1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/RecursiveASTVisitor.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/DiagnosticSema.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Lex/LiteralSupport.h"
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Sema/AnalysisBasedWarnings.h"
38 #include "clang/Sema/DeclSpec.h"
39 #include "clang/Sema/DelayedDiagnostic.h"
40 #include "clang/Sema/Designator.h"
41 #include "clang/Sema/Initialization.h"
42 #include "clang/Sema/Lookup.h"
43 #include "clang/Sema/Overload.h"
44 #include "clang/Sema/ParsedTemplate.h"
45 #include "clang/Sema/Scope.h"
46 #include "clang/Sema/ScopeInfo.h"
47 #include "clang/Sema/SemaFixItUtils.h"
48 #include "clang/Sema/SemaInternal.h"
49 #include "clang/Sema/Template.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/SaveAndRestore.h"
54 
55 using namespace clang;
56 using namespace sema;
57 using llvm::RoundingMode;
58 
59 /// Determine whether the use of this declaration is valid, without
60 /// emitting diagnostics.
61 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
62   // See if this is an auto-typed variable whose initializer we are parsing.
63   if (ParsingInitForAutoVars.count(D))
64     return false;
65 
66   // See if this is a deleted function.
67   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
68     if (FD->isDeleted())
69       return false;
70 
71     // If the function has a deduced return type, and we can't deduce it,
72     // then we can't use it either.
73     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
74         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
75       return false;
76 
77     // See if this is an aligned allocation/deallocation function that is
78     // unavailable.
79     if (TreatUnavailableAsInvalid &&
80         isUnavailableAlignedAllocationFunction(*FD))
81       return false;
82   }
83 
84   // See if this function is unavailable.
85   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
86       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
87     return false;
88 
89   if (isa<UnresolvedUsingIfExistsDecl>(D))
90     return false;
91 
92   return true;
93 }
94 
95 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
96   // Warn if this is used but marked unused.
97   if (const auto *A = D->getAttr<UnusedAttr>()) {
98     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
99     // should diagnose them.
100     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
101         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
102       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
103       if (DC && !DC->hasAttr<UnusedAttr>())
104         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
105     }
106   }
107 }
108 
109 /// Emit a note explaining that this function is deleted.
110 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
111   assert(Decl && Decl->isDeleted());
112 
113   if (Decl->isDefaulted()) {
114     // If the method was explicitly defaulted, point at that declaration.
115     if (!Decl->isImplicit())
116       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
117 
118     // Try to diagnose why this special member function was implicitly
119     // deleted. This might fail, if that reason no longer applies.
120     DiagnoseDeletedDefaultedFunction(Decl);
121     return;
122   }
123 
124   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
125   if (Ctor && Ctor->isInheritingConstructor())
126     return NoteDeletedInheritingConstructor(Ctor);
127 
128   Diag(Decl->getLocation(), diag::note_availability_specified_here)
129     << Decl << 1;
130 }
131 
132 /// Determine whether a FunctionDecl was ever declared with an
133 /// explicit storage class.
134 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
135   for (auto I : D->redecls()) {
136     if (I->getStorageClass() != SC_None)
137       return true;
138   }
139   return false;
140 }
141 
142 /// Check whether we're in an extern inline function and referring to a
143 /// variable or function with internal linkage (C11 6.7.4p3).
144 ///
145 /// This is only a warning because we used to silently accept this code, but
146 /// in many cases it will not behave correctly. This is not enabled in C++ mode
147 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
148 /// and so while there may still be user mistakes, most of the time we can't
149 /// prove that there are errors.
150 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
151                                                       const NamedDecl *D,
152                                                       SourceLocation Loc) {
153   // This is disabled under C++; there are too many ways for this to fire in
154   // contexts where the warning is a false positive, or where it is technically
155   // correct but benign.
156   if (S.getLangOpts().CPlusPlus)
157     return;
158 
159   // Check if this is an inlined function or method.
160   FunctionDecl *Current = S.getCurFunctionDecl();
161   if (!Current)
162     return;
163   if (!Current->isInlined())
164     return;
165   if (!Current->isExternallyVisible())
166     return;
167 
168   // Check if the decl has internal linkage.
169   if (D->getFormalLinkage() != InternalLinkage)
170     return;
171 
172   // Downgrade from ExtWarn to Extension if
173   //  (1) the supposedly external inline function is in the main file,
174   //      and probably won't be included anywhere else.
175   //  (2) the thing we're referencing is a pure function.
176   //  (3) the thing we're referencing is another inline function.
177   // This last can give us false negatives, but it's better than warning on
178   // wrappers for simple C library functions.
179   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
180   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
181   if (!DowngradeWarning && UsedFn)
182     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
183 
184   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
185                                : diag::ext_internal_in_extern_inline)
186     << /*IsVar=*/!UsedFn << D;
187 
188   S.MaybeSuggestAddingStaticToDecl(Current);
189 
190   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
191       << D;
192 }
193 
194 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
195   const FunctionDecl *First = Cur->getFirstDecl();
196 
197   // Suggest "static" on the function, if possible.
198   if (!hasAnyExplicitStorageClass(First)) {
199     SourceLocation DeclBegin = First->getSourceRange().getBegin();
200     Diag(DeclBegin, diag::note_convert_inline_to_static)
201       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
202   }
203 }
204 
205 /// Determine whether the use of this declaration is valid, and
206 /// emit any corresponding diagnostics.
207 ///
208 /// This routine diagnoses various problems with referencing
209 /// declarations that can occur when using a declaration. For example,
210 /// it might warn if a deprecated or unavailable declaration is being
211 /// used, or produce an error (and return true) if a C++0x deleted
212 /// function is being used.
213 ///
214 /// \returns true if there was an error (this declaration cannot be
215 /// referenced), false otherwise.
216 ///
217 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
218                              const ObjCInterfaceDecl *UnknownObjCClass,
219                              bool ObjCPropertyAccess,
220                              bool AvoidPartialAvailabilityChecks,
221                              ObjCInterfaceDecl *ClassReceiver) {
222   SourceLocation Loc = Locs.front();
223   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
224     // If there were any diagnostics suppressed by template argument deduction,
225     // emit them now.
226     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
227     if (Pos != SuppressedDiagnostics.end()) {
228       for (const PartialDiagnosticAt &Suppressed : Pos->second)
229         Diag(Suppressed.first, Suppressed.second);
230 
231       // Clear out the list of suppressed diagnostics, so that we don't emit
232       // them again for this specialization. However, we don't obsolete this
233       // entry from the table, because we want to avoid ever emitting these
234       // diagnostics again.
235       Pos->second.clear();
236     }
237 
238     // C++ [basic.start.main]p3:
239     //   The function 'main' shall not be used within a program.
240     if (cast<FunctionDecl>(D)->isMain())
241       Diag(Loc, diag::ext_main_used);
242 
243     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
244   }
245 
246   // See if this is an auto-typed variable whose initializer we are parsing.
247   if (ParsingInitForAutoVars.count(D)) {
248     if (isa<BindingDecl>(D)) {
249       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
250         << D->getDeclName();
251     } else {
252       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
253         << D->getDeclName() << cast<VarDecl>(D)->getType();
254     }
255     return true;
256   }
257 
258   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
259     // See if this is a deleted function.
260     if (FD->isDeleted()) {
261       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
262       if (Ctor && Ctor->isInheritingConstructor())
263         Diag(Loc, diag::err_deleted_inherited_ctor_use)
264             << Ctor->getParent()
265             << Ctor->getInheritedConstructor().getConstructor()->getParent();
266       else
267         Diag(Loc, diag::err_deleted_function_use);
268       NoteDeletedFunction(FD);
269       return true;
270     }
271 
272     // [expr.prim.id]p4
273     //   A program that refers explicitly or implicitly to a function with a
274     //   trailing requires-clause whose constraint-expression is not satisfied,
275     //   other than to declare it, is ill-formed. [...]
276     //
277     // See if this is a function with constraints that need to be satisfied.
278     // Check this before deducing the return type, as it might instantiate the
279     // definition.
280     if (FD->getTrailingRequiresClause()) {
281       ConstraintSatisfaction Satisfaction;
282       if (CheckFunctionConstraints(FD, Satisfaction, Loc))
283         // A diagnostic will have already been generated (non-constant
284         // constraint expression, for example)
285         return true;
286       if (!Satisfaction.IsSatisfied) {
287         Diag(Loc,
288              diag::err_reference_to_function_with_unsatisfied_constraints)
289             << D;
290         DiagnoseUnsatisfiedConstraint(Satisfaction);
291         return true;
292       }
293     }
294 
295     // If the function has a deduced return type, and we can't deduce it,
296     // then we can't use it either.
297     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
298         DeduceReturnType(FD, Loc))
299       return true;
300 
301     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
302       return true;
303 
304     if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
305       return true;
306   }
307 
308   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
309     // Lambdas are only default-constructible or assignable in C++2a onwards.
310     if (MD->getParent()->isLambda() &&
311         ((isa<CXXConstructorDecl>(MD) &&
312           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
313          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
314       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
315         << !isa<CXXConstructorDecl>(MD);
316     }
317   }
318 
319   auto getReferencedObjCProp = [](const NamedDecl *D) ->
320                                       const ObjCPropertyDecl * {
321     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
322       return MD->findPropertyDecl();
323     return nullptr;
324   };
325   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
326     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
327       return true;
328   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
329       return true;
330   }
331 
332   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
333   // Only the variables omp_in and omp_out are allowed in the combiner.
334   // Only the variables omp_priv and omp_orig are allowed in the
335   // initializer-clause.
336   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
337   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
338       isa<VarDecl>(D)) {
339     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
340         << getCurFunction()->HasOMPDeclareReductionCombiner;
341     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
342     return true;
343   }
344 
345   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
346   //  List-items in map clauses on this construct may only refer to the declared
347   //  variable var and entities that could be referenced by a procedure defined
348   //  at the same location
349   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
350       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
351     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
352         << getOpenMPDeclareMapperVarName();
353     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
354     return true;
355   }
356 
357   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
358     Diag(Loc, diag::err_use_of_empty_using_if_exists);
359     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
360     return true;
361   }
362 
363   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
364                              AvoidPartialAvailabilityChecks, ClassReceiver);
365 
366   DiagnoseUnusedOfDecl(*this, D, Loc);
367 
368   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
369 
370   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
371     if (auto *VD = dyn_cast<ValueDecl>(D))
372       checkDeviceDecl(VD, Loc);
373 
374     if (!Context.getTargetInfo().isTLSSupported())
375       if (const auto *VD = dyn_cast<VarDecl>(D))
376         if (VD->getTLSKind() != VarDecl::TLS_None)
377           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
378   }
379 
380   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
381       !isUnevaluatedContext()) {
382     // C++ [expr.prim.req.nested] p3
383     //   A local parameter shall only appear as an unevaluated operand
384     //   (Clause 8) within the constraint-expression.
385     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
386         << D;
387     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
388     return true;
389   }
390 
391   return false;
392 }
393 
394 /// DiagnoseSentinelCalls - This routine checks whether a call or
395 /// message-send is to a declaration with the sentinel attribute, and
396 /// if so, it checks that the requirements of the sentinel are
397 /// satisfied.
398 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
399                                  ArrayRef<Expr *> Args) {
400   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
401   if (!attr)
402     return;
403 
404   // The number of formal parameters of the declaration.
405   unsigned numFormalParams;
406 
407   // The kind of declaration.  This is also an index into a %select in
408   // the diagnostic.
409   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
410 
411   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
412     numFormalParams = MD->param_size();
413     calleeType = CT_Method;
414   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
415     numFormalParams = FD->param_size();
416     calleeType = CT_Function;
417   } else if (isa<VarDecl>(D)) {
418     QualType type = cast<ValueDecl>(D)->getType();
419     const FunctionType *fn = nullptr;
420     if (const PointerType *ptr = type->getAs<PointerType>()) {
421       fn = ptr->getPointeeType()->getAs<FunctionType>();
422       if (!fn) return;
423       calleeType = CT_Function;
424     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
425       fn = ptr->getPointeeType()->castAs<FunctionType>();
426       calleeType = CT_Block;
427     } else {
428       return;
429     }
430 
431     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
432       numFormalParams = proto->getNumParams();
433     } else {
434       numFormalParams = 0;
435     }
436   } else {
437     return;
438   }
439 
440   // "nullPos" is the number of formal parameters at the end which
441   // effectively count as part of the variadic arguments.  This is
442   // useful if you would prefer to not have *any* formal parameters,
443   // but the language forces you to have at least one.
444   unsigned nullPos = attr->getNullPos();
445   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
446   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
447 
448   // The number of arguments which should follow the sentinel.
449   unsigned numArgsAfterSentinel = attr->getSentinel();
450 
451   // If there aren't enough arguments for all the formal parameters,
452   // the sentinel, and the args after the sentinel, complain.
453   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
454     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
455     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
456     return;
457   }
458 
459   // Otherwise, find the sentinel expression.
460   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
461   if (!sentinelExpr) return;
462   if (sentinelExpr->isValueDependent()) return;
463   if (Context.isSentinelNullExpr(sentinelExpr)) return;
464 
465   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
466   // or 'NULL' if those are actually defined in the context.  Only use
467   // 'nil' for ObjC methods, where it's much more likely that the
468   // variadic arguments form a list of object pointers.
469   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
470   std::string NullValue;
471   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
472     NullValue = "nil";
473   else if (getLangOpts().CPlusPlus11)
474     NullValue = "nullptr";
475   else if (PP.isMacroDefined("NULL"))
476     NullValue = "NULL";
477   else
478     NullValue = "(void*) 0";
479 
480   if (MissingNilLoc.isInvalid())
481     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
482   else
483     Diag(MissingNilLoc, diag::warn_missing_sentinel)
484       << int(calleeType)
485       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
486   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
487 }
488 
489 SourceRange Sema::getExprRange(Expr *E) const {
490   return E ? E->getSourceRange() : SourceRange();
491 }
492 
493 //===----------------------------------------------------------------------===//
494 //  Standard Promotions and Conversions
495 //===----------------------------------------------------------------------===//
496 
497 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
498 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
499   // Handle any placeholder expressions which made it here.
500   if (E->getType()->isPlaceholderType()) {
501     ExprResult result = CheckPlaceholderExpr(E);
502     if (result.isInvalid()) return ExprError();
503     E = result.get();
504   }
505 
506   QualType Ty = E->getType();
507   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
508 
509   if (Ty->isFunctionType()) {
510     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
511       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
512         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
513           return ExprError();
514 
515     E = ImpCastExprToType(E, Context.getPointerType(Ty),
516                           CK_FunctionToPointerDecay).get();
517   } else if (Ty->isArrayType()) {
518     // In C90 mode, arrays only promote to pointers if the array expression is
519     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
520     // type 'array of type' is converted to an expression that has type 'pointer
521     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
522     // that has type 'array of type' ...".  The relevant change is "an lvalue"
523     // (C90) to "an expression" (C99).
524     //
525     // C++ 4.2p1:
526     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
527     // T" can be converted to an rvalue of type "pointer to T".
528     //
529     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
530       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
531                                          CK_ArrayToPointerDecay);
532       if (Res.isInvalid())
533         return ExprError();
534       E = Res.get();
535     }
536   }
537   return E;
538 }
539 
540 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
541   // Check to see if we are dereferencing a null pointer.  If so,
542   // and if not volatile-qualified, this is undefined behavior that the
543   // optimizer will delete, so warn about it.  People sometimes try to use this
544   // to get a deterministic trap and are surprised by clang's behavior.  This
545   // only handles the pattern "*null", which is a very syntactic check.
546   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
547   if (UO && UO->getOpcode() == UO_Deref &&
548       UO->getSubExpr()->getType()->isPointerType()) {
549     const LangAS AS =
550         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
551     if ((!isTargetAddressSpace(AS) ||
552          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
553         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
554             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
555         !UO->getType().isVolatileQualified()) {
556       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
557                             S.PDiag(diag::warn_indirection_through_null)
558                                 << UO->getSubExpr()->getSourceRange());
559       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
560                             S.PDiag(diag::note_indirection_through_null));
561     }
562   }
563 }
564 
565 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
566                                     SourceLocation AssignLoc,
567                                     const Expr* RHS) {
568   const ObjCIvarDecl *IV = OIRE->getDecl();
569   if (!IV)
570     return;
571 
572   DeclarationName MemberName = IV->getDeclName();
573   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
574   if (!Member || !Member->isStr("isa"))
575     return;
576 
577   const Expr *Base = OIRE->getBase();
578   QualType BaseType = Base->getType();
579   if (OIRE->isArrow())
580     BaseType = BaseType->getPointeeType();
581   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
582     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
583       ObjCInterfaceDecl *ClassDeclared = nullptr;
584       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
585       if (!ClassDeclared->getSuperClass()
586           && (*ClassDeclared->ivar_begin()) == IV) {
587         if (RHS) {
588           NamedDecl *ObjectSetClass =
589             S.LookupSingleName(S.TUScope,
590                                &S.Context.Idents.get("object_setClass"),
591                                SourceLocation(), S.LookupOrdinaryName);
592           if (ObjectSetClass) {
593             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
594             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
595                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
596                                               "object_setClass(")
597                 << FixItHint::CreateReplacement(
598                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
599                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
600           }
601           else
602             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
603         } else {
604           NamedDecl *ObjectGetClass =
605             S.LookupSingleName(S.TUScope,
606                                &S.Context.Idents.get("object_getClass"),
607                                SourceLocation(), S.LookupOrdinaryName);
608           if (ObjectGetClass)
609             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
610                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
611                                               "object_getClass(")
612                 << FixItHint::CreateReplacement(
613                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
614           else
615             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
616         }
617         S.Diag(IV->getLocation(), diag::note_ivar_decl);
618       }
619     }
620 }
621 
622 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
623   // Handle any placeholder expressions which made it here.
624   if (E->getType()->isPlaceholderType()) {
625     ExprResult result = CheckPlaceholderExpr(E);
626     if (result.isInvalid()) return ExprError();
627     E = result.get();
628   }
629 
630   // C++ [conv.lval]p1:
631   //   A glvalue of a non-function, non-array type T can be
632   //   converted to a prvalue.
633   if (!E->isGLValue()) return E;
634 
635   QualType T = E->getType();
636   assert(!T.isNull() && "r-value conversion on typeless expression?");
637 
638   // lvalue-to-rvalue conversion cannot be applied to function or array types.
639   if (T->isFunctionType() || T->isArrayType())
640     return E;
641 
642   // We don't want to throw lvalue-to-rvalue casts on top of
643   // expressions of certain types in C++.
644   if (getLangOpts().CPlusPlus &&
645       (E->getType() == Context.OverloadTy ||
646        T->isDependentType() ||
647        T->isRecordType()))
648     return E;
649 
650   // The C standard is actually really unclear on this point, and
651   // DR106 tells us what the result should be but not why.  It's
652   // generally best to say that void types just doesn't undergo
653   // lvalue-to-rvalue at all.  Note that expressions of unqualified
654   // 'void' type are never l-values, but qualified void can be.
655   if (T->isVoidType())
656     return E;
657 
658   // OpenCL usually rejects direct accesses to values of 'half' type.
659   if (getLangOpts().OpenCL &&
660       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
661       T->isHalfType()) {
662     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
663       << 0 << T;
664     return ExprError();
665   }
666 
667   CheckForNullPointerDereference(*this, E);
668   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
669     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
670                                      &Context.Idents.get("object_getClass"),
671                                      SourceLocation(), LookupOrdinaryName);
672     if (ObjectGetClass)
673       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
674           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
675           << FixItHint::CreateReplacement(
676                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
677     else
678       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
679   }
680   else if (const ObjCIvarRefExpr *OIRE =
681             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
682     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
683 
684   // C++ [conv.lval]p1:
685   //   [...] If T is a non-class type, the type of the prvalue is the
686   //   cv-unqualified version of T. Otherwise, the type of the
687   //   rvalue is T.
688   //
689   // C99 6.3.2.1p2:
690   //   If the lvalue has qualified type, the value has the unqualified
691   //   version of the type of the lvalue; otherwise, the value has the
692   //   type of the lvalue.
693   if (T.hasQualifiers())
694     T = T.getUnqualifiedType();
695 
696   // Under the MS ABI, lock down the inheritance model now.
697   if (T->isMemberPointerType() &&
698       Context.getTargetInfo().getCXXABI().isMicrosoft())
699     (void)isCompleteType(E->getExprLoc(), T);
700 
701   ExprResult Res = CheckLValueToRValueConversionOperand(E);
702   if (Res.isInvalid())
703     return Res;
704   E = Res.get();
705 
706   // Loading a __weak object implicitly retains the value, so we need a cleanup to
707   // balance that.
708   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
709     Cleanup.setExprNeedsCleanups(true);
710 
711   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
712     Cleanup.setExprNeedsCleanups(true);
713 
714   // C++ [conv.lval]p3:
715   //   If T is cv std::nullptr_t, the result is a null pointer constant.
716   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
717   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
718                                  CurFPFeatureOverrides());
719 
720   // C11 6.3.2.1p2:
721   //   ... if the lvalue has atomic type, the value has the non-atomic version
722   //   of the type of the lvalue ...
723   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
724     T = Atomic->getValueType().getUnqualifiedType();
725     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
726                                    nullptr, VK_PRValue, FPOptionsOverride());
727   }
728 
729   return Res;
730 }
731 
732 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
733   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
734   if (Res.isInvalid())
735     return ExprError();
736   Res = DefaultLvalueConversion(Res.get());
737   if (Res.isInvalid())
738     return ExprError();
739   return Res;
740 }
741 
742 /// CallExprUnaryConversions - a special case of an unary conversion
743 /// performed on a function designator of a call expression.
744 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
745   QualType Ty = E->getType();
746   ExprResult Res = E;
747   // Only do implicit cast for a function type, but not for a pointer
748   // to function type.
749   if (Ty->isFunctionType()) {
750     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
751                             CK_FunctionToPointerDecay);
752     if (Res.isInvalid())
753       return ExprError();
754   }
755   Res = DefaultLvalueConversion(Res.get());
756   if (Res.isInvalid())
757     return ExprError();
758   return Res.get();
759 }
760 
761 /// UsualUnaryConversions - Performs various conversions that are common to most
762 /// operators (C99 6.3). The conversions of array and function types are
763 /// sometimes suppressed. For example, the array->pointer conversion doesn't
764 /// apply if the array is an argument to the sizeof or address (&) operators.
765 /// In these instances, this routine should *not* be called.
766 ExprResult Sema::UsualUnaryConversions(Expr *E) {
767   // First, convert to an r-value.
768   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
769   if (Res.isInvalid())
770     return ExprError();
771   E = Res.get();
772 
773   QualType Ty = E->getType();
774   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
775 
776   // Half FP have to be promoted to float unless it is natively supported
777   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
778     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
779 
780   // Try to perform integral promotions if the object has a theoretically
781   // promotable type.
782   if (Ty->isIntegralOrUnscopedEnumerationType()) {
783     // C99 6.3.1.1p2:
784     //
785     //   The following may be used in an expression wherever an int or
786     //   unsigned int may be used:
787     //     - an object or expression with an integer type whose integer
788     //       conversion rank is less than or equal to the rank of int
789     //       and unsigned int.
790     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
791     //
792     //   If an int can represent all values of the original type, the
793     //   value is converted to an int; otherwise, it is converted to an
794     //   unsigned int. These are called the integer promotions. All
795     //   other types are unchanged by the integer promotions.
796 
797     QualType PTy = Context.isPromotableBitField(E);
798     if (!PTy.isNull()) {
799       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
800       return E;
801     }
802     if (Ty->isPromotableIntegerType()) {
803       QualType PT = Context.getPromotedIntegerType(Ty);
804       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
805       return E;
806     }
807   }
808   return E;
809 }
810 
811 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
812 /// do not have a prototype. Arguments that have type float or __fp16
813 /// are promoted to double. All other argument types are converted by
814 /// UsualUnaryConversions().
815 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
816   QualType Ty = E->getType();
817   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
818 
819   ExprResult Res = UsualUnaryConversions(E);
820   if (Res.isInvalid())
821     return ExprError();
822   E = Res.get();
823 
824   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
825   // promote to double.
826   // Note that default argument promotion applies only to float (and
827   // half/fp16); it does not apply to _Float16.
828   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
829   if (BTy && (BTy->getKind() == BuiltinType::Half ||
830               BTy->getKind() == BuiltinType::Float)) {
831     if (getLangOpts().OpenCL &&
832         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
833       if (BTy->getKind() == BuiltinType::Half) {
834         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
835       }
836     } else {
837       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
838     }
839   }
840   if (BTy &&
841       getLangOpts().getExtendIntArgs() ==
842           LangOptions::ExtendArgsKind::ExtendTo64 &&
843       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
844       Context.getTypeSizeInChars(BTy) <
845           Context.getTypeSizeInChars(Context.LongLongTy)) {
846     E = (Ty->isUnsignedIntegerType())
847             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
848                   .get()
849             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
850     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
851            "Unexpected typesize for LongLongTy");
852   }
853 
854   // C++ performs lvalue-to-rvalue conversion as a default argument
855   // promotion, even on class types, but note:
856   //   C++11 [conv.lval]p2:
857   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
858   //     operand or a subexpression thereof the value contained in the
859   //     referenced object is not accessed. Otherwise, if the glvalue
860   //     has a class type, the conversion copy-initializes a temporary
861   //     of type T from the glvalue and the result of the conversion
862   //     is a prvalue for the temporary.
863   // FIXME: add some way to gate this entire thing for correctness in
864   // potentially potentially evaluated contexts.
865   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
866     ExprResult Temp = PerformCopyInitialization(
867                        InitializedEntity::InitializeTemporary(E->getType()),
868                                                 E->getExprLoc(), E);
869     if (Temp.isInvalid())
870       return ExprError();
871     E = Temp.get();
872   }
873 
874   return E;
875 }
876 
877 /// Determine the degree of POD-ness for an expression.
878 /// Incomplete types are considered POD, since this check can be performed
879 /// when we're in an unevaluated context.
880 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
881   if (Ty->isIncompleteType()) {
882     // C++11 [expr.call]p7:
883     //   After these conversions, if the argument does not have arithmetic,
884     //   enumeration, pointer, pointer to member, or class type, the program
885     //   is ill-formed.
886     //
887     // Since we've already performed array-to-pointer and function-to-pointer
888     // decay, the only such type in C++ is cv void. This also handles
889     // initializer lists as variadic arguments.
890     if (Ty->isVoidType())
891       return VAK_Invalid;
892 
893     if (Ty->isObjCObjectType())
894       return VAK_Invalid;
895     return VAK_Valid;
896   }
897 
898   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
899     return VAK_Invalid;
900 
901   if (Ty.isCXX98PODType(Context))
902     return VAK_Valid;
903 
904   // C++11 [expr.call]p7:
905   //   Passing a potentially-evaluated argument of class type (Clause 9)
906   //   having a non-trivial copy constructor, a non-trivial move constructor,
907   //   or a non-trivial destructor, with no corresponding parameter,
908   //   is conditionally-supported with implementation-defined semantics.
909   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
910     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
911       if (!Record->hasNonTrivialCopyConstructor() &&
912           !Record->hasNonTrivialMoveConstructor() &&
913           !Record->hasNonTrivialDestructor())
914         return VAK_ValidInCXX11;
915 
916   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
917     return VAK_Valid;
918 
919   if (Ty->isObjCObjectType())
920     return VAK_Invalid;
921 
922   if (getLangOpts().MSVCCompat)
923     return VAK_MSVCUndefined;
924 
925   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
926   // permitted to reject them. We should consider doing so.
927   return VAK_Undefined;
928 }
929 
930 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
931   // Don't allow one to pass an Objective-C interface to a vararg.
932   const QualType &Ty = E->getType();
933   VarArgKind VAK = isValidVarArgType(Ty);
934 
935   // Complain about passing non-POD types through varargs.
936   switch (VAK) {
937   case VAK_ValidInCXX11:
938     DiagRuntimeBehavior(
939         E->getBeginLoc(), nullptr,
940         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
941     LLVM_FALLTHROUGH;
942   case VAK_Valid:
943     if (Ty->isRecordType()) {
944       // This is unlikely to be what the user intended. If the class has a
945       // 'c_str' member function, the user probably meant to call that.
946       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
947                           PDiag(diag::warn_pass_class_arg_to_vararg)
948                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
949     }
950     break;
951 
952   case VAK_Undefined:
953   case VAK_MSVCUndefined:
954     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
955                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
956                             << getLangOpts().CPlusPlus11 << Ty << CT);
957     break;
958 
959   case VAK_Invalid:
960     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
961       Diag(E->getBeginLoc(),
962            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
963           << Ty << CT;
964     else if (Ty->isObjCObjectType())
965       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
966                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
967                               << Ty << CT);
968     else
969       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
970           << isa<InitListExpr>(E) << Ty << CT;
971     break;
972   }
973 }
974 
975 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
976 /// will create a trap if the resulting type is not a POD type.
977 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
978                                                   FunctionDecl *FDecl) {
979   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
980     // Strip the unbridged-cast placeholder expression off, if applicable.
981     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
982         (CT == VariadicMethod ||
983          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
984       E = stripARCUnbridgedCast(E);
985 
986     // Otherwise, do normal placeholder checking.
987     } else {
988       ExprResult ExprRes = CheckPlaceholderExpr(E);
989       if (ExprRes.isInvalid())
990         return ExprError();
991       E = ExprRes.get();
992     }
993   }
994 
995   ExprResult ExprRes = DefaultArgumentPromotion(E);
996   if (ExprRes.isInvalid())
997     return ExprError();
998 
999   // Copy blocks to the heap.
1000   if (ExprRes.get()->getType()->isBlockPointerType())
1001     maybeExtendBlockObject(ExprRes);
1002 
1003   E = ExprRes.get();
1004 
1005   // Diagnostics regarding non-POD argument types are
1006   // emitted along with format string checking in Sema::CheckFunctionCall().
1007   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1008     // Turn this into a trap.
1009     CXXScopeSpec SS;
1010     SourceLocation TemplateKWLoc;
1011     UnqualifiedId Name;
1012     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1013                        E->getBeginLoc());
1014     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1015                                           /*HasTrailingLParen=*/true,
1016                                           /*IsAddressOfOperand=*/false);
1017     if (TrapFn.isInvalid())
1018       return ExprError();
1019 
1020     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1021                                     None, E->getEndLoc());
1022     if (Call.isInvalid())
1023       return ExprError();
1024 
1025     ExprResult Comma =
1026         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1027     if (Comma.isInvalid())
1028       return ExprError();
1029     return Comma.get();
1030   }
1031 
1032   if (!getLangOpts().CPlusPlus &&
1033       RequireCompleteType(E->getExprLoc(), E->getType(),
1034                           diag::err_call_incomplete_argument))
1035     return ExprError();
1036 
1037   return E;
1038 }
1039 
1040 /// Converts an integer to complex float type.  Helper function of
1041 /// UsualArithmeticConversions()
1042 ///
1043 /// \return false if the integer expression is an integer type and is
1044 /// successfully converted to the complex type.
1045 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1046                                                   ExprResult &ComplexExpr,
1047                                                   QualType IntTy,
1048                                                   QualType ComplexTy,
1049                                                   bool SkipCast) {
1050   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1051   if (SkipCast) return false;
1052   if (IntTy->isIntegerType()) {
1053     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1054     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1055     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1056                                   CK_FloatingRealToComplex);
1057   } else {
1058     assert(IntTy->isComplexIntegerType());
1059     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1060                                   CK_IntegralComplexToFloatingComplex);
1061   }
1062   return false;
1063 }
1064 
1065 /// Handle arithmetic conversion with complex types.  Helper function of
1066 /// UsualArithmeticConversions()
1067 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1068                                              ExprResult &RHS, QualType LHSType,
1069                                              QualType RHSType,
1070                                              bool IsCompAssign) {
1071   // if we have an integer operand, the result is the complex type.
1072   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1073                                              /*skipCast*/false))
1074     return LHSType;
1075   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1076                                              /*skipCast*/IsCompAssign))
1077     return RHSType;
1078 
1079   // This handles complex/complex, complex/float, or float/complex.
1080   // When both operands are complex, the shorter operand is converted to the
1081   // type of the longer, and that is the type of the result. This corresponds
1082   // to what is done when combining two real floating-point operands.
1083   // The fun begins when size promotion occur across type domains.
1084   // From H&S 6.3.4: When one operand is complex and the other is a real
1085   // floating-point type, the less precise type is converted, within it's
1086   // real or complex domain, to the precision of the other type. For example,
1087   // when combining a "long double" with a "double _Complex", the
1088   // "double _Complex" is promoted to "long double _Complex".
1089 
1090   // Compute the rank of the two types, regardless of whether they are complex.
1091   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1092 
1093   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1094   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1095   QualType LHSElementType =
1096       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1097   QualType RHSElementType =
1098       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1099 
1100   QualType ResultType = S.Context.getComplexType(LHSElementType);
1101   if (Order < 0) {
1102     // Promote the precision of the LHS if not an assignment.
1103     ResultType = S.Context.getComplexType(RHSElementType);
1104     if (!IsCompAssign) {
1105       if (LHSComplexType)
1106         LHS =
1107             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1108       else
1109         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1110     }
1111   } else if (Order > 0) {
1112     // Promote the precision of the RHS.
1113     if (RHSComplexType)
1114       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1115     else
1116       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1117   }
1118   return ResultType;
1119 }
1120 
1121 /// Handle arithmetic conversion from integer to float.  Helper function
1122 /// of UsualArithmeticConversions()
1123 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1124                                            ExprResult &IntExpr,
1125                                            QualType FloatTy, QualType IntTy,
1126                                            bool ConvertFloat, bool ConvertInt) {
1127   if (IntTy->isIntegerType()) {
1128     if (ConvertInt)
1129       // Convert intExpr to the lhs floating point type.
1130       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1131                                     CK_IntegralToFloating);
1132     return FloatTy;
1133   }
1134 
1135   // Convert both sides to the appropriate complex float.
1136   assert(IntTy->isComplexIntegerType());
1137   QualType result = S.Context.getComplexType(FloatTy);
1138 
1139   // _Complex int -> _Complex float
1140   if (ConvertInt)
1141     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1142                                   CK_IntegralComplexToFloatingComplex);
1143 
1144   // float -> _Complex float
1145   if (ConvertFloat)
1146     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1147                                     CK_FloatingRealToComplex);
1148 
1149   return result;
1150 }
1151 
1152 /// Handle arithmethic conversion with floating point types.  Helper
1153 /// function of UsualArithmeticConversions()
1154 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1155                                       ExprResult &RHS, QualType LHSType,
1156                                       QualType RHSType, bool IsCompAssign) {
1157   bool LHSFloat = LHSType->isRealFloatingType();
1158   bool RHSFloat = RHSType->isRealFloatingType();
1159 
1160   // N1169 4.1.4: If one of the operands has a floating type and the other
1161   //              operand has a fixed-point type, the fixed-point operand
1162   //              is converted to the floating type [...]
1163   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1164     if (LHSFloat)
1165       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1166     else if (!IsCompAssign)
1167       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1168     return LHSFloat ? LHSType : RHSType;
1169   }
1170 
1171   // If we have two real floating types, convert the smaller operand
1172   // to the bigger result.
1173   if (LHSFloat && RHSFloat) {
1174     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1175     if (order > 0) {
1176       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1177       return LHSType;
1178     }
1179 
1180     assert(order < 0 && "illegal float comparison");
1181     if (!IsCompAssign)
1182       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1183     return RHSType;
1184   }
1185 
1186   if (LHSFloat) {
1187     // Half FP has to be promoted to float unless it is natively supported
1188     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1189       LHSType = S.Context.FloatTy;
1190 
1191     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1192                                       /*ConvertFloat=*/!IsCompAssign,
1193                                       /*ConvertInt=*/ true);
1194   }
1195   assert(RHSFloat);
1196   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1197                                     /*ConvertFloat=*/ true,
1198                                     /*ConvertInt=*/!IsCompAssign);
1199 }
1200 
1201 /// Diagnose attempts to convert between __float128, __ibm128 and
1202 /// long double if there is no support for such conversion.
1203 /// Helper function of UsualArithmeticConversions().
1204 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1205                                       QualType RHSType) {
1206   // No issue if either is not a floating point type.
1207   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1208     return false;
1209 
1210   // No issue if both have the same 128-bit float semantics.
1211   auto *LHSComplex = LHSType->getAs<ComplexType>();
1212   auto *RHSComplex = RHSType->getAs<ComplexType>();
1213 
1214   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1215   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1216 
1217   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1218   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1219 
1220   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1221        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1222       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1223        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1224     return false;
1225 
1226   return true;
1227 }
1228 
1229 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1230 
1231 namespace {
1232 /// These helper callbacks are placed in an anonymous namespace to
1233 /// permit their use as function template parameters.
1234 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1235   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1236 }
1237 
1238 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1239   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1240                              CK_IntegralComplexCast);
1241 }
1242 }
1243 
1244 /// Handle integer arithmetic conversions.  Helper function of
1245 /// UsualArithmeticConversions()
1246 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1247 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1248                                         ExprResult &RHS, QualType LHSType,
1249                                         QualType RHSType, bool IsCompAssign) {
1250   // The rules for this case are in C99 6.3.1.8
1251   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1252   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1253   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1254   if (LHSSigned == RHSSigned) {
1255     // Same signedness; use the higher-ranked type
1256     if (order >= 0) {
1257       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1258       return LHSType;
1259     } else if (!IsCompAssign)
1260       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1261     return RHSType;
1262   } else if (order != (LHSSigned ? 1 : -1)) {
1263     // The unsigned type has greater than or equal rank to the
1264     // signed type, so use the unsigned type
1265     if (RHSSigned) {
1266       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1267       return LHSType;
1268     } else if (!IsCompAssign)
1269       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1270     return RHSType;
1271   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1272     // The two types are different widths; if we are here, that
1273     // means the signed type is larger than the unsigned type, so
1274     // use the signed type.
1275     if (LHSSigned) {
1276       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1277       return LHSType;
1278     } else if (!IsCompAssign)
1279       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1280     return RHSType;
1281   } else {
1282     // The signed type is higher-ranked than the unsigned type,
1283     // but isn't actually any bigger (like unsigned int and long
1284     // on most 32-bit systems).  Use the unsigned type corresponding
1285     // to the signed type.
1286     QualType result =
1287       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1288     RHS = (*doRHSCast)(S, RHS.get(), result);
1289     if (!IsCompAssign)
1290       LHS = (*doLHSCast)(S, LHS.get(), result);
1291     return result;
1292   }
1293 }
1294 
1295 /// Handle conversions with GCC complex int extension.  Helper function
1296 /// of UsualArithmeticConversions()
1297 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1298                                            ExprResult &RHS, QualType LHSType,
1299                                            QualType RHSType,
1300                                            bool IsCompAssign) {
1301   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1302   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1303 
1304   if (LHSComplexInt && RHSComplexInt) {
1305     QualType LHSEltType = LHSComplexInt->getElementType();
1306     QualType RHSEltType = RHSComplexInt->getElementType();
1307     QualType ScalarType =
1308       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1309         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1310 
1311     return S.Context.getComplexType(ScalarType);
1312   }
1313 
1314   if (LHSComplexInt) {
1315     QualType LHSEltType = LHSComplexInt->getElementType();
1316     QualType ScalarType =
1317       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1318         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1319     QualType ComplexType = S.Context.getComplexType(ScalarType);
1320     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1321                               CK_IntegralRealToComplex);
1322 
1323     return ComplexType;
1324   }
1325 
1326   assert(RHSComplexInt);
1327 
1328   QualType RHSEltType = RHSComplexInt->getElementType();
1329   QualType ScalarType =
1330     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1331       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1332   QualType ComplexType = S.Context.getComplexType(ScalarType);
1333 
1334   if (!IsCompAssign)
1335     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1336                               CK_IntegralRealToComplex);
1337   return ComplexType;
1338 }
1339 
1340 /// Return the rank of a given fixed point or integer type. The value itself
1341 /// doesn't matter, but the values must be increasing with proper increasing
1342 /// rank as described in N1169 4.1.1.
1343 static unsigned GetFixedPointRank(QualType Ty) {
1344   const auto *BTy = Ty->getAs<BuiltinType>();
1345   assert(BTy && "Expected a builtin type.");
1346 
1347   switch (BTy->getKind()) {
1348   case BuiltinType::ShortFract:
1349   case BuiltinType::UShortFract:
1350   case BuiltinType::SatShortFract:
1351   case BuiltinType::SatUShortFract:
1352     return 1;
1353   case BuiltinType::Fract:
1354   case BuiltinType::UFract:
1355   case BuiltinType::SatFract:
1356   case BuiltinType::SatUFract:
1357     return 2;
1358   case BuiltinType::LongFract:
1359   case BuiltinType::ULongFract:
1360   case BuiltinType::SatLongFract:
1361   case BuiltinType::SatULongFract:
1362     return 3;
1363   case BuiltinType::ShortAccum:
1364   case BuiltinType::UShortAccum:
1365   case BuiltinType::SatShortAccum:
1366   case BuiltinType::SatUShortAccum:
1367     return 4;
1368   case BuiltinType::Accum:
1369   case BuiltinType::UAccum:
1370   case BuiltinType::SatAccum:
1371   case BuiltinType::SatUAccum:
1372     return 5;
1373   case BuiltinType::LongAccum:
1374   case BuiltinType::ULongAccum:
1375   case BuiltinType::SatLongAccum:
1376   case BuiltinType::SatULongAccum:
1377     return 6;
1378   default:
1379     if (BTy->isInteger())
1380       return 0;
1381     llvm_unreachable("Unexpected fixed point or integer type");
1382   }
1383 }
1384 
1385 /// handleFixedPointConversion - Fixed point operations between fixed
1386 /// point types and integers or other fixed point types do not fall under
1387 /// usual arithmetic conversion since these conversions could result in loss
1388 /// of precsision (N1169 4.1.4). These operations should be calculated with
1389 /// the full precision of their result type (N1169 4.1.6.2.1).
1390 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1391                                            QualType RHSTy) {
1392   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1393          "Expected at least one of the operands to be a fixed point type");
1394   assert((LHSTy->isFixedPointOrIntegerType() ||
1395           RHSTy->isFixedPointOrIntegerType()) &&
1396          "Special fixed point arithmetic operation conversions are only "
1397          "applied to ints or other fixed point types");
1398 
1399   // If one operand has signed fixed-point type and the other operand has
1400   // unsigned fixed-point type, then the unsigned fixed-point operand is
1401   // converted to its corresponding signed fixed-point type and the resulting
1402   // type is the type of the converted operand.
1403   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1404     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1405   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1406     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1407 
1408   // The result type is the type with the highest rank, whereby a fixed-point
1409   // conversion rank is always greater than an integer conversion rank; if the
1410   // type of either of the operands is a saturating fixedpoint type, the result
1411   // type shall be the saturating fixed-point type corresponding to the type
1412   // with the highest rank; the resulting value is converted (taking into
1413   // account rounding and overflow) to the precision of the resulting type.
1414   // Same ranks between signed and unsigned types are resolved earlier, so both
1415   // types are either signed or both unsigned at this point.
1416   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1417   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1418 
1419   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1420 
1421   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1422     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1423 
1424   return ResultTy;
1425 }
1426 
1427 /// Check that the usual arithmetic conversions can be performed on this pair of
1428 /// expressions that might be of enumeration type.
1429 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1430                                            SourceLocation Loc,
1431                                            Sema::ArithConvKind ACK) {
1432   // C++2a [expr.arith.conv]p1:
1433   //   If one operand is of enumeration type and the other operand is of a
1434   //   different enumeration type or a floating-point type, this behavior is
1435   //   deprecated ([depr.arith.conv.enum]).
1436   //
1437   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1438   // Eventually we will presumably reject these cases (in C++23 onwards?).
1439   QualType L = LHS->getType(), R = RHS->getType();
1440   bool LEnum = L->isUnscopedEnumerationType(),
1441        REnum = R->isUnscopedEnumerationType();
1442   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1443   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1444       (REnum && L->isFloatingType())) {
1445     S.Diag(Loc, S.getLangOpts().CPlusPlus20
1446                     ? diag::warn_arith_conv_enum_float_cxx20
1447                     : diag::warn_arith_conv_enum_float)
1448         << LHS->getSourceRange() << RHS->getSourceRange()
1449         << (int)ACK << LEnum << L << R;
1450   } else if (!IsCompAssign && LEnum && REnum &&
1451              !S.Context.hasSameUnqualifiedType(L, R)) {
1452     unsigned DiagID;
1453     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1454         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1455       // If either enumeration type is unnamed, it's less likely that the
1456       // user cares about this, but this situation is still deprecated in
1457       // C++2a. Use a different warning group.
1458       DiagID = S.getLangOpts().CPlusPlus20
1459                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1460                     : diag::warn_arith_conv_mixed_anon_enum_types;
1461     } else if (ACK == Sema::ACK_Conditional) {
1462       // Conditional expressions are separated out because they have
1463       // historically had a different warning flag.
1464       DiagID = S.getLangOpts().CPlusPlus20
1465                    ? diag::warn_conditional_mixed_enum_types_cxx20
1466                    : diag::warn_conditional_mixed_enum_types;
1467     } else if (ACK == Sema::ACK_Comparison) {
1468       // Comparison expressions are separated out because they have
1469       // historically had a different warning flag.
1470       DiagID = S.getLangOpts().CPlusPlus20
1471                    ? diag::warn_comparison_mixed_enum_types_cxx20
1472                    : diag::warn_comparison_mixed_enum_types;
1473     } else {
1474       DiagID = S.getLangOpts().CPlusPlus20
1475                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1476                    : diag::warn_arith_conv_mixed_enum_types;
1477     }
1478     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1479                         << (int)ACK << L << R;
1480   }
1481 }
1482 
1483 /// UsualArithmeticConversions - Performs various conversions that are common to
1484 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1485 /// routine returns the first non-arithmetic type found. The client is
1486 /// responsible for emitting appropriate error diagnostics.
1487 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1488                                           SourceLocation Loc,
1489                                           ArithConvKind ACK) {
1490   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1491 
1492   if (ACK != ACK_CompAssign) {
1493     LHS = UsualUnaryConversions(LHS.get());
1494     if (LHS.isInvalid())
1495       return QualType();
1496   }
1497 
1498   RHS = UsualUnaryConversions(RHS.get());
1499   if (RHS.isInvalid())
1500     return QualType();
1501 
1502   // For conversion purposes, we ignore any qualifiers.
1503   // For example, "const float" and "float" are equivalent.
1504   QualType LHSType =
1505     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1506   QualType RHSType =
1507     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1508 
1509   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1510   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1511     LHSType = AtomicLHS->getValueType();
1512 
1513   // If both types are identical, no conversion is needed.
1514   if (LHSType == RHSType)
1515     return LHSType;
1516 
1517   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1518   // The caller can deal with this (e.g. pointer + int).
1519   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1520     return QualType();
1521 
1522   // Apply unary and bitfield promotions to the LHS's type.
1523   QualType LHSUnpromotedType = LHSType;
1524   if (LHSType->isPromotableIntegerType())
1525     LHSType = Context.getPromotedIntegerType(LHSType);
1526   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1527   if (!LHSBitfieldPromoteTy.isNull())
1528     LHSType = LHSBitfieldPromoteTy;
1529   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1530     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1531 
1532   // If both types are identical, no conversion is needed.
1533   if (LHSType == RHSType)
1534     return LHSType;
1535 
1536   // At this point, we have two different arithmetic types.
1537 
1538   // Diagnose attempts to convert between __ibm128, __float128 and long double
1539   // where such conversions currently can't be handled.
1540   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1541     return QualType();
1542 
1543   // Handle complex types first (C99 6.3.1.8p1).
1544   if (LHSType->isComplexType() || RHSType->isComplexType())
1545     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1546                                         ACK == ACK_CompAssign);
1547 
1548   // Now handle "real" floating types (i.e. float, double, long double).
1549   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1550     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1551                                  ACK == ACK_CompAssign);
1552 
1553   // Handle GCC complex int extension.
1554   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1555     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1556                                       ACK == ACK_CompAssign);
1557 
1558   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1559     return handleFixedPointConversion(*this, LHSType, RHSType);
1560 
1561   // Finally, we have two differing integer types.
1562   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1563            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1564 }
1565 
1566 //===----------------------------------------------------------------------===//
1567 //  Semantic Analysis for various Expression Types
1568 //===----------------------------------------------------------------------===//
1569 
1570 
1571 ExprResult
1572 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1573                                 SourceLocation DefaultLoc,
1574                                 SourceLocation RParenLoc,
1575                                 Expr *ControllingExpr,
1576                                 ArrayRef<ParsedType> ArgTypes,
1577                                 ArrayRef<Expr *> ArgExprs) {
1578   unsigned NumAssocs = ArgTypes.size();
1579   assert(NumAssocs == ArgExprs.size());
1580 
1581   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1582   for (unsigned i = 0; i < NumAssocs; ++i) {
1583     if (ArgTypes[i])
1584       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1585     else
1586       Types[i] = nullptr;
1587   }
1588 
1589   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1590                                              ControllingExpr,
1591                                              llvm::makeArrayRef(Types, NumAssocs),
1592                                              ArgExprs);
1593   delete [] Types;
1594   return ER;
1595 }
1596 
1597 ExprResult
1598 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1599                                  SourceLocation DefaultLoc,
1600                                  SourceLocation RParenLoc,
1601                                  Expr *ControllingExpr,
1602                                  ArrayRef<TypeSourceInfo *> Types,
1603                                  ArrayRef<Expr *> Exprs) {
1604   unsigned NumAssocs = Types.size();
1605   assert(NumAssocs == Exprs.size());
1606 
1607   // Decay and strip qualifiers for the controlling expression type, and handle
1608   // placeholder type replacement. See committee discussion from WG14 DR423.
1609   {
1610     EnterExpressionEvaluationContext Unevaluated(
1611         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1612     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1613     if (R.isInvalid())
1614       return ExprError();
1615     ControllingExpr = R.get();
1616   }
1617 
1618   // The controlling expression is an unevaluated operand, so side effects are
1619   // likely unintended.
1620   if (!inTemplateInstantiation() &&
1621       ControllingExpr->HasSideEffects(Context, false))
1622     Diag(ControllingExpr->getExprLoc(),
1623          diag::warn_side_effects_unevaluated_context);
1624 
1625   bool TypeErrorFound = false,
1626        IsResultDependent = ControllingExpr->isTypeDependent(),
1627        ContainsUnexpandedParameterPack
1628          = ControllingExpr->containsUnexpandedParameterPack();
1629 
1630   for (unsigned i = 0; i < NumAssocs; ++i) {
1631     if (Exprs[i]->containsUnexpandedParameterPack())
1632       ContainsUnexpandedParameterPack = true;
1633 
1634     if (Types[i]) {
1635       if (Types[i]->getType()->containsUnexpandedParameterPack())
1636         ContainsUnexpandedParameterPack = true;
1637 
1638       if (Types[i]->getType()->isDependentType()) {
1639         IsResultDependent = true;
1640       } else {
1641         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1642         // complete object type other than a variably modified type."
1643         unsigned D = 0;
1644         if (Types[i]->getType()->isIncompleteType())
1645           D = diag::err_assoc_type_incomplete;
1646         else if (!Types[i]->getType()->isObjectType())
1647           D = diag::err_assoc_type_nonobject;
1648         else if (Types[i]->getType()->isVariablyModifiedType())
1649           D = diag::err_assoc_type_variably_modified;
1650 
1651         if (D != 0) {
1652           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1653             << Types[i]->getTypeLoc().getSourceRange()
1654             << Types[i]->getType();
1655           TypeErrorFound = true;
1656         }
1657 
1658         // C11 6.5.1.1p2 "No two generic associations in the same generic
1659         // selection shall specify compatible types."
1660         for (unsigned j = i+1; j < NumAssocs; ++j)
1661           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1662               Context.typesAreCompatible(Types[i]->getType(),
1663                                          Types[j]->getType())) {
1664             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1665                  diag::err_assoc_compatible_types)
1666               << Types[j]->getTypeLoc().getSourceRange()
1667               << Types[j]->getType()
1668               << Types[i]->getType();
1669             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1670                  diag::note_compat_assoc)
1671               << Types[i]->getTypeLoc().getSourceRange()
1672               << Types[i]->getType();
1673             TypeErrorFound = true;
1674           }
1675       }
1676     }
1677   }
1678   if (TypeErrorFound)
1679     return ExprError();
1680 
1681   // If we determined that the generic selection is result-dependent, don't
1682   // try to compute the result expression.
1683   if (IsResultDependent)
1684     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1685                                         Exprs, DefaultLoc, RParenLoc,
1686                                         ContainsUnexpandedParameterPack);
1687 
1688   SmallVector<unsigned, 1> CompatIndices;
1689   unsigned DefaultIndex = -1U;
1690   for (unsigned i = 0; i < NumAssocs; ++i) {
1691     if (!Types[i])
1692       DefaultIndex = i;
1693     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1694                                         Types[i]->getType()))
1695       CompatIndices.push_back(i);
1696   }
1697 
1698   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1699   // type compatible with at most one of the types named in its generic
1700   // association list."
1701   if (CompatIndices.size() > 1) {
1702     // We strip parens here because the controlling expression is typically
1703     // parenthesized in macro definitions.
1704     ControllingExpr = ControllingExpr->IgnoreParens();
1705     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1706         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1707         << (unsigned)CompatIndices.size();
1708     for (unsigned I : CompatIndices) {
1709       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1710            diag::note_compat_assoc)
1711         << Types[I]->getTypeLoc().getSourceRange()
1712         << Types[I]->getType();
1713     }
1714     return ExprError();
1715   }
1716 
1717   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1718   // its controlling expression shall have type compatible with exactly one of
1719   // the types named in its generic association list."
1720   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1721     // We strip parens here because the controlling expression is typically
1722     // parenthesized in macro definitions.
1723     ControllingExpr = ControllingExpr->IgnoreParens();
1724     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1725         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1726     return ExprError();
1727   }
1728 
1729   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1730   // type name that is compatible with the type of the controlling expression,
1731   // then the result expression of the generic selection is the expression
1732   // in that generic association. Otherwise, the result expression of the
1733   // generic selection is the expression in the default generic association."
1734   unsigned ResultIndex =
1735     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1736 
1737   return GenericSelectionExpr::Create(
1738       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1739       ContainsUnexpandedParameterPack, ResultIndex);
1740 }
1741 
1742 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1743 /// location of the token and the offset of the ud-suffix within it.
1744 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1745                                      unsigned Offset) {
1746   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1747                                         S.getLangOpts());
1748 }
1749 
1750 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1751 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1752 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1753                                                  IdentifierInfo *UDSuffix,
1754                                                  SourceLocation UDSuffixLoc,
1755                                                  ArrayRef<Expr*> Args,
1756                                                  SourceLocation LitEndLoc) {
1757   assert(Args.size() <= 2 && "too many arguments for literal operator");
1758 
1759   QualType ArgTy[2];
1760   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1761     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1762     if (ArgTy[ArgIdx]->isArrayType())
1763       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1764   }
1765 
1766   DeclarationName OpName =
1767     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1768   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1769   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1770 
1771   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1772   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1773                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1774                               /*AllowStringTemplatePack*/ false,
1775                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1776     return ExprError();
1777 
1778   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1779 }
1780 
1781 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1782 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1783 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1784 /// multiple tokens.  However, the common case is that StringToks points to one
1785 /// string.
1786 ///
1787 ExprResult
1788 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1789   assert(!StringToks.empty() && "Must have at least one string!");
1790 
1791   StringLiteralParser Literal(StringToks, PP);
1792   if (Literal.hadError)
1793     return ExprError();
1794 
1795   SmallVector<SourceLocation, 4> StringTokLocs;
1796   for (const Token &Tok : StringToks)
1797     StringTokLocs.push_back(Tok.getLocation());
1798 
1799   QualType CharTy = Context.CharTy;
1800   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1801   if (Literal.isWide()) {
1802     CharTy = Context.getWideCharType();
1803     Kind = StringLiteral::Wide;
1804   } else if (Literal.isUTF8()) {
1805     if (getLangOpts().Char8)
1806       CharTy = Context.Char8Ty;
1807     Kind = StringLiteral::UTF8;
1808   } else if (Literal.isUTF16()) {
1809     CharTy = Context.Char16Ty;
1810     Kind = StringLiteral::UTF16;
1811   } else if (Literal.isUTF32()) {
1812     CharTy = Context.Char32Ty;
1813     Kind = StringLiteral::UTF32;
1814   } else if (Literal.isPascal()) {
1815     CharTy = Context.UnsignedCharTy;
1816   }
1817 
1818   // Warn on initializing an array of char from a u8 string literal; this
1819   // becomes ill-formed in C++2a.
1820   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1821       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1822     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1823 
1824     // Create removals for all 'u8' prefixes in the string literal(s). This
1825     // ensures C++2a compatibility (but may change the program behavior when
1826     // built by non-Clang compilers for which the execution character set is
1827     // not always UTF-8).
1828     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1829     SourceLocation RemovalDiagLoc;
1830     for (const Token &Tok : StringToks) {
1831       if (Tok.getKind() == tok::utf8_string_literal) {
1832         if (RemovalDiagLoc.isInvalid())
1833           RemovalDiagLoc = Tok.getLocation();
1834         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1835             Tok.getLocation(),
1836             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1837                                            getSourceManager(), getLangOpts())));
1838       }
1839     }
1840     Diag(RemovalDiagLoc, RemovalDiag);
1841   }
1842 
1843   QualType StrTy =
1844       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1845 
1846   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1847   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1848                                              Kind, Literal.Pascal, StrTy,
1849                                              &StringTokLocs[0],
1850                                              StringTokLocs.size());
1851   if (Literal.getUDSuffix().empty())
1852     return Lit;
1853 
1854   // We're building a user-defined literal.
1855   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1856   SourceLocation UDSuffixLoc =
1857     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1858                    Literal.getUDSuffixOffset());
1859 
1860   // Make sure we're allowed user-defined literals here.
