType()) {
10334     // C99 6.5.2.4p2, 6.5.6p2
10335     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
10336       return QualType();
10337   } else if (ResType->isObjCObjectPointerType()) {
10338     // On modern runtimes, ObjC pointer arithmetic is forbidden.
10339     // Otherwise, we just need a complete type.
10340     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
10341         checkArithmeticOnObjCPointer(S, OpLoc, Op))
10342       return QualType();
10343   } else if (ResType->isAnyComplexType()) {
10344     // C99 does not support ++/-- on complex types, we allow as an extension.
10345     S.Diag(OpLoc, diag::ext_integer_increment_complex)
10346       << ResType << Op->getSourceRange();
10347   } else if (ResType->isPlaceholderType()) {
10348     ExprResult PR = S.CheckPlaceholderExpr(Op);
10349     if (PR.isInvalid()) return QualType();
10350     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
10351                                           IsInc, IsPrefix);
10352   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
10353     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
10354   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
10355              (ResType->getAs<VectorType>()->getVectorKind() !=
10356               VectorType::AltiVecBool)) {
10357     // The z vector extensions allow ++ and -- for non-bool vectors.
10358   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
10359             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
10360     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
10361   } else {
10362     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
10363       << ResType << int(IsInc) << Op->getSourceRange();
10364     return QualType();
10365   }
10366   // At this point, we know we have a real, complex or pointer type.
10367   // Now make sure the operand is a modifiable lvalue.
10368   if (CheckForModifiableLvalue(Op, OpLoc, S))
10369     return QualType();
10370   // In C++, a prefix increment is the same type as the operand. Otherwise
10371   // (in C or with postfix), the increment is the unqualified type of the
10372   // operand.
10373   if (IsPrefix && S.getLangOpts().CPlusPlus) {
10374     VK = VK_LValue;
10375     OK = Op->getObjectKind();
10376     return ResType;
10377   } else {
10378     VK = VK_RValue;
10379     return ResType.getUnqualifiedType();
10380   }
10381 }
10382 
10383 
10384 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
10385 /// This routine allows us to typecheck complex/recursive expressions
10386 /// where the declaration is needed for type checking. We only need to
10387 /// handle cases when the expression references a function designator
10388 /// or is an lvalue. Here are some examples:
10389 ///  - &(x) => x
10390 ///  - &*****f => f for f a function designator.
10391 ///  - &s.xx => s
10392 ///  - &s.zz[1].yy -> s, if zz is an array
10393 ///  - *(x + 1) -> x, if x is an array
10394 ///  - &"123"[2] -> 0
10395 ///  - & __real__ x -> x
10396 static ValueDecl *getPrimaryDecl(Expr *E) {
10397   switch (E->getStmtClass()) {
10398   case Stmt::DeclRefExprClass:
10399     return cast<DeclRefExpr>(E)->getDecl();
10400   case Stmt::MemberExprClass:
10401     // If this is an arrow operator, the address is an offset from
10402     // the base's value, so the object the base refers to is
10403     // irrelevant.
10404     if (cast<MemberExpr>(E)->isArrow())
10405       return nullptr;
10406     // Otherwise, the expression refers to a part of the base
10407     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
10408   case Stmt::ArraySubscriptExprClass: {
10409     // FIXME: This code shouldn't be necessary!  We should catch the implicit
10410     // promotion of register arrays earlier.
10411     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
10412     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
10413       if (ICE->getSubExpr()->getType()->isArrayType())
10414         return getPrimaryDecl(ICE->getSubExpr());
10415     }
10416     return nullptr;
10417   }
10418   case Stmt::UnaryOperatorClass: {
10419     UnaryOperator *UO = cast<UnaryOperator>(E);
10420 
10421     switch(UO->getOpcode()) {
10422     case UO_Real:
10423     case UO_Imag:
10424     case UO_Extension:
10425       return getPrimaryDecl(UO->getSubExpr());
10426     default:
10427       return nullptr;
10428     }
10429   }
10430   case Stmt::ParenExprClass:
10431     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
10432   case Stmt::ImplicitCastExprClass:
10433     // If the result of an implicit cast is an l-value, we care about
10434     // the sub-expression; otherwise, the result here doesn't matter.
10435     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
10436   default:
10437     return nullptr;
10438   }
10439 }
10440 
10441 namespace {
10442   enum {
10443     AO_Bit_Field = 0,
10444     AO_Vector_Element = 1,
10445     AO_Property_Expansion = 2,
10446     AO_Register_Variable = 3,
10447     AO_No_Error = 4
10448   };
10449 }
10450 /// \brief Diagnose invalid operand for address of operations.
10451 ///
10452 /// \param Type The type of operand which cannot have its address taken.
10453 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
10454                                          Expr *E, unsigned Type) {
10455   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
10456 }
10457 
10458 /// CheckAddressOfOperand - The operand of & must be either a function
10459 /// designator or an lvalue designating an object. If it is an lvalue, the
10460 /// object cannot be declared with storage class register or be a bit field.
10461 /// Note: The usual conversions are *not* applied to the operand of the &
10462 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
10463 /// In C++, the operand might be an overloaded function name, in which case
10464 /// we allow the '&' but retain the overloaded-function type.
10465 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
10466   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
10467     if (PTy->getKind() == BuiltinType::Overload) {
10468       Expr *E = OrigOp.get()->IgnoreParens();
10469       if (!isa<OverloadExpr>(E)) {
10470         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
10471         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
10472           << OrigOp.get()->getSourceRange();
10473         return QualType();
10474       }
10475 
10476       OverloadExpr *Ovl = cast<OverloadExpr>(E);
10477       if (isa<UnresolvedMemberExpr>(Ovl))
10478         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
10479           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
10480             << OrigOp.get()->getSourceRange();
10481           return QualType();
10482         }
10483 
10484       return Context.OverloadTy;
10485     }
10486 
10487     if (PTy->getKind() == BuiltinType::UnknownAny)
10488       return Context.UnknownAnyTy;
10489 
10490     if (PTy->getKind() == BuiltinType::BoundMember) {
10491       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
10492         << OrigOp.get()->getSourceRange();
10493       return QualType();
10494     }
10495 
10496     OrigOp = CheckPlaceholderExpr(OrigOp.get());
10497     if (OrigOp.isInvalid()) return QualType();
10498   }
10499 
10500   if (OrigOp.get()->isTypeDependent())
10501     return Context.DependentTy;
10502 
10503   assert(!OrigOp.get()->getType()->isPlaceholderType());
10504 
10505   // Make sure to ignore parentheses in subsequent checks
10506   Expr *op = OrigOp.get()->IgnoreParens();
10507 
10508   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
10509   if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
10510     Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
10511     return QualType();
10512   }
10513 
10514   if (getLangOpts().C99) {
10515     // Implement C99-only parts of addressof rules.
10516     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
10517       if (uOp->getOpcode() == UO_Deref)
10518         // Per C99 6.5.3.2, the address of a deref always returns a valid result
10519         // (assuming the deref expression is valid).
10520         return uOp->getSubExpr()->getType();
10521     }
10522     // Technically, there should be a check for array subscript
10523     // expressions here, but the result of one is always an lvalue anyway.
10524   }
10525   ValueDecl *dcl = getPrimaryDecl(op);
10526 
10527   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
10528     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
10529                                            op->getLocStart()))
10530       return QualType();
10531 
10532   Expr::LValueClassification lval = op->ClassifyLValue(Context);
10533   unsigned AddressOfError = AO_No_Error;
10534 
10535   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
10536     bool sfinae = (bool)isSFINAEContext();
10537     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
10538                                   : diag::ext_typecheck_addrof_temporary)
10539       << op->getType() << op->getSourceRange();
10540     if (sfinae)
10541       return QualType();
10542     // Materialize the temporary as an lvalue so that we can take its address.
10543     OrigOp = op =
10544         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
10545   } else if (isa<ObjCSelectorExpr>(op)) {
10546     return Context.getPointerType(op->getType());
10547   } else if (lval == Expr::LV_MemberFunction) {
10548     // If it's an instance method, make a member pointer.
10549     // The expression must have exactly the form &A::foo.
10550 
10551     // If the underlying expression isn't a decl ref, give up.
10552     if (!isa<DeclRefExpr>(op)) {
10553       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
10554         << OrigOp.get()->getSourceRange();
10555       return QualType();
10556     }
10557     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
10558     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
10559 
10560     // The id-expression was parenthesized.
10561     if (OrigOp.get() != DRE) {
10562       Diag(OpLoc, diag::err_parens_pointer_member_function)
10563         << OrigOp.get()->getSourceRange();
10564 
10565     // The method was named without a qualifier.
10566     } else if (!DRE->getQualifier()) {
10567       if (MD->getParent()->getName().empty())
10568         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
10569           << op->getSourceRange();
10570       else {
10571         SmallString<32> Str;
10572         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
10573         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
10574           << op->getSourceRange()
10575           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
10576       }
10577     }
10578 
10579     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
10580     if (isa<CXXDestructorDecl>(MD))
10581       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
10582 
10583     QualType MPTy = Context.getMemberPointerType(
10584         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
10585     // Under the MS ABI, lock down the inheritance model now.
10586     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
10587       (void)isCompleteType(OpLoc, MPTy);
10588     return MPTy;
10589   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
10590     // C99 6.5.3.2p1
10591     // The operand must be either an l-value or a function designator
10592     if (!op->getType()->isFunctionType()) {
10593       // Use a special diagnostic for loads from property references.
10594       if (isa<PseudoObjectExpr>(op)) {
10595         AddressOfError = AO_Property_Expansion;
10596       } else {
10597         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
10598           << op->getType() << op->getSourceRange();
10599         return QualType();
10600       }
10601     }
10602   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
10603     // The operand cannot be a bit-field
10604     AddressOfError = AO_Bit_Field;
10605   } else if (op->getObjectKind() == OK_VectorComponent) {
10606     // The operand cannot be an element of a vector
10607     AddressOfError = AO_Vector_Element;
10608   } else if (dcl) { // C99 6.5.3.2p1
10609     // We have an lvalue with a decl. Make sure the decl is not declared
10610     // with the register storage-class specifier.
10611     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
10612       // in C++ it is not error to take address of a register
10613       // variable (c++03 7.1.1P3)
10614       if (vd->getStorageClass() == SC_Register &&
10615           !getLangOpts().CPlusPlus) {
10616         AddressOfError = AO_Register_Variable;
10617       }
10618     } else if (isa<MSPropertyDecl>(dcl)) {
10619       AddressOfError = AO_Property_Expansion;
10620     } else if (isa<FunctionTemplateDecl>(dcl)) {
10621       return Context.OverloadTy;
10622     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
10623       // Okay: we can take the address of a field.
10624       // Could be a pointer to member, though, if there is an explicit
10625       // scope qualifier for the class.
10626       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
10627         DeclContext *Ctx = dcl->getDeclContext();
10628         if (Ctx && Ctx->isRecord()) {
10629           if (dcl->getType()->isReferenceType()) {
10630             Diag(OpLoc,
10631                  diag::err_cannot_form_pointer_to_member_of_reference_type)
10632               << dcl->getDeclName() << dcl->getType();
10633             return QualType();
10634           }
10635 
10636           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
10637             Ctx = Ctx->getParent();
10638 
10639           QualType MPTy = Context.getMemberPointerType(
10640               op->getType(),
10641               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
10642           // Under the MS ABI, lock down the inheritance model now.
10643           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
10644             (void)isCompleteType(OpLoc, MPTy);
10645           return MPTy;
10646         }
10647       }
10648     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
10649                !isa<BindingDecl>(dcl))
10650       llvm_unreachable("Unknown/unexpected decl type");
10651   }
10652 
10653   if (AddressOfError != AO_No_Error) {
10654     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
10655     return QualType();
10656   }
10657 
10658   if (lval == Expr::LV_IncompleteVoidType) {
10659     // Taking the address of a void variable is technically illegal, but we
10660     // allow it in cases which are otherwise valid.
10661     // Example: "extern void x; void* y = &x;".
10662     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
10663   }
10664 
10665   // If the operand has type "type", the result has type "pointer to type".
10666   if (op->getType()->isObjCObjectType())
10667     return Context.getObjCObjectPointerType(op->getType());
10668 
10669   CheckAddressOfPackedMember(op);
10670 
10671   return Context.getPointerType(op->getType());
10672 }
10673 
10674 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
10675   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
10676   if (!DRE)
10677     return;
10678   const Decl *D = DRE->getDecl();
10679   if (!D)
10680     return;
10681   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
10682   if (!Param)
10683     return;
10684   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
10685     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
10686       return;
10687   if (FunctionScopeInfo *FD = S.getCurFunction())
10688     if (!FD->ModifiedNonNullParams.count(Param))
10689       FD->ModifiedNonNullParams.insert(Param);
10690 }
10691 
10692 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
10693 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
10694                                         SourceLocation OpLoc) {
10695   if (Op->isTypeDependent())
10696     return S.Context.DependentTy;
10697 
10698   ExprResult ConvResult = S.UsualUnaryConversions(Op);
10699   if (ConvResult.isInvalid())
10700     return QualType();
10701   Op = ConvResult.get();
10702   QualType OpTy = Op->getType();
10703   QualType Result;
10704 
10705   if (isa<CXXReinterpretCastExpr>(Op)) {
10706     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
10707     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
10708                                      Op->getSourceRange());
10709   }
10710 
10711   if (const PointerType *PT = OpTy->getAs<PointerType>())
10712   {
10713     Result = PT->getPointeeType();
10714   }
10715   else if (const ObjCObjectPointerType *OPT =
10716              OpTy->getAs<ObjCObjectPointerType>())
10717     Result = OPT->getPointeeType();
10718   else {
10719     ExprResult PR = S.CheckPlaceholderExpr(Op);
10720     if (PR.isInvalid()) return QualType();
10721     if (PR.get() != Op)
10722       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
10723   }
10724 
10725   if (Result.isNull()) {
10726     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
10727       << OpTy << Op->getSourceRange();
10728     return QualType();
10729   }
10730 
10731   // Note that per both C89 and C99, indirection is always legal, even if Result
10732   // is an incomplete type or void.  It would be possible to warn about
10733   // dereferencing a void pointer, but it's completely well-defined, and such a
10734   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
10735   // for pointers to 'void' but is fine for any other pointer type:
10736   //
10737   // C++ [expr.unary.op]p1:
10738   //   [...] the expression to which [the unary * operator] is applied shall
10739   //   be a pointer to an object type, or a pointer to a function type
10740   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
10741     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
10742       << OpTy << Op->getSourceRange();
10743 
10744   // Dereferences are usually l-values...
10745   VK = VK_LValue;
10746 
10747   // ...except that certain expressions are never l-values in C.
10748   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
10749     VK = VK_RValue;
10750 
10751   return Result;
10752 }
10753 
10754 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
10755   BinaryOperatorKind Opc;
10756   switch (Kind) {
10757   default: llvm_unreachable("Unknown binop!");
10758   case tok::periodstar:           Opc = BO_PtrMemD; break;
10759   case tok::arrowstar:            Opc = BO_PtrMemI; break;
10760   case tok::star:                 Opc = BO_Mul; break;
10761   case tok::slash:                Opc = BO_Div; break;
10762   case tok::percent:              Opc = BO_Rem; break;
10763   case tok::plus:                 Opc = BO_Add; break;
10764   case tok::minus:                Opc = BO_Sub; break;
10765   case tok::lessless:             Opc = BO_Shl; break;
10766   case tok::greatergreater:       Opc = BO_Shr; break;
10767   case tok::lessequal:            Opc = BO_LE; break;
10768   case tok::less:                 Opc = BO_LT; break;
10769   case tok::greaterequal:         Opc = BO_GE; break;
10770   case tok::greater:              Opc = BO_GT; break;
10771   case tok::exclaimequal:         Opc = BO_NE; break;
10772   case tok::equalequal:           Opc = BO_EQ; break;
10773   case tok::amp:                  Opc = BO_And; break;
10774   case tok::caret:                Opc = BO_Xor; break;
10775   case tok::pipe:                 Opc = BO_Or; break;
10776   case tok::ampamp:               Opc = BO_LAnd; break;
10777   case tok::pipepipe:             Opc = BO_LOr; break;
10778   case tok::equal:                Opc = BO_Assign; break;
10779   case tok::starequal:            Opc = BO_MulAssign; break;
10780   case tok::slashequal:           Opc = BO_DivAssign; break;
10781   case tok::percentequal:         Opc = BO_RemAssign; break;
10782   case tok::plusequal:            Opc = BO_AddAssign; break;
10783   case tok::minusequal:           Opc = BO_SubAssign; break;
10784   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
10785   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
10786   case tok::ampequal:             Opc = BO_AndAssign; break;
10787   case tok::caretequal:           Opc = BO_XorAssign; break;
10788   case tok::pipeequal:            Opc = BO_OrAssign; break;
10789   case tok::comma:                Opc = BO_Comma; break;
10790   }
10791   return Opc;
10792 }
10793 
10794 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
10795   tok::TokenKind Kind) {
10796   UnaryOperatorKind Opc;
10797   switch (Kind) {
10798   default: llvm_unreachable("Unknown unary op!");
10799   case tok::plusplus:     Opc = UO_PreInc; break;
10800   case tok::minusminus:   Opc = UO_PreDec; break;
10801   case tok::amp:          Opc = UO_AddrOf; break;
10802   case tok::star:         Opc = UO_Deref; break;
10803   case tok::plus:         Opc = UO_Plus; break;
10804   case tok::minus:        Opc = UO_Minus; break;
10805   case tok::tilde:        Opc = UO_Not; break;
10806   case tok::exclaim:      Opc = UO_LNot; break;
10807   case tok::kw___real:    Opc = UO_Real; break;
10808   case tok::kw___imag:    Opc = UO_Imag; break;
10809   case tok::kw___extension__: Opc = UO_Extension; break;
10810   }
10811   return Opc;
10812 }
10813 
10814 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
10815 /// This warning is only emitted for builtin assignment operations. It is also
10816 /// suppressed in the event of macro expansions.
10817 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
10818                                    SourceLocation OpLoc) {
10819   if (!S.ActiveTemplateInstantiations.empty())
10820     return;
10821   if (OpLoc.isInvalid() || OpLoc.isMacroID())
10822     return;
10823   LHSExpr = LHSExpr->IgnoreParenImpCasts();
10824   RHSExpr = RHSExpr->IgnoreParenImpCasts();
10825   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
10826   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
10827   if (!LHSDeclRef || !RHSDeclRef ||
10828       LHSDeclRef->getLocation().isMacroID() ||
10829       RHSDeclRef->getLocation().isMacroID())
10830     return;
10831   const ValueDecl *LHSDecl =
10832     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
10833   const ValueDecl *RHSDecl =
10834     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
10835   if (LHSDecl != RHSDecl)
10836     return;
10837   if (LHSDecl->getType().isVolatileQualified())
10838     return;
10839   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
10840     if (RefTy->getPointeeType().isVolatileQualified())
10841       return;
10842 
10843   S.Diag(OpLoc, diag::warn_self_assignment)
10844       << LHSDeclRef->getType()
10845       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10846 }
10847 
10848 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
10849 /// is usually indicative of introspection within the Objective-C pointer.
10850 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
10851                                           SourceLocation OpLoc) {
10852   if (!S.getLangOpts().ObjC1)
10853     return;
10854 
10855   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
10856   const Expr *LHS = L.get();
10857   const Expr *RHS = R.get();
10858 
10859   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10860     ObjCPointerExpr = LHS;
10861     OtherExpr = RHS;
10862   }
10863   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10864     ObjCPointerExpr = RHS;
10865     OtherExpr = LHS;
10866   }
10867 
10868   // This warning is deliberately made very specific to reduce false
10869   // positives with logic that uses '&' for hashing.  This logic mainly
10870   // looks for code trying to introspect into tagged pointers, which
10871   // code should generally never do.
10872   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
10873     unsigned Diag = diag::warn_objc_pointer_masking;
10874     // Determine if we are introspecting the result of performSelectorXXX.
10875     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
10876     // Special case messages to -performSelector and friends, which
10877     // can return non-pointer values boxed in a pointer value.
10878     // Some clients may wish to silence warnings in this subcase.
10879     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
10880       Selector S = ME->getSelector();
10881       StringRef SelArg0 = S.getNameForSlot(0);
10882       if (SelArg0.startswith("performSelector"))
10883         Diag = diag::warn_objc_pointer_masking_performSelector;
10884     }
10885 
10886     S.Diag(OpLoc, Diag)
10887       << ObjCPointerExpr->getSourceRange();
10888   }
10889 }
10890 
10891 static NamedDecl *getDeclFromExpr(Expr *E) {
10892   if (!E)
10893     return nullptr;
10894   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
10895     return DRE->getDecl();
10896   if (auto *ME = dyn_cast<MemberExpr>(E))
10897     return ME->getMemberDecl();
10898   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
10899     return IRE->getDecl();
10900   return nullptr;
10901 }
10902 
10903 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
10904 /// operator @p Opc at location @c TokLoc. This routine only supports
10905 /// built-in operations; ActOnBinOp handles overloaded operators.
10906 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
10907                                     BinaryOperatorKind Opc,
10908                                     Expr *LHSExpr, Expr *RHSExpr) {
10909   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
10910     // The syntax only allows initializer lists on the RHS of assignment,
10911     // so we don't need to worry about accepting invalid code for
10912     // non-assignment operators.
10913     // C++11 5.17p9:
10914     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
10915     //   of x = {} is x = T().
10916     InitializationKind Kind =
10917         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
10918     InitializedEntity Entity =
10919         InitializedEntity::InitializeTemporary(LHSExpr->getType());
10920     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
10921     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
10922     if (Init.isInvalid())
10923       return Init;
10924     RHSExpr = Init.get();
10925   }
10926 
10927   ExprResult LHS = LHSExpr, RHS = RHSExpr;
10928   QualType ResultTy;     // Result type of the binary operator.
10929   // The following two variables are used for compound assignment operators
10930   QualType CompLHSTy;    // Type of LHS after promotions for computation
10931   QualType CompResultTy; // Type of computation result
10932   ExprValueKind VK = VK_RValue;
10933   ExprObjectKind OK = OK_Ordinary;
10934 
10935   if (!getLangOpts().CPlusPlus) {
10936     // C cannot handle TypoExpr nodes on either side of a binop because it
10937     // doesn't handle dependent types properly, so make sure any TypoExprs have
10938     // been dealt with before checking the operands.
10939     LHS = CorrectDelayedTyposInExpr(LHSExpr);
10940     RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
10941       if (Opc != BO_Assign)
10942         return ExprResult(E);
10943       // Avoid correcting the RHS to the same Expr as the LHS.
10944       Decl *D = getDeclFromExpr(E);
10945       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
10946     });
10947     if (!LHS.isUsable() || !RHS.isUsable())
10948       return ExprError();
10949   }
10950 
10951   if (getLangOpts().OpenCL) {
10952     QualType LHSTy = LHSExpr->getType();
10953     QualType RHSTy = RHSExpr->getType();
10954     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
10955     // the ATOMIC_VAR_INIT macro.
10956     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
10957       SourceRange SR(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
10958       if (BO_Assign == Opc)
10959         Diag(OpLoc, diag::err_atomic_init_constant) << SR;
10960       else
10961         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
10962       return ExprError();
10963     }
10964 
10965     // OpenCL special types - image, sampler, pipe, and blocks are to be used
10966     // only with a builtin functions and therefore should be disallowed here.
10967     if (LHSTy->isImageType() || RHSTy->isImageType() ||
10968         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
10969         LHSTy->isPipeType() || RHSTy->isPipeType() ||
10970         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
10971       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
10972       return ExprError();
10973     }
10974   }
10975 
10976   switch (Opc) {
10977   case BO_Assign:
10978     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
10979     if (getLangOpts().CPlusPlus &&
10980         LHS.get()->getObjectKind() != OK_ObjCProperty) {
10981       VK = LHS.get()->getValueKind();
10982       OK = LHS.get()->getObjectKind();
10983     }
10984     if (!ResultTy.isNull()) {
10985       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
10986       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
10987     }
10988     RecordModifiableNonNullParam(*this, LHS.get());
10989     break;
10990   case BO_PtrMemD:
10991   case BO_PtrMemI:
10992     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
10993                                             Opc == BO_PtrMemI);
10994     break;
10995   case BO_Mul:
10996   case BO_Div:
10997     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
10998                                            Opc == BO_Div);
10999     break;
11000   case BO_Rem:
11001     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
11002     break;
11003   case BO_Add:
11004     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
11005     break;
11006   case BO_Sub:
11007     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
11008     break;
11009   case BO_Shl:
11010   case BO_Shr:
11011     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
11012     break;
11013   case BO_LE:
11014   case BO_LT:
11015   case BO_GE:
11016   case BO_GT:
11017     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
11018     break;
11019   case BO_EQ:
11020   case BO_NE:
11021     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
11022     break;
11023   case BO_And:
11024     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
11025   case BO_Xor:
11026   case BO_Or:
11027     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
11028     break;
11029   case BO_LAnd:
11030   case BO_LOr:
11031     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
11032     break;
11033   case BO_MulAssign:
11034   case BO_DivAssign:
11035     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
11036                                                Opc == BO_DivAssign);
11037     CompLHSTy = CompResultTy;
11038     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11039       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11040     break;
11041   case BO_RemAssign:
11042     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
11043     CompLHSTy = CompResultTy;
11044     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11045       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11046     break;
11047   case BO_AddAssign:
11048     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
11049     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11050       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11051     break;
11052   case BO_SubAssign:
11053     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
11054     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11055       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11056     break;
11057   case BO_ShlAssign:
11058   case BO_ShrAssign:
11059     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
11060     CompLHSTy = CompResultTy;
11061     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11062       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11063     break;
11064   case BO_AndAssign:
11065   case BO_OrAssign: // fallthrough
11066     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
11067   case BO_XorAssign:
11068     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
11069     CompLHSTy = CompResultTy;
11070     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
11071       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
11072     break;
11073   case BO_Comma:
11074     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
11075     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
11076       VK = RHS.get()->getValueKind();
11077       OK = RHS.get()->getObjectKind();
11078     }
11079     break;
11080   }
11081   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
11082     return ExprError();
11083 
11084   // Check for array bounds violations for both sides of the BinaryOperator
11085   CheckArrayAccess(LHS.get());
11086   CheckArrayAccess(RHS.get());
11087 
11088   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
11089     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
11090                                                  &Context.Idents.get("object_setClass"),
11091                                                  SourceLocation(), LookupOrdinaryName);
11092     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
11093       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getLocEnd());
11094       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
11095       FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
11096       FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
11097       FixItHint::CreateInsertion(RHSLocEnd, ")");
11098     }
11099     else
11100       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
11101   }
11102   else if (const ObjCIvarRefExpr *OIRE =
11103            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
11104     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
11105 
11106   if (CompResultTy.isNull())
11107     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
11108                                         OK, OpLoc, FPFeatures.fp_contract);
11109   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
11110       OK_ObjCProperty) {
11111     VK = VK_LValue;
11112     OK = LHS.get()->getObjectKind();
11113   }
11114   return new (Context) CompoundAssignOperator(
11115       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
11116       OpLoc, FPFeatures.fp_contract);
11117 }
11118 
11119 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
11120 /// operators are mixed in a way that suggests that the programmer forgot that
11121 /// comparison operators have higher precedence. The most typical example of
11122 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
11123 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
11124                                       SourceLocation OpLoc, Expr *LHSExpr,
11125                                       Expr *RHSExpr) {
11126   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
11127   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
11128 
11129   // Check that one of the sides is a comparison operator and the other isn't.
11130   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
11131   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
11132   if (isLeftComp == isRightComp)
11133     return;
11134 
11135   // Bitwise operations are sometimes used as eager logical ops.
11136   // Don't diagnose this.
11137   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
11138   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
11139   if (isLeftBitwise || isRightBitwise)
11140     return;
11141 
11142   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
11143                                                    OpLoc)
11144                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
11145   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
11146   SourceRange ParensRange = isLeftComp ?
11147       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
11148     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
11149 
11150   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
11151     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
11152   SuggestParentheses(Self, OpLoc,
11153     Self.PDiag(diag::note_precedence_silence) << OpStr,
11154     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
11155   SuggestParentheses(Self, OpLoc,
11156     Self.PDiag(diag::note_precedence_bitwise_first)
11157       << BinaryOperator::getOpcodeStr(Opc),
11158     ParensRange);
11159 }
11160 
11161 /// \brief It accepts a '&&' expr that is inside a '||' one.
11162 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
11163 /// in parentheses.
11164 static void
11165 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
11166                                        BinaryOperator *Bop) {
11167   assert(Bop->getOpcode() == BO_LAnd);
11168   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
11169       << Bop->getSourceRange() << OpLoc;
11170   SuggestParentheses(Self, Bop->getOperatorLoc(),
11171     Self.PDiag(diag::note_precedence_silence)
11172       << Bop->getOpcodeStr(),
11173     Bop->getSourceRange());
11174 }
11175 
11176 /// \brief Returns true if the given expression can be evaluated as a constant
11177 /// 'true'.
11178 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
11179   bool Res;
11180   return !E->isValueDependent() &&
11181          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
11182 }
11183 
11184 /// \brief Returns true if the given expression can be evaluated as a constant
11185 /// 'false'.
11186 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
11187   bool Res;
11188   return !E->isValueDependent() &&
11189          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
11190 }
11191 
11192 /// \brief Look for '&&' in the left hand of a '||' expr.
11193 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
11194                                              Expr *LHSExpr, Expr *RHSExpr) {
11195   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
11196     if (Bop->getOpcode() == BO_LAnd) {
11197       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
11198       if (EvaluatesAsFalse(S, RHSExpr))
11199         return;
11200       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
11201       if (!EvaluatesAsTrue(S, Bop->getLHS()))
11202         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
11203     } else if (Bop->getOpcode() == BO_LOr) {
11204       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
11205         // If it's "a || b && 1 || c" we didn't warn earlier for
11206         // "a || b && 1", but warn now.
11207         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
11208           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
11209       }
11210     }
11211   }
11212 }
11213 
11214 /// \brief Look for '&&' in the right hand of a '||' expr.
11215 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
11216                                              Expr *LHSExpr, Expr *RHSExpr) {
11217   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
11218     if (Bop->getOpcode() == BO_LAnd) {
11219       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
11220       if (EvaluatesAsFalse(S, LHSExpr))
11221         return;
11222       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
11223       if (!EvaluatesAsTrue(S, Bop->getRHS()))
11224         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
11225     }
11226   }
11227 }
11228 
11229 /// \brief Look for bitwise op in the left or right hand of a bitwise op with
11230 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
11231 /// the '&' expression in parentheses.
11232 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
11233                                          SourceLocation OpLoc, Expr *SubExpr) {
11234   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
11235     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
11236       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
11237         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
11238         << Bop->getSourceRange() << OpLoc;
11239       SuggestParentheses(S, Bop->getOperatorLoc(),
11240         S.PDiag(diag::note_precedence_silence)
11241           << Bop->getOpcodeStr(),
11242         Bop->getSourceRange());
11243     }
11244   }
11245 }
11246 
11247 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
11248                                     Expr *SubExpr, StringRef Shift) {
11249   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
11250     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
11251       StringRef Op = Bop->getOpcodeStr();
11252       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
11253           << Bop->getSourceRange() << OpLoc << Shift << Op;
11254       SuggestParentheses(S, Bop->getOperatorLoc(),
11255           S.PDiag(diag::note_precedence_silence) << Op,
11256           Bop->getSourceRange());
11257     }
11258   }
11259 }
11260 
11261 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
11262                                  Expr *LHSExpr, Expr *RHSExpr) {
11263   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
11264   if (!OCE)
11265     return;
11266 
11267   FunctionDecl *FD = OCE->getDirectCallee();
11268   if (!FD || !FD->isOverloadedOperator())
11269     return;
11270 
11271   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
11272   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
11273     return;
11274 
11275   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
11276       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
11277       << (Kind == OO_LessLess);
11278   SuggestParentheses(S, OCE->getOperatorLoc(),
11279                      S.PDiag(diag::note_precedence_silence)
11280                          << (Kind == OO_LessLess ? "<<" : ">>"),
11281                      OCE->getSourceRange());
11282   SuggestParentheses(S, OpLoc,
11283                      S.PDiag(diag::note_evaluate_comparison_first),
11284                      SourceRange(OCE->getArg(1)->getLocStart(),
11285                                  RHSExpr->getLocEnd()));
11286 }
11287 
11288 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
11289 /// precedence.
11290 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
11291                                     SourceLocation OpLoc, Expr *LHSExpr,
11292                                     Expr *RHSExpr){
11293   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
11294   if (BinaryOperator::isBitwiseOp(Opc))
11295     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
11296 
11297   // Diagnose "arg1 & arg2 | arg3"
11298   if ((Opc == BO_Or || Opc == BO_Xor) &&
11299       !OpLoc.isMacroID()/* Don't warn in macros. */) {
11300     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
11301     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
11302   }
11303 
11304   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
11305   // We don't warn for 'assert(a || b && "bad")' since this is safe.
11306   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
11307     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
11308     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
11309   }
11310 
11311   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
11312       || Opc == BO_Shr) {
11313     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
11314     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
11315     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
11316   }
11317 
11318   // Warn on overloaded shift operators and comparisons, such as:
11319   // cout << 5 == 4;
11320   if (BinaryOperator::isComparisonOp(Opc))
11321     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
11322 }
11323 
11324 // Binary Operators.  'Tok' is the token for the operator.
11325 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
11326                             tok::TokenKind Kind,
11327                             Expr *LHSExpr, Expr *RHSExpr) {
11328   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
11329   assert(LHSExpr && "ActOnBinOp(): missing left expression");
11330   assert(RHSExpr && "ActOnBinOp(): missing right expression");
11331 
11332   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
11333   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
11334 
11335   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
11336 }
11337 
11338 /// Build an overloaded binary operator expression in the given scope.
11339 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
11340                                        BinaryOperatorKind Opc,
11341                                        Expr *LHS, Expr *RHS) {
11342   // Find all of the overloaded operators visible from this
11343   // point. We perform both an operator-name lookup from the local
11344   // scope and an argument-dependent lookup based on the types of
11345   // the arguments.
11346   UnresolvedSet<16> Functions;
11347   OverloadedOperatorKind OverOp
11348     = BinaryOperator::getOverloadedOperator(Opc);
11349   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
11350     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
11351                                    RHS->getType(), Functions);
11352 
11353   // Build the (potentially-overloaded, potentially-dependent)
11354   // binary operation.
11355   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
11356 }
11357 
11358 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
11359                             BinaryOperatorKind Opc,
11360                             Expr *LHSExpr, Expr *RHSExpr) {
11361   // We want to end up calling one of checkPseudoObjectAssignment
11362   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
11363   // both expressions are overloadable or either is type-dependent),
11364   // or CreateBuiltinBinOp (in any other case).  We also want to get
11365   // any placeholder types out of the way.
11366 
11367   // Handle pseudo-objects in the LHS.
11368   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
11369     // Assignments with a pseudo-object l-value need special analysis.
11370     if (pty->getKind() == BuiltinType::PseudoObject &&
11371         BinaryOperator::isAssignmentOp(Opc))
11372       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
11373 
11374     // Don't resolve overloads if the other type is overloadable.
11375     if (pty->getKind() == BuiltinType::Overload) {
11376       // We can't actually test that if we still have a placeholder,
11377       // though.  Fortunately, none of the exceptions we see in that
11378       // code below are valid when the LHS is an overload set.  Note
11379       // that an overload set can be dependently-typed, but it never
11380       // instantiates to having an overloadable type.
11381       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
11382       if (resolvedRHS.isInvalid()) return ExprError();
11383       RHSExpr = resolvedRHS.get();
11384 
11385       if (RHSExpr->isTypeDependent() ||
11386           RHSExpr->getType()->isOverloadableType())
11387         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11388     }
11389 
11390     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
11391     if (LHS.isInvalid()) return ExprError();
11392     LHSExpr = LHS.get();
11393   }
11394 
11395   // Handle pseudo-objects in the RHS.
11396   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
11397     // An overload in the RHS can potentially be resolved by the type
11398     // being assigned to.
11399     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
11400       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
11401         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11402 
11403       if (LHSExpr->getType()->isOverloadableType())
11404         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11405 
11406       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
11407     }
11408 
11409     // Don't resolve overloads if the other type is overloadable.
11410     if (pty->getKind() == BuiltinType::Overload &&
11411         LHSExpr->getType()->isOverloadableType())
11412       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11413 
11414     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
11415     if (!resolvedRHS.isUsable()) return ExprError();
11416     RHSExpr = resolvedRHS.get();
11417   }
11418 
11419   if (getLangOpts().CPlusPlus) {
11420     // If either expression is type-dependent, always build an
11421     // overloaded op.
11422     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
11423       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11424 
11425     // Otherwise, build an overloaded op if either expression has an
11426     // overloadable type.
11427     if (LHSExpr->getType()->isOverloadableType() ||
11428         RHSExpr->getType()->isOverloadableType())
11429       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
11430   }
11431 
11432   // Build a built-in binary operation.
11433   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
11434 }
11435 
11436 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
11437                                       UnaryOperatorKind Opc,
11438                                       Expr *InputExpr) {
11439   ExprResult Input = InputExpr;
11440   ExprValueKind VK = VK_RValue;
11441   ExprObjectKind OK = OK_Ordinary;
11442   QualType resultType;
11443   if (getLangOpts().OpenCL) {
11444     QualType Ty = InputExpr->getType();
11445     // The only legal unary operation for atomics is '&'.
11446     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
11447     // OpenCL special types - image, sampler, pipe, and blocks are to be used
11448     // only with a builtin functions and therefore should be disallowed here.
11449         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
11450         || Ty->isBlockPointerType())) {
11451       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11452                        << InputExpr->getType()
11453                        << Input.get()->getSourceRange());
11454     }
11455   }
11456   switch (Opc) {
11457   case UO_PreInc:
11458   case UO_PreDec:
11459   case UO_PostInc:
11460   case UO_PostDec:
11461     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
11462                                                 OpLoc,
11463                                                 Opc == UO_PreInc ||
11464                                                 Opc == UO_PostInc,
11465                                                 Opc == UO_PreInc ||
11466                                                 Opc == UO_PreDec);
11467     break;
11468   case UO_AddrOf:
11469     resultType = CheckAddressOfOperand(Input, OpLoc);
11470     RecordModifiableNonNullParam(*this, InputExpr);
11471     break;
11472   case UO_Deref: {
11473     Input = DefaultFunctionArrayLvalueConversion(Input.get());
11474     if (Input.isInvalid()) return ExprError();
11475     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
11476     break;
11477   }
11478   case UO_Plus:
11479   case UO_Minus:
11480     Input = UsualUnaryConversions(Input.get());
11481     if (Input.isInvalid()) return ExprError();
11482     resultType = Input.get()->getType();
11483     if (resultType->isDependentType())
11484       break;
11485     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
11486       break;
11487     else if (resultType->isVectorType() &&
11488              // The z vector extensions don't allow + or - with bool vectors.
11489              (!Context.getLangOpts().ZVector ||
11490               resultType->getAs<VectorType>()->getVectorKind() !=
11491               VectorType::AltiVecBool))
11492       break;
11493     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
11494              Opc == UO_Plus &&
11495              resultType->isPointerType())
11496       break;
11497 
11498     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11499       << resultType << Input.get()->getSourceRange());
11500 
11501   case UO_Not: // bitwise complement
11502     Input = UsualUnaryConversions(Input.get());
11503     if (Input.isInvalid())
11504       return ExprError();
11505     resultType = Input.get()->getType();
11506     if (resultType->isDependentType())
11507       break;
11508     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
11509     if (resultType->isComplexType() || resultType->isComplexIntegerType())
11510       // C99 does not support '~' for complex conjugation.
11511       Diag(OpLoc, diag::ext_integer_complement_complex)
11512           << resultType << Input.get()->getSourceRange();
11513     else if (resultType->hasIntegerRepresentation())
11514       break;
11515     else if (resultType->isExtVectorType()) {
11516       if (Context.getLangOpts().OpenCL) {
11517         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
11518         // on vector float types.
11519         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
11520         if (!T->isIntegerType())
11521           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11522                            << resultType << Input.get()->getSourceRange());
11523       }
11524       break;
11525     } else {
11526       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11527                        << resultType << Input.get()->getSourceRange());
11528     }
11529     break;
11530 
11531   case UO_LNot: // logical negation
11532     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
11533     Input = DefaultFunctionArrayLvalueConversion(Input.get());
11534     if (Input.isInvalid()) return ExprError();
11535     resultType = Input.get()->getType();
11536 
11537     // Though we still have to promote half FP to float...
11538     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
11539       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
11540       resultType = Context.FloatTy;
11541     }
11542 
11543     if (resultType->isDependentType())
11544       break;
11545     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
11546       // C99 6.5.3.3p1: ok, fallthrough;
11547       if (Context.getLangOpts().CPlusPlus) {
11548         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
11549         // operand contextually converted to bool.
11550         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
11551                                   ScalarTypeToBooleanCastKind(resultType));
11552       } else if (Context.getLangOpts().OpenCL &&
11553                  Context.getLangOpts().OpenCLVersion < 120) {
11554         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
11555         // operate on scalar float types.
11556         if (!resultType->isIntegerType())
11557           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11558                            << resultType << Input.get()->getSourceRange());
11559       }
11560     } else if (resultType->isExtVectorType()) {
11561       if (Context.getLangOpts().OpenCL &&
11562           Context.getLangOpts().OpenCLVersion < 120) {
11563         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
11564         // operate on vector float types.