1861   if (!UDLScope)
1862     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1863 
1864   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1865   //   operator "" X (str, len)
1866   QualType SizeType = Context.getSizeType();
1867 
1868   DeclarationName OpName =
1869     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1870   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1871   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1872 
1873   QualType ArgTy[] = {
1874     Context.getArrayDecayedType(StrTy), SizeType
1875   };
1876 
1877   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1878   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1879                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1880                                 /*AllowStringTemplatePack*/ true,
1881                                 /*DiagnoseMissing*/ true, Lit)) {
1882 
1883   case LOLR_Cooked: {
1884     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1885     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1886                                                     StringTokLocs[0]);
1887     Expr *Args[] = { Lit, LenArg };
1888 
1889     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1890   }
1891 
1892   case LOLR_Template: {
1893     TemplateArgumentListInfo ExplicitArgs;
1894     TemplateArgument Arg(Lit);
1895     TemplateArgumentLocInfo ArgInfo(Lit);
1896     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1897     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1898                                     &ExplicitArgs);
1899   }
1900 
1901   case LOLR_StringTemplatePack: {
1902     TemplateArgumentListInfo ExplicitArgs;
1903 
1904     unsigned CharBits = Context.getIntWidth(CharTy);
1905     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1906     llvm::APSInt Value(CharBits, CharIsUnsigned);
1907 
1908     TemplateArgument TypeArg(CharTy);
1909     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1910     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1911 
1912     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1913       Value = Lit->getCodeUnit(I);
1914       TemplateArgument Arg(Context, Value, CharTy);
1915       TemplateArgumentLocInfo ArgInfo;
1916       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1917     }
1918     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1919                                     &ExplicitArgs);
1920   }
1921   case LOLR_Raw:
1922   case LOLR_ErrorNoDiagnostic:
1923     llvm_unreachable("unexpected literal operator lookup result");
1924   case LOLR_Error:
1925     return ExprError();
1926   }
1927   llvm_unreachable("unexpected literal operator lookup result");
1928 }
1929 
1930 DeclRefExpr *
1931 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1932                        SourceLocation Loc,
1933                        const CXXScopeSpec *SS) {
1934   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1935   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1936 }
1937 
1938 DeclRefExpr *
1939 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1940                        const DeclarationNameInfo &NameInfo,
1941                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1942                        SourceLocation TemplateKWLoc,
1943                        const TemplateArgumentListInfo *TemplateArgs) {
1944   NestedNameSpecifierLoc NNS =
1945       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1946   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1947                           TemplateArgs);
1948 }
1949 
1950 // CUDA/HIP: Check whether a captured reference variable is referencing a
1951 // host variable in a device or host device lambda.
1952 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
1953                                                             VarDecl *VD) {
1954   if (!S.getLangOpts().CUDA || !VD->hasInit())
1955     return false;
1956   assert(VD->getType()->isReferenceType());
1957 
1958   // Check whether the reference variable is referencing a host variable.
1959   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
1960   if (!DRE)
1961     return false;
1962   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
1963   if (!Referee || !Referee->hasGlobalStorage() ||
1964       Referee->hasAttr<CUDADeviceAttr>())
1965     return false;
1966 
1967   // Check whether the current function is a device or host device lambda.
1968   // Check whether the reference variable is a capture by getDeclContext()
1969   // since refersToEnclosingVariableOrCapture() is not ready at this point.
1970   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
1971   if (MD && MD->getParent()->isLambda() &&
1972       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
1973       VD->getDeclContext() != MD)
1974     return true;
1975 
1976   return false;
1977 }
1978 
1979 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1980   // A declaration named in an unevaluated operand never constitutes an odr-use.
1981   if (isUnevaluatedContext())
1982     return NOUR_Unevaluated;
1983 
1984   // C++2a [basic.def.odr]p4:
1985   //   A variable x whose name appears as a potentially-evaluated expression e
1986   //   is odr-used by e unless [...] x is a reference that is usable in
1987   //   constant expressions.
1988   // CUDA/HIP:
1989   //   If a reference variable referencing a host variable is captured in a
1990   //   device or host device lambda, the value of the referee must be copied
1991   //   to the capture and the reference variable must be treated as odr-use
1992   //   since the value of the referee is not known at compile time and must
1993   //   be loaded from the captured.
1994   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1995     if (VD->getType()->isReferenceType() &&
1996         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1997         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
1998         VD->isUsableInConstantExpressions(Context))
1999       return NOUR_Constant;
2000   }
2001 
2002   // All remaining non-variable cases constitute an odr-use. For variables, we
2003   // need to wait and see how the expression is used.
2004   return NOUR_None;
2005 }
2006 
2007 /// BuildDeclRefExpr - Build an expression that references a
2008 /// declaration that does not require a closure capture.
2009 DeclRefExpr *
2010 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2011                        const DeclarationNameInfo &NameInfo,
2012                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2013                        SourceLocation TemplateKWLoc,
2014                        const TemplateArgumentListInfo *TemplateArgs) {
2015   bool RefersToCapturedVariable =
2016       isa<VarDecl>(D) &&
2017       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2018 
2019   DeclRefExpr *E = DeclRefExpr::Create(
2020       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2021       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2022   MarkDeclRefReferenced(E);
2023 
2024   // C++ [except.spec]p17:
2025   //   An exception-specification is considered to be needed when:
2026   //   - in an expression, the function is the unique lookup result or
2027   //     the selected member of a set of overloaded functions.
2028   //
2029   // We delay doing this until after we've built the function reference and
2030   // marked it as used so that:
2031   //  a) if the function is defaulted, we get errors from defining it before /
2032   //     instead of errors from computing its exception specification, and
2033   //  b) if the function is a defaulted comparison, we can use the body we
2034   //     build when defining it as input to the exception specification
2035   //     computation rather than computing a new body.
2036   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2037     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2038       if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2039         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2040     }
2041   }
2042 
2043   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2044       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2045       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2046     getCurFunction()->recordUseOfWeak(E);
2047 
2048   FieldDecl *FD = dyn_cast<FieldDecl>(D);
2049   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2050     FD = IFD->getAnonField();
2051   if (FD) {
2052     UnusedPrivateFields.remove(FD);
2053     // Just in case we're building an illegal pointer-to-member.
2054     if (FD->isBitField())
2055       E->setObjectKind(OK_BitField);
2056   }
2057 
2058   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2059   // designates a bit-field.
2060   if (auto *BD = dyn_cast<BindingDecl>(D))
2061     if (auto *BE = BD->getBinding())
2062       E->setObjectKind(BE->getObjectKind());
2063 
2064   return E;
2065 }
2066 
2067 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2068 /// possibly a list of template arguments.
2069 ///
2070 /// If this produces template arguments, it is permitted to call
2071 /// DecomposeTemplateName.
2072 ///
2073 /// This actually loses a lot of source location information for
2074 /// non-standard name kinds; we should consider preserving that in
2075 /// some way.
2076 void
2077 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2078                              TemplateArgumentListInfo &Buffer,
2079                              DeclarationNameInfo &NameInfo,
2080                              const TemplateArgumentListInfo *&TemplateArgs) {
2081   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2082     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2083     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2084 
2085     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2086                                        Id.TemplateId->NumArgs);
2087     translateTemplateArguments(TemplateArgsPtr, Buffer);
2088 
2089     TemplateName TName = Id.TemplateId->Template.get();
2090     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2091     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2092     TemplateArgs = &Buffer;
2093   } else {
2094     NameInfo = GetNameFromUnqualifiedId(Id);
2095     TemplateArgs = nullptr;
2096   }
2097 }
2098 
2099 static void emitEmptyLookupTypoDiagnostic(
2100     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2101     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2102     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2103   DeclContext *Ctx =
2104       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2105   if (!TC) {
2106     // Emit a special diagnostic for failed member lookups.
2107     // FIXME: computing the declaration context might fail here (?)
2108     if (Ctx)
2109       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2110                                                  << SS.getRange();
2111     else
2112       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2113     return;
2114   }
2115 
2116   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2117   bool DroppedSpecifier =
2118       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2119   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2120                         ? diag::note_implicit_param_decl
2121                         : diag::note_previous_decl;
2122   if (!Ctx)
2123     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2124                          SemaRef.PDiag(NoteID));
2125   else
2126     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2127                                  << Typo << Ctx << DroppedSpecifier
2128                                  << SS.getRange(),
2129                          SemaRef.PDiag(NoteID));
2130 }
2131 
2132 /// Diagnose a lookup that found results in an enclosing class during error
2133 /// recovery. This usually indicates that the results were found in a dependent
2134 /// base class that could not be searched as part of a template definition.
2135 /// Always issues a diagnostic (though this may be only a warning in MS
2136 /// compatibility mode).
2137 ///
2138 /// Return \c true if the error is unrecoverable, or \c false if the caller
2139 /// should attempt to recover using these lookup results.
2140 bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2141   // During a default argument instantiation the CurContext points
2142   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2143   // function parameter list, hence add an explicit check.
2144   bool isDefaultArgument =
2145       !CodeSynthesisContexts.empty() &&
2146       CodeSynthesisContexts.back().Kind ==
2147           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2148   CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2149   bool isInstance = CurMethod && CurMethod->isInstance() &&
2150                     R.getNamingClass() == CurMethod->getParent() &&
2151                     !isDefaultArgument;
2152 
2153   // There are two ways we can find a class-scope declaration during template
2154   // instantiation that we did not find in the template definition: if it is a
2155   // member of a dependent base class, or if it is declared after the point of
2156   // use in the same class. Distinguish these by comparing the class in which
2157   // the member was found to the naming class of the lookup.
2158   unsigned DiagID = diag::err_found_in_dependent_base;
2159   unsigned NoteID = diag::note_member_declared_at;
2160   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2161     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2162                                       : diag::err_found_later_in_class;
2163   } else if (getLangOpts().MSVCCompat) {
2164     DiagID = diag::ext_found_in_dependent_base;
2165     NoteID = diag::note_dependent_member_use;
2166   }
2167 
2168   if (isInstance) {
2169     // Give a code modification hint to insert 'this->'.
2170     Diag(R.getNameLoc(), DiagID)
2171         << R.getLookupName()
2172         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2173     CheckCXXThisCapture(R.getNameLoc());
2174   } else {
2175     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2176     // they're not shadowed).
2177     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2178   }
2179 
2180   for (NamedDecl *D : R)
2181     Diag(D->getLocation(), NoteID);
2182 
2183   // Return true if we are inside a default argument instantiation
2184   // and the found name refers to an instance member function, otherwise
2185   // the caller will try to create an implicit member call and this is wrong
2186   // for default arguments.
2187   //
2188   // FIXME: Is this special case necessary? We could allow the caller to
2189   // diagnose this.
2190   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2191     Diag(R.getNameLoc(), diag::err_member_call_without_object);
2192     return true;
2193   }
2194 
2195   // Tell the callee to try to recover.
2196   return false;
2197 }
2198 
2199 /// Diagnose an empty lookup.
2200 ///
2201 /// \return false if new lookup candidates were found
2202 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2203                                CorrectionCandidateCallback &CCC,
2204                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2205                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2206   DeclarationName Name = R.getLookupName();
2207 
2208   unsigned diagnostic = diag::err_undeclared_var_use;
2209   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2210   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2211       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2212       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2213     diagnostic = diag::err_undeclared_use;
2214     diagnostic_suggest = diag::err_undeclared_use_suggest;
2215   }
2216 
2217   // If the original lookup was an unqualified lookup, fake an
2218   // unqualified lookup.  This is useful when (for example) the
2219   // original lookup would not have found something because it was a
2220   // dependent name.
2221   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2222   while (DC) {
2223     if (isa<CXXRecordDecl>(DC)) {
2224       LookupQualifiedName(R, DC);
2225 
2226       if (!R.empty()) {
2227         // Don't give errors about ambiguities in this lookup.
2228         R.suppressDiagnostics();
2229 
2230         // If there's a best viable function among the results, only mention
2231         // that one in the notes.
2232         OverloadCandidateSet Candidates(R.getNameLoc(),
2233                                         OverloadCandidateSet::CSK_Normal);
2234         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2235         OverloadCandidateSet::iterator Best;
2236         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2237             OR_Success) {
2238           R.clear();
2239           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2240           R.resolveKind();
2241         }
2242 
2243         return DiagnoseDependentMemberLookup(R);
2244       }
2245 
2246       R.clear();
2247     }
2248 
2249     DC = DC->getLookupParent();
2250   }
2251 
2252   // We didn't find anything, so try to correct for a typo.
2253   TypoCorrection Corrected;
2254   if (S && Out) {
2255     SourceLocation TypoLoc = R.getNameLoc();
2256     assert(!ExplicitTemplateArgs &&
2257            "Diagnosing an empty lookup with explicit template args!");
2258     *Out = CorrectTypoDelayed(
2259         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2260         [=](const TypoCorrection &TC) {
2261           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2262                                         diagnostic, diagnostic_suggest);
2263         },
2264         nullptr, CTK_ErrorRecovery);
2265     if (*Out)
2266       return true;
2267   } else if (S &&
2268              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2269                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2270     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2271     bool DroppedSpecifier =
2272         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2273     R.setLookupName(Corrected.getCorrection());
2274 
2275     bool AcceptableWithRecovery = false;
2276     bool AcceptableWithoutRecovery = false;
2277     NamedDecl *ND = Corrected.getFoundDecl();
2278     if (ND) {
2279       if (Corrected.isOverloaded()) {
2280         OverloadCandidateSet OCS(R.getNameLoc(),
2281                                  OverloadCandidateSet::CSK_Normal);
2282         OverloadCandidateSet::iterator Best;
2283         for (NamedDecl *CD : Corrected) {
2284           if (FunctionTemplateDecl *FTD =
2285                    dyn_cast<FunctionTemplateDecl>(CD))
2286             AddTemplateOverloadCandidate(
2287                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2288                 Args, OCS);
2289           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2290             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2291               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2292                                    Args, OCS);
2293         }
2294         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2295         case OR_Success:
2296           ND = Best->FoundDecl;
2297           Corrected.setCorrectionDecl(ND);
2298           break;
2299         default:
2300           // FIXME: Arbitrarily pick the first declaration for the note.
2301           Corrected.setCorrectionDecl(ND);
2302           break;
2303         }
2304       }
2305       R.addDecl(ND);
2306       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2307         CXXRecordDecl *Record = nullptr;
2308         if (Corrected.getCorrectionSpecifier()) {
2309           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2310           Record = Ty->getAsCXXRecordDecl();
2311         }
2312         if (!Record)
2313           Record = cast<CXXRecordDecl>(
2314               ND->getDeclContext()->getRedeclContext());
2315         R.setNamingClass(Record);
2316       }
2317 
2318       auto *UnderlyingND = ND->getUnderlyingDecl();
2319       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2320                                isa<FunctionTemplateDecl>(UnderlyingND);
2321       // FIXME: If we ended up with a typo for a type name or
2322       // Objective-C class name, we're in trouble because the parser
2323       // is in the wrong place to recover. Suggest the typo
2324       // correction, but don't make it a fix-it since we're not going
2325       // to recover well anyway.
2326       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2327                                   getAsTypeTemplateDecl(UnderlyingND) ||
2328                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2329     } else {
2330       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2331       // because we aren't able to recover.
2332       AcceptableWithoutRecovery = true;
2333     }
2334 
2335     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2336       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2337                             ? diag::note_implicit_param_decl
2338                             : diag::note_previous_decl;
2339       if (SS.isEmpty())
2340         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2341                      PDiag(NoteID), AcceptableWithRecovery);
2342       else
2343         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2344                                   << Name << computeDeclContext(SS, false)
2345                                   << DroppedSpecifier << SS.getRange(),
2346                      PDiag(NoteID), AcceptableWithRecovery);
2347 
2348       // Tell the callee whether to try to recover.
2349       return !AcceptableWithRecovery;
2350     }
2351   }
2352   R.clear();
2353 
2354   // Emit a special diagnostic for failed member lookups.
2355   // FIXME: computing the declaration context might fail here (?)
2356   if (!SS.isEmpty()) {
2357     Diag(R.getNameLoc(), diag::err_no_member)
2358       << Name << computeDeclContext(SS, false)
2359       << SS.getRange();
2360     return true;
2361   }
2362 
2363   // Give up, we can't recover.
2364   Diag(R.getNameLoc(), diagnostic) << Name;
2365   return true;
2366 }
2367 
2368 /// In Microsoft mode, if we are inside a template class whose parent class has
2369 /// dependent base classes, and we can't resolve an unqualified identifier, then
2370 /// assume the identifier is a member of a dependent base class.  We can only
2371 /// recover successfully in static methods, instance methods, and other contexts
2372 /// where 'this' is available.  This doesn't precisely match MSVC's
2373 /// instantiation model, but it's close enough.
2374 static Expr *
2375 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2376                                DeclarationNameInfo &NameInfo,
2377                                SourceLocation TemplateKWLoc,
2378                                const TemplateArgumentListInfo *TemplateArgs) {
2379   // Only try to recover from lookup into dependent bases in static methods or
2380   // contexts where 'this' is available.
2381   QualType ThisType = S.getCurrentThisType();
2382   const CXXRecordDecl *RD = nullptr;
2383   if (!ThisType.isNull())
2384     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2385   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2386     RD = MD->getParent();
2387   if (!RD || !RD->hasAnyDependentBases())
2388     return nullptr;
2389 
2390   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2391   // is available, suggest inserting 'this->' as a fixit.
2392   SourceLocation Loc = NameInfo.getLoc();
2393   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2394   DB << NameInfo.getName() << RD;
2395 
2396   if (!ThisType.isNull()) {
2397     DB << FixItHint::CreateInsertion(Loc, "this->");
2398     return CXXDependentScopeMemberExpr::Create(
2399         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2400         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2401         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2402   }
2403 
2404   // Synthesize a fake NNS that points to the derived class.  This will
2405   // perform name lookup during template instantiation.
2406   CXXScopeSpec SS;
2407   auto *NNS =
2408       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2409   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2410   return DependentScopeDeclRefExpr::Create(
2411       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2412       TemplateArgs);
2413 }
2414 
2415 ExprResult
2416 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2417                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2418                         bool HasTrailingLParen, bool IsAddressOfOperand,
2419                         CorrectionCandidateCallback *CCC,
2420                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2421   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2422          "cannot be direct & operand and have a trailing lparen");
2423   if (SS.isInvalid())
2424     return ExprError();
2425 
2426   TemplateArgumentListInfo TemplateArgsBuffer;
2427 
2428   // Decompose the UnqualifiedId into the following data.
2429   DeclarationNameInfo NameInfo;
2430   const TemplateArgumentListInfo *TemplateArgs;
2431   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2432 
2433   DeclarationName Name = NameInfo.getName();
2434   IdentifierInfo *II = Name.getAsIdentifierInfo();
2435   SourceLocation NameLoc = NameInfo.getLoc();
2436 
2437   if (II && II->isEditorPlaceholder()) {
2438     // FIXME: When typed placeholders are supported we can create a typed
2439     // placeholder expression node.
2440     return ExprError();
2441   }
2442 
2443   // C++ [temp.dep.expr]p3:
2444   //   An id-expression is type-dependent if it contains:
2445   //     -- an identifier that was declared with a dependent type,
2446   //        (note: handled after lookup)
2447   //     -- a template-id that is dependent,
2448   //        (note: handled in BuildTemplateIdExpr)
2449   //     -- a conversion-function-id that specifies a dependent type,
2450   //     -- a nested-name-specifier that contains a class-name that
2451   //        names a dependent type.
2452   // Determine whether this is a member of an unknown specialization;
2453   // we need to handle these differently.
2454   bool DependentID = false;
2455   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2456       Name.getCXXNameType()->isDependentType()) {
2457     DependentID = true;
2458   } else if (SS.isSet()) {
2459     if (DeclContext *DC = computeDeclContext(SS, false)) {
2460       if (RequireCompleteDeclContext(SS, DC))
2461         return ExprError();
2462     } else {
2463       DependentID = true;
2464     }
2465   }
2466 
2467   if (DependentID)
2468     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2469                                       IsAddressOfOperand, TemplateArgs);
2470 
2471   // Perform the required lookup.
2472   LookupResult R(*this, NameInfo,
2473                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2474                      ? LookupObjCImplicitSelfParam
2475                      : LookupOrdinaryName);
2476   if (TemplateKWLoc.isValid() || TemplateArgs) {
2477     // Lookup the template name again to correctly establish the context in
2478     // which it was found. This is really unfortunate as we already did the
2479     // lookup to determine that it was a template name in the first place. If
2480     // this becomes a performance hit, we can work harder to preserve those
2481     // results until we get here but it's likely not worth it.
2482     bool MemberOfUnknownSpecialization;
2483     AssumedTemplateKind AssumedTemplate;
2484     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2485                            MemberOfUnknownSpecialization, TemplateKWLoc,
2486                            &AssumedTemplate))
2487       return ExprError();
2488 
2489     if (MemberOfUnknownSpecialization ||
2490         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2491       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2492                                         IsAddressOfOperand, TemplateArgs);
2493   } else {
2494     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2495     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2496 
2497     // If the result might be in a dependent base class, this is a dependent
2498     // id-expression.
2499     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2500       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2501                                         IsAddressOfOperand, TemplateArgs);
2502 
2503     // If this reference is in an Objective-C method, then we need to do
2504     // some special Objective-C lookup, too.
2505     if (IvarLookupFollowUp) {
2506       ExprResult E(LookupInObjCMethod(R, S, II, true));
2507       if (E.isInvalid())
2508         return ExprError();
2509 
2510       if (Expr *Ex = E.getAs<Expr>())
2511         return Ex;
2512     }
2513   }
2514 
2515   if (R.isAmbiguous())
2516     return ExprError();
2517 
2518   // This could be an implicitly declared function reference (legal in C90,
2519   // extension in C99, forbidden in C++).
2520   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2521     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2522     if (D) R.addDecl(D);
2523   }
2524 
2525   // Determine whether this name might be a candidate for
2526   // argument-dependent lookup.
2527   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2528 
2529   if (R.empty() && !ADL) {
2530     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2531       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2532                                                    TemplateKWLoc, TemplateArgs))
2533         return E;
2534     }
2535 
2536     // Don't diagnose an empty lookup for inline assembly.
2537     if (IsInlineAsmIdentifier)
2538       return ExprError();
2539 
2540     // If this name wasn't predeclared and if this is not a function
2541     // call, diagnose the problem.
2542     TypoExpr *TE = nullptr;
2543     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2544                                                        : nullptr);
2545     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2546     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2547            "Typo correction callback misconfigured");
2548     if (CCC) {
2549       // Make sure the callback knows what the typo being diagnosed is.
2550       CCC->setTypoName(II);
2551       if (SS.isValid())
2552         CCC->setTypoNNS(SS.getScopeRep());
2553     }
2554     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2555     // a template name, but we happen to have always already looked up the name
2556     // before we get here if it must be a template name.
2557     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2558                             None, &TE)) {
2559       if (TE && KeywordReplacement) {
2560         auto &State = getTypoExprState(TE);
2561         auto BestTC = State.Consumer->getNextCorrection();
2562         if (BestTC.isKeyword()) {
2563           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2564           if (State.DiagHandler)
2565             State.DiagHandler(BestTC);
2566           KeywordReplacement->startToken();
2567           KeywordReplacement->setKind(II->getTokenID());
2568           KeywordReplacement->setIdentifierInfo(II);
2569           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2570           // Clean up the state associated with the TypoExpr, since it has
2571           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2572           clearDelayedTypo(TE);
2573           // Signal that a correction to a keyword was performed by returning a
2574           // valid-but-null ExprResult.
2575           return (Expr*)nullptr;
2576         }
2577         State.Consumer->resetCorrectionStream();
2578       }
2579       return TE ? TE : ExprError();
2580     }
2581 
2582     assert(!R.empty() &&
2583            "DiagnoseEmptyLookup returned false but added no results");
2584 
2585     // If we found an Objective-C instance variable, let
2586     // LookupInObjCMethod build the appropriate expression to
2587     // reference the ivar.
2588     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2589       R.clear();
2590       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2591       // In a hopelessly buggy code, Objective-C instance variable
2592       // lookup fails and no expression will be built to reference it.
2593       if (!E.isInvalid() && !E.get())
2594         return ExprError();
2595       return E;
2596     }
2597   }
2598 
2599   // This is guaranteed from this point on.
2600   assert(!R.empty() || ADL);
2601 
2602   // Check whether this might be a C++ implicit instance member access.
2603   // C++ [class.mfct.non-static]p3:
2604   //   When an id-expression that is not part of a class member access
2605   //   syntax and not used to form a pointer to member is used in the
2606   //   body of a non-static member function of class X, if name lookup
2607   //   resolves the name in the id-expression to a non-static non-type
2608   //   member of some class C, the id-expression is transformed into a
2609   //   class member access expression using (*this) as the
2610   //   postfix-expression to the left of the . operator.
2611   //
2612   // But we don't actually need to do this for '&' operands if R
2613   // resolved to a function or overloaded function set, because the
2614   // expression is ill-formed if it actually works out to be a
2615   // non-static member function:
2616   //
2617   // C++ [expr.ref]p4:
2618   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2619   //   [t]he expression can be used only as the left-hand operand of a
2620   //   member function call.
2621   //
2622   // There are other safeguards against such uses, but it's important
2623   // to get this right here so that we don't end up making a
2624   // spuriously dependent expression if we're inside a dependent
2625   // instance method.
2626   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2627     bool MightBeImplicitMember;
2628     if (!IsAddressOfOperand)
2629       MightBeImplicitMember = true;
2630     else if (!SS.isEmpty())
2631       MightBeImplicitMember = false;
2632     else if (R.isOverloadedResult())
2633       MightBeImplicitMember = false;
2634     else if (R.isUnresolvableResult())
2635       MightBeImplicitMember = true;
2636     else
2637       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2638                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2639                               isa<MSPropertyDecl>(R.getFoundDecl());
2640 
2641     if (MightBeImplicitMember)
2642       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2643                                              R, TemplateArgs, S);
2644   }
2645 
2646   if (TemplateArgs || TemplateKWLoc.isValid()) {
2647 
2648     // In C++1y, if this is a variable template id, then check it
2649     // in BuildTemplateIdExpr().
2650     // The single lookup result must be a variable template declaration.
2651     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2652         Id.TemplateId->Kind == TNK_Var_template) {
2653       assert(R.getAsSingle<VarTemplateDecl>() &&
2654              "There should only be one declaration found.");
2655     }
2656 
2657     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2658   }
2659 
2660   return BuildDeclarationNameExpr(SS, R, ADL);
2661 }
2662 
2663 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2664 /// declaration name, generally during template instantiation.
2665 /// There's a large number of things which don't need to be done along
2666 /// this path.
2667 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2668     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2669     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2670   DeclContext *DC = computeDeclContext(SS, false);
2671   if (!DC)
2672     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2673                                      NameInfo, /*TemplateArgs=*/nullptr);
2674 
2675   if (RequireCompleteDeclContext(SS, DC))
2676     return ExprError();
2677 
2678   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2679   LookupQualifiedName(R, DC);
2680 
2681   if (R.isAmbiguous())
2682     return ExprError();
2683 
2684   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2685     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2686                                      NameInfo, /*TemplateArgs=*/nullptr);
2687 
2688   if (R.empty()) {
2689     // Don't diagnose problems with invalid record decl, the secondary no_member
2690     // diagnostic during template instantiation is likely bogus, e.g. if a class
2691     // is invalid because it's derived from an invalid base class, then missing
2692     // members were likely supposed to be inherited.
2693     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2694       if (CD->isInvalidDecl())
2695         return ExprError();
2696     Diag(NameInfo.getLoc(), diag::err_no_member)
2697       << NameInfo.getName() << DC << SS.getRange();
2698     return ExprError();
2699   }
2700 
2701   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2702     // Diagnose a missing typename if this resolved unambiguously to a type in
2703     // a dependent context.  If we can recover with a type, downgrade this to
2704     // a warning in Microsoft compatibility mode.
2705     unsigned DiagID = diag::err_typename_missing;
2706     if (RecoveryTSI && getLangOpts().MSVCCompat)
2707       DiagID = diag::ext_typename_missing;
2708     SourceLocation Loc = SS.getBeginLoc();
2709     auto D = Diag(Loc, DiagID);
2710     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2711       << SourceRange(Loc, NameInfo.getEndLoc());
2712 
2713     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2714     // context.
2715     if (!RecoveryTSI)
2716       return ExprError();
2717 
2718     // Only issue the fixit if we're prepared to recover.
2719     D << FixItHint::CreateInsertion(Loc, "typename ");
2720 
2721     // Recover by pretending this was an elaborated type.
2722     QualType Ty = Context.getTypeDeclType(TD);
2723     TypeLocBuilder TLB;
2724     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2725 
2726     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2727     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2728     QTL.setElaboratedKeywordLoc(SourceLocation());
2729     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2730 
2731     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2732 
2733     return ExprEmpty();
2734   }
2735 
2736   // Defend against this resolving to an implicit member access. We usually
2737   // won't get here if this might be a legitimate a class member (we end up in
2738   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2739   // a pointer-to-member or in an unevaluated context in C++11.
2740   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2741     return BuildPossibleImplicitMemberExpr(SS,
2742                                            /*TemplateKWLoc=*/SourceLocation(),
2743                                            R, /*TemplateArgs=*/nullptr, S);
2744 
2745   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2746 }
2747 
2748 /// The parser has read a name in, and Sema has detected that we're currently
2749 /// inside an ObjC method. Perform some additional checks and determine if we
2750 /// should form a reference to an ivar.
2751 ///
2752 /// Ideally, most of this would be done by lookup, but there's
2753 /// actually quite a lot of extra work involved.
2754 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2755                                         IdentifierInfo *II) {
2756   SourceLocation Loc = Lookup.getNameLoc();
2757   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2758 
2759   // Check for error condition which is already reported.
2760   if (!CurMethod)
2761     return DeclResult(true);
2762 
2763   // There are two cases to handle here.  1) scoped lookup could have failed,
2764   // in which case we should look for an ivar.  2) scoped lookup could have
2765   // found a decl, but that decl is outside the current instance method (i.e.
2766   // a global variable).  In these two cases, we do a lookup for an ivar with
2767   // this name, if the lookup sucedes, we replace it our current decl.
2768 
2769   // If we're in a class method, we don't normally want to look for
2770   // ivars.  But if we don't find anything else, and there's an
2771   // ivar, that's an error.
2772   bool IsClassMethod = CurMethod->isClassMethod();
2773 
2774   bool LookForIvars;
2775   if (Lookup.empty())
2776     LookForIvars = true;
2777   else if (IsClassMethod)
2778     LookForIvars = false;
2779   else
2780     LookForIvars = (Lookup.isSingleResult() &&
2781                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2782   ObjCInterfaceDecl *IFace = nullptr;
2783   if (LookForIvars) {
2784     IFace = CurMethod->getClassInterface();
2785     ObjCInterfaceDecl *ClassDeclared;
2786     ObjCIvarDecl *IV = nullptr;
2787     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2788       // Diagnose using an ivar in a class method.
2789       if (IsClassMethod) {
2790         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2791         return DeclResult(true);
2792       }
2793 
2794       // Diagnose the use of an ivar outside of the declaring class.
2795       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2796           !declaresSameEntity(ClassDeclared, IFace) &&
2797           !getLangOpts().DebuggerSupport)
2798         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2799 
2800       // Success.
2801       return IV;
2802     }
2803   } else if (CurMethod->isInstanceMethod()) {
2804     // We should warn if a local variable hides an ivar.
2805     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2806       ObjCInterfaceDecl *ClassDeclared;
2807       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2808         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2809             declaresSameEntity(IFace, ClassDeclared))
2810           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2811       }
2812     }
2813   } else if (Lookup.isSingleResult() &&
2814              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2815     // If accessing a stand-alone ivar in a class method, this is an error.
2816     if (const ObjCIvarDecl *IV =
2817             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2818       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2819       return DeclResult(true);
2820     }
2821   }
2822 
2823   // Didn't encounter an error, didn't find an ivar.
2824   return DeclResult(false);
2825 }
2826 
2827 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2828                                   ObjCIvarDecl *IV) {
2829   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2830   assert(CurMethod && CurMethod->isInstanceMethod() &&
2831          "should not reference ivar from this context");
2832 
2833   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2834   assert(IFace && "should not reference ivar from this context");
2835 
2836   // If we're referencing an invalid decl, just return this as a silent
2837   // error node.  The error diagnostic was already emitted on the decl.
2838   if (IV->isInvalidDecl())
2839     return ExprError();
2840 
2841   // Check if referencing a field with __attribute__((deprecated)).
2842   if (DiagnoseUseOfDecl(IV, Loc))
2843     return ExprError();
2844 
2845   // FIXME: This should use a new expr for a direct reference, don't
2846   // turn this into Self->ivar, just return a BareIVarExpr or something.
2847   IdentifierInfo &II = Context.Idents.get("self");
2848   UnqualifiedId SelfName;
2849   SelfName.setImplicitSelfParam(&II);
2850   CXXScopeSpec SelfScopeSpec;
2851   SourceLocation TemplateKWLoc;
2852   ExprResult SelfExpr =
2853       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2854                         /*HasTrailingLParen=*/false,
2855                         /*IsAddressOfOperand=*/false);
2856   if (SelfExpr.isInvalid())
2857     return ExprError();
2858 
2859   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2860   if (SelfExpr.isInvalid())
2861     return ExprError();
2862 
2863   MarkAnyDeclReferenced(Loc, IV, true);
2864 
2865   ObjCMethodFamily MF = CurMethod->getMethodFamily();
2866   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2867       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2868     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2869 
2870   ObjCIvarRefExpr *Result = new (Context)
2871       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2872                       IV->getLocation(), SelfExpr.get(), true, true);
2873 
2874   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2875     if (!isUnevaluatedContext() &&
2876         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2877       getCurFunction()->recordUseOfWeak(Result);
2878   }
2879   if (getLangOpts().ObjCAutoRefCount)
2880     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2881       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2882 
2883   return Result;
2884 }
2885 
2886 /// The parser has read a name in, and Sema has detected that we're currently
2887 /// inside an ObjC method. Perform some additional checks and determine if we
2888 /// should form a reference to an ivar. If so, build an expression referencing
2889 /// that ivar.
2890 ExprResult
2891 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2892                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2893   // FIXME: Integrate this lookup step into LookupParsedName.
2894   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2895   if (Ivar.isInvalid())
2896     return ExprError();
2897   if (Ivar.isUsable())
2898     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2899                             cast<ObjCIvarDecl>(Ivar.get()));
2900 
2901   if (Lookup.empty() && II && AllowBuiltinCreation)
2902     LookupBuiltin(Lookup);
2903 
2904   // Sentinel value saying that we didn't do anything special.
2905   return ExprResult(false);
2906 }
2907 
2908 /// Cast a base object to a member's actual type.
2909 ///
2910 /// There are two relevant checks:
2911 ///
2912 /// C++ [class.access.base]p7:
2913 ///
2914 ///   If a class member access operator [...] is used to access a non-static
2915 ///   data member or non-static member function, the reference is ill-formed if
2916 ///   the left operand [...] cannot be implicitly converted to a pointer to the
2917 ///   naming class of the right operand.
2918 ///
2919 /// C++ [expr.ref]p7:
2920 ///
2921 ///   If E2 is a non-static data member or a non-static member function, the
2922 ///   program is ill-formed if the class of which E2 is directly a member is an
2923 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
2924 ///
2925 /// Note that the latter check does not consider access; the access of the
2926 /// "real" base class is checked as appropriate when checking the access of the
2927 /// member name.
2928 ExprResult
2929 Sema::PerformObjectMemberConversion(Expr *From,
2930                                     NestedNameSpecifier *Qualifier,
2931                                     NamedDecl *FoundDecl,
2932                                     NamedDecl *Member) {
2933   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2934   if (!RD)
2935     return From;
2936 
2937   QualType DestRecordType;
2938   QualType DestType;
2939   QualType FromRecordType;
2940   QualType FromType = From->getType();
2941   bool PointerConversions = false;
2942   if (isa<FieldDecl>(Member)) {
2943     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2944     auto FromPtrType = FromType->getAs<PointerType>();
2945     DestRecordType = Context.getAddrSpaceQualType(
2946         DestRecordType, FromPtrType
2947                             ? FromType->getPointeeType().getAddressSpace()
2948                             : FromType.getAddressSpace());
2949 
2950     if (FromPtrType) {
2951       DestType = Context.getPointerType(DestRecordType);
2952       FromRecordType = FromPtrType->getPointeeType();
2953       PointerConversions = true;
2954     } else {
2955       DestType = DestRecordType;
2956       FromRecordType = FromType;
2957     }
2958   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2959     if (Method->isStatic())
2960       return From;
2961 
2962     DestType = Method->getThisType();
2963     DestRecordType = DestType->getPointeeType();
2964 
2965     if (FromType->getAs<PointerType>()) {
2966       FromRecordType = FromType->getPointeeType();
2967       PointerConversions = true;
2968     } else {
2969       FromRecordType = FromType;
2970       DestType = DestRecordType;
2971     }
2972 
2973     LangAS FromAS = FromRecordType.getAddressSpace();
2974     LangAS DestAS = DestRecordType.getAddressSpace();
2975     if (FromAS != DestAS) {
2976       QualType FromRecordTypeWithoutAS =
2977           Context.removeAddrSpaceQualType(FromRecordType);
2978       QualType FromTypeWithDestAS =
2979           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2980       if (PointerConversions)
2981         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2982       From = ImpCastExprToType(From, FromTypeWithDestAS,
2983                                CK_AddressSpaceConversion, From->getValueKind())
2984                  .get();
2985     }
2986   } else {
2987     // No conversion necessary.
2988     return From;
2989   }
2990 
2991   if (DestType->isDependentType() || FromType->isDependentType())
2992     return From;
2993 
2994   // If the unqualified types are the same, no conversion is necessary.
2995   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2996     return From;
2997 
2998   SourceRange FromRange = From->getSourceRange();
2999   SourceLocation FromLoc = FromRange.getBegin();
3000 
3001   ExprValueKind VK = From->getValueKind();
3002 
3003   // C++ [class.member.lookup]p8:
3004   //   [...] Ambiguities can often be resolved by qualifying a name with its
3005   //   class name.
3006   //
3007   // If the member was a qualified name and the qualified referred to a
3008   // specific base subobject type, we'll cast to that intermediate type
3009   // first and then to the object in which the member is declared. That allows
3010   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3011   //
3012   //   class Base { public: int x; };
3013   //   class Derived1 : public Base { };
3014   //   class Derived2 : public Base { };
3015   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3016   //
3017   //   void VeryDerived::f() {
3018   //     x = 17; // error: ambiguous base subobjects
3019   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3020   //   }
3021   if (Qualifier && Qualifier->getAsType()) {
3022     QualType QType = QualType(Qualifier->getAsType(), 0);
3023     assert(QType->isRecordType() && "lookup done with non-record type");
3024 
3025     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
3026 
3027     // In C++98, the qualifier type doesn't actually have to be a base
3028     // type of the object type, in which case we just ignore it.
3029     // Otherwise build the appropriate casts.
3030     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3031       CXXCastPath BasePath;
3032       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3033                                        FromLoc, FromRange, &BasePath))
3034         return ExprError();
3035 
3036       if (PointerConversions)
3037         QType = Context.getPointerType(QType);
3038       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3039                                VK, &BasePath).get();
3040 
3041       FromType = QType;
3042       FromRecordType = QRecordType;
3043 
3044       // If the qualifier type was the same as the destination type,
3045       // we're done.
3046       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3047         return From;
3048     }
3049   }
3050 
3051   CXXCastPath BasePath;
3052   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3053                                    FromLoc, FromRange, &BasePath,
3054                                    /*IgnoreAccess=*/true))
3055     return ExprError();
3056 
3057   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3058                            VK, &BasePath);
3059 }
3060 
3061 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3062                                       const LookupResult &R,
3063                                       bool HasTrailingLParen) {
3064   // Only when used directly as the postfix-expression of a call.
3065   if (!HasTrailingLParen)
3066     return false;
3067 
3068   // Never if a scope specifier was provided.
3069   if (SS.isSet())
3070     return false;
3071 
3072   // Only in C++ or ObjC++.
3073   if (!getLangOpts().CPlusPlus)
3074     return false;
3075 
3076   // Turn off ADL when we find certain kinds of declarations during
3077   // normal lookup:
3078   for (NamedDecl *D : R) {
3079     // C++0x [basic.lookup.argdep]p3:
3080     //     -- a declaration of a class member
3081     // Since using decls preserve this property, we check this on the
3082     // original decl.
3083     if (D->isCXXClassMember())
3084       return false;
3085 
3086     // C++0x [basic.lookup.argdep]p3:
3087     //     -- a block-scope function declaration that is not a
3088     //        using-declaration
3089     // NOTE: we also trigger this for function templates (in fact, we
3090     // don't check the decl type at all, since all other decl types
3091     // turn off ADL anyway).
3092     if (isa<UsingShadowDecl>(D))
3093       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3094     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3095       return false;
3096 
3097     // C++0x [basic.lookup.argdep]p3:
3098     //     -- a declaration that is neither a function or a function
3099     //        template
3100     // And also for builtin functions.
3101     if (isa<FunctionDecl>(D)) {
3102       FunctionDecl *FDecl = cast<FunctionDecl>(D);
3103 
3104       // But also builtin functions.
3105       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3106         return false;
3107     } else if (!isa<FunctionTemplateDecl>(D))
3108       return false;
3109   }
3110 
3111   return true;
3112 }
3113 
3114 
3115 /// Diagnoses obvious problems with the use of the given declaration
3116 /// as an expression.  This is only actually called for lookups that
3117 /// were not overloaded, and it doesn't promise that the declaration
3118 /// will in fact be used.
3119 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3120   if (D->isInvalidDecl())
3121     return true;
3122 
3123   if (isa<TypedefNameDecl>(D)) {
3124     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3125     return true;
3126   }
3127 
3128   if (isa<ObjCInterfaceDecl>(D)) {
3129     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3130     return true;
3131   }
3132 
3133   if (isa<NamespaceDecl>(D)) {
3134     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3135     return true;
3136   }
3137 
3138   return false;
3139 }
3140 
3141 // Certain multiversion types should be treated as overloaded even when there is
3142 // only one result.
3143 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3144   assert(R.isSingleResult() && "Expected only a single result");
3145   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3146   return FD &&
3147          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3148 }
3149 
3150 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3151                                           LookupResult &R, bool NeedsADL,
3152                                           bool AcceptInvalidDecl) {
3153   // If this is a single, fully-resolved result and we don't need ADL,
3154   // just build an ordinary singleton decl ref.
3155   if (!NeedsADL && R.isSingleResult() &&
3156       !R.getAsSingle<FunctionTemplateDecl>() &&
3157       !ShouldLookupResultBeMultiVersionOverload(R))
3158     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3159                                     R.getRepresentativeDecl(), nullptr,
3160                                     AcceptInvalidDecl);
3161 
3162   // We only need to check the declaration if there's exactly one
3163   // result, because in the overloaded case the results can only be
3164   // functions and function templates.
3165   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3166       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3167     return ExprError();
3168 
3169   // Otherwise, just build an unresolved lookup expression.  Suppress
3170   // any lookup-related diagnostics; we'll hash these out later, when
3171   // we've picked a target.
3172   R.suppressDiagnostics();
3173 
3174   UnresolvedLookupExpr *ULE
3175     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3176                                    SS.getWithLocInContext(Context),
3177                                    R.getLookupNameInfo(),
3178                                    NeedsADL, R.isOverloadedResult(),
3179                                    R.begin(), R.end());
3180 
3181   return ULE;
3182 }
3183 
3184 static void
3185 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3186                                    ValueDecl *var, DeclContext *DC);
3187 
3188 /// Complete semantic analysis for a reference to the given declaration.
3189 ExprResult Sema::BuildDeclarationNameExpr(
3190     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3191     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3192     bool AcceptInvalidDecl) {
3193   assert(D && "Cannot refer to a NULL declaration");
3194   assert(!isa<FunctionTemplateDecl>(D) &&
3195          "Cannot refer unambiguously to a function template");
3196 
3197   SourceLocation Loc = NameInfo.getLoc();
3198   if (CheckDeclInExpr(*this, Loc, D))
3199     return ExprError();
3200 
3201   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3202     // Specifically diagnose references to class templates that are missing
3203     // a template argument list.
3204     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3205     return ExprError();
3206   }
3207 
3208   // Make sure that we're referring to a value.
3209   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3210     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3211     Diag(D->getLocation(), diag::note_declared_at);
3212     return ExprError();
3213   }
3214 
3215   // Check whether this declaration can be used. Note that we suppress
3216   // this check when we're going to perform argument-dependent lookup
3217   // on this function name, because this might not be the function
3218   // that overload resolution actually selects.
3219   if (DiagnoseUseOfDecl(D, Loc))
3220     return ExprError();
3221 
3222   auto *VD = cast<ValueDecl>(D);
3223 
3224   // Only create DeclRefExpr's for valid Decl's.
3225   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3226     return ExprError();
3227 
3228   // Handle members of anonymous structs and unions.  If we got here,
3229   // and the reference is to a class member indirect field, then this
3230   // must be the subject of a pointer-to-member expression.
3231   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3232     if (!indirectField->isCXXClassMember())
3233       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3234                                                       indirectField);
3235 
3236   QualType type = VD->getType();
3237   if (type.isNull())
3238     return ExprError();
3239   ExprValueKind valueKind = VK_PRValue;
3240 
3241   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3242   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3243   // is expanded by some outer '...' in the context of the use.
3244   type = type.getNonPackExpansionType();
3245 
3246   switch (D->getKind()) {
3247     // Ignore all the non-ValueDecl kinds.
3248 #define ABSTRACT_DECL(kind)
3249 #define VALUE(type, base)
3250 #define DECL(type, base) case Decl::type:
3251 #include "clang/AST/DeclNodes.inc"
3252     llvm_unreachable("invalid value decl kind");
3253 
3254   // These shouldn't make it here.
3255   case Decl::ObjCAtDefsField:
3256     llvm_unreachable("forming non-member reference to ivar?");
3257 
3258   // Enum constants are always r-values and never references.
3259   // Unresolved using declarations are dependent.
3260   case Decl::EnumConstant:
3261   case Decl::UnresolvedUsingValue:
3262   case Decl::OMPDeclareReduction:
3263   case Decl::OMPDeclareMapper:
3264     valueKind = VK_PRValue;
3265     break;
3266 
3267   // Fields and indirect fields that got here must be for
3268   // pointer-to-member expressions; we just call them l-values for
3269   // internal consistency, because this subexpression doesn't really
3270   // exist in the high-level semantics.
3271   case Decl::Field:
3272   case Decl::IndirectField:
3273   case Decl::ObjCIvar:
3274     assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3275 
3276     // These can't have reference type in well-formed programs, but
3277     // for internal consistency we do this anyway.
3278     type = type.getNonReferenceType();
3279     valueKind = VK_LValue;
3280     break;
3281 
3282   // Non-type template parameters are either l-values or r-values
3283   // depending on the type.
3284   case Decl::NonTypeTemplateParm: {
3285     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3286       type = reftype->getPointeeType();
3287       valueKind = VK_LValue; // even if the parameter is an r-value reference
3288       break;
3289     }
3290 
3291     // [expr.prim.id.unqual]p2:
3292     //   If the entity is a template parameter object for a template
3293     //   parameter of type T, the type of the expression is const T.
3294     //   [...] The expression is an lvalue if the entity is a [...] template
3295     //   parameter object.
3296     if (type->isRecordType()) {
3297       type = type.getUnqualifiedType().withConst();
3298       valueKind = VK_LValue;
3299       break;
3300     }
3301 
3302     // For non-references, we need to strip qualifiers just in case
3303     // the template parameter was declared as 'const int' or whatever.
3304     valueKind = VK_PRValue;
3305     type = type.getUnqualifiedType();
3306     break;
3307   }
3308 
3309   case Decl::Var:
3310   case Decl::VarTemplateSpecialization:
3311   case Decl::VarTemplatePartialSpecialization:
3312   case Decl::Decomposition:
3313   case Decl::OMPCapturedExpr:
3314     // In C, "extern void blah;" is valid and is an r-value.
3315     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3316         type->isVoidType()) {
3317       valueKind = VK_PRValue;
3318       break;
3319     }
3320     LLVM_FALLTHROUGH;
3321 
3322   case Decl::ImplicitParam:
3323   case Decl::ParmVar: {
3324     // These are always l-values.
3325     valueKind = VK_LValue;
3326     type = type.getNonReferenceType();
3327 
3328     // FIXME: Does the addition of const really only apply in
3329     // potentially-evaluated contexts? Since the variable isn't actually
3330     // captured in an unevaluated context, it seems that the answer is no.
3331     if (!isUnevaluatedContext()) {
3332       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3333       if (!CapturedType.isNull())
3334         type = CapturedType;
3335     }
3336 
3337     break;
3338   }
3339 
3340   case Decl::Binding: {
3341     // These are always lvalues.
3342     valueKind = VK_LValue;
3343     type = type.getNonReferenceType();
3344     // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3345     // decides how that's supposed to work.
3346     auto *BD = cast<BindingDecl>(VD);
3347     if (BD->getDeclContext() != CurContext) {
3348       auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3349       if (DD && DD->hasLocalStorage())
3350         diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3351     }
3352     break;
3353   }
3354 
3355   case Decl::Function: {
3356     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3357       if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3358         type = Context.BuiltinFnTy;
3359         valueKind = VK_PRValue;
3360         break;
3361       }
3362     }
3363 
3364     const FunctionType *fty = type->castAs<FunctionType>();
3365 
3366     // If we're referring to a function with an __unknown_anytype
3367     // result type, make the entire expression __unknown_anytype.
3368     if (fty->getReturnType() == Context.UnknownAnyTy) {
3369       type = Context.UnknownAnyTy;
3370       valueKind = VK_PRValue;
3371       break;
3372     }
3373 
3374     // Functions are l-values in C++.
3375     if (getLangOpts().CPlusPlus) {
3376       valueKind = VK_LValue;
3377       break;
3378     }
3379 
3380     // C99 DR 316 says that, if a function type comes from a
3381     // function definition (without a prototype), that type is only
3382     // used for checking compatibility. Therefore, when referencing
3383     // the function, we pretend that we don't have the full function
3384     // type.
3385     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3386       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3387                                             fty->getExtInfo());
3388 
3389     // Functions are r-values in C.
3390     valueKind = VK_PRValue;
3391     break;
3392   }
3393 
3394   case Decl::CXXDeductionGuide:
3395     llvm_unreachable("building reference to deduction guide");
3396 
3397   case Decl::MSProperty:
3398   case Decl::MSGuid:
3399   case Decl::TemplateParamObject:
3400     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3401     // capture in OpenMP, or duplicated between host and device?
3402     valueKind = VK_LValue;
3403     break;
3404 
3405   case Decl::CXXMethod:
3406     // If we're referring to a method with an __unknown_anytype
3407     // result type, make the entire expression __unknown_anytype.
3408     // This should only be possible with a type written directly.
3409     if (const FunctionProtoType *proto =
3410             dyn_cast<FunctionProtoType>(VD->getType()))
3411       if (proto->getReturnType() == Context.UnknownAnyTy) {
3412         type = Context.UnknownAnyTy;
3413         valueKind = VK_PRValue;
3414         break;
3415       }
3416 
3417     // C++ methods are l-values if static, r-values if non-static.
3418     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3419       valueKind = VK_LValue;
3420       break;
3421     }
3422     LLVM_FALLTHROUGH;
3423 
3424   case Decl::CXXConversion:
3425   case Decl::CXXDestructor:
3426   case Decl::CXXConstructor:
3427     valueKind = VK_PRValue;
3428     break;
3429   }
3430 
3431   return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3432                           /*FIXME: TemplateKWLoc*/ SourceLocation(),
3433                           TemplateArgs);
3434 }
3435 
3436 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3437                                     SmallString<32> &Target) {
3438   Target.resize(CharByteWidth * (Source.size() + 1));
3439   char *ResultPtr = &Target[0];
3440   const llvm::UTF8 *ErrorPtr;
3441   bool success =
3442       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3443   (void)success;
3444   assert(success);
3445   Target.resize(ResultPtr - &Target[0]);
3446 }
3447 
3448 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3449                                      PredefinedExpr::IdentKind IK) {
3450   // Pick the current block, lambda, captured statement or function.
3451   Decl *currentDecl = nullptr;
3452   if (const BlockScopeInfo *BSI = getCurBlock())
3453     currentDecl = BSI->TheDecl;
3454   else if (const LambdaScopeInfo *LSI = getCurLambda())
3455     currentDecl = LSI->CallOperator;
3456   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3457     currentDecl = CSI->TheCapturedDecl;
3458   else
3459     currentDecl = getCurFunctionOrMethodDecl();
3460 
3461   if (!currentDecl) {
3462     Diag(Loc, diag::ext_predef_outside_function);
3463     currentDecl = Context.getTranslationUnitDecl();
3464   }
3465 
3466   QualType ResTy;
3467   StringLiteral *SL = nullptr;
3468   if (cast<DeclContext>(currentDecl)->isDependentContext())
3469     ResTy = Context.DependentTy;
3470   else {
3471     // Pre-defined identifiers are of type char[x], where x is the length of
3472     // the string.
3473     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3474     unsigned Length = Str.length();
3475 
3476     llvm::APInt LengthI(32, Length + 1);
3477     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3478       ResTy =
3479           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3480       SmallString<32> RawChars;
3481       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3482                               Str, RawChars);
3483       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3484                                            ArrayType::Normal,
3485                                            /*IndexTypeQuals*/ 0);
3486       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3487                                  /*Pascal*/ false, ResTy, Loc);
3488     } else {
3489       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3490       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3491                                            ArrayType::Normal,
3492                                            /*IndexTypeQuals*/ 0);
3493       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3494                                  /*Pascal*/ false, ResTy, Loc);
3495     }
3496   }
3497 
3498   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3499 }
3500 
3501 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3502                                                SourceLocation LParen,
3503                                                SourceLocation RParen,
3504                                                TypeSourceInfo *TSI) {
3505   return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3506 }
3507 
3508 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3509                                                SourceLocation LParen,
3510                                                SourceLocation RParen,
3511                                                ParsedType ParsedTy) {
3512   TypeSourceInfo *TSI = nullptr;
3513   QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3514 
3515   if (Ty.isNull())
3516     return ExprError();
3517   if (!TSI)
3518     TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3519 
3520   return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3521 }
3522 
3523 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3524   PredefinedExpr::IdentKind IK;
3525 
3526   switch (Kind) {
3527   default: llvm_unreachable("Unknown simple primary expr!");
3528   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3529   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3530   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3531   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3532   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3533   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3534   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3535   }
3536 
3537   return BuildPredefinedExpr(Loc, IK);
3538 }
3539 
3540 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3541   SmallString<16> CharBuffer;
3542   bool Invalid = false;
3543   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3544   if (Invalid)
3545     return ExprError();
3546 
3547   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3548                             PP, Tok.getKind());
3549   if (Literal.hadError())
3550     return ExprError();
3551 
3552   QualType Ty;
3553   if (Literal.isWide())
3554     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3555   else if (Literal.isUTF8() && getLangOpts().Char8)
3556     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3557   else if (Literal.isUTF16())
3558     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3559   else if (Literal.isUTF32())
3560     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3561   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3562     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3563   else
3564     Ty = Context.CharTy;  // 'x' -> char in C++
3565 
3566   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3567   if (Literal.isWide())
3568     Kind = CharacterLiteral::Wide;
3569   else if (Literal.isUTF16())
3570     Kind = CharacterLiteral::UTF16;
3571   else if (Literal.isUTF32())
3572     Kind = CharacterLiteral::UTF32;
3573   else if (Literal.isUTF8())
3574     Kind = CharacterLiteral::UTF8;
3575 
3576   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3577                                              Tok.getLocation());
3578 
3579   if (Literal.getUDSuffix().empty())
3580     return Lit;
3581 
3582   // We're building a user-defined literal.
3583   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3584   SourceLocation UDSuffixLoc =
3585     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3586 
3587   // Make sure we're allowed user-defined literals here.
3588   if (!UDLScope)
3589     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3590 
3591   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3592   //   operator "" X (ch)
3593   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3594                                         Lit, Tok.getLocation());
3595 }
3596 
3597 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3598   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3599   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3600                                 Context.IntTy, Loc);
3601 }
3602 
3603 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3604                                   QualType Ty, SourceLocation Loc) {
3605   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3606 
3607   using llvm::APFloat;
3608   APFloat Val(Format);
3609 
3610   APFloat::opStatus result = Literal.GetFloatValue(Val);
3611 
3612   // Overflow is always an error, but underflow is only an error if
3613   // we underflowed to zero (APFloat reports denormals as underflow).
3614   if ((result & APFloat::opOverflow) ||
3615       ((result & APFloat::opUnderflow) && Val.isZero())) {
3616     unsigned diagnostic;
3617     SmallString<20> buffer;
3618     if (result & APFloat::opOverflow) {
3619       diagnostic = diag::warn_float_overflow;
3620       APFloat::getLargest(Format).toString(buffer);
3621     } else {
3622       diagnostic = diag::warn_float_underflow;
3623       APFloat::getSmallest(Format).toString(buffer);
3624     }
3625 
3626     S.Diag(Loc, diagnostic)
3627       << Ty
3628       << StringRef(buffer.data(), buffer.size());
3629   }
3630 
3631   bool isExact = (result == APFloat::opOK);
3632   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3633 }
3634 
3635 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3636   assert(E && "Invalid expression");
3637 
3638   if (E->isValueDependent())
3639     return false;
3640 
3641   QualType QT = E->getType();
3642   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3643     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3644     return true;
3645   }
3646 
3647   llvm::APSInt ValueAPS;
3648   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3649 
3650   if (R.isInvalid())
3651     return true;
3652 
3653   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3654   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3655     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3656         << toString(ValueAPS, 10) << ValueIsPositive;
3657     return true;
3658   }
3659 
3660   return false;
3661 }
3662 
3663 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3664   // Fast path for a single digit (which is quite common).  A single digit
3665   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3666   if (Tok.getLength() == 1) {
3667     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3668     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3669   }
3670 
3671   SmallString<128> SpellingBuffer;
3672   // NumericLiteralParser wants to overread by one character.  Add padding to
3673   // the buffer in case the token is copied to the buffer.  If getSpelling()
3674   // returns a StringRef to the memory buffer, it should have a null char at
3675   // the EOF, so it is also safe.
3676   SpellingBuffer.resize(Tok.getLength() + 1);
3677 
3678   // Get the spelling of the token, which eliminates trigraphs, etc.
3679   bool Invalid = false;
3680   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3681   if (Invalid)
3682     return ExprError();
3683 
3684   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3685                                PP.getSourceManager(), PP.getLangOpts(),
3686                                PP.getTargetInfo(), PP.getDiagnostics());
3687   if (Literal.hadError)
3688     return ExprError();
3689 
3690   if (Literal.hasUDSuffix()) {
3691     // We're building a user-defined literal.