11565         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
11566         if (!T->isIntegerType())
11567           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11568                            << resultType << Input.get()->getSourceRange());
11569       }
11570       // Vector logical not returns the signed variant of the operand type.
11571       resultType = GetSignedVectorType(resultType);
11572       break;
11573     } else {
11574       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
11575         << resultType << Input.get()->getSourceRange());
11576     }
11577 
11578     // LNot always has type int. C99 6.5.3.3p5.
11579     // In C++, it's bool. C++ 5.3.1p8
11580     resultType = Context.getLogicalOperationType();
11581     break;
11582   case UO_Real:
11583   case UO_Imag:
11584     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
11585     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
11586     // complex l-values to ordinary l-values and all other values to r-values.
11587     if (Input.isInvalid()) return ExprError();
11588     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
11589       if (Input.get()->getValueKind() != VK_RValue &&
11590           Input.get()->getObjectKind() == OK_Ordinary)
11591         VK = Input.get()->getValueKind();
11592     } else if (!getLangOpts().CPlusPlus) {
11593       // In C, a volatile scalar is read by __imag. In C++, it is not.
11594       Input = DefaultLvalueConversion(Input.get());
11595     }
11596     break;
11597   case UO_Extension:
11598   case UO_Coawait:
11599     resultType = Input.get()->getType();
11600     VK = Input.get()->getValueKind();
11601     OK = Input.get()->getObjectKind();
11602     break;
11603   }
11604   if (resultType.isNull() || Input.isInvalid())
11605     return ExprError();
11606 
11607   // Check for array bounds violations in the operand of the UnaryOperator,
11608   // except for the '*' and '&' operators that have to be handled specially
11609   // by CheckArrayAccess (as there are special cases like &array[arraysize]
11610   // that are explicitly defined as valid by the standard).
11611   if (Opc != UO_AddrOf && Opc != UO_Deref)
11612     CheckArrayAccess(Input.get());
11613 
11614   return new (Context)
11615       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
11616 }
11617 
11618 /// \brief Determine whether the given expression is a qualified member
11619 /// access expression, of a form that could be turned into a pointer to member
11620 /// with the address-of operator.
11621 static bool isQualifiedMemberAccess(Expr *E) {
11622   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11623     if (!DRE->getQualifier())
11624       return false;
11625 
11626     ValueDecl *VD = DRE->getDecl();
11627     if (!VD->isCXXClassMember())
11628       return false;
11629 
11630     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
11631       return true;
11632     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
11633       return Method->isInstance();
11634 
11635     return false;
11636   }
11637 
11638   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11639     if (!ULE->getQualifier())
11640       return false;
11641 
11642     for (NamedDecl *D : ULE->decls()) {
11643       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
11644         if (Method->isInstance())
11645           return true;
11646       } else {
11647         // Overload set does not contain methods.
11648         break;
11649       }
11650     }
11651 
11652     return false;
11653   }
11654 
11655   return false;
11656 }
11657 
11658 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
11659                               UnaryOperatorKind Opc, Expr *Input) {
11660   // First things first: handle placeholders so that the
11661   // overloaded-operator check considers the right type.
11662   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
11663     // Increment and decrement of pseudo-object references.
11664     if (pty->getKind() == BuiltinType::PseudoObject &&
11665         UnaryOperator::isIncrementDecrementOp(Opc))
11666       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
11667 
11668     // extension is always a builtin operator.
11669     if (Opc == UO_Extension)
11670       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11671 
11672     // & gets special logic for several kinds of placeholder.
11673     // The builtin code knows what to do.
11674     if (Opc == UO_AddrOf &&
11675         (pty->getKind() == BuiltinType::Overload ||
11676          pty->getKind() == BuiltinType::UnknownAny ||
11677          pty->getKind() == BuiltinType::BoundMember))
11678       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11679 
11680     // Anything else needs to be handled now.
11681     ExprResult Result = CheckPlaceholderExpr(Input);
11682     if (Result.isInvalid()) return ExprError();
11683     Input = Result.get();
11684   }
11685 
11686   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
11687       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
11688       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
11689     // Find all of the overloaded operators visible from this
11690     // point. We perform both an operator-name lookup from the local
11691     // scope and an argument-dependent lookup based on the types of
11692     // the arguments.
11693     UnresolvedSet<16> Functions;
11694     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
11695     if (S && OverOp != OO_None)
11696       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
11697                                    Functions);
11698 
11699     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
11700   }
11701 
11702   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11703 }
11704 
11705 // Unary Operators.  'Tok' is the token for the operator.
11706 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
11707                               tok::TokenKind Op, Expr *Input) {
11708   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
11709 }
11710 
11711 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
11712 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
11713                                 LabelDecl *TheDecl) {
11714   TheDecl->markUsed(Context);
11715   // Create the AST node.  The address of a label always has type 'void*'.
11716   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
11717                                      Context.getPointerType(Context.VoidTy));
11718 }
11719 
11720 /// Given the last statement in a statement-expression, check whether
11721 /// the result is a producing expression (like a call to an
11722 /// ns_returns_retained function) and, if so, rebuild it to hoist the
11723 /// release out of the full-expression.  Otherwise, return null.
11724 /// Cannot fail.
11725 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
11726   // Should always be wrapped with one of these.
11727   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
11728   if (!cleanups) return nullptr;
11729 
11730   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
11731   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
11732     return nullptr;
11733 
11734   // Splice out the cast.  This shouldn't modify any interesting
11735   // features of the statement.
11736   Expr *producer = cast->getSubExpr();
11737   assert(producer->getType() == cast->getType());
11738   assert(producer->getValueKind() == cast->getValueKind());
11739   cleanups->setSubExpr(producer);
11740   return cleanups;
11741 }
11742 
11743 void Sema::ActOnStartStmtExpr() {
11744   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
11745 }
11746 
11747 void Sema::ActOnStmtExprError() {
11748   // Note that function is also called by TreeTransform when leaving a
11749   // StmtExpr scope without rebuilding anything.
11750 
11751   DiscardCleanupsInEvaluationContext();
11752   PopExpressionEvaluationContext();
11753 }
11754 
11755 ExprResult
11756 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
11757                     SourceLocation RPLoc) { // "({..})"
11758   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
11759   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
11760 
11761   if (hasAnyUnrecoverableErrorsInThisFunction())
11762     DiscardCleanupsInEvaluationContext();
11763   assert(!Cleanup.exprNeedsCleanups() &&
11764          "cleanups within StmtExpr not correctly bound!");
11765   PopExpressionEvaluationContext();
11766 
11767   // FIXME: there are a variety of strange constraints to enforce here, for
11768   // example, it is not possible to goto into a stmt expression apparently.
11769   // More semantic analysis is needed.
11770 
11771   // If there are sub-stmts in the compound stmt, take the type of the last one
11772   // as the type of the stmtexpr.
11773   QualType Ty = Context.VoidTy;
11774   bool StmtExprMayBindToTemp = false;
11775   if (!Compound->body_empty()) {
11776     Stmt *LastStmt = Compound->body_back();
11777     LabelStmt *LastLabelStmt = nullptr;
11778     // If LastStmt is a label, skip down through into the body.
11779     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
11780       LastLabelStmt = Label;
11781       LastStmt = Label->getSubStmt();
11782     }
11783 
11784     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
11785       // Do function/array conversion on the last expression, but not
11786       // lvalue-to-rvalue.  However, initialize an unqualified type.
11787       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
11788       if (LastExpr.isInvalid())
11789         return ExprError();
11790       Ty = LastExpr.get()->getType().getUnqualifiedType();
11791 
11792       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
11793         // In ARC, if the final expression ends in a consume, splice
11794         // the consume out and bind it later.  In the alternate case
11795         // (when dealing with a retainable type), the result
11796         // initialization will create a produce.  In both cases the
11797         // result will be +1, and we'll need to balance that out with
11798         // a bind.
11799         if (Expr *rebuiltLastStmt
11800               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
11801           LastExpr = rebuiltLastStmt;
11802         } else {
11803           LastExpr = PerformCopyInitialization(
11804                             InitializedEntity::InitializeResult(LPLoc,
11805                                                                 Ty,
11806                                                                 false),
11807                                                    SourceLocation(),
11808                                                LastExpr);
11809         }
11810 
11811         if (LastExpr.isInvalid())
11812           return ExprError();
11813         if (LastExpr.get() != nullptr) {
11814           if (!LastLabelStmt)
11815             Compound->setLastStmt(LastExpr.get());
11816           else
11817             LastLabelStmt->setSubStmt(LastExpr.get());
11818           StmtExprMayBindToTemp = true;
11819         }
11820       }
11821     }
11822   }
11823 
11824   // FIXME: Check that expression type is complete/non-abstract; statement
11825   // expressions are not lvalues.
11826   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
11827   if (StmtExprMayBindToTemp)
11828     return MaybeBindToTemporary(ResStmtExpr);
11829   return ResStmtExpr;
11830 }
11831 
11832 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
11833                                       TypeSourceInfo *TInfo,
11834                                       ArrayRef<OffsetOfComponent> Components,
11835                                       SourceLocation RParenLoc) {
11836   QualType ArgTy = TInfo->getType();
11837   bool Dependent = ArgTy->isDependentType();
11838   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
11839 
11840   // We must have at least one component that refers to the type, and the first
11841   // one is known to be a field designator.  Verify that the ArgTy represents
11842   // a struct/union/class.
11843   if (!Dependent && !ArgTy->isRecordType())
11844     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
11845                        << ArgTy << TypeRange);
11846 
11847   // Type must be complete per C99 7.17p3 because a declaring a variable
11848   // with an incomplete type would be ill-formed.
11849   if (!Dependent
11850       && RequireCompleteType(BuiltinLoc, ArgTy,
11851                              diag::err_offsetof_incomplete_type, TypeRange))
11852     return ExprError();
11853 
11854   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
11855   // GCC extension, diagnose them.
11856   // FIXME: This diagnostic isn't actually visible because the location is in
11857   // a system header!
11858   if (Components.size() != 1)
11859     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
11860       << SourceRange(Components[1].LocStart, Components.back().LocEnd);
11861 
11862   bool DidWarnAboutNonPOD = false;
11863   QualType CurrentType = ArgTy;
11864   SmallVector<OffsetOfNode, 4> Comps;
11865   SmallVector<Expr*, 4> Exprs;
11866   for (const OffsetOfComponent &OC : Components) {
11867     if (OC.isBrackets) {
11868       // Offset of an array sub-field.  TODO: Should we allow vector elements?
11869       if (!CurrentType->isDependentType()) {
11870         const ArrayType *AT = Context.getAsArrayType(CurrentType);
11871         if(!AT)
11872           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
11873                            << CurrentType);
11874         CurrentType = AT->getElementType();
11875       } else
11876         CurrentType = Context.DependentTy;
11877 
11878       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
11879       if (IdxRval.isInvalid())
11880         return ExprError();
11881       Expr *Idx = IdxRval.get();
11882 
11883       // The expression must be an integral expression.
11884       // FIXME: An integral constant expression?
11885       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
11886           !Idx->getType()->isIntegerType())
11887         return ExprError(Diag(Idx->getLocStart(),
11888                               diag::err_typecheck_subscript_not_integer)
11889                          << Idx->getSourceRange());
11890 
11891       // Record this array index.
11892       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
11893       Exprs.push_back(Idx);
11894       continue;
11895     }
11896 
11897     // Offset of a field.
11898     if (CurrentType->isDependentType()) {
11899       // We have the offset of a field, but we can't look into the dependent
11900       // type. Just record the identifier of the field.
11901       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
11902       CurrentType = Context.DependentTy;
11903       continue;
11904     }
11905 
11906     // We need to have a complete type to look into.
11907     if (RequireCompleteType(OC.LocStart, CurrentType,
11908                             diag::err_offsetof_incomplete_type))
11909       return ExprError();
11910 
11911     // Look for the designated field.
11912     const RecordType *RC = CurrentType->getAs<RecordType>();
11913     if (!RC)
11914       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
11915                        << CurrentType);
11916     RecordDecl *RD = RC->getDecl();
11917 
11918     // C++ [lib.support.types]p5:
11919     //   The macro offsetof accepts a restricted set of type arguments in this
11920     //   International Standard. type shall be a POD structure or a POD union
11921     //   (clause 9).
11922     // C++11 [support.types]p4:
11923     //   If type is not a standard-layout class (Clause 9), the results are
11924     //   undefined.
11925     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
11926       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
11927       unsigned DiagID =
11928         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
11929                             : diag::ext_offsetof_non_pod_type;
11930 
11931       if (!IsSafe && !DidWarnAboutNonPOD &&
11932           DiagRuntimeBehavior(BuiltinLoc, nullptr,
11933                               PDiag(DiagID)
11934                               << SourceRange(Components[0].LocStart, OC.LocEnd)
11935                               << CurrentType))
11936         DidWarnAboutNonPOD = true;
11937     }
11938 
11939     // Look for the field.
11940     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
11941     LookupQualifiedName(R, RD);
11942     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
11943     IndirectFieldDecl *IndirectMemberDecl = nullptr;
11944     if (!MemberDecl) {
11945       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
11946         MemberDecl = IndirectMemberDecl->getAnonField();
11947     }
11948 
11949     if (!MemberDecl)
11950       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
11951                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
11952                                                               OC.LocEnd));
11953 
11954     // C99 7.17p3:
11955     //   (If the specified member is a bit-field, the behavior is undefined.)
11956     //
11957     // We diagnose this as an error.
11958     if (MemberDecl->isBitField()) {
11959       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
11960         << MemberDecl->getDeclName()
11961         << SourceRange(BuiltinLoc, RParenLoc);
11962       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
11963       return ExprError();
11964     }
11965 
11966     RecordDecl *Parent = MemberDecl->getParent();
11967     if (IndirectMemberDecl)
11968       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
11969 
11970     // If the member was found in a base class, introduce OffsetOfNodes for
11971     // the base class indirections.
11972     CXXBasePaths Paths;
11973     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
11974                       Paths)) {
11975       if (Paths.getDetectedVirtual()) {
11976         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
11977           << MemberDecl->getDeclName()
11978           << SourceRange(BuiltinLoc, RParenLoc);
11979         return ExprError();
11980       }
11981 
11982       CXXBasePath &Path = Paths.front();
11983       for (const CXXBasePathElement &B : Path)
11984         Comps.push_back(OffsetOfNode(B.Base));
11985     }
11986 
11987     if (IndirectMemberDecl) {
11988       for (auto *FI : IndirectMemberDecl->chain()) {
11989         assert(isa<FieldDecl>(FI));
11990         Comps.push_back(OffsetOfNode(OC.LocStart,
11991                                      cast<FieldDecl>(FI), OC.LocEnd));
11992       }
11993     } else
11994       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
11995 
11996     CurrentType = MemberDecl->getType().getNonReferenceType();
11997   }
11998 
11999   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
12000                               Comps, Exprs, RParenLoc);
12001 }
12002 
12003 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
12004                                       SourceLocation BuiltinLoc,
12005                                       SourceLocation TypeLoc,
12006                                       ParsedType ParsedArgTy,
12007                                       ArrayRef<OffsetOfComponent> Components,
12008                                       SourceLocation RParenLoc) {
12009 
12010   TypeSourceInfo *ArgTInfo;
12011   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
12012   if (ArgTy.isNull())
12013     return ExprError();
12014 
12015   if (!ArgTInfo)
12016     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
12017 
12018   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
12019 }
12020 
12021 
12022 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
12023                                  Expr *CondExpr,
12024                                  Expr *LHSExpr, Expr *RHSExpr,
12025                                  SourceLocation RPLoc) {
12026   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
12027 
12028   ExprValueKind VK = VK_RValue;
12029   ExprObjectKind OK = OK_Ordinary;
12030   QualType resType;
12031   bool ValueDependent = false;
12032   bool CondIsTrue = false;
12033   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
12034     resType = Context.DependentTy;
12035     ValueDependent = true;
12036   } else {
12037     // The conditional expression is required to be a constant expression.
12038     llvm::APSInt condEval(32);
12039     ExprResult CondICE
12040       = VerifyIntegerConstantExpression(CondExpr, &condEval,
12041           diag::err_typecheck_choose_expr_requires_constant, false);
12042     if (CondICE.isInvalid())
12043       return ExprError();
12044     CondExpr = CondICE.get();
12045     CondIsTrue = condEval.getZExtValue();
12046 
12047     // If the condition is > zero, then the AST type is the same as the LSHExpr.
12048     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
12049 
12050     resType = ActiveExpr->getType();
12051     ValueDependent = ActiveExpr->isValueDependent();
12052     VK = ActiveExpr->getValueKind();
12053     OK = ActiveExpr->getObjectKind();
12054   }
12055 
12056   return new (Context)
12057       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
12058                  CondIsTrue, resType->isDependentType(), ValueDependent);
12059 }
12060 
12061 //===----------------------------------------------------------------------===//
12062 // Clang Extensions.
12063 //===----------------------------------------------------------------------===//
12064 
12065 /// ActOnBlockStart - This callback is invoked when a block literal is started.
12066 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
12067   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
12068 
12069   if (LangOpts.CPlusPlus) {
12070     Decl *ManglingContextDecl;
12071     if (MangleNumberingContext *MCtx =
12072             getCurrentMangleNumberContext(Block->getDeclContext(),
12073                                           ManglingContextDecl)) {
12074       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
12075       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
12076     }
12077   }
12078 
12079   PushBlockScope(CurScope, Block);
12080   CurContext->addDecl(Block);
12081   if (CurScope)
12082     PushDeclContext(CurScope, Block);
12083   else
12084     CurContext = Block;
12085 
12086   getCurBlock()->HasImplicitReturnType = true;
12087 
12088   // Enter a new evaluation context to insulate the block from any
12089   // cleanups from the enclosing full-expression.
12090   PushExpressionEvaluationContext(PotentiallyEvaluated);
12091 }
12092 
12093 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
12094                                Scope *CurScope) {
12095   assert(ParamInfo.getIdentifier() == nullptr &&
12096          "block-id should have no identifier!");
12097   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
12098   BlockScopeInfo *CurBlock = getCurBlock();
12099 
12100   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
12101   QualType T = Sig->getType();
12102 
12103   // FIXME: We should allow unexpanded parameter packs here, but that would,
12104   // in turn, make the block expression contain unexpanded parameter packs.
12105   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
12106     // Drop the parameters.
12107     FunctionProtoType::ExtProtoInfo EPI;
12108     EPI.HasTrailingReturn = false;
12109     EPI.TypeQuals |= DeclSpec::TQ_const;
12110     T = Context.getFunctionType(Context.DependentTy, None, EPI);
12111     Sig = Context.getTrivialTypeSourceInfo(T);
12112   }
12113 
12114   // GetTypeForDeclarator always produces a function type for a block
12115   // literal signature.  Furthermore, it is always a FunctionProtoType
12116   // unless the function was written with a typedef.
12117   assert(T->isFunctionType() &&
12118          "GetTypeForDeclarator made a non-function block signature");
12119 
12120   // Look for an explicit signature in that function type.
12121   FunctionProtoTypeLoc ExplicitSignature;
12122 
12123   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
12124   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
12125 
12126     // Check whether that explicit signature was synthesized by
12127     // GetTypeForDeclarator.  If so, don't save that as part of the
12128     // written signature.
12129     if (ExplicitSignature.getLocalRangeBegin() ==
12130         ExplicitSignature.getLocalRangeEnd()) {
12131       // This would be much cheaper if we stored TypeLocs instead of
12132       // TypeSourceInfos.
12133       TypeLoc Result = ExplicitSignature.getReturnLoc();
12134       unsigned Size = Result.getFullDataSize();
12135       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
12136       Sig->getTypeLoc().initializeFullCopy(Result, Size);
12137 
12138       ExplicitSignature = FunctionProtoTypeLoc();
12139     }
12140   }
12141 
12142   CurBlock->TheDecl->setSignatureAsWritten(Sig);
12143   CurBlock->FunctionType = T;
12144 
12145   const FunctionType *Fn = T->getAs<FunctionType>();
12146   QualType RetTy = Fn->getReturnType();
12147   bool isVariadic =
12148     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
12149 
12150   CurBlock->TheDecl->setIsVariadic(isVariadic);
12151 
12152   // Context.DependentTy is used as a placeholder for a missing block
12153   // return type.  TODO:  what should we do with declarators like:
12154   //   ^ * { ... }
12155   // If the answer is "apply template argument deduction"....
12156   if (RetTy != Context.DependentTy) {
12157     CurBlock->ReturnType = RetTy;
12158     CurBlock->TheDecl->setBlockMissingReturnType(false);
12159     CurBlock->HasImplicitReturnType = false;
12160   }
12161 
12162   // Push block parameters from the declarator if we had them.
12163   SmallVector<ParmVarDecl*, 8> Params;
12164   if (ExplicitSignature) {
12165     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
12166       ParmVarDecl *Param = ExplicitSignature.getParam(I);
12167       if (Param->getIdentifier() == nullptr &&
12168           !Param->isImplicit() &&
12169           !Param->isInvalidDecl() &&
12170           !getLangOpts().CPlusPlus)
12171         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
12172       Params.push_back(Param);
12173     }
12174 
12175   // Fake up parameter variables if we have a typedef, like
12176   //   ^ fntype { ... }
12177   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
12178     for (const auto &I : Fn->param_types()) {
12179       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
12180           CurBlock->TheDecl, ParamInfo.getLocStart(), I);
12181       Params.push_back(Param);
12182     }
12183   }
12184 
12185   // Set the parameters on the block decl.
12186   if (!Params.empty()) {
12187     CurBlock->TheDecl->setParams(Params);
12188     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
12189                              /*CheckParameterNames=*/false);
12190   }
12191 
12192   // Finally we can process decl attributes.
12193   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
12194 
12195   // Put the parameter variables in scope.
12196   for (auto AI : CurBlock->TheDecl->parameters()) {
12197     AI->setOwningFunction(CurBlock->TheDecl);
12198 
12199     // If this has an identifier, add it to the scope stack.
12200     if (AI->getIdentifier()) {
12201       CheckShadow(CurBlock->TheScope, AI);
12202 
12203       PushOnScopeChains(AI, CurBlock->TheScope);
12204     }
12205   }
12206 }
12207 
12208 /// ActOnBlockError - If there is an error parsing a block, this callback
12209 /// is invoked to pop the information about the block from the action impl.
12210 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
12211   // Leave the expression-evaluation context.
12212   DiscardCleanupsInEvaluationContext();
12213   PopExpressionEvaluationContext();
12214 
12215   // Pop off CurBlock, handle nested blocks.
12216   PopDeclContext();
12217   PopFunctionScopeInfo();
12218 }
12219 
12220 /// ActOnBlockStmtExpr - This is called when the body of a block statement
12221 /// literal was successfully completed.  ^(int x){...}
12222 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
12223                                     Stmt *Body, Scope *CurScope) {
12224   // If blocks are disabled, emit an error.
12225   if (!LangOpts.Blocks)
12226     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
12227 
12228   // Leave the expression-evaluation context.
12229   if (hasAnyUnrecoverableErrorsInThisFunction())
12230     DiscardCleanupsInEvaluationContext();
12231   assert(!Cleanup.exprNeedsCleanups() &&
12232          "cleanups within block not correctly bound!");
12233   PopExpressionEvaluationContext();
12234 
12235   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
12236 
12237   if (BSI->HasImplicitReturnType)
12238     deduceClosureReturnType(*BSI);
12239 
12240   PopDeclContext();
12241 
12242   QualType RetTy = Context.VoidTy;
12243   if (!BSI->ReturnType.isNull())
12244     RetTy = BSI->ReturnType;
12245 
12246   bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
12247   QualType BlockTy;
12248 
12249   // Set the captured variables on the block.
12250   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
12251   SmallVector<BlockDecl::Capture, 4> Captures;
12252   for (CapturingScopeInfo::Capture &Cap : BSI->Captures) {
12253     if (Cap.isThisCapture())
12254       continue;
12255     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
12256                               Cap.isNested(), Cap.getInitExpr());
12257     Captures.push_back(NewCap);
12258   }
12259   BSI->TheDecl->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
12260 
12261   // If the user wrote a function type in some form, try to use that.
12262   if (!BSI->FunctionType.isNull()) {
12263     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
12264 
12265     FunctionType::ExtInfo Ext = FTy->getExtInfo();
12266     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
12267 
12268     // Turn protoless block types into nullary block types.
12269     if (isa<FunctionNoProtoType>(FTy)) {
12270       FunctionProtoType::ExtProtoInfo EPI;
12271       EPI.ExtInfo = Ext;
12272       BlockTy = Context.getFunctionType(RetTy, None, EPI);
12273 
12274     // Otherwise, if we don't need to change anything about the function type,
12275     // preserve its sugar structure.
12276     } else if (FTy->getReturnType() == RetTy &&
12277                (!NoReturn || FTy->getNoReturnAttr())) {
12278       BlockTy = BSI->FunctionType;
12279 
12280     // Otherwise, make the minimal modifications to the function type.
12281     } else {
12282       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
12283       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12284       EPI.TypeQuals = 0; // FIXME: silently?
12285       EPI.ExtInfo = Ext;
12286       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
12287     }
12288 
12289   // If we don't have a function type, just build one from nothing.
12290   } else {
12291     FunctionProtoType::ExtProtoInfo EPI;
12292     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
12293     BlockTy = Context.getFunctionType(RetTy, None, EPI);
12294   }
12295 
12296   DiagnoseUnusedParameters(BSI->TheDecl->parameters());
12297   BlockTy = Context.getBlockPointerType(BlockTy);
12298 
12299   // If needed, diagnose invalid gotos and switches in the block.
12300   if (getCurFunction()->NeedsScopeChecking() &&
12301       !PP.isCodeCompletionEnabled())
12302     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
12303 
12304   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
12305 
12306   // Try to apply the named return value optimization. We have to check again
12307   // if we can do this, though, because blocks keep return statements around
12308   // to deduce an implicit return type.
12309   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
12310       !BSI->TheDecl->isDependentContext())
12311     computeNRVO(Body, BSI);
12312 
12313   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
12314   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
12315   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
12316 
12317   // If the block isn't obviously global, i.e. it captures anything at
12318   // all, then we need to do a few things in the surrounding context:
12319   if (Result->getBlockDecl()->hasCaptures()) {
12320     // First, this expression has a new cleanup object.
12321     ExprCleanupObjects.push_back(Result->getBlockDecl());
12322     Cleanup.setExprNeedsCleanups(true);
12323 
12324     // It also gets a branch-protected scope if any of the captured
12325     // variables needs destruction.
12326     for (const auto &CI : Result->getBlockDecl()->captures()) {
12327       const VarDecl *var = CI.getVariable();
12328       if (var->getType().isDestructedType() != QualType::DK_none) {
12329         getCurFunction()->setHasBranchProtectedScope();
12330         break;
12331       }
12332     }
12333   }
12334 
12335   return Result;
12336 }
12337 
12338 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
12339                             SourceLocation RPLoc) {
12340   TypeSourceInfo *TInfo;
12341   GetTypeFromParser(Ty, &TInfo);
12342   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
12343 }
12344 
12345 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
12346                                 Expr *E, TypeSourceInfo *TInfo,
12347                                 SourceLocation RPLoc) {
12348   Expr *OrigExpr = E;
12349   bool IsMS = false;
12350 
12351   // CUDA device code does not support varargs.
12352   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
12353     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
12354       CUDAFunctionTarget T = IdentifyCUDATarget(F);
12355       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
12356         return ExprError(Diag(E->getLocStart(), diag::err_va_arg_in_device));
12357     }
12358   }
12359 
12360   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
12361   // as Microsoft ABI on an actual Microsoft platform, where
12362   // __builtin_ms_va_list and __builtin_va_list are the same.)
12363   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
12364       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
12365     QualType MSVaListType = Context.getBuiltinMSVaListType();
12366     if (Context.hasSameType(MSVaListType, E->getType())) {
12367       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
12368         return ExprError();
12369       IsMS = true;
12370     }
12371   }
12372 
12373   // Get the va_list type
12374   QualType VaListType = Context.getBuiltinVaListType();
12375   if (!IsMS) {
12376     if (VaListType->isArrayType()) {
12377       // Deal with implicit array decay; for example, on x86-64,
12378       // va_list is an array, but it's supposed to decay to
12379       // a pointer for va_arg.
12380       VaListType = Context.getArrayDecayedType(VaListType);
12381       // Make sure the input expression also decays appropriately.
12382       ExprResult Result = UsualUnaryConversions(E);
12383       if (Result.isInvalid())
12384         return ExprError();
12385       E = Result.get();
12386     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
12387       // If va_list is a record type and we are compiling in C++ mode,
12388       // check the argument using reference binding.
12389       InitializedEntity Entity = InitializedEntity::InitializeParameter(
12390           Context, Context.getLValueReferenceType(VaListType), false);
12391       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
12392       if (Init.isInvalid())
12393         return ExprError();
12394       E = Init.getAs<Expr>();
12395     } else {
12396       // Otherwise, the va_list argument must be an l-value because
12397       // it is modified by va_arg.
12398       if (!E->isTypeDependent() &&
12399           CheckForModifiableLvalue(E, BuiltinLoc, *this))
12400         return ExprError();
12401     }
12402   }
12403 
12404   if (!IsMS && !E->isTypeDependent() &&
12405       !Context.hasSameType(VaListType, E->getType()))
12406     return ExprError(Diag(E->getLocStart(),
12407                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
12408       << OrigExpr->getType() << E->getSourceRange());
12409 
12410   if (!TInfo->getType()->isDependentType()) {
12411     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
12412                             diag::err_second_parameter_to_va_arg_incomplete,
12413                             TInfo->getTypeLoc()))
12414       return ExprError();
12415 
12416     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
12417                                TInfo->getType(),
12418                                diag::err_second_parameter_to_va_arg_abstract,
12419                                TInfo->getTypeLoc()))
12420       return ExprError();
12421 
12422     if (!TInfo->getType().isPODType(Context)) {
12423       Diag(TInfo->getTypeLoc().getBeginLoc(),
12424            TInfo->getType()->isObjCLifetimeType()
12425              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
12426              : diag::warn_second_parameter_to_va_arg_not_pod)
12427         << TInfo->getType()
12428         << TInfo->getTypeLoc().getSourceRange();
12429     }
12430 
12431     // Check for va_arg where arguments of the given type will be promoted
12432     // (i.e. this va_arg is guaranteed to have undefined behavior).
12433     QualType PromoteType;
12434     if (TInfo->getType()->isPromotableIntegerType()) {
12435       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
12436       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
12437         PromoteType = QualType();
12438     }
12439     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
12440       PromoteType = Context.DoubleTy;
12441     if (!PromoteType.isNull())
12442       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
12443                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
12444                           << TInfo->getType()
12445                           << PromoteType
12446                           << TInfo->getTypeLoc().getSourceRange());
12447   }
12448 
12449   QualType T = TInfo->getType().getNonLValueExprType(Context);
12450   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
12451 }
12452 
12453 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
12454   // The type of __null will be int or long, depending on the size of
12455   // pointers on the target.
12456   QualType Ty;
12457   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
12458   if (pw == Context.getTargetInfo().getIntWidth())
12459     Ty = Context.IntTy;
12460   else if (pw == Context.getTargetInfo().getLongWidth())
12461     Ty = Context.LongTy;
12462   else if (pw == Context.getTargetInfo().getLongLongWidth())
12463     Ty = Context.LongLongTy;
12464   else {
12465     llvm_unreachable("I don't know size of pointer!");
12466   }
12467 
12468   return new (Context) GNUNullExpr(Ty, TokenLoc);
12469 }
12470 
12471 bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
12472                                               bool Diagnose) {
12473   if (!getLangOpts().ObjC1)
12474     return false;
12475 
12476   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
12477   if (!PT)
12478     return false;
12479 
12480   if (!PT->isObjCIdType()) {
12481     // Check if the destination is the 'NSString' interface.
12482     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
12483     if (!ID || !ID->getIdentifier()->isStr("NSString"))
12484       return false;
12485   }
12486 
12487   // Ignore any parens, implicit casts (should only be
12488   // array-to-pointer decays), and not-so-opaque values.  The last is
12489   // important for making this trigger for property assignments.
12490   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
12491   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
12492     if (OV->getSourceExpr())
12493       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
12494 
12495   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
12496   if (!SL || !SL->isAscii())
12497     return false;
12498   if (Diagnose) {
12499     Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
12500       << FixItHint::CreateInsertion(SL->getLocStart(), "@");
12501     Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
12502   }
12503   return true;
12504 }
12505 
12506 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
12507                                               const Expr *SrcExpr) {
12508   if (!DstType->isFunctionPointerType() ||
12509       !SrcExpr->getType()->isFunctionType())
12510     return false;
12511 
12512   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
12513   if (!DRE)
12514     return false;
12515 
12516   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12517   if (!FD)
12518     return false;
12519 
12520   return !S.checkAddressOfFunctionIsAvailable(FD,
12521                                               /*Complain=*/true,
12522                                               SrcExpr->getLocStart());
12523 }
12524 
12525 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
12526                                     SourceLocation Loc,
12527                                     QualType DstType, QualType SrcType,
12528                                     Expr *SrcExpr, AssignmentAction Action,
12529                                     bool *Complained) {
12530   if (Complained)
12531     *Complained = false;
12532 
12533   // Decode the result (notice that AST's are still created for extensions).
12534   bool CheckInferredResultType = false;
12535   bool isInvalid = false;
12536   unsigned DiagKind = 0;
12537   FixItHint Hint;
12538   ConversionFixItGenerator ConvHints;
12539   bool MayHaveConvFixit = false;
12540   bool MayHaveFunctionDiff = false;
12541   const ObjCInterfaceDecl *IFace = nullptr;
12542   const ObjCProtocolDecl *PDecl = nullptr;
12543 
12544   switch (ConvTy) {
12545   case Compatible:
12546       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
12547       return false;
12548 
12549   case PointerToInt:
12550     DiagKind = diag::ext_typecheck_convert_pointer_int;
12551     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12552     MayHaveConvFixit = true;
12553     break;
12554   case IntToPointer:
12555     DiagKind = diag::ext_typecheck_convert_int_pointer;
12556     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12557     MayHaveConvFixit = true;
12558     break;
12559   case IncompatiblePointer:
12560     if (Action == AA_Passing_CFAudited)
12561       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
12562     else if (SrcType->isFunctionPointerType() &&
12563              DstType->isFunctionPointerType())
12564       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
12565     else
12566       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
12567 
12568     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
12569       SrcType->isObjCObjectPointerType();
12570     if (Hint.isNull() && !CheckInferredResultType) {
12571       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12572     }
12573     else if (CheckInferredResultType) {
12574       SrcType = SrcType.getUnqualifiedType();
12575       DstType = DstType.getUnqualifiedType();
12576     }
12577     MayHaveConvFixit = true;
12578     break;
12579   case IncompatiblePointerSign:
12580     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
12581     break;
12582   case FunctionVoidPointer:
12583     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
12584     break;
12585   case IncompatiblePointerDiscardsQualifiers: {
12586     // Perform array-to-pointer decay if necessary.
12587     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
12588 
12589     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
12590     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
12591     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
12592       DiagKind = diag::err_typecheck_incompatible_address_space;
12593       break;
12594 
12595 
12596     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
12597       DiagKind = diag::err_typecheck_incompatible_ownership;
12598       break;
12599     }
12600 
12601     llvm_unreachable("unknown error case for discarding qualifiers!");
12602     // fallthrough
12603   }
12604   case CompatiblePointerDiscardsQualifiers:
12605     // If the qualifiers lost were because we were applying the
12606     // (deprecated) C++ conversion from a string literal to a char*
12607     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
12608     // Ideally, this check would be performed in
12609     // checkPointerTypesForAssignment. However, that would require a
12610     // bit of refactoring (so that the second argument is an
12611     // expression, rather than a type), which should be done as part
12612     // of a larger effort to fix checkPointerTypesForAssignment for
12613     // C++ semantics.
12614     if (getLangOpts().CPlusPlus &&
12615         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
12616       return false;
12617     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
12618     break;
12619   case IncompatibleNestedPointerQualifiers:
12620     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
12621     break;
12622   case IntToBlockPointer:
12623     DiagKind = diag::err_int_to_block_pointer;
12624     break;
12625   case IncompatibleBlockPointer:
12626     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
12627     break;
12628   case IncompatibleObjCQualifiedId: {
12629     if (SrcType->isObjCQualifiedIdType()) {
12630       const ObjCObjectPointerType *srcOPT =
12631                 SrcType->getAs<ObjCObjectPointerType>();
12632       for (auto *srcProto : srcOPT->quals()) {
12633         PDecl = srcProto;
12634         break;
12635       }
12636       if (const ObjCInterfaceType *IFaceT =
12637             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
12638         IFace = IFaceT->getDecl();
12639     }
12640     else if (DstType->isObjCQualifiedIdType()) {
12641       const ObjCObjectPointerType *dstOPT =
12642         DstType->getAs<ObjCObjectPointerType>();
12643       for (auto *dstProto : dstOPT->quals()) {
12644         PDecl = dstProto;
12645         break;
12646       }
12647       if (const ObjCInterfaceType *IFaceT =
12648             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
12649         IFace = IFaceT->getDecl();
12650     }
12651     DiagKind = diag::warn_incompatible_qualified_id;
12652     break;
12653   }
12654   case IncompatibleVectors:
12655     DiagKind = diag::warn_incompatible_vectors;
12656     break;
12657   case IncompatibleObjCWeakRef:
12658     DiagKind = diag::err_arc_weak_unavailable_assign;
12659     break;
12660   case Incompatible:
12661     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
12662       if (Complained)
12663         *Complained = true;
12664       return true;
12665     }
12666 
12667     DiagKind = diag::err_typecheck_convert_incompatible;
12668     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
12669     MayHaveConvFixit = true;
12670     isInvalid = true;
12671     MayHaveFunctionDiff = true;
12672     break;
12673   }
12674 
12675   QualType FirstType, SecondType;
12676   switch (Action) {
12677   case AA_Assigning:
12678   case AA_Initializing:
12679     // The destination type comes first.
12680     FirstType = DstType;
12681     SecondType = SrcType;
12682     break;
12683 
12684   case AA_Returning:
12685   case AA_Passing:
12686   case AA_Passing_CFAudited:
12687   case AA_Converting:
12688   case AA_Sending:
12689   case AA_Casting:
12690     // The source type comes first.
12691     FirstType = SrcType;
12692     SecondType = DstType;
12693     break;
12694   }
12695 
12696   PartialDiagnostic FDiag = PDiag(DiagKind);
12697   if (Action == AA_Passing_CFAudited)
12698     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
12699   else
12700     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
12701 
12702   // If we can fix the conversion, suggest the FixIts.
12703   assert(ConvHints.isNull() || Hint.isNull());
12704   if (!ConvHints.isNull()) {
12705     for (FixItHint &H : ConvHints.Hints)
12706       FDiag << H;
12707   } else {
12708     FDiag << Hint;
12709   }
12710   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
12711 
12712   if (MayHaveFunctionDiff)
12713     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
12714 
12715   Diag(Loc, FDiag);
12716   if (DiagKind == diag::warn_incompatible_qualified_id &&
12717       PDecl && IFace && !IFace->hasDefinition())
12718       Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
12719         << IFace->getName() << PDecl->getName();
12720 
12721   if (SecondType == Context.OverloadTy)
12722     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
12723                               FirstType, /*TakingAddress=*/true);
12724 
12725   if (CheckInferredResultType)
12726     EmitRelatedResultTypeNote(SrcExpr);
12727 
12728   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
12729     EmitRelatedResultTypeNoteForReturn(DstType);
12730 
12731   if (Complained)
12732     *Complained = true;
12733   return isInvalid;
12734 }
12735 
12736 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12737                                                  llvm::APSInt *Result) {
12738   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
12739   public:
12740     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12741       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
12742     }
12743   } Diagnoser;
12744 
12745   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
12746 }
12747 
12748 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12749                                                  llvm::APSInt *Result,
12750                                                  unsigned DiagID,
12751                                                  bool AllowFold) {
12752   class IDDiagnoser : public VerifyICEDiagnoser {
12753     unsigned DiagID;
12754 
12755   public:
12756     IDDiagnoser(unsigned DiagID)
12757       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
12758 
12759     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12760       S.Diag(Loc, DiagID) << SR;
12761     }
12762   } Diagnoser(DiagID);
12763 
12764   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
12765 }
12766 
12767 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
12768                                             SourceRange SR) {
12769   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
12770 }
12771 
12772 ExprResult
12773 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12774                                       VerifyICEDiagnoser &Diagnoser,
12775                                       bool AllowFold) {
12776   SourceLocation DiagLoc = E->getLocStart();
12777 
12778   if (getLangOpts().CPlusPlus11) {
12779     // C++11 [expr.const]p5:
12780     //   If an expression of literal class type is used in a context where an
12781     //   integral constant expression is required, then that class type shall
12782     //   have a single non-explicit conversion function to an integral or
12783     //   unscoped enumeration type
12784     ExprResult Converted;
12785     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
12786     public:
12787       CXX11ConvertDiagnoser(bool Silent)
12788           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
12789                                 Silent, true) {}
12790 
12791       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
12792                                            QualType T) override {
12793         return S.Diag(Loc, diag::err_ice_not_integral) << T;
12794       }
12795 
12796       SemaDiagnosticBuilder diagnoseIncomplete(
12797           Sema &S, SourceLocation Loc, QualType T) override {
12798         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
12799       }
12800 
12801       SemaDiagnosticBuilder diagnoseExplicitConv(
12802           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12803         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
12804       }
12805 
12806       SemaDiagnosticBuilder noteExplicitConv(
12807           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12808         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12809                  << ConvTy->isEnumeralType() << ConvTy;
12810       }
12811 
12812       SemaDiagnosticBuilder diagnoseAmbiguous(
12813           Sema &S, SourceLocation Loc, QualType T) override {
12814         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
12815       }
12816 
12817       SemaDiagnosticBuilder noteAmbiguous(
12818           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12819         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12820                  << ConvTy->isEnumeralType() << ConvTy;
12821       }
12822 
12823       SemaDiagnosticBuilder diagnoseConversion(
12824           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12825         llvm_unreachable("conversion functions are permitted");
12826       }
12827     } ConvertDiagnoser(Diagnoser.Suppress);
12828 
12829     Converted = PerformContextualImplicitConversion(DiagLoc, E,
12830                                                     ConvertDiagnoser);
12831     if (Converted.isInvalid())
12832       return Converted;
12833     E = Converted.get();
12834     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
12835       return ExprError();
12836   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
12837     // An ICE must be of integral or unscoped enumeration type.