3692     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3693     SourceLocation UDSuffixLoc =
3694       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3695 
3696     // Make sure we're allowed user-defined literals here.
3697     if (!UDLScope)
3698       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3699 
3700     QualType CookedTy;
3701     if (Literal.isFloatingLiteral()) {
3702       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3703       // long double, the literal is treated as a call of the form
3704       //   operator "" X (f L)
3705       CookedTy = Context.LongDoubleTy;
3706     } else {
3707       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3708       // unsigned long long, the literal is treated as a call of the form
3709       //   operator "" X (n ULL)
3710       CookedTy = Context.UnsignedLongLongTy;
3711     }
3712 
3713     DeclarationName OpName =
3714       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3715     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3716     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3717 
3718     SourceLocation TokLoc = Tok.getLocation();
3719 
3720     // Perform literal operator lookup to determine if we're building a raw
3721     // literal or a cooked one.
3722     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3723     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3724                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3725                                   /*AllowStringTemplatePack*/ false,
3726                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3727     case LOLR_ErrorNoDiagnostic:
3728       // Lookup failure for imaginary constants isn't fatal, there's still the
3729       // GNU extension producing _Complex types.
3730       break;
3731     case LOLR_Error:
3732       return ExprError();
3733     case LOLR_Cooked: {
3734       Expr *Lit;
3735       if (Literal.isFloatingLiteral()) {
3736         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3737       } else {
3738         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3739         if (Literal.GetIntegerValue(ResultVal))
3740           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3741               << /* Unsigned */ 1;
3742         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3743                                      Tok.getLocation());
3744       }
3745       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3746     }
3747 
3748     case LOLR_Raw: {
3749       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3750       // literal is treated as a call of the form
3751       //   operator "" X ("n")
3752       unsigned Length = Literal.getUDSuffixOffset();
3753       QualType StrTy = Context.getConstantArrayType(
3754           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3755           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3756       Expr *Lit = StringLiteral::Create(
3757           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3758           /*Pascal*/false, StrTy, &TokLoc, 1);
3759       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3760     }
3761 
3762     case LOLR_Template: {
3763       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3764       // template), L is treated as a call fo the form
3765       //   operator "" X <'c1', 'c2', ... 'ck'>()
3766       // where n is the source character sequence c1 c2 ... ck.
3767       TemplateArgumentListInfo ExplicitArgs;
3768       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3769       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3770       llvm::APSInt Value(CharBits, CharIsUnsigned);
3771       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3772         Value = TokSpelling[I];
3773         TemplateArgument Arg(Context, Value, Context.CharTy);
3774         TemplateArgumentLocInfo ArgInfo;
3775         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3776       }
3777       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3778                                       &ExplicitArgs);
3779     }
3780     case LOLR_StringTemplatePack:
3781       llvm_unreachable("unexpected literal operator lookup result");
3782     }
3783   }
3784 
3785   Expr *Res;
3786 
3787   if (Literal.isFixedPointLiteral()) {
3788     QualType Ty;
3789 
3790     if (Literal.isAccum) {
3791       if (Literal.isHalf) {
3792         Ty = Context.ShortAccumTy;
3793       } else if (Literal.isLong) {
3794         Ty = Context.LongAccumTy;
3795       } else {
3796         Ty = Context.AccumTy;
3797       }
3798     } else if (Literal.isFract) {
3799       if (Literal.isHalf) {
3800         Ty = Context.ShortFractTy;
3801       } else if (Literal.isLong) {
3802         Ty = Context.LongFractTy;
3803       } else {
3804         Ty = Context.FractTy;
3805       }
3806     }
3807 
3808     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3809 
3810     bool isSigned = !Literal.isUnsigned;
3811     unsigned scale = Context.getFixedPointScale(Ty);
3812     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3813 
3814     llvm::APInt Val(bit_width, 0, isSigned);
3815     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3816     bool ValIsZero = Val.isNullValue() && !Overflowed;
3817 
3818     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3819     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3820       // Clause 6.4.4 - The value of a constant shall be in the range of
3821       // representable values for its type, with exception for constants of a
3822       // fract type with a value of exactly 1; such a constant shall denote
3823       // the maximal value for the type.
3824       --Val;
3825     else if (Val.ugt(MaxVal) || Overflowed)
3826       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3827 
3828     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3829                                               Tok.getLocation(), scale);
3830   } else if (Literal.isFloatingLiteral()) {
3831     QualType Ty;
3832     if (Literal.isHalf){
3833       if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3834         Ty = Context.HalfTy;
3835       else {
3836         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3837         return ExprError();
3838       }
3839     } else if (Literal.isFloat)
3840       Ty = Context.FloatTy;
3841     else if (Literal.isLong)
3842       Ty = Context.LongDoubleTy;
3843     else if (Literal.isFloat16)
3844       Ty = Context.Float16Ty;
3845     else if (Literal.isFloat128)
3846       Ty = Context.Float128Ty;
3847     else
3848       Ty = Context.DoubleTy;
3849 
3850     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3851 
3852     if (Ty == Context.DoubleTy) {
3853       if (getLangOpts().SinglePrecisionConstants) {
3854         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3855           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3856         }
3857       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3858                                              "cl_khr_fp64", getLangOpts())) {
3859         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3860         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3861             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3862         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3863       }
3864     }
3865   } else if (!Literal.isIntegerLiteral()) {
3866     return ExprError();
3867   } else {
3868     QualType Ty;
3869 
3870     // 'long long' is a C99 or C++11 feature.
3871     if (!getLangOpts().C99 && Literal.isLongLong) {
3872       if (getLangOpts().CPlusPlus)
3873         Diag(Tok.getLocation(),
3874              getLangOpts().CPlusPlus11 ?
3875              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3876       else
3877         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3878     }
3879 
3880     // 'z/uz' literals are a C++2b feature.
3881     if (Literal.isSizeT)
3882       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3883                                   ? getLangOpts().CPlusPlus2b
3884                                         ? diag::warn_cxx20_compat_size_t_suffix
3885                                         : diag::ext_cxx2b_size_t_suffix
3886                                   : diag::err_cxx2b_size_t_suffix);
3887 
3888     // Get the value in the widest-possible width.
3889     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3890     llvm::APInt ResultVal(MaxWidth, 0);
3891 
3892     if (Literal.GetIntegerValue(ResultVal)) {
3893       // If this value didn't fit into uintmax_t, error and force to ull.
3894       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3895           << /* Unsigned */ 1;
3896       Ty = Context.UnsignedLongLongTy;
3897       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3898              "long long is not intmax_t?");
3899     } else {
3900       // If this value fits into a ULL, try to figure out what else it fits into
3901       // according to the rules of C99 6.4.4.1p5.
3902 
3903       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3904       // be an unsigned int.
3905       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3906 
3907       // Check from smallest to largest, picking the smallest type we can.
3908       unsigned Width = 0;
3909 
3910       // Microsoft specific integer suffixes are explicitly sized.
3911       if (Literal.MicrosoftInteger) {
3912         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3913           Width = 8;
3914           Ty = Context.CharTy;
3915         } else {
3916           Width = Literal.MicrosoftInteger;
3917           Ty = Context.getIntTypeForBitwidth(Width,
3918                                              /*Signed=*/!Literal.isUnsigned);
3919         }
3920       }
3921 
3922       // Check C++2b size_t literals.
3923       if (Literal.isSizeT) {
3924         assert(!Literal.MicrosoftInteger &&
3925                "size_t literals can't be Microsoft literals");
3926         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3927             Context.getTargetInfo().getSizeType());
3928 
3929         // Does it fit in size_t?
3930         if (ResultVal.isIntN(SizeTSize)) {
3931           // Does it fit in ssize_t?
3932           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3933             Ty = Context.getSignedSizeType();
3934           else if (AllowUnsigned)
3935             Ty = Context.getSizeType();
3936           Width = SizeTSize;
3937         }
3938       }
3939 
3940       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
3941           !Literal.isSizeT) {
3942         // Are int/unsigned possibilities?
3943         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3944 
3945         // Does it fit in a unsigned int?
3946         if (ResultVal.isIntN(IntSize)) {
3947           // Does it fit in a signed int?
3948           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3949             Ty = Context.IntTy;
3950           else if (AllowUnsigned)
3951             Ty = Context.UnsignedIntTy;
3952           Width = IntSize;
3953         }
3954       }
3955 
3956       // Are long/unsigned long possibilities?
3957       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
3958         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3959 
3960         // Does it fit in a unsigned long?
3961         if (ResultVal.isIntN(LongSize)) {
3962           // Does it fit in a signed long?
3963           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3964             Ty = Context.LongTy;
3965           else if (AllowUnsigned)
3966             Ty = Context.UnsignedLongTy;
3967           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3968           // is compatible.
3969           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3970             const unsigned LongLongSize =
3971                 Context.getTargetInfo().getLongLongWidth();
3972             Diag(Tok.getLocation(),
3973                  getLangOpts().CPlusPlus
3974                      ? Literal.isLong
3975                            ? diag::warn_old_implicitly_unsigned_long_cxx
3976                            : /*C++98 UB*/ diag::
3977                                  ext_old_implicitly_unsigned_long_cxx
3978                      : diag::warn_old_implicitly_unsigned_long)
3979                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3980                                             : /*will be ill-formed*/ 1);
3981             Ty = Context.UnsignedLongTy;
3982           }
3983           Width = LongSize;
3984         }
3985       }
3986 
3987       // Check long long if needed.
3988       if (Ty.isNull() && !Literal.isSizeT) {
3989         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3990 
3991         // Does it fit in a unsigned long long?
3992         if (ResultVal.isIntN(LongLongSize)) {
3993           // Does it fit in a signed long long?
3994           // To be compatible with MSVC, hex integer literals ending with the
3995           // LL or i64 suffix are always signed in Microsoft mode.
3996           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3997               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3998             Ty = Context.LongLongTy;
3999           else if (AllowUnsigned)
4000             Ty = Context.UnsignedLongLongTy;
4001           Width = LongLongSize;
4002         }
4003       }
4004 
4005       // If we still couldn't decide a type, we either have 'size_t' literal
4006       // that is out of range, or a decimal literal that does not fit in a
4007       // signed long long and has no U suffix.
4008       if (Ty.isNull()) {
4009         if (Literal.isSizeT)
4010           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4011               << Literal.isUnsigned;
4012         else
4013           Diag(Tok.getLocation(),
4014                diag::ext_integer_literal_too_large_for_signed);
4015         Ty = Context.UnsignedLongLongTy;
4016         Width = Context.getTargetInfo().getLongLongWidth();
4017       }
4018 
4019       if (ResultVal.getBitWidth() != Width)
4020         ResultVal = ResultVal.trunc(Width);
4021     }
4022     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4023   }
4024 
4025   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4026   if (Literal.isImaginary) {
4027     Res = new (Context) ImaginaryLiteral(Res,
4028                                         Context.getComplexType(Res->getType()));
4029 
4030     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4031   }
4032   return Res;
4033 }
4034 
4035 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4036   assert(E && "ActOnParenExpr() missing expr");
4037   QualType ExprTy = E->getType();
4038   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4039       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4040     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4041   return new (Context) ParenExpr(L, R, E);
4042 }
4043 
4044 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4045                                          SourceLocation Loc,
4046                                          SourceRange ArgRange) {
4047   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4048   // scalar or vector data type argument..."
4049   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4050   // type (C99 6.2.5p18) or void.
4051   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4052     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4053       << T << ArgRange;
4054     return true;
4055   }
4056 
4057   assert((T->isVoidType() || !T->isIncompleteType()) &&
4058          "Scalar types should always be complete");
4059   return false;
4060 }
4061 
4062 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4063                                            SourceLocation Loc,
4064                                            SourceRange ArgRange,
4065                                            UnaryExprOrTypeTrait TraitKind) {
4066   // Invalid types must be hard errors for SFINAE in C++.
4067   if (S.LangOpts.CPlusPlus)
4068     return true;
4069 
4070   // C99 6.5.3.4p1:
4071   if (T->isFunctionType() &&
4072       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4073        TraitKind == UETT_PreferredAlignOf)) {
4074     // sizeof(function)/alignof(function) is allowed as an extension.
4075     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4076         << getTraitSpelling(TraitKind) << ArgRange;
4077     return false;
4078   }
4079 
4080   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4081   // this is an error (OpenCL v1.1 s6.3.k)
4082   if (T->isVoidType()) {
4083     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4084                                         : diag::ext_sizeof_alignof_void_type;
4085     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4086     return false;
4087   }
4088 
4089   return true;
4090 }
4091 
4092 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4093                                              SourceLocation Loc,
4094                                              SourceRange ArgRange,
4095                                              UnaryExprOrTypeTrait TraitKind) {
4096   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4097   // runtime doesn't allow it.
4098   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4099     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4100       << T << (TraitKind == UETT_SizeOf)
4101       << ArgRange;
4102     return true;
4103   }
4104 
4105   return false;
4106 }
4107 
4108 /// Check whether E is a pointer from a decayed array type (the decayed
4109 /// pointer type is equal to T) and emit a warning if it is.
4110 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4111                                      Expr *E) {
4112   // Don't warn if the operation changed the type.
4113   if (T != E->getType())
4114     return;
4115 
4116   // Now look for array decays.
4117   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4118   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4119     return;
4120 
4121   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4122                                              << ICE->getType()
4123                                              << ICE->getSubExpr()->getType();
4124 }
4125 
4126 /// Check the constraints on expression operands to unary type expression
4127 /// and type traits.
4128 ///
4129 /// Completes any types necessary and validates the constraints on the operand
4130 /// expression. The logic mostly mirrors the type-based overload, but may modify
4131 /// the expression as it completes the type for that expression through template
4132 /// instantiation, etc.
4133 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4134                                             UnaryExprOrTypeTrait ExprKind) {
4135   QualType ExprTy = E->getType();
4136   assert(!ExprTy->isReferenceType());
4137 
4138   bool IsUnevaluatedOperand =
4139       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4140        ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4141   if (IsUnevaluatedOperand) {
4142     ExprResult Result = CheckUnevaluatedOperand(E);
4143     if (Result.isInvalid())
4144       return true;
4145     E = Result.get();
4146   }
4147 
4148   // The operand for sizeof and alignof is in an unevaluated expression context,
4149   // so side effects could result in unintended consequences.
4150   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4151   // used to build SFINAE gadgets.
4152   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4153   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4154       !E->isInstantiationDependent() &&
4155       E->HasSideEffects(Context, false))
4156     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4157 
4158   if (ExprKind == UETT_VecStep)
4159     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4160                                         E->getSourceRange());
4161 
4162   // Explicitly list some types as extensions.
4163   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4164                                       E->getSourceRange(), ExprKind))
4165     return false;
4166 
4167   // 'alignof' applied to an expression only requires the base element type of
4168   // the expression to be complete. 'sizeof' requires the expression's type to
4169   // be complete (and will attempt to complete it if it's an array of unknown
4170   // bound).
4171   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4172     if (RequireCompleteSizedType(
4173             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4174             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4175             getTraitSpelling(ExprKind), E->getSourceRange()))
4176       return true;
4177   } else {
4178     if (RequireCompleteSizedExprType(
4179             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4180             getTraitSpelling(ExprKind), E->getSourceRange()))
4181       return true;
4182   }
4183 
4184   // Completing the expression's type may have changed it.
4185   ExprTy = E->getType();
4186   assert(!ExprTy->isReferenceType());
4187 
4188   if (ExprTy->isFunctionType()) {
4189     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4190         << getTraitSpelling(ExprKind) << E->getSourceRange();
4191     return true;
4192   }
4193 
4194   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4195                                        E->getSourceRange(), ExprKind))
4196     return true;
4197 
4198   if (ExprKind == UETT_SizeOf) {
4199     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4200       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4201         QualType OType = PVD->getOriginalType();
4202         QualType Type = PVD->getType();
4203         if (Type->isPointerType() && OType->isArrayType()) {
4204           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4205             << Type << OType;
4206           Diag(PVD->getLocation(), diag::note_declared_at);
4207         }
4208       }
4209     }
4210 
4211     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4212     // decays into a pointer and returns an unintended result. This is most
4213     // likely a typo for "sizeof(array) op x".
4214     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4215       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4216                                BO->getLHS());
4217       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4218                                BO->getRHS());
4219     }
4220   }
4221 
4222   return false;
4223 }
4224 
4225 /// Check the constraints on operands to unary expression and type
4226 /// traits.
4227 ///
4228 /// This will complete any types necessary, and validate the various constraints
4229 /// on those operands.
4230 ///
4231 /// The UsualUnaryConversions() function is *not* called by this routine.
4232 /// C99 6.3.2.1p[2-4] all state:
4233 ///   Except when it is the operand of the sizeof operator ...
4234 ///
4235 /// C++ [expr.sizeof]p4
4236 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4237 ///   standard conversions are not applied to the operand of sizeof.
4238 ///
4239 /// This policy is followed for all of the unary trait expressions.
4240 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4241                                             SourceLocation OpLoc,
4242                                             SourceRange ExprRange,
4243                                             UnaryExprOrTypeTrait ExprKind) {
4244   if (ExprType->isDependentType())
4245     return false;
4246 
4247   // C++ [expr.sizeof]p2:
4248   //     When applied to a reference or a reference type, the result
4249   //     is the size of the referenced type.
4250   // C++11 [expr.alignof]p3:
4251   //     When alignof is applied to a reference type, the result
4252   //     shall be the alignment of the referenced type.
4253   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4254     ExprType = Ref->getPointeeType();
4255 
4256   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4257   //   When alignof or _Alignof is applied to an array type, the result
4258   //   is the alignment of the element type.
4259   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4260       ExprKind == UETT_OpenMPRequiredSimdAlign)
4261     ExprType = Context.getBaseElementType(ExprType);
4262 
4263   if (ExprKind == UETT_VecStep)
4264     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4265 
4266   // Explicitly list some types as extensions.
4267   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4268                                       ExprKind))
4269     return false;
4270 
4271   if (RequireCompleteSizedType(
4272           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4273           getTraitSpelling(ExprKind), ExprRange))
4274     return true;
4275 
4276   if (ExprType->isFunctionType()) {
4277     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4278         << getTraitSpelling(ExprKind) << ExprRange;
4279     return true;
4280   }
4281 
4282   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4283                                        ExprKind))
4284     return true;
4285 
4286   return false;
4287 }
4288 
4289 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4290   // Cannot know anything else if the expression is dependent.
4291   if (E->isTypeDependent())
4292     return false;
4293 
4294   if (E->getObjectKind() == OK_BitField) {
4295     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4296        << 1 << E->getSourceRange();
4297     return true;
4298   }
4299 
4300   ValueDecl *D = nullptr;
4301   Expr *Inner = E->IgnoreParens();
4302   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4303     D = DRE->getDecl();
4304   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4305     D = ME->getMemberDecl();
4306   }
4307 
4308   // If it's a field, require the containing struct to have a
4309   // complete definition so that we can compute the layout.
4310   //
4311   // This can happen in C++11 onwards, either by naming the member
4312   // in a way that is not transformed into a member access expression
4313   // (in an unevaluated operand, for instance), or by naming the member
4314   // in a trailing-return-type.
4315   //
4316   // For the record, since __alignof__ on expressions is a GCC
4317   // extension, GCC seems to permit this but always gives the
4318   // nonsensical answer 0.
4319   //
4320   // We don't really need the layout here --- we could instead just
4321   // directly check for all the appropriate alignment-lowing
4322   // attributes --- but that would require duplicating a lot of
4323   // logic that just isn't worth duplicating for such a marginal
4324   // use-case.
4325   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4326     // Fast path this check, since we at least know the record has a
4327     // definition if we can find a member of it.
4328     if (!FD->getParent()->isCompleteDefinition()) {
4329       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4330         << E->getSourceRange();
4331       return true;
4332     }
4333 
4334     // Otherwise, if it's a field, and the field doesn't have
4335     // reference type, then it must have a complete type (or be a
4336     // flexible array member, which we explicitly want to
4337     // white-list anyway), which makes the following checks trivial.
4338     if (!FD->getType()->isReferenceType())
4339       return false;
4340   }
4341 
4342   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4343 }
4344 
4345 bool Sema::CheckVecStepExpr(Expr *E) {
4346   E = E->IgnoreParens();
4347 
4348   // Cannot know anything else if the expression is dependent.
4349   if (E->isTypeDependent())
4350     return false;
4351 
4352   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4353 }
4354 
4355 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4356                                         CapturingScopeInfo *CSI) {
4357   assert(T->isVariablyModifiedType());
4358   assert(CSI != nullptr);
4359 
4360   // We're going to walk down into the type and look for VLA expressions.
4361   do {
4362     const Type *Ty = T.getTypePtr();
4363     switch (Ty->getTypeClass()) {
4364 #define TYPE(Class, Base)
4365 #define ABSTRACT_TYPE(Class, Base)
4366 #define NON_CANONICAL_TYPE(Class, Base)
4367 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4368 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4369 #include "clang/AST/TypeNodes.inc"
4370       T = QualType();
4371       break;
4372     // These types are never variably-modified.
4373     case Type::Builtin:
4374     case Type::Complex:
4375     case Type::Vector:
4376     case Type::ExtVector:
4377     case Type::ConstantMatrix:
4378     case Type::Record:
4379     case Type::Enum:
4380     case Type::Elaborated:
4381     case Type::TemplateSpecialization:
4382     case Type::ObjCObject:
4383     case Type::ObjCInterface:
4384     case Type::ObjCObjectPointer:
4385     case Type::ObjCTypeParam:
4386     case Type::Pipe:
4387     case Type::ExtInt:
4388       llvm_unreachable("type class is never variably-modified!");
4389     case Type::Adjusted:
4390       T = cast<AdjustedType>(Ty)->getOriginalType();
4391       break;
4392     case Type::Decayed:
4393       T = cast<DecayedType>(Ty)->getPointeeType();
4394       break;
4395     case Type::Pointer:
4396       T = cast<PointerType>(Ty)->getPointeeType();
4397       break;
4398     case Type::BlockPointer:
4399       T = cast<BlockPointerType>(Ty)->getPointeeType();
4400       break;
4401     case Type::LValueReference:
4402     case Type::RValueReference:
4403       T = cast<ReferenceType>(Ty)->getPointeeType();
4404       break;
4405     case Type::MemberPointer:
4406       T = cast<MemberPointerType>(Ty)->getPointeeType();
4407       break;
4408     case Type::ConstantArray:
4409     case Type::IncompleteArray:
4410       // Losing element qualification here is fine.
4411       T = cast<ArrayType>(Ty)->getElementType();
4412       break;
4413     case Type::VariableArray: {
4414       // Losing element qualification here is fine.
4415       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4416 
4417       // Unknown size indication requires no size computation.
4418       // Otherwise, evaluate and record it.
4419       auto Size = VAT->getSizeExpr();
4420       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4421           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4422         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4423 
4424       T = VAT->getElementType();
4425       break;
4426     }
4427     case Type::FunctionProto:
4428     case Type::FunctionNoProto:
4429       T = cast<FunctionType>(Ty)->getReturnType();
4430       break;
4431     case Type::Paren:
4432     case Type::TypeOf:
4433     case Type::UnaryTransform:
4434     case Type::Attributed:
4435     case Type::SubstTemplateTypeParm:
4436     case Type::MacroQualified:
4437       // Keep walking after single level desugaring.
4438       T = T.getSingleStepDesugaredType(Context);
4439       break;
4440     case Type::Typedef:
4441       T = cast<TypedefType>(Ty)->desugar();
4442       break;
4443     case Type::Decltype:
4444       T = cast<DecltypeType>(Ty)->desugar();
4445       break;
4446     case Type::Auto:
4447     case Type::DeducedTemplateSpecialization:
4448       T = cast<DeducedType>(Ty)->getDeducedType();
4449       break;
4450     case Type::TypeOfExpr:
4451       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4452       break;
4453     case Type::Atomic:
4454       T = cast<AtomicType>(Ty)->getValueType();
4455       break;
4456     }
4457   } while (!T.isNull() && T->isVariablyModifiedType());
4458 }
4459 
4460 /// Build a sizeof or alignof expression given a type operand.
4461 ExprResult
4462 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4463                                      SourceLocation OpLoc,
4464                                      UnaryExprOrTypeTrait ExprKind,
4465                                      SourceRange R) {
4466   if (!TInfo)
4467     return ExprError();
4468 
4469   QualType T = TInfo->getType();
4470 
4471   if (!T->isDependentType() &&
4472       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4473     return ExprError();
4474 
4475   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4476     if (auto *TT = T->getAs<TypedefType>()) {
4477       for (auto I = FunctionScopes.rbegin(),
4478                 E = std::prev(FunctionScopes.rend());
4479            I != E; ++I) {
4480         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4481         if (CSI == nullptr)
4482           break;
4483         DeclContext *DC = nullptr;
4484         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4485           DC = LSI->CallOperator;
4486         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4487           DC = CRSI->TheCapturedDecl;
4488         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4489           DC = BSI->TheDecl;
4490         if (DC) {
4491           if (DC->containsDecl(TT->getDecl()))
4492             break;
4493           captureVariablyModifiedType(Context, T, CSI);
4494         }
4495       }
4496     }
4497   }
4498 
4499   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4500   return new (Context) UnaryExprOrTypeTraitExpr(
4501       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4502 }
4503 
4504 /// Build a sizeof or alignof expression given an expression
4505 /// operand.
4506 ExprResult
4507 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4508                                      UnaryExprOrTypeTrait ExprKind) {
4509   ExprResult PE = CheckPlaceholderExpr(E);
4510   if (PE.isInvalid())
4511     return ExprError();
4512 
4513   E = PE.get();
4514 
4515   // Verify that the operand is valid.
4516   bool isInvalid = false;
4517   if (E->isTypeDependent()) {
4518     // Delay type-checking for type-dependent expressions.
4519   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4520     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4521   } else if (ExprKind == UETT_VecStep) {
4522     isInvalid = CheckVecStepExpr(E);
4523   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4524       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4525       isInvalid = true;
4526   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4527     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4528     isInvalid = true;
4529   } else {
4530     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4531   }
4532 
4533   if (isInvalid)
4534     return ExprError();
4535 
4536   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4537     PE = TransformToPotentiallyEvaluated(E);
4538     if (PE.isInvalid()) return ExprError();
4539     E = PE.get();
4540   }
4541 
4542   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4543   return new (Context) UnaryExprOrTypeTraitExpr(
4544       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4545 }
4546 
4547 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4548 /// expr and the same for @c alignof and @c __alignof
4549 /// Note that the ArgRange is invalid if isType is false.
4550 ExprResult
4551 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4552                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4553                                     void *TyOrEx, SourceRange ArgRange) {
4554   // If error parsing type, ignore.
4555   if (!TyOrEx) return ExprError();
4556 
4557   if (IsType) {
4558     TypeSourceInfo *TInfo;
4559     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4560     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4561   }
4562 
4563   Expr *ArgEx = (Expr *)TyOrEx;
4564   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4565   return Result;
4566 }
4567 
4568 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4569                                      bool IsReal) {
4570   if (V.get()->isTypeDependent())
4571     return S.Context.DependentTy;
4572 
4573   // _Real and _Imag are only l-values for normal l-values.
4574   if (V.get()->getObjectKind() != OK_Ordinary) {
4575     V = S.DefaultLvalueConversion(V.get());
4576     if (V.isInvalid())
4577       return QualType();
4578   }
4579 
4580   // These operators return the element type of a complex type.
4581   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4582     return CT->getElementType();
4583 
4584   // Otherwise they pass through real integer and floating point types here.
4585   if (V.get()->getType()->isArithmeticType())
4586     return V.get()->getType();
4587 
4588   // Test for placeholders.
4589   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4590   if (PR.isInvalid()) return QualType();
4591   if (PR.get() != V.get()) {
4592     V = PR;
4593     return CheckRealImagOperand(S, V, Loc, IsReal);
4594   }
4595 
4596   // Reject anything else.
4597   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4598     << (IsReal ? "__real" : "__imag");
4599   return QualType();
4600 }
4601 
4602 
4603 
4604 ExprResult
4605 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4606                           tok::TokenKind Kind, Expr *Input) {
4607   UnaryOperatorKind Opc;
4608   switch (Kind) {
4609   default: llvm_unreachable("Unknown unary op!");
4610   case tok::plusplus:   Opc = UO_PostInc; break;
4611   case tok::minusminus: Opc = UO_PostDec; break;
4612   }
4613 
4614   // Since this might is a postfix expression, get rid of ParenListExprs.
4615   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4616   if (Result.isInvalid()) return ExprError();
4617   Input = Result.get();
4618 
4619   return BuildUnaryOp(S, OpLoc, Opc, Input);
4620 }
4621 
4622 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4623 ///
4624 /// \return true on error
4625 static bool checkArithmeticOnObjCPointer(Sema &S,
4626                                          SourceLocation opLoc,
4627                                          Expr *op) {
4628   assert(op->getType()->isObjCObjectPointerType());
4629   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4630       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4631     return false;
4632 
4633   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4634     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4635     << op->getSourceRange();
4636   return true;
4637 }
4638 
4639 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4640   auto *BaseNoParens = Base->IgnoreParens();
4641   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4642     return MSProp->getPropertyDecl()->getType()->isArrayType();
4643   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4644 }
4645 
4646 ExprResult
4647 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4648                               Expr *idx, SourceLocation rbLoc) {
4649   if (base && !base->getType().isNull() &&
4650       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4651     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4652                                     SourceLocation(), /*Length*/ nullptr,
4653                                     /*Stride=*/nullptr, rbLoc);
4654 
4655   // Since this might be a postfix expression, get rid of ParenListExprs.
4656   if (isa<ParenListExpr>(base)) {
4657     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4658     if (result.isInvalid()) return ExprError();
4659     base = result.get();
4660   }
4661 
4662   // Check if base and idx form a MatrixSubscriptExpr.
4663   //
4664   // Helper to check for comma expressions, which are not allowed as indices for
4665   // matrix subscript expressions.
4666   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4667     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4668       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4669           << SourceRange(base->getBeginLoc(), rbLoc);
4670       return true;
4671     }
4672     return false;
4673   };
4674   // The matrix subscript operator ([][])is considered a single operator.
4675   // Separating the index expressions by parenthesis is not allowed.
4676   if (base->getType()->isSpecificPlaceholderType(
4677           BuiltinType::IncompleteMatrixIdx) &&
4678       !isa<MatrixSubscriptExpr>(base)) {
4679     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4680         << SourceRange(base->getBeginLoc(), rbLoc);
4681     return ExprError();
4682   }
4683   // If the base is a MatrixSubscriptExpr, try to create a new
4684   // MatrixSubscriptExpr.
4685   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4686   if (matSubscriptE) {
4687     if (CheckAndReportCommaError(idx))
4688       return ExprError();
4689 
4690     assert(matSubscriptE->isIncomplete() &&
4691            "base has to be an incomplete matrix subscript");
4692     return CreateBuiltinMatrixSubscriptExpr(
4693         matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
4694   }
4695 
4696   // Handle any non-overload placeholder types in the base and index
4697   // expressions.  We can't handle overloads here because the other
4698   // operand might be an overloadable type, in which case the overload
4699   // resolution for the operator overload should get the first crack
4700   // at the overload.
4701   bool IsMSPropertySubscript = false;
4702   if (base->getType()->isNonOverloadPlaceholderType()) {
4703     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4704     if (!IsMSPropertySubscript) {
4705       ExprResult result = CheckPlaceholderExpr(base);
4706       if (result.isInvalid())
4707         return ExprError();
4708       base = result.get();
4709     }
4710   }
4711 
4712   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4713   if (base->getType()->isMatrixType()) {
4714     if (CheckAndReportCommaError(idx))
4715       return ExprError();
4716 
4717     return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
4718   }
4719 
4720   // A comma-expression as the index is deprecated in C++2a onwards.
4721   if (getLangOpts().CPlusPlus20 &&
4722       ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4723        (isa<CXXOperatorCallExpr>(idx) &&
4724         cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4725     Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4726         << SourceRange(base->getBeginLoc(), rbLoc);
4727   }
4728 
4729   if (idx->getType()->isNonOverloadPlaceholderType()) {
4730     ExprResult result = CheckPlaceholderExpr(idx);
4731     if (result.isInvalid()) return ExprError();
4732     idx = result.get();
4733   }
4734 
4735   // Build an unanalyzed expression if either operand is type-dependent.
4736   if (getLangOpts().CPlusPlus &&
4737       (base->isTypeDependent() || idx->isTypeDependent())) {
4738     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4739                                             VK_LValue, OK_Ordinary, rbLoc);
4740   }
4741 
4742   // MSDN, property (C++)
4743   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4744   // This attribute can also be used in the declaration of an empty array in a
4745   // class or structure definition. For example:
4746   // __declspec(property(get=GetX, put=PutX)) int x[];
4747   // The above statement indicates that x[] can be used with one or more array
4748   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4749   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4750   if (IsMSPropertySubscript) {
4751     // Build MS property subscript expression if base is MS property reference
4752     // or MS property subscript.
4753     return new (Context) MSPropertySubscriptExpr(
4754         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4755   }
4756 
4757   // Use C++ overloaded-operator rules if either operand has record
4758   // type.  The spec says to do this if either type is *overloadable*,
4759   // but enum types can't declare subscript operators or conversion
4760   // operators, so there's nothing interesting for overload resolution
4761   // to do if there aren't any record types involved.
4762   //
4763   // ObjC pointers have their own subscripting logic that is not tied
4764   // to overload resolution and so should not take this path.
4765   if (getLangOpts().CPlusPlus &&
4766       (base->getType()->isRecordType() ||
4767        (!base->getType()->isObjCObjectPointerType() &&
4768         idx->getType()->isRecordType()))) {
4769     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4770   }
4771 
4772   ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4773 
4774   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4775     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4776 
4777   return Res;
4778 }
4779 
4780 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4781   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4782   InitializationKind Kind =
4783       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4784   InitializationSequence InitSeq(*this, Entity, Kind, E);
4785   return InitSeq.Perform(*this, Entity, Kind, E);
4786 }
4787 
4788 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4789                                                   Expr *ColumnIdx,
4790                                                   SourceLocation RBLoc) {
4791   ExprResult BaseR = CheckPlaceholderExpr(Base);
4792   if (BaseR.isInvalid())
4793     return BaseR;
4794   Base = BaseR.get();
4795 
4796   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4797   if (RowR.isInvalid())
4798     return RowR;
4799   RowIdx = RowR.get();
4800 
4801   if (!ColumnIdx)
4802     return new (Context) MatrixSubscriptExpr(
4803         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4804 
4805   // Build an unanalyzed expression if any of the operands is type-dependent.
4806   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4807       ColumnIdx->isTypeDependent())
4808     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4809                                              Context.DependentTy, RBLoc);
4810 
4811   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4812   if (ColumnR.isInvalid())
4813     return ColumnR;
4814   ColumnIdx = ColumnR.get();
4815 
4816   // Check that IndexExpr is an integer expression. If it is a constant
4817   // expression, check that it is less than Dim (= the number of elements in the
4818   // corresponding dimension).
4819   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
4820                           bool IsColumnIdx) -> Expr * {
4821     if (!IndexExpr->getType()->isIntegerType() &&
4822         !IndexExpr->isTypeDependent()) {
4823       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
4824           << IsColumnIdx;
4825       return nullptr;
4826     }
4827 
4828     if (Optional<llvm::APSInt> Idx =
4829             IndexExpr->getIntegerConstantExpr(Context)) {
4830       if ((*Idx < 0 || *Idx >= Dim)) {
4831         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
4832             << IsColumnIdx << Dim;
4833         return nullptr;
4834       }
4835     }
4836 
4837     ExprResult ConvExpr =
4838         tryConvertExprToType(IndexExpr, Context.getSizeType());
4839     assert(!ConvExpr.isInvalid() &&
4840            "should be able to convert any integer type to size type");
4841     return ConvExpr.get();
4842   };
4843 
4844   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
4845   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
4846   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
4847   if (!RowIdx || !ColumnIdx)
4848     return ExprError();
4849 
4850   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4851                                            MTy->getElementType(), RBLoc);
4852 }
4853 
4854 void Sema::CheckAddressOfNoDeref(const Expr *E) {
4855   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4856   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4857 
4858   // For expressions like `&(*s).b`, the base is recorded and what should be
4859   // checked.
4860   const MemberExpr *Member = nullptr;
4861   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4862     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4863 
4864   LastRecord.PossibleDerefs.erase(StrippedExpr);
4865 }
4866 
4867 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4868   if (isUnevaluatedContext())
4869     return;
4870 
4871   QualType ResultTy = E->getType();
4872   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4873 
4874   // Bail if the element is an array since it is not memory access.
4875   if (isa<ArrayType>(ResultTy))
4876     return;
4877 
4878   if (ResultTy->hasAttr(attr::NoDeref)) {
4879     LastRecord.PossibleDerefs.insert(E);
4880     return;
4881   }
4882 
4883   // Check if the base type is a pointer to a member access of a struct
4884   // marked with noderef.
4885   const Expr *Base = E->getBase();
4886   QualType BaseTy = Base->getType();
4887   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4888     // Not a pointer access
4889     return;
4890 
4891   const MemberExpr *Member = nullptr;
4892   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4893          Member->isArrow())
4894     Base = Member->getBase();
4895 
4896   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4897     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4898       LastRecord.PossibleDerefs.insert(E);
4899   }
4900 }
4901 
4902 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4903                                           Expr *LowerBound,
4904                                           SourceLocation ColonLocFirst,
4905                                           SourceLocation ColonLocSecond,
4906                                           Expr *Length, Expr *Stride,
4907                                           SourceLocation RBLoc) {
4908   if (Base->getType()->isPlaceholderType() &&
4909       !Base->getType()->isSpecificPlaceholderType(
4910           BuiltinType::OMPArraySection)) {
4911     ExprResult Result = CheckPlaceholderExpr(Base);
4912     if (Result.isInvalid())
4913       return ExprError();
4914     Base = Result.get();
4915   }
4916   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4917     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4918     if (Result.isInvalid())
4919       return ExprError();
4920     Result = DefaultLvalueConversion(Result.get());
4921     if (Result.isInvalid())
4922       return ExprError();
4923     LowerBound = Result.get();
4924   }
4925   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4926     ExprResult Result = CheckPlaceholderExpr(Length);
4927     if (Result.isInvalid())
4928       return ExprError();
4929     Result = DefaultLvalueConversion(Result.get());
4930     if (Result.isInvalid())
4931       return ExprError();
4932     Length = Result.get();
4933   }
4934   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
4935     ExprResult Result = CheckPlaceholderExpr(Stride);
4936     if (Result.isInvalid())
4937       return ExprError();
4938     Result = DefaultLvalueConversion(Result.get());
4939     if (Result.isInvalid())
4940       return ExprError();
4941     Stride = Result.get();
4942   }
4943 
4944   // Build an unanalyzed expression if either operand is type-dependent.
4945   if (Base->isTypeDependent() ||
4946       (LowerBound &&
4947        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4948       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
4949       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
4950     return new (Context) OMPArraySectionExpr(
4951         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
4952         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
4953   }
4954 
4955   // Perform default conversions.
4956   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4957   QualType ResultTy;
4958   if (OriginalTy->isAnyPointerType()) {
4959     ResultTy = OriginalTy->getPointeeType();
4960   } else if (OriginalTy->isArrayType()) {
4961     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4962   } else {
4963     return ExprError(
4964         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4965         << Base->getSourceRange());
4966   }
4967   // C99 6.5.2.1p1
4968   if (LowerBound) {
4969     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4970                                                       LowerBound);
4971     if (Res.isInvalid())
4972       return ExprError(Diag(LowerBound->getExprLoc(),
4973                             diag::err_omp_typecheck_section_not_integer)
4974                        << 0 << LowerBound->getSourceRange());
4975     LowerBound = Res.get();
4976 
4977     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4978         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4979       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4980           << 0 << LowerBound->getSourceRange();
4981   }
4982   if (Length) {
4983     auto Res =
4984         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4985     if (Res.isInvalid())
4986       return ExprError(Diag(Length->getExprLoc(),
4987                             diag::err_omp_typecheck_section_not_integer)
4988                        << 1 << Length->getSourceRange());
4989     Length = Res.get();
4990 
4991     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4992         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4993       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4994           << 1 << Length->getSourceRange();
4995   }
4996   if (Stride) {
4997     ExprResult Res =
4998         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
4999     if (Res.isInvalid())
5000       return ExprError(Diag(Stride->getExprLoc(),
5001                             diag::err_omp_typecheck_section_not_integer)
5002                        << 1 << Stride->getSourceRange());
5003     Stride = Res.get();
5004 
5005     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5006         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5007       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5008           << 1 << Stride->getSourceRange();
5009   }
5010 
5011   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5012   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5013   // type. Note that functions are not objects, and that (in C99 parlance)
5014   // incomplete types are not object types.
5015   if (ResultTy->isFunctionType()) {
5016     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5017         << ResultTy << Base->getSourceRange();
5018     return ExprError();
5019   }
5020 
5021   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5022                           diag::err_omp_section_incomplete_type, Base))
5023     return ExprError();
5024 
5025   if (LowerBound && !OriginalTy->isAnyPointerType()) {
5026     Expr::EvalResult Result;
5027     if (LowerBound->EvaluateAsInt(Result, Context)) {
5028       // OpenMP 5.0, [2.1.5 Array Sections]
5029       // The array section must be a subset of the original array.
5030       llvm::APSInt LowerBoundValue = Result.Val.getInt();
5031       if (LowerBoundValue.isNegative()) {
5032         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5033             << LowerBound->getSourceRange();
5034         return ExprError();
5035       }
5036     }
5037   }
5038 
5039   if (Length) {
5040     Expr::EvalResult Result;
5041     if (Length->EvaluateAsInt(Result, Context)) {
5042       // OpenMP 5.0, [2.1.5 Array Sections]
5043       // The length must evaluate to non-negative integers.
5044       llvm::APSInt LengthValue = Result.Val.getInt();
5045       if (LengthValue.isNegative()) {
5046         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5047             << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5048             << Length->getSourceRange();
5049         return ExprError();
5050       }
5051     }
5052   } else if (ColonLocFirst.isValid() &&
5053              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5054                                       !OriginalTy->isVariableArrayType()))) {
5055     // OpenMP 5.0, [2.1.5 Array Sections]
5056     // When the size of the array dimension is not known, the length must be
5057     // specified explicitly.
5058     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5059         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5060     return ExprError();
5061   }
5062 
5063   if (Stride) {
5064     Expr::EvalResult Result;
5065     if (Stride->EvaluateAsInt(Result, Context)) {
5066       // OpenMP 5.0, [2.1.5 Array Sections]
5067       // The stride must evaluate to a positive integer.
5068       llvm::APSInt StrideValue = Result.Val.getInt();
5069       if (!StrideValue.isStrictlyPositive()) {
5070         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5071             << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5072             << Stride->getSourceRange();
5073         return ExprError();
5074       }
5075     }
5076   }
5077 
5078   if (!Base->getType()->isSpecificPlaceholderType(
5079           BuiltinType::OMPArraySection)) {
5080     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5081     if (Result.isInvalid())
5082       return ExprError();
5083     Base = Result.get();
5084   }
5085   return new (Context) OMPArraySectionExpr(
5086       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5087       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5088 }
5089 
5090 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5091                                           SourceLocation RParenLoc,
5092                                           ArrayRef<Expr *> Dims,
5093                                           ArrayRef<SourceRange> Brackets) {
5094   if (Base->getType()->isPlaceholderType()) {
5095     ExprResult Result = CheckPlaceholderExpr(Base);
5096     if (Result.isInvalid())
5097       return ExprError();
5098     Result = DefaultLvalueConversion(Result.get());
5099     if (Result.isInvalid())
5100       return ExprError();
5101     Base = Result.get();
5102   }
5103   QualType BaseTy = Base->getType();
5104   // Delay analysis of the types/expressions if instantiation/specialization is
5105   // required.
5106   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5107     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5108                                        LParenLoc, RParenLoc, Dims, Brackets);
5109   if (!BaseTy->isPointerType() ||
5110       (!Base->isTypeDependent() &&
5111        BaseTy->getPointeeType()->isIncompleteType()))
5112     return ExprError(Diag(Base->getExprLoc(),
5113                           diag::err_omp_non_pointer_type_array_shaping_base)
5114                      << Base->getSourceRange());
5115 
5116   SmallVector<Expr *, 4> NewDims;
5117   bool ErrorFound = false;
5118   for (Expr *Dim : Dims) {
5119     if (Dim->getType()->isPlaceholderType()) {
5120       ExprResult Result = CheckPlaceholderExpr(Dim);
5121       if (Result.isInvalid()) {
5122         ErrorFound = true;
5123         continue;
5124       }
5125       Result = DefaultLvalueConversion(Result.get());
5126       if (Result.isInvalid()) {
5127         ErrorFound = true;
5128         continue;
5129       }
5130       Dim = Result.get();
5131     }
5132     if (!Dim->isTypeDependent()) {
5133       ExprResult Result =
5134           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5135       if (Result.isInvalid()) {
5136         ErrorFound = true;
5137         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5138             << Dim->getSourceRange();
5139         continue;
5140       }
5141       Dim = Result.get();
5142       Expr::EvalResult EvResult;
5143       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5144         // OpenMP 5.0, [2.1.4 Array Shaping]
5145         // Each si is an integral type expression that must evaluate to a
5146         // positive integer.
5147         llvm::APSInt Value = EvResult.Val.getInt();
5148         if (!Value.isStrictlyPositive()) {
5149           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5150               << toString(Value, /*Radix=*/10, /*Signed=*/true)
5151               << Dim->getSourceRange();
5152           ErrorFound = true;
5153           continue;
5154         }
5155       }
5156     }
5157     NewDims.push_back(Dim);
5158   }
5159   if (ErrorFound)
5160     return ExprError();
5161   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5162                                      LParenLoc, RParenLoc, NewDims, Brackets);
5163 }
5164 
5165 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5166                                       SourceLocation LLoc, SourceLocation RLoc,
5167                                       ArrayRef<OMPIteratorData> Data) {
5168   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5169   bool IsCorrect = true;
5170   for (const OMPIteratorData &D : Data) {
5171     TypeSourceInfo *TInfo = nullptr;
5172     SourceLocation StartLoc;
5173     QualType DeclTy;
5174     if (!D.Type.getAsOpaquePtr()) {
5175       // OpenMP 5.0, 2.1.6 Iterators
5176       // In an iterator-specifier, if the iterator-type is not specified then
5177       // the type of that iterator is of int type.
5178       DeclTy = Context.IntTy;
5179       StartLoc = D.DeclIdentLoc;
5180     } else {
5181       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5182       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5183     }
5184 
5185     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5186                              DeclTy->containsUnexpandedParameterPack() ||
5187                              DeclTy->isInstantiationDependentType();
5188     if (!IsDeclTyDependent) {
5189       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5190         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5191         // The iterator-type must be an integral or pointer type.
5192         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5193             << DeclTy;
5194         IsCorrect = false;
5195         continue;
5196       }
5197       if (DeclTy.isConstant(Context)) {
5198         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5199         // The iterator-type must not be const qualified.
5200         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5201             << DeclTy;
5202         IsCorrect = false;
5203         continue;
5204       }
5205     }
5206 
5207     // Iterator declaration.
5208     assert(D.DeclIdent && "Identifier expected.");
5209     // Always try to create iterator declarator to avoid extra error messages
5210     // about unknown declarations use.
5211     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5212                                D.DeclIdent, DeclTy, TInfo, SC_None);
5213     VD->setImplicit();
5214     if (S) {
5215       // Check for conflicting previous declaration.
5216       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5217       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5218                             ForVisibleRedeclaration);
5219       Previous.suppressDiagnostics();
5220       LookupName(Previous, S);
5221 
5222       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5223                            /*AllowInlineNamespace=*/false);
5224       if (!Previous.empty()) {
5225         NamedDecl *Old = Previous.getRepresentativeDecl();
5226         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5227         Diag(Old->getLocation(), diag::note_previous_definition);
5228       } else {
5229         PushOnScopeChains(VD, S);
5230       }
5231     } else {
5232       CurContext->addDecl(VD);
5233     }
5234     Expr *Begin = D.Range.Begin;
5235     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5236       ExprResult BeginRes =
5237           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5238       Begin = BeginRes.get();
5239     }
5240     Expr *End = D.Range.End;
5241     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5242       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5243       End = EndRes.get();
5244     }
5245     Expr *Step = D.Range.Step;
5246     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5247       if (!Step->getType()->isIntegralType(Context)) {
5248         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5249             << Step << Step->getSourceRange();
5250         IsCorrect = false;
5251         continue;
5252       }
5253       Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5254       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5255       // If the step expression of a range-specification equals zero, the
5256       // behavior is unspecified.
5257       if (Result && Result->isNullValue()) {
5258         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5259             << Step << Step->getSourceRange();
5260         IsCorrect = false;
5261         continue;
5262       }
5263     }
5264     if (!Begin || !End || !IsCorrect) {
5265       IsCorrect = false;
5266       continue;
5267     }
5268     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5269     IDElem.IteratorDecl = VD;
5270     IDElem.AssignmentLoc = D.AssignLoc;
5271     IDElem.Range.Begin = Begin;
5272     IDElem.Range.End = End;
5273     IDElem.Range.Step = Step;
5274     IDElem.ColonLoc = D.ColonLoc;
5275     IDElem.SecondColonLoc = D.SecColonLoc;
5276   }
5277   if (!IsCorrect) {
5278     // Invalidate all created iterator declarations if error is found.
5279     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5280       if (Decl *ID = D.IteratorDecl)
5281         ID->setInvalidDecl();
5282     }
5283     return ExprError();
5284   }
5285   SmallVector<OMPIteratorHelperData, 4> Helpers;
5286   if (!CurContext->isDependentContext()) {
5287     // Build number of ityeration for each iteration range.
5288     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5289     // ((Begini-Stepi-1-Endi) / -Stepi);
5290     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5291       // (Endi - Begini)
5292       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5293                                           D.Range.Begin);
5294       if(!Res.isUsable()) {
5295         IsCorrect = false;
5296         continue;
5297       }
5298       ExprResult St, St1;
5299       if (D.Range.Step) {
5300         St = D.Range.Step;
5301         // (Endi - Begini) + Stepi
5302         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5303         if (!Res.isUsable()) {
5304           IsCorrect = false;
5305           continue;
5306         }
5307         // (Endi - Begini) + Stepi - 1
5308         Res =
5309             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5310                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5311         if (!Res.isUsable()) {
5312           IsCorrect = false;
5313           continue;
5314         }
5315         // ((Endi - Begini) + Stepi - 1) / Stepi
5316         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5317         if (!Res.isUsable()) {
5318           IsCorrect = false;
5319           continue;
5320         }
5321         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5322         // (Begini - Endi)
5323         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5324                                              D.Range.Begin, D.Range.End);
5325         if (!Res1.isUsable()) {
5326           IsCorrect = false;
5327           continue;
5328         }
5329         // (Begini - Endi) - Stepi
5330         Res1 =
5331             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5332         if (!Res1.isUsable()) {
5333           IsCorrect = false;
5334           continue;
5335         }
5336         // (Begini - Endi) - Stepi - 1
5337         Res1 =
5338             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5339                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5340         if (!Res1.isUsable()) {
5341           IsCorrect = false;
5342           continue;
5343         }
5344         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5345         Res1 =
5346             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5347         if (!Res1.isUsable()) {
5348           IsCorrect = false;
5349           continue;
5350         }
5351         // Stepi > 0.
5352         ExprResult CmpRes =
5353             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5354                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5355         if (!CmpRes.isUsable()) {
5356           IsCorrect = false;
5357           continue;
5358         }
5359         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5360                                  Res.get(), Res1.get());
5361         if (!Res.isUsable()) {
5362           IsCorrect = false;
5363           continue;
5364         }
5365       }
5366       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5367       if (!Res.isUsable()) {
5368         IsCorrect = false;
5369         continue;
5370       }
5371 
5372       // Build counter update.
5373       // Build counter.
5374       auto *CounterVD =
5375           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5376                           D.IteratorDecl->getBeginLoc(), nullptr,
5377                           Res.get()->getType(), nullptr, SC_None);
5378       CounterVD->setImplicit();
5379       ExprResult RefRes =
5380           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5381                            D.IteratorDecl->getBeginLoc());
5382       // Build counter update.
5383       // I = Begini + counter * Stepi;
5384       ExprResult UpdateRes;
5385       if (D.Range.Step) {
5386         UpdateRes = CreateBuiltinBinOp(
5387             D.AssignmentLoc, BO_Mul,
5388             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5389       } else {
5390         UpdateRes = DefaultLvalueConversion(RefRes.get());
5391       }
5392       if (!UpdateRes.isUsable()) {
5393         IsCorrect = false;
5394         continue;
5395       }
5396       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5397                                      UpdateRes.get());
5398       if (!UpdateRes.isUsable()) {
5399         IsCorrect = false;
5400         continue;
5401       }
5402       ExprResult VDRes =
5403           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5404                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5405                            D.IteratorDecl->getBeginLoc());
5406       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5407                                      UpdateRes.get());
5408       if (!UpdateRes.isUsable()) {
5409         IsCorrect = false;
5410         continue;
5411       }
5412       UpdateRes =
5413           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5414       if (!UpdateRes.isUsable()) {
5415         IsCorrect = false;
5416         continue;
5417       }
5418       ExprResult CounterUpdateRes =
5419           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5420       if (!CounterUpdateRes.isUsable()) {
5421         IsCorrect = false;
5422         continue;
5423       }
5424       CounterUpdateRes =
5425           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5426       if (!CounterUpdateRes.isUsable()) {
5427         IsCorrect = false;
5428         continue;
5429       }
5430       OMPIteratorHelperData &HD = Helpers.emplace_back();
5431       HD.CounterVD = CounterVD;
5432       HD.Upper = Res.get();
5433       HD.Update = UpdateRes.get();
5434       HD.CounterUpdate = CounterUpdateRes.get();
5435     }
5436   } else {
5437     Helpers.assign(ID.size(), {});
5438   }
5439   if (!IsCorrect) {
5440     // Invalidate all created iterator declarations if error is found.
5441     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5442       if (Decl *ID = D.IteratorDecl)
5443         ID->setInvalidDecl();
5444     }
5445     return ExprError();
5446   }
5447   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5448                                  LLoc, RLoc, ID, Helpers);
5449 }
5450 
5451 ExprResult
5452 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5453                                       Expr *Idx, SourceLocation RLoc) {
5454   Expr *LHSExp = Base;
5455   Expr *RHSExp = Idx;
5456 
5457   ExprValueKind VK = VK_LValue;
5458   ExprObjectKind OK = OK_Ordinary;
5459 
5460   // Per C++ core issue 1213, the result is an xvalue if either operand is
5461   // a non-lvalue array, and an lvalue otherwise.
5462   if (getLangOpts().CPlusPlus11) {
5463     for (auto *Op : {LHSExp, RHSExp}) {
5464       Op = Op->IgnoreImplicit();
5465       if (Op->getType()->isArrayType() && !Op->isLValue())
5466         VK = VK_XValue;
5467     }
5468   }
5469 
5470   // Perform default conversions.
5471   if (!LHSExp->getType()->getAs<VectorType>()) {
5472     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5473     if (Result.isInvalid())
5474       return ExprError();
5475     LHSExp = Result.get();
5476   }
5477   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5478   if (Result.isInvalid())
5479     return ExprError();
5480   RHSExp = Result.get();
5481 
5482   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5483 
5484   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5485   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5486   // in the subscript position. As a result, we need to derive the array base
5487   // and index from the expression types.
5488   Expr *BaseExpr, *IndexExpr;
5489   QualType ResultType;
5490   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5491     BaseExpr = LHSExp;
5492     IndexExpr = RHSExp;
5493     ResultType = Context.DependentTy;
5494   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5495     BaseExpr = LHSExp;
5496     IndexExpr = RHSExp;
5497     ResultType = PTy->getPointeeType();
5498   } else if (const ObjCObjectPointerType *PTy =
5499                LHSTy->getAs<ObjCObjectPointerType>()) {
5500     BaseExpr = LHSExp;
5501     IndexExpr = RHSExp;
5502 
5503     // Use custom logic if this should be the pseudo-object subscript
5504     // expression.
5505     if (!LangOpts.isSubscriptPointerArithmetic())
5506       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5507                                           nullptr);
5508 
5509     ResultType = PTy->getPointeeType();
5510   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5511      // Handle the uncommon case of "123[Ptr]".
5512     BaseExpr = RHSExp;
5513     IndexExpr = LHSExp;
5514     ResultType = PTy->getPointeeType();
5515   } else if (const ObjCObjectPointerType *PTy =
5516                RHSTy->getAs<ObjCObjectPointerType>()) {
5517      // Handle the uncommon case of "123[Ptr]".
5518     BaseExpr = RHSExp;
5519     IndexExpr = LHSExp;
5520     ResultType = PTy->getPointeeType();
5521     if (!LangOpts.isSubscriptPointerArithmetic()) {
5522       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5523         << ResultType << BaseExpr->getSourceRange();
5524       return ExprError();
5525     }
5526   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5527     BaseExpr = LHSExp;    // vectors: V[123]
5528     IndexExpr = RHSExp;
5529     // We apply C++ DR1213 to vector subscripting too.
5530     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5531       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5532       if (Materialized.isInvalid())
5533         return ExprError();
5534       LHSExp = Materialized.get();
5535     }
5536     VK = LHSExp->getValueKind();
5537     if (VK != VK_PRValue)
5538       OK = OK_VectorComponent;
5539 
5540     ResultType = VTy->getElementType();
5541     QualType BaseType = BaseExpr->getType();
5542     Qualifiers BaseQuals = BaseType.getQualifiers();
5543     Qualifiers MemberQuals = ResultType.getQualifiers();
5544     Qualifiers Combined = BaseQuals + MemberQuals;
5545     if (Combined != MemberQuals)
5546       ResultType = Context.getQualifiedType(ResultType, Combined);
5547   } else if (LHSTy->isArrayType()) {
5548     // If we see an array that wasn't promoted by
5549     // DefaultFunctionArrayLvalueConversion, it must be an array that
5550     // wasn't promoted because of the C90 rule that doesn't
5551     // allow promoting non-lvalue arrays.  Warn, then
5552     // force the promotion here.