12838     if (!Diagnoser.Suppress)
12839       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12840     return ExprError();
12841   }
12842 
12843   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
12844   // in the non-ICE case.
12845   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
12846     if (Result)
12847       *Result = E->EvaluateKnownConstInt(Context);
12848     return E;
12849   }
12850 
12851   Expr::EvalResult EvalResult;
12852   SmallVector<PartialDiagnosticAt, 8> Notes;
12853   EvalResult.Diag = &Notes;
12854 
12855   // Try to evaluate the expression, and produce diagnostics explaining why it's
12856   // not a constant expression as a side-effect.
12857   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
12858                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
12859 
12860   // In C++11, we can rely on diagnostics being produced for any expression
12861   // which is not a constant expression. If no diagnostics were produced, then
12862   // this is a constant expression.
12863   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
12864     if (Result)
12865       *Result = EvalResult.Val.getInt();
12866     return E;
12867   }
12868 
12869   // If our only note is the usual "invalid subexpression" note, just point
12870   // the caret at its location rather than producing an essentially
12871   // redundant note.
12872   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12873         diag::note_invalid_subexpr_in_const_expr) {
12874     DiagLoc = Notes[0].first;
12875     Notes.clear();
12876   }
12877 
12878   if (!Folded || !AllowFold) {
12879     if (!Diagnoser.Suppress) {
12880       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12881       for (const PartialDiagnosticAt &Note : Notes)
12882         Diag(Note.first, Note.second);
12883     }
12884 
12885     return ExprError();
12886   }
12887 
12888   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
12889   for (const PartialDiagnosticAt &Note : Notes)
12890     Diag(Note.first, Note.second);
12891 
12892   if (Result)
12893     *Result = EvalResult.Val.getInt();
12894   return E;
12895 }
12896 
12897 namespace {
12898   // Handle the case where we conclude a expression which we speculatively
12899   // considered to be unevaluated is actually evaluated.
12900   class TransformToPE : public TreeTransform<TransformToPE> {
12901     typedef TreeTransform<TransformToPE> BaseTransform;
12902 
12903   public:
12904     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
12905 
12906     // Make sure we redo semantic analysis
12907     bool AlwaysRebuild() { return true; }
12908 
12909     // Make sure we handle LabelStmts correctly.
12910     // FIXME: This does the right thing, but maybe we need a more general
12911     // fix to TreeTransform?
12912     StmtResult TransformLabelStmt(LabelStmt *S) {
12913       S->getDecl()->setStmt(nullptr);
12914       return BaseTransform::TransformLabelStmt(S);
12915     }
12916 
12917     // We need to special-case DeclRefExprs referring to FieldDecls which
12918     // are not part of a member pointer formation; normal TreeTransforming
12919     // doesn't catch this case because of the way we represent them in the AST.
12920     // FIXME: This is a bit ugly; is it really the best way to handle this
12921     // case?
12922     //
12923     // Error on DeclRefExprs referring to FieldDecls.
12924     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
12925       if (isa<FieldDecl>(E->getDecl()) &&
12926           !SemaRef.isUnevaluatedContext())
12927         return SemaRef.Diag(E->getLocation(),
12928                             diag::err_invalid_non_static_member_use)
12929             << E->getDecl() << E->getSourceRange();
12930 
12931       return BaseTransform::TransformDeclRefExpr(E);
12932     }
12933 
12934     // Exception: filter out member pointer formation
12935     ExprResult TransformUnaryOperator(UnaryOperator *E) {
12936       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
12937         return E;
12938 
12939       return BaseTransform::TransformUnaryOperator(E);
12940     }
12941 
12942     ExprResult TransformLambdaExpr(LambdaExpr *E) {
12943       // Lambdas never need to be transformed.
12944       return E;
12945     }
12946   };
12947 }
12948 
12949 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
12950   assert(isUnevaluatedContext() &&
12951          "Should only transform unevaluated expressions");
12952   ExprEvalContexts.back().Context =
12953       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
12954   if (isUnevaluatedContext())
12955     return E;
12956   return TransformToPE(*this).TransformExpr(E);
12957 }
12958 
12959 void
12960 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12961                                       Decl *LambdaContextDecl,
12962                                       bool IsDecltype) {
12963   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
12964                                 LambdaContextDecl, IsDecltype);
12965   Cleanup.reset();
12966   if (!MaybeODRUseExprs.empty())
12967     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
12968 }
12969 
12970 void
12971 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12972                                       ReuseLambdaContextDecl_t,
12973                                       bool IsDecltype) {
12974   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
12975   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
12976 }
12977 
12978 void Sema::PopExpressionEvaluationContext() {
12979   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
12980   unsigned NumTypos = Rec.NumTypos;
12981 
12982   if (!Rec.Lambdas.empty()) {
12983     if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
12984       unsigned D;
12985       if (Rec.isUnevaluated()) {
12986         // C++11 [expr.prim.lambda]p2:
12987         //   A lambda-expression shall not appear in an unevaluated operand
12988         //   (Clause 5).
12989         D = diag::err_lambda_unevaluated_operand;
12990       } else {
12991         // C++1y [expr.const]p2:
12992         //   A conditional-expression e is a core constant expression unless the
12993         //   evaluation of e, following the rules of the abstract machine, would
12994         //   evaluate [...] a lambda-expression.
12995         D = diag::err_lambda_in_constant_expression;
12996       }
12997       for (const auto *L : Rec.Lambdas)
12998         Diag(L->getLocStart(), D);
12999     } else {
13000       // Mark the capture expressions odr-used. This was deferred
13001       // during lambda expression creation.
13002       for (auto *Lambda : Rec.Lambdas) {
13003         for (auto *C : Lambda->capture_inits())
13004           MarkDeclarationsReferencedInExpr(C);
13005       }
13006     }
13007   }
13008 
13009   // When are coming out of an unevaluated context, clear out any
13010   // temporaries that we may have created as part of the evaluation of
13011   // the expression in that context: they aren't relevant because they
13012   // will never be constructed.
13013   if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
13014     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
13015                              ExprCleanupObjects.end());
13016     Cleanup = Rec.ParentCleanup;
13017     CleanupVarDeclMarking();
13018     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
13019   // Otherwise, merge the contexts together.
13020   } else {
13021     Cleanup.mergeFrom(Rec.ParentCleanup);
13022     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
13023                             Rec.SavedMaybeODRUseExprs.end());
13024   }
13025 
13026   // Pop the current expression evaluation context off the stack.
13027   ExprEvalContexts.pop_back();
13028 
13029   if (!ExprEvalContexts.empty())
13030     ExprEvalContexts.back().NumTypos += NumTypos;
13031   else
13032     assert(NumTypos == 0 && "There are outstanding typos after popping the "
13033                             "last ExpressionEvaluationContextRecord");
13034 }
13035 
13036 void Sema::DiscardCleanupsInEvaluationContext() {
13037   ExprCleanupObjects.erase(
13038          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
13039          ExprCleanupObjects.end());
13040   Cleanup.reset();
13041   MaybeODRUseExprs.clear();
13042 }
13043 
13044 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
13045   if (!E->getType()->isVariablyModifiedType())
13046     return E;
13047   return TransformToPotentiallyEvaluated(E);
13048 }
13049 
13050 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
13051   // Do not mark anything as "used" within a dependent context; wait for
13052   // an instantiation.
13053   if (SemaRef.CurContext->isDependentContext())
13054     return false;
13055 
13056   switch (SemaRef.ExprEvalContexts.back().Context) {
13057     case Sema::Unevaluated:
13058     case Sema::UnevaluatedAbstract:
13059       // We are in an expression that is not potentially evaluated; do nothing.
13060       // (Depending on how you read the standard, we actually do need to do
13061       // something here for null pointer constants, but the standard's
13062       // definition of a null pointer constant is completely crazy.)
13063       return false;
13064 
13065     case Sema::DiscardedStatement:
13066       // These are technically a potentially evaluated but they have the effect
13067       // of suppressing use marking.
13068       return false;
13069 
13070     case Sema::ConstantEvaluated:
13071     case Sema::PotentiallyEvaluated:
13072       // We are in a potentially evaluated expression (or a constant-expression
13073       // in C++03); we need to do implicit template instantiation, implicitly
13074       // define class members, and mark most declarations as used.
13075       return true;
13076 
13077     case Sema::PotentiallyEvaluatedIfUsed:
13078       // Referenced declarations will only be used if the construct in the
13079       // containing expression is used.
13080       return false;
13081   }
13082   llvm_unreachable("Invalid context");
13083 }
13084 
13085 /// \brief Mark a function referenced, and check whether it is odr-used
13086 /// (C++ [basic.def.odr]p2, C99 6.9p3)
13087 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
13088                                   bool MightBeOdrUse) {
13089   assert(Func && "No function?");
13090 
13091   Func->setReferenced();
13092 
13093   // C++11 [basic.def.odr]p3:
13094   //   A function whose name appears as a potentially-evaluated expression is
13095   //   odr-used if it is the unique lookup result or the selected member of a
13096   //   set of overloaded functions [...].
13097   //
13098   // We (incorrectly) mark overload resolution as an unevaluated context, so we
13099   // can just check that here.
13100   bool OdrUse = MightBeOdrUse && IsPotentiallyEvaluatedContext(*this);
13101 
13102   // Determine whether we require a function definition to exist, per
13103   // C++11 [temp.inst]p3:
13104   //   Unless a function template specialization has been explicitly
13105   //   instantiated or explicitly specialized, the function template
13106   //   specialization is implicitly instantiated when the specialization is
13107   //   referenced in a context that requires a function definition to exist.
13108   //
13109   // We consider constexpr function templates to be referenced in a context
13110   // that requires a definition to exist whenever they are referenced.
13111   //
13112   // FIXME: This instantiates constexpr functions too frequently. If this is
13113   // really an unevaluated context (and we're not just in the definition of a
13114   // function template or overload resolution or other cases which we
13115   // incorrectly consider to be unevaluated contexts), and we're not in a
13116   // subexpression which we actually need to evaluate (for instance, a
13117   // template argument, array bound or an expression in a braced-init-list),
13118   // we are not permitted to instantiate this constexpr function definition.
13119   //
13120   // FIXME: This also implicitly defines special members too frequently. They
13121   // are only supposed to be implicitly defined if they are odr-used, but they
13122   // are not odr-used from constant expressions in unevaluated contexts.
13123   // However, they cannot be referenced if they are deleted, and they are
13124   // deleted whenever the implicit definition of the special member would
13125   // fail (with very few exceptions).
13126   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
13127   bool NeedDefinition =
13128       OdrUse || (Func->isConstexpr() && (Func->isImplicitlyInstantiable() ||
13129                                          (MD && !MD->isUserProvided())));
13130 
13131   // C++14 [temp.expl.spec]p6:
13132   //   If a template [...] is explicitly specialized then that specialization
13133   //   shall be declared before the first use of that specialization that would
13134   //   cause an implicit instantiation to take place, in every translation unit
13135   //   in which such a use occurs
13136   if (NeedDefinition &&
13137       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
13138        Func->getMemberSpecializationInfo()))
13139     checkSpecializationVisibility(Loc, Func);
13140 
13141   // If we don't need to mark the function as used, and we don't need to
13142   // try to provide a definition, there's nothing more to do.
13143   if ((Func->isUsed(/*CheckUsedAttr=*/false) || !OdrUse) &&
13144       (!NeedDefinition || Func->getBody()))
13145     return;
13146 
13147   // Note that this declaration has been used.
13148   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
13149     Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
13150     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
13151       if (Constructor->isDefaultConstructor()) {
13152         if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
13153           return;
13154         DefineImplicitDefaultConstructor(Loc, Constructor);
13155       } else if (Constructor->isCopyConstructor()) {
13156         DefineImplicitCopyConstructor(Loc, Constructor);
13157       } else if (Constructor->isMoveConstructor()) {
13158         DefineImplicitMoveConstructor(Loc, Constructor);
13159       }
13160     } else if (Constructor->getInheritedConstructor()) {
13161       DefineInheritingConstructor(Loc, Constructor);
13162     }
13163   } else if (CXXDestructorDecl *Destructor =
13164                  dyn_cast<CXXDestructorDecl>(Func)) {
13165     Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
13166     if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
13167       if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
13168         return;
13169       DefineImplicitDestructor(Loc, Destructor);
13170     }
13171     if (Destructor->isVirtual() && getLangOpts().AppleKext)
13172       MarkVTableUsed(Loc, Destructor->getParent());
13173   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
13174     if (MethodDecl->isOverloadedOperator() &&
13175         MethodDecl->getOverloadedOperator() == OO_Equal) {
13176       MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
13177       if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
13178         if (MethodDecl->isCopyAssignmentOperator())
13179           DefineImplicitCopyAssignment(Loc, MethodDecl);
13180         else if (MethodDecl->isMoveAssignmentOperator())
13181           DefineImplicitMoveAssignment(Loc, MethodDecl);
13182       }
13183     } else if (isa<CXXConversionDecl>(MethodDecl) &&
13184                MethodDecl->getParent()->isLambda()) {
13185       CXXConversionDecl *Conversion =
13186           cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
13187       if (Conversion->isLambdaToBlockPointerConversion())
13188         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
13189       else
13190         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
13191     } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
13192       MarkVTableUsed(Loc, MethodDecl->getParent());
13193   }
13194 
13195   // Recursive functions should be marked when used from another function.
13196   // FIXME: Is this really right?
13197   if (CurContext == Func) return;
13198 
13199   // Resolve the exception specification for any function which is
13200   // used: CodeGen will need it.
13201   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
13202   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
13203     ResolveExceptionSpec(Loc, FPT);
13204 
13205   // Implicit instantiation of function templates and member functions of
13206   // class templates.
13207   if (Func->isImplicitlyInstantiable()) {
13208     bool AlreadyInstantiated = false;
13209     SourceLocation PointOfInstantiation = Loc;
13210     if (FunctionTemplateSpecializationInfo *SpecInfo
13211                               = Func->getTemplateSpecializationInfo()) {
13212       if (SpecInfo->getPointOfInstantiation().isInvalid())
13213         SpecInfo->setPointOfInstantiation(Loc);
13214       else if (SpecInfo->getTemplateSpecializationKind()
13215                  == TSK_ImplicitInstantiation) {
13216         AlreadyInstantiated = true;
13217         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
13218       }
13219     } else if (MemberSpecializationInfo *MSInfo
13220                                 = Func->getMemberSpecializationInfo()) {
13221       if (MSInfo->getPointOfInstantiation().isInvalid())
13222         MSInfo->setPointOfInstantiation(Loc);
13223       else if (MSInfo->getTemplateSpecializationKind()
13224                  == TSK_ImplicitInstantiation) {
13225         AlreadyInstantiated = true;
13226         PointOfInstantiation = MSInfo->getPointOfInstantiation();
13227       }
13228     }
13229 
13230     if (!AlreadyInstantiated || Func->isConstexpr()) {
13231       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
13232           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
13233           ActiveTemplateInstantiations.size())
13234         PendingLocalImplicitInstantiations.push_back(
13235             std::make_pair(Func, PointOfInstantiation));
13236       else if (Func->isConstexpr())
13237         // Do not defer instantiations of constexpr functions, to avoid the
13238         // expression evaluator needing to call back into Sema if it sees a
13239         // call to such a function.
13240         InstantiateFunctionDefinition(PointOfInstantiation, Func);
13241       else {
13242         PendingInstantiations.push_back(std::make_pair(Func,
13243                                                        PointOfInstantiation));
13244         // Notify the consumer that a function was implicitly instantiated.
13245         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
13246       }
13247     }
13248   } else {
13249     // Walk redefinitions, as some of them may be instantiable.
13250     for (auto i : Func->redecls()) {
13251       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
13252         MarkFunctionReferenced(Loc, i, OdrUse);
13253     }
13254   }
13255 
13256   if (!OdrUse) return;
13257 
13258   // Keep track of used but undefined functions.
13259   if (!Func->isDefined()) {
13260     if (mightHaveNonExternalLinkage(Func))
13261       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
13262     else if (Func->getMostRecentDecl()->isInlined() &&
13263              !LangOpts.GNUInline &&
13264              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
13265       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
13266   }
13267 
13268   Func->markUsed(Context);
13269 }
13270 
13271 static void
13272 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
13273                                    ValueDecl *var, DeclContext *DC) {
13274   DeclContext *VarDC = var->getDeclContext();
13275 
13276   //  If the parameter still belongs to the translation unit, then
13277   //  we're actually just using one parameter in the declaration of
13278   //  the next.
13279   if (isa<ParmVarDecl>(var) &&
13280       isa<TranslationUnitDecl>(VarDC))
13281     return;
13282 
13283   // For C code, don't diagnose about capture if we're not actually in code
13284   // right now; it's impossible to write a non-constant expression outside of
13285   // function context, so we'll get other (more useful) diagnostics later.
13286   //
13287   // For C++, things get a bit more nasty... it would be nice to suppress this
13288   // diagnostic for certain cases like using a local variable in an array bound
13289   // for a member of a local class, but the correct predicate is not obvious.
13290   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
13291     return;
13292 
13293   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
13294   unsigned ContextKind = 3; // unknown
13295   if (isa<CXXMethodDecl>(VarDC) &&
13296       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
13297     ContextKind = 2;
13298   } else if (isa<FunctionDecl>(VarDC)) {
13299     ContextKind = 0;
13300   } else if (isa<BlockDecl>(VarDC)) {
13301     ContextKind = 1;
13302   }
13303 
13304   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
13305     << var << ValueKind << ContextKind << VarDC;
13306   S.Diag(var->getLocation(), diag::note_entity_declared_at)
13307       << var;
13308 
13309   // FIXME: Add additional diagnostic info about class etc. which prevents
13310   // capture.
13311 }
13312 
13313 
13314 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
13315                                       bool &SubCapturesAreNested,
13316                                       QualType &CaptureType,
13317                                       QualType &DeclRefType) {
13318    // Check whether we've already captured it.
13319   if (CSI->CaptureMap.count(Var)) {
13320     // If we found a capture, any subcaptures are nested.
13321     SubCapturesAreNested = true;
13322 
13323     // Retrieve the capture type for this variable.
13324     CaptureType = CSI->getCapture(Var).getCaptureType();
13325 
13326     // Compute the type of an expression that refers to this variable.
13327     DeclRefType = CaptureType.getNonReferenceType();
13328 
13329     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
13330     // are mutable in the sense that user can change their value - they are
13331     // private instances of the captured declarations.
13332     const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
13333     if (Cap.isCopyCapture() &&
13334         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
13335         !(isa<CapturedRegionScopeInfo>(CSI) &&
13336           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
13337       DeclRefType.addConst();
13338     return true;
13339   }
13340   return false;
13341 }
13342 
13343 // Only block literals, captured statements, and lambda expressions can
13344 // capture; other scopes don't work.
13345 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
13346                                  SourceLocation Loc,
13347                                  const bool Diagnose, Sema &S) {
13348   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
13349     return getLambdaAwareParentOfDeclContext(DC);
13350   else if (Var->hasLocalStorage()) {
13351     if (Diagnose)
13352        diagnoseUncapturableValueReference(S, Loc, Var, DC);
13353   }
13354   return nullptr;
13355 }
13356 
13357 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
13358 // certain types of variables (unnamed, variably modified types etc.)
13359 // so check for eligibility.
13360 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
13361                                  SourceLocation Loc,
13362                                  const bool Diagnose, Sema &S) {
13363 
13364   bool IsBlock = isa<BlockScopeInfo>(CSI);
13365   bool IsLambda = isa<LambdaScopeInfo>(CSI);
13366 
13367   // Lambdas are not allowed to capture unnamed variables
13368   // (e.g. anonymous unions).
13369   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
13370   // assuming that's the intent.
13371   if (IsLambda && !Var->getDeclName()) {
13372     if (Diagnose) {
13373       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
13374       S.Diag(Var->getLocation(), diag::note_declared_at);
13375     }
13376     return false;
13377   }
13378 
13379   // Prohibit variably-modified types in blocks; they're difficult to deal with.
13380   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
13381     if (Diagnose) {
13382       S.Diag(Loc, diag::err_ref_vm_type);
13383       S.Diag(Var->getLocation(), diag::note_previous_decl)
13384         << Var->getDeclName();
13385     }
13386     return false;
13387   }
13388   // Prohibit structs with flexible array members too.
13389   // We cannot capture what is in the tail end of the struct.
13390   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
13391     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
13392       if (Diagnose) {
13393         if (IsBlock)
13394           S.Diag(Loc, diag::err_ref_flexarray_type);
13395         else
13396           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
13397             << Var->getDeclName();
13398         S.Diag(Var->getLocation(), diag::note_previous_decl)
13399           << Var->getDeclName();
13400       }
13401       return false;
13402     }
13403   }
13404   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
13405   // Lambdas and captured statements are not allowed to capture __block
13406   // variables; they don't support the expected semantics.
13407   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
13408     if (Diagnose) {
13409       S.Diag(Loc, diag::err_capture_block_variable)
13410         << Var->getDeclName() << !IsLambda;
13411       S.Diag(Var->getLocation(), diag::note_previous_decl)
13412         << Var->getDeclName();
13413     }
13414     return false;
13415   }
13416 
13417   return true;
13418 }
13419 
13420 // Returns true if the capture by block was successful.
13421 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
13422                                  SourceLocation Loc,
13423                                  const bool BuildAndDiagnose,
13424                                  QualType &CaptureType,
13425                                  QualType &DeclRefType,
13426                                  const bool Nested,
13427                                  Sema &S) {
13428   Expr *CopyExpr = nullptr;
13429   bool ByRef = false;
13430 
13431   // Blocks are not allowed to capture arrays.
13432   if (CaptureType->isArrayType()) {
13433     if (BuildAndDiagnose) {
13434       S.Diag(Loc, diag::err_ref_array_type);
13435       S.Diag(Var->getLocation(), diag::note_previous_decl)
13436       << Var->getDeclName();
13437     }
13438     return false;
13439   }
13440 
13441   // Forbid the block-capture of autoreleasing variables.
13442   if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
13443     if (BuildAndDiagnose) {
13444       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
13445         << /*block*/ 0;
13446       S.Diag(Var->getLocation(), diag::note_previous_decl)
13447         << Var->getDeclName();
13448     }
13449     return false;
13450   }
13451   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
13452   if (HasBlocksAttr || CaptureType->isReferenceType() ||
13453       (S.getLangOpts().OpenMP && S.IsOpenMPCapturedDecl(Var))) {
13454     // Block capture by reference does not change the capture or
13455     // declaration reference types.
13456     ByRef = true;
13457   } else {
13458     // Block capture by copy introduces 'const'.
13459     CaptureType = CaptureType.getNonReferenceType().withConst();
13460     DeclRefType = CaptureType;
13461 
13462     if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
13463       if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
13464         // The capture logic needs the destructor, so make sure we mark it.
13465         // Usually this is unnecessary because most local variables have
13466         // their destructors marked at declaration time, but parameters are
13467         // an exception because it's technically only the call site that
13468         // actually requires the destructor.
13469         if (isa<ParmVarDecl>(Var))
13470           S.FinalizeVarWithDestructor(Var, Record);
13471 
13472         // Enter a new evaluation context to insulate the copy
13473         // full-expression.
13474         EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
13475 
13476         // According to the blocks spec, the capture of a variable from
13477         // the stack requires a const copy constructor.  This is not true
13478         // of the copy/move done to move a __block variable to the heap.
13479         Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
13480                                                   DeclRefType.withConst(),
13481                                                   VK_LValue, Loc);
13482 
13483         ExprResult Result
13484           = S.PerformCopyInitialization(
13485               InitializedEntity::InitializeBlock(Var->getLocation(),
13486                                                   CaptureType, false),
13487               Loc, DeclRef);
13488 
13489         // Build a full-expression copy expression if initialization
13490         // succeeded and used a non-trivial constructor.  Recover from
13491         // errors by pretending that the copy isn't necessary.
13492         if (!Result.isInvalid() &&
13493             !cast<CXXConstructExpr>(Result.get())->getConstructor()
13494                 ->isTrivial()) {
13495           Result = S.MaybeCreateExprWithCleanups(Result);
13496           CopyExpr = Result.get();
13497         }
13498       }
13499     }
13500   }
13501 
13502   // Actually capture the variable.
13503   if (BuildAndDiagnose)
13504     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
13505                     SourceLocation(), CaptureType, CopyExpr);
13506 
13507   return true;
13508 
13509 }
13510 
13511 
13512 /// \brief Capture the given variable in the captured region.
13513 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
13514                                     VarDecl *Var,
13515                                     SourceLocation Loc,
13516                                     const bool BuildAndDiagnose,
13517                                     QualType &CaptureType,
13518                                     QualType &DeclRefType,
13519                                     const bool RefersToCapturedVariable,
13520                                     Sema &S) {
13521   // By default, capture variables by reference.
13522   bool ByRef = true;
13523   // Using an LValue reference type is consistent with Lambdas (see below).
13524   if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
13525     if (S.IsOpenMPCapturedDecl(Var))
13526       DeclRefType = DeclRefType.getUnqualifiedType();
13527     ByRef = S.IsOpenMPCapturedByRef(Var, RSI->OpenMPLevel);
13528   }
13529 
13530   if (ByRef)
13531     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
13532   else
13533     CaptureType = DeclRefType;
13534 
13535   Expr *CopyExpr = nullptr;
13536   if (BuildAndDiagnose) {
13537     // The current implementation assumes that all variables are captured
13538     // by references. Since there is no capture by copy, no expression
13539     // evaluation will be needed.
13540     RecordDecl *RD = RSI->TheRecordDecl;
13541 
13542     FieldDecl *Field
13543       = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
13544                           S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
13545                           nullptr, false, ICIS_NoInit);
13546     Field->setImplicit(true);
13547     Field->setAccess(AS_private);
13548     RD->addDecl(Field);
13549 
13550     CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
13551                                             DeclRefType, VK_LValue, Loc);
13552     Var->setReferenced(true);
13553     Var->markUsed(S.Context);
13554   }
13555 
13556   // Actually capture the variable.
13557   if (BuildAndDiagnose)
13558     RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
13559                     SourceLocation(), CaptureType, CopyExpr);
13560 
13561 
13562   return true;
13563 }
13564 
13565 /// \brief Create a field within the lambda class for the variable
13566 /// being captured.
13567 static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI,
13568                                     QualType FieldType, QualType DeclRefType,
13569                                     SourceLocation Loc,
13570                                     bool RefersToCapturedVariable) {
13571   CXXRecordDecl *Lambda = LSI->Lambda;
13572 
13573   // Build the non-static data member.
13574   FieldDecl *Field
13575     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
13576                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
13577                         nullptr, false, ICIS_NoInit);
13578   Field->setImplicit(true);
13579   Field->setAccess(AS_private);
13580   Lambda->addDecl(Field);
13581 }
13582 
13583 /// \brief Capture the given variable in the lambda.
13584 static bool captureInLambda(LambdaScopeInfo *LSI,
13585                             VarDecl *Var,
13586                             SourceLocation Loc,
13587                             const bool BuildAndDiagnose,
13588                             QualType &CaptureType,
13589                             QualType &DeclRefType,
13590                             const bool RefersToCapturedVariable,
13591                             const Sema::TryCaptureKind Kind,
13592                             SourceLocation EllipsisLoc,
13593                             const bool IsTopScope,
13594                             Sema &S) {
13595 
13596   // Determine whether we are capturing by reference or by value.
13597   bool ByRef = false;
13598   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
13599     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
13600   } else {
13601     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
13602   }
13603 
13604   // Compute the type of the field that will capture this variable.
13605   if (ByRef) {
13606     // C++11 [expr.prim.lambda]p15:
13607     //   An entity is captured by reference if it is implicitly or
13608     //   explicitly captured but not captured by copy. It is
13609     //   unspecified whether additional unnamed non-static data
13610     //   members are declared in the closure type for entities
13611     //   captured by reference.
13612     //
13613     // FIXME: It is not clear whether we want to build an lvalue reference
13614     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
13615     // to do the former, while EDG does the latter. Core issue 1249 will
13616     // clarify, but for now we follow GCC because it's a more permissive and
13617     // easily defensible position.
13618     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
13619   } else {
13620     // C++11 [expr.prim.lambda]p14:
13621     //   For each entity captured by copy, an unnamed non-static
13622     //   data member is declared in the closure type. The
13623     //   declaration order of these members is unspecified. The type
13624     //   of such a data member is the type of the corresponding
13625     //   captured entity if the entity is not a reference to an
13626     //   object, or the referenced type otherwise. [Note: If the
13627     //   captured entity is a reference to a function, the
13628     //   corresponding data member is also a reference to a
13629     //   function. - end note ]
13630     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
13631       if (!RefType->getPointeeType()->isFunctionType())
13632         CaptureType = RefType->getPointeeType();
13633     }
13634 
13635     // Forbid the lambda copy-capture of autoreleasing variables.
13636     if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
13637       if (BuildAndDiagnose) {
13638         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
13639         S.Diag(Var->getLocation(), diag::note_previous_decl)
13640           << Var->getDeclName();
13641       }
13642       return false;
13643     }
13644 
13645     // Make sure that by-copy captures are of a complete and non-abstract type.
13646     if (BuildAndDiagnose) {
13647       if (!CaptureType->isDependentType() &&
13648           S.RequireCompleteType(Loc, CaptureType,
13649                                 diag::err_capture_of_incomplete_type,
13650                                 Var->getDeclName()))
13651         return false;
13652 
13653       if (S.RequireNonAbstractType(Loc, CaptureType,
13654                                    diag::err_capture_of_abstract_type))
13655         return false;
13656     }
13657   }
13658 
13659   // Capture this variable in the lambda.
13660   if (BuildAndDiagnose)
13661     addAsFieldToClosureType(S, LSI, CaptureType, DeclRefType, Loc,
13662                             RefersToCapturedVariable);
13663 
13664   // Compute the type of a reference to this captured variable.
13665   if (ByRef)
13666     DeclRefType = CaptureType.getNonReferenceType();
13667   else {
13668     // C++ [expr.prim.lambda]p5:
13669     //   The closure type for a lambda-expression has a public inline
13670     //   function call operator [...]. This function call operator is
13671     //   declared const (9.3.1) if and only if the lambda-expression's
13672     //   parameter-declaration-clause is not followed by mutable.
13673     DeclRefType = CaptureType.getNonReferenceType();
13674     if (!LSI->Mutable && !CaptureType->isReferenceType())
13675       DeclRefType.addConst();
13676   }
13677 
13678   // Add the capture.
13679   if (BuildAndDiagnose)
13680     LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
13681                     Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
13682 
13683   return true;
13684 }
13685 
13686 bool Sema::tryCaptureVariable(
13687     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
13688     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
13689     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
13690   // An init-capture is notionally from the context surrounding its
13691   // declaration, but its parent DC is the lambda class.
13692   DeclContext *VarDC = Var->getDeclContext();
13693   if (Var->isInitCapture())
13694     VarDC = VarDC->getParent();
13695 
13696   DeclContext *DC = CurContext;
13697   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
13698       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
13699   // We need to sync up the Declaration Context with the
13700   // FunctionScopeIndexToStopAt
13701   if (FunctionScopeIndexToStopAt) {
13702     unsigned FSIndex = FunctionScopes.size() - 1;
13703     while (FSIndex != MaxFunctionScopesIndex) {
13704       DC = getLambdaAwareParentOfDeclContext(DC);
13705       --FSIndex;
13706     }
13707   }
13708 
13709 
13710   // If the variable is declared in the current context, there is no need to
13711   // capture it.
13712   if (VarDC == DC) return true;
13713 
13714   // Capture global variables if it is required to use private copy of this
13715   // variable.
13716   bool IsGlobal = !Var->hasLocalStorage();
13717   if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedDecl(Var)))
13718     return true;
13719 
13720   // Walk up the stack to determine whether we can capture the variable,
13721   // performing the "simple" checks that don't depend on type. We stop when
13722   // we've either hit the declared scope of the variable or find an existing
13723   // capture of that variable.  We start from the innermost capturing-entity
13724   // (the DC) and ensure that all intervening capturing-entities
13725   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
13726   // declcontext can either capture the variable or have already captured
13727   // the variable.
13728   CaptureType = Var->getType();
13729   DeclRefType = CaptureType.getNonReferenceType();
13730   bool Nested = false;
13731   bool Explicit = (Kind != TryCapture_Implicit);
13732   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
13733   do {
13734     // Only block literals, captured statements, and lambda expressions can
13735     // capture; other scopes don't work.
13736     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
13737                                                               ExprLoc,
13738                                                               BuildAndDiagnose,
13739                                                               *this);
13740     // We need to check for the parent *first* because, if we *have*
13741     // private-captured a global variable, we need to recursively capture it in
13742     // intermediate blocks, lambdas, etc.
13743     if (!ParentDC) {
13744       if (IsGlobal) {
13745         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
13746         break;
13747       }
13748       return true;
13749     }
13750 
13751     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
13752     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
13753 
13754 
13755     // Check whether we've already captured it.
13756     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
13757                                              DeclRefType))
13758       break;
13759     // If we are instantiating a generic lambda call operator body,
13760     // we do not want to capture new variables.  What was captured
13761     // during either a lambdas transformation or initial parsing
13762     // should be used.
13763     if (isGenericLambdaCallOperatorSpecialization(DC)) {
13764       if (BuildAndDiagnose) {
13765         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13766         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
13767           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13768           Diag(Var->getLocation(), diag::note_previous_decl)
13769              << Var->getDeclName();
13770           Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
13771         } else
13772           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
13773       }
13774       return true;
13775     }
13776     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
13777     // certain types of variables (unnamed, variably modified types etc.)
13778     // so check for eligibility.
13779     if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
13780        return true;
13781 
13782     // Try to capture variable-length arrays types.
13783     if (Var->getType()->isVariablyModifiedType()) {
13784       // We're going to walk down into the type and look for VLA
13785       // expressions.
13786       QualType QTy = Var->getType();
13787       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
13788         QTy = PVD->getOriginalType();
13789       captureVariablyModifiedType(Context, QTy, CSI);
13790     }
13791 
13792     if (getLangOpts().OpenMP) {
13793       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13794         // OpenMP private variables should not be captured in outer scope, so
13795         // just break here. Similarly, global variables that are captured in a
13796         // target region should not be captured outside the scope of the region.
13797         if (RSI->CapRegionKind == CR_OpenMP) {
13798           auto IsTargetCap = isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
13799           // When we detect target captures we are looking from inside the
13800           // target region, therefore we need to propagate the capture from the
13801           // enclosing region. Therefore, the capture is not initially nested.
13802           if (IsTargetCap)
13803             FunctionScopesIndex--;
13804 
13805           if (IsTargetCap || isOpenMPPrivateDecl(Var, RSI->OpenMPLevel)) {
13806             Nested = !IsTargetCap;
13807             DeclRefType = DeclRefType.getUnqualifiedType();
13808             CaptureType = Context.getLValueReferenceType(DeclRefType);
13809             break;
13810           }
13811         }
13812       }
13813     }
13814     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
13815       // No capture-default, and this is not an explicit capture
13816       // so cannot capture this variable.
13817       if (BuildAndDiagnose) {
13818         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13819         Diag(Var->getLocation(), diag::note_previous_decl)
13820           << Var->getDeclName();
13821         if (cast<LambdaScopeInfo>(CSI)->Lambda)
13822           Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
13823                diag::note_lambda_decl);
13824         // FIXME: If we error out because an outer lambda can not implicitly
13825         // capture a variable that an inner lambda explicitly captures, we
13826         // should have the inner lambda do the explicit capture - because
13827         // it makes for cleaner diagnostics later.  This would purely be done
13828         // so that the diagnostic does not misleadingly claim that a variable
13829         // can not be captured by a lambda implicitly even though it is captured
13830         // explicitly.  Suggestion:
13831         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
13832         //    at the function head
13833         //  - cache the StartingDeclContext - this must be a lambda
13834         //  - captureInLambda in the innermost lambda the variable.
13835       }
13836       return true;
13837     }
13838 
13839     FunctionScopesIndex--;
13840     DC = ParentDC;
13841     Explicit = false;
13842   } while (!VarDC->Equals(DC));
13843 
13844   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
13845   // computing the type of the capture at each step, checking type-specific
13846   // requirements, and adding captures if requested.
13847   // If the variable had already been captured previously, we start capturing
13848   // at the lambda nested within that one.
13849   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
13850        ++I) {
13851     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
13852 
13853     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
13854       if (!captureInBlock(BSI, Var, ExprLoc,
13855                           BuildAndDiagnose, CaptureType,
13856                           DeclRefType, Nested, *this))
13857         return true;
13858       Nested = true;
13859     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13860       if (!captureInCapturedRegion(RSI, Var, ExprLoc,
13861                                    BuildAndDiagnose, CaptureType,
13862                                    DeclRefType, Nested, *this))
13863         return true;
13864       Nested = true;
13865     } else {
13866       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13867       if (!captureInLambda(LSI, Var, ExprLoc,
13868                            BuildAndDiagnose, CaptureType,
13869                            DeclRefType, Nested, Kind, EllipsisLoc,
13870                             /*IsTopScope*/I == N - 1, *this))
13871         return true;
13872       Nested = true;
13873     }
13874   }
13875   return false;
13876 }
13877 
13878 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
13879                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
13880   QualType CaptureType;
13881   QualType DeclRefType;
13882   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
13883                             /*BuildAndDiagnose=*/true, CaptureType,
13884                             DeclRefType, nullptr);
13885 }
13886 
13887 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
13888   QualType CaptureType;
13889   QualType DeclRefType;
13890   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13891                              /*BuildAndDiagnose=*/false, CaptureType,
13892                              DeclRefType, nullptr);
13893 }
13894 
13895 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
13896   QualType CaptureType;
13897   QualType DeclRefType;
13898 
13899   // Determine whether we can capture this variable.
13900   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13901                          /*BuildAndDiagnose=*/false, CaptureType,
13902                          DeclRefType, nullptr))
13903     return QualType();
13904 
13905   return DeclRefType;
13906 }
13907 
13908 
13909 
13910 // If either the type of the variable or the initializer is dependent,
13911 // return false. Otherwise, determine whether the variable is a constant
13912 // expression. Use this if you need to know if a variable that might or
13913 // might not be dependent is truly a constant expression.
13914 static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
13915     ASTContext &Context) {
13916 
13917   if (Var->getType()->isDependentType())
13918     return false;
13919   const VarDecl *DefVD = nullptr;
13920   Var->getAnyInitializer(DefVD);
13921   if (!DefVD)
13922     return false;
13923   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
13924   Expr *Init = cast<Expr>(Eval->Value);
13925   if (Init->isValueDependent())
13926     return false;
13927   return IsVariableAConstantExpression(Var, Context);
13928 }
13929 
13930 
13931 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
13932   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
13933   // an object that satisfies the requirements for appearing in a
13934   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
13935   // is immediately applied."  This function handles the lvalue-to-rvalue
13936   // conversion part.
13937   MaybeODRUseExprs.erase(E->IgnoreParens());
13938 
13939   // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
13940   // to a variable that is a constant expression, and if so, identify it as
13941   // a reference to a variable that does not involve an odr-use of that
13942   // variable.
13943   if (LambdaScopeInfo *LSI = getCurLambda()) {
13944     Expr *SansParensExpr = E->IgnoreParens();
13945     VarDecl *Var = nullptr;
13946     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
13947       Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
13948     else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
13949       Var = dyn_cast<VarDecl>(ME->getMemberDecl());
13950 
13951     if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
13952       LSI->markVariableExprAsNonODRUsed(SansParensExpr);
13953   }
13954 }
13955 
13956 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
13957   Res = CorrectDelayedTyposInExpr(Res);
13958 
13959   if (!Res.isUsable())
13960     return Res;
13961 
13962   // If a constant-expression is a reference to a variable where we delay
13963   // deciding whether it is an odr-use, just assume we will apply the
13964   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
13965   // (a non-type template argument), we have special handling anyway.