5553     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5554         << LHSExp->getSourceRange();
5555     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5556                                CK_ArrayToPointerDecay).get();
5557     LHSTy = LHSExp->getType();
5558 
5559     BaseExpr = LHSExp;
5560     IndexExpr = RHSExp;
5561     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5562   } else if (RHSTy->isArrayType()) {
5563     // Same as previous, except for 123[f().a] case
5564     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5565         << RHSExp->getSourceRange();
5566     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5567                                CK_ArrayToPointerDecay).get();
5568     RHSTy = RHSExp->getType();
5569 
5570     BaseExpr = RHSExp;
5571     IndexExpr = LHSExp;
5572     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5573   } else {
5574     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5575        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5576   }
5577   // C99 6.5.2.1p1
5578   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5579     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5580                      << IndexExpr->getSourceRange());
5581 
5582   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5583        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5584          && !IndexExpr->isTypeDependent())
5585     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5586 
5587   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5588   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5589   // type. Note that Functions are not objects, and that (in C99 parlance)
5590   // incomplete types are not object types.
5591   if (ResultType->isFunctionType()) {
5592     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5593         << ResultType << BaseExpr->getSourceRange();
5594     return ExprError();
5595   }
5596 
5597   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5598     // GNU extension: subscripting on pointer to void
5599     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5600       << BaseExpr->getSourceRange();
5601 
5602     // C forbids expressions of unqualified void type from being l-values.
5603     // See IsCForbiddenLValueType.
5604     if (!ResultType.hasQualifiers())
5605       VK = VK_PRValue;
5606   } else if (!ResultType->isDependentType() &&
5607              RequireCompleteSizedType(
5608                  LLoc, ResultType,
5609                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5610     return ExprError();
5611 
5612   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5613          !ResultType.isCForbiddenLValueType());
5614 
5615   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5616       FunctionScopes.size() > 1) {
5617     if (auto *TT =
5618             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5619       for (auto I = FunctionScopes.rbegin(),
5620                 E = std::prev(FunctionScopes.rend());
5621            I != E; ++I) {
5622         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5623         if (CSI == nullptr)
5624           break;
5625         DeclContext *DC = nullptr;
5626         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5627           DC = LSI->CallOperator;
5628         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5629           DC = CRSI->TheCapturedDecl;
5630         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5631           DC = BSI->TheDecl;
5632         if (DC) {
5633           if (DC->containsDecl(TT->getDecl()))
5634             break;
5635           captureVariablyModifiedType(
5636               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5637         }
5638       }
5639     }
5640   }
5641 
5642   return new (Context)
5643       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5644 }
5645 
5646 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5647                                   ParmVarDecl *Param) {
5648   if (Param->hasUnparsedDefaultArg()) {
5649     // If we've already cleared out the location for the default argument,
5650     // that means we're parsing it right now.
5651     if (!UnparsedDefaultArgLocs.count(Param)) {
5652       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5653       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5654       Param->setInvalidDecl();
5655       return true;
5656     }
5657 
5658     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5659         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5660     Diag(UnparsedDefaultArgLocs[Param],
5661          diag::note_default_argument_declared_here);
5662     return true;
5663   }
5664 
5665   if (Param->hasUninstantiatedDefaultArg() &&
5666       InstantiateDefaultArgument(CallLoc, FD, Param))
5667     return true;
5668 
5669   assert(Param->hasInit() && "default argument but no initializer?");
5670 
5671   // If the default expression creates temporaries, we need to
5672   // push them to the current stack of expression temporaries so they'll
5673   // be properly destroyed.
5674   // FIXME: We should really be rebuilding the default argument with new
5675   // bound temporaries; see the comment in PR5810.
5676   // We don't need to do that with block decls, though, because
5677   // blocks in default argument expression can never capture anything.
5678   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5679     // Set the "needs cleanups" bit regardless of whether there are
5680     // any explicit objects.
5681     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5682 
5683     // Append all the objects to the cleanup list.  Right now, this
5684     // should always be a no-op, because blocks in default argument
5685     // expressions should never be able to capture anything.
5686     assert(!Init->getNumObjects() &&
5687            "default argument expression has capturing blocks?");
5688   }
5689 
5690   // We already type-checked the argument, so we know it works.
5691   // Just mark all of the declarations in this potentially-evaluated expression
5692   // as being "referenced".
5693   EnterExpressionEvaluationContext EvalContext(
5694       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5695   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5696                                    /*SkipLocalVariables=*/true);
5697   return false;
5698 }
5699 
5700 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5701                                         FunctionDecl *FD, ParmVarDecl *Param) {
5702   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5703   if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5704     return ExprError();
5705   return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5706 }
5707 
5708 Sema::VariadicCallType
5709 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5710                           Expr *Fn) {
5711   if (Proto && Proto->isVariadic()) {
5712     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5713       return VariadicConstructor;
5714     else if (Fn && Fn->getType()->isBlockPointerType())
5715       return VariadicBlock;
5716     else if (FDecl) {
5717       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5718         if (Method->isInstance())
5719           return VariadicMethod;
5720     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5721       return VariadicMethod;
5722     return VariadicFunction;
5723   }
5724   return VariadicDoesNotApply;
5725 }
5726 
5727 namespace {
5728 class FunctionCallCCC final : public FunctionCallFilterCCC {
5729 public:
5730   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5731                   unsigned NumArgs, MemberExpr *ME)
5732       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5733         FunctionName(FuncName) {}
5734 
5735   bool ValidateCandidate(const TypoCorrection &candidate) override {
5736     if (!candidate.getCorrectionSpecifier() ||
5737         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5738       return false;
5739     }
5740 
5741     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5742   }
5743 
5744   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5745     return std::make_unique<FunctionCallCCC>(*this);
5746   }
5747 
5748 private:
5749   const IdentifierInfo *const FunctionName;
5750 };
5751 }
5752 
5753 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5754                                                FunctionDecl *FDecl,
5755                                                ArrayRef<Expr *> Args) {
5756   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5757   DeclarationName FuncName = FDecl->getDeclName();
5758   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5759 
5760   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5761   if (TypoCorrection Corrected = S.CorrectTypo(
5762           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5763           S.getScopeForContext(S.CurContext), nullptr, CCC,
5764           Sema::CTK_ErrorRecovery)) {
5765     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5766       if (Corrected.isOverloaded()) {
5767         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5768         OverloadCandidateSet::iterator Best;
5769         for (NamedDecl *CD : Corrected) {
5770           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5771             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5772                                    OCS);
5773         }
5774         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5775         case OR_Success:
5776           ND = Best->FoundDecl;
5777           Corrected.setCorrectionDecl(ND);
5778           break;
5779         default:
5780           break;
5781         }
5782       }
5783       ND = ND->getUnderlyingDecl();
5784       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5785         return Corrected;
5786     }
5787   }
5788   return TypoCorrection();
5789 }
5790 
5791 /// ConvertArgumentsForCall - Converts the arguments specified in
5792 /// Args/NumArgs to the parameter types of the function FDecl with
5793 /// function prototype Proto. Call is the call expression itself, and
5794 /// Fn is the function expression. For a C++ member function, this
5795 /// routine does not attempt to convert the object argument. Returns
5796 /// true if the call is ill-formed.
5797 bool
5798 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5799                               FunctionDecl *FDecl,
5800                               const FunctionProtoType *Proto,
5801                               ArrayRef<Expr *> Args,
5802                               SourceLocation RParenLoc,
5803                               bool IsExecConfig) {
5804   // Bail out early if calling a builtin with custom typechecking.
5805   if (FDecl)
5806     if (unsigned ID = FDecl->getBuiltinID())
5807       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5808         return false;
5809 
5810   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5811   // assignment, to the types of the corresponding parameter, ...
5812   unsigned NumParams = Proto->getNumParams();
5813   bool Invalid = false;
5814   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5815   unsigned FnKind = Fn->getType()->isBlockPointerType()
5816                        ? 1 /* block */
5817                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5818                                        : 0 /* function */);
5819 
5820   // If too few arguments are available (and we don't have default
5821   // arguments for the remaining parameters), don't make the call.
5822   if (Args.size() < NumParams) {
5823     if (Args.size() < MinArgs) {
5824       TypoCorrection TC;
5825       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5826         unsigned diag_id =
5827             MinArgs == NumParams && !Proto->isVariadic()
5828                 ? diag::err_typecheck_call_too_few_args_suggest
5829                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5830         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5831                                         << static_cast<unsigned>(Args.size())
5832                                         << TC.getCorrectionRange());
5833       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5834         Diag(RParenLoc,
5835              MinArgs == NumParams && !Proto->isVariadic()
5836                  ? diag::err_typecheck_call_too_few_args_one
5837                  : diag::err_typecheck_call_too_few_args_at_least_one)
5838             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5839       else
5840         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5841                             ? diag::err_typecheck_call_too_few_args
5842                             : diag::err_typecheck_call_too_few_args_at_least)
5843             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5844             << Fn->getSourceRange();
5845 
5846       // Emit the location of the prototype.
5847       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5848         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5849 
5850       return true;
5851     }
5852     // We reserve space for the default arguments when we create
5853     // the call expression, before calling ConvertArgumentsForCall.
5854     assert((Call->getNumArgs() == NumParams) &&
5855            "We should have reserved space for the default arguments before!");
5856   }
5857 
5858   // If too many are passed and not variadic, error on the extras and drop
5859   // them.
5860   if (Args.size() > NumParams) {
5861     if (!Proto->isVariadic()) {
5862       TypoCorrection TC;
5863       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5864         unsigned diag_id =
5865             MinArgs == NumParams && !Proto->isVariadic()
5866                 ? diag::err_typecheck_call_too_many_args_suggest
5867                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5868         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5869                                         << static_cast<unsigned>(Args.size())
5870                                         << TC.getCorrectionRange());
5871       } else if (NumParams == 1 && FDecl &&
5872                  FDecl->getParamDecl(0)->getDeclName())
5873         Diag(Args[NumParams]->getBeginLoc(),
5874              MinArgs == NumParams
5875                  ? diag::err_typecheck_call_too_many_args_one
5876                  : diag::err_typecheck_call_too_many_args_at_most_one)
5877             << FnKind << FDecl->getParamDecl(0)
5878             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5879             << SourceRange(Args[NumParams]->getBeginLoc(),
5880                            Args.back()->getEndLoc());
5881       else
5882         Diag(Args[NumParams]->getBeginLoc(),
5883              MinArgs == NumParams
5884                  ? diag::err_typecheck_call_too_many_args
5885                  : diag::err_typecheck_call_too_many_args_at_most)
5886             << FnKind << NumParams << static_cast<unsigned>(Args.size())
5887             << Fn->getSourceRange()
5888             << SourceRange(Args[NumParams]->getBeginLoc(),
5889                            Args.back()->getEndLoc());
5890 
5891       // Emit the location of the prototype.
5892       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5893         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5894 
5895       // This deletes the extra arguments.
5896       Call->shrinkNumArgs(NumParams);
5897       return true;
5898     }
5899   }
5900   SmallVector<Expr *, 8> AllArgs;
5901   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5902 
5903   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5904                                    AllArgs, CallType);
5905   if (Invalid)
5906     return true;
5907   unsigned TotalNumArgs = AllArgs.size();
5908   for (unsigned i = 0; i < TotalNumArgs; ++i)
5909     Call->setArg(i, AllArgs[i]);
5910 
5911   Call->computeDependence();
5912   return false;
5913 }
5914 
5915 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5916                                   const FunctionProtoType *Proto,
5917                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5918                                   SmallVectorImpl<Expr *> &AllArgs,
5919                                   VariadicCallType CallType, bool AllowExplicit,
5920                                   bool IsListInitialization) {
5921   unsigned NumParams = Proto->getNumParams();
5922   bool Invalid = false;
5923   size_t ArgIx = 0;
5924   // Continue to check argument types (even if we have too few/many args).
5925   for (unsigned i = FirstParam; i < NumParams; i++) {
5926     QualType ProtoArgType = Proto->getParamType(i);
5927 
5928     Expr *Arg;
5929     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5930     if (ArgIx < Args.size()) {
5931       Arg = Args[ArgIx++];
5932 
5933       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5934                               diag::err_call_incomplete_argument, Arg))
5935         return true;
5936 
5937       // Strip the unbridged-cast placeholder expression off, if applicable.
5938       bool CFAudited = false;
5939       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5940           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5941           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5942         Arg = stripARCUnbridgedCast(Arg);
5943       else if (getLangOpts().ObjCAutoRefCount &&
5944                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5945                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5946         CFAudited = true;
5947 
5948       if (Proto->getExtParameterInfo(i).isNoEscape() &&
5949           ProtoArgType->isBlockPointerType())
5950         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5951           BE->getBlockDecl()->setDoesNotEscape();
5952 
5953       InitializedEntity Entity =
5954           Param ? InitializedEntity::InitializeParameter(Context, Param,
5955                                                          ProtoArgType)
5956                 : InitializedEntity::InitializeParameter(
5957                       Context, ProtoArgType, Proto->isParamConsumed(i));
5958 
5959       // Remember that parameter belongs to a CF audited API.
5960       if (CFAudited)
5961         Entity.setParameterCFAudited();
5962 
5963       ExprResult ArgE = PerformCopyInitialization(
5964           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5965       if (ArgE.isInvalid())
5966         return true;
5967 
5968       Arg = ArgE.getAs<Expr>();
5969     } else {
5970       assert(Param && "can't use default arguments without a known callee");
5971 
5972       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5973       if (ArgExpr.isInvalid())
5974         return true;
5975 
5976       Arg = ArgExpr.getAs<Expr>();
5977     }
5978 
5979     // Check for array bounds violations for each argument to the call. This
5980     // check only triggers warnings when the argument isn't a more complex Expr
5981     // with its own checking, such as a BinaryOperator.
5982     CheckArrayAccess(Arg);
5983 
5984     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5985     CheckStaticArrayArgument(CallLoc, Param, Arg);
5986 
5987     AllArgs.push_back(Arg);
5988   }
5989 
5990   // If this is a variadic call, handle args passed through "...".
5991   if (CallType != VariadicDoesNotApply) {
5992     // Assume that extern "C" functions with variadic arguments that
5993     // return __unknown_anytype aren't *really* variadic.
5994     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5995         FDecl->isExternC()) {
5996       for (Expr *A : Args.slice(ArgIx)) {
5997         QualType paramType; // ignored
5998         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5999         Invalid |= arg.isInvalid();
6000         AllArgs.push_back(arg.get());
6001       }
6002 
6003     // Otherwise do argument promotion, (C99 6.5.2.2p7).
6004     } else {
6005       for (Expr *A : Args.slice(ArgIx)) {
6006         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6007         Invalid |= Arg.isInvalid();
6008         AllArgs.push_back(Arg.get());
6009       }
6010     }
6011 
6012     // Check for array bounds violations.
6013     for (Expr *A : Args.slice(ArgIx))
6014       CheckArrayAccess(A);
6015   }
6016   return Invalid;
6017 }
6018 
6019 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6020   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6021   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6022     TL = DTL.getOriginalLoc();
6023   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6024     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6025       << ATL.getLocalSourceRange();
6026 }
6027 
6028 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6029 /// array parameter, check that it is non-null, and that if it is formed by
6030 /// array-to-pointer decay, the underlying array is sufficiently large.
6031 ///
6032 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6033 /// array type derivation, then for each call to the function, the value of the
6034 /// corresponding actual argument shall provide access to the first element of
6035 /// an array with at least as many elements as specified by the size expression.
6036 void
6037 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6038                                ParmVarDecl *Param,
6039                                const Expr *ArgExpr) {
6040   // Static array parameters are not supported in C++.
6041   if (!Param || getLangOpts().CPlusPlus)
6042     return;
6043 
6044   QualType OrigTy = Param->getOriginalType();
6045 
6046   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6047   if (!AT || AT->getSizeModifier() != ArrayType::Static)
6048     return;
6049 
6050   if (ArgExpr->isNullPointerConstant(Context,
6051                                      Expr::NPC_NeverValueDependent)) {
6052     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6053     DiagnoseCalleeStaticArrayParam(*this, Param);
6054     return;
6055   }
6056 
6057   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6058   if (!CAT)
6059     return;
6060 
6061   const ConstantArrayType *ArgCAT =
6062     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6063   if (!ArgCAT)
6064     return;
6065 
6066   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6067                                              ArgCAT->getElementType())) {
6068     if (ArgCAT->getSize().ult(CAT->getSize())) {
6069       Diag(CallLoc, diag::warn_static_array_too_small)
6070           << ArgExpr->getSourceRange()
6071           << (unsigned)ArgCAT->getSize().getZExtValue()
6072           << (unsigned)CAT->getSize().getZExtValue() << 0;
6073       DiagnoseCalleeStaticArrayParam(*this, Param);
6074     }
6075     return;
6076   }
6077 
6078   Optional<CharUnits> ArgSize =
6079       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6080   Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6081   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6082     Diag(CallLoc, diag::warn_static_array_too_small)
6083         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6084         << (unsigned)ParmSize->getQuantity() << 1;
6085     DiagnoseCalleeStaticArrayParam(*this, Param);
6086   }
6087 }
6088 
6089 /// Given a function expression of unknown-any type, try to rebuild it
6090 /// to have a function type.
6091 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6092 
6093 /// Is the given type a placeholder that we need to lower out
6094 /// immediately during argument processing?
6095 static bool isPlaceholderToRemoveAsArg(QualType type) {
6096   // Placeholders are never sugared.
6097   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6098   if (!placeholder) return false;
6099 
6100   switch (placeholder->getKind()) {
6101   // Ignore all the non-placeholder types.
6102 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6103   case BuiltinType::Id:
6104 #include "clang/Basic/OpenCLImageTypes.def"
6105 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6106   case BuiltinType::Id:
6107 #include "clang/Basic/OpenCLExtensionTypes.def"
6108   // In practice we'll never use this, since all SVE types are sugared
6109   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6110 #define SVE_TYPE(Name, Id, SingletonId) \
6111   case BuiltinType::Id:
6112 #include "clang/Basic/AArch64SVEACLETypes.def"
6113 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6114   case BuiltinType::Id:
6115 #include "clang/Basic/PPCTypes.def"
6116 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6117 #include "clang/Basic/RISCVVTypes.def"
6118 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6119 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6120 #include "clang/AST/BuiltinTypes.def"
6121     return false;
6122 
6123   // We cannot lower out overload sets; they might validly be resolved
6124   // by the call machinery.
6125   case BuiltinType::Overload:
6126     return false;
6127 
6128   // Unbridged casts in ARC can be handled in some call positions and
6129   // should be left in place.
6130   case BuiltinType::ARCUnbridgedCast:
6131     return false;
6132 
6133   // Pseudo-objects should be converted as soon as possible.
6134   case BuiltinType::PseudoObject:
6135     return true;
6136 
6137   // The debugger mode could theoretically but currently does not try
6138   // to resolve unknown-typed arguments based on known parameter types.
6139   case BuiltinType::UnknownAny:
6140     return true;
6141 
6142   // These are always invalid as call arguments and should be reported.
6143   case BuiltinType::BoundMember:
6144   case BuiltinType::BuiltinFn:
6145   case BuiltinType::IncompleteMatrixIdx:
6146   case BuiltinType::OMPArraySection:
6147   case BuiltinType::OMPArrayShaping:
6148   case BuiltinType::OMPIterator:
6149     return true;
6150 
6151   }
6152   llvm_unreachable("bad builtin type kind");
6153 }
6154 
6155 /// Check an argument list for placeholders that we won't try to
6156 /// handle later.
6157 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6158   // Apply this processing to all the arguments at once instead of
6159   // dying at the first failure.
6160   bool hasInvalid = false;
6161   for (size_t i = 0, e = args.size(); i != e; i++) {
6162     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6163       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6164       if (result.isInvalid()) hasInvalid = true;
6165       else args[i] = result.get();
6166     }
6167   }
6168   return hasInvalid;
6169 }
6170 
6171 /// If a builtin function has a pointer argument with no explicit address
6172 /// space, then it should be able to accept a pointer to any address
6173 /// space as input.  In order to do this, we need to replace the
6174 /// standard builtin declaration with one that uses the same address space
6175 /// as the call.
6176 ///
6177 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6178 ///                  it does not contain any pointer arguments without
6179 ///                  an address space qualifer.  Otherwise the rewritten
6180 ///                  FunctionDecl is returned.
6181 /// TODO: Handle pointer return types.
6182 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6183                                                 FunctionDecl *FDecl,
6184                                                 MultiExprArg ArgExprs) {
6185 
6186   QualType DeclType = FDecl->getType();
6187   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6188 
6189   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6190       ArgExprs.size() < FT->getNumParams())
6191     return nullptr;
6192 
6193   bool NeedsNewDecl = false;
6194   unsigned i = 0;
6195   SmallVector<QualType, 8> OverloadParams;
6196 
6197   for (QualType ParamType : FT->param_types()) {
6198 
6199     // Convert array arguments to pointer to simplify type lookup.
6200     ExprResult ArgRes =
6201         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6202     if (ArgRes.isInvalid())
6203       return nullptr;
6204     Expr *Arg = ArgRes.get();
6205     QualType ArgType = Arg->getType();
6206     if (!ParamType->isPointerType() ||
6207         ParamType.hasAddressSpace() ||
6208         !ArgType->isPointerType() ||
6209         !ArgType->getPointeeType().hasAddressSpace()) {
6210       OverloadParams.push_back(ParamType);
6211       continue;
6212     }
6213 
6214     QualType PointeeType = ParamType->getPointeeType();
6215     if (PointeeType.hasAddressSpace())
6216       continue;
6217 
6218     NeedsNewDecl = true;
6219     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6220 
6221     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6222     OverloadParams.push_back(Context.getPointerType(PointeeType));
6223   }
6224 
6225   if (!NeedsNewDecl)
6226     return nullptr;
6227 
6228   FunctionProtoType::ExtProtoInfo EPI;
6229   EPI.Variadic = FT->isVariadic();
6230   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6231                                                 OverloadParams, EPI);
6232   DeclContext *Parent = FDecl->getParent();
6233   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6234       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6235       FDecl->getIdentifier(), OverloadTy,
6236       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6237       false,
6238       /*hasPrototype=*/true);
6239   SmallVector<ParmVarDecl*, 16> Params;
6240   FT = cast<FunctionProtoType>(OverloadTy);
6241   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6242     QualType ParamType = FT->getParamType(i);
6243     ParmVarDecl *Parm =
6244         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6245                                 SourceLocation(), nullptr, ParamType,
6246                                 /*TInfo=*/nullptr, SC_None, nullptr);
6247     Parm->setScopeInfo(0, i);
6248     Params.push_back(Parm);
6249   }
6250   OverloadDecl->setParams(Params);
6251   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6252   return OverloadDecl;
6253 }
6254 
6255 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6256                                     FunctionDecl *Callee,
6257                                     MultiExprArg ArgExprs) {
6258   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6259   // similar attributes) really don't like it when functions are called with an
6260   // invalid number of args.
6261   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6262                          /*PartialOverloading=*/false) &&
6263       !Callee->isVariadic())
6264     return;
6265   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6266     return;
6267 
6268   if (const EnableIfAttr *Attr =
6269           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6270     S.Diag(Fn->getBeginLoc(),
6271            isa<CXXMethodDecl>(Callee)
6272                ? diag::err_ovl_no_viable_member_function_in_call
6273                : diag::err_ovl_no_viable_function_in_call)
6274         << Callee << Callee->getSourceRange();
6275     S.Diag(Callee->getLocation(),
6276            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6277         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6278     return;
6279   }
6280 }
6281 
6282 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6283     const UnresolvedMemberExpr *const UME, Sema &S) {
6284 
6285   const auto GetFunctionLevelDCIfCXXClass =
6286       [](Sema &S) -> const CXXRecordDecl * {
6287     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6288     if (!DC || !DC->getParent())
6289       return nullptr;
6290 
6291     // If the call to some member function was made from within a member
6292     // function body 'M' return return 'M's parent.
6293     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6294       return MD->getParent()->getCanonicalDecl();
6295     // else the call was made from within a default member initializer of a
6296     // class, so return the class.
6297     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6298       return RD->getCanonicalDecl();
6299     return nullptr;
6300   };
6301   // If our DeclContext is neither a member function nor a class (in the
6302   // case of a lambda in a default member initializer), we can't have an
6303   // enclosing 'this'.
6304 
6305   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6306   if (!CurParentClass)
6307     return false;
6308 
6309   // The naming class for implicit member functions call is the class in which
6310   // name lookup starts.
6311   const CXXRecordDecl *const NamingClass =
6312       UME->getNamingClass()->getCanonicalDecl();
6313   assert(NamingClass && "Must have naming class even for implicit access");
6314 
6315   // If the unresolved member functions were found in a 'naming class' that is
6316   // related (either the same or derived from) to the class that contains the
6317   // member function that itself contained the implicit member access.
6318 
6319   return CurParentClass == NamingClass ||
6320          CurParentClass->isDerivedFrom(NamingClass);
6321 }
6322 
6323 static void
6324 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6325     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6326 
6327   if (!UME)
6328     return;
6329 
6330   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6331   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6332   // already been captured, or if this is an implicit member function call (if
6333   // it isn't, an attempt to capture 'this' should already have been made).
6334   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6335       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6336     return;
6337 
6338   // Check if the naming class in which the unresolved members were found is
6339   // related (same as or is a base of) to the enclosing class.
6340 
6341   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6342     return;
6343 
6344 
6345   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6346   // If the enclosing function is not dependent, then this lambda is
6347   // capture ready, so if we can capture this, do so.
6348   if (!EnclosingFunctionCtx->isDependentContext()) {
6349     // If the current lambda and all enclosing lambdas can capture 'this' -
6350     // then go ahead and capture 'this' (since our unresolved overload set
6351     // contains at least one non-static member function).
6352     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6353       S.CheckCXXThisCapture(CallLoc);
6354   } else if (S.CurContext->isDependentContext()) {
6355     // ... since this is an implicit member reference, that might potentially
6356     // involve a 'this' capture, mark 'this' for potential capture in
6357     // enclosing lambdas.
6358     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6359       CurLSI->addPotentialThisCapture(CallLoc);
6360   }
6361 }
6362 
6363 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6364                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6365                                Expr *ExecConfig) {
6366   ExprResult Call =
6367       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6368                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6369   if (Call.isInvalid())
6370     return Call;
6371 
6372   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6373   // language modes.
6374   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6375     if (ULE->hasExplicitTemplateArgs() &&
6376         ULE->decls_begin() == ULE->decls_end()) {
6377       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6378                                  ? diag::warn_cxx17_compat_adl_only_template_id
6379                                  : diag::ext_adl_only_template_id)
6380           << ULE->getName();
6381     }
6382   }
6383 
6384   if (LangOpts.OpenMP)
6385     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6386                            ExecConfig);
6387 
6388   return Call;
6389 }
6390 
6391 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6392 /// This provides the location of the left/right parens and a list of comma
6393 /// locations.
6394 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6395                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6396                                Expr *ExecConfig, bool IsExecConfig,
6397                                bool AllowRecovery) {
6398   // Since this might be a postfix expression, get rid of ParenListExprs.
6399   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6400   if (Result.isInvalid()) return ExprError();
6401   Fn = Result.get();
6402 
6403   if (checkArgsForPlaceholders(*this, ArgExprs))
6404     return ExprError();
6405 
6406   if (getLangOpts().CPlusPlus) {
6407     // If this is a pseudo-destructor expression, build the call immediately.
6408     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6409       if (!ArgExprs.empty()) {
6410         // Pseudo-destructor calls should not have any arguments.
6411         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6412             << FixItHint::CreateRemoval(
6413                    SourceRange(ArgExprs.front()->getBeginLoc(),
6414                                ArgExprs.back()->getEndLoc()));
6415       }
6416 
6417       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6418                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6419     }
6420     if (Fn->getType() == Context.PseudoObjectTy) {
6421       ExprResult result = CheckPlaceholderExpr(Fn);
6422       if (result.isInvalid()) return ExprError();
6423       Fn = result.get();
6424     }
6425 
6426     // Determine whether this is a dependent call inside a C++ template,
6427     // in which case we won't do any semantic analysis now.
6428     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6429       if (ExecConfig) {
6430         return CUDAKernelCallExpr::Create(Context, Fn,
6431                                           cast<CallExpr>(ExecConfig), ArgExprs,
6432                                           Context.DependentTy, VK_PRValue,
6433                                           RParenLoc, CurFPFeatureOverrides());
6434       } else {
6435 
6436         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6437             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6438             Fn->getBeginLoc());
6439 
6440         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6441                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6442       }
6443     }
6444 
6445     // Determine whether this is a call to an object (C++ [over.call.object]).
6446     if (Fn->getType()->isRecordType())
6447       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6448                                           RParenLoc);
6449 
6450     if (Fn->getType() == Context.UnknownAnyTy) {
6451       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6452       if (result.isInvalid()) return ExprError();
6453       Fn = result.get();
6454     }
6455 
6456     if (Fn->getType() == Context.BoundMemberTy) {
6457       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6458                                        RParenLoc, ExecConfig, IsExecConfig,
6459                                        AllowRecovery);
6460     }
6461   }
6462 
6463   // Check for overloaded calls.  This can happen even in C due to extensions.
6464   if (Fn->getType() == Context.OverloadTy) {
6465     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6466 
6467     // We aren't supposed to apply this logic if there's an '&' involved.
6468     if (!find.HasFormOfMemberPointer) {
6469       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6470         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6471                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6472       OverloadExpr *ovl = find.Expression;
6473       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6474         return BuildOverloadedCallExpr(
6475             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6476             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6477       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6478                                        RParenLoc, ExecConfig, IsExecConfig,
6479                                        AllowRecovery);
6480     }
6481   }
6482 
6483   // If we're directly calling a function, get the appropriate declaration.
6484   if (Fn->getType() == Context.UnknownAnyTy) {
6485     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6486     if (result.isInvalid()) return ExprError();
6487     Fn = result.get();
6488   }
6489 
6490   Expr *NakedFn = Fn->IgnoreParens();
6491 
6492   bool CallingNDeclIndirectly = false;
6493   NamedDecl *NDecl = nullptr;
6494   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6495     if (UnOp->getOpcode() == UO_AddrOf) {
6496       CallingNDeclIndirectly = true;
6497       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6498     }
6499   }
6500 
6501   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6502     NDecl = DRE->getDecl();
6503 
6504     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6505     if (FDecl && FDecl->getBuiltinID()) {
6506       // Rewrite the function decl for this builtin by replacing parameters
6507       // with no explicit address space with the address space of the arguments
6508       // in ArgExprs.
6509       if ((FDecl =
6510                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6511         NDecl = FDecl;
6512         Fn = DeclRefExpr::Create(
6513             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6514             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6515             nullptr, DRE->isNonOdrUse());
6516       }
6517     }
6518   } else if (isa<MemberExpr>(NakedFn))
6519     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6520 
6521   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6522     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6523                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6524       return ExprError();
6525 
6526     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6527 
6528     // If this expression is a call to a builtin function in HIP device
6529     // compilation, allow a pointer-type argument to default address space to be
6530     // passed as a pointer-type parameter to a non-default address space.
6531     // If Arg is declared in the default address space and Param is declared
6532     // in a non-default address space, perform an implicit address space cast to
6533     // the parameter type.
6534     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6535         FD->getBuiltinID()) {
6536       for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
6537         ParmVarDecl *Param = FD->getParamDecl(Idx);
6538         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6539             !ArgExprs[Idx]->getType()->isPointerType())
6540           continue;
6541 
6542         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6543         auto ArgTy = ArgExprs[Idx]->getType();
6544         auto ArgPtTy = ArgTy->getPointeeType();
6545         auto ArgAS = ArgPtTy.getAddressSpace();
6546 
6547         // Only allow implicit casting from a non-default address space pointee
6548         // type to a default address space pointee type
6549         if (ArgAS != LangAS::Default || ParamAS == LangAS::Default)
6550           continue;
6551 
6552         // First, ensure that the Arg is an RValue.
6553         if (ArgExprs[Idx]->isGLValue()) {
6554           ArgExprs[Idx] = ImplicitCastExpr::Create(
6555               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6556               nullptr, VK_PRValue, FPOptionsOverride());
6557         }
6558 
6559         // Construct a new arg type with address space of Param
6560         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6561         ArgPtQuals.setAddressSpace(ParamAS);
6562         auto NewArgPtTy =
6563             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6564         auto NewArgTy =
6565             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6566                                      ArgTy.getQualifiers());
6567 
6568         // Finally perform an implicit address space cast
6569         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6570                                           CK_AddressSpaceConversion)
6571                             .get();
6572       }
6573     }
6574   }
6575 
6576   if (Context.isDependenceAllowed() &&
6577       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6578     assert(!getLangOpts().CPlusPlus);
6579     assert((Fn->containsErrors() ||
6580             llvm::any_of(ArgExprs,
6581                          [](clang::Expr *E) { return E->containsErrors(); })) &&
6582            "should only occur in error-recovery path.");
6583     QualType ReturnType =
6584         llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6585             ? cast<FunctionDecl>(NDecl)->getCallResultType()
6586             : Context.DependentTy;
6587     return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6588                             Expr::getValueKindForType(ReturnType), RParenLoc,
6589                             CurFPFeatureOverrides());
6590   }
6591   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6592                                ExecConfig, IsExecConfig);
6593 }
6594 
6595 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
6596 //  with the specified CallArgs
6597 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6598                                  MultiExprArg CallArgs) {
6599   StringRef Name = Context.BuiltinInfo.getName(Id);
6600   LookupResult R(*this, &Context.Idents.get(Name), Loc,
6601                  Sema::LookupOrdinaryName);
6602   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6603 
6604   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6605   assert(BuiltInDecl && "failed to find builtin declaration");
6606 
6607   ExprResult DeclRef =
6608       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6609   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6610 
6611   ExprResult Call =
6612       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6613 
6614   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6615   return Call.get();
6616 }
6617 
6618 /// Parse a __builtin_astype expression.
6619 ///
6620 /// __builtin_astype( value, dst type )
6621 ///
6622 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6623                                  SourceLocation BuiltinLoc,
6624                                  SourceLocation RParenLoc) {
6625   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6626   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6627 }
6628 
6629 /// Create a new AsTypeExpr node (bitcast) from the arguments.
6630 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6631                                  SourceLocation BuiltinLoc,
6632                                  SourceLocation RParenLoc) {
6633   ExprValueKind VK = VK_PRValue;
6634   ExprObjectKind OK = OK_Ordinary;
6635   QualType SrcTy = E->getType();
6636   if (!SrcTy->isDependentType() &&
6637       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6638     return ExprError(
6639         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6640         << DestTy << SrcTy << E->getSourceRange());
6641   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6642 }
6643 
6644 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
6645 /// provided arguments.
6646 ///
6647 /// __builtin_convertvector( value, dst type )
6648 ///
6649 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6650                                         SourceLocation BuiltinLoc,
6651                                         SourceLocation RParenLoc) {
6652   TypeSourceInfo *TInfo;
6653   GetTypeFromParser(ParsedDestTy, &TInfo);
6654   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6655 }
6656 
6657 /// BuildResolvedCallExpr - Build a call to a resolved expression,
6658 /// i.e. an expression not of \p OverloadTy.  The expression should
6659 /// unary-convert to an expression of function-pointer or
6660 /// block-pointer type.
6661 ///
6662 /// \param NDecl the declaration being called, if available
6663 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6664                                        SourceLocation LParenLoc,
6665                                        ArrayRef<Expr *> Args,
6666                                        SourceLocation RParenLoc, Expr *Config,
6667                                        bool IsExecConfig, ADLCallKind UsesADL) {
6668   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6669   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6670 
6671   // Functions with 'interrupt' attribute cannot be called directly.
6672   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6673     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6674     return ExprError();
6675   }
6676 
6677   // Interrupt handlers don't save off the VFP regs automatically on ARM,
6678   // so there's some risk when calling out to non-interrupt handler functions
6679   // that the callee might not preserve them. This is easy to diagnose here,
6680   // but can be very challenging to debug.
6681   // Likewise, X86 interrupt handlers may only call routines with attribute
6682   // no_caller_saved_registers since there is no efficient way to
6683   // save and restore the non-GPR state.
6684   if (auto *Caller = getCurFunctionDecl()) {
6685     if (Caller->hasAttr<ARMInterruptAttr>()) {
6686       bool VFP = Context.getTargetInfo().hasFeature("vfp");
6687       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
6688         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6689         if (FDecl)
6690           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6691       }
6692     }
6693     if (Caller->hasAttr<AnyX86InterruptAttr>() &&
6694         ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
6695       Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
6696       if (FDecl)
6697         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6698     }
6699   }
6700 
6701   // Promote the function operand.
6702   // We special-case function promotion here because we only allow promoting
6703   // builtin functions to function pointers in the callee of a call.
6704   ExprResult Result;
6705   QualType ResultTy;
6706   if (BuiltinID &&
6707       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6708     // Extract the return type from the (builtin) function pointer type.
6709     // FIXME Several builtins still have setType in
6710     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6711     // Builtins.def to ensure they are correct before removing setType calls.
6712     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6713     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6714     ResultTy = FDecl->getCallResultType();
6715   } else {
6716     Result = CallExprUnaryConversions(Fn);
6717     ResultTy = Context.BoolTy;
6718   }
6719   if (Result.isInvalid())
6720     return ExprError();
6721   Fn = Result.get();
6722 
6723   // Check for a valid function type, but only if it is not a builtin which
6724   // requires custom type checking. These will be handled by
6725   // CheckBuiltinFunctionCall below just after creation of the call expression.
6726   const FunctionType *FuncT = nullptr;
6727   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6728   retry:
6729     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6730       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6731       // have type pointer to function".
6732       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6733       if (!FuncT)
6734         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6735                          << Fn->getType() << Fn->getSourceRange());
6736     } else if (const BlockPointerType *BPT =
6737                    Fn->getType()->getAs<BlockPointerType>()) {
6738       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6739     } else {
6740       // Handle calls to expressions of unknown-any type.
6741       if (Fn->getType() == Context.UnknownAnyTy) {
6742         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6743         if (rewrite.isInvalid())
6744           return ExprError();
6745         Fn = rewrite.get();
6746         goto retry;
6747       }
6748 
6749       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6750                        << Fn->getType() << Fn->getSourceRange());
6751     }
6752   }
6753 
6754   // Get the number of parameters in the function prototype, if any.
6755   // We will allocate space for max(Args.size(), NumParams) arguments
6756   // in the call expression.
6757   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6758   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6759 
6760   CallExpr *TheCall;
6761   if (Config) {
6762     assert(UsesADL == ADLCallKind::NotADL &&
6763            "CUDAKernelCallExpr should not use ADL");
6764     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6765                                          Args, ResultTy, VK_PRValue, RParenLoc,
6766                                          CurFPFeatureOverrides(), NumParams);
6767   } else {
6768     TheCall =
6769         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6770                          CurFPFeatureOverrides(), NumParams, UsesADL);
6771   }
6772 
6773   if (!Context.isDependenceAllowed()) {
6774     // Forget about the nulled arguments since typo correction
6775     // do not handle them well.
6776     TheCall->shrinkNumArgs(Args.size());
6777     // C cannot always handle TypoExpr nodes in builtin calls and direct
6778     // function calls as their argument checking don't necessarily handle
6779     // dependent types properly, so make sure any TypoExprs have been
6780     // dealt with.
6781     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6782     if (!Result.isUsable()) return ExprError();
6783     CallExpr *TheOldCall = TheCall;
6784     TheCall = dyn_cast<CallExpr>(Result.get());
6785     bool CorrectedTypos = TheCall != TheOldCall;
6786     if (!TheCall) return Result;
6787     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6788 
6789     // A new call expression node was created if some typos were corrected.
6790     // However it may not have been constructed with enough storage. In this
6791     // case, rebuild the node with enough storage. The waste of space is
6792     // immaterial since this only happens when some typos were corrected.
6793     if (CorrectedTypos && Args.size() < NumParams) {
6794       if (Config)
6795         TheCall = CUDAKernelCallExpr::Create(
6796             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
6797             RParenLoc, CurFPFeatureOverrides(), NumParams);
6798       else
6799         TheCall =
6800             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6801                              CurFPFeatureOverrides(), NumParams, UsesADL);
6802     }
6803     // We can now handle the nulled arguments for the default arguments.
6804     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6805   }
6806 
6807   // Bail out early if calling a builtin with custom type checking.
6808   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6809     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6810 
6811   if (getLangOpts().CUDA) {
6812     if (Config) {
6813       // CUDA: Kernel calls must be to global functions
6814       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6815         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6816             << FDecl << Fn->getSourceRange());
6817 
6818       // CUDA: Kernel function must have 'void' return type
6819       if (!FuncT->getReturnType()->isVoidType() &&
6820           !FuncT->getReturnType()->getAs<AutoType>() &&
6821           !FuncT->getReturnType()->isInstantiationDependentType())
6822         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6823             << Fn->getType() << Fn->getSourceRange());
6824     } else {
6825       // CUDA: Calls to global functions must be configured
6826       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6827         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6828             << FDecl << Fn->getSourceRange());
6829     }
6830   }
6831 
6832   // Check for a valid return type
6833   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6834                           FDecl))
6835     return ExprError();
6836 
6837   // We know the result type of the call, set it.
6838   TheCall->setType(FuncT->getCallResultType(Context));
6839   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6840 
6841   if (Proto) {
6842     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6843                                 IsExecConfig))
6844       return ExprError();
6845   } else {
6846     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6847 
6848     if (FDecl) {
6849       // Check if we have too few/too many template arguments, based
6850       // on our knowledge of the function definition.
6851       const FunctionDecl *Def = nullptr;
6852       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6853         Proto = Def->getType()->getAs<FunctionProtoType>();
6854        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6855           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6856           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6857       }
6858 
6859       // If the function we're calling isn't a function prototype, but we have
6860       // a function prototype from a prior declaratiom, use that prototype.
6861       if (!FDecl->hasPrototype())
6862         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6863     }
6864 
6865     // Promote the arguments (C99 6.5.2.2p6).
6866     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6867       Expr *Arg = Args[i];
6868 
6869       if (Proto && i < Proto->getNumParams()) {
6870         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6871             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6872         ExprResult ArgE =
6873             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6874         if (ArgE.isInvalid())
6875           return true;
6876 
6877         Arg = ArgE.getAs<Expr>();
6878 
6879       } else {
6880         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6881 
6882         if (ArgE.isInvalid())
6883           return true;
6884 
6885         Arg = ArgE.getAs<Expr>();
6886       }
6887 
6888       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6889                               diag::err_call_incomplete_argument, Arg))
6890         return ExprError();
6891 
6892       TheCall->setArg(i, Arg);
6893     }
6894     TheCall->computeDependence();
6895   }
6896 
6897   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6898     if (!Method->isStatic())
6899       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6900         << Fn->getSourceRange());
6901 
6902   // Check for sentinels
6903   if (NDecl)
6904     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6905 
6906   // Warn for unions passing across security boundary (CMSE).
6907   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6908     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6909       if (const auto *RT =
6910               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6911         if (RT->getDecl()->isOrContainsUnion())
6912           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6913               << 0 << i;
6914       }
6915     }
6916   }
6917 
6918   // Do special checking on direct calls to functions.
6919   if (FDecl) {
6920     if (CheckFunctionCall(FDecl, TheCall, Proto))
6921       return ExprError();
6922 
6923     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6924 
6925     if (BuiltinID)
6926       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6927   } else if (NDecl) {
6928     if (CheckPointerCall(NDecl, TheCall, Proto))
6929       return ExprError();
6930   } else {
6931     if (CheckOtherCall(TheCall, Proto))
6932       return ExprError();
6933   }
6934 
6935   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6936 }
6937 
6938 ExprResult
6939 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6940                            SourceLocation RParenLoc, Expr *InitExpr) {
6941   assert(Ty && "ActOnCompoundLiteral(): missing type");
6942   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6943 
6944   TypeSourceInfo *TInfo;
6945   QualType literalType = GetTypeFromParser(Ty, &TInfo);
6946   if (!TInfo)
6947     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6948 
6949   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6950 }
6951 
6952 ExprResult
6953 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6954                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6955   QualType literalType = TInfo->getType();
6956 
6957   if (literalType->isArrayType()) {
6958     if (RequireCompleteSizedType(
6959             LParenLoc, Context.getBaseElementType(literalType),
6960             diag::err_array_incomplete_or_sizeless_type,
6961             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6962       return ExprError();
6963     if (literalType->isVariableArrayType()) {
6964       if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
6965                                            diag::err_variable_object_no_init)) {
6966         return ExprError();
6967       }
6968     }
6969   } else if (!literalType->isDependentType() &&
6970              RequireCompleteType(LParenLoc, literalType,
6971                diag::err_typecheck_decl_incomplete_type,
6972                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6973     return ExprError();
6974 
6975   InitializedEntity Entity
6976     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6977   InitializationKind Kind
6978     = InitializationKind::CreateCStyleCast(LParenLoc,
6979                                            SourceRange(LParenLoc, RParenLoc),
6980                                            /*InitList=*/true);
6981   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6982   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6983                                       &literalType);
6984   if (Result.isInvalid())
6985     return ExprError();
6986   LiteralExpr = Result.get();
6987 
6988   bool isFileScope = !CurContext->isFunctionOrMethod();
6989 
6990   // In C, compound literals are l-values for some reason.
6991   // For GCC compatibility, in C++, file-scope array compound literals with
6992   // constant initializers are also l-values, and compound literals are
6993   // otherwise prvalues.
6994   //
6995   // (GCC also treats C++ list-initialized file-scope array prvalues with
6996   // constant initializers as l-values, but that's non-conforming, so we don't
6997   // follow it there.)
6998   //
6999   // FIXME: It would be better to handle the lvalue cases as materializing and
7000   // lifetime-extending a temporary object, but our materialized temporaries
7001   // representation only supports lifetime extension from a variable, not "out
7002   // of thin air".
7003   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7004   // is bound to the result of applying array-to-pointer decay to the compound
7005   // literal.
7006   // FIXME: GCC supports compound literals of reference type, which should
7007   // obviously have a value kind derived from the kind of reference involved.
7008   ExprValueKind VK =
7009       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7010           ? VK_PRValue
7011           : VK_LValue;
7012 
7013   if (isFileScope)
7014     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7015       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7016         Expr *Init = ILE->getInit(i);
7017         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7018       }
7019 
7020   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7021                                               VK, LiteralExpr, isFileScope);
7022   if (isFileScope) {
7023     if (!LiteralExpr->isTypeDependent() &&
7024         !LiteralExpr->isValueDependent() &&
7025         !literalType->isDependentType()) // C99 6.5.2.5p3
7026       if (CheckForConstantInitializer(LiteralExpr, literalType))
7027         return ExprError();
7028   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7029              literalType.getAddressSpace() != LangAS::Default) {
7030     // Embedded-C extensions to C99 6.5.2.5:
7031     //   "If the compound literal occurs inside the body of a function, the
7032     //   type name shall not be qualified by an address-space qualifier."
7033     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7034       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7035     return ExprError();
7036   }
7037 
7038   if (!isFileScope && !getLangOpts().CPlusPlus) {
7039     // Compound literals that have automatic storage duration are destroyed at
7040     // the end of the scope in C; in C++, they're just temporaries.
7041 
7042     // Emit diagnostics if it is or contains a C union type that is non-trivial
7043     // to destruct.
7044     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7045       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7046                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7047 
7048     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7049     if (literalType.isDestructedType()) {
7050       Cleanup.setExprNeedsCleanups(true);
7051       ExprCleanupObjects.push_back(E);
7052       getCurFunction()->setHasBranchProtectedScope();
7053     }
7054   }
7055 
7056   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7057       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7058     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7059                                        E->getInitializer()->getExprLoc());
7060 
7061   return MaybeBindToTemporary(E);
7062 }
7063 
7064 ExprResult
7065 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7066                     SourceLocation RBraceLoc) {
7067   // Only produce each kind of designated initialization diagnostic once.
7068   SourceLocation FirstDesignator;
7069   bool DiagnosedArrayDesignator = false;
7070   bool DiagnosedNestedDesignator = false;
7071   bool DiagnosedMixedDesignator = false;
7072 
7073   // Check that any designated initializers are syntactically valid in the
7074   // current language mode.
7075   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7076     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7077       if (FirstDesignator.isInvalid())
7078         FirstDesignator = DIE->getBeginLoc();
7079 
7080       if (!getLangOpts().CPlusPlus)
7081         break;
7082 
7083       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7084         DiagnosedNestedDesignator = true;
7085         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7086           << DIE->getDesignatorsSourceRange();
7087       }
7088 
7089       for (auto &Desig : DIE->designators()) {
7090         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7091           DiagnosedArrayDesignator = true;
7092           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7093             << Desig.getSourceRange();
7094         }
7095       }
7096 
7097       if (!DiagnosedMixedDesignator &&
7098           !isa<DesignatedInitExpr>(InitArgList[0])) {
7099         DiagnosedMixedDesignator = true;
7100         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7101           << DIE->getSourceRange();
7102         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7103           << InitArgList[0]->getSourceRange();
7104       }
7105     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7106                isa<DesignatedInitExpr>(InitArgList[0])) {
7107       DiagnosedMixedDesignator = true;
7108       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7109       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7110         << DIE->getSourceRange();
7111       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7112         << InitArgList[I]->getSourceRange();
7113     }
7114   }
7115 
7116   if (FirstDesignator.isValid()) {
7117     // Only diagnose designated initiaization as a C++20 extension if we didn't
7118     // already diagnose use of (non-C++20) C99 designator syntax.
7119     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7120         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7121       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7122                                 ? diag::warn_cxx17_compat_designated_init
7123                                 : diag::ext_cxx_designated_init);
7124     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7125       Diag(FirstDesignator, diag::ext_designated_init);
7126     }
7127   }
7128 
7129   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7130 }
7131 
7132 ExprResult
7133 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7134                     SourceLocation RBraceLoc) {
7135   // Semantic analysis for initializers is done by ActOnDeclarator() and
7136   // CheckInitializer() - it requires knowledge of the object being initialized.
7137 
7138   // Immediately handle non-overload placeholders.  Overloads can be
7139   // resolved contextually, but everything else here can't.
7140   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7141     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7142       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7143 
7144       // Ignore failures; dropping the entire initializer list because
7145       // of one failure would be terrible for indexing/etc.
7146       if (result.isInvalid()) continue;
7147 
7148       InitArgList[I] = result.get();
7149     }
7150   }
7151 
7152   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7153                                                RBraceLoc);
7154   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7155   return E;
7156 }
7157 
7158 /// Do an explicit extend of the given block pointer if we're in ARC.
7159 void Sema::maybeExtendBlockObject(ExprResult &E) {
7160   assert(E.get()->getType()->isBlockPointerType());
7161   assert(E.get()->isPRValue());
7162 
7163   // Only do this in an r-value context.
7164   if (!getLangOpts().ObjCAutoRefCount) return;
7165 
7166   E = ImplicitCastExpr::Create(
7167       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7168       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7169   Cleanup.setExprNeedsCleanups(true);
7170 }
7171 
7172 /// Prepare a conversion of the given expression to an ObjC object
7173 /// pointer type.
7174 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7175   QualType type = E.get()->getType();
7176   if (type->isObjCObjectPointerType()) {
7177     return CK_BitCast;
7178   } else if (type->isBlockPointerType()) {
7179     maybeExtendBlockObject(E);
7180     return CK_BlockPointerToObjCPointerCast;
7181   } else {
7182     assert(type->isPointerType());
7183     return CK_CPointerToObjCPointerCast;
7184   }
7185 }
7186 
7187 /// Prepares for a scalar cast, performing all the necessary stages
7188 /// except the final cast and returning the kind required.
7189 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7190   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7191   // Also, callers should have filtered out the invalid cases with
7192   // pointers.  Everything else should be possible.
7193 
7194   QualType SrcTy = Src.get()->getType();
7195   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7196     return CK_NoOp;
7197 
7198   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7199   case Type::STK_MemberPointer:
7200     llvm_unreachable("member pointer type in C");
7201 
7202   case Type::STK_CPointer:
7203   case Type::STK_BlockPointer:
7204   case Type::STK_ObjCObjectPointer:
7205     switch (DestTy->getScalarTypeKind()) {
7206     case Type::STK_CPointer: {
7207       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7208       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7209       if (SrcAS != DestAS)
7210         return CK_AddressSpaceConversion;
7211       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7212         return CK_NoOp;
7213       return CK_BitCast;
7214     }
7215     case Type::STK_BlockPointer:
7216       return (SrcKind == Type::STK_BlockPointer
7217                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7218     case Type::STK_ObjCObjectPointer:
7219       if (SrcKind == Type::STK_ObjCObjectPointer)
7220         return CK_BitCast;
7221       if (SrcKind == Type::STK_CPointer)
7222         return CK_CPointerToObjCPointerCast;
7223       maybeExtendBlockObject(Src);
7224       return CK_BlockPointerToObjCPointerCast;
7225     case Type::STK_Bool:
7226       return CK_PointerToBoolean;
7227     case Type::STK_Integral:
7228       return CK_PointerToIntegral;
7229     case Type::STK_Floating:
7230     case Type::STK_FloatingComplex:
7231     case Type::STK_IntegralComplex:
7232     case Type::STK_MemberPointer:
7233     case Type::STK_FixedPoint:
7234       llvm_unreachable("illegal cast from pointer");
7235     }
7236     llvm_unreachable("Should have returned before this");
7237 
7238   case Type::STK_FixedPoint:
7239     switch (DestTy->getScalarTypeKind()) {
7240     case Type::STK_FixedPoint:
7241       return CK_FixedPointCast;
7242     case Type::STK_Bool:
7243       return CK_FixedPointToBoolean;
7244     case Type::STK_Integral:
7245       return CK_FixedPointToIntegral;
7246     case Type::STK_Floating:
7247       return CK_FixedPointToFloating;
7248     case Type::STK_IntegralComplex:
7249     case Type::STK_FloatingComplex:
7250       Diag(Src.get()->getExprLoc(),
7251            diag::err_unimplemented_conversion_with_fixed_point_type)
7252           << DestTy;
7253       return CK_IntegralCast;
7254     case Type::STK_CPointer:
7255     case Type::STK_ObjCObjectPointer:
7256     case Type::STK_BlockPointer:
7257     case Type::STK_MemberPointer:
7258       llvm_unreachable("illegal cast to pointer type");
7259     }
7260     llvm_unreachable("Should have returned before this");
7261 
7262   case Type::STK_Bool: // casting from bool is like casting from an integer
7263   case Type::STK_Integral:
7264     switch (DestTy->getScalarTypeKind()) {
7265     case Type::STK_CPointer:
7266     case Type::STK_ObjCObjectPointer:
7267     case Type::STK_BlockPointer:
7268       if (Src.get()->isNullPointerConstant(Context,
7269                                            Expr::NPC_ValueDependentIsNull))
7270         return CK_NullToPointer;
7271       return CK_IntegralToPointer;
7272     case Type::STK_Bool:
7273       return CK_IntegralToBoolean;
7274     case Type::STK_Integral:
7275       return CK_IntegralCast;
7276     case Type::STK_Floating:
7277       return CK_IntegralToFloating;
7278     case Type::STK_IntegralComplex:
7279       Src = ImpCastExprToType(Src.get(),
7280                       DestTy->castAs<ComplexType>()->getElementType(),
7281                       CK_IntegralCast);
7282       return CK_IntegralRealToComplex;
7283     case Type::STK_FloatingComplex:
7284       Src = ImpCastExprToType(Src.get(),
7285                       DestTy->castAs<ComplexType>()->getElementType(),
7286                       CK_IntegralToFloating);
7287       return CK_FloatingRealToComplex;
7288     case Type::STK_MemberPointer:
7289       llvm_unreachable("member pointer type in C");
7290     case Type::STK_FixedPoint:
7291       return CK_IntegralToFixedPoint;
7292     }
7293     llvm_unreachable("Should have returned before this");
7294 
7295   case Type::STK_Floating:
7296     switch (DestTy->getScalarTypeKind()) {
7297     case Type::STK_Floating:
7298       return CK_FloatingCast;
7299     case Type::STK_Bool:
7300       return CK_FloatingToBoolean;
7301     case Type::STK_Integral:
7302       return CK_FloatingToIntegral;
7303     case Type::STK_FloatingComplex:
7304       Src = ImpCastExprToType(Src.get(),
7305                               DestTy->castAs<ComplexType>()->getElementType(),
7306                               CK_FloatingCast);
7307       return CK_FloatingRealToComplex;
7308     case Type::STK_IntegralComplex:
7309       Src = ImpCastExprToType(Src.get(),
7310                               DestTy->castAs<ComplexType>()->getElementType(),
7311                               CK_FloatingToIntegral);
7312       return CK_IntegralRealToComplex;
7313     case Type::STK_CPointer:
7314     case Type::STK_ObjCObjectPointer:
7315     case Type::STK_BlockPointer:
7316       llvm_unreachable("valid float->pointer cast?");
7317     case Type::STK_MemberPointer:
7318       llvm_unreachable("member pointer type in C");
7319     case Type::STK_FixedPoint:
7320       return CK_FloatingToFixedPoint;
7321     }
7322     llvm_unreachable("Should have returned before this");
7323 
7324   case Type::STK_FloatingComplex:
7325     switch (DestTy->getScalarTypeKind()) {
7326     case Type::STK_FloatingComplex:
7327       return CK_FloatingComplexCast;
7328     case Type::STK_IntegralComplex:
7329       return CK_FloatingComplexToIntegralComplex;
7330     case Type::STK_Floating: {
7331       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7332       if (Context.hasSameType(ET, DestTy))
7333         return CK_FloatingComplexToReal;
7334       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7335       return CK_FloatingCast;
7336     }
7337     case Type::STK_Bool:
7338       return CK_FloatingComplexToBoolean;
7339     case Type::STK_Integral:
7340       Src = ImpCastExprToType(Src.get(),
7341                               SrcTy->castAs<ComplexType>()->getElementType(),
7342                               CK_FloatingComplexToReal);
7343       return CK_FloatingToIntegral;
7344     case Type::STK_CPointer:
7345     case Type::STK_ObjCObjectPointer:
7346     case Type::STK_BlockPointer:
7347       llvm_unreachable("valid complex float->pointer cast?");
7348     case Type::STK_MemberPointer:
7349       llvm_unreachable("member pointer type in C");
7350     case Type::STK_FixedPoint:
7351       Diag(Src.get()->getExprLoc(),
7352            diag::err_unimplemented_conversion_with_fixed_point_type)
7353           << SrcTy;
7354       return CK_IntegralCast;
7355     }
7356     llvm_unreachable("Should have returned before this");
7357 
7358   case Type::STK_IntegralComplex:
7359     switch (DestTy->getScalarTypeKind()) {
7360     case Type::STK_FloatingComplex:
7361       return CK_IntegralComplexToFloatingComplex;
7362     case Type::STK_IntegralComplex:
7363       return CK_IntegralComplexCast;
7364     case Type::STK_Integral: {
7365       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7366       if (Context.hasSameType(ET, DestTy))
7367         return CK_IntegralComplexToReal;
7368       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7369       return CK_IntegralCast;
7370     }
7371     case Type::STK_Bool:
7372       return CK_IntegralComplexToBoolean;
7373     case Type::STK_Floating:
7374       Src = ImpCastExprToType(Src.get(),
7375                               SrcTy->castAs<ComplexType>()->getElementType(),
7376                               CK_IntegralComplexToReal);
7377       return CK_IntegralToFloating;
7378     case Type::STK_CPointer:
7379     case Type::STK_ObjCObjectPointer:
7380     case Type::STK_BlockPointer:
7381       llvm_unreachable("valid complex int->pointer cast?");
7382     case Type::STK_MemberPointer:
7383       llvm_unreachable("member pointer type in C");
7384     case Type::STK_FixedPoint:
7385       Diag(Src.get()->getExprLoc(),
7386            diag::err_unimplemented_conversion_with_fixed_point_type)
7387           << SrcTy;
7388       return CK_IntegralCast;
7389     }
7390     llvm_unreachable("Should have returned before this");
7391   }
7392 
7393   llvm_unreachable("Unhandled scalar cast");
7394 }
7395 
7396 static bool breakDownVectorType(QualType type, uint64_t &len,
7397                                 QualType &eltType) {
7398   // Vectors are simple.