13966   UpdateMarkingForLValueToRValue(Res.get());
13967   return Res;
13968 }
13969 
13970 void Sema::CleanupVarDeclMarking() {
13971   for (Expr *E : MaybeODRUseExprs) {
13972     VarDecl *Var;
13973     SourceLocation Loc;
13974     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13975       Var = cast<VarDecl>(DRE->getDecl());
13976       Loc = DRE->getLocation();
13977     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13978       Var = cast<VarDecl>(ME->getMemberDecl());
13979       Loc = ME->getMemberLoc();
13980     } else {
13981       llvm_unreachable("Unexpected expression");
13982     }
13983 
13984     MarkVarDeclODRUsed(Var, Loc, *this,
13985                        /*MaxFunctionScopeIndex Pointer*/ nullptr);
13986   }
13987 
13988   MaybeODRUseExprs.clear();
13989 }
13990 
13991 
13992 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
13993                                     VarDecl *Var, Expr *E) {
13994   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
13995          "Invalid Expr argument to DoMarkVarDeclReferenced");
13996   Var->setReferenced();
13997 
13998   TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
13999   bool MarkODRUsed = true;
14000 
14001   // If the context is not potentially evaluated, this is not an odr-use and
14002   // does not trigger instantiation.
14003   if (!IsPotentiallyEvaluatedContext(SemaRef)) {
14004     if (SemaRef.isUnevaluatedContext())
14005       return;
14006 
14007     // If we don't yet know whether this context is going to end up being an
14008     // evaluated context, and we're referencing a variable from an enclosing
14009     // scope, add a potential capture.
14010     //
14011     // FIXME: Is this necessary? These contexts are only used for default
14012     // arguments, where local variables can't be used.
14013     const bool RefersToEnclosingScope =
14014         (SemaRef.CurContext != Var->getDeclContext() &&
14015          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
14016     if (RefersToEnclosingScope) {
14017       if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
14018         // If a variable could potentially be odr-used, defer marking it so
14019         // until we finish analyzing the full expression for any
14020         // lvalue-to-rvalue
14021         // or discarded value conversions that would obviate odr-use.
14022         // Add it to the list of potential captures that will be analyzed
14023         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
14024         // unless the variable is a reference that was initialized by a constant
14025         // expression (this will never need to be captured or odr-used).
14026         assert(E && "Capture variable should be used in an expression.");
14027         if (!Var->getType()->isReferenceType() ||
14028             !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
14029           LSI->addPotentialCapture(E->IgnoreParens());
14030       }
14031     }
14032 
14033     if (!isTemplateInstantiation(TSK))
14034       return;
14035 
14036     // Instantiate, but do not mark as odr-used, variable templates.
14037     MarkODRUsed = false;
14038   }
14039 
14040   VarTemplateSpecializationDecl *VarSpec =
14041       dyn_cast<VarTemplateSpecializationDecl>(Var);
14042   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
14043          "Can't instantiate a partial template specialization.");
14044 
14045   // If this might be a member specialization of a static data member, check
14046   // the specialization is visible. We already did the checks for variable
14047   // template specializations when we created them.
14048   if (TSK != TSK_Undeclared && !isa<VarTemplateSpecializationDecl>(Var))
14049     SemaRef.checkSpecializationVisibility(Loc, Var);
14050 
14051   // Perform implicit instantiation of static data members, static data member
14052   // templates of class templates, and variable template specializations. Delay
14053   // instantiations of variable templates, except for those that could be used
14054   // in a constant expression.
14055   if (isTemplateInstantiation(TSK)) {
14056     bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
14057 
14058     if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
14059       if (Var->getPointOfInstantiation().isInvalid()) {
14060         // This is a modification of an existing AST node. Notify listeners.
14061         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
14062           L->StaticDataMemberInstantiated(Var);
14063       } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
14064         // Don't bother trying to instantiate it again, unless we might need
14065         // its initializer before we get to the end of the TU.
14066         TryInstantiating = false;
14067     }
14068 
14069     if (Var->getPointOfInstantiation().isInvalid())
14070       Var->setTemplateSpecializationKind(TSK, Loc);
14071 
14072     if (TryInstantiating) {
14073       SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
14074       bool InstantiationDependent = false;
14075       bool IsNonDependent =
14076           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
14077                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
14078                   : true;
14079 
14080       // Do not instantiate specializations that are still type-dependent.
14081       if (IsNonDependent) {
14082         if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
14083           // Do not defer instantiations of variables which could be used in a
14084           // constant expression.
14085           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
14086         } else {
14087           SemaRef.PendingInstantiations
14088               .push_back(std::make_pair(Var, PointOfInstantiation));
14089         }
14090       }
14091     }
14092   }
14093 
14094   if (!MarkODRUsed)
14095     return;
14096 
14097   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
14098   // the requirements for appearing in a constant expression (5.19) and, if
14099   // it is an object, the lvalue-to-rvalue conversion (4.1)
14100   // is immediately applied."  We check the first part here, and
14101   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
14102   // Note that we use the C++11 definition everywhere because nothing in
14103   // C++03 depends on whether we get the C++03 version correct. The second
14104   // part does not apply to references, since they are not objects.
14105   if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
14106     // A reference initialized by a constant expression can never be
14107     // odr-used, so simply ignore it.
14108     if (!Var->getType()->isReferenceType())
14109       SemaRef.MaybeODRUseExprs.insert(E);
14110   } else
14111     MarkVarDeclODRUsed(Var, Loc, SemaRef,
14112                        /*MaxFunctionScopeIndex ptr*/ nullptr);
14113 }
14114 
14115 /// \brief Mark a variable referenced, and check whether it is odr-used
14116 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
14117 /// used directly for normal expressions referring to VarDecl.
14118 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
14119   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
14120 }
14121 
14122 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
14123                                Decl *D, Expr *E, bool MightBeOdrUse) {
14124   if (SemaRef.isInOpenMPDeclareTargetContext())
14125     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
14126 
14127   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
14128     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
14129     return;
14130   }
14131 
14132   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
14133 
14134   // If this is a call to a method via a cast, also mark the method in the
14135   // derived class used in case codegen can devirtualize the call.
14136   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
14137   if (!ME)
14138     return;
14139   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
14140   if (!MD)
14141     return;
14142   // Only attempt to devirtualize if this is truly a virtual call.
14143   bool IsVirtualCall = MD->isVirtual() &&
14144                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
14145   if (!IsVirtualCall)
14146     return;
14147   const Expr *Base = ME->getBase();
14148   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
14149   if (!MostDerivedClassDecl)
14150     return;
14151   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
14152   if (!DM || DM->isPure())
14153     return;
14154   SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
14155 }
14156 
14157 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
14158 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
14159   // TODO: update this with DR# once a defect report is filed.
14160   // C++11 defect. The address of a pure member should not be an ODR use, even
14161   // if it's a qualified reference.
14162   bool OdrUse = true;
14163   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
14164     if (Method->isVirtual())
14165       OdrUse = false;
14166   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
14167 }
14168 
14169 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
14170 void Sema::MarkMemberReferenced(MemberExpr *E) {
14171   // C++11 [basic.def.odr]p2:
14172   //   A non-overloaded function whose name appears as a potentially-evaluated
14173   //   expression or a member of a set of candidate functions, if selected by
14174   //   overload resolution when referred to from a potentially-evaluated
14175   //   expression, is odr-used, unless it is a pure virtual function and its
14176   //   name is not explicitly qualified.
14177   bool MightBeOdrUse = true;
14178   if (E->performsVirtualDispatch(getLangOpts())) {
14179     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
14180       if (Method->isPure())
14181         MightBeOdrUse = false;
14182   }
14183   SourceLocation Loc = E->getMemberLoc().isValid() ?
14184                             E->getMemberLoc() : E->getLocStart();
14185   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
14186 }
14187 
14188 /// \brief Perform marking for a reference to an arbitrary declaration.  It
14189 /// marks the declaration referenced, and performs odr-use checking for
14190 /// functions and variables. This method should not be used when building a
14191 /// normal expression which refers to a variable.
14192 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
14193                                  bool MightBeOdrUse) {
14194   if (MightBeOdrUse) {
14195     if (auto *VD = dyn_cast<VarDecl>(D)) {
14196       MarkVariableReferenced(Loc, VD);
14197       return;
14198     }
14199   }
14200   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
14201     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
14202     return;
14203   }
14204   D->setReferenced();
14205 }
14206 
14207 namespace {
14208   // Mark all of the declarations referenced
14209   // FIXME: Not fully implemented yet! We need to have a better understanding
14210   // of when we're entering
14211   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
14212     Sema &S;
14213     SourceLocation Loc;
14214 
14215   public:
14216     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
14217 
14218     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
14219 
14220     bool TraverseTemplateArgument(const TemplateArgument &Arg);
14221     bool TraverseRecordType(RecordType *T);
14222   };
14223 }
14224 
14225 bool MarkReferencedDecls::TraverseTemplateArgument(
14226     const TemplateArgument &Arg) {
14227   if (Arg.getKind() == TemplateArgument::Declaration) {
14228     if (Decl *D = Arg.getAsDecl())
14229       S.MarkAnyDeclReferenced(Loc, D, true);
14230   }
14231 
14232   return Inherited::TraverseTemplateArgument(Arg);
14233 }
14234 
14235 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
14236   if (ClassTemplateSpecializationDecl *Spec
14237                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
14238     const TemplateArgumentList &Args = Spec->getTemplateArgs();
14239     return TraverseTemplateArguments(Args.data(), Args.size());
14240   }
14241 
14242   return true;
14243 }
14244 
14245 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
14246   MarkReferencedDecls Marker(*this, Loc);
14247   Marker.TraverseType(Context.getCanonicalType(T));
14248 }
14249 
14250 namespace {
14251   /// \brief Helper class that marks all of the declarations referenced by
14252   /// potentially-evaluated subexpressions as "referenced".
14253   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
14254     Sema &S;
14255     bool SkipLocalVariables;
14256 
14257   public:
14258     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
14259 
14260     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
14261       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
14262 
14263     void VisitDeclRefExpr(DeclRefExpr *E) {
14264       // If we were asked not to visit local variables, don't.
14265       if (SkipLocalVariables) {
14266         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
14267           if (VD->hasLocalStorage())
14268             return;
14269       }
14270 
14271       S.MarkDeclRefReferenced(E);
14272     }
14273 
14274     void VisitMemberExpr(MemberExpr *E) {
14275       S.MarkMemberReferenced(E);
14276       Inherited::VisitMemberExpr(E);
14277     }
14278 
14279     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
14280       S.MarkFunctionReferenced(E->getLocStart(),
14281             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
14282       Visit(E->getSubExpr());
14283     }
14284 
14285     void VisitCXXNewExpr(CXXNewExpr *E) {
14286       if (E->getOperatorNew())
14287         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
14288       if (E->getOperatorDelete())
14289         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
14290       Inherited::VisitCXXNewExpr(E);
14291     }
14292 
14293     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
14294       if (E->getOperatorDelete())
14295         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
14296       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
14297       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
14298         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
14299         S.MarkFunctionReferenced(E->getLocStart(),
14300                                     S.LookupDestructor(Record));
14301       }
14302 
14303       Inherited::VisitCXXDeleteExpr(E);
14304     }
14305 
14306     void VisitCXXConstructExpr(CXXConstructExpr *E) {
14307       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
14308       Inherited::VisitCXXConstructExpr(E);
14309     }
14310 
14311     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
14312       Visit(E->getExpr());
14313     }
14314 
14315     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
14316       Inherited::VisitImplicitCastExpr(E);
14317 
14318       if (E->getCastKind() == CK_LValueToRValue)
14319         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
14320     }
14321   };
14322 }
14323 
14324 /// \brief Mark any declarations that appear within this expression or any
14325 /// potentially-evaluated subexpressions as "referenced".
14326 ///
14327 /// \param SkipLocalVariables If true, don't mark local variables as
14328 /// 'referenced'.
14329 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
14330                                             bool SkipLocalVariables) {
14331   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
14332 }
14333 
14334 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
14335 /// of the program being compiled.
14336 ///
14337 /// This routine emits the given diagnostic when the code currently being
14338 /// type-checked is "potentially evaluated", meaning that there is a
14339 /// possibility that the code will actually be executable. Code in sizeof()
14340 /// expressions, code used only during overload resolution, etc., are not
14341 /// potentially evaluated. This routine will suppress such diagnostics or,
14342 /// in the absolutely nutty case of potentially potentially evaluated
14343 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
14344 /// later.
14345 ///
14346 /// This routine should be used for all diagnostics that describe the run-time
14347 /// behavior of a program, such as passing a non-POD value through an ellipsis.
14348 /// Failure to do so will likely result in spurious diagnostics or failures
14349 /// during overload resolution or within sizeof/alignof/typeof/typeid.
14350 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
14351                                const PartialDiagnostic &PD) {
14352   switch (ExprEvalContexts.back().Context) {
14353   case Unevaluated:
14354   case UnevaluatedAbstract:
14355   case DiscardedStatement:
14356     // The argument will never be evaluated, so don't complain.
14357     break;
14358 
14359   case ConstantEvaluated:
14360     // Relevant diagnostics should be produced by constant evaluation.
14361     break;
14362 
14363   case PotentiallyEvaluated:
14364   case PotentiallyEvaluatedIfUsed:
14365     if (Statement && getCurFunctionOrMethodDecl()) {
14366       FunctionScopes.back()->PossiblyUnreachableDiags.
14367         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
14368     }
14369     else
14370       Diag(Loc, PD);
14371 
14372     return true;
14373   }
14374 
14375   return false;
14376 }
14377 
14378 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
14379                                CallExpr *CE, FunctionDecl *FD) {
14380   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
14381     return false;
14382 
14383   // If we're inside a decltype's expression, don't check for a valid return
14384   // type or construct temporaries until we know whether this is the last call.
14385   if (ExprEvalContexts.back().IsDecltype) {
14386     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
14387     return false;
14388   }
14389 
14390   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
14391     FunctionDecl *FD;
14392     CallExpr *CE;
14393 
14394   public:
14395     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
14396       : FD(FD), CE(CE) { }
14397 
14398     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
14399       if (!FD) {
14400         S.Diag(Loc, diag::err_call_incomplete_return)
14401           << T << CE->getSourceRange();
14402         return;
14403       }
14404 
14405       S.Diag(Loc, diag::err_call_function_incomplete_return)
14406         << CE->getSourceRange() << FD->getDeclName() << T;
14407       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
14408           << FD->getDeclName();
14409     }
14410   } Diagnoser(FD, CE);
14411 
14412   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
14413     return true;
14414 
14415   return false;
14416 }
14417 
14418 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
14419 // will prevent this condition from triggering, which is what we want.
14420 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
14421   SourceLocation Loc;
14422 
14423   unsigned diagnostic = diag::warn_condition_is_assignment;
14424   bool IsOrAssign = false;
14425 
14426   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
14427     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
14428       return;
14429 
14430     IsOrAssign = Op->getOpcode() == BO_OrAssign;
14431 
14432     // Greylist some idioms by putting them into a warning subcategory.
14433     if (ObjCMessageExpr *ME
14434           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
14435       Selector Sel = ME->getSelector();
14436 
14437       // self = [<foo> init...]
14438       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
14439         diagnostic = diag::warn_condition_is_idiomatic_assignment;
14440 
14441       // <foo> = [<bar> nextObject]
14442       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
14443         diagnostic = diag::warn_condition_is_idiomatic_assignment;
14444     }
14445 
14446     Loc = Op->getOperatorLoc();
14447   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
14448     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
14449       return;
14450 
14451     IsOrAssign = Op->getOperator() == OO_PipeEqual;
14452     Loc = Op->getOperatorLoc();
14453   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
14454     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
14455   else {
14456     // Not an assignment.
14457     return;
14458   }
14459 
14460   Diag(Loc, diagnostic) << E->getSourceRange();
14461 
14462   SourceLocation Open = E->getLocStart();
14463   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
14464   Diag(Loc, diag::note_condition_assign_silence)
14465         << FixItHint::CreateInsertion(Open, "(")
14466         << FixItHint::CreateInsertion(Close, ")");
14467 
14468   if (IsOrAssign)
14469     Diag(Loc, diag::note_condition_or_assign_to_comparison)
14470       << FixItHint::CreateReplacement(Loc, "!=");
14471   else
14472     Diag(Loc, diag::note_condition_assign_to_comparison)
14473       << FixItHint::CreateReplacement(Loc, "==");
14474 }
14475 
14476 /// \brief Redundant parentheses over an equality comparison can indicate
14477 /// that the user intended an assignment used as condition.
14478 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
14479   // Don't warn if the parens came from a macro.
14480   SourceLocation parenLoc = ParenE->getLocStart();
14481   if (parenLoc.isInvalid() || parenLoc.isMacroID())
14482     return;
14483   // Don't warn for dependent expressions.
14484   if (ParenE->isTypeDependent())
14485     return;
14486 
14487   Expr *E = ParenE->IgnoreParens();
14488 
14489   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
14490     if (opE->getOpcode() == BO_EQ &&
14491         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
14492                                                            == Expr::MLV_Valid) {
14493       SourceLocation Loc = opE->getOperatorLoc();
14494 
14495       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
14496       SourceRange ParenERange = ParenE->getSourceRange();
14497       Diag(Loc, diag::note_equality_comparison_silence)
14498         << FixItHint::CreateRemoval(ParenERange.getBegin())
14499         << FixItHint::CreateRemoval(ParenERange.getEnd());
14500       Diag(Loc, diag::note_equality_comparison_to_assign)
14501         << FixItHint::CreateReplacement(Loc, "=");
14502     }
14503 }
14504 
14505 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
14506                                        bool IsConstexpr) {
14507   DiagnoseAssignmentAsCondition(E);
14508   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
14509     DiagnoseEqualityWithExtraParens(parenE);
14510 
14511   ExprResult result = CheckPlaceholderExpr(E);
14512   if (result.isInvalid()) return ExprError();
14513   E = result.get();
14514 
14515   if (!E->isTypeDependent()) {
14516     if (getLangOpts().CPlusPlus)
14517       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
14518 
14519     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
14520     if (ERes.isInvalid())
14521       return ExprError();
14522     E = ERes.get();
14523 
14524     QualType T = E->getType();
14525     if (!T->isScalarType()) { // C99 6.8.4.1p1
14526       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
14527         << T << E->getSourceRange();
14528       return ExprError();
14529     }
14530     CheckBoolLikeConversion(E, Loc);
14531   }
14532 
14533   return E;
14534 }
14535 
14536 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
14537                                            Expr *SubExpr, ConditionKind CK) {
14538   // Empty conditions are valid in for-statements.
14539   if (!SubExpr)
14540     return ConditionResult();
14541 
14542   ExprResult Cond;
14543   switch (CK) {
14544   case ConditionKind::Boolean:
14545     Cond = CheckBooleanCondition(Loc, SubExpr);
14546     break;
14547 
14548   case ConditionKind::ConstexprIf:
14549     Cond = CheckBooleanCondition(Loc, SubExpr, true);
14550     break;
14551 
14552   case ConditionKind::Switch:
14553     Cond = CheckSwitchCondition(Loc, SubExpr);
14554     break;
14555   }
14556   if (Cond.isInvalid())
14557     return ConditionError();
14558 
14559   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
14560   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
14561   if (!FullExpr.get())
14562     return ConditionError();
14563 
14564   return ConditionResult(*this, nullptr, FullExpr,
14565                          CK == ConditionKind::ConstexprIf);
14566 }
14567 
14568 namespace {
14569   /// A visitor for rebuilding a call to an __unknown_any expression
14570   /// to have an appropriate type.
14571   struct RebuildUnknownAnyFunction
14572     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
14573 
14574     Sema &S;
14575 
14576     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
14577 
14578     ExprResult VisitStmt(Stmt *S) {
14579       llvm_unreachable("unexpected statement!");
14580     }
14581 
14582     ExprResult VisitExpr(Expr *E) {
14583       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
14584         << E->getSourceRange();
14585       return ExprError();
14586     }
14587 
14588     /// Rebuild an expression which simply semantically wraps another
14589     /// expression which it shares the type and value kind of.