7399   if (const VectorType *vecType = type->getAs<VectorType>()) {
7400     len = vecType->getNumElements();
7401     eltType = vecType->getElementType();
7402     assert(eltType->isScalarType());
7403     return true;
7404   }
7405 
7406   // We allow lax conversion to and from non-vector types, but only if
7407   // they're real types (i.e. non-complex, non-pointer scalar types).
7408   if (!type->isRealType()) return false;
7409 
7410   len = 1;
7411   eltType = type;
7412   return true;
7413 }
7414 
7415 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7416 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7417 /// allowed?
7418 ///
7419 /// This will also return false if the two given types do not make sense from
7420 /// the perspective of SVE bitcasts.
7421 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7422   assert(srcTy->isVectorType() || destTy->isVectorType());
7423 
7424   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7425     if (!FirstType->isSizelessBuiltinType())
7426       return false;
7427 
7428     const auto *VecTy = SecondType->getAs<VectorType>();
7429     return VecTy &&
7430            VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7431   };
7432 
7433   return ValidScalableConversion(srcTy, destTy) ||
7434          ValidScalableConversion(destTy, srcTy);
7435 }
7436 
7437 /// Are the two types matrix types and do they have the same dimensions i.e.
7438 /// do they have the same number of rows and the same number of columns?
7439 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7440   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7441     return false;
7442 
7443   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7444   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7445 
7446   return matSrcType->getNumRows() == matDestType->getNumRows() &&
7447          matSrcType->getNumColumns() == matDestType->getNumColumns();
7448 }
7449 
7450 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7451   assert(DestTy->isVectorType() || SrcTy->isVectorType());
7452 
7453   uint64_t SrcLen, DestLen;
7454   QualType SrcEltTy, DestEltTy;
7455   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7456     return false;
7457   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7458     return false;
7459 
7460   // ASTContext::getTypeSize will return the size rounded up to a
7461   // power of 2, so instead of using that, we need to use the raw
7462   // element size multiplied by the element count.
7463   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7464   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7465 
7466   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7467 }
7468 
7469 /// Are the two types lax-compatible vector types?  That is, given
7470 /// that one of them is a vector, do they have equal storage sizes,
7471 /// where the storage size is the number of elements times the element
7472 /// size?
7473 ///
7474 /// This will also return false if either of the types is neither a
7475 /// vector nor a real type.
7476 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7477   assert(destTy->isVectorType() || srcTy->isVectorType());
7478 
7479   // Disallow lax conversions between scalars and ExtVectors (these
7480   // conversions are allowed for other vector types because common headers
7481   // depend on them).  Most scalar OP ExtVector cases are handled by the
7482   // splat path anyway, which does what we want (convert, not bitcast).
7483   // What this rules out for ExtVectors is crazy things like char4*float.
7484   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7485   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7486 
7487   return areVectorTypesSameSize(srcTy, destTy);
7488 }
7489 
7490 /// Is this a legal conversion between two types, one of which is
7491 /// known to be a vector type?
7492 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7493   assert(destTy->isVectorType() || srcTy->isVectorType());
7494 
7495   switch (Context.getLangOpts().getLaxVectorConversions()) {
7496   case LangOptions::LaxVectorConversionKind::None:
7497     return false;
7498 
7499   case LangOptions::LaxVectorConversionKind::Integer:
7500     if (!srcTy->isIntegralOrEnumerationType()) {
7501       auto *Vec = srcTy->getAs<VectorType>();
7502       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7503         return false;
7504     }
7505     if (!destTy->isIntegralOrEnumerationType()) {
7506       auto *Vec = destTy->getAs<VectorType>();
7507       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7508         return false;
7509     }
7510     // OK, integer (vector) -> integer (vector) bitcast.
7511     break;
7512 
7513     case LangOptions::LaxVectorConversionKind::All:
7514     break;
7515   }
7516 
7517   return areLaxCompatibleVectorTypes(srcTy, destTy);
7518 }
7519 
7520 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7521                            CastKind &Kind) {
7522   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7523     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7524       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7525              << DestTy << SrcTy << R;
7526     }
7527   } else if (SrcTy->isMatrixType()) {
7528     return Diag(R.getBegin(),
7529                 diag::err_invalid_conversion_between_matrix_and_type)
7530            << SrcTy << DestTy << R;
7531   } else if (DestTy->isMatrixType()) {
7532     return Diag(R.getBegin(),
7533                 diag::err_invalid_conversion_between_matrix_and_type)
7534            << DestTy << SrcTy << R;
7535   }
7536 
7537   Kind = CK_MatrixCast;
7538   return false;
7539 }
7540 
7541 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7542                            CastKind &Kind) {
7543   assert(VectorTy->isVectorType() && "Not a vector type!");
7544 
7545   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7546     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7547       return Diag(R.getBegin(),
7548                   Ty->isVectorType() ?
7549                   diag::err_invalid_conversion_between_vectors :
7550                   diag::err_invalid_conversion_between_vector_and_integer)
7551         << VectorTy << Ty << R;
7552   } else
7553     return Diag(R.getBegin(),
7554                 diag::err_invalid_conversion_between_vector_and_scalar)
7555       << VectorTy << Ty << R;
7556 
7557   Kind = CK_BitCast;
7558   return false;
7559 }
7560 
7561 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7562   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7563 
7564   if (DestElemTy == SplattedExpr->getType())
7565     return SplattedExpr;
7566 
7567   assert(DestElemTy->isFloatingType() ||
7568          DestElemTy->isIntegralOrEnumerationType());
7569 
7570   CastKind CK;
7571   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7572     // OpenCL requires that we convert `true` boolean expressions to -1, but
7573     // only when splatting vectors.
7574     if (DestElemTy->isFloatingType()) {
7575       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7576       // in two steps: boolean to signed integral, then to floating.
7577       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7578                                                  CK_BooleanToSignedIntegral);
7579       SplattedExpr = CastExprRes.get();
7580       CK = CK_IntegralToFloating;
7581     } else {
7582       CK = CK_BooleanToSignedIntegral;
7583     }
7584   } else {
7585     ExprResult CastExprRes = SplattedExpr;
7586     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7587     if (CastExprRes.isInvalid())
7588       return ExprError();
7589     SplattedExpr = CastExprRes.get();
7590   }
7591   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7592 }
7593 
7594 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7595                                     Expr *CastExpr, CastKind &Kind) {
7596   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7597 
7598   QualType SrcTy = CastExpr->getType();
7599 
7600   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7601   // an ExtVectorType.
7602   // In OpenCL, casts between vectors of different types are not allowed.
7603   // (See OpenCL 6.2).
7604   if (SrcTy->isVectorType()) {
7605     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7606         (getLangOpts().OpenCL &&
7607          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7608       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7609         << DestTy << SrcTy << R;
7610       return ExprError();
7611     }
7612     Kind = CK_BitCast;
7613     return CastExpr;
7614   }
7615 
7616   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7617   // conversion will take place first from scalar to elt type, and then
7618   // splat from elt type to vector.
7619   if (SrcTy->isPointerType())
7620     return Diag(R.getBegin(),
7621                 diag::err_invalid_conversion_between_vector_and_scalar)
7622       << DestTy << SrcTy << R;
7623 
7624   Kind = CK_VectorSplat;
7625   return prepareVectorSplat(DestTy, CastExpr);
7626 }
7627 
7628 ExprResult
7629 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7630                     Declarator &D, ParsedType &Ty,
7631                     SourceLocation RParenLoc, Expr *CastExpr) {
7632   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7633          "ActOnCastExpr(): missing type or expr");
7634 
7635   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7636   if (D.isInvalidType())
7637     return ExprError();
7638 
7639   if (getLangOpts().CPlusPlus) {
7640     // Check that there are no default arguments (C++ only).
7641     CheckExtraCXXDefaultArguments(D);
7642   } else {
7643     // Make sure any TypoExprs have been dealt with.
7644     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7645     if (!Res.isUsable())
7646       return ExprError();
7647     CastExpr = Res.get();
7648   }
7649 
7650   checkUnusedDeclAttributes(D);
7651 
7652   QualType castType = castTInfo->getType();
7653   Ty = CreateParsedType(castType, castTInfo);
7654 
7655   bool isVectorLiteral = false;
7656 
7657   // Check for an altivec or OpenCL literal,
7658   // i.e. all the elements are integer constants.
7659   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7660   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7661   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7662        && castType->isVectorType() && (PE || PLE)) {
7663     if (PLE && PLE->getNumExprs() == 0) {
7664       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7665       return ExprError();
7666     }
7667     if (PE || PLE->getNumExprs() == 1) {
7668       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7669       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7670         isVectorLiteral = true;
7671     }
7672     else
7673       isVectorLiteral = true;
7674   }
7675 
7676   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7677   // then handle it as such.
7678   if (isVectorLiteral)
7679     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7680 
7681   // If the Expr being casted is a ParenListExpr, handle it specially.
7682   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7683   // sequence of BinOp comma operators.
7684   if (isa<ParenListExpr>(CastExpr)) {
7685     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7686     if (Result.isInvalid()) return ExprError();
7687     CastExpr = Result.get();
7688   }
7689 
7690   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
7691       !getSourceManager().isInSystemMacro(LParenLoc))
7692     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7693 
7694   CheckTollFreeBridgeCast(castType, CastExpr);
7695 
7696   CheckObjCBridgeRelatedCast(castType, CastExpr);
7697 
7698   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7699 
7700   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7701 }
7702 
7703 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7704                                     SourceLocation RParenLoc, Expr *E,
7705                                     TypeSourceInfo *TInfo) {
7706   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7707          "Expected paren or paren list expression");
7708 
7709   Expr **exprs;
7710   unsigned numExprs;
7711   Expr *subExpr;
7712   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7713   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7714     LiteralLParenLoc = PE->getLParenLoc();
7715     LiteralRParenLoc = PE->getRParenLoc();
7716     exprs = PE->getExprs();
7717     numExprs = PE->getNumExprs();
7718   } else { // isa<ParenExpr> by assertion at function entrance
7719     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7720     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7721     subExpr = cast<ParenExpr>(E)->getSubExpr();
7722     exprs = &subExpr;
7723     numExprs = 1;
7724   }
7725 
7726   QualType Ty = TInfo->getType();
7727   assert(Ty->isVectorType() && "Expected vector type");
7728 
7729   SmallVector<Expr *, 8> initExprs;
7730   const VectorType *VTy = Ty->castAs<VectorType>();
7731   unsigned numElems = VTy->getNumElements();
7732 
7733   // '(...)' form of vector initialization in AltiVec: the number of
7734   // initializers must be one or must match the size of the vector.
7735   // If a single value is specified in the initializer then it will be
7736   // replicated to all the components of the vector
7737   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
7738                                  VTy->getElementType()))
7739     return ExprError();
7740   if (ShouldSplatAltivecScalarInCast(VTy)) {
7741     // The number of initializers must be one or must match the size of the
7742     // vector. If a single value is specified in the initializer then it will
7743     // be replicated to all the components of the vector
7744     if (numExprs == 1) {
7745       QualType ElemTy = VTy->getElementType();
7746       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7747       if (Literal.isInvalid())
7748         return ExprError();
7749       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7750                                   PrepareScalarCast(Literal, ElemTy));
7751       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7752     }
7753     else if (numExprs < numElems) {
7754       Diag(E->getExprLoc(),
7755            diag::err_incorrect_number_of_vector_initializers);
7756       return ExprError();
7757     }
7758     else
7759       initExprs.append(exprs, exprs + numExprs);
7760   }
7761   else {
7762     // For OpenCL, when the number of initializers is a single value,
7763     // it will be replicated to all components of the vector.
7764     if (getLangOpts().OpenCL &&
7765         VTy->getVectorKind() == VectorType::GenericVector &&
7766         numExprs == 1) {
7767         QualType ElemTy = VTy->getElementType();
7768         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7769         if (Literal.isInvalid())
7770           return ExprError();
7771         Literal = ImpCastExprToType(Literal.get(), ElemTy,
7772                                     PrepareScalarCast(Literal, ElemTy));
7773         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7774     }
7775 
7776     initExprs.append(exprs, exprs + numExprs);
7777   }
7778   // FIXME: This means that pretty-printing the final AST will produce curly
7779   // braces instead of the original commas.
7780   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7781                                                    initExprs, LiteralRParenLoc);
7782   initE->setType(Ty);
7783   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7784 }
7785 
7786 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
7787 /// the ParenListExpr into a sequence of comma binary operators.
7788 ExprResult
7789 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7790   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7791   if (!E)
7792     return OrigExpr;
7793 
7794   ExprResult Result(E->getExpr(0));
7795 
7796   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7797     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7798                         E->getExpr(i));
7799 
7800   if (Result.isInvalid()) return ExprError();
7801 
7802   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7803 }
7804 
7805 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7806                                     SourceLocation R,
7807                                     MultiExprArg Val) {
7808   return ParenListExpr::Create(Context, L, Val, R);
7809 }
7810 
7811 /// Emit a specialized diagnostic when one expression is a null pointer
7812 /// constant and the other is not a pointer.  Returns true if a diagnostic is
7813 /// emitted.
7814 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
7815                                       SourceLocation QuestionLoc) {
7816   Expr *NullExpr = LHSExpr;
7817   Expr *NonPointerExpr = RHSExpr;
7818   Expr::NullPointerConstantKind NullKind =
7819       NullExpr->isNullPointerConstant(Context,
7820                                       Expr::NPC_ValueDependentIsNotNull);
7821 
7822   if (NullKind == Expr::NPCK_NotNull) {
7823     NullExpr = RHSExpr;
7824     NonPointerExpr = LHSExpr;
7825     NullKind =
7826         NullExpr->isNullPointerConstant(Context,
7827                                         Expr::NPC_ValueDependentIsNotNull);
7828   }
7829 
7830   if (NullKind == Expr::NPCK_NotNull)
7831     return false;
7832 
7833   if (NullKind == Expr::NPCK_ZeroExpression)
7834     return false;
7835 
7836   if (NullKind == Expr::NPCK_ZeroLiteral) {
7837     // In this case, check to make sure that we got here from a "NULL"
7838     // string in the source code.
7839     NullExpr = NullExpr->IgnoreParenImpCasts();
7840     SourceLocation loc = NullExpr->getExprLoc();
7841     if (!findMacroSpelling(loc, "NULL"))
7842       return false;
7843   }
7844 
7845   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7846   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7847       << NonPointerExpr->getType() << DiagType
7848       << NonPointerExpr->getSourceRange();
7849   return true;
7850 }
7851 
7852 /// Return false if the condition expression is valid, true otherwise.
7853 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
7854   QualType CondTy = Cond->getType();
7855 
7856   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7857   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7858     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7859       << CondTy << Cond->getSourceRange();
7860     return true;
7861   }
7862 
7863   // C99 6.5.15p2
7864   if (CondTy->isScalarType()) return false;
7865 
7866   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7867     << CondTy << Cond->getSourceRange();
7868   return true;
7869 }
7870 
7871 /// Handle when one or both operands are void type.
7872 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7873                                          ExprResult &RHS) {
7874     Expr *LHSExpr = LHS.get();
7875     Expr *RHSExpr = RHS.get();
7876 
7877     if (!LHSExpr->getType()->isVoidType())
7878       S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7879           << RHSExpr->getSourceRange();
7880     if (!RHSExpr->getType()->isVoidType())
7881       S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7882           << LHSExpr->getSourceRange();
7883     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7884     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7885     return S.Context.VoidTy;
7886 }
7887 
7888 /// Return false if the NullExpr can be promoted to PointerTy,
7889 /// true otherwise.
7890 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7891                                         QualType PointerTy) {
7892   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7893       !NullExpr.get()->isNullPointerConstant(S.Context,
7894                                             Expr::NPC_ValueDependentIsNull))
7895     return true;
7896 
7897   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7898   return false;
7899 }
7900 
7901 /// Checks compatibility between two pointers and return the resulting
7902 /// type.
7903 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7904                                                      ExprResult &RHS,
7905                                                      SourceLocation Loc) {
7906   QualType LHSTy = LHS.get()->getType();
7907   QualType RHSTy = RHS.get()->getType();
7908 
7909   if (S.Context.hasSameType(LHSTy, RHSTy)) {
7910     // Two identical pointers types are always compatible.
7911     return LHSTy;
7912   }
7913 
7914   QualType lhptee, rhptee;
7915 
7916   // Get the pointee types.
7917   bool IsBlockPointer = false;
7918   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7919     lhptee = LHSBTy->getPointeeType();
7920     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7921     IsBlockPointer = true;
7922   } else {
7923     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7924     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7925   }
7926 
7927   // C99 6.5.15p6: If both operands are pointers to compatible types or to
7928   // differently qualified versions of compatible types, the result type is
7929   // a pointer to an appropriately qualified version of the composite
7930   // type.
7931 
7932   // Only CVR-qualifiers exist in the standard, and the differently-qualified
7933   // clause doesn't make sense for our extensions. E.g. address space 2 should
7934   // be incompatible with address space 3: they may live on different devices or
7935   // anything.
7936   Qualifiers lhQual = lhptee.getQualifiers();
7937   Qualifiers rhQual = rhptee.getQualifiers();
7938 
7939   LangAS ResultAddrSpace = LangAS::Default;
7940   LangAS LAddrSpace = lhQual.getAddressSpace();
7941   LangAS RAddrSpace = rhQual.getAddressSpace();
7942 
7943   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7944   // spaces is disallowed.
7945   if (lhQual.isAddressSpaceSupersetOf(rhQual))
7946     ResultAddrSpace = LAddrSpace;
7947   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7948     ResultAddrSpace = RAddrSpace;
7949   else {
7950     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7951         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7952         << RHS.get()->getSourceRange();
7953     return QualType();
7954   }
7955 
7956   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7957   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7958   lhQual.removeCVRQualifiers();
7959   rhQual.removeCVRQualifiers();
7960 
7961   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7962   // (C99 6.7.3) for address spaces. We assume that the check should behave in
7963   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7964   // qual types are compatible iff
7965   //  * corresponded types are compatible
7966   //  * CVR qualifiers are equal
7967   //  * address spaces are equal
7968   // Thus for conditional operator we merge CVR and address space unqualified
7969   // pointees and if there is a composite type we return a pointer to it with
7970   // merged qualifiers.
7971   LHSCastKind =
7972       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7973   RHSCastKind =
7974       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7975   lhQual.removeAddressSpace();
7976   rhQual.removeAddressSpace();
7977 
7978   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7979   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7980 
7981   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
7982 
7983   if (CompositeTy.isNull()) {
7984     // In this situation, we assume void* type. No especially good
7985     // reason, but this is what gcc does, and we do have to pick
7986     // to get a consistent AST.
7987     QualType incompatTy;
7988     incompatTy = S.Context.getPointerType(
7989         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
7990     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
7991     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
7992 
7993     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
7994     // for casts between types with incompatible address space qualifiers.
7995     // For the following code the compiler produces casts between global and
7996     // local address spaces of the corresponded innermost pointees:
7997     // local int *global *a;
7998     // global int *global *b;
7999     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8000     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8001         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8002         << RHS.get()->getSourceRange();
8003 
8004     return incompatTy;
8005   }
8006 
8007   // The pointer types are compatible.
8008   // In case of OpenCL ResultTy should have the address space qualifier
8009   // which is a superset of address spaces of both the 2nd and the 3rd
8010   // operands of the conditional operator.
8011   QualType ResultTy = [&, ResultAddrSpace]() {
8012     if (S.getLangOpts().OpenCL) {
8013       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8014       CompositeQuals.setAddressSpace(ResultAddrSpace);
8015       return S.Context
8016           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8017           .withCVRQualifiers(MergedCVRQual);
8018     }
8019     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8020   }();
8021   if (IsBlockPointer)
8022     ResultTy = S.Context.getBlockPointerType(ResultTy);
8023   else
8024     ResultTy = S.Context.getPointerType(ResultTy);
8025 
8026   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8027   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8028   return ResultTy;
8029 }
8030 
8031 /// Return the resulting type when the operands are both block pointers.
8032 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8033                                                           ExprResult &LHS,
8034                                                           ExprResult &RHS,
8035                                                           SourceLocation Loc) {
8036   QualType LHSTy = LHS.get()->getType();
8037   QualType RHSTy = RHS.get()->getType();
8038 
8039   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8040     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8041       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8042       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8043       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8044       return destType;
8045     }
8046     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8047       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8048       << RHS.get()->getSourceRange();
8049     return QualType();
8050   }
8051 
8052   // We have 2 block pointer types.
8053   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8054 }
8055 
8056 /// Return the resulting type when the operands are both pointers.
8057 static QualType
8058 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8059                                             ExprResult &RHS,
8060                                             SourceLocation Loc) {
8061   // get the pointer types
8062   QualType LHSTy = LHS.get()->getType();
8063   QualType RHSTy = RHS.get()->getType();
8064 
8065   // get the "pointed to" types
8066   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8067   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8068 
8069   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8070   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8071     // Figure out necessary qualifiers (C99 6.5.15p6)
8072     QualType destPointee
8073       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8074     QualType destType = S.Context.getPointerType(destPointee);
8075     // Add qualifiers if necessary.
8076     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8077     // Promote to void*.
8078     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8079     return destType;
8080   }
8081   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8082     QualType destPointee
8083       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8084     QualType destType = S.Context.getPointerType(destPointee);
8085     // Add qualifiers if necessary.
8086     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8087     // Promote to void*.
8088     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8089     return destType;
8090   }
8091 
8092   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8093 }
8094 
8095 /// Return false if the first expression is not an integer and the second
8096 /// expression is not a pointer, true otherwise.
8097 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8098                                         Expr* PointerExpr, SourceLocation Loc,
8099                                         bool IsIntFirstExpr) {
8100   if (!PointerExpr->getType()->isPointerType() ||
8101       !Int.get()->getType()->isIntegerType())
8102     return false;
8103 
8104   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8105   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8106 
8107   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8108     << Expr1->getType() << Expr2->getType()
8109     << Expr1->getSourceRange() << Expr2->getSourceRange();
8110   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8111                             CK_IntegralToPointer);
8112   return true;
8113 }
8114 
8115 /// Simple conversion between integer and floating point types.
8116 ///
8117 /// Used when handling the OpenCL conditional operator where the
8118 /// condition is a vector while the other operands are scalar.
8119 ///
8120 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8121 /// types are either integer or floating type. Between the two
8122 /// operands, the type with the higher rank is defined as the "result
8123 /// type". The other operand needs to be promoted to the same type. No
8124 /// other type promotion is allowed. We cannot use
8125 /// UsualArithmeticConversions() for this purpose, since it always
8126 /// promotes promotable types.
8127 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8128                                             ExprResult &RHS,
8129                                             SourceLocation QuestionLoc) {
8130   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8131   if (LHS.isInvalid())
8132     return QualType();
8133   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8134   if (RHS.isInvalid())
8135     return QualType();
8136 
8137   // For conversion purposes, we ignore any qualifiers.
8138   // For example, "const float" and "float" are equivalent.
8139   QualType LHSType =
8140     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8141   QualType RHSType =
8142     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8143 
8144   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8145     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8146       << LHSType << LHS.get()->getSourceRange();
8147     return QualType();
8148   }
8149 
8150   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8151     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8152       << RHSType << RHS.get()->getSourceRange();
8153     return QualType();
8154   }
8155 
8156   // If both types are identical, no conversion is needed.
8157   if (LHSType == RHSType)
8158     return LHSType;
8159 
8160   // Now handle "real" floating types (i.e. float, double, long double).
8161   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8162     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8163                                  /*IsCompAssign = */ false);
8164 
8165   // Finally, we have two differing integer types.
8166   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8167   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8168 }
8169 
8170 /// Convert scalar operands to a vector that matches the
8171 ///        condition in length.
8172 ///
8173 /// Used when handling the OpenCL conditional operator where the
8174 /// condition is a vector while the other operands are scalar.
8175 ///
8176 /// We first compute the "result type" for the scalar operands
8177 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8178 /// into a vector of that type where the length matches the condition
8179 /// vector type. s6.11.6 requires that the element types of the result
8180 /// and the condition must have the same number of bits.
8181 static QualType
8182 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8183                               QualType CondTy, SourceLocation QuestionLoc) {
8184   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8185   if (ResTy.isNull()) return QualType();
8186 
8187   const VectorType *CV = CondTy->getAs<VectorType>();
8188   assert(CV);
8189 
8190   // Determine the vector result type
8191   unsigned NumElements = CV->getNumElements();
8192   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8193 
8194   // Ensure that all types have the same number of bits
8195   if (S.Context.getTypeSize(CV->getElementType())
8196       != S.Context.getTypeSize(ResTy)) {
8197     // Since VectorTy is created internally, it does not pretty print
8198     // with an OpenCL name. Instead, we just print a description.
8199     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8200     SmallString<64> Str;
8201     llvm::raw_svector_ostream OS(Str);
8202     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8203     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8204       << CondTy << OS.str();
8205     return QualType();
8206   }
8207 
8208   // Convert operands to the vector result type
8209   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8210   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8211 
8212   return VectorTy;
8213 }
8214 
8215 /// Return false if this is a valid OpenCL condition vector
8216 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8217                                        SourceLocation QuestionLoc) {
8218   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8219   // integral type.
8220   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8221   assert(CondTy);
8222   QualType EleTy = CondTy->getElementType();
8223   if (EleTy->isIntegerType()) return false;
8224 
8225   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8226     << Cond->getType() << Cond->getSourceRange();
8227   return true;
8228 }
8229 
8230 /// Return false if the vector condition type and the vector
8231 ///        result type are compatible.
8232 ///
8233 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8234 /// number of elements, and their element types have the same number
8235 /// of bits.
8236 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8237                               SourceLocation QuestionLoc) {
8238   const VectorType *CV = CondTy->getAs<VectorType>();
8239   const VectorType *RV = VecResTy->getAs<VectorType>();
8240   assert(CV && RV);
8241 
8242   if (CV->getNumElements() != RV->getNumElements()) {
8243     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8244       << CondTy << VecResTy;
8245     return true;
8246   }
8247 
8248   QualType CVE = CV->getElementType();
8249   QualType RVE = RV->getElementType();
8250 
8251   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8252     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8253       << CondTy << VecResTy;
8254     return true;
8255   }
8256 
8257   return false;
8258 }
8259 
8260 /// Return the resulting type for the conditional operator in
8261 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8262 ///        s6.3.i) when the condition is a vector type.
8263 static QualType
8264 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8265                              ExprResult &LHS, ExprResult &RHS,
8266                              SourceLocation QuestionLoc) {
8267   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8268   if (Cond.isInvalid())
8269     return QualType();
8270   QualType CondTy = Cond.get()->getType();
8271 
8272   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8273     return QualType();
8274 
8275   // If either operand is a vector then find the vector type of the
8276   // result as specified in OpenCL v1.1 s6.3.i.
8277   if (LHS.get()->getType()->isVectorType() ||
8278       RHS.get()->getType()->isVectorType()) {
8279     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8280                                               /*isCompAssign*/false,
8281                                               /*AllowBothBool*/true,
8282                                               /*AllowBoolConversions*/false);
8283     if (VecResTy.isNull()) return QualType();
8284     // The result type must match the condition type as specified in
8285     // OpenCL v1.1 s6.11.6.
8286     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8287       return QualType();
8288     return VecResTy;
8289   }
8290 
8291   // Both operands are scalar.
8292   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8293 }
8294 
8295 /// Return true if the Expr is block type
8296 static bool checkBlockType(Sema &S, const Expr *E) {
8297   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8298     QualType Ty = CE->getCallee()->getType();
8299     if (Ty->isBlockPointerType()) {
8300       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8301       return true;
8302     }
8303   }
8304   return false;
8305 }
8306 
8307 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8308 /// In that case, LHS = cond.
8309 /// C99 6.5.15
8310 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8311                                         ExprResult &RHS, ExprValueKind &VK,
8312                                         ExprObjectKind &OK,
8313                                         SourceLocation QuestionLoc) {
8314 
8315   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8316   if (!LHSResult.isUsable()) return QualType();
8317   LHS = LHSResult;
8318 
8319   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8320   if (!RHSResult.isUsable()) return QualType();
8321   RHS = RHSResult;
8322 
8323   // C++ is sufficiently different to merit its own checker.
8324   if (getLangOpts().CPlusPlus)
8325     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8326 
8327   VK = VK_PRValue;
8328   OK = OK_Ordinary;
8329 
8330   if (Context.isDependenceAllowed() &&
8331       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8332        RHS.get()->isTypeDependent())) {
8333     assert(!getLangOpts().CPlusPlus);
8334     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8335             RHS.get()->containsErrors()) &&
8336            "should only occur in error-recovery path.");
8337     return Context.DependentTy;
8338   }
8339 
8340   // The OpenCL operator with a vector condition is sufficiently
8341   // different to merit its own checker.
8342   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8343       Cond.get()->getType()->isExtVectorType())
8344     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8345 
8346   // First, check the condition.
8347   Cond = UsualUnaryConversions(Cond.get());
8348   if (Cond.isInvalid())
8349     return QualType();
8350   if (checkCondition(*this, Cond.get(), QuestionLoc))
8351     return QualType();
8352 
8353   // Now check the two expressions.
8354   if (LHS.get()->getType()->isVectorType() ||
8355       RHS.get()->getType()->isVectorType())
8356     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
8357                                /*AllowBothBool*/true,
8358                                /*AllowBoolConversions*/false);
8359 
8360   QualType ResTy =
8361       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8362   if (LHS.isInvalid() || RHS.isInvalid())
8363     return QualType();
8364 
8365   QualType LHSTy = LHS.get()->getType();
8366   QualType RHSTy = RHS.get()->getType();
8367 
8368   // Diagnose attempts to convert between __ibm128, __float128 and long double
8369   // where such conversions currently can't be handled.
8370   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8371     Diag(QuestionLoc,
8372          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8373       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8374     return QualType();
8375   }
8376 
8377   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8378   // selection operator (?:).
8379   if (getLangOpts().OpenCL &&
8380       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
8381     return QualType();
8382   }
8383 
8384   // If both operands have arithmetic type, do the usual arithmetic conversions
8385   // to find a common type: C99 6.5.15p3,5.
8386   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8387     // Disallow invalid arithmetic conversions, such as those between ExtInts of
8388     // different sizes, or between ExtInts and other types.
8389     if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) {
8390       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8391           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8392           << RHS.get()->getSourceRange();
8393       return QualType();
8394     }
8395 
8396     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8397     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8398 
8399     return ResTy;
8400   }
8401 
8402   // And if they're both bfloat (which isn't arithmetic), that's fine too.
8403   if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8404     return LHSTy;
8405   }
8406 
8407   // If both operands are the same structure or union type, the result is that
8408   // type.
8409   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8410     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8411       if (LHSRT->getDecl() == RHSRT->getDecl())
8412         // "If both the operands have structure or union type, the result has
8413         // that type."  This implies that CV qualifiers are dropped.
8414         return LHSTy.getUnqualifiedType();
8415     // FIXME: Type of conditional expression must be complete in C mode.
8416   }
8417 
8418   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8419   // The following || allows only one side to be void (a GCC-ism).
8420   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8421     return checkConditionalVoidType(*this, LHS, RHS);
8422   }
8423 
8424   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8425   // the type of the other operand."
8426   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8427   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8428 
8429   // All objective-c pointer type analysis is done here.
8430   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8431                                                         QuestionLoc);
8432   if (LHS.isInvalid() || RHS.isInvalid())
8433     return QualType();
8434   if (!compositeType.isNull())
8435     return compositeType;
8436 
8437 
8438   // Handle block pointer types.
8439   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8440     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8441                                                      QuestionLoc);
8442 
8443   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8444   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8445     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8446                                                        QuestionLoc);
8447 
8448   // GCC compatibility: soften pointer/integer mismatch.  Note that
8449   // null pointers have been filtered out by this point.
8450   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8451       /*IsIntFirstExpr=*/true))
8452     return RHSTy;
8453   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8454       /*IsIntFirstExpr=*/false))
8455     return LHSTy;
8456 
8457   // Allow ?: operations in which both operands have the same
8458   // built-in sizeless type.
8459   if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
8460     return LHSTy;
8461 
8462   // Emit a better diagnostic if one of the expressions is a null pointer
8463   // constant and the other is not a pointer type. In this case, the user most
8464   // likely forgot to take the address of the other expression.
8465   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8466     return QualType();
8467 
8468   // Otherwise, the operands are not compatible.
8469   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8470     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8471     << RHS.get()->getSourceRange();
8472   return QualType();
8473 }
8474 
8475 /// FindCompositeObjCPointerType - Helper method to find composite type of
8476 /// two objective-c pointer types of the two input expressions.
8477 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8478                                             SourceLocation QuestionLoc) {
8479   QualType LHSTy = LHS.get()->getType();
8480   QualType RHSTy = RHS.get()->getType();
8481 
8482   // Handle things like Class and struct objc_class*.  Here we case the result
8483   // to the pseudo-builtin, because that will be implicitly cast back to the
8484   // redefinition type if an attempt is made to access its fields.
8485   if (LHSTy->isObjCClassType() &&
8486       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8487     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8488     return LHSTy;
8489   }
8490   if (RHSTy->isObjCClassType() &&
8491       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8492     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8493     return RHSTy;
8494   }
8495   // And the same for struct objc_object* / id
8496   if (LHSTy->isObjCIdType() &&
8497       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8498     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8499     return LHSTy;
8500   }
8501   if (RHSTy->isObjCIdType() &&
8502       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8503     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8504     return RHSTy;
8505   }
8506   // And the same for struct objc_selector* / SEL
8507   if (Context.isObjCSelType(LHSTy) &&
8508       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8509     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8510     return LHSTy;
8511   }
8512   if (Context.isObjCSelType(RHSTy) &&
8513       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8514     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8515     return RHSTy;
8516   }
8517   // Check constraints for Objective-C object pointers types.
8518   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8519 
8520     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8521       // Two identical object pointer types are always compatible.
8522       return LHSTy;
8523     }
8524     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8525     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8526     QualType compositeType = LHSTy;
8527 
8528     // If both operands are interfaces and either operand can be
8529     // assigned to the other, use that type as the composite
8530     // type. This allows
8531     //   xxx ? (A*) a : (B*) b
8532     // where B is a subclass of A.
8533     //
8534     // Additionally, as for assignment, if either type is 'id'
8535     // allow silent coercion. Finally, if the types are
8536     // incompatible then make sure to use 'id' as the composite
8537     // type so the result is acceptable for sending messages to.
8538 
8539     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8540     // It could return the composite type.
8541     if (!(compositeType =
8542           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8543       // Nothing more to do.
8544     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8545       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8546     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8547       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8548     } else if ((LHSOPT->isObjCQualifiedIdType() ||
8549                 RHSOPT->isObjCQualifiedIdType()) &&
8550                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8551                                                          true)) {
8552       // Need to handle "id<xx>" explicitly.
8553       // GCC allows qualified id and any Objective-C type to devolve to
8554       // id. Currently localizing to here until clear this should be
8555       // part of ObjCQualifiedIdTypesAreCompatible.
8556       compositeType = Context.getObjCIdType();
8557     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8558       compositeType = Context.getObjCIdType();
8559     } else {
8560       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8561       << LHSTy << RHSTy
8562       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8563       QualType incompatTy = Context.getObjCIdType();
8564       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8565       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8566       return incompatTy;
8567     }
8568     // The object pointer types are compatible.
8569     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8570     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8571     return compositeType;
8572   }
8573   // Check Objective-C object pointer types and 'void *'
8574   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8575     if (getLangOpts().ObjCAutoRefCount) {
8576       // ARC forbids the implicit conversion of object pointers to 'void *',
8577       // so these types are not compatible.
8578       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8579           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8580       LHS = RHS = true;
8581       return QualType();
8582     }
8583     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8584     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8585     QualType destPointee
8586     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8587     QualType destType = Context.getPointerType(destPointee);
8588     // Add qualifiers if necessary.
8589     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8590     // Promote to void*.
8591     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8592     return destType;
8593   }
8594   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8595     if (getLangOpts().ObjCAutoRefCount) {
8596       // ARC forbids the implicit conversion of object pointers to 'void *',
8597       // so these types are not compatible.
8598       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8599           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8600       LHS = RHS = true;
8601       return QualType();
8602     }
8603     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8604     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8605     QualType destPointee
8606     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8607     QualType destType = Context.getPointerType(destPointee);
8608     // Add qualifiers if necessary.
8609     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8610     // Promote to void*.
8611     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8612     return destType;
8613   }
8614   return QualType();
8615 }
8616 
8617 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8618 /// ParenRange in parentheses.
8619 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8620                                const PartialDiagnostic &Note,
8621                                SourceRange ParenRange) {
8622   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8623   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8624       EndLoc.isValid()) {
8625     Self.Diag(Loc, Note)
8626       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8627       << FixItHint::CreateInsertion(EndLoc, ")");
8628   } else {
8629     // We can't display the parentheses, so just show the bare note.
8630     Self.Diag(Loc, Note) << ParenRange;
8631   }
8632 }
8633 
8634 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8635   return BinaryOperator::isAdditiveOp(Opc) ||
8636          BinaryOperator::isMultiplicativeOp(Opc) ||
8637          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8638   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8639   // not any of the logical operators.  Bitwise-xor is commonly used as a
8640   // logical-xor because there is no logical-xor operator.  The logical
8641   // operators, including uses of xor, have a high false positive rate for
8642   // precedence warnings.
8643 }
8644 
8645 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8646 /// expression, either using a built-in or overloaded operator,
8647 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8648 /// expression.
8649 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8650                                    Expr **RHSExprs) {
8651   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8652   E = E->IgnoreImpCasts();
8653   E = E->IgnoreConversionOperatorSingleStep();
8654   E = E->IgnoreImpCasts();
8655   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8656     E = MTE->getSubExpr();
8657     E = E->IgnoreImpCasts();
8658   }
8659 
8660   // Built-in binary operator.
8661   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8662     if (IsArithmeticOp(OP->getOpcode())) {
8663       *Opcode = OP->getOpcode();
8664       *RHSExprs = OP->getRHS();
8665       return true;
8666     }
8667   }
8668 
8669   // Overloaded operator.
8670   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8671     if (Call->getNumArgs() != 2)
8672       return false;
8673 
8674     // Make sure this is really a binary operator that is safe to pass into
8675     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8676     OverloadedOperatorKind OO = Call->getOperator();
8677     if (OO < OO_Plus || OO > OO_Arrow ||
8678         OO == OO_PlusPlus || OO == OO_MinusMinus)
8679       return false;
8680 
8681     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8682     if (IsArithmeticOp(OpKind)) {
8683       *Opcode = OpKind;
8684       *RHSExprs = Call->getArg(1);
8685       return true;
8686     }
8687   }
8688 
8689   return false;
8690 }
8691 
8692 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8693 /// or is a logical expression such as (x==y) which has int type, but is
8694 /// commonly interpreted as boolean.
8695 static bool ExprLooksBoolean(Expr *E) {
8696   E = E->IgnoreParenImpCasts();
8697 
8698   if (E->getType()->isBooleanType())
8699     return true;
8700   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
8701     return OP->isComparisonOp() || OP->isLogicalOp();
8702   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
8703     return OP->getOpcode() == UO_LNot;
8704   if (E->getType()->isPointerType())
8705     return true;
8706   // FIXME: What about overloaded operator calls returning "unspecified boolean
8707   // type"s (commonly pointer-to-members)?
8708 
8709   return false;
8710 }
8711 
8712 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8713 /// and binary operator are mixed in a way that suggests the programmer assumed
8714 /// the conditional operator has higher precedence, for example:
8715 /// "int x = a + someBinaryCondition ? 1 : 2".
8716 static void DiagnoseConditionalPrecedence(Sema &Self,
8717                                           SourceLocation OpLoc,
8718                                           Expr *Condition,
8719                                           Expr *LHSExpr,
8720                                           Expr *RHSExpr) {
8721   BinaryOperatorKind CondOpcode;
8722   Expr *CondRHS;
8723 
8724   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8725     return;
8726   if (!ExprLooksBoolean(CondRHS))
8727     return;
8728 
8729   // The condition is an arithmetic binary expression, with a right-
8730   // hand side that looks boolean, so warn.
8731 
8732   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8733                         ? diag::warn_precedence_bitwise_conditional
8734                         : diag::warn_precedence_conditional;
8735 
8736   Self.Diag(OpLoc, DiagID)
8737       << Condition->getSourceRange()
8738       << BinaryOperator::getOpcodeStr(CondOpcode);
8739 
8740   SuggestParentheses(
8741       Self, OpLoc,
8742       Self.PDiag(diag::note_precedence_silence)
8743           << BinaryOperator::getOpcodeStr(CondOpcode),
8744       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8745 
8746   SuggestParentheses(Self, OpLoc,
8747                      Self.PDiag(diag::note_precedence_conditional_first),
8748                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8749 }
8750 
8751 /// Compute the nullability of a conditional expression.
8752 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8753                                               QualType LHSTy, QualType RHSTy,
8754                                               ASTContext &Ctx) {
8755   if (!ResTy->isAnyPointerType())
8756     return ResTy;
8757 
8758   auto GetNullability = [&Ctx](QualType Ty) {
8759     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
8760     if (Kind) {
8761       // For our purposes, treat _Nullable_result as _Nullable.
8762       if (*Kind == NullabilityKind::NullableResult)
8763         return NullabilityKind::Nullable;
8764       return *Kind;
8765     }
8766     return NullabilityKind::Unspecified;
8767   };
8768 
8769   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8770   NullabilityKind MergedKind;
8771 
8772   // Compute nullability of a binary conditional expression.
8773   if (IsBin) {
8774     if (LHSKind == NullabilityKind::NonNull)
8775       MergedKind = NullabilityKind::NonNull;
8776     else
8777       MergedKind = RHSKind;
8778   // Compute nullability of a normal conditional expression.
8779   } else {
8780     if (LHSKind == NullabilityKind::Nullable ||
8781         RHSKind == NullabilityKind::Nullable)
8782       MergedKind = NullabilityKind::Nullable;
8783     else if (LHSKind == NullabilityKind::NonNull)
8784       MergedKind = RHSKind;
8785     else if (RHSKind == NullabilityKind::NonNull)
8786       MergedKind = LHSKind;
8787     else
8788       MergedKind = NullabilityKind::Unspecified;
8789   }
8790 
8791   // Return if ResTy already has the correct nullability.
8792   if (GetNullability(ResTy) == MergedKind)
8793     return ResTy;
8794 
8795   // Strip all nullability from ResTy.
8796   while (ResTy->getNullability(Ctx))
8797     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8798 
8799   // Create a new AttributedType with the new nullability kind.
8800   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8801   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8802 }
8803 
8804 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
8805 /// in the case of a the GNU conditional expr extension.
8806 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8807                                     SourceLocation ColonLoc,
8808                                     Expr *CondExpr, Expr *LHSExpr,
8809                                     Expr *RHSExpr) {
8810   if (!Context.isDependenceAllowed()) {
8811     // C cannot handle TypoExpr nodes in the condition because it
8812     // doesn't handle dependent types properly, so make sure any TypoExprs have
8813     // been dealt with before checking the operands.
8814     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8815     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8816     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8817 
8818     if (!CondResult.isUsable())
8819       return ExprError();
8820 
8821     if (LHSExpr) {
8822       if (!LHSResult.isUsable())
8823         return ExprError();
8824     }
8825 
8826     if (!RHSResult.isUsable())
8827       return ExprError();
8828 
8829     CondExpr = CondResult.get();
8830     LHSExpr = LHSResult.get();
8831     RHSExpr = RHSResult.get();
8832   }
8833 
8834   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8835   // was the condition.
8836   OpaqueValueExpr *opaqueValue = nullptr;
8837   Expr *commonExpr = nullptr;
8838   if (!LHSExpr) {
8839     commonExpr = CondExpr;
8840     // Lower out placeholder types first.  This is important so that we don't
8841     // try to capture a placeholder. This happens in few cases in C++; such
8842     // as Objective-C++'s dictionary subscripting syntax.
8843     if (commonExpr->hasPlaceholderType()) {
8844       ExprResult result = CheckPlaceholderExpr(commonExpr);
8845       if (!result.isUsable()) return ExprError();
8846       commonExpr = result.get();
8847     }
8848     // We usually want to apply unary conversions *before* saving, except
8849     // in the special case of a C++ l-value conditional.
8850     if (!(getLangOpts().CPlusPlus
8851           && !commonExpr->isTypeDependent()
8852           && commonExpr->getValueKind() == RHSExpr->getValueKind()
8853           && commonExpr->isGLValue()
8854           && commonExpr->isOrdinaryOrBitFieldObject()
8855           && RHSExpr->isOrdinaryOrBitFieldObject()
8856           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8857       ExprResult commonRes = UsualUnaryConversions(commonExpr);
8858       if (commonRes.isInvalid())
8859         return ExprError();
8860       commonExpr = commonRes.get();
8861     }
8862 
8863     // If the common expression is a class or array prvalue, materialize it
8864     // so that we can safely refer to it multiple times.
8865     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8866                                     commonExpr->getType()->isArrayType())) {
8867       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8868       if (MatExpr.isInvalid())
8869         return ExprError();
8870       commonExpr = MatExpr.get();
8871     }
8872 
8873     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8874                                                 commonExpr->getType(),
8875                                                 commonExpr->getValueKind(),
8876                                                 commonExpr->getObjectKind(),
8877                                                 commonExpr);
8878     LHSExpr = CondExpr = opaqueValue;
8879   }
8880 
8881   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8882   ExprValueKind VK = VK_PRValue;
8883   ExprObjectKind OK = OK_Ordinary;
8884   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8885   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8886                                              VK, OK, QuestionLoc);
8887   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8888       RHS.isInvalid())
8889     return ExprError();
8890 
8891   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8892                                 RHS.get());
8893 
8894   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8895 
8896   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8897                                          Context);
8898 
8899   if (!commonExpr)
8900     return new (Context)
8901         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8902                             RHS.get(), result, VK, OK);
8903 
8904   return new (Context) BinaryConditionalOperator(
8905       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8906       ColonLoc, result, VK, OK);
8907 }
8908 
8909 // Check if we have a conversion between incompatible cmse function pointer
8910 // types, that is, a conversion between a function pointer with the
8911 // cmse_nonsecure_call attribute and one without.
8912 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8913                                           QualType ToType) {
8914   if (const auto *ToFn =
8915           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8916     if (const auto *FromFn =
8917             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8918       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8919       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8920 
8921       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8922     }
8923   }
8924   return false;
8925 }
8926 
8927 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8928 // being closely modeled after the C99 spec:-). The odd characteristic of this
8929 // routine is it effectively iqnores the qualifiers on the top level pointee.
8930 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8931 // FIXME: add a couple examples in this comment.
8932 static Sema::AssignConvertType
8933 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8934   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8935   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8936 
8937   // get the "pointed to" type (ignoring qualifiers at the top level)
8938   const Type *lhptee, *rhptee;
8939   Qualifiers lhq, rhq;
8940   std::tie(lhptee, lhq) =
8941       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8942   std::tie(rhptee, rhq) =
8943       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8944 
8945   Sema::AssignConvertType ConvTy = Sema::Compatible;
8946 
8947   // C99 6.5.16.1p1: This following citation is common to constraints
8948   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8949   // qualifiers of the type *pointed to* by the right;
8950 
8951   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8952   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8953       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8954     // Ignore lifetime for further calculation.
8955     lhq.removeObjCLifetime();
8956     rhq.removeObjCLifetime();
8957   }
8958 
8959   if (!lhq.compatiblyIncludes(rhq)) {
8960     // Treat address-space mismatches as fatal.
8961     if (!lhq.isAddressSpaceSupersetOf(rhq))
8962       return Sema::IncompatiblePointerDiscardsQualifiers;
8963 
8964     // It's okay to add or remove GC or lifetime qualifiers when converting to
8965     // and from void*.
8966     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8967                         .compatiblyIncludes(
8968                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8969              && (lhptee->isVoidType() || rhptee->isVoidType()))
8970       ; // keep old
8971 
8972     // Treat lifetime mismatches as fatal.
8973     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8974       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8975 
8976     // For GCC/MS compatibility, other qualifier mismatches are treated
8977     // as still compatible in C.
8978     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8979   }
8980 
8981   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8982   // incomplete type and the other is a pointer to a qualified or unqualified
8983   // version of void...
8984   if (lhptee->isVoidType()) {
8985     if (rhptee->isIncompleteOrObjectType())
8986       return ConvTy;
8987 
8988     // As an extension, we allow cast to/from void* to function pointer.
8989     assert(rhptee->isFunctionType());
8990     return Sema::FunctionVoidPointer;
8991   }
8992 
8993   if (rhptee->isVoidType()) {
8994     if (lhptee->isIncompleteOrObjectType())
8995       return ConvTy;
8996 
8997     // As an extension, we allow cast to/from void* to function pointer.
8998     assert(lhptee->isFunctionType());
8999     return Sema::FunctionVoidPointer;
9000   }
9001 
9002   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9003   // unqualified versions of compatible types, ...
9004   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9005   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9006     // Check if the pointee types are compatible ignoring the sign.
9007     // We explicitly check for char so that we catch "char" vs
9008     // "unsigned char" on systems where "char" is unsigned.
9009     if (lhptee->isCharType())
9010       ltrans = S.Context.UnsignedCharTy;
9011     else if (lhptee->hasSignedIntegerRepresentation())
9012       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9013 
9014     if (rhptee->isCharType())
9015       rtrans = S.Context.UnsignedCharTy;
9016     else if (rhptee->hasSignedIntegerRepresentation())
9017       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9018 
9019     if (ltrans == rtrans) {
9020       // Types are compatible ignoring the sign. Qualifier incompatibility
9021       // takes priority over sign incompatibility because the sign
9022       // warning can be disabled.
9023       if (ConvTy != Sema::Compatible)
9024         return ConvTy;
9025 
9026       return Sema::IncompatiblePointerSign;
9027     }
9028 
9029     // If we are a multi-level pointer, it's possible that our issue is simply
9030     // one of qualification - e.g. char ** -> const char ** is not allowed. If
9031     // the eventual target type is the same and the pointers have the same
9032     // level of indirection, this must be the issue.
9033     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9034       do {
9035         std::tie(lhptee, lhq) =
9036           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9037         std::tie(rhptee, rhq) =
9038           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9039 
9040         // Inconsistent address spaces at this point is invalid, even if the
9041         // address spaces would be compatible.
9042         // FIXME: This doesn't catch address space mismatches for pointers of
9043         // different nesting levels, like:
9044         //   __local int *** a;
9045         //   int ** b = a;
9046         // It's not clear how to actually determine when such pointers are
9047         // invalidly incompatible.
9048         if (lhq.getAddressSpace() != rhq.getAddressSpace())
9049           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9050 
9051       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9052 
9053       if (lhptee == rhptee)
9054         return Sema::IncompatibleNestedPointerQualifiers;
9055     }
9056 
9057     // General pointer incompatibility takes priority over qualifiers.
9058     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9059       return Sema::IncompatibleFunctionPointer;
9060     return Sema::IncompatiblePointer;
9061   }
9062   if (!S.getLangOpts().CPlusPlus &&
9063       S.IsFunctionConversion(ltrans, rtrans, ltrans))
9064     return Sema::IncompatibleFunctionPointer;
9065   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9066     return Sema::IncompatibleFunctionPointer;
9067   return ConvTy;
9068 }
9069 
9070 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9071 /// block pointer types are compatible or whether a block and normal pointer
9072 /// are compatible. It is more restrict than comparing two function pointer
9073 // types.
9074 static Sema::AssignConvertType
9075 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9076                                     QualType RHSType) {
9077   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9078   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9079 
9080   QualType lhptee, rhptee;
9081 
9082   // get the "pointed to" type (ignoring qualifiers at the top level)
9083   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9084   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9085 
9086   // In C++, the types have to match exactly.
9087   if (S.getLangOpts().CPlusPlus)
9088     return Sema::IncompatibleBlockPointer;
9089 
9090   Sema::AssignConvertType ConvTy = Sema::Compatible;
9091 
9092   // For blocks we enforce that qualifiers are identical.
9093   Qualifiers LQuals = lhptee.getLocalQualifiers();
9094   Qualifiers RQuals = rhptee.getLocalQualifiers();
9095   if (S.getLangOpts().OpenCL) {
9096     LQuals.removeAddressSpace();
9097     RQuals.removeAddressSpace();
9098   }
9099   if (LQuals != RQuals)
9100     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9101 
9102   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9103   // assignment.
9104   // The current behavior is similar to C++ lambdas. A block might be
9105   // assigned to a variable iff its return type and parameters are compatible
9106   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9107   // an assignment. Presumably it should behave in way that a function pointer
9108   // assignment does in C, so for each parameter and return type:
9109   //  * CVR and address space of LHS should be a superset of CVR and address
9110   //  space of RHS.
9111   //  * unqualified types should be compatible.
9112   if (S.getLangOpts().OpenCL) {
9113     if (!S.Context.typesAreBlockPointerCompatible(
9114             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9115             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9116       return Sema::IncompatibleBlockPointer;
9117   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9118     return Sema::IncompatibleBlockPointer;
9119 
9120   return ConvTy;
9121 }
9122 
9123 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9124 /// for assignment compatibility.
9125 static Sema::AssignConvertType
9126 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9127                                    QualType RHSType) {
9128   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9129   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9130 
9131   if (LHSType->isObjCBuiltinType()) {
9132     // Class is not compatible with ObjC object pointers.
9133     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9134         !RHSType->isObjCQualifiedClassType())
9135       return Sema::IncompatiblePointer;
9136     return Sema::Compatible;
9137   }
9138   if (RHSType->isObjCBuiltinType()) {
9139     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9140         !LHSType->isObjCQualifiedClassType())
9141       return Sema::IncompatiblePointer;
9142     return Sema::Compatible;
9143   }
9144   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9145   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9146 
9147   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9148       // make an exception for id<P>
9149       !LHSType->isObjCQualifiedIdType())
9150     return Sema::CompatiblePointerDiscardsQualifiers;
9151 
9152   if (S.Context.typesAreCompatible(LHSType, RHSType))
9153     return Sema::Compatible;
9154   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9155     return Sema::IncompatibleObjCQualifiedId;
9156   return Sema::IncompatiblePointer;
9157 }
9158 
9159 Sema::AssignConvertType
9160 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9161                                  QualType LHSType, QualType RHSType) {
9162   // Fake up an opaque expression.  We don't actually care about what
9163   // cast operations are required, so if CheckAssignmentConstraints
9164   // adds casts to this they'll be wasted, but fortunately that doesn't
9165   // usually happen on valid code.
9166   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9167   ExprResult RHSPtr = &RHSExpr;
9168   CastKind K;
9169 
9170   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9171 }
9172 
9173 /// This helper function returns true if QT is a vector type that has element
9174 /// type ElementType.
9175 static bool isVector(QualType QT, QualType ElementType) {
9176   if (const VectorType *VT = QT->getAs<VectorType>())
9177     return VT->getElementType().getCanonicalType() == ElementType;
9178   return false;
9179 }
9180 
9181 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9182 /// has code to accommodate several GCC extensions when type checking
9183 /// pointers. Here are some objectionable examples that GCC considers warnings:
9184 ///
9185 ///  int a, *pint;
9186 ///  short *pshort;
9187 ///  struct foo *pfoo;
9188 ///
9189 ///  pint = pshort; // warning: assignment from incompatible pointer type
9190 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9191 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9192 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9193 ///
9194 /// As a result, the code for dealing with pointers is more complex than the
9195 /// C99 spec dictates.
9196 ///
9197 /// Sets 'Kind' for any result kind except Incompatible.
9198 Sema::AssignConvertType
9199 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9200                                  CastKind &Kind, bool ConvertRHS) {
9201   QualType RHSType = RHS.get()->getType();
9202   QualType OrigLHSType = LHSType;
9203 
9204   // Get canonical types.  We're not formatting these types, just comparing
9205   // them.
9206   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9207   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9208 
9209   // Common case: no conversion required.
9210   if (LHSType == RHSType) {
9211     Kind = CK_NoOp;
9212     return Compatible;
9213   }
9214 
9215   // If we have an atomic type, try a non-atomic assignment, then just add an
9216   // atomic qualification step.
9217   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9218     Sema::AssignConvertType result =
9219       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9220     if (result != Compatible)
9221       return result;
9222     if (Kind != CK_NoOp && ConvertRHS)
9223       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9224     Kind = CK_NonAtomicToAtomic;
9225     return Compatible;
9226   }
9227 
9228   // If the left-hand side is a reference type, then we are in a
9229   // (rare!) case where we've allowed the use of references in C,
9230   // e.g., as a parameter type in a built-in function. In this case,
9231   // just make sure that the type referenced is compatible with the
9232   // right-hand side type. The caller is responsible for adjusting
9233   // LHSType so that the resulting expression does not have reference
9234   // type.
9235   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9236     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9237       Kind = CK_LValueBitCast;
9238       return Compatible;
9239     }
9240     return Incompatible;
9241   }
9242 
9243   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9244   // to the same ExtVector type.
9245   if (LHSType->isExtVectorType()) {
9246     if (RHSType->isExtVectorType())
9247       return Incompatible;
9248     if (RHSType->isArithmeticType()) {
9249       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9250       if (ConvertRHS)
9251         RHS = prepareVectorSplat(LHSType, RHS.get());
9252       Kind = CK_VectorSplat;
9253       return Compatible;
9254     }
9255   }
9256 
9257   // Conversions to or from vector type.
9258   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9259     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9260       // Allow assignments of an AltiVec vector type to an equivalent GCC
9261       // vector type and vice versa
9262       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9263         Kind = CK_BitCast;
9264         return Compatible;
9265       }
9266 
9267       // If we are allowing lax vector conversions, and LHS and RHS are both
9268       // vectors, the total size only needs to be the same. This is a bitcast;
9269       // no bits are changed but the result type is different.
9270       if (isLaxVectorConversion(RHSType, LHSType)) {
9271         Kind = CK_BitCast;
9272         return IncompatibleVectors;
9273       }
9274     }
9275 
9276     // When the RHS comes from another lax conversion (e.g. binops between
9277     // scalars and vectors) the result is canonicalized as a vector. When the
9278     // LHS is also a vector, the lax is allowed by the condition above. Handle
9279     // the case where LHS is a scalar.
9280     if (LHSType->isScalarType()) {
9281       const VectorType *VecType = RHSType->getAs<VectorType>();
9282       if (VecType && VecType->getNumElements() == 1 &&
9283           isLaxVectorConversion(RHSType, LHSType)) {
9284         ExprResult *VecExpr = &RHS;
9285         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9286         Kind = CK_BitCast;
9287         return Compatible;
9288       }
9289     }
9290 
9291     // Allow assignments between fixed-length and sizeless SVE vectors.
9292     if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9293         (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9294       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9295           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9296         Kind = CK_BitCast;
9297         return Compatible;
9298       }
9299 
9300     return Incompatible;
9301   }
9302 
9303   // Diagnose attempts to convert between __ibm128, __float128 and long double
9304   // where such conversions currently can't be handled.
9305   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9306     return Incompatible;
9307 
9308   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9309   // discards the imaginary part.
9310   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9311       !LHSType->getAs<ComplexType>())
9312     return Incompatible;
9313 
9314   // Arithmetic conversions.
9315   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9316       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9317     if (ConvertRHS)
9318       Kind = PrepareScalarCast(RHS, LHSType);
9319     return Compatible;
9320   }
9321 
9322   // Conversions to normal pointers.
9323   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9324     // U* -> T*
9325     if (isa<PointerType>(RHSType)) {
9326       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9327       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9328       if (AddrSpaceL != AddrSpaceR)
9329         Kind = CK_AddressSpaceConversion;
9330       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9331         Kind = CK_NoOp;
9332       else
9333         Kind = CK_BitCast;
9334       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9335     }
9336 
9337     // int -> T*
9338     if (RHSType->isIntegerType()) {
9339       Kind = CK_IntegralToPointer; // FIXME: null?
9340       return IntToPointer;
9341     }
9342 
9343     // C pointers are not compatible with ObjC object pointers,
9344     // with two exceptions:
9345     if (isa<ObjCObjectPointerType>(RHSType)) {
9346       //  - conversions to void*
9347       if (LHSPointer->getPointeeType()->isVoidType()) {
9348         Kind = CK_BitCast;
9349         return Compatible;
9350       }
9351 
9352       //  - conversions from 'Class' to the redefinition type
9353       if (RHSType->isObjCClassType() &&
9354           Context.hasSameType(LHSType,
9355                               Context.getObjCClassRedefinitionType())) {
9356         Kind = CK_BitCast;
9357         return Compatible;
9358       }
9359 
9360       Kind = CK_BitCast;
9361       return IncompatiblePointer;
9362     }
9363 
9364     // U^ -> void*
9365     if (RHSType->getAs<BlockPointerType>()) {
9366       if (LHSPointer->getPointeeType()->isVoidType()) {
9367         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9368         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9369                                 ->getPointeeType()
9370                                 .getAddressSpace();
9371         Kind =
9372             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9373         return Compatible;
9374       }
9375     }
9376 
9377     return Incompatible;
9378   }
9379 
9380   // Conversions to block pointers.
9381   if (isa<BlockPointerType>(LHSType)) {
9382     // U^ -> T^
9383     if (RHSType->isBlockPointerType()) {
9384       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9385                               ->getPointeeType()
9386                               .getAddressSpace();
9387       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9388                               ->getPointeeType()
9389                               .getAddressSpace();
9390       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9391       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9392     }
9393 
9394     // int or null -> T^
9395     if (RHSType->isIntegerType()) {
9396       Kind = CK_IntegralToPointer; // FIXME: null
9397       return IntToBlockPointer;
9398     }
9399 
9400     // id -> T^
9401     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9402       Kind = CK_AnyPointerToBlockPointerCast;
9403       return Compatible;
9404     }
9405 
9406     // void* -> T^
9407     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9408       if (RHSPT->getPointeeType()->isVoidType()) {
9409         Kind = CK_AnyPointerToBlockPointerCast;
9410         return Compatible;
9411       }
9412 
9413     return Incompatible;
9414   }
9415 
9416   // Conversions to Objective-C pointers.
9417   if (isa<ObjCObjectPointerType>(LHSType)) {
9418     // A* -> B*
9419     if (RHSType->isObjCObjectPointerType()) {
9420       Kind = CK_BitCast;
9421       Sema::AssignConvertType result =
9422         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9423       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9424           result == Compatible &&
9425           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9426         result = IncompatibleObjCWeakRef;
9427       return result;
9428     }
9429 
9430     // int or null -> A*
9431     if (RHSType->isIntegerType()) {
9432       Kind = CK_IntegralToPointer; // FIXME: null
9433       return IntToPointer;
9434     }
9435 
9436     // In general, C pointers are not compatible with ObjC object pointers,
9437     // with two exceptions:
9438     if (isa<PointerType>(RHSType)) {
9439       Kind = CK_CPointerToObjCPointerCast;
9440 
9441       //  - conversions from 'void*'
9442       if (RHSType->isVoidPointerType()) {
9443         return Compatible;
9444       }
9445 
9446       //  - conversions to 'Class' from its redefinition type
9447       if (LHSType->isObjCClassType() &&
9448           Context.hasSameType(RHSType,
9449                               Context.getObjCClassRedefinitionType())) {
9450         return Compatible;
9451       }
9452 
9453       return IncompatiblePointer;
9454     }
9455 
9456     // Only under strict condition T^ is compatible with an Objective-C pointer.
9457     if (RHSType->isBlockPointerType() &&
9458         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9459       if (ConvertRHS)
9460         maybeExtendBlockObject(RHS);
9461       Kind = CK_BlockPointerToObjCPointerCast;
9462       return Compatible;
9463     }
9464 
9465     return Incompatible;
9466   }
9467 
9468   // Conversions from pointers that are not covered by the above.
9469   if (isa<PointerType>(RHSType)) {
9470     // T* -> _Bool
9471     if (LHSType == Context.BoolTy) {
9472       Kind = CK_PointerToBoolean;
9473       return Compatible;
9474     }
9475 
9476     // T* -> int
9477     if (LHSType->isIntegerType()) {
9478       Kind = CK_PointerToIntegral;
9479       return PointerToInt;
9480     }
9481 
9482     return Incompatible;
9483   }
9484 
9485   // Conversions from Objective-C pointers that are not covered by the above.
9486   if (isa<ObjCObjectPointerType>(RHSType)) {
9487     // T* -> _Bool
9488     if (LHSType == Context.BoolTy) {
9489       Kind = CK_PointerToBoolean;
9490       return Compatible;
9491     }
9492 
9493     // T* -> int
9494     if (LHSType->isIntegerType()) {
9495       Kind = CK_PointerToIntegral;
9496       return PointerToInt;
9497     }
9498 
9499     return Incompatible;
9500   }
9501 
9502   // struct A -> struct B
9503   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9504     if (Context.typesAreCompatible(LHSType, RHSType)) {
9505       Kind = CK_NoOp;
9506       return Compatible;
9507     }
9508   }
9509 
9510   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9511     Kind = CK_IntToOCLSampler;
9512     return Compatible;
9513   }
9514 
9515   return Incompatible;
9516 }
9517 
9518 /// Constructs a transparent union from an expression that is
9519 /// used to initialize the transparent union.
9520 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9521                                       ExprResult &EResult, QualType UnionType,
9522                                       FieldDecl *Field) {
9523   // Build an initializer list that designates the appropriate member
9524   // of the transparent union.
9525   Expr *E = EResult.get();
9526   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9527                                                    E, SourceLocation());
9528   Initializer->setType(UnionType);
9529   Initializer->setInitializedFieldInUnion(Field);
9530 
9531   // Build a compound literal constructing a value of the transparent
9532   // union type from this initializer list.
9533   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9534   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9535                                         VK_PRValue, Initializer, false);
9536 }
9537 
9538 Sema::AssignConvertType
9539 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9540                                                ExprResult &RHS) {
9541   QualType RHSType = RHS.get()->getType();
9542 
9543   // If the ArgType is a Union type, we want to handle a potential
9544   // transparent_union GCC extension.
9545   const RecordType *UT = ArgType->getAsUnionType();
9546   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9547     return Incompatible;
9548 
9549   // The field to initialize within the transparent union.
9550   RecordDecl *UD = UT->getDecl();
9551   FieldDecl *InitField = nullptr;
9552   // It's compatible if the expression matches any of the fields.
9553   for (auto *it : UD->fields()) {
9554     if (it->getType()->isPointerType()) {
9555       // If the transparent union contains a pointer type, we allow:
9556       // 1) void pointer
9557       // 2) null pointer constant
9558       if (RHSType->isPointerType())
9559         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9560           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9561           InitField = it;
9562           break;
9563         }
9564 
9565       if (RHS.get()->isNullPointerConstant(Context,
9566                                            Expr::NPC_ValueDependentIsNull)) {
9567         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9568                                 CK_NullToPointer);
9569         InitField = it;
9570         break;
9571       }
9572     }
9573 
9574     CastKind Kind;
9575     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9576           == Compatible) {
9577       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9578       InitField = it;
9579       break;
9580     }
9581   }
9582 
9583   if (!InitField)
9584     return Incompatible;
9585 
9586   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9587   return Compatible;
9588 }
9589 
9590 Sema::AssignConvertType
9591 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9592                                        bool Diagnose,
9593                                        bool DiagnoseCFAudited,
9594                                        bool ConvertRHS) {
9595   // We need to be able to tell the caller whether we diagnosed a problem, if
9596   // they ask us to issue diagnostics.
9597   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9598 
9599   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9600   // we can't avoid *all* modifications at the moment, so we need some somewhere
9601   // to put the updated value.
9602   ExprResult LocalRHS = CallerRHS;
9603   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9604 
9605   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9606     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9607       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9608           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9609         Diag(RHS.get()->getExprLoc(),
9610              diag::warn_noderef_to_dereferenceable_pointer)
9611             << RHS.get()->getSourceRange();
9612       }
9613     }
9614   }
9615 
9616   if (getLangOpts().CPlusPlus) {
9617     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9618       // C++ 5.17p3: If the left operand is not of class type, the
9619       // expression is implicitly converted (C++ 4) to the
9620       // cv-unqualified type of the left operand.
9621       QualType RHSType = RHS.get()->getType();
9622       if (Diagnose) {
9623         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9624                                         AA_Assigning);
9625       } else {
9626         ImplicitConversionSequence ICS =
9627             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9628                                   /*SuppressUserConversions=*/false,
9629                                   AllowedExplicit::None,
9630                                   /*InOverloadResolution=*/false,
9631                                   /*CStyle=*/false,
9632                                   /*AllowObjCWritebackConversion=*/false);
9633         if (ICS.isFailure())
9634           return Incompatible;
9635         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9636                                         ICS, AA_Assigning);
9637       }
9638       if (RHS.isInvalid())
9639         return Incompatible;
9640       Sema::AssignConvertType result = Compatible;
9641       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9642           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9643         result = IncompatibleObjCWeakRef;
9644       return result;
9645     }
9646 
9647     // FIXME: Currently, we fall through and treat C++ classes like C
9648     // structures.
9649     // FIXME: We also fall through for atomics; not sure what should
9650     // happen there, though.
9651   } else if (RHS.get()->getType() == Context.OverloadTy) {
9652     // As a set of extensions to C, we support overloading on functions. These
9653     // functions need to be resolved here.
9654     DeclAccessPair DAP;
9655     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9656             RHS.get(), LHSType, /*Complain=*/false, DAP))
9657       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9658     else
9659       return Incompatible;
9660   }
9661 
9662   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9663   // a null pointer constant.
9664   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9665        LHSType->isBlockPointerType()) &&
9666       RHS.get()->isNullPointerConstant(Context,
9667                                        Expr::NPC_ValueDependentIsNull)) {
9668     if (Diagnose || ConvertRHS) {
9669       CastKind Kind;
9670       CXXCastPath Path;
9671       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9672                              /*IgnoreBaseAccess=*/false, Diagnose);
9673       if (ConvertRHS)
9674         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9675     }
9676     return Compatible;
9677   }
9678 
9679   // OpenCL queue_t type assignment.
9680   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9681                                  Context, Expr::NPC_ValueDependentIsNull)) {
9682     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9683     return Compatible;
9684   }
9685 
9686   // This check seems unnatural, however it is necessary to ensure the proper
9687   // conversion of functions/arrays. If the conversion were done for all
9688   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9689   // expressions that suppress this implicit conversion (&, sizeof).
9690   //
9691   // Suppress this for references: C++ 8.5.3p5.
9692   if (!LHSType->isReferenceType()) {
9693     // FIXME: We potentially allocate here even if ConvertRHS is false.
9694     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9695     if (RHS.isInvalid())
9696       return Incompatible;
9697   }
9698   CastKind Kind;
9699   Sema::AssignConvertType result =
9700     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9701 
9702   // C99 6.5.16.1p2: The value of the right operand is converted to the
9703   // type of the assignment expression.
9704   // CheckAssignmentConstraints allows the left-hand side to be a reference,
9705   // so that we can use references in built-in functions even in C.
9706   // The getNonReferenceType() call makes sure that the resulting expression
9707   // does not have reference type.
9708   if (result != Incompatible && RHS.get()->getType() != LHSType) {
9709     QualType Ty = LHSType.getNonLValueExprType(Context);
9710     Expr *E = RHS.get();
9711 
9712     // Check for various Objective-C errors. If we are not reporting
9713     // diagnostics and just checking for errors, e.g., during overload
9714     // resolution, return Incompatible to indicate the failure.
9715     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9716         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
9717                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
9718       if (!Diagnose)
9719         return Incompatible;
9720     }
9721     if (getLangOpts().ObjC &&
9722         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9723                                            E->getType(), E, Diagnose) ||
9724          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9725       if (!Diagnose)
9726         return Incompatible;
9727       // Replace the expression with a corrected version and continue so we
9728       // can find further errors.
9729       RHS = E;
9730       return Compatible;
9731     }
9732 
9733     if (ConvertRHS)
9734       RHS = ImpCastExprToType(E, Ty, Kind);
9735   }
9736 
9737   return result;
9738 }
9739 
9740 namespace {
9741 /// The original operand to an operator, prior to the application of the usual
9742 /// arithmetic conversions and converting the arguments of a builtin operator
9743 /// candidate.
9744 struct OriginalOperand {
9745   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9746     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9747       Op = MTE->getSubExpr();
9748     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9749       Op = BTE->getSubExpr();
9750     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9751       Orig = ICE->getSubExprAsWritten();
9752       Conversion = ICE->getConversionFunction();
9753     }
9754   }
9755 
9756   QualType getType() const { return Orig->getType(); }
9757 
9758   Expr *Orig;
9759   NamedDecl *Conversion;
9760 };
9761 }
9762 
9763 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9764                                ExprResult &RHS) {
9765   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9766 
9767   Diag(Loc, diag::err_typecheck_invalid_operands)
9768     << OrigLHS.getType() << OrigRHS.getType()
9769     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9770 
9771   // If a user-defined conversion was applied to either of the operands prior
9772   // to applying the built-in operator rules, tell the user about it.
9773   if (OrigLHS.Conversion) {
9774     Diag(OrigLHS.Conversion->getLocation(),
9775          diag::note_typecheck_invalid_operands_converted)
9776       << 0 << LHS.get()->getType();
9777   }
9778   if (OrigRHS.Conversion) {
9779     Diag(OrigRHS.Conversion->getLocation(),
9780          diag::note_typecheck_invalid_operands_converted)
9781       << 1 << RHS.get()->getType();
9782   }
9783 
9784   return QualType();
9785 }
9786 
9787 // Diagnose cases where a scalar was implicitly converted to a vector and
9788 // diagnose the underlying types. Otherwise, diagnose the error
9789 // as invalid vector logical operands for non-C++ cases.
9790 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9791                                             ExprResult &RHS) {
9792   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9793   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9794 
9795   bool LHSNatVec = LHSType->isVectorType();
9796   bool RHSNatVec = RHSType->isVectorType();
9797 
9798   if (!(LHSNatVec && RHSNatVec)) {
9799     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9800     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9801     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9802         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9803         << Vector->getSourceRange();
9804     return QualType();
9805   }
9806 
9807   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9808       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9809       << RHS.get()->getSourceRange();
9810 
9811   return QualType();
9812 }
9813 
9814 /// Try to convert a value of non-vector type to a vector type by converting
9815 /// the type to the element type of the vector and then performing a splat.
9816 /// If the language is OpenCL, we only use conversions that promote scalar
9817 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9818 /// for float->int.
9819 ///
9820 /// OpenCL V2.0 6.2.6.p2:
9821 /// An error shall occur if any scalar operand type has greater rank
9822 /// than the type of the vector element.
9823 ///
9824 /// \param scalar - if non-null, actually perform the conversions
9825 /// \return true if the operation fails (but without diagnosing the failure)
9826 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9827                                      QualType scalarTy,
9828                                      QualType vectorEltTy,
9829                                      QualType vectorTy,
9830                                      unsigned &DiagID) {
9831   // The conversion to apply to the scalar before splatting it,
9832   // if necessary.
9833   CastKind scalarCast = CK_NoOp;
9834 
9835   if (vectorEltTy->isIntegralType(S.Context)) {
9836     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9837         (scalarTy->isIntegerType() &&
9838          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9839       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9840       return true;
9841     }
9842     if (!scalarTy->isIntegralType(S.Context))
9843       return true;
9844     scalarCast = CK_IntegralCast;
9845   } else if (vectorEltTy->isRealFloatingType()) {
9846     if (scalarTy->isRealFloatingType()) {
9847       if (S.getLangOpts().OpenCL &&
9848           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9849         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9850         return true;
9851       }
9852       scalarCast = CK_FloatingCast;
9853     }
9854     else if (scalarTy->isIntegralType(S.Context))
9855       scalarCast = CK_IntegralToFloating;
9856     else
9857       return true;
9858   } else {
9859     return true;
9860   }
9861 
9862   // Adjust scalar if desired.
9863   if (scalar) {
9864     if (scalarCast != CK_NoOp)
9865       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9866     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9867   }
9868   return false;
9869 }
9870 
9871 /// Convert vector E to a vector with the same number of elements but different
9872 /// element type.
9873 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9874   const auto *VecTy = E->getType()->getAs<VectorType>();
9875   assert(VecTy && "Expression E must be a vector");
9876   QualType NewVecTy = S.Context.getVectorType(ElementType,
9877                                               VecTy->getNumElements(),
9878                                               VecTy->getVectorKind());
9879 
9880   // Look through the implicit cast. Return the subexpression if its type is
9881   // NewVecTy.
9882   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9883     if (ICE->getSubExpr()->getType() == NewVecTy)
9884       return ICE->getSubExpr();
9885 
9886   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9887   return S.ImpCastExprToType(E, NewVecTy, Cast);
9888 }
9889 
9890 /// Test if a (constant) integer Int can be casted to another integer type
9891 /// IntTy without losing precision.
9892 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9893                                       QualType OtherIntTy) {
9894   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9895 
9896   // Reject cases where the value of the Int is unknown as that would
9897   // possibly cause truncation, but accept cases where the scalar can be
9898   // demoted without loss of precision.
9899   Expr::EvalResult EVResult;
9900   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9901   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9902   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9903   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9904 
9905   if (CstInt) {
9906     // If the scalar is constant and is of a higher order and has more active
9907     // bits that the vector element type, reject it.
9908     llvm::APSInt Result = EVResult.Val.getInt();
9909     unsigned NumBits = IntSigned
9910                            ? (Result.isNegative() ? Result.getMinSignedBits()
9911                                                   : Result.getActiveBits())
9912                            : Result.getActiveBits();
9913     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9914       return true;
9915 
9916     // If the signedness of the scalar type and the vector element type
9917     // differs and the number of bits is greater than that of the vector
9918     // element reject it.
9919     return (IntSigned != OtherIntSigned &&
9920             NumBits > S.Context.getIntWidth(OtherIntTy));
9921   }
9922 
9923   // Reject cases where the value of the scalar is not constant and it's
9924   // order is greater than that of the vector element type.
9925   return (Order < 0);
9926 }
9927 
9928 /// Test if a (constant) integer Int can be casted to floating point type
9929 /// FloatTy without losing precision.
9930 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9931                                      QualType FloatTy) {
9932   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9933 
9934   // Determine if the integer constant can be expressed as a floating point
9935   // number of the appropriate type.
9936   Expr::EvalResult EVResult;
9937   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9938 
9939   uint64_t Bits = 0;
9940   if (CstInt) {
9941     // Reject constants that would be truncated if they were converted to
9942     // the floating point type. Test by simple to/from conversion.
9943     // FIXME: Ideally the conversion to an APFloat and from an APFloat
9944     //        could be avoided if there was a convertFromAPInt method
9945     //        which could signal back if implicit truncation occurred.
9946     llvm::APSInt Result = EVResult.Val.getInt();
9947     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9948     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9949                            llvm::APFloat::rmTowardZero);
9950     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9951                              !IntTy->hasSignedIntegerRepresentation());
9952     bool Ignored = false;
9953     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9954                            &Ignored);
9955     if (Result != ConvertBack)
9956       return true;
9957   } else {
9958     // Reject types that cannot be fully encoded into the mantissa of
9959     // the float.
9960     Bits = S.Context.getTypeSize(IntTy);
9961     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9962         S.Context.getFloatTypeSemantics(FloatTy));
9963     if (Bits > FloatPrec)
9964       return true;
9965   }
9966 
9967   return false;
9968 }
9969 
9970 /// Attempt to convert and splat Scalar into a vector whose types matches
9971 /// Vector following GCC conversion rules. The rule is that implicit
9972 /// conversion can occur when Scalar can be casted to match Vector's element
9973 /// type without causing truncation of Scalar.
9974 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9975                                         ExprResult *Vector) {
9976   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9977   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9978   const VectorType *VT = VectorTy->getAs<VectorType>();
9979 
9980   assert(!isa<ExtVectorType>(VT) &&
9981          "ExtVectorTypes should not be handled here!");
9982 
9983   QualType VectorEltTy = VT->getElementType();
9984 
9985   // Reject cases where the vector element type or the scalar element type are
9986   // not integral or floating point types.
9987   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9988     return true;
9989 
9990   // The conversion to apply to the scalar before splatting it,
9991   // if necessary.
9992   CastKind ScalarCast = CK_NoOp;
9993 
9994   // Accept cases where the vector elements are integers and the scalar is
9995   // an integer.
9996   // FIXME: Notionally if the scalar was a floating point value with a precise
9997   //        integral representation, we could cast it to an appropriate integer
9998   //        type and then perform the rest of the checks here. GCC will perform
9999   //        this conversion in some cases as determined by the input language.
10000   //        We should accept it on a language independent basis.
10001   if (VectorEltTy->isIntegralType(S.Context) &&
10002       ScalarTy->isIntegralType(S.Context) &&
10003       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10004 
10005     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10006       return true;
10007 
10008     ScalarCast = CK_IntegralCast;
10009   } else if (VectorEltTy->isIntegralType(S.Context) &&
10010              ScalarTy->isRealFloatingType()) {
10011     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10012       ScalarCast = CK_FloatingToIntegral;
10013     else
10014       return true;
10015   } else if (VectorEltTy->isRealFloatingType()) {
10016     if (ScalarTy->isRealFloatingType()) {
10017 
10018       // Reject cases where the scalar type is not a constant and has a higher
10019       // Order than the vector element type.
10020       llvm::APFloat Result(0.0);
10021 
10022       // Determine whether this is a constant scalar. In the event that the
10023       // value is dependent (and thus cannot be evaluated by the constant
10024       // evaluator), skip the evaluation. This will then diagnose once the
10025       // expression is instantiated.
10026       bool CstScalar = Scalar->get()->isValueDependent() ||
10027                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
10028       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10029       if (!CstScalar && Order < 0)
10030         return true;
10031 
10032       // If the scalar cannot be safely casted to the vector element type,
10033       // reject it.
10034       if (CstScalar) {
10035         bool Truncated = false;
10036         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10037                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
10038         if (Truncated)
10039           return true;
10040       }
10041 
10042       ScalarCast = CK_FloatingCast;
10043     } else if (ScalarTy->isIntegralType(S.Context)) {
10044       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10045         return true;
10046 
10047       ScalarCast = CK_IntegralToFloating;
10048     } else
10049       return true;
10050   } else if (ScalarTy->isEnumeralType())
10051     return true;
10052 
10053   // Adjust scalar if desired.
10054   if (Scalar) {
10055     if (ScalarCast != CK_NoOp)
10056       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10057     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10058   }
10059   return false;
10060 }
10061 
10062 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10063                                    SourceLocation Loc, bool IsCompAssign,
10064                                    bool AllowBothBool,
10065                                    bool AllowBoolConversions) {
10066   if (!IsCompAssign) {
10067     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10068     if (LHS.isInvalid())
10069       return QualType();
10070   }
10071   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10072   if (RHS.isInvalid())
10073     return QualType();
10074 
10075   // For conversion purposes, we ignore any qualifiers.
10076   // For example, "const float" and "float" are equivalent.
10077   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10078   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10079 
10080   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10081   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10082   assert(LHSVecType || RHSVecType);
10083 
10084   if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
10085       (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
10086     return InvalidOperands(Loc, LHS, RHS);
10087 
10088   // AltiVec-style "vector bool op vector bool" combinations are allowed
10089   // for some operators but not others.
10090   if (!AllowBothBool &&
10091       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10092       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10093     return InvalidOperands(Loc, LHS, RHS);
10094 
10095   // If the vector types are identical, return.
10096   if (Context.hasSameType(LHSType, RHSType))
10097     return LHSType;
10098 
10099   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10100   if (LHSVecType && RHSVecType &&
10101       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10102     if (isa<ExtVectorType>(LHSVecType)) {
10103       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10104       return LHSType;
10105     }
10106 
10107     if (!IsCompAssign)
10108       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10109     return RHSType;
10110   }
10111 
10112   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10113   // can be mixed, with the result being the non-bool type.  The non-bool
10114   // operand must have integer element type.
10115   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10116       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10117       (Context.getTypeSize(LHSVecType->getElementType()) ==
10118        Context.getTypeSize(RHSVecType->getElementType()))) {
10119     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10120         LHSVecType->getElementType()->isIntegerType() &&
10121         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10122       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10123       return LHSType;
10124     }
10125     if (!IsCompAssign &&
10126         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10127         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10128         RHSVecType->getElementType()->isIntegerType()) {
10129       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10130       return RHSType;
10131     }
10132   }
10133 
10134   // Expressions containing fixed-length and sizeless SVE vectors are invalid
10135   // since the ambiguity can affect the ABI.
10136   auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10137     const VectorType *VecType = SecondType->getAs<VectorType>();
10138     return FirstType->isSizelessBuiltinType() && VecType &&
10139            (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10140             VecType->getVectorKind() ==
10141                 VectorType::SveFixedLengthPredicateVector);
10142   };
10143 
10144   if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10145     Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10146     return QualType();
10147   }
10148 
10149   // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10150   // since the ambiguity can affect the ABI.
10151   auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10152     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10153     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10154 
10155     if (FirstVecType && SecondVecType)
10156       return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10157              (SecondVecType->getVectorKind() ==
10158                   VectorType::SveFixedLengthDataVector ||
10159               SecondVecType->getVectorKind() ==
10160                   VectorType::SveFixedLengthPredicateVector);
10161 
10162     return FirstType->isSizelessBuiltinType() && SecondVecType &&
10163            SecondVecType->getVectorKind() == VectorType::GenericVector;
10164   };
10165 
10166   if (IsSveGnuConversion(LHSType, RHSType) ||
10167       IsSveGnuConversion(RHSType, LHSType)) {
10168     Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10169     return QualType();
10170   }
10171 
10172   // If there's a vector type and a scalar, try to convert the scalar to
10173   // the vector element type and splat.
10174   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10175   if (!RHSVecType) {
10176     if (isa<ExtVectorType>(LHSVecType)) {
10177       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10178                                     LHSVecType->getElementType(), LHSType,
10179                                     DiagID))
10180         return LHSType;
10181     } else {
10182       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10183         return LHSType;
10184     }
10185   }
10186   if (!LHSVecType) {
10187     if (isa<ExtVectorType>(RHSVecType)) {
10188       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10189                                     LHSType, RHSVecType->getElementType(),
10190                                     RHSType, DiagID))
10191         return RHSType;
10192     } else {
10193       if (LHS.get()->isLValue() ||
10194           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10195         return RHSType;
10196     }
10197   }
10198 
10199   // FIXME: The code below also handles conversion between vectors and
10200   // non-scalars, we should break this down into fine grained specific checks
10201   // and emit proper diagnostics.
10202   QualType VecType = LHSVecType ? LHSType : RHSType;
10203   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10204   QualType OtherType = LHSVecType ? RHSType : LHSType;
10205   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10206   if (isLaxVectorConversion(OtherType, VecType)) {
10207     // If we're allowing lax vector conversions, only the total (data) size
10208     // needs to be the same. For non compound assignment, if one of the types is
10209     // scalar, the result is always the vector type.
10210     if (!IsCompAssign) {
10211       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10212       return VecType;
10213     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10214     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10215     // type. Note that this is already done by non-compound assignments in
10216     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10217     // <1 x T> -> T. The result is also a vector type.
10218     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10219                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10220       ExprResult *RHSExpr = &RHS;
10221       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10222       return VecType;
10223     }
10224   }
10225 
10226   // Okay, the expression is invalid.
10227 
10228   // If there's a non-vector, non-real operand, diagnose that.
10229   if ((!RHSVecType && !RHSType->isRealType()) ||
10230       (!LHSVecType && !LHSType->isRealType())) {
10231     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10232       << LHSType << RHSType
10233       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10234     return QualType();
10235   }
10236 
10237   // OpenCL V1.1 6.2.6.p1:
10238   // If the operands are of more than one vector type, then an error shall
10239   // occur. Implicit conversions between vector types are not permitted, per
10240   // section 6.2.1.
10241   if (getLangOpts().OpenCL &&
10242       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10243       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10244     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10245                                                            << RHSType;
10246     return QualType();
10247   }
10248 
10249 
10250   // If there is a vector type that is not a ExtVector and a scalar, we reach
10251   // this point if scalar could not be converted to the vector's element type
10252   // without truncation.
10253   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10254       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10255     QualType Scalar = LHSVecType ? RHSType : LHSType;
10256     QualType Vector = LHSVecType ? LHSType : RHSType;
10257     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10258     Diag(Loc,
10259          diag::err_typecheck_vector_not_convertable_implict_truncation)
10260         << ScalarOrVector << Scalar << Vector;
10261 
10262     return QualType();
10263   }
10264 
10265   // Otherwise, use the generic diagnostic.
10266   Diag(Loc, DiagID)
10267     << LHSType << RHSType
10268     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10269   return QualType();
10270 }
10271 
10272 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10273 // expression.  These are mainly cases where the null pointer is used as an
10274 // integer instead of a pointer.
10275 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10276                                 SourceLocation Loc, bool IsCompare) {
10277   // The canonical way to check for a GNU null is with isNullPointerConstant,
10278   // but we use a bit of a hack here for speed; this is a relatively
10279   // hot path, and isNullPointerConstant is slow.
10280   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10281   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10282 
10283   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10284 
10285   // Avoid analyzing cases where the result will either be invalid (and
10286   // diagnosed as such) or entirely valid and not something to warn about.
10287   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10288       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10289     return;
10290 
10291   // Comparison operations would not make sense with a null pointer no matter
10292   // what the other expression is.
10293   if (!IsCompare) {
10294     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10295         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10296         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10297     return;
10298   }
10299 
10300   // The rest of the operations only make sense with a null pointer
10301   // if the other expression is a pointer.
10302   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10303       NonNullType->canDecayToPointerType())
10304     return;
10305 
10306   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10307       << LHSNull /* LHS is NULL */ << NonNullType
10308       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10309 }
10310 
10311 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10312                                           SourceLocation Loc) {
10313   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10314   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10315   if (!LUE || !RUE)
10316     return;
10317   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10318       RUE->getKind() != UETT_SizeOf)
10319     return;
10320 
10321   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10322   QualType LHSTy = LHSArg->getType();
10323   QualType RHSTy;
10324 
10325   if (RUE->isArgumentType())
10326     RHSTy = RUE->getArgumentType().getNonReferenceType();
10327   else
10328     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10329 
10330   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10331     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10332       return;
10333 
10334     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10335     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10336       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10337         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10338             << LHSArgDecl;
10339     }
10340   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10341     QualType ArrayElemTy = ArrayTy->getElementType();
10342     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10343         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10344         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10345         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10346       return;
10347     S.Diag(Loc, diag::warn_division_sizeof_array)
10348         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10349     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10350       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10351         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10352             << LHSArgDecl;
10353     }
10354 
10355     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10356   }
10357 }
10358 
10359 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10360                                                ExprResult &RHS,
10361                                                SourceLocation Loc, bool IsDiv) {
10362   // Check for division/remainder by zero.
10363   Expr::EvalResult RHSValue;
10364   if (!RHS.get()->isValueDependent() &&
10365       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10366       RHSValue.Val.getInt() == 0)
10367     S.DiagRuntimeBehavior(Loc, RHS.get(),
10368                           S.PDiag(diag::warn_remainder_division_by_zero)
10369                             << IsDiv << RHS.get()->getSourceRange());
10370 }
10371 
10372 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10373                                            SourceLocation Loc,
10374                                            bool IsCompAssign, bool IsDiv) {
10375   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10376 
10377   QualType LHSTy = LHS.get()->getType();
10378   QualType RHSTy = RHS.get()->getType();
10379   if (LHSTy->isVectorType() || RHSTy->isVectorType())
10380     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10381                                /*AllowBothBool*/getLangOpts().AltiVec,
10382                                /*AllowBoolConversions*/false);
10383   if (!IsDiv &&
10384       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10385     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10386   // For division, only matrix-by-scalar is supported. Other combinations with
10387   // matrix types are invalid.
10388   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10389     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10390 
10391   QualType compType = UsualArithmeticConversions(
10392       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10393   if (LHS.isInvalid() || RHS.isInvalid())
10394     return QualType();
10395 
10396 
10397   if (compType.isNull() || !compType->isArithmeticType())
10398     return InvalidOperands(Loc, LHS, RHS);
10399   if (IsDiv) {
10400     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10401     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10402   }
10403   return compType;
10404 }
10405 
10406 QualType Sema::CheckRemainderOperands(
10407   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10408   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10409 
10410   if (LHS.get()->getType()->isVectorType() ||
10411       RHS.get()->getType()->isVectorType()) {
10412     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10413         RHS.get()->getType()->hasIntegerRepresentation())
10414       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10415                                  /*AllowBothBool*/getLangOpts().AltiVec,
10416                                  /*AllowBoolConversions*/false);
10417     return InvalidOperands(Loc, LHS, RHS);
10418   }
10419 
10420   QualType compType = UsualArithmeticConversions(
10421       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10422   if (LHS.isInvalid() || RHS.isInvalid())
10423     return QualType();
10424 
10425   if (compType.isNull() || !compType->isIntegerType())
10426     return InvalidOperands(Loc, LHS, RHS);
10427   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10428   return compType;
10429 }
10430 
10431 /// Diagnose invalid arithmetic on two void pointers.
10432 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10433                                                 Expr *LHSExpr, Expr *RHSExpr) {
10434   S.Diag(Loc, S.getLangOpts().CPlusPlus
10435                 ? diag::err_typecheck_pointer_arith_void_type
10436                 : diag::ext_gnu_void_ptr)
10437     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10438                             << RHSExpr->getSourceRange();
10439 }
10440 
10441 /// Diagnose invalid arithmetic on a void pointer.
10442 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10443                                             Expr *Pointer) {
10444   S.Diag(Loc, S.getLangOpts().CPlusPlus
10445                 ? diag::err_typecheck_pointer_arith_void_type
10446                 : diag::ext_gnu_void_ptr)
10447     << 0 /* one pointer */ << Pointer->getSourceRange();
10448 }
10449 
10450 /// Diagnose invalid arithmetic on a null pointer.
10451 ///
10452 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10453 /// idiom, which we recognize as a GNU extension.
10454 ///
10455 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10456                                             Expr *Pointer, bool IsGNUIdiom) {
10457   if (IsGNUIdiom)
10458     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10459       << Pointer->getSourceRange();
10460   else
10461     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10462       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10463 }
10464 
10465 /// Diagnose invalid subraction on a null pointer.
10466 ///
10467 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10468                                              Expr *Pointer, bool BothNull) {
10469   // Null - null is valid in C++ [expr.add]p7
10470   if (BothNull && S.getLangOpts().CPlusPlus)
10471     return;
10472 
10473   // Is this s a macro from a system header?
10474   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10475     return;
10476 
10477   S.Diag(Loc, diag::warn_pointer_sub_null_ptr)
10478       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10479 }
10480 
10481 /// Diagnose invalid arithmetic on two function pointers.
10482 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10483                                                     Expr *LHS, Expr *RHS) {
10484   assert(LHS->getType()->isAnyPointerType());
10485   assert(RHS->getType()->isAnyPointerType());
10486   S.Diag(Loc, S.getLangOpts().CPlusPlus
10487                 ? diag::err_typecheck_pointer_arith_function_type
10488                 : diag::ext_gnu_ptr_func_arith)
10489     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10490     // We only show the second type if it differs from the first.
10491     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10492                                                    RHS->getType())
10493     << RHS->getType()->getPointeeType()
10494     << LHS->getSourceRange() << RHS->getSourceRange();
10495 }
10496 
10497 /// Diagnose invalid arithmetic on a function pointer.
10498 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10499                                                 Expr *Pointer) {
10500   assert(Pointer->getType()->isAnyPointerType());
10501   S.Diag(Loc, S.getLangOpts().CPlusPlus
10502                 ? diag::err_typecheck_pointer_arith_function_type
10503                 : diag::ext_gnu_ptr_func_arith)
10504     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10505     << 0 /* one pointer, so only one type */
10506     << Pointer->getSourceRange();
10507 }
10508 
10509 /// Emit error if Operand is incomplete pointer type
10510 ///
10511 /// \returns True if pointer has incomplete type
10512 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10513                                                  Expr *Operand) {
10514   QualType ResType = Operand->getType();
10515   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10516     ResType = ResAtomicType->getValueType();
10517 
10518   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
10519   QualType PointeeTy = ResType->getPointeeType();
10520   return S.RequireCompleteSizedType(
10521       Loc, PointeeTy,
10522       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10523       Operand->getSourceRange());
10524 }
10525 
10526 /// Check the validity of an arithmetic pointer operand.
10527 ///
10528 /// If the operand has pointer type, this code will check for pointer types
10529 /// which are invalid in arithmetic operations. These will be diagnosed
10530 /// appropriately, including whether or not the use is supported as an
10531 /// extension.
10532 ///
10533 /// \returns True when the operand is valid to use (even if as an extension).
10534 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10535                                             Expr *Operand) {
10536   QualType ResType = Operand->getType();
10537   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10538     ResType = ResAtomicType->getValueType();
10539 
10540   if (!ResType->isAnyPointerType()) return true;
10541 
10542   QualType PointeeTy = ResType->getPointeeType();
10543   if (PointeeTy->isVoidType()) {
10544     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10545     return !S.getLangOpts().CPlusPlus;
10546   }
10547   if (PointeeTy->isFunctionType()) {
10548     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10549     return !S.getLangOpts().CPlusPlus;
10550   }
10551 
10552   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10553 
10554   return true;
10555 }
10556 
10557 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10558 /// operands.
10559 ///
10560 /// This routine will diagnose any invalid arithmetic on pointer operands much
10561 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10562 /// for emitting a single diagnostic even for operations where both LHS and RHS
10563 /// are (potentially problematic) pointers.
10564 ///
10565 /// \returns True when the operand is valid to use (even if as an extension).
10566 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10567                                                 Expr *LHSExpr, Expr *RHSExpr) {
10568   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10569   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10570   if (!isLHSPointer && !isRHSPointer) return true;
10571 
10572   QualType LHSPointeeTy, RHSPointeeTy;
10573   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10574   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10575 
10576   // if both are pointers check if operation is valid wrt address spaces
10577   if (isLHSPointer && isRHSPointer) {
10578     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10579       S.Diag(Loc,
10580              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10581           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10582           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10583       return false;
10584     }
10585   }
10586 
10587   // Check for arithmetic on pointers to incomplete types.
10588   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10589   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10590   if (isLHSVoidPtr || isRHSVoidPtr) {
10591     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10592     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10593     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10594 
10595     return !S.getLangOpts().CPlusPlus;
10596   }
10597 
10598   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10599   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10600   if (isLHSFuncPtr || isRHSFuncPtr) {
10601     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10602     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10603                                                                 RHSExpr);
10604     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10605 
10606     return !S.getLangOpts().CPlusPlus;
10607   }
10608 
10609   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10610     return false;
10611   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10612     return false;
10613 
10614   return true;
10615 }
10616 
10617 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10618 /// literal.
10619 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10620                                   Expr *LHSExpr, Expr *RHSExpr) {
10621   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10622   Expr* IndexExpr = RHSExpr;
10623   if (!StrExpr) {
10624     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10625     IndexExpr = LHSExpr;
10626   }
10627 
10628   bool IsStringPlusInt = StrExpr &&
10629       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10630   if (!IsStringPlusInt || IndexExpr->isValueDependent())
10631     return;
10632 
10633   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10634   Self.Diag(OpLoc, diag::warn_string_plus_int)
10635       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10636 
10637   // Only print a fixit for "str" + int, not for int + "str".
10638   if (IndexExpr == RHSExpr) {
10639     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10640     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10641         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10642         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10643         << FixItHint::CreateInsertion(EndLoc, "]");
10644   } else
10645     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10646 }
10647 
10648 /// Emit a warning when adding a char literal to a string.
10649 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10650                                    Expr *LHSExpr, Expr *RHSExpr) {
10651   const Expr *StringRefExpr = LHSExpr;
10652   const CharacterLiteral *CharExpr =
10653       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10654 
10655   if (!CharExpr) {
10656     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10657     StringRefExpr = RHSExpr;
10658   }
10659 
10660   if (!CharExpr || !StringRefExpr)
10661     return;
10662 
10663   const QualType StringType = StringRefExpr->getType();
10664 
10665   // Return if not a PointerType.
10666   if (!StringType->isAnyPointerType())
10667     return;
10668 
10669   // Return if not a CharacterType.
10670   if (!StringType->getPointeeType()->isAnyCharacterType())
10671     return;
10672 
10673   ASTContext &Ctx = Self.getASTContext();
10674   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10675 
10676   const QualType CharType = CharExpr->getType();
10677   if (!CharType->isAnyCharacterType() &&
10678       CharType->isIntegerType() &&
10679       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10680     Self.Diag(OpLoc, diag::warn_string_plus_char)
10681         << DiagRange << Ctx.CharTy;
10682   } else {
10683     Self.Diag(OpLoc, diag::warn_string_plus_char)
10684         << DiagRange << CharExpr->getType();
10685   }
10686 
10687   // Only print a fixit for str + char, not for char + str.
10688   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10689     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10690     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10691         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10692         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10693         << FixItHint::CreateInsertion(EndLoc, "]");
10694   } else {
10695     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10696   }
10697 }
10698 
10699 /// Emit error when two pointers are incompatible.
10700 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10701                                            Expr *LHSExpr, Expr *RHSExpr) {
10702   assert(LHSExpr->getType()->isAnyPointerType());
10703   assert(RHSExpr->getType()->isAnyPointerType());
10704   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10705     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10706     << RHSExpr->getSourceRange();
10707 }
10708 
10709 // C99 6.5.6
10710 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10711                                      SourceLocation Loc, BinaryOperatorKind Opc,
10712                                      QualType* CompLHSTy) {
10713   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10714 
10715   if (LHS.get()->getType()->isVectorType() ||
10716       RHS.get()->getType()->isVectorType()) {
10717     QualType compType = CheckVectorOperands(
10718         LHS, RHS, Loc, CompLHSTy,
10719         /*AllowBothBool*/getLangOpts().AltiVec,
10720         /*AllowBoolConversions*/getLangOpts().ZVector);
10721     if (CompLHSTy) *CompLHSTy = compType;
10722     return compType;
10723   }
10724 
10725   if (LHS.get()->getType()->isConstantMatrixType() ||
10726       RHS.get()->getType()->isConstantMatrixType()) {
10727     QualType compType =
10728         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10729     if (CompLHSTy)
10730       *CompLHSTy = compType;
10731     return compType;
10732   }
10733 
10734   QualType compType = UsualArithmeticConversions(
10735       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10736   if (LHS.isInvalid() || RHS.isInvalid())
10737     return QualType();
10738 
10739   // Diagnose "string literal" '+' int and string '+' "char literal".
10740   if (Opc == BO_Add) {
10741     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10742     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10743   }
10744 
10745   // handle the common case first (both operands are arithmetic).
10746   if (!compType.isNull() && compType->isArithmeticType()) {
10747     if (CompLHSTy) *CompLHSTy = compType;
10748     return compType;
10749   }
10750 
10751   // Type-checking.  Ultimately the pointer's going to be in PExp;
10752   // note that we bias towards the LHS being the pointer.
10753   Expr *PExp = LHS.get(), *IExp = RHS.get();
10754 
10755   bool isObjCPointer;
10756   if (PExp->getType()->isPointerType()) {
10757     isObjCPointer = false;
10758   } else if (PExp->getType()->isObjCObjectPointerType()) {
10759     isObjCPointer = true;
10760   } else {
10761     std::swap(PExp, IExp);
10762     if (PExp->getType()->isPointerType()) {
10763       isObjCPointer = false;
10764     } else if (PExp->getType()->isObjCObjectPointerType()) {
10765       isObjCPointer = true;
10766     } else {
10767       return InvalidOperands(Loc, LHS, RHS);
10768     }
10769   }
10770   assert(PExp->getType()->isAnyPointerType());
10771 
10772   if (!IExp->getType()->isIntegerType())
10773     return InvalidOperands(Loc, LHS, RHS);
10774 
10775   // Adding to a null pointer results in undefined behavior.
10776   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10777           Context, Expr::NPC_ValueDependentIsNotNull)) {
10778     // In C++ adding zero to a null pointer is defined.
10779     Expr::EvalResult KnownVal;
10780     if (!getLangOpts().CPlusPlus ||
10781         (!IExp->isValueDependent() &&
10782          (!IExp->EvaluateAsInt(KnownVal, Context) ||
10783           KnownVal.Val.getInt() != 0))) {
10784       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10785       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10786           Context, BO_Add, PExp, IExp);
10787       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10788     }
10789   }
10790 
10791   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10792     return QualType();
10793 
10794   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10795     return QualType();
10796 
10797   // Check array bounds for pointer arithemtic
10798   CheckArrayAccess(PExp, IExp);
10799 
10800   if (CompLHSTy) {
10801     QualType LHSTy = Context.isPromotableBitField(LHS.get());
10802     if (LHSTy.isNull()) {
10803       LHSTy = LHS.get()->getType();
10804       if (LHSTy->isPromotableIntegerType())
10805         LHSTy = Context.getPromotedIntegerType(LHSTy);
10806     }
10807     *CompLHSTy = LHSTy;
10808   }
10809 
10810   return PExp->getType();
10811 }
10812 
10813 // C99 6.5.6
10814 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10815                                         SourceLocation Loc,
10816                                         QualType* CompLHSTy) {
10817   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10818 
10819   if (LHS.get()->getType()->isVectorType() ||
10820       RHS.get()->getType()->isVectorType()) {
10821     QualType compType = CheckVectorOperands(
10822         LHS, RHS, Loc, CompLHSTy,
10823         /*AllowBothBool*/getLangOpts().AltiVec,
10824         /*AllowBoolConversions*/getLangOpts().ZVector);
10825     if (CompLHSTy) *CompLHSTy = compType;
10826     return compType;
10827   }
10828 
10829   if (LHS.get()->getType()->isConstantMatrixType() ||
10830       RHS.get()->getType()->isConstantMatrixType()) {
10831     QualType compType =
10832         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10833     if (CompLHSTy)
10834       *CompLHSTy = compType;
10835     return compType;
10836   }
10837 
10838   QualType compType = UsualArithmeticConversions(
10839       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10840   if (LHS.isInvalid() || RHS.isInvalid())
10841     return QualType();
10842 
10843   // Enforce type constraints: C99 6.5.6p3.
10844 
10845   // Handle the common case first (both operands are arithmetic).
10846   if (!compType.isNull() && compType->isArithmeticType()) {
10847     if (CompLHSTy) *CompLHSTy = compType;
10848     return compType;
10849   }
10850 
10851   // Either ptr - int   or   ptr - ptr.
10852   if (LHS.get()->getType()->isAnyPointerType()) {
10853     QualType lpointee = LHS.get()->getType()->getPointeeType();
10854 
10855     // Diagnose bad cases where we step over interface counts.
10856     if (LHS.get()->getType()->isObjCObjectPointerType() &&
10857         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
10858       return QualType();
10859 
10860     // The result type of a pointer-int computation is the pointer type.
10861     if (RHS.get()->getType()->isIntegerType()) {
10862       // Subtracting from a null pointer should produce a warning.
10863       // The last argument to the diagnose call says this doesn't match the
10864       // GNU int-to-pointer idiom.
10865       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
10866                                            Expr::NPC_ValueDependentIsNotNull)) {
10867         // In C++ adding zero to a null pointer is defined.
10868         Expr::EvalResult KnownVal;
10869         if (!getLangOpts().CPlusPlus ||
10870             (!RHS.get()->isValueDependent() &&
10871              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
10872               KnownVal.Val.getInt() != 0))) {
10873           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
10874         }
10875       }
10876 
10877       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
10878         return QualType();
10879 
10880       // Check array bounds for pointer arithemtic
10881       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
10882                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
10883 
10884       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10885       return LHS.get()->getType();
10886     }
10887 
10888     // Handle pointer-pointer subtractions.
10889     if (const PointerType *RHSPTy
10890           = RHS.get()->getType()->getAs<PointerType>()) {
10891       QualType rpointee = RHSPTy->getPointeeType();
10892 
10893       if (getLangOpts().CPlusPlus) {
10894         // Pointee types must be the same: C++ [expr.add]
10895         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
10896           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10897         }
10898       } else {
10899         // Pointee types must be compatible C99 6.5.6p3
10900         if (!Context.typesAreCompatible(
10901                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
10902                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
10903           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10904           return QualType();
10905         }
10906       }
10907 
10908       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
10909                                                LHS.get(), RHS.get()))
10910         return QualType();
10911 
10912       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
10913           Context, Expr::NPC_ValueDependentIsNotNull);
10914       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
10915           Context, Expr::NPC_ValueDependentIsNotNull);
10916 
10917       // Subtracting nullptr or from nullptr is suspect
10918       if (LHSIsNullPtr)
10919         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
10920       if (RHSIsNullPtr)
10921         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
10922 
10923       // The pointee type may have zero size.  As an extension, a structure or
10924       // union may have zero size or an array may have zero length.  In this
10925       // case subtraction does not make sense.
10926       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
10927         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
10928         if (ElementSize.isZero()) {
10929           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
10930             << rpointee.getUnqualifiedType()
10931             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10932         }
10933       }
10934 
10935       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10936       return Context.getPointerDiffType();
10937     }
10938   }
10939 
10940   return InvalidOperands(Loc, LHS, RHS);
10941 }
10942 
10943 static bool isScopedEnumerationType(QualType T) {
10944   if (const EnumType *ET = T->getAs<EnumType>())
10945     return ET->getDecl()->isScoped();
10946   return false;
10947 }
10948 
10949 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
10950                                    SourceLocation Loc, BinaryOperatorKind Opc,
10951                                    QualType LHSType) {
10952   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
10953   // so skip remaining warnings as we don't want to modify values within Sema.
10954   if (S.getLangOpts().OpenCL)
10955     return;
10956 
10957   // Check right/shifter operand
10958   Expr::EvalResult RHSResult;
10959   if (RHS.get()->isValueDependent() ||
10960       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
10961     return;
10962   llvm::APSInt Right = RHSResult.Val.getInt();
10963 
10964   if (Right.isNegative()) {
10965     S.DiagRuntimeBehavior(Loc, RHS.get(),
10966                           S.PDiag(diag::warn_shift_negative)
10967                             << RHS.get()->getSourceRange());
10968     return;
10969   }
10970 
10971   QualType LHSExprType = LHS.get()->getType();
10972   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
10973   if (LHSExprType->isExtIntType())
10974     LeftSize = S.Context.getIntWidth(LHSExprType);
10975   else if (LHSExprType->isFixedPointType()) {
10976     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
10977     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
10978   }
10979   llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
10980   if (Right.uge(LeftBits)) {
10981     S.DiagRuntimeBehavior(Loc, RHS.get(),
10982                           S.PDiag(diag::warn_shift_gt_typewidth)
10983                             << RHS.get()->getSourceRange());
10984     return;
10985   }
10986 
10987   // FIXME: We probably need to handle fixed point types specially here.
10988   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
10989     return;
10990 
10991   // When left shifting an ICE which is signed, we can check for overflow which
10992   // according to C++ standards prior to C++2a has undefined behavior
10993   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
10994   // more than the maximum value representable in the result type, so never
10995   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
10996   // expression is still probably a bug.)
10997   Expr::EvalResult LHSResult;
10998   if (LHS.get()->isValueDependent() ||
10999       LHSType->hasUnsignedIntegerRepresentation() ||
11000       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11001     return;
11002   llvm::APSInt Left = LHSResult.Val.getInt();
11003 
11004   // If LHS does not have a signed type and non-negative value
11005   // then, the behavior is undefined before C++2a. Warn about it.
11006   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
11007       !S.getLangOpts().CPlusPlus20) {
11008     S.DiagRuntimeBehavior(Loc, LHS.get(),
11009                           S.PDiag(diag::warn_shift_lhs_negative)
11010                             << LHS.get()->getSourceRange());
11011     return;
11012   }
11013 
11014   llvm::APInt ResultBits =
11015       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11016   if (LeftBits.uge(ResultBits))
11017     return;
11018   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11019   Result = Result.shl(Right);
11020 
11021   // Print the bit representation of the signed integer as an unsigned
11022   // hexadecimal number.
11023   SmallString<40> HexResult;
11024   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11025 
11026   // If we are only missing a sign bit, this is less likely to result in actual
11027   // bugs -- if the result is cast back to an unsigned type, it will have the
11028   // expected value. Thus we place this behind a different warning that can be
11029   // turned off separately if needed.
11030   if (LeftBits == ResultBits - 1) {
11031     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11032         << HexResult << LHSType
11033         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11034     return;
11035   }
11036 
11037   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11038     << HexResult.str() << Result.getMinSignedBits() << LHSType
11039     << Left.getBitWidth() << LHS.get()->getSourceRange()
11040     << RHS.get()->getSourceRange();
11041 }
11042 
11043 /// Return the resulting type when a vector is shifted
11044 ///        by a scalar or vector shift amount.
11045 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11046                                  SourceLocation Loc, bool IsCompAssign) {
11047   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11048   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11049       !LHS.get()->getType()->isVectorType()) {
11050     S.Diag(Loc, diag::err_shift_rhs_only_vector)
11051       << RHS.get()->getType() << LHS.get()->getType()
11052       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11053     return QualType();
11054   }
11055 
11056   if (!IsCompAssign) {
11057     LHS = S.UsualUnaryConversions(LHS.get());
11058     if (LHS.isInvalid()) return QualType();
11059   }
11060 
11061   RHS = S.UsualUnaryConversions(RHS.get());
11062   if (RHS.isInvalid()) return QualType();
11063 
11064   QualType LHSType = LHS.get()->getType();
11065   // Note that LHS might be a scalar because the routine calls not only in
11066   // OpenCL case.
11067   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11068   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11069 
11070   // Note that RHS might not be a vector.
11071   QualType RHSType = RHS.get()->getType();
11072   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11073   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11074 
11075   // The operands need to be integers.
11076   if (!LHSEleType->isIntegerType()) {
11077     S.Diag(Loc, diag::err_typecheck_expect_int)
11078       << LHS.get()->getType() << LHS.get()->getSourceRange();
11079     return QualType();
11080   }
11081 
11082   if (!RHSEleType->isIntegerType()) {
11083     S.Diag(Loc, diag::err_typecheck_expect_int)
11084       << RHS.get()->getType() << RHS.get()->getSourceRange();
11085     return QualType();
11086   }
11087 
11088   if (!LHSVecTy) {
11089     assert(RHSVecTy);
11090     if (IsCompAssign)
11091       return RHSType;
11092     if (LHSEleType != RHSEleType) {
11093       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11094       LHSEleType = RHSEleType;
11095     }
11096     QualType VecTy =
11097         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11098     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11099     LHSType = VecTy;
11100   } else if (RHSVecTy) {
11101     // OpenCL v1.1 s6.3.j says that for vector types, the operators
11102     // are applied component-wise. So if RHS is a vector, then ensure
11103     // that the number of elements is the same as LHS...
11104     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11105       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11106         << LHS.get()->getType() << RHS.get()->getType()
11107         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11108       return QualType();
11109     }
11110     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11111       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11112       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11113       if (LHSBT != RHSBT &&
11114           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11115         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11116             << LHS.get()->getType() << RHS.get()->getType()
11117             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11118       }
11119     }
11120   } else {
11121     // ...else expand RHS to match the number of elements in LHS.
11122     QualType VecTy =
11123       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11124     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11125   }
11126 
11127   return LHSType;
11128 }
11129 
11130 // C99 6.5.7
11131 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11132                                   SourceLocation Loc, BinaryOperatorKind Opc,
11133                                   bool IsCompAssign) {
11134   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11135 
11136   // Vector shifts promote their scalar inputs to vector type.