14590     template <class T> ExprResult rebuildSugarExpr(T *E) {
14591       ExprResult SubResult = Visit(E->getSubExpr());
14592       if (SubResult.isInvalid()) return ExprError();
14593 
14594       Expr *SubExpr = SubResult.get();
14595       E->setSubExpr(SubExpr);
14596       E->setType(SubExpr->getType());
14597       E->setValueKind(SubExpr->getValueKind());
14598       assert(E->getObjectKind() == OK_Ordinary);
14599       return E;
14600     }
14601 
14602     ExprResult VisitParenExpr(ParenExpr *E) {
14603       return rebuildSugarExpr(E);
14604     }
14605 
14606     ExprResult VisitUnaryExtension(UnaryOperator *E) {
14607       return rebuildSugarExpr(E);
14608     }
14609 
14610     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14611       ExprResult SubResult = Visit(E->getSubExpr());
14612       if (SubResult.isInvalid()) return ExprError();
14613 
14614       Expr *SubExpr = SubResult.get();
14615       E->setSubExpr(SubExpr);
14616       E->setType(S.Context.getPointerType(SubExpr->getType()));
14617       assert(E->getValueKind() == VK_RValue);
14618       assert(E->getObjectKind() == OK_Ordinary);
14619       return E;
14620     }
14621 
14622     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
14623       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
14624 
14625       E->setType(VD->getType());
14626 
14627       assert(E->getValueKind() == VK_RValue);
14628       if (S.getLangOpts().CPlusPlus &&
14629           !(isa<CXXMethodDecl>(VD) &&
14630             cast<CXXMethodDecl>(VD)->isInstance()))
14631         E->setValueKind(VK_LValue);
14632 
14633       return E;
14634     }
14635 
14636     ExprResult VisitMemberExpr(MemberExpr *E) {
14637       return resolveDecl(E, E->getMemberDecl());
14638     }
14639 
14640     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14641       return resolveDecl(E, E->getDecl());
14642     }
14643   };
14644 }
14645 
14646 /// Given a function expression of unknown-any type, try to rebuild it
14647 /// to have a function type.
14648 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
14649   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
14650   if (Result.isInvalid()) return ExprError();
14651   return S.DefaultFunctionArrayConversion(Result.get());
14652 }
14653 
14654 namespace {
14655   /// A visitor for rebuilding an expression of type __unknown_anytype
14656   /// into one which resolves the type directly on the referring
14657   /// expression.  Strict preservation of the original source
14658   /// structure is not a goal.
14659   struct RebuildUnknownAnyExpr
14660     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
14661 
14662     Sema &S;
14663 
14664     /// The current destination type.
14665     QualType DestType;
14666 
14667     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
14668       : S(S), DestType(CastType) {}
14669 
14670     ExprResult VisitStmt(Stmt *S) {
14671       llvm_unreachable("unexpected statement!");
14672     }
14673 
14674     ExprResult VisitExpr(Expr *E) {
14675       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
14676         << E->getSourceRange();
14677       return ExprError();
14678     }
14679 
14680     ExprResult VisitCallExpr(CallExpr *E);
14681     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
14682 
14683     /// Rebuild an expression which simply semantically wraps another
14684     /// expression which it shares the type and value kind of.
14685     template <class T> ExprResult rebuildSugarExpr(T *E) {
14686       ExprResult SubResult = Visit(E->getSubExpr());
14687       if (SubResult.isInvalid()) return ExprError();
14688       Expr *SubExpr = SubResult.get();
14689       E->setSubExpr(SubExpr);
14690       E->setType(SubExpr->getType());
14691       E->setValueKind(SubExpr->getValueKind());
14692       assert(E->getObjectKind() == OK_Ordinary);
14693       return E;
14694     }
14695 
14696     ExprResult VisitParenExpr(ParenExpr *E) {
14697       return rebuildSugarExpr(E);
14698     }
14699 
14700     ExprResult VisitUnaryExtension(UnaryOperator *E) {
14701       return rebuildSugarExpr(E);
14702     }
14703 
14704     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14705       const PointerType *Ptr = DestType->getAs<PointerType>();
14706       if (!Ptr) {
14707         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
14708           << E->getSourceRange();
14709         return ExprError();
14710       }
14711       assert(E->getValueKind() == VK_RValue);
14712       assert(E->getObjectKind() == OK_Ordinary);
14713       E->setType(DestType);
14714 
14715       // Build the sub-expression as if it were an object of the pointee type.
14716       DestType = Ptr->getPointeeType();
14717       ExprResult SubResult = Visit(E->getSubExpr());
14718       if (SubResult.isInvalid()) return ExprError();
14719       E->setSubExpr(SubResult.get());
14720       return E;
14721     }
14722 
14723     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
14724 
14725     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
14726 
14727     ExprResult VisitMemberExpr(MemberExpr *E) {
14728       return resolveDecl(E, E->getMemberDecl());
14729     }
14730 
14731     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14732       return resolveDecl(E, E->getDecl());
14733     }
14734   };
14735 }
14736 
14737 /// Rebuilds a call expression which yielded __unknown_anytype.
14738 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
14739   Expr *CalleeExpr = E->getCallee();
14740 
14741   enum FnKind {
14742     FK_MemberFunction,
14743     FK_FunctionPointer,
14744     FK_BlockPointer
14745   };
14746 
14747   FnKind Kind;
14748   QualType CalleeType = CalleeExpr->getType();
14749   if (CalleeType == S.Context.BoundMemberTy) {
14750     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
14751     Kind = FK_MemberFunction;
14752     CalleeType = Expr::findBoundMemberType(CalleeExpr);
14753   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
14754     CalleeType = Ptr->getPointeeType();
14755     Kind = FK_FunctionPointer;
14756   } else {
14757     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
14758     Kind = FK_BlockPointer;
14759   }
14760   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
14761 
14762   // Verify that this is a legal result type of a function.
14763   if (DestType->isArrayType() || DestType->isFunctionType()) {
14764     unsigned diagID = diag::err_func_returning_array_function;
14765     if (Kind == FK_BlockPointer)
14766       diagID = diag::err_block_returning_array_function;
14767 
14768     S.Diag(E->getExprLoc(), diagID)
14769       << DestType->isFunctionType() << DestType;
14770     return ExprError();
14771   }
14772 
14773   // Otherwise, go ahead and set DestType as the call's result.
14774   E->setType(DestType.getNonLValueExprType(S.Context));
14775   E->setValueKind(Expr::getValueKindForType(DestType));
14776   assert(E->getObjectKind() == OK_Ordinary);
14777 
14778   // Rebuild the function type, replacing the result type with DestType.
14779   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
14780   if (Proto) {
14781     // __unknown_anytype(...) is a special case used by the debugger when
14782     // it has no idea what a function's signature is.
14783     //
14784     // We want to build this call essentially under the K&R
14785     // unprototyped rules, but making a FunctionNoProtoType in C++
14786     // would foul up all sorts of assumptions.  However, we cannot
14787     // simply pass all arguments as variadic arguments, nor can we
14788     // portably just call the function under a non-variadic type; see
14789     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
14790     // However, it turns out that in practice it is generally safe to
14791     // call a function declared as "A foo(B,C,D);" under the prototype
14792     // "A foo(B,C,D,...);".  The only known exception is with the
14793     // Windows ABI, where any variadic function is implicitly cdecl
14794     // regardless of its normal CC.  Therefore we change the parameter
14795     // types to match the types of the arguments.
14796     //
14797     // This is a hack, but it is far superior to moving the
14798     // corresponding target-specific code from IR-gen to Sema/AST.
14799 
14800     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
14801     SmallVector<QualType, 8> ArgTypes;
14802     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
14803       ArgTypes.reserve(E->getNumArgs());
14804       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
14805         Expr *Arg = E->getArg(i);
14806         QualType ArgType = Arg->getType();
14807         if (E->isLValue()) {
14808           ArgType = S.Context.getLValueReferenceType(ArgType);
14809         } else if (E->isXValue()) {
14810           ArgType = S.Context.getRValueReferenceType(ArgType);
14811         }
14812         ArgTypes.push_back(ArgType);
14813       }
14814       ParamTypes = ArgTypes;
14815     }
14816     DestType = S.Context.getFunctionType(DestType, ParamTypes,
14817                                          Proto->getExtProtoInfo());
14818   } else {
14819     DestType = S.Context.getFunctionNoProtoType(DestType,
14820                                                 FnType->getExtInfo());
14821   }
14822 
14823   // Rebuild the appropriate pointer-to-function type.
14824   switch (Kind) {
14825   case FK_MemberFunction:
14826     // Nothing to do.
14827     break;
14828 
14829   case FK_FunctionPointer:
14830     DestType = S.Context.getPointerType(DestType);
14831     break;
14832 
14833   case FK_BlockPointer:
14834     DestType = S.Context.getBlockPointerType(DestType);
14835     break;
14836   }
14837 
14838   // Finally, we can recurse.
14839   ExprResult CalleeResult = Visit(CalleeExpr);
14840   if (!CalleeResult.isUsable()) return ExprError();
14841   E->setCallee(CalleeResult.get());
14842 
14843   // Bind a temporary if necessary.
14844   return S.MaybeBindToTemporary(E);
14845 }
14846 
14847 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
14848   // Verify that this is a legal result type of a call.
14849   if (DestType->isArrayType() || DestType->isFunctionType()) {
14850     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
14851       << DestType->isFunctionType() << DestType;
14852     return ExprError();
14853   }
14854 
14855   // Rewrite the method result type if available.
14856   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
14857     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
14858     Method->setReturnType(DestType);
14859   }
14860 
14861   // Change the type of the message.
14862   E->setType(DestType.getNonReferenceType());
14863   E->setValueKind(Expr::getValueKindForType(DestType));
14864 
14865   return S.MaybeBindToTemporary(E);
14866 }
14867 
14868 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
14869   // The only case we should ever see here is a function-to-pointer decay.
14870   if (E->getCastKind() == CK_FunctionToPointerDecay) {
14871     assert(E->getValueKind() == VK_RValue);
14872     assert(E->getObjectKind() == OK_Ordinary);
14873 
14874     E->setType(DestType);
14875 
14876     // Rebuild the sub-expression as the pointee (function) type.
14877     DestType = DestType->castAs<PointerType>()->getPointeeType();
14878 
14879     ExprResult Result = Visit(E->getSubExpr());
14880     if (!Result.isUsable()) return ExprError();
14881 
14882     E->setSubExpr(Result.get());
14883     return E;
14884   } else if (E->getCastKind() == CK_LValueToRValue) {
14885     assert(E->getValueKind() == VK_RValue);
14886     assert(E->getObjectKind() == OK_Ordinary);
14887 
14888     assert(isa<BlockPointerType>(E->getType()));
14889 
14890     E->setType(DestType);
14891 
14892     // The sub-expression has to be a lvalue reference, so rebuild it as such.
14893     DestType = S.Context.getLValueReferenceType(DestType);
14894 
14895     ExprResult Result = Visit(E->getSubExpr());
14896     if (!Result.isUsable()) return ExprError();
14897 
14898     E->setSubExpr(Result.get());
14899     return E;
14900   } else {
14901     llvm_unreachable("Unhandled cast type!");
14902   }
14903 }
14904 
14905 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
14906   ExprValueKind ValueKind = VK_LValue;
14907   QualType Type = DestType;
14908 
14909   // We know how to make this work for certain kinds of decls:
14910 
14911   //  - functions
14912   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
14913     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
14914       DestType = Ptr->getPointeeType();
14915       ExprResult Result = resolveDecl(E, VD);
14916       if (Result.isInvalid()) return ExprError();
14917       return S.ImpCastExprToType(Result.get(), Type,
14918                                  CK_FunctionToPointerDecay, VK_RValue);
14919     }
14920 
14921     if (!Type->isFunctionType()) {
14922       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
14923         << VD << E->getSourceRange();
14924       return ExprError();
14925     }
14926     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
14927       // We must match the FunctionDecl's type to the hack introduced in
14928       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
14929       // type. See the lengthy commentary in that routine.
14930       QualType FDT = FD->getType();
14931       const FunctionType *FnType = FDT->castAs<FunctionType>();
14932       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
14933       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14934       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
14935         SourceLocation Loc = FD->getLocation();
14936         FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
14937                                       FD->getDeclContext(),
14938                                       Loc, Loc, FD->getNameInfo().getName(),
14939                                       DestType, FD->getTypeSourceInfo(),
14940                                       SC_None, false/*isInlineSpecified*/,
14941                                       FD->hasPrototype(),
14942                                       false/*isConstexprSpecified*/);
14943 
14944         if (FD->getQualifier())
14945           NewFD->setQualifierInfo(FD->getQualifierLoc());
14946 
14947         SmallVector<ParmVarDecl*, 16> Params;
14948         for (const auto &AI : FT->param_types()) {
14949           ParmVarDecl *Param =
14950             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
14951           Param->setScopeInfo(0, Params.size());
14952           Params.push_back(Param);
14953         }
14954         NewFD->setParams(Params);
14955         DRE->setDecl(NewFD);
14956         VD = DRE->getDecl();
14957       }
14958     }
14959 
14960     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
14961       if (MD->isInstance()) {
14962         ValueKind = VK_RValue;
14963         Type = S.Context.BoundMemberTy;
14964       }
14965 
14966     // Function references aren't l-values in C.
14967     if (!S.getLangOpts().CPlusPlus)
14968       ValueKind = VK_RValue;
14969 
14970   //  - variables
14971   } else if (isa<VarDecl>(VD)) {
14972     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
14973       Type = RefTy->getPointeeType();
14974     } else if (Type->isFunctionType()) {
14975       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
14976         << VD << E->getSourceRange();
14977       return ExprError();
14978     }
14979 
14980   //  - nothing else
14981   } else {
14982     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
14983       << VD << E->getSourceRange();
14984     return ExprError();
14985   }
14986 
14987   // Modifying the declaration like this is friendly to IR-gen but
14988   // also really dangerous.
14989   VD->setType(DestType);
14990   E->setType(Type);
14991   E->setValueKind(ValueKind);
14992   return E;
14993 }
14994 
14995 /// Check a cast of an unknown-any type.  We intentionally only
14996 /// trigger this for C-style casts.
14997 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
14998                                      Expr *CastExpr, CastKind &CastKind,
14999                                      ExprValueKind &VK, CXXCastPath &Path) {
15000   // The type we're casting to must be either void or complete.
15001   if (!CastType->isVoidType() &&
15002       RequireCompleteType(TypeRange.getBegin(), CastType,
15003                           diag::err_typecheck_cast_to_incomplete))
15004     return ExprError();
15005 
15006   // Rewrite the casted expression from scratch.
15007   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
15008   if (!result.isUsable()) return ExprError();
15009 
15010   CastExpr = result.get();
15011   VK = CastExpr->getValueKind();
15012   CastKind = CK_NoOp;
15013 
15014   return CastExpr;
15015 }
15016 
15017 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
15018   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
15019 }
15020 
15021 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
15022                                     Expr *arg, QualType &paramType) {
15023   // If the syntactic form of the argument is not an explicit cast of
15024   // any sort, just do default argument promotion.
15025   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
15026   if (!castArg) {
15027     ExprResult result = DefaultArgumentPromotion(arg);
15028     if (result.isInvalid()) return ExprError();
15029     paramType = result.get()->getType();
15030     return result;
15031   }
15032 
15033   // Otherwise, use the type that was written in the explicit cast.
15034   assert(!arg->hasPlaceholderType());
15035   paramType = castArg->getTypeAsWritten();
15036 
15037   // Copy-initialize a parameter of that type.
15038   InitializedEntity entity =
15039     InitializedEntity::InitializeParameter(Context, paramType,
15040                                            /*consumed*/ false);
15041   return PerformCopyInitialization(entity, callLoc, arg);
15042 }
15043 
15044 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
15045   Expr *orig = E;
15046   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
15047   while (true) {
15048     E = E->IgnoreParenImpCasts();
15049     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
15050       E = call->getCallee();
15051       diagID = diag::err_uncasted_call_of_unknown_any;
15052     } else {
15053       break;
15054     }
15055   }
15056 
15057   SourceLocation loc;
15058   NamedDecl *d;
15059   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
15060     loc = ref->getLocation();
15061     d = ref->getDecl();
15062   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
15063     loc = mem->getMemberLoc();
15064     d = mem->getMemberDecl();
15065   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
15066     diagID = diag::err_uncasted_call_of_unknown_any;
15067     loc = msg->getSelectorStartLoc();
15068     d = msg->getMethodDecl();
15069     if (!d) {
15070       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
15071         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
15072         << orig->getSourceRange();
15073       return ExprError();
15074     }
15075   } else {
15076     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
15077       << E->getSourceRange();
15078     return ExprError();
15079   }
15080 
15081   S.Diag(loc, diagID) << d << orig->getSourceRange();
15082 
15083   // Never recoverable.
15084   return ExprError();
15085 }
15086 
15087 /// Check for operands with placeholder types and complain if found.
15088 /// Returns true if there was an error and no recovery was possible.
15089 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
15090   if (!getLangOpts().CPlusPlus) {
15091     // C cannot handle TypoExpr nodes on either side of a binop because it
15092     // doesn't handle dependent types properly, so make sure any TypoExprs have
15093     // been dealt with before checking the operands.
15094     ExprResult Result = CorrectDelayedTyposInExpr(E);
15095     if (!Result.isUsable()) return ExprError();
15096     E = Result.get();
15097   }
15098 
15099   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
15100   if (!placeholderType) return E;
15101 
15102   switch (placeholderType->getKind()) {
15103 
15104   // Overloaded expressions.
15105   case BuiltinType::Overload: {
15106     // Try to resolve a single function template specialization.
15107     // This is obligatory.
15108     ExprResult Result = E;
15109     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
15110       return Result;
15111 
15112     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
15113     // leaves Result unchanged on failure.
15114     Result = E;
15115     if (resolveAndFixAddressOfOnlyViableOverloadCandidate(Result))
15116       return Result;
15117 
15118     // If that failed, try to recover with a call.
15119     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
15120                          /*complain*/ true);
15121     return Result;
15122   }
15123 
15124   // Bound member functions.
15125   case BuiltinType::BoundMember: {
15126     ExprResult result = E;
15127     const Expr *BME = E->IgnoreParens();
15128     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
15129     // Try to give a nicer diagnostic if it is a bound member that we recognize.
15130     if (isa<CXXPseudoDestructorExpr>(BME)) {
15131       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
15132     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
15133       if (ME->getMemberNameInfo().getName().getNameKind() ==
15134           DeclarationName::CXXDestructorName)
15135         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
15136     }
15137     tryToRecoverWithCall(result, PD,
15138                          /*complain*/ true);
15139     return result;
15140   }
15141 
15142   // ARC unbridged casts.
15143   case BuiltinType::ARCUnbridgedCast: {
15144     Expr *realCast = stripARCUnbridgedCast(E);
15145     diagnoseARCUnbridgedCast(realCast);
15146     return realCast;
15147   }
15148 
15149   // Expressions of unknown type.
15150   case BuiltinType::UnknownAny:
15151     return diagnoseUnknownAnyExpr(*this, E);
15152 
15153   // Pseudo-objects.
15154   case BuiltinType::PseudoObject:
15155     return checkPseudoObjectRValue(E);
15156 
15157   case BuiltinType::BuiltinFn: {
15158     // Accept __noop without parens by implicitly converting it to a call expr.
15159     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
15160     if (DRE) {
15161       auto *FD = cast<FunctionDecl>(DRE->getDecl());
15162       if (FD->getBuiltinID() == Builtin::BI__noop) {
15163         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
15164                               CK_BuiltinFnToFnPtr).get();
15165         return new (Context) CallExpr(Context, E, None, Context.IntTy,
15166                                       VK_RValue, SourceLocation());
15167       }
15168     }
15169 
15170     Diag(E->getLocStart(), diag::err_builtin_fn_use);
15171     return ExprError();
15172   }
15173 
15174   // Expressions of unknown type.
15175   case BuiltinType::OMPArraySection:
15176     Diag(E->getLocStart(), diag::err_omp_array_section_use);
15177     return ExprError();
15178 
15179   // Everything else should be impossible.
15180 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
15181   case BuiltinType::Id:
15182 #include "clang/Basic/OpenCLImageTypes.def"
15183 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
15184 #define PLACEHOLDER_TYPE(Id, SingletonId)
15185 #include "clang/AST/BuiltinTypes.def"
15186     break;
15187   }
15188 
15189   llvm_unreachable("invalid placeholder type!");
15190 }
15191 
15192 bool Sema::CheckCaseExpression(Expr *E) {
15193   if (E->isTypeDependent())
15194     return true;
15195   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
15196     return E->getType()->isIntegralOrEnumerationType();
15197   return false;
15198 }
15199 
15200 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
15201 ExprResult
15202 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
15203   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
15204          "Unknown Objective-C Boolean value!");
15205   QualType BoolT = Context.ObjCBuiltinBoolTy;
15206   if (!Context.getBOOLDecl()) {
15207     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
15208                         Sema::LookupOrdinaryName);
15209     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
15210       NamedDecl *ND = Result.getFoundDecl();
15211       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
15212         Context.setBOOLDecl(TD);
15213     }
15214   }
15215   if (Context.getBOOLDecl())
15216     BoolT = Context.getBOOLType();
15217   return new (Context)
15218       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
15219 }
15220 
15221 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
15222     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
15223     SourceLocation RParen) {
15224 
15225   StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
15226 
15227   auto Spec = std::find_if(AvailSpecs.begin(), AvailSpecs.end(),
15228                            [&](const AvailabilitySpec &Spec) {
15229                              return Spec.getPlatform() == Platform;
15230                            });
15231 
15232   VersionTuple Version;
15233   if (Spec != AvailSpecs.end())
15234     Version = Spec->getVersion();
15235 
15236   return new (Context)
15237       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
15238 }
15239