11137   if (LHS.get()->getType()->isVectorType() ||
11138       RHS.get()->getType()->isVectorType()) {
11139     if (LangOpts.ZVector) {
11140       // The shift operators for the z vector extensions work basically
11141       // like general shifts, except that neither the LHS nor the RHS is
11142       // allowed to be a "vector bool".
11143       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11144         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11145           return InvalidOperands(Loc, LHS, RHS);
11146       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11147         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11148           return InvalidOperands(Loc, LHS, RHS);
11149     }
11150     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11151   }
11152 
11153   // Shifts don't perform usual arithmetic conversions, they just do integer
11154   // promotions on each operand. C99 6.5.7p3
11155 
11156   // For the LHS, do usual unary conversions, but then reset them away
11157   // if this is a compound assignment.
11158   ExprResult OldLHS = LHS;
11159   LHS = UsualUnaryConversions(LHS.get());
11160   if (LHS.isInvalid())
11161     return QualType();
11162   QualType LHSType = LHS.get()->getType();
11163   if (IsCompAssign) LHS = OldLHS;
11164 
11165   // The RHS is simpler.
11166   RHS = UsualUnaryConversions(RHS.get());
11167   if (RHS.isInvalid())
11168     return QualType();
11169   QualType RHSType = RHS.get()->getType();
11170 
11171   // C99 6.5.7p2: Each of the operands shall have integer type.
11172   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11173   if ((!LHSType->isFixedPointOrIntegerType() &&
11174        !LHSType->hasIntegerRepresentation()) ||
11175       !RHSType->hasIntegerRepresentation())
11176     return InvalidOperands(Loc, LHS, RHS);
11177 
11178   // C++0x: Don't allow scoped enums. FIXME: Use something better than
11179   // hasIntegerRepresentation() above instead of this.
11180   if (isScopedEnumerationType(LHSType) ||
11181       isScopedEnumerationType(RHSType)) {
11182     return InvalidOperands(Loc, LHS, RHS);
11183   }
11184   // Sanity-check shift operands
11185   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11186 
11187   // "The type of the result is that of the promoted left operand."
11188   return LHSType;
11189 }
11190 
11191 /// Diagnose bad pointer comparisons.
11192 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11193                                               ExprResult &LHS, ExprResult &RHS,
11194                                               bool IsError) {
11195   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11196                       : diag::ext_typecheck_comparison_of_distinct_pointers)
11197     << LHS.get()->getType() << RHS.get()->getType()
11198     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11199 }
11200 
11201 /// Returns false if the pointers are converted to a composite type,
11202 /// true otherwise.
11203 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11204                                            ExprResult &LHS, ExprResult &RHS) {
11205   // C++ [expr.rel]p2:
11206   //   [...] Pointer conversions (4.10) and qualification
11207   //   conversions (4.4) are performed on pointer operands (or on
11208   //   a pointer operand and a null pointer constant) to bring
11209   //   them to their composite pointer type. [...]
11210   //
11211   // C++ [expr.eq]p1 uses the same notion for (in)equality
11212   // comparisons of pointers.
11213 
11214   QualType LHSType = LHS.get()->getType();
11215   QualType RHSType = RHS.get()->getType();
11216   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11217          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11218 
11219   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11220   if (T.isNull()) {
11221     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11222         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11223       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11224     else
11225       S.InvalidOperands(Loc, LHS, RHS);
11226     return true;
11227   }
11228 
11229   return false;
11230 }
11231 
11232 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11233                                                     ExprResult &LHS,
11234                                                     ExprResult &RHS,
11235                                                     bool IsError) {
11236   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11237                       : diag::ext_typecheck_comparison_of_fptr_to_void)
11238     << LHS.get()->getType() << RHS.get()->getType()
11239     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11240 }
11241 
11242 static bool isObjCObjectLiteral(ExprResult &E) {
11243   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11244   case Stmt::ObjCArrayLiteralClass:
11245   case Stmt::ObjCDictionaryLiteralClass:
11246   case Stmt::ObjCStringLiteralClass:
11247   case Stmt::ObjCBoxedExprClass:
11248     return true;
11249   default:
11250     // Note that ObjCBoolLiteral is NOT an object literal!
11251     return false;
11252   }
11253 }
11254 
11255 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11256   const ObjCObjectPointerType *Type =
11257     LHS->getType()->getAs<ObjCObjectPointerType>();
11258 
11259   // If this is not actually an Objective-C object, bail out.
11260   if (!Type)
11261     return false;
11262 
11263   // Get the LHS object's interface type.
11264   QualType InterfaceType = Type->getPointeeType();
11265 
11266   // If the RHS isn't an Objective-C object, bail out.
11267   if (!RHS->getType()->isObjCObjectPointerType())
11268     return false;
11269 
11270   // Try to find the -isEqual: method.
11271   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11272   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11273                                                       InterfaceType,
11274                                                       /*IsInstance=*/true);
11275   if (!Method) {
11276     if (Type->isObjCIdType()) {
11277       // For 'id', just check the global pool.
11278       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11279                                                   /*receiverId=*/true);
11280     } else {
11281       // Check protocols.
11282       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11283                                              /*IsInstance=*/true);
11284     }
11285   }
11286 
11287   if (!Method)
11288     return false;
11289 
11290   QualType T = Method->parameters()[0]->getType();
11291   if (!T->isObjCObjectPointerType())
11292     return false;
11293 
11294   QualType R = Method->getReturnType();
11295   if (!R->isScalarType())
11296     return false;
11297 
11298   return true;
11299 }
11300 
11301 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11302   FromE = FromE->IgnoreParenImpCasts();
11303   switch (FromE->getStmtClass()) {
11304     default:
11305       break;
11306     case Stmt::ObjCStringLiteralClass:
11307       // "string literal"
11308       return LK_String;
11309     case Stmt::ObjCArrayLiteralClass:
11310       // "array literal"
11311       return LK_Array;
11312     case Stmt::ObjCDictionaryLiteralClass:
11313       // "dictionary literal"
11314       return LK_Dictionary;
11315     case Stmt::BlockExprClass:
11316       return LK_Block;
11317     case Stmt::ObjCBoxedExprClass: {
11318       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11319       switch (Inner->getStmtClass()) {
11320         case Stmt::IntegerLiteralClass:
11321         case Stmt::FloatingLiteralClass:
11322         case Stmt::CharacterLiteralClass:
11323         case Stmt::ObjCBoolLiteralExprClass:
11324         case Stmt::CXXBoolLiteralExprClass:
11325           // "numeric literal"
11326           return LK_Numeric;
11327         case Stmt::ImplicitCastExprClass: {
11328           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11329           // Boolean literals can be represented by implicit casts.
11330           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11331             return LK_Numeric;
11332           break;
11333         }
11334         default:
11335           break;
11336       }
11337       return LK_Boxed;
11338     }
11339   }
11340   return LK_None;
11341 }
11342 
11343 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11344                                           ExprResult &LHS, ExprResult &RHS,
11345                                           BinaryOperator::Opcode Opc){
11346   Expr *Literal;
11347   Expr *Other;
11348   if (isObjCObjectLiteral(LHS)) {
11349     Literal = LHS.get();
11350     Other = RHS.get();
11351   } else {
11352     Literal = RHS.get();
11353     Other = LHS.get();
11354   }
11355 
11356   // Don't warn on comparisons against nil.
11357   Other = Other->IgnoreParenCasts();
11358   if (Other->isNullPointerConstant(S.getASTContext(),
11359                                    Expr::NPC_ValueDependentIsNotNull))
11360     return;
11361 
11362   // This should be kept in sync with warn_objc_literal_comparison.
11363   // LK_String should always be after the other literals, since it has its own
11364   // warning flag.
11365   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11366   assert(LiteralKind != Sema::LK_Block);
11367   if (LiteralKind == Sema::LK_None) {
11368     llvm_unreachable("Unknown Objective-C object literal kind");
11369   }
11370 
11371   if (LiteralKind == Sema::LK_String)
11372     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11373       << Literal->getSourceRange();
11374   else
11375     S.Diag(Loc, diag::warn_objc_literal_comparison)
11376       << LiteralKind << Literal->getSourceRange();
11377 
11378   if (BinaryOperator::isEqualityOp(Opc) &&
11379       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11380     SourceLocation Start = LHS.get()->getBeginLoc();
11381     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11382     CharSourceRange OpRange =
11383       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11384 
11385     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11386       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11387       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11388       << FixItHint::CreateInsertion(End, "]");
11389   }
11390 }
11391 
11392 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11393 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11394                                            ExprResult &RHS, SourceLocation Loc,
11395                                            BinaryOperatorKind Opc) {
11396   // Check that left hand side is !something.
11397   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11398   if (!UO || UO->getOpcode() != UO_LNot) return;
11399 
11400   // Only check if the right hand side is non-bool arithmetic type.
11401   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11402 
11403   // Make sure that the something in !something is not bool.
11404   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11405   if (SubExpr->isKnownToHaveBooleanValue()) return;
11406 
11407   // Emit warning.
11408   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11409   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11410       << Loc << IsBitwiseOp;
11411 
11412   // First note suggest !(x < y)
11413   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11414   SourceLocation FirstClose = RHS.get()->getEndLoc();
11415   FirstClose = S.getLocForEndOfToken(FirstClose);
11416   if (FirstClose.isInvalid())
11417     FirstOpen = SourceLocation();
11418   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11419       << IsBitwiseOp
11420       << FixItHint::CreateInsertion(FirstOpen, "(")
11421       << FixItHint::CreateInsertion(FirstClose, ")");
11422 
11423   // Second note suggests (!x) < y
11424   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11425   SourceLocation SecondClose = LHS.get()->getEndLoc();
11426   SecondClose = S.getLocForEndOfToken(SecondClose);
11427   if (SecondClose.isInvalid())
11428     SecondOpen = SourceLocation();
11429   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11430       << FixItHint::CreateInsertion(SecondOpen, "(")
11431       << FixItHint::CreateInsertion(SecondClose, ")");
11432 }
11433 
11434 // Returns true if E refers to a non-weak array.
11435 static bool checkForArray(const Expr *E) {
11436   const ValueDecl *D = nullptr;
11437   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11438     D = DR->getDecl();
11439   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11440     if (Mem->isImplicitAccess())
11441       D = Mem->getMemberDecl();
11442   }
11443   if (!D)
11444     return false;
11445   return D->getType()->isArrayType() && !D->isWeak();
11446 }
11447 
11448 /// Diagnose some forms of syntactically-obvious tautological comparison.
11449 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11450                                            Expr *LHS, Expr *RHS,
11451                                            BinaryOperatorKind Opc) {
11452   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11453   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11454 
11455   QualType LHSType = LHS->getType();
11456   QualType RHSType = RHS->getType();
11457   if (LHSType->hasFloatingRepresentation() ||
11458       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11459       S.inTemplateInstantiation())
11460     return;
11461 
11462   // Comparisons between two array types are ill-formed for operator<=>, so
11463   // we shouldn't emit any additional warnings about it.
11464   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11465     return;
11466 
11467   // For non-floating point types, check for self-comparisons of the form
11468   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11469   // often indicate logic errors in the program.
11470   //
11471   // NOTE: Don't warn about comparison expressions resulting from macro
11472   // expansion. Also don't warn about comparisons which are only self
11473   // comparisons within a template instantiation. The warnings should catch
11474   // obvious cases in the definition of the template anyways. The idea is to
11475   // warn when the typed comparison operator will always evaluate to the same
11476   // result.
11477 
11478   // Used for indexing into %select in warn_comparison_always
11479   enum {
11480     AlwaysConstant,
11481     AlwaysTrue,
11482     AlwaysFalse,
11483     AlwaysEqual, // std::strong_ordering::equal from operator<=>
11484   };
11485 
11486   // C++2a [depr.array.comp]:
11487   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11488   //   operands of array type are deprecated.
11489   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11490       RHSStripped->getType()->isArrayType()) {
11491     S.Diag(Loc, diag::warn_depr_array_comparison)
11492         << LHS->getSourceRange() << RHS->getSourceRange()
11493         << LHSStripped->getType() << RHSStripped->getType();
11494     // Carry on to produce the tautological comparison warning, if this
11495     // expression is potentially-evaluated, we can resolve the array to a
11496     // non-weak declaration, and so on.
11497   }
11498 
11499   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11500     if (Expr::isSameComparisonOperand(LHS, RHS)) {
11501       unsigned Result;
11502       switch (Opc) {
11503       case BO_EQ:
11504       case BO_LE:
11505       case BO_GE:
11506         Result = AlwaysTrue;
11507         break;
11508       case BO_NE:
11509       case BO_LT:
11510       case BO_GT:
11511         Result = AlwaysFalse;
11512         break;
11513       case BO_Cmp:
11514         Result = AlwaysEqual;
11515         break;
11516       default:
11517         Result = AlwaysConstant;
11518         break;
11519       }
11520       S.DiagRuntimeBehavior(Loc, nullptr,
11521                             S.PDiag(diag::warn_comparison_always)
11522                                 << 0 /*self-comparison*/
11523                                 << Result);
11524     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11525       // What is it always going to evaluate to?
11526       unsigned Result;
11527       switch (Opc) {
11528       case BO_EQ: // e.g. array1 == array2
11529         Result = AlwaysFalse;
11530         break;
11531       case BO_NE: // e.g. array1 != array2
11532         Result = AlwaysTrue;
11533         break;
11534       default: // e.g. array1 <= array2
11535         // The best we can say is 'a constant'
11536         Result = AlwaysConstant;
11537         break;
11538       }
11539       S.DiagRuntimeBehavior(Loc, nullptr,
11540                             S.PDiag(diag::warn_comparison_always)
11541                                 << 1 /*array comparison*/
11542                                 << Result);
11543     }
11544   }
11545 
11546   if (isa<CastExpr>(LHSStripped))
11547     LHSStripped = LHSStripped->IgnoreParenCasts();
11548   if (isa<CastExpr>(RHSStripped))
11549     RHSStripped = RHSStripped->IgnoreParenCasts();
11550 
11551   // Warn about comparisons against a string constant (unless the other
11552   // operand is null); the user probably wants string comparison function.
11553   Expr *LiteralString = nullptr;
11554   Expr *LiteralStringStripped = nullptr;
11555   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11556       !RHSStripped->isNullPointerConstant(S.Context,
11557                                           Expr::NPC_ValueDependentIsNull)) {
11558     LiteralString = LHS;
11559     LiteralStringStripped = LHSStripped;
11560   } else if ((isa<StringLiteral>(RHSStripped) ||
11561               isa<ObjCEncodeExpr>(RHSStripped)) &&
11562              !LHSStripped->isNullPointerConstant(S.Context,
11563                                           Expr::NPC_ValueDependentIsNull)) {
11564     LiteralString = RHS;
11565     LiteralStringStripped = RHSStripped;
11566   }
11567 
11568   if (LiteralString) {
11569     S.DiagRuntimeBehavior(Loc, nullptr,
11570                           S.PDiag(diag::warn_stringcompare)
11571                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
11572                               << LiteralString->getSourceRange());
11573   }
11574 }
11575 
11576 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11577   switch (CK) {
11578   default: {
11579 #ifndef NDEBUG
11580     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11581                  << "\n";
11582 #endif
11583     llvm_unreachable("unhandled cast kind");
11584   }
11585   case CK_UserDefinedConversion:
11586     return ICK_Identity;
11587   case CK_LValueToRValue:
11588     return ICK_Lvalue_To_Rvalue;
11589   case CK_ArrayToPointerDecay:
11590     return ICK_Array_To_Pointer;
11591   case CK_FunctionToPointerDecay:
11592     return ICK_Function_To_Pointer;
11593   case CK_IntegralCast:
11594     return ICK_Integral_Conversion;
11595   case CK_FloatingCast:
11596     return ICK_Floating_Conversion;
11597   case CK_IntegralToFloating:
11598   case CK_FloatingToIntegral:
11599     return ICK_Floating_Integral;
11600   case CK_IntegralComplexCast:
11601   case CK_FloatingComplexCast:
11602   case CK_FloatingComplexToIntegralComplex:
11603   case CK_IntegralComplexToFloatingComplex:
11604     return ICK_Complex_Conversion;
11605   case CK_FloatingComplexToReal:
11606   case CK_FloatingRealToComplex:
11607   case CK_IntegralComplexToReal:
11608   case CK_IntegralRealToComplex:
11609     return ICK_Complex_Real;
11610   }
11611 }
11612 
11613 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11614                                              QualType FromType,
11615                                              SourceLocation Loc) {
11616   // Check for a narrowing implicit conversion.
11617   StandardConversionSequence SCS;
11618   SCS.setAsIdentityConversion();
11619   SCS.setToType(0, FromType);
11620   SCS.setToType(1, ToType);
11621   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11622     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11623 
11624   APValue PreNarrowingValue;
11625   QualType PreNarrowingType;
11626   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11627                                PreNarrowingType,
11628                                /*IgnoreFloatToIntegralConversion*/ true)) {
11629   case NK_Dependent_Narrowing:
11630     // Implicit conversion to a narrower type, but the expression is
11631     // value-dependent so we can't tell whether it's actually narrowing.
11632   case NK_Not_Narrowing:
11633     return false;
11634 
11635   case NK_Constant_Narrowing:
11636     // Implicit conversion to a narrower type, and the value is not a constant
11637     // expression.
11638     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11639         << /*Constant*/ 1
11640         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11641     return true;
11642 
11643   case NK_Variable_Narrowing:
11644     // Implicit conversion to a narrower type, and the value is not a constant
11645     // expression.
11646   case NK_Type_Narrowing:
11647     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11648         << /*Constant*/ 0 << FromType << ToType;
11649     // TODO: It's not a constant expression, but what if the user intended it
11650     // to be? Can we produce notes to help them figure out why it isn't?
11651     return true;
11652   }
11653   llvm_unreachable("unhandled case in switch");
11654 }
11655 
11656 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11657                                                          ExprResult &LHS,
11658                                                          ExprResult &RHS,
11659                                                          SourceLocation Loc) {
11660   QualType LHSType = LHS.get()->getType();
11661   QualType RHSType = RHS.get()->getType();
11662   // Dig out the original argument type and expression before implicit casts
11663   // were applied. These are the types/expressions we need to check the
11664   // [expr.spaceship] requirements against.
11665   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11666   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11667   QualType LHSStrippedType = LHSStripped.get()->getType();
11668   QualType RHSStrippedType = RHSStripped.get()->getType();
11669 
11670   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11671   // other is not, the program is ill-formed.
11672   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11673     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11674     return QualType();
11675   }
11676 
11677   // FIXME: Consider combining this with checkEnumArithmeticConversions.
11678   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11679                     RHSStrippedType->isEnumeralType();
11680   if (NumEnumArgs == 1) {
11681     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11682     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11683     if (OtherTy->hasFloatingRepresentation()) {
11684       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11685       return QualType();
11686     }
11687   }
11688   if (NumEnumArgs == 2) {
11689     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11690     // type E, the operator yields the result of converting the operands
11691     // to the underlying type of E and applying <=> to the converted operands.
11692     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11693       S.InvalidOperands(Loc, LHS, RHS);
11694       return QualType();
11695     }
11696     QualType IntType =
11697         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11698     assert(IntType->isArithmeticType());
11699 
11700     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11701     // promote the boolean type, and all other promotable integer types, to
11702     // avoid this.
11703     if (IntType->isPromotableIntegerType())
11704       IntType = S.Context.getPromotedIntegerType(IntType);
11705 
11706     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11707     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11708     LHSType = RHSType = IntType;
11709   }
11710 
11711   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11712   // usual arithmetic conversions are applied to the operands.
11713   QualType Type =
11714       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11715   if (LHS.isInvalid() || RHS.isInvalid())
11716     return QualType();
11717   if (Type.isNull())
11718     return S.InvalidOperands(Loc, LHS, RHS);
11719 
11720   Optional<ComparisonCategoryType> CCT =
11721       getComparisonCategoryForBuiltinCmp(Type);
11722   if (!CCT)
11723     return S.InvalidOperands(Loc, LHS, RHS);
11724 
11725   bool HasNarrowing = checkThreeWayNarrowingConversion(
11726       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11727   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11728                                                    RHS.get()->getBeginLoc());
11729   if (HasNarrowing)
11730     return QualType();
11731 
11732   assert(!Type.isNull() && "composite type for <=> has not been set");
11733 
11734   return S.CheckComparisonCategoryType(
11735       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11736 }
11737 
11738 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11739                                                  ExprResult &RHS,
11740                                                  SourceLocation Loc,
11741                                                  BinaryOperatorKind Opc) {
11742   if (Opc == BO_Cmp)
11743     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11744 
11745   // C99 6.5.8p3 / C99 6.5.9p4
11746   QualType Type =
11747       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11748   if (LHS.isInvalid() || RHS.isInvalid())
11749     return QualType();
11750   if (Type.isNull())
11751     return S.InvalidOperands(Loc, LHS, RHS);
11752   assert(Type->isArithmeticType() || Type->isEnumeralType());
11753 
11754   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
11755     return S.InvalidOperands(Loc, LHS, RHS);
11756 
11757   // Check for comparisons of floating point operands using != and ==.
11758   if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
11759     S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
11760 
11761   // The result of comparisons is 'bool' in C++, 'int' in C.
11762   return S.Context.getLogicalOperationType();
11763 }
11764 
11765 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
11766   if (!NullE.get()->getType()->isAnyPointerType())
11767     return;
11768   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
11769   if (!E.get()->getType()->isAnyPointerType() &&
11770       E.get()->isNullPointerConstant(Context,
11771                                      Expr::NPC_ValueDependentIsNotNull) ==
11772         Expr::NPCK_ZeroExpression) {
11773     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
11774       if (CL->getValue() == 0)
11775         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11776             << NullValue
11777             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11778                                             NullValue ? "NULL" : "(void *)0");
11779     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
11780         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
11781         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
11782         if (T == Context.CharTy)
11783           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11784               << NullValue
11785               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11786                                               NullValue ? "NULL" : "(void *)0");
11787       }
11788   }
11789 }
11790 
11791 // C99 6.5.8, C++ [expr.rel]
11792 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
11793                                     SourceLocation Loc,
11794                                     BinaryOperatorKind Opc) {
11795   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
11796   bool IsThreeWay = Opc == BO_Cmp;
11797   bool IsOrdered = IsRelational || IsThreeWay;
11798   auto IsAnyPointerType = [](ExprResult E) {
11799     QualType Ty = E.get()->getType();
11800     return Ty->isPointerType() || Ty->isMemberPointerType();
11801   };
11802 
11803   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
11804   // type, array-to-pointer, ..., conversions are performed on both operands to
11805   // bring them to their composite type.
11806   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
11807   // any type-related checks.
11808   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
11809     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11810     if (LHS.isInvalid())
11811       return QualType();
11812     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11813     if (RHS.isInvalid())
11814       return QualType();
11815   } else {
11816     LHS = DefaultLvalueConversion(LHS.get());
11817     if (LHS.isInvalid())
11818       return QualType();
11819     RHS = DefaultLvalueConversion(RHS.get());
11820     if (RHS.isInvalid())
11821       return QualType();
11822   }
11823 
11824   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
11825   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
11826     CheckPtrComparisonWithNullChar(LHS, RHS);
11827     CheckPtrComparisonWithNullChar(RHS, LHS);
11828   }
11829 
11830   // Handle vector comparisons separately.
11831   if (LHS.get()->getType()->isVectorType() ||
11832       RHS.get()->getType()->isVectorType())
11833     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
11834 
11835   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11836   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11837 
11838   QualType LHSType = LHS.get()->getType();
11839   QualType RHSType = RHS.get()->getType();
11840   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
11841       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
11842     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
11843 
11844   const Expr::NullPointerConstantKind LHSNullKind =
11845       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11846   const Expr::NullPointerConstantKind RHSNullKind =
11847       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11848   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
11849   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
11850 
11851   auto computeResultTy = [&]() {
11852     if (Opc != BO_Cmp)
11853       return Context.getLogicalOperationType();
11854     assert(getLangOpts().CPlusPlus);
11855     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
11856 
11857     QualType CompositeTy = LHS.get()->getType();
11858     assert(!CompositeTy->isReferenceType());
11859 
11860     Optional<ComparisonCategoryType> CCT =
11861         getComparisonCategoryForBuiltinCmp(CompositeTy);
11862     if (!CCT)
11863       return InvalidOperands(Loc, LHS, RHS);
11864 
11865     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
11866       // P0946R0: Comparisons between a null pointer constant and an object
11867       // pointer result in std::strong_equality, which is ill-formed under
11868       // P1959R0.
11869       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
11870           << (LHSIsNull ? LHS.get()->getSourceRange()
11871                         : RHS.get()->getSourceRange());
11872       return QualType();
11873     }
11874 
11875     return CheckComparisonCategoryType(
11876         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
11877   };
11878 
11879   if (!IsOrdered && LHSIsNull != RHSIsNull) {
11880     bool IsEquality = Opc == BO_EQ;
11881     if (RHSIsNull)
11882       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
11883                                    RHS.get()->getSourceRange());
11884     else
11885       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
11886                                    LHS.get()->getSourceRange());
11887   }
11888 
11889   if (IsOrdered && LHSType->isFunctionPointerType() &&
11890       RHSType->isFunctionPointerType()) {
11891     // Valid unless a relational comparison of function pointers
11892     bool IsError = Opc == BO_Cmp;
11893     auto DiagID =
11894         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
11895         : getLangOpts().CPlusPlus
11896             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
11897             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
11898     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11899                       << RHS.get()->getSourceRange();
11900     if (IsError)
11901       return QualType();
11902   }
11903 
11904   if ((LHSType->isIntegerType() && !LHSIsNull) ||
11905       (RHSType->isIntegerType() && !RHSIsNull)) {
11906     // Skip normal pointer conversion checks in this case; we have better
11907     // diagnostics for this below.
11908   } else if (getLangOpts().CPlusPlus) {
11909     // Equality comparison of a function pointer to a void pointer is invalid,
11910     // but we allow it as an extension.
11911     // FIXME: If we really want to allow this, should it be part of composite
11912     // pointer type computation so it works in conditionals too?
11913     if (!IsOrdered &&
11914         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
11915          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
11916       // This is a gcc extension compatibility comparison.
11917       // In a SFINAE context, we treat this as a hard error to maintain
11918       // conformance with the C++ standard.
11919       diagnoseFunctionPointerToVoidComparison(
11920           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
11921 
11922       if (isSFINAEContext())
11923         return QualType();
11924 
11925       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11926       return computeResultTy();
11927     }
11928 
11929     // C++ [expr.eq]p2:
11930     //   If at least one operand is a pointer [...] bring them to their
11931     //   composite pointer type.
11932     // C++ [expr.spaceship]p6
11933     //  If at least one of the operands is of pointer type, [...] bring them
11934     //  to their composite pointer type.
11935     // C++ [expr.rel]p2:
11936     //   If both operands are pointers, [...] bring them to their composite
11937     //   pointer type.
11938     // For <=>, the only valid non-pointer types are arrays and functions, and
11939     // we already decayed those, so this is really the same as the relational
11940     // comparison rule.
11941     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
11942             (IsOrdered ? 2 : 1) &&
11943         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
11944                                          RHSType->isObjCObjectPointerType()))) {
11945       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11946         return QualType();
11947       return computeResultTy();
11948     }
11949   } else if (LHSType->isPointerType() &&
11950              RHSType->isPointerType()) { // C99 6.5.8p2
11951     // All of the following pointer-related warnings are GCC extensions, except
11952     // when handling null pointer constants.
11953     QualType LCanPointeeTy =
11954       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11955     QualType RCanPointeeTy =
11956       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11957 
11958     // C99 6.5.9p2 and C99 6.5.8p2
11959     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
11960                                    RCanPointeeTy.getUnqualifiedType())) {
11961       if (IsRelational) {
11962         // Pointers both need to point to complete or incomplete types
11963         if ((LCanPointeeTy->isIncompleteType() !=
11964              RCanPointeeTy->isIncompleteType()) &&
11965             !getLangOpts().C11) {
11966           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
11967               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
11968               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
11969               << RCanPointeeTy->isIncompleteType();
11970         }
11971       }
11972     } else if (!IsRelational &&
11973                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
11974       // Valid unless comparison between non-null pointer and function pointer
11975       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
11976           && !LHSIsNull && !RHSIsNull)
11977         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
11978                                                 /*isError*/false);
11979     } else {
11980       // Invalid
11981       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
11982     }
11983     if (LCanPointeeTy != RCanPointeeTy) {
11984       // Treat NULL constant as a special case in OpenCL.
11985       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
11986         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
11987           Diag(Loc,
11988                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11989               << LHSType << RHSType << 0 /* comparison */
11990               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11991         }
11992       }
11993       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
11994       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
11995       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
11996                                                : CK_BitCast;
11997       if (LHSIsNull && !RHSIsNull)
11998         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
11999       else
12000         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12001     }
12002     return computeResultTy();
12003   }
12004 
12005   if (getLangOpts().CPlusPlus) {
12006     // C++ [expr.eq]p4:
12007     //   Two operands of type std::nullptr_t or one operand of type
12008     //   std::nullptr_t and the other a null pointer constant compare equal.
12009     if (!IsOrdered && LHSIsNull && RHSIsNull) {
12010       if (LHSType->isNullPtrType()) {
12011         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12012         return computeResultTy();
12013       }
12014       if (RHSType->isNullPtrType()) {
12015         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12016         return computeResultTy();
12017       }
12018     }
12019 
12020     // Comparison of Objective-C pointers and block pointers against nullptr_t.
12021     // These aren't covered by the composite pointer type rules.
12022     if (!IsOrdered && RHSType->isNullPtrType() &&
12023         (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12024       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12025       return computeResultTy();
12026     }
12027     if (!IsOrdered && LHSType->isNullPtrType() &&
12028         (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12029       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12030       return computeResultTy();
12031     }
12032 
12033     if (IsRelational &&
12034         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12035          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12036       // HACK: Relational comparison of nullptr_t against a pointer type is
12037       // invalid per DR583, but we allow it within std::less<> and friends,
12038       // since otherwise common uses of it break.
12039       // FIXME: Consider removing this hack once LWG fixes std::less<> and
12040       // friends to have std::nullptr_t overload candidates.
12041       DeclContext *DC = CurContext;
12042       if (isa<FunctionDecl>(DC))
12043         DC = DC->getParent();
12044       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12045         if (CTSD->isInStdNamespace() &&
12046             llvm::StringSwitch<bool>(CTSD->getName())
12047                 .Cases("less", "less_equal", "greater", "greater_equal", true)
12048                 .Default(false)) {
12049           if (RHSType->isNullPtrType())
12050             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12051           else
12052             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12053           return computeResultTy();
12054         }
12055       }
12056     }
12057 
12058     // C++ [expr.eq]p2:
12059     //   If at least one operand is a pointer to member, [...] bring them to
12060     //   their composite pointer type.
12061     if (!IsOrdered &&
12062         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12063       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12064         return QualType();
12065       else
12066         return computeResultTy();
12067     }
12068   }
12069 
12070   // Handle block pointer types.
12071   if (!IsOrdered && LHSType->isBlockPointerType() &&
12072       RHSType->isBlockPointerType()) {
12073     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12074     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12075 
12076     if (!LHSIsNull && !RHSIsNull &&
12077         !Context.typesAreCompatible(lpointee, rpointee)) {
12078       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12079         << LHSType << RHSType << LHS.get()->getSourceRange()
12080         << RHS.get()->getSourceRange();
12081     }
12082     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12083     return computeResultTy();
12084   }
12085 
12086   // Allow block pointers to be compared with null pointer constants.
12087   if (!IsOrdered
12088       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12089           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12090     if (!LHSIsNull && !RHSIsNull) {
12091       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12092              ->getPointeeType()->isVoidType())
12093             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12094                 ->getPointeeType()->isVoidType())))
12095         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12096           << LHSType << RHSType << LHS.get()->getSourceRange()
12097           << RHS.get()->getSourceRange();
12098     }
12099     if (LHSIsNull && !RHSIsNull)
12100       LHS = ImpCastExprToType(LHS.get(), RHSType,
12101                               RHSType->isPointerType() ? CK_BitCast
12102                                 : CK_AnyPointerToBlockPointerCast);
12103     else
12104       RHS = ImpCastExprToType(RHS.get(), LHSType,
12105                               LHSType->isPointerType() ? CK_BitCast
12106                                 : CK_AnyPointerToBlockPointerCast);
12107     return computeResultTy();
12108   }
12109 
12110   if (LHSType->isObjCObjectPointerType() ||
12111       RHSType->isObjCObjectPointerType()) {
12112     const PointerType *LPT = LHSType->getAs<PointerType>();
12113     const PointerType *RPT = RHSType->getAs<PointerType>();
12114     if (LPT || RPT) {
12115       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12116       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12117 
12118       if (!LPtrToVoid && !RPtrToVoid &&
12119           !Context.typesAreCompatible(LHSType, RHSType)) {
12120         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12121                                           /*isError*/false);
12122       }
12123       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12124       // the RHS, but we have test coverage for this behavior.
12125       // FIXME: Consider using convertPointersToCompositeType in C++.
12126       if (LHSIsNull && !RHSIsNull) {
12127         Expr *E = LHS.get();
12128         if (getLangOpts().ObjCAutoRefCount)
12129           CheckObjCConversion(SourceRange(), RHSType, E,
12130                               CCK_ImplicitConversion);
12131         LHS = ImpCastExprToType(E, RHSType,
12132                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12133       }
12134       else {
12135         Expr *E = RHS.get();
12136         if (getLangOpts().ObjCAutoRefCount)
12137           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12138                               /*Diagnose=*/true,
12139                               /*DiagnoseCFAudited=*/false, Opc);
12140         RHS = ImpCastExprToType(E, LHSType,
12141                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12142       }
12143       return computeResultTy();
12144     }
12145     if (LHSType->isObjCObjectPointerType() &&
12146         RHSType->isObjCObjectPointerType()) {
12147       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12148         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12149                                           /*isError*/false);
12150       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12151         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12152 
12153       if (LHSIsNull && !RHSIsNull)
12154         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12155       else
12156         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12157       return computeResultTy();
12158     }
12159 
12160     if (!IsOrdered && LHSType->isBlockPointerType() &&
12161         RHSType->isBlockCompatibleObjCPointerType(Context)) {
12162       LHS = ImpCastExprToType(LHS.get(), RHSType,
12163                               CK_BlockPointerToObjCPointerCast);
12164       return computeResultTy();
12165     } else if (!IsOrdered &&
12166                LHSType->isBlockCompatibleObjCPointerType(Context) &&
12167                RHSType->isBlockPointerType()) {
12168       RHS = ImpCastExprToType(RHS.get(), LHSType,
12169                               CK_BlockPointerToObjCPointerCast);
12170       return computeResultTy();
12171     }
12172   }
12173   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12174       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12175     unsigned DiagID = 0;
12176     bool isError = false;
12177     if (LangOpts.DebuggerSupport) {
12178       // Under a debugger, allow the comparison of pointers to integers,
12179       // since users tend to want to compare addresses.
12180     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12181                (RHSIsNull && RHSType->isIntegerType())) {
12182       if (IsOrdered) {
12183         isError = getLangOpts().CPlusPlus;
12184         DiagID =
12185           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12186                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12187       }
12188     } else if (getLangOpts().CPlusPlus) {
12189       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12190       isError = true;
12191     } else if (IsOrdered)
12192       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12193     else
12194       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12195 
12196     if (DiagID) {
12197       Diag(Loc, DiagID)
12198         << LHSType << RHSType << LHS.get()->getSourceRange()
12199         << RHS.get()->getSourceRange();
12200       if (isError)
12201         return QualType();
12202     }
12203 
12204     if (LHSType->isIntegerType())
12205       LHS = ImpCastExprToType(LHS.get(), RHSType,
12206                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12207     else
12208       RHS = ImpCastExprToType(RHS.get(), LHSType,
12209                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12210     return computeResultTy();
12211   }
12212 
12213   // Handle block pointers.
12214   if (!IsOrdered && RHSIsNull
12215       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12216     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12217     return computeResultTy();
12218   }
12219   if (!IsOrdered && LHSIsNull
12220       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12221     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12222     return computeResultTy();
12223   }
12224 
12225   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12226     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12227       return computeResultTy();
12228     }
12229 
12230     if (LHSType->isQueueT() && RHSType->isQueueT()) {
12231       return computeResultTy();
12232     }
12233 
12234     if (LHSIsNull && RHSType->isQueueT()) {
12235       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12236       return computeResultTy();
12237     }
12238 
12239     if (LHSType->isQueueT() && RHSIsNull) {
12240       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12241       return computeResultTy();
12242     }
12243   }
12244 
12245   return InvalidOperands(Loc, LHS, RHS);
12246 }
12247 
12248 // Return a signed ext_vector_type that is of identical size and number of
12249 // elements. For floating point vectors, return an integer type of identical
12250 // size and number of elements. In the non ext_vector_type case, search from
12251 // the largest type to the smallest type to avoid cases where long long == long,
12252 // where long gets picked over long long.
12253 QualType Sema::GetSignedVectorType(QualType V) {
12254   const VectorType *VTy = V->castAs<VectorType>();
12255   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12256 
12257   if (isa<ExtVectorType>(VTy)) {
12258     if (TypeSize == Context.getTypeSize(Context.CharTy))
12259       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12260     else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12261       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12262     else if (TypeSize == Context.getTypeSize(Context.IntTy))
12263       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12264     else if (TypeSize == Context.getTypeSize(Context.LongTy))
12265       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12266     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12267            "Unhandled vector element size in vector compare");
12268     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12269   }
12270 
12271   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12272     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12273                                  VectorType::GenericVector);
12274   else if (TypeSize == Context.getTypeSize(Context.LongTy))
12275     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12276                                  VectorType::GenericVector);
12277   else if (TypeSize == Context.getTypeSize(Context.IntTy))
12278     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12279                                  VectorType::GenericVector);
12280   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12281     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12282                                  VectorType::GenericVector);
12283   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12284          "Unhandled vector element size in vector compare");
12285   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12286                                VectorType::GenericVector);
12287 }
12288 
12289 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
12290 /// operates on extended vector types.  Instead of producing an IntTy result,
12291 /// like a scalar comparison, a vector comparison produces a vector of integer
12292 /// types.
12293 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12294                                           SourceLocation Loc,
12295                                           BinaryOperatorKind Opc) {
12296   if (Opc == BO_Cmp) {
12297     Diag(Loc, diag::err_three_way_vector_comparison);
12298     return QualType();
12299   }
12300 
12301   // Check to make sure we're operating on vectors of the same type and width,
12302   // Allowing one side to be a scalar of element type.
12303   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
12304                               /*AllowBothBool*/true,
12305                               /*AllowBoolConversions*/getLangOpts().ZVector);
12306   if (vType.isNull())
12307     return vType;
12308 
12309   QualType LHSType = LHS.get()->getType();
12310 
12311   // Determine the return type of a vector compare. By default clang will return
12312   // a scalar for all vector compares except vector bool and vector pixel.
12313   // With the gcc compiler we will always return a vector type and with the xl
12314   // compiler we will always return a scalar type. This switch allows choosing
12315   // which behavior is prefered.
12316   if (getLangOpts().AltiVec) {
12317     switch (getLangOpts().getAltivecSrcCompat()) {
12318     case LangOptions::AltivecSrcCompatKind::Mixed:
12319       // If AltiVec, the comparison results in a numeric type, i.e.
12320       // bool for C++, int for C
12321       if (vType->castAs<VectorType>()->getVectorKind() ==
12322           VectorType::AltiVecVector)
12323         return Context.getLogicalOperationType();
12324       else
12325         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12326       break;
12327     case LangOptions::AltivecSrcCompatKind::GCC:
12328       // For GCC we always return the vector type.
12329       break;
12330     case LangOptions::AltivecSrcCompatKind::XL:
12331       return Context.getLogicalOperationType();
12332       break;
12333     }
12334   }
12335 
12336   // For non-floating point types, check for self-comparisons of the form
12337   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12338   // often indicate logic errors in the program.
12339   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12340 
12341   // Check for comparisons of floating point operands using != and ==.
12342   if (BinaryOperator::isEqualityOp(Opc) &&
12343       LHSType->hasFloatingRepresentation()) {
12344     assert(RHS.get()->getType()->hasFloatingRepresentation());
12345     CheckFloatComparison(Loc, LHS.get(), RHS.get());
12346   }
12347 
12348   // Return a signed type for the vector.
12349   return GetSignedVectorType(vType);
12350 }
12351 
12352 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12353                                     const ExprResult &XorRHS,
12354                                     const SourceLocation Loc) {
12355   // Do not diagnose macros.
12356   if (Loc.isMacroID())
12357     return;
12358 
12359   // Do not diagnose if both LHS and RHS are macros.
12360   if (XorLHS.get()->getExprLoc().isMacroID() &&
12361       XorRHS.get()->getExprLoc().isMacroID())
12362     return;
12363 
12364   bool Negative = false;
12365   bool ExplicitPlus = false;
12366   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12367   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12368 
12369   if (!LHSInt)
12370     return;
12371   if (!RHSInt) {
12372     // Check negative literals.
12373     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12374       UnaryOperatorKind Opc = UO->getOpcode();
12375       if (Opc != UO_Minus && Opc != UO_Plus)
12376         return;
12377       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12378       if (!RHSInt)
12379         return;
12380       Negative = (Opc == UO_Minus);
12381       ExplicitPlus = !Negative;
12382     } else {
12383       return;
12384     }
12385   }
12386 
12387   const llvm::APInt &LeftSideValue = LHSInt->getValue();
12388   llvm::APInt RightSideValue = RHSInt->getValue();
12389   if (LeftSideValue != 2 && LeftSideValue != 10)
12390     return;
12391 
12392   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12393     return;
12394 
12395   CharSourceRange ExprRange = CharSourceRange::getCharRange(
12396       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12397   llvm::StringRef ExprStr =
12398       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12399 
12400   CharSourceRange XorRange =
12401       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12402   llvm::StringRef XorStr =
12403       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12404   // Do not diagnose if xor keyword/macro is used.
12405   if (XorStr == "xor")
12406     return;
12407 
12408   std::string LHSStr = std::string(Lexer::getSourceText(
12409       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12410       S.getSourceManager(), S.getLangOpts()));
12411   std::string RHSStr = std::string(Lexer::getSourceText(
12412       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12413       S.getSourceManager(), S.getLangOpts()));
12414 
12415   if (Negative) {
12416     RightSideValue = -RightSideValue;
12417     RHSStr = "-" + RHSStr;
12418   } else if (ExplicitPlus) {
12419     RHSStr = "+" + RHSStr;
12420   }
12421 
12422   StringRef LHSStrRef = LHSStr;
12423   StringRef RHSStrRef = RHSStr;
12424   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12425   // literals.
12426   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
12427       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
12428       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
12429       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
12430       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
12431       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
12432       LHSStrRef.find('\'') != StringRef::npos ||
12433       RHSStrRef.find('\'') != StringRef::npos)
12434     return;
12435 
12436   bool SuggestXor =
12437       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12438   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12439   int64_t RightSideIntValue = RightSideValue.getSExtValue();
12440   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12441     std::string SuggestedExpr = "1 << " + RHSStr;
12442     bool Overflow = false;
12443     llvm::APInt One = (LeftSideValue - 1);
12444     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12445     if (Overflow) {
12446       if (RightSideIntValue < 64)
12447         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12448             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
12449             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12450       else if (RightSideIntValue == 64)
12451         S.Diag(Loc, diag::warn_xor_used_as_pow)
12452             << ExprStr << toString(XorValue, 10, true);
12453       else
12454         return;
12455     } else {
12456       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12457           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
12458           << toString(PowValue, 10, true)
12459           << FixItHint::CreateReplacement(
12460                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12461     }
12462 
12463     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12464         << ("0x2 ^ " + RHSStr) << SuggestXor;
12465   } else if (LeftSideValue == 10) {
12466     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12467     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12468         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
12469         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12470     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12471         << ("0xA ^ " + RHSStr) << SuggestXor;
12472   }
12473 }
12474 
12475 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12476                                           SourceLocation Loc) {
12477   // Ensure that either both operands are of the same vector type, or
12478   // one operand is of a vector type and the other is of its element type.
12479   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12480                                        /*AllowBothBool*/true,
12481                                        /*AllowBoolConversions*/false);
12482   if (vType.isNull())
12483     return InvalidOperands(Loc, LHS, RHS);
12484   if (getLangOpts().OpenCL &&
12485       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
12486       vType->hasFloatingRepresentation())
12487     return InvalidOperands(Loc, LHS, RHS);
12488   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12489   //        usage of the logical operators && and || with vectors in C. This
12490   //        check could be notionally dropped.
12491   if (!getLangOpts().CPlusPlus &&
12492       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12493     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12494 
12495   return GetSignedVectorType(LHS.get()->getType());
12496 }
12497 
12498 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12499                                               SourceLocation Loc,
12500                                               bool IsCompAssign) {
12501   if (!IsCompAssign) {
12502     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12503     if (LHS.isInvalid())
12504       return QualType();
12505   }
12506   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12507   if (RHS.isInvalid())
12508     return QualType();
12509 
12510   // For conversion purposes, we ignore any qualifiers.
12511   // For example, "const float" and "float" are equivalent.
12512   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12513   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12514 
12515   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12516   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12517   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12518 
12519   if (Context.hasSameType(LHSType, RHSType))
12520     return LHSType;
12521 
12522   // Type conversion may change LHS/RHS. Keep copies to the original results, in
12523   // case we have to return InvalidOperands.
12524   ExprResult OriginalLHS = LHS;
12525   ExprResult OriginalRHS = RHS;
12526   if (LHSMatType && !RHSMatType) {
12527     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12528     if (!RHS.isInvalid())
12529       return LHSType;
12530 
12531     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12532   }
12533 
12534   if (!LHSMatType && RHSMatType) {
12535     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12536     if (!LHS.isInvalid())
12537       return RHSType;
12538     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12539   }
12540 
12541   return InvalidOperands(Loc, LHS, RHS);
12542 }
12543 
12544 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12545                                            SourceLocation Loc,
12546                                            bool IsCompAssign) {
12547   if (!IsCompAssign) {
12548     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12549     if (LHS.isInvalid())
12550       return QualType();
12551   }
12552   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12553   if (RHS.isInvalid())
12554     return QualType();
12555 
12556   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12557   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12558   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12559 
12560   if (LHSMatType && RHSMatType) {
12561     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12562       return InvalidOperands(Loc, LHS, RHS);
12563 
12564     if (!Context.hasSameType(LHSMatType->getElementType(),
12565                              RHSMatType->getElementType()))
12566       return InvalidOperands(Loc, LHS, RHS);
12567 
12568     return Context.getConstantMatrixType(LHSMatType->getElementType(),
12569                                          LHSMatType->getNumRows(),
12570                                          RHSMatType->getNumColumns());
12571   }
12572   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12573 }
12574 
12575 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12576                                            SourceLocation Loc,
12577                                            BinaryOperatorKind Opc) {
12578   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12579 
12580   bool IsCompAssign =
12581       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12582 
12583   if (LHS.get()->getType()->isVectorType() ||
12584       RHS.get()->getType()->isVectorType()) {
12585     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12586         RHS.get()->getType()->hasIntegerRepresentation())
12587       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12588                         /*AllowBothBool*/true,
12589                         /*AllowBoolConversions*/getLangOpts().ZVector);
12590     return InvalidOperands(Loc, LHS, RHS);
12591   }
12592 
12593   if (Opc == BO_And)
12594     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12595 
12596   if (LHS.get()->getType()->hasFloatingRepresentation() ||
12597       RHS.get()->getType()->hasFloatingRepresentation())
12598     return InvalidOperands(Loc, LHS, RHS);
12599 
12600   ExprResult LHSResult = LHS, RHSResult = RHS;
12601   QualType compType = UsualArithmeticConversions(
12602       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12603   if (LHSResult.isInvalid() || RHSResult.isInvalid())
12604     return QualType();
12605   LHS = LHSResult.get();
12606   RHS = RHSResult.get();
12607 
12608   if (Opc == BO_Xor)
12609     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12610 
12611   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12612     return compType;
12613   return InvalidOperands(Loc, LHS, RHS);
12614 }
12615 
12616 // C99 6.5.[13,14]
12617 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12618                                            SourceLocation Loc,
12619                                            BinaryOperatorKind Opc) {
12620   // Check vector operands differently.
12621   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
12622     return CheckVectorLogicalOperands(LHS, RHS, Loc);
12623 
12624   bool EnumConstantInBoolContext = false;
12625   for (const ExprResult &HS : {LHS, RHS}) {
12626     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
12627       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
12628       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
12629         EnumConstantInBoolContext = true;
12630     }
12631   }
12632 
12633   if (EnumConstantInBoolContext)
12634     Diag(Loc, diag::warn_enum_constant_in_bool_context);
12635 
12636   // Diagnose cases where the user write a logical and/or but probably meant a
12637   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
12638   // is a constant.
12639   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
12640       !LHS.get()->getType()->isBooleanType() &&
12641       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
12642       // Don't warn in macros or template instantiations.
12643       !Loc.isMacroID() && !inTemplateInstantiation()) {
12644     // If the RHS can be constant folded, and if it constant folds to something
12645     // that isn't 0 or 1 (which indicate a potential logical operation that
12646     // happened to fold to true/false) then warn.
12647     // Parens on the RHS are ignored.
12648     Expr::EvalResult EVResult;
12649     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
12650       llvm::APSInt Result = EVResult.Val.getInt();
12651       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
12652            !RHS.get()->getExprLoc().isMacroID()) ||
12653           (Result != 0 && Result != 1)) {
12654         Diag(Loc, diag::warn_logical_instead_of_bitwise)
12655           << RHS.get()->getSourceRange()
12656           << (Opc == BO_LAnd ? "&&" : "||");
12657         // Suggest replacing the logical operator with the bitwise version
12658         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
12659             << (Opc == BO_LAnd ? "&" : "|")
12660             << FixItHint::CreateReplacement(SourceRange(
12661                                                  Loc, getLocForEndOfToken(Loc)),
12662                                             Opc == BO_LAnd ? "&" : "|");
12663         if (Opc == BO_LAnd)
12664           // Suggest replacing "Foo() && kNonZero" with "Foo()"
12665           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
12666               << FixItHint::CreateRemoval(
12667                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
12668                                  RHS.get()->getEndLoc()));
12669       }
12670     }
12671   }
12672 
12673   if (!Context.getLangOpts().CPlusPlus) {
12674     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
12675     // not operate on the built-in scalar and vector float types.
12676     if (Context.getLangOpts().OpenCL &&
12677         Context.getLangOpts().OpenCLVersion < 120) {
12678       if (LHS.get()->getType()->isFloatingType() ||
12679           RHS.get()->getType()->isFloatingType())
12680         return InvalidOperands(Loc, LHS, RHS);
12681     }
12682 
12683     LHS = UsualUnaryConversions(LHS.get());
12684     if (LHS.isInvalid())
12685       return QualType();
12686 
12687     RHS = UsualUnaryConversions(RHS.get());
12688     if (RHS.isInvalid())
12689       return QualType();
12690 
12691     if (!LHS.get()->getType()->isScalarType() ||
12692         !RHS.get()->getType()->isScalarType())
12693       return InvalidOperands(Loc, LHS, RHS);
12694 
12695     return Context.IntTy;
12696   }
12697 
12698   // The following is safe because we only use this method for
12699   // non-overloadable operands.
12700 
12701   // C++ [expr.log.and]p1
12702   // C++ [expr.log.or]p1
12703   // The operands are both contextually converted to type bool.
12704   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
12705   if (LHSRes.isInvalid())
12706     return InvalidOperands(Loc, LHS, RHS);
12707   LHS = LHSRes;
12708 
12709   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
12710   if (RHSRes.isInvalid())
12711     return InvalidOperands(Loc, LHS, RHS);
12712   RHS = RHSRes;
12713 
12714   // C++ [expr.log.and]p2
12715   // C++ [expr.log.or]p2
12716   // The result is a bool.
12717   return Context.BoolTy;
12718 }
12719 
12720 static bool IsReadonlyMessage(Expr *E, Sema &S) {
12721   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12722   if (!ME) return false;
12723   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
12724   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
12725       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
12726   if (!Base) return false;
12727   return Base->getMethodDecl() != nullptr;
12728 }
12729 
12730 /// Is the given expression (which must be 'const') a reference to a
12731 /// variable which was originally non-const, but which has become
12732 /// 'const' due to being captured within a block?
12733 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
12734 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
12735   assert(E->isLValue() && E->getType().isConstQualified());
12736   E = E->IgnoreParens();
12737 
12738   // Must be a reference to a declaration from an enclosing scope.
12739   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
12740   if (!DRE) return NCCK_None;
12741   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
12742 
12743   // The declaration must be a variable which is not declared 'const'.
12744   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
12745   if (!var) return NCCK_None;
12746   if (var->getType().isConstQualified()) return NCCK_None;
12747   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
12748 
12749   // Decide whether the first capture was for a block or a lambda.
12750   DeclContext *DC = S.CurContext, *Prev = nullptr;
12751   // Decide whether the first capture was for a block or a lambda.
12752   while (DC) {
12753     // For init-capture, it is possible that the variable belongs to the
12754     // template pattern of the current context.
12755     if (auto *FD = dyn_cast<FunctionDecl>(DC))
12756       if (var->isInitCapture() &&
12757           FD->getTemplateInstantiationPattern() == var->getDeclContext())
12758         break;
12759     if (DC == var->getDeclContext())
12760       break;
12761     Prev = DC;
12762     DC = DC->getParent();
12763   }
12764   // Unless we have an init-capture, we've gone one step too far.
12765   if (!var->isInitCapture())
12766     DC = Prev;
12767   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
12768 }
12769 
12770 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
12771   Ty = Ty.getNonReferenceType();
12772   if (IsDereference && Ty->isPointerType())
12773     Ty = Ty->getPointeeType();
12774   return !Ty.isConstQualified();
12775 }
12776 
12777 // Update err_typecheck_assign_const and note_typecheck_assign_const
12778 // when this enum is changed.
12779 enum {
12780   ConstFunction,
12781   ConstVariable,
12782   ConstMember,
12783   ConstMethod,
12784   NestedConstMember,
12785   ConstUnknown,  // Keep as last element
12786 };
12787 
12788 /// Emit the "read-only variable not assignable" error and print notes to give
12789 /// more information about why the variable is not assignable, such as pointing
12790 /// to the declaration of a const variable, showing that a method is const, or
12791 /// that the function is returning a const reference.
12792 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
12793                                     SourceLocation Loc) {
12794   SourceRange ExprRange = E->getSourceRange();
12795 
12796   // Only emit one error on the first const found.  All other consts will emit
12797   // a note to the error.
12798   bool DiagnosticEmitted = false;
12799 
12800   // Track if the current expression is the result of a dereference, and if the
12801   // next checked expression is the result of a dereference.
12802   bool IsDereference = false;
12803   bool NextIsDereference = false;
12804 
12805   // Loop to process MemberExpr chains.
12806   while (true) {
12807     IsDereference = NextIsDereference;
12808 
12809     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
12810     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12811       NextIsDereference = ME->isArrow();
12812       const ValueDecl *VD = ME->getMemberDecl();
12813       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
12814         // Mutable fields can be modified even if the class is const.
12815         if (Field->isMutable()) {
12816           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
12817           break;
12818         }
12819 
12820         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
12821           if (!DiagnosticEmitted) {
12822             S.Diag(Loc, diag::err_typecheck_assign_const)
12823                 << ExprRange << ConstMember << false /*static*/ << Field
12824                 << Field->getType();
12825             DiagnosticEmitted = true;
12826           }
12827           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12828               << ConstMember << false /*static*/ << Field << Field->getType()
12829               << Field->getSourceRange();
12830         }
12831         E = ME->getBase();
12832         continue;
12833       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
12834         if (VDecl->getType().isConstQualified()) {
12835           if (!DiagnosticEmitted) {
12836             S.Diag(Loc, diag::err_typecheck_assign_const)
12837                 << ExprRange << ConstMember << true /*static*/ << VDecl
12838                 << VDecl->getType();
12839             DiagnosticEmitted = true;
12840           }
12841           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12842               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
12843               << VDecl->getSourceRange();
12844         }
12845         // Static fields do not inherit constness from parents.
12846         break;
12847       }
12848       break; // End MemberExpr
12849     } else if (const ArraySubscriptExpr *ASE =
12850                    dyn_cast<ArraySubscriptExpr>(E)) {
12851       E = ASE->getBase()->IgnoreParenImpCasts();
12852       continue;
12853     } else if (const ExtVectorElementExpr *EVE =
12854                    dyn_cast<ExtVectorElementExpr>(E)) {
12855       E = EVE->getBase()->IgnoreParenImpCasts();
12856       continue;
12857     }
12858     break;
12859   }
12860 
12861   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
12862     // Function calls
12863     const FunctionDecl *FD = CE->getDirectCallee();
12864     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
12865       if (!DiagnosticEmitted) {
12866         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12867                                                       << ConstFunction << FD;
12868         DiagnosticEmitted = true;
12869       }
12870       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
12871              diag::note_typecheck_assign_const)
12872           << ConstFunction << FD << FD->getReturnType()
12873           << FD->getReturnTypeSourceRange();
12874     }
12875   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12876     // Point to variable declaration.
12877     if (const ValueDecl *VD = DRE->getDecl()) {
12878       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
12879         if (!DiagnosticEmitted) {
12880           S.Diag(Loc, diag::err_typecheck_assign_const)
12881               << ExprRange << ConstVariable << VD << VD->getType();
12882           DiagnosticEmitted = true;
12883         }
12884         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12885             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
12886       }
12887     }
12888   } else if (isa<CXXThisExpr>(E)) {
12889     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
12890       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
12891         if (MD->isConst()) {
12892           if (!DiagnosticEmitted) {
12893             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12894                                                           << ConstMethod << MD;
12895             DiagnosticEmitted = true;
12896           }
12897           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
12898               << ConstMethod << MD << MD->getSourceRange();
12899         }
12900       }
12901     }
12902   }
12903 
12904   if (DiagnosticEmitted)
12905     return;
12906 
12907   // Can't determine a more specific message, so display the generic error.
12908   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
12909 }
12910 
12911 enum OriginalExprKind {
12912   OEK_Variable,
12913   OEK_Member,
12914   OEK_LValue
12915 };
12916 
12917 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
12918                                          const RecordType *Ty,
12919                                          SourceLocation Loc, SourceRange Range,
12920                                          OriginalExprKind OEK,
12921                                          bool &DiagnosticEmitted) {
12922   std::vector<const RecordType *> RecordTypeList;
12923   RecordTypeList.push_back(Ty);
12924   unsigned NextToCheckIndex = 0;
12925   // We walk the record hierarchy breadth-first to ensure that we print
12926   // diagnostics in field nesting order.
12927   while (RecordTypeList.size() > NextToCheckIndex) {
12928     bool IsNested = NextToCheckIndex > 0;
12929     for (const FieldDecl *Field :
12930          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
12931       // First, check every field for constness.
12932       QualType FieldTy = Field->getType();
12933       if (FieldTy.isConstQualified()) {
12934         if (!DiagnosticEmitted) {
12935           S.Diag(Loc, diag::err_typecheck_assign_const)
12936               << Range << NestedConstMember << OEK << VD
12937               << IsNested << Field;
12938           DiagnosticEmitted = true;
12939         }
12940         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
12941             << NestedConstMember << IsNested << Field
12942             << FieldTy << Field->getSourceRange();
12943       }
12944 
12945       // Then we append it to the list to check next in order.
12946       FieldTy = FieldTy.getCanonicalType();
12947       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
12948         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
12949           RecordTypeList.push_back(FieldRecTy);
12950       }
12951     }
12952     ++NextToCheckIndex;
12953   }
12954 }
12955 
12956 /// Emit an error for the case where a record we are trying to assign to has a
12957 /// const-qualified field somewhere in its hierarchy.
12958 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
12959                                          SourceLocation Loc) {
12960   QualType Ty = E->getType();
12961   assert(Ty->isRecordType() && "lvalue was not record?");
12962   SourceRange Range = E->getSourceRange();
12963   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
12964   bool DiagEmitted = false;
12965 
12966   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
12967     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
12968             Range, OEK_Member, DiagEmitted);
12969   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12970     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
12971             Range, OEK_Variable, DiagEmitted);
12972   else
12973     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
12974             Range, OEK_LValue, DiagEmitted);
12975   if (!DiagEmitted)
12976     DiagnoseConstAssignment(S, E, Loc);
12977 }
12978 
12979 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
12980 /// emit an error and return true.  If so, return false.
12981 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
12982   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
12983 
12984   S.CheckShadowingDeclModification(E, Loc);
12985 
12986   SourceLocation OrigLoc = Loc;
12987   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
12988                                                               &Loc);
12989   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
12990     IsLV = Expr::MLV_InvalidMessageExpression;
12991   if (IsLV == Expr::MLV_Valid)
12992     return false;
12993 
12994   unsigned DiagID = 0;
12995   bool NeedType = false;
12996   switch (IsLV) { // C99 6.5.16p2
12997   case Expr::MLV_ConstQualified:
12998     // Use a specialized diagnostic when we're assigning to an object
12999     // from an enclosing function or block.
13000     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13001       if (NCCK == NCCK_Block)
13002         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13003       else
13004         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13005       break;
13006     }
13007 
13008     // In ARC, use some specialized diagnostics for occasions where we
13009     // infer 'const'.  These are always pseudo-strong variables.
13010     if (S.getLangOpts().ObjCAutoRefCount) {
13011       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13012       if (declRef && isa<VarDecl>(declRef->getDecl())) {
13013         VarDecl *var = cast<VarDecl>(declRef->getDecl());
13014 
13015         // Use the normal diagnostic if it's pseudo-__strong but the
13016         // user actually wrote 'const'.
13017         if (var->isARCPseudoStrong() &&
13018             (!var->getTypeSourceInfo() ||
13019              !var->getTypeSourceInfo()->getType().isConstQualified())) {
13020           // There are three pseudo-strong cases:
13021           //  - self
13022           ObjCMethodDecl *method = S.getCurMethodDecl();
13023           if (method && var == method->getSelfDecl()) {
13024             DiagID = method->isClassMethod()
13025               ? diag::err_typecheck_arc_assign_self_class_method
13026               : diag::err_typecheck_arc_assign_self;
13027 
13028           //  - Objective-C externally_retained attribute.
13029           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13030                      isa<ParmVarDecl>(var)) {
13031             DiagID = diag::err_typecheck_arc_assign_externally_retained;
13032 
13033           //  - fast enumeration variables
13034           } else {
13035             DiagID = diag::err_typecheck_arr_assign_enumeration;
13036           }
13037 
13038           SourceRange Assign;
13039           if (Loc != OrigLoc)
13040             Assign = SourceRange(OrigLoc, OrigLoc);
13041           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13042           // We need to preserve the AST regardless, so migration tool
13043           // can do its job.
13044           return false;
13045         }
13046       }
13047     }
13048 
13049     // If none of the special cases above are triggered, then this is a
13050     // simple const assignment.
13051     if (DiagID == 0) {
13052       DiagnoseConstAssignment(S, E, Loc);
13053       return true;
13054     }
13055 
13056     break;
13057   case Expr::MLV_ConstAddrSpace:
13058     DiagnoseConstAssignment(S, E, Loc);
13059     return true;
13060   case Expr::MLV_ConstQualifiedField:
13061     DiagnoseRecursiveConstFields(S, E, Loc);
13062     return true;
13063   case Expr::MLV_ArrayType:
13064   case Expr::MLV_ArrayTemporary:
13065     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13066     NeedType = true;
13067     break;
13068   case Expr::MLV_NotObjectType:
13069     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13070     NeedType = true;
13071     break;
13072   case Expr::MLV_LValueCast:
13073     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13074     break;
13075   case Expr::MLV_Valid:
13076     llvm_unreachable("did not take early return for MLV_Valid");
13077   case Expr::MLV_InvalidExpression:
13078   case Expr::MLV_MemberFunction:
13079   case Expr::MLV_ClassTemporary:
13080     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13081     break;
13082   case Expr::MLV_IncompleteType:
13083   case Expr::MLV_IncompleteVoidType:
13084     return S.RequireCompleteType(Loc, E->getType(),
13085              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13086   case Expr::MLV_DuplicateVectorComponents:
13087     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13088     break;
13089   case Expr::MLV_NoSetterProperty:
13090     llvm_unreachable("readonly properties should be processed differently");
13091   case Expr::MLV_InvalidMessageExpression:
13092     DiagID = diag::err_readonly_message_assignment;
13093     break;
13094   case Expr::MLV_SubObjCPropertySetting:
13095     DiagID = diag::err_no_subobject_property_setting;
13096     break;
13097   }
13098 
13099   SourceRange Assign;
13100   if (Loc != OrigLoc)
13101     Assign = SourceRange(OrigLoc, OrigLoc);
13102   if (NeedType)
13103     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13104   else
13105     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13106   return true;
13107 }
13108 
13109 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13110                                          SourceLocation Loc,
13111                                          Sema &Sema) {
13112   if (Sema.inTemplateInstantiation())
13113     return;
13114   if (Sema.isUnevaluatedContext())
13115     return;
13116   if (Loc.isInvalid() || Loc.isMacroID())
13117     return;
13118   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13119     return;
13120 
13121   // C / C++ fields
13122   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13123   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13124   if (ML && MR) {
13125     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13126       return;
13127     const ValueDecl *LHSDecl =
13128         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13129     const ValueDecl *RHSDecl =
13130         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13131     if (LHSDecl != RHSDecl)
13132       return;
13133     if (LHSDecl->getType().isVolatileQualified())
13134       return;
13135     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13136       if (RefTy->getPointeeType().isVolatileQualified())
13137         return;
13138 
13139     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13140   }
13141 
13142   // Objective-C instance variables
13143   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13144   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13145   if (OL && OR && OL->getDecl() == OR->getDecl()) {
13146     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13147     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13148     if (RL && RR && RL->getDecl() == RR->getDecl())
13149       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13150   }
13151 }
13152 
13153 // C99 6.5.16.1
13154 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13155                                        SourceLocation Loc,
13156                                        QualType CompoundType) {
13157   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13158 
13159   // Verify that LHS is a modifiable lvalue, and emit error if not.
13160   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13161     return QualType();
13162 
13163   QualType LHSType = LHSExpr->getType();
13164   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13165                                              CompoundType;
13166   // OpenCL v1.2 s6.1.1.1 p2:
13167   // The half data type can only be used to declare a pointer to a buffer that
13168   // contains half values
13169   if (getLangOpts().OpenCL &&
13170       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13171       LHSType->isHalfType()) {
13172     Diag(Loc, diag::err_opencl_half_load_store) << 1
13173         << LHSType.getUnqualifiedType();
13174     return QualType();
13175   }
13176 
13177   AssignConvertType ConvTy;
13178   if (CompoundType.isNull()) {
13179     Expr *RHSCheck = RHS.get();
13180 
13181     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13182 
13183     QualType LHSTy(LHSType);
13184     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13185     if (RHS.isInvalid())
13186       return QualType();
13187     // Special case of NSObject attributes on c-style pointer types.
13188     if (ConvTy == IncompatiblePointer &&
13189         ((Context.isObjCNSObjectType(LHSType) &&
13190           RHSType->isObjCObjectPointerType()) ||
13191          (Context.isObjCNSObjectType(RHSType) &&
13192           LHSType->isObjCObjectPointerType())))
13193       ConvTy = Compatible;
13194 
13195     if (ConvTy == Compatible &&
13196         LHSType->isObjCObjectType())
13197         Diag(Loc, diag::err_objc_object_assignment)
13198           << LHSType;
13199 
13200     // If the RHS is a unary plus or minus, check to see if they = and + are
13201     // right next to each other.  If so, the user may have typo'd "x =+ 4"
13202     // instead of "x += 4".
13203     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13204       RHSCheck = ICE->getSubExpr();
13205     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13206       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13207           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13208           // Only if the two operators are exactly adjacent.
13209           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13210           // And there is a space or other character before the subexpr of the
13211           // unary +/-.  We don't want to warn on "x=-1".
13212           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13213           UO->getSubExpr()->getBeginLoc().isFileID()) {
13214         Diag(Loc, diag::warn_not_compound_assign)
13215           << (UO->getOpcode() == UO_Plus ? "+" : "-")
13216           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13217       }
13218     }
13219 
13220     if (ConvTy == Compatible) {
13221       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13222         // Warn about retain cycles where a block captures the LHS, but
13223         // not if the LHS is a simple variable into which the block is
13224         // being stored...unless that variable can be captured by reference!
13225         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13226         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13227         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13228           checkRetainCycles(LHSExpr, RHS.get());
13229       }
13230 
13231       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13232           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13233         // It is safe to assign a weak reference into a strong variable.
13234         // Although this code can still have problems:
13235         //   id x = self.weakProp;
13236         //   id y = self.weakProp;
13237         // we do not warn to warn spuriously when 'x' and 'y' are on separate
13238         // paths through the function. This should be revisited if
13239         // -Wrepeated-use-of-weak is made flow-sensitive.
13240         // For ObjCWeak only, we do not warn if the assign is to a non-weak
13241         // variable, which will be valid for the current autorelease scope.
13242         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13243                              RHS.get()->getBeginLoc()))
13244           getCurFunction()->markSafeWeakUse(RHS.get());
13245 
13246       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13247         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13248       }
13249     }
13250   } else {
13251     // Compound assignment "x += y"
13252     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13253   }
13254 
13255   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13256                                RHS.get(), AA_Assigning))
13257     return QualType();
13258 
13259   CheckForNullPointerDereference(*this, LHSExpr);
13260 
13261   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13262     if (CompoundType.isNull()) {
13263       // C++2a [expr.ass]p5:
13264       //   A simple-assignment whose left operand is of a volatile-qualified
13265       //   type is deprecated unless the assignment is either a discarded-value
13266       //   expression or an unevaluated operand
13267       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13268     } else {
13269       // C++2a [expr.ass]p6:
13270       //   [Compound-assignment] expressions are deprecated if E1 has
13271       //   volatile-qualified type
13272       Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13273     }
13274   }
13275 
13276   // C99 6.5.16p3: The type of an assignment expression is the type of the
13277   // left operand unless the left operand has qualified type, in which case
13278   // it is the unqualified version of the type of the left operand.
13279   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
13280   // is converted to the type of the assignment expression (above).
13281   // C++ 5.17p1: the type of the assignment expression is that of its left
13282   // operand.
13283   return (getLangOpts().CPlusPlus
13284           ? LHSType : LHSType.getUnqualifiedType());
13285 }
13286 
13287 // Only ignore explicit casts to void.
13288 static bool IgnoreCommaOperand(const Expr *E) {
13289   E = E->IgnoreParens();
13290 
13291   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13292     if (CE->getCastKind() == CK_ToVoid) {
13293       return true;
13294     }
13295 
13296     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13297     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13298         CE->getSubExpr()->getType()->isDependentType()) {
13299       return true;
13300     }
13301   }
13302 
13303   return false;
13304 }
13305 
13306 // Look for instances where it is likely the comma operator is confused with
13307 // another operator.  There is an explicit list of acceptable expressions for
13308 // the left hand side of the comma operator, otherwise emit a warning.
13309 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13310   // No warnings in macros
13311   if (Loc.isMacroID())
13312     return;
13313 
13314   // Don't warn in template instantiations.
13315   if (inTemplateInstantiation())
13316     return;
13317 
13318   // Scope isn't fine-grained enough to explicitly list the specific cases, so
13319   // instead, skip more than needed, then call back into here with the
13320   // CommaVisitor in SemaStmt.cpp.
13321   // The listed locations are the initialization and increment portions
13322   // of a for loop.  The additional checks are on the condition of
13323   // if statements, do/while loops, and for loops.
13324   // Differences in scope flags for C89 mode requires the extra logic.
13325   const unsigned ForIncrementFlags =
13326       getLangOpts().C99 || getLangOpts().CPlusPlus
13327           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13328           : Scope::ContinueScope | Scope::BreakScope;
13329   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13330   const unsigned ScopeFlags = getCurScope()->getFlags();
13331   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13332       (ScopeFlags & ForInitFlags) == ForInitFlags)
13333     return;
13334 
13335   // If there are multiple comma operators used together, get the RHS of the
13336   // of the comma operator as the LHS.
13337   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13338     if (BO->getOpcode() != BO_Comma)
13339       break;
13340     LHS = BO->getRHS();
13341   }
13342 
13343   // Only allow some expressions on LHS to not warn.
13344   if (IgnoreCommaOperand(LHS))
13345     return;
13346 
13347   Diag(Loc, diag::warn_comma_operator);
13348   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13349       << LHS->getSourceRange()
13350       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13351                                     LangOpts.CPlusPlus ? "static_cast<void>("
13352                                                        : "(void)(")
13353       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13354                                     ")");
13355 }
13356 
13357 // C99 6.5.17
13358 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13359                                    SourceLocation Loc) {
13360   LHS = S.CheckPlaceholderExpr(LHS.get());
13361   RHS = S.CheckPlaceholderExpr(RHS.get());
13362   if (LHS.isInvalid() || RHS.isInvalid())
13363     return QualType();
13364 
13365   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13366   // operands, but not unary promotions.
13367   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13368 
13369   // So we treat the LHS as a ignored value, and in C++ we allow the
13370   // containing site to determine what should be done with the RHS.
13371   LHS = S.IgnoredValueConversions(LHS.get());
13372   if (LHS.isInvalid())
13373     return QualType();
13374 
13375   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
13376 
13377   if (!S.getLangOpts().CPlusPlus) {
13378     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13379     if (RHS.isInvalid())
13380       return QualType();
13381     if (!RHS.get()->getType()->isVoidType())
13382       S.RequireCompleteType(Loc, RHS.get()->getType(),
13383                             diag::err_incomplete_type);
13384   }
13385 
13386   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13387     S.DiagnoseCommaOperator(LHS.get(), Loc);
13388 
13389   return RHS.get()->getType();
13390 }
13391 
13392 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13393 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13394 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13395                                                ExprValueKind &VK,
13396                                                ExprObjectKind &OK,
13397                                                SourceLocation OpLoc,
13398                                                bool IsInc, bool IsPrefix) {
13399   if (Op->isTypeDependent())
13400     return S.Context.DependentTy;
13401 
13402   QualType ResType = Op->getType();
13403   // Atomic types can be used for increment / decrement where the non-atomic
13404   // versions can, so ignore the _Atomic() specifier for the purpose of
13405   // checking.
13406   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13407     ResType = ResAtomicType->getValueType();
13408 
13409   assert(!ResType.isNull() && "no type for increment/decrement expression");
13410 
13411   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13412     // Decrement of bool is not allowed.
13413     if (!IsInc) {
13414       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13415       return QualType();
13416     }
13417     // Increment of bool sets it to true, but is deprecated.
13418     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13419                                               : diag::warn_increment_bool)
13420       << Op->getSourceRange();
13421   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13422     // Error on enum increments and decrements in C++ mode
13423     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13424     return QualType();
13425   } else if (ResType->isRealType()) {
13426     // OK!
13427   } else if (ResType->isPointerType()) {
13428     // C99 6.5.2.4p2, 6.5.6p2
13429     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13430       return QualType();
13431   } else if (ResType->isObjCObjectPointerType()) {
13432     // On modern runtimes, ObjC pointer arithmetic is forbidden.
13433     // Otherwise, we just need a complete type.
13434     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13435         checkArithmeticOnObjCPointer(S, OpLoc, Op))
13436       return QualType();
13437   } else if (ResType->isAnyComplexType()) {
13438     // C99 does not support ++/-- on complex types, we allow as an extension.
13439     S.Diag(OpLoc, diag::ext_integer_increment_complex)
13440       << ResType << Op->getSourceRange();
13441   } else if (ResType->isPlaceholderType()) {
13442     ExprResult PR = S.CheckPlaceholderExpr(Op);
13443     if (PR.isInvalid()) return QualType();
13444     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13445                                           IsInc, IsPrefix);
13446   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13447     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13448   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13449              (ResType->castAs<VectorType>()->getVectorKind() !=
13450               VectorType::AltiVecBool)) {
13451     // The z vector extensions allow ++ and -- for non-bool vectors.
13452   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
13453             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13454     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13455   } else {
13456     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13457       << ResType << int(IsInc) << Op->getSourceRange();
13458     return QualType();
13459   }
13460   // At this point, we know we have a real, complex or pointer type.
13461   // Now make sure the operand is a modifiable lvalue.
13462   if (CheckForModifiableLvalue(Op, OpLoc, S))
13463     return QualType();
13464   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13465     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13466     //   An operand with volatile-qualified type is deprecated
13467     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13468         << IsInc << ResType;
13469   }
13470   // In C++, a prefix increment is the same type as the operand. Otherwise
13471   // (in C or with postfix), the increment is the unqualified type of the
13472   // operand.
13473   if (IsPrefix && S.getLangOpts().CPlusPlus) {
13474     VK = VK_LValue;
13475     OK = Op->getObjectKind();
13476     return ResType;
13477   } else {
13478     VK = VK_PRValue;
13479     return ResType.getUnqualifiedType();
13480   }
13481 }
13482 
13483 
13484 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13485 /// This routine allows us to typecheck complex/recursive expressions
13486 /// where the declaration is needed for type checking. We only need to
13487 /// handle cases when the expression references a function designator
13488 /// or is an lvalue. Here are some examples:
13489 ///  - &(x) => x
13490 ///  - &*****f => f for f a function designator.
13491 ///  - &s.xx => s
13492 ///  - &s.zz[1].yy -> s, if zz is an array
13493 ///  - *(x + 1) -> x, if x is an array
13494 ///  - &"123"[2] -> 0
13495 ///  - & __real__ x -> x
13496 ///
13497 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13498 /// members.
13499 static ValueDecl *getPrimaryDecl(Expr *E) {
13500   switch (E->getStmtClass()) {
13501   case Stmt::DeclRefExprClass:
13502     return cast<DeclRefExpr>(E)->getDecl();
13503   case Stmt::MemberExprClass:
13504     // If this is an arrow operator, the address is an offset from
13505     // the base's value, so the object the base refers to is
13506     // irrelevant.
13507     if (cast<MemberExpr>(E)->isArrow())
13508       return nullptr;
13509     // Otherwise, the expression refers to a part of the base
13510     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13511   case Stmt::ArraySubscriptExprClass: {
13512     // FIXME: This code shouldn't be necessary!  We should catch the implicit
13513     // promotion of register arrays earlier.
13514     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13515     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13516       if (ICE->getSubExpr()->getType()->isArrayType())
13517         return getPrimaryDecl(ICE->getSubExpr());
13518     }
13519     return nullptr;
13520   }
13521   case Stmt::UnaryOperatorClass: {
13522     UnaryOperator *UO = cast<UnaryOperator>(E);
13523 
13524     switch(UO->getOpcode()) {
13525     case UO_Real:
13526     case UO_Imag:
13527     case UO_Extension:
13528       return getPrimaryDecl(UO->getSubExpr());
13529     default:
13530       return nullptr;
13531     }
13532   }
13533   case Stmt::ParenExprClass:
13534     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13535   case Stmt::ImplicitCastExprClass:
13536     // If the result of an implicit cast is an l-value, we care about
13537     // the sub-expression; otherwise, the result here doesn't matter.
13538     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13539   case Stmt::CXXUuidofExprClass:
13540     return cast<CXXUuidofExpr>(E)->getGuidDecl();
13541   default:
13542     return nullptr;
13543   }
13544 }
13545 
13546 namespace {
13547 enum {
13548   AO_Bit_Field = 0,
13549   AO_Vector_Element = 1,
13550   AO_Property_Expansion = 2,
13551   AO_Register_Variable = 3,
13552   AO_Matrix_Element = 4,
13553   AO_No_Error = 5
13554 };
13555 }
13556 /// Diagnose invalid operand for address of operations.
13557 ///
13558 /// \param Type The type of operand which cannot have its address taken.
13559 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13560                                          Expr *E, unsigned Type) {
13561   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13562 }
13563 
13564 /// CheckAddressOfOperand - The operand of & must be either a function
13565 /// designator or an lvalue designating an object. If it is an lvalue, the
13566 /// object cannot be declared with storage class register or be a bit field.
13567 /// Note: The usual conversions are *not* applied to the operand of the &
13568 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
13569 /// In C++, the operand might be an overloaded function name, in which case
13570 /// we allow the '&' but retain the overloaded-function type.
13571 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13572   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13573     if (PTy->getKind() == BuiltinType::Overload) {
13574       Expr *E = OrigOp.get()->IgnoreParens();
13575       if (!isa<OverloadExpr>(E)) {
13576         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
13577         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13578           << OrigOp.get()->getSourceRange();
13579         return QualType();
13580       }
13581 
13582       OverloadExpr *Ovl = cast<OverloadExpr>(E);
13583       if (isa<UnresolvedMemberExpr>(Ovl))
13584         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13585           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13586             << OrigOp.get()->getSourceRange();
13587           return QualType();
13588         }
13589 
13590       return Context.OverloadTy;
13591     }
13592 
13593     if (PTy->getKind() == BuiltinType::UnknownAny)
13594       return Context.UnknownAnyTy;
13595 
13596     if (PTy->getKind() == BuiltinType::BoundMember) {
13597       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13598         << OrigOp.get()->getSourceRange();
13599       return QualType();
13600     }
13601 
13602     OrigOp = CheckPlaceholderExpr(OrigOp.get());
13603     if (OrigOp.isInvalid()) return QualType();
13604   }
13605 
13606   if (OrigOp.get()->isTypeDependent())
13607     return Context.DependentTy;
13608 
13609   assert(!OrigOp.get()->getType()->isPlaceholderType());
13610 
13611   // Make sure to ignore parentheses in subsequent checks
13612   Expr *op = OrigOp.get()->IgnoreParens();
13613 
13614   // In OpenCL captures for blocks called as lambda functions
13615   // are located in the private address space. Blocks used in
13616   // enqueue_kernel can be located in a different address space
13617   // depending on a vendor implementation. Thus preventing
13618   // taking an address of the capture to avoid invalid AS casts.
13619   if (LangOpts.OpenCL) {
13620     auto* VarRef = dyn_cast<DeclRefExpr>(op);
13621     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
13622       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
13623       return QualType();
13624     }
13625   }
13626 
13627   if (getLangOpts().C99) {
13628     // Implement C99-only parts of addressof rules.
13629     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
13630       if (uOp->getOpcode() == UO_Deref)
13631         // Per C99 6.5.3.2, the address of a deref always returns a valid result
13632         // (assuming the deref expression is valid).
13633         return uOp->getSubExpr()->getType();
13634     }
13635     // Technically, there should be a check for array subscript
13636     // expressions here, but the result of one is always an lvalue anyway.
13637   }
13638   ValueDecl *dcl = getPrimaryDecl(op);
13639 
13640   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
13641     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13642                                            op->getBeginLoc()))
13643       return QualType();
13644 
13645   Expr::LValueClassification lval = op->ClassifyLValue(Context);
13646   unsigned AddressOfError = AO_No_Error;
13647 
13648   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
13649     bool sfinae = (bool)isSFINAEContext();
13650     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
13651                                   : diag::ext_typecheck_addrof_temporary)
13652       << op->getType() << op->getSourceRange();
13653     if (sfinae)
13654       return QualType();
13655     // Materialize the temporary as an lvalue so that we can take its address.
13656     OrigOp = op =
13657         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
13658   } else if (isa<ObjCSelectorExpr>(op)) {
13659     return Context.getPointerType(op->getType());
13660   } else if (lval == Expr::LV_MemberFunction) {
13661     // If it's an instance method, make a member pointer.
13662     // The expression must have exactly the form &A::foo.
13663 
13664     // If the underlying expression isn't a decl ref, give up.
13665     if (!isa<DeclRefExpr>(op)) {
13666       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13667         << OrigOp.get()->getSourceRange();
13668       return QualType();
13669     }
13670     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
13671     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
13672 
13673     // The id-expression was parenthesized.
13674     if (OrigOp.get() != DRE) {
13675       Diag(OpLoc, diag::err_parens_pointer_member_function)
13676         << OrigOp.get()->getSourceRange();
13677 
13678     // The method was named without a qualifier.
13679     } else if (!DRE->getQualifier()) {
13680       if (MD->getParent()->getName().empty())
13681         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13682           << op->getSourceRange();
13683       else {
13684         SmallString<32> Str;
13685         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13686         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13687           << op->getSourceRange()
13688           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
13689       }
13690     }
13691 
13692     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13693     if (isa<CXXDestructorDecl>(MD))
13694       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
13695 
13696     QualType MPTy = Context.getMemberPointerType(
13697         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
13698     // Under the MS ABI, lock down the inheritance model now.
13699     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13700       (void)isCompleteType(OpLoc, MPTy);
13701     return MPTy;
13702   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
13703     // C99 6.5.3.2p1
13704     // The operand must be either an l-value or a function designator
13705     if (!op->getType()->isFunctionType()) {
13706       // Use a special diagnostic for loads from property references.
13707       if (isa<PseudoObjectExpr>(op)) {
13708         AddressOfError = AO_Property_Expansion;
13709       } else {
13710         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
13711           << op->getType() << op->getSourceRange();
13712         return QualType();
13713       }
13714     }
13715   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
13716     // The operand cannot be a bit-field
13717     AddressOfError = AO_Bit_Field;
13718   } else if (op->getObjectKind() == OK_VectorComponent) {
13719     // The operand cannot be an element of a vector
13720     AddressOfError = AO_Vector_Element;
13721   } else if (op->getObjectKind() == OK_MatrixComponent) {
13722     // The operand cannot be an element of a matrix.
13723     AddressOfError = AO_Matrix_Element;
13724   } else if (dcl) { // C99 6.5.3.2p1
13725     // We have an lvalue with a decl. Make sure the decl is not declared
13726     // with the register storage-class specifier.
13727     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
13728       // in C++ it is not error to take address of a register
13729       // variable (c++03 7.1.1P3)
13730       if (vd->getStorageClass() == SC_Register &&
13731           !getLangOpts().CPlusPlus) {
13732         AddressOfError = AO_Register_Variable;
13733       }
13734     } else if (isa<MSPropertyDecl>(dcl)) {
13735       AddressOfError = AO_Property_Expansion;
13736     } else if (isa<FunctionTemplateDecl>(dcl)) {
13737       return Context.OverloadTy;
13738     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
13739       // Okay: we can take the address of a field.
13740       // Could be a pointer to member, though, if there is an explicit
13741       // scope qualifier for the class.
13742       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
13743         DeclContext *Ctx = dcl->getDeclContext();
13744         if (Ctx && Ctx->isRecord()) {
13745           if (dcl->getType()->isReferenceType()) {
13746             Diag(OpLoc,
13747                  diag::err_cannot_form_pointer_to_member_of_reference_type)
13748               << dcl->getDeclName() << dcl->getType();
13749             return QualType();
13750           }
13751 
13752           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
13753             Ctx = Ctx->getParent();
13754 
13755           QualType MPTy = Context.getMemberPointerType(
13756               op->getType(),
13757               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
13758           // Under the MS ABI, lock down the inheritance model now.
13759           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13760             (void)isCompleteType(OpLoc, MPTy);
13761           return MPTy;
13762         }
13763       }
13764     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
13765                !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
13766       llvm_unreachable("Unknown/unexpected decl type");
13767   }
13768 
13769   if (AddressOfError != AO_No_Error) {
13770     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
13771     return QualType();
13772   }
13773 
13774   if (lval == Expr::LV_IncompleteVoidType) {
13775     // Taking the address of a void variable is technically illegal, but we
13776     // allow it in cases which are otherwise valid.
13777     // Example: "extern void x; void* y = &x;".
13778     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
13779   }
13780 
13781   // If the operand has type "type", the result has type "pointer to type".
13782   if (op->getType()->isObjCObjectType())
13783     return Context.getObjCObjectPointerType(op->getType());
13784 
13785   CheckAddressOfPackedMember(op);
13786 
13787   return Context.getPointerType(op->getType());
13788 }
13789 
13790 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
13791   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
13792   if (!DRE)
13793     return;
13794   const Decl *D = DRE->getDecl();
13795   if (!D)
13796     return;
13797   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
13798   if (!Param)
13799     return;
13800   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
13801     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
13802       return;
13803   if (FunctionScopeInfo *FD = S.getCurFunction())
13804     if (!FD->ModifiedNonNullParams.count(Param))
13805       FD->ModifiedNonNullParams.insert(Param);
13806 }
13807 
13808 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
13809 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
13810                                         SourceLocation OpLoc) {
13811   if (Op->isTypeDependent())
13812     return S.Context.DependentTy;
13813 
13814   ExprResult ConvResult = S.UsualUnaryConversions(Op);
13815   if (ConvResult.isInvalid())
13816     return QualType();
13817   Op = ConvResult.get();
13818   QualType OpTy = Op->getType();
13819   QualType Result;
13820 
13821   if (isa<CXXReinterpretCastExpr>(Op)) {
13822     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
13823     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
13824                                      Op->getSourceRange());
13825   }
13826 
13827   if (const PointerType *PT = OpTy->getAs<PointerType>())
13828   {
13829     Result = PT->getPointeeType();
13830   }
13831   else if (const ObjCObjectPointerType *OPT =
13832              OpTy->getAs<ObjCObjectPointerType>())
13833     Result = OPT->getPointeeType();
13834   else {
13835     ExprResult PR = S.CheckPlaceholderExpr(Op);
13836     if (PR.isInvalid()) return QualType();
13837     if (PR.get() != Op)
13838       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
13839   }
13840 
13841   if (Result.isNull()) {
13842     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
13843       << OpTy << Op->getSourceRange();
13844     return QualType();
13845   }
13846 
13847   // Note that per both C89 and C99, indirection is always legal, even if Result
13848   // is an incomplete type or void.  It would be possible to warn about
13849   // dereferencing a void pointer, but it's completely well-defined, and such a
13850   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
13851   // for pointers to 'void' but is fine for any other pointer type:
13852   //
13853   // C++ [expr.unary.op]p1:
13854   //   [...] the expression to which [the unary * operator] is applied shall
13855   //   be a pointer to an object type, or a pointer to a function type
13856   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
13857     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
13858       << OpTy << Op->getSourceRange();
13859 
13860   // Dereferences are usually l-values...
13861   VK = VK_LValue;
13862 
13863   // ...except that certain expressions are never l-values in C.
13864   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
13865     VK = VK_PRValue;
13866 
13867   return Result;
13868 }
13869 
13870 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
13871   BinaryOperatorKind Opc;
13872   switch (Kind) {
13873   default: llvm_unreachable("Unknown binop!");
13874   case tok::periodstar:           Opc = BO_PtrMemD; break;
13875   case tok::arrowstar:            Opc = BO_PtrMemI; break;
13876   case tok::star:                 Opc = BO_Mul; break;
13877   case tok::slash:                Opc = BO_Div; break;
13878   case tok::percent:              Opc = BO_Rem; break;
13879   case tok::plus:                 Opc = BO_Add; break;
13880   case tok::minus:                Opc = BO_Sub; break;
13881   case tok::lessless:             Opc = BO_Shl; break;
13882   case tok::greatergreater:       Opc = BO_Shr; break;
13883   case tok::lessequal:            Opc = BO_LE; break;
13884   case tok::less:                 Opc = BO_LT; break;
13885   case tok::greaterequal:         Opc = BO_GE; break;
13886   case tok::greater:              Opc = BO_GT; break;
13887   case tok::exclaimequal:         Opc = BO_NE; break;
13888   case tok::equalequal:           Opc = BO_EQ; break;
13889   case tok::spaceship:            Opc = BO_Cmp; break;
13890   case tok::amp:                  Opc = BO_And; break;
13891   case tok::caret:                Opc = BO_Xor; break;
13892   case tok::pipe:                 Opc = BO_Or; break;
13893   case tok::ampamp:               Opc = BO_LAnd; break;
13894   case tok::pipepipe:             Opc = BO_LOr; break;
13895   case tok::equal:                Opc = BO_Assign; break;
13896   case tok::starequal:            Opc = BO_MulAssign; break;
13897   case tok::slashequal:           Opc = BO_DivAssign; break;
13898   case tok::percentequal:         Opc = BO_RemAssign; break;
13899   case tok::plusequal:            Opc = BO_AddAssign; break;
13900   case tok::minusequal:           Opc = BO_SubAssign; break;
13901   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
13902   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
13903   case tok::ampequal:             Opc = BO_AndAssign; break;
13904   case tok::caretequal:           Opc = BO_XorAssign; break;
13905   case tok::pipeequal:            Opc = BO_OrAssign; break;
13906   case tok::comma:                Opc = BO_Comma; break;
13907   }
13908   return Opc;
13909 }
13910 
13911 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
13912   tok::TokenKind Kind) {
13913   UnaryOperatorKind Opc;
13914   switch (Kind) {
13915   default: llvm_unreachable("Unknown unary op!");
13916   case tok::plusplus:     Opc = UO_PreInc; break;
13917   case tok::minusminus:   Opc = UO_PreDec; break;
13918   case tok::amp:          Opc = UO_AddrOf; break;
13919   case tok::star:         Opc = UO_Deref; break;
13920   case tok::plus:         Opc = UO_Plus; break;
13921   case tok::minus:        Opc = UO_Minus; break;
13922   case tok::tilde:        Opc = UO_Not; break;
13923   case tok::exclaim:      Opc = UO_LNot; break;
13924   case tok::kw___real:    Opc = UO_Real; break;
13925   case tok::kw___imag:    Opc = UO_Imag; break;
13926   case tok::kw___extension__: Opc = UO_Extension; break;
13927   }
13928   return Opc;
13929 }
13930 
13931 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
13932 /// This warning suppressed in the event of macro expansions.
13933 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
13934                                    SourceLocation OpLoc, bool IsBuiltin) {
13935   if (S.inTemplateInstantiation())
13936     return;
13937   if (S.isUnevaluatedContext())
13938     return;
13939   if (OpLoc.isInvalid() || OpLoc.isMacroID())
13940     return;
13941   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13942   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13943   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13944   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13945   if (!LHSDeclRef || !RHSDeclRef ||
13946       LHSDeclRef->getLocation().isMacroID() ||
13947       RHSDeclRef->getLocation().isMacroID())
13948     return;
13949   const ValueDecl *LHSDecl =
13950     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
13951   const ValueDecl *RHSDecl =
13952     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
13953   if (LHSDecl != RHSDecl)
13954     return;
13955   if (LHSDecl->getType().isVolatileQualified())
13956     return;
13957   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13958     if (RefTy->getPointeeType().isVolatileQualified())
13959       return;
13960 
13961   S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
13962                           : diag::warn_self_assignment_overloaded)
13963       << LHSDeclRef->getType() << LHSExpr->getSourceRange()
13964       << RHSExpr->getSourceRange();
13965 }
13966 
13967 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
13968 /// is usually indicative of introspection within the Objective-C pointer.
13969 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
13970                                           SourceLocation OpLoc) {
13971   if (!S.getLangOpts().ObjC)
13972     return;
13973 
13974   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
13975   const Expr *LHS = L.get();
13976   const Expr *RHS = R.get();
13977 
13978   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13979     ObjCPointerExpr = LHS;
13980     OtherExpr = RHS;
13981   }
13982   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13983     ObjCPointerExpr = RHS;
13984     OtherExpr = LHS;
13985   }
13986 
13987   // This warning is deliberately made very specific to reduce false
13988   // positives with logic that uses '&' for hashing.  This logic mainly
13989   // looks for code trying to introspect into tagged pointers, which
13990   // code should generally never do.
13991   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
13992     unsigned Diag = diag::warn_objc_pointer_masking;
13993     // Determine if we are introspecting the result of performSelectorXXX.
13994     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
13995     // Special case messages to -performSelector and friends, which
13996     // can return non-pointer values boxed in a pointer value.
13997     // Some clients may wish to silence warnings in this subcase.
13998     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
13999       Selector S = ME->getSelector();
14000       StringRef SelArg0 = S.getNameForSlot(0);
14001       if (SelArg0.startswith("performSelector"))
14002         Diag = diag::warn_objc_pointer_masking_performSelector;
14003     }
14004 
14005     S.Diag(OpLoc, Diag)
14006       << ObjCPointerExpr->getSourceRange();
14007   }
14008 }
14009 
14010 static NamedDecl *getDeclFromExpr(Expr *E) {
14011   if (!E)
14012     return nullptr;
14013   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14014     return DRE->getDecl();
14015   if (auto *ME = dyn_cast<MemberExpr>(E))
14016     return ME->getMemberDecl();
14017   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14018     return IRE->getDecl();
14019   return nullptr;
14020 }
14021 
14022 // This helper function promotes a binary operator's operands (which are of a
14023 // half vector type) to a vector of floats and then truncates the result to
14024 // a vector of either half or short.
14025 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14026                                       BinaryOperatorKind Opc, QualType ResultTy,
14027                                       ExprValueKind VK, ExprObjectKind OK,
14028                                       bool IsCompAssign, SourceLocation OpLoc,
14029                                       FPOptionsOverride FPFeatures) {
14030   auto &Context = S.getASTContext();
14031   assert((isVector(ResultTy, Context.HalfTy) ||
14032           isVector(ResultTy, Context.ShortTy)) &&
14033          "Result must be a vector of half or short");
14034   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14035          isVector(RHS.get()->getType(), Context.HalfTy) &&
14036          "both operands expected to be a half vector");
14037 
14038   RHS = convertVector(RHS.get(), Context.FloatTy, S);
14039   QualType BinOpResTy = RHS.get()->getType();
14040 
14041   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14042   // change BinOpResTy to a vector of ints.
14043   if (isVector(ResultTy, Context.ShortTy))
14044     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14045 
14046   if (IsCompAssign)
14047     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14048                                           ResultTy, VK, OK, OpLoc, FPFeatures,
14049                                           BinOpResTy, BinOpResTy);
14050 
14051   LHS = convertVector(LHS.get(), Context.FloatTy, S);
14052   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14053                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
14054   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14055 }
14056 
14057 static std::pair<ExprResult, ExprResult>
14058 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14059                            Expr *RHSExpr) {
14060   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14061   if (!S.Context.isDependenceAllowed()) {
14062     // C cannot handle TypoExpr nodes on either side of a binop because it
14063     // doesn't handle dependent types properly, so make sure any TypoExprs have
14064     // been dealt with before checking the operands.
14065     LHS = S.CorrectDelayedTyposInExpr(LHS);
14066     RHS = S.CorrectDelayedTyposInExpr(
14067         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14068         [Opc, LHS](Expr *E) {
14069           if (Opc != BO_Assign)
14070             return ExprResult(E);
14071           // Avoid correcting the RHS to the same Expr as the LHS.
14072           Decl *D = getDeclFromExpr(E);
14073           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14074         });
14075   }
14076   return std::make_pair(LHS, RHS);
14077 }
14078 
14079 /// Returns true if conversion between vectors of halfs and vectors of floats
14080 /// is needed.
14081 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14082                                      Expr *E0, Expr *E1 = nullptr) {
14083   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14084       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14085     return false;
14086 
14087   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14088     QualType Ty = E->IgnoreImplicit()->getType();
14089 
14090     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14091     // to vectors of floats. Although the element type of the vectors is __fp16,
14092     // the vectors shouldn't be treated as storage-only types. See the
14093     // discussion here: https://reviews.llvm.org/rG825235c140e7
14094     if (const VectorType *VT = Ty->getAs<VectorType>()) {
14095       if (VT->getVectorKind() == VectorType::NeonVector)
14096         return false;
14097       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14098     }
14099     return false;
14100   };
14101 
14102   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14103 }
14104 
14105 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
14106 /// operator @p Opc at location @c TokLoc. This routine only supports
14107 /// built-in operations; ActOnBinOp handles overloaded operators.
14108 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14109                                     BinaryOperatorKind Opc,
14110                                     Expr *LHSExpr, Expr *RHSExpr) {
14111   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14112     // The syntax only allows initializer lists on the RHS of assignment,
14113     // so we don't need to worry about accepting invalid code for
14114     // non-assignment operators.
14115     // C++11 5.17p9:
14116     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14117     //   of x = {} is x = T().
14118     InitializationKind Kind = InitializationKind::CreateDirectList(
14119         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14120     InitializedEntity Entity =
14121         InitializedEntity::InitializeTemporary(LHSExpr->getType());
14122     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14123     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14124     if (Init.isInvalid())
14125       return Init;
14126     RHSExpr = Init.get();
14127   }
14128 
14129   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14130   QualType ResultTy;     // Result type of the binary operator.
14131   // The following two variables are used for compound assignment operators
14132   QualType CompLHSTy;    // Type of LHS after promotions for computation
14133   QualType CompResultTy; // Type of computation result
14134   ExprValueKind VK = VK_PRValue;
14135   ExprObjectKind OK = OK_Ordinary;
14136   bool ConvertHalfVec = false;
14137 
14138   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14139   if (!LHS.isUsable() || !RHS.isUsable())
14140     return ExprError();
14141 
14142   if (getLangOpts().OpenCL) {
14143     QualType LHSTy = LHSExpr->getType();
14144     QualType RHSTy = RHSExpr->getType();
14145     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14146     // the ATOMIC_VAR_INIT macro.
14147     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14148       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14149       if (BO_Assign == Opc)
14150         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14151       else
14152         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14153       return ExprError();
14154     }
14155 
14156     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14157     // only with a builtin functions and therefore should be disallowed here.
14158     if (LHSTy->isImageType() || RHSTy->isImageType() ||
14159         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14160         LHSTy->isPipeType() || RHSTy->isPipeType() ||
14161         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14162       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14163       return ExprError();
14164     }
14165   }
14166 
14167   switch (Opc) {
14168   case BO_Assign:
14169     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
14170     if (getLangOpts().CPlusPlus &&
14171         LHS.get()->getObjectKind() != OK_ObjCProperty) {
14172       VK = LHS.get()->getValueKind();
14173       OK = LHS.get()->getObjectKind();
14174     }
14175     if (!ResultTy.isNull()) {
14176       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14177       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14178 
14179       // Avoid copying a block to the heap if the block is assigned to a local
14180       // auto variable that is declared in the same scope as the block. This
14181       // optimization is unsafe if the local variable is declared in an outer
14182       // scope. For example:
14183       //
14184       // BlockTy b;
14185       // {
14186       //   b = ^{...};
14187       // }
14188       // // It is unsafe to invoke the block here if it wasn't copied to the
14189       // // heap.
14190       // b();
14191 
14192       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14193         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14194           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14195             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14196               BE->getBlockDecl()->setCanAvoidCopyToHeap();
14197 
14198       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14199         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14200                               NTCUC_Assignment, NTCUK_Copy);
14201     }
14202     RecordModifiableNonNullParam(*this, LHS.get());
14203     break;
14204   case BO_PtrMemD:
14205   case BO_PtrMemI:
14206     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14207                                             Opc == BO_PtrMemI);
14208     break;
14209   case BO_Mul:
14210   case BO_Div:
14211     ConvertHalfVec = true;
14212     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14213                                            Opc == BO_Div);
14214     break;
14215   case BO_Rem:
14216     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14217     break;
14218   case BO_Add:
14219     ConvertHalfVec = true;
14220     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14221     break;
14222   case BO_Sub:
14223     ConvertHalfVec = true;
14224     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14225     break;
14226   case BO_Shl:
14227   case BO_Shr:
14228     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14229     break;
14230   case BO_LE:
14231   case BO_LT:
14232   case BO_GE:
14233   case BO_GT:
14234     ConvertHalfVec = true;
14235     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14236     break;
14237   case BO_EQ:
14238   case BO_NE:
14239     ConvertHalfVec = true;
14240     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14241     break;
14242   case BO_Cmp:
14243     ConvertHalfVec = true;
14244     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14245     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14246     break;
14247   case BO_And:
14248     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14249     LLVM_FALLTHROUGH;
14250   case BO_Xor:
14251   case BO_Or:
14252     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14253     break;
14254   case BO_LAnd:
14255   case BO_LOr:
14256     ConvertHalfVec = true;
14257     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14258     break;
14259   case BO_MulAssign:
14260   case BO_DivAssign:
14261     ConvertHalfVec = true;
14262     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14263                                                Opc == BO_DivAssign);
14264     CompLHSTy = CompResultTy;
14265     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14266       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14267     break;
14268   case BO_RemAssign:
14269     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14270     CompLHSTy = CompResultTy;
14271     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14272       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14273     break;
14274   case BO_AddAssign:
14275     ConvertHalfVec = true;
14276     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14277     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14278       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14279     break;
14280   case BO_SubAssign:
14281     ConvertHalfVec = true;
14282     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14283     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14284       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14285     break;
14286   case BO_ShlAssign:
14287   case BO_ShrAssign:
14288     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14289     CompLHSTy = CompResultTy;
14290     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14291       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14292     break;
14293   case BO_AndAssign:
14294   case BO_OrAssign: // fallthrough
14295     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14296     LLVM_FALLTHROUGH;
14297   case BO_XorAssign:
14298     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14299     CompLHSTy = CompResultTy;
14300     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14301       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14302     break;
14303   case BO_Comma:
14304     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14305     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14306       VK = RHS.get()->getValueKind();
14307       OK = RHS.get()->getObjectKind();
14308     }
14309     break;
14310   }
14311   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14312     return ExprError();
14313 
14314   // Some of the binary operations require promoting operands of half vector to
14315   // float vectors and truncating the result back to half vector. For now, we do
14316   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14317   // arm64).
14318   assert(
14319       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
14320                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
14321       "both sides are half vectors or neither sides are");
14322   ConvertHalfVec =
14323       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14324 
14325   // Check for array bounds violations for both sides of the BinaryOperator
14326   CheckArrayAccess(LHS.get());
14327   CheckArrayAccess(RHS.get());
14328 
14329   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14330     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14331                                                  &Context.Idents.get("object_setClass"),
14332                                                  SourceLocation(), LookupOrdinaryName);
14333     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14334       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14335       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14336           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14337                                         "object_setClass(")
14338           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14339                                           ",")
14340           << FixItHint::CreateInsertion(RHSLocEnd, ")");
14341     }
14342     else
14343       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14344   }
14345   else if (const ObjCIvarRefExpr *OIRE =
14346            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14347     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14348 
14349   // Opc is not a compound assignment if CompResultTy is null.
14350   if (CompResultTy.isNull()) {
14351     if (ConvertHalfVec)
14352       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14353                                  OpLoc, CurFPFeatureOverrides());
14354     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14355                                   VK, OK, OpLoc, CurFPFeatureOverrides());
14356   }
14357 
14358   // Handle compound assignments.
14359   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14360       OK_ObjCProperty) {
14361     VK = VK_LValue;
14362     OK = LHS.get()->getObjectKind();
14363   }
14364 
14365   // The LHS is not converted to the result type for fixed-point compound
14366   // assignment as the common type is computed on demand. Reset the CompLHSTy
14367   // to the LHS type we would have gotten after unary conversions.
14368   if (CompResultTy->isFixedPointType())
14369     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14370 
14371   if (ConvertHalfVec)
14372     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14373                                OpLoc, CurFPFeatureOverrides());
14374 
14375   return CompoundAssignOperator::Create(
14376       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14377       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14378 }
14379 
14380 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14381 /// operators are mixed in a way that suggests that the programmer forgot that
14382 /// comparison operators have higher precedence. The most typical example of
14383 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14384 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14385                                       SourceLocation OpLoc, Expr *LHSExpr,
14386                                       Expr *RHSExpr) {
14387   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14388   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14389 
14390   // Check that one of the sides is a comparison operator and the other isn't.
14391   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14392   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14393   if (isLeftComp == isRightComp)
14394     return;
14395 
14396   // Bitwise operations are sometimes used as eager logical ops.
14397   // Don't diagnose this.
14398   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14399   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14400   if (isLeftBitwise || isRightBitwise)
14401     return;
14402 
14403   SourceRange DiagRange = isLeftComp
14404                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14405                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
14406   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14407   SourceRange ParensRange =
14408       isLeftComp
14409           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14410           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14411 
14412   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14413     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14414   SuggestParentheses(Self, OpLoc,
14415     Self.PDiag(diag::note_precedence_silence) << OpStr,
14416     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14417   SuggestParentheses(Self, OpLoc,
14418     Self.PDiag(diag::note_precedence_bitwise_first)
14419       << BinaryOperator::getOpcodeStr(Opc),
14420     ParensRange);
14421 }
14422 
14423 /// It accepts a '&&' expr that is inside a '||' one.
14424 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14425 /// in parentheses.
14426 static void
14427 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14428                                        BinaryOperator *Bop) {
14429   assert(Bop->getOpcode() == BO_LAnd);
14430   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14431       << Bop->getSourceRange() << OpLoc;
14432   SuggestParentheses(Self, Bop->getOperatorLoc(),
14433     Self.PDiag(diag::note_precedence_silence)
14434       << Bop->getOpcodeStr(),
14435     Bop->getSourceRange());
14436 }
14437 
14438 /// Returns true if the given expression can be evaluated as a constant
14439 /// 'true'.
14440 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
14441   bool Res;
14442   return !E->isValueDependent() &&
14443          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
14444 }
14445 
14446 /// Returns true if the given expression can be evaluated as a constant
14447 /// 'false'.
14448 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
14449   bool Res;
14450   return !E->isValueDependent() &&
14451          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
14452 }
14453 
14454 /// Look for '&&' in the left hand of a '||' expr.
14455 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14456                                              Expr *LHSExpr, Expr *RHSExpr) {
14457   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14458     if (Bop->getOpcode() == BO_LAnd) {
14459       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
14460       if (EvaluatesAsFalse(S, RHSExpr))
14461         return;
14462       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
14463       if (!EvaluatesAsTrue(S, Bop->getLHS()))
14464         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14465     } else if (Bop->getOpcode() == BO_LOr) {
14466       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14467         // If it's "a || b && 1 || c" we didn't warn earlier for
14468         // "a || b && 1", but warn now.
14469         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
14470           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14471       }
14472     }
14473   }
14474 }
14475 
14476 /// Look for '&&' in the right hand of a '||' expr.
14477 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14478                                              Expr *LHSExpr, Expr *RHSExpr) {
14479   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14480     if (Bop->getOpcode() == BO_LAnd) {
14481       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
14482       if (EvaluatesAsFalse(S, LHSExpr))
14483         return;
14484       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
14485       if (!EvaluatesAsTrue(S, Bop->getRHS()))
14486         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14487     }
14488   }
14489 }
14490 
14491 /// Look for bitwise op in the left or right hand of a bitwise op with
14492 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
14493 /// the '&' expression in parentheses.
14494 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14495                                          SourceLocation OpLoc, Expr *SubExpr) {
14496   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14497     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14498       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14499         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14500         << Bop->getSourceRange() << OpLoc;
14501       SuggestParentheses(S, Bop->getOperatorLoc(),
14502         S.PDiag(diag::note_precedence_silence)
14503           << Bop->getOpcodeStr(),
14504         Bop->getSourceRange());
14505     }
14506   }
14507 }
14508 
14509 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14510                                     Expr *SubExpr, StringRef Shift) {
14511   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14512     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14513       StringRef Op = Bop->getOpcodeStr();
14514       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14515           << Bop->getSourceRange() << OpLoc << Shift << Op;
14516       SuggestParentheses(S, Bop->getOperatorLoc(),
14517           S.PDiag(diag::note_precedence_silence) << Op,
14518           Bop->getSourceRange());
14519     }
14520   }
14521 }
14522 
14523 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
14524                                  Expr *LHSExpr, Expr *RHSExpr) {
14525   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
14526   if (!OCE)
14527     return;
14528 
14529   FunctionDecl *FD = OCE->getDirectCallee();
14530   if (!FD || !FD->isOverloadedOperator())
14531     return;
14532 
14533   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
14534   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
14535     return;
14536 
14537   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
14538       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
14539       << (Kind == OO_LessLess);
14540   SuggestParentheses(S, OCE->getOperatorLoc(),
14541                      S.PDiag(diag::note_precedence_silence)
14542                          << (Kind == OO_LessLess ? "<<" : ">>"),
14543                      OCE->getSourceRange());
14544   SuggestParentheses(
14545       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
14546       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
14547 }
14548 
14549 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
14550 /// precedence.
14551 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
14552                                     SourceLocation OpLoc, Expr *LHSExpr,
14553                                     Expr *RHSExpr){
14554   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
14555   if (BinaryOperator::isBitwiseOp(Opc))
14556     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
14557 
14558   // Diagnose "arg1 & arg2 | arg3"
14559   if ((Opc == BO_Or || Opc == BO_Xor) &&
14560       !OpLoc.isMacroID()/* Don't warn in macros. */) {
14561     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
14562     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
14563   }
14564 
14565   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
14566   // We don't warn for 'assert(a || b && "bad")' since this is safe.
14567   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
14568     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
14569     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
14570   }
14571 
14572   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
14573       || Opc == BO_Shr) {
14574     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
14575     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
14576     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
14577   }
14578 
14579   // Warn on overloaded shift operators and comparisons, such as:
14580   // cout << 5 == 4;
14581   if (BinaryOperator::isComparisonOp(Opc))
14582     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
14583 }
14584 
14585 // Binary Operators.  'Tok' is the token for the operator.
14586 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
14587                             tok::TokenKind Kind,
14588                             Expr *LHSExpr, Expr *RHSExpr) {
14589   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
14590   assert(LHSExpr && "ActOnBinOp(): missing left expression");
14591   assert(RHSExpr && "ActOnBinOp(): missing right expression");
14592 
14593   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
14594   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
14595 
14596   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
14597 }
14598 
14599 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
14600                        UnresolvedSetImpl &Functions) {
14601   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
14602   if (OverOp != OO_None && OverOp != OO_Equal)
14603     LookupOverloadedOperatorName(OverOp, S, Functions);
14604 
14605   // In C++20 onwards, we may have a second operator to look up.
14606   if (getLangOpts().CPlusPlus20) {
14607     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
14608       LookupOverloadedOperatorName(ExtraOp, S, Functions);
14609   }
14610 }
14611 
14612 /// Build an overloaded binary operator expression in the given scope.
14613 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
14614                                        BinaryOperatorKind Opc,
14615                                        Expr *LHS, Expr *RHS) {
14616   switch (Opc) {
14617   case BO_Assign:
14618   case BO_DivAssign:
14619   case BO_RemAssign:
14620   case BO_SubAssign:
14621   case BO_AndAssign:
14622   case BO_OrAssign:
14623   case BO_XorAssign:
14624     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
14625     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
14626     break;
14627   default:
14628     break;
14629   }
14630 
14631   // Find all of the overloaded operators visible from this point.
14632   UnresolvedSet<16> Functions;
14633   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
14634 
14635   // Build the (potentially-overloaded, potentially-dependent)
14636   // binary operation.
14637   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
14638 }
14639 
14640 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
14641                             BinaryOperatorKind Opc,
14642                             Expr *LHSExpr, Expr *RHSExpr) {
14643   ExprResult LHS, RHS;
14644   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14645   if (!LHS.isUsable() || !RHS.isUsable())
14646     return ExprError();
14647   LHSExpr = LHS.get();
14648   RHSExpr = RHS.get();
14649 
14650   // We want to end up calling one of checkPseudoObjectAssignment
14651   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
14652   // both expressions are overloadable or either is type-dependent),
14653   // or CreateBuiltinBinOp (in any other case).  We also want to get
14654   // any placeholder types out of the way.
14655 
14656   // Handle pseudo-objects in the LHS.
14657   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
14658     // Assignments with a pseudo-object l-value need special analysis.
14659     if (pty->getKind() == BuiltinType::PseudoObject &&
14660         BinaryOperator::isAssignmentOp(Opc))
14661       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
14662 
14663     // Don't resolve overloads if the other type is overloadable.
14664     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
14665       // We can't actually test that if we still have a placeholder,
14666       // though.  Fortunately, none of the exceptions we see in that
14667       // code below are valid when the LHS is an overload set.  Note
14668       // that an overload set can be dependently-typed, but it never
14669       // instantiates to having an overloadable type.
14670       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14671       if (resolvedRHS.isInvalid()) return ExprError();
14672       RHSExpr = resolvedRHS.get();
14673 
14674       if (RHSExpr->isTypeDependent() ||
14675           RHSExpr->getType()->isOverloadableType())
14676         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14677     }
14678 
14679     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
14680     // template, diagnose the missing 'template' keyword instead of diagnosing
14681     // an invalid use of a bound member function.
14682     //
14683     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
14684     // to C++1z [over.over]/1.4, but we already checked for that case above.
14685     if (Opc == BO_LT && inTemplateInstantiation() &&
14686         (pty->getKind() == BuiltinType::BoundMember ||
14687          pty->getKind() == BuiltinType::Overload)) {
14688       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
14689       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
14690           std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
14691             return isa<FunctionTemplateDecl>(ND);
14692           })) {
14693         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
14694                                 : OE->getNameLoc(),
14695              diag::err_template_kw_missing)
14696           << OE->getName().getAsString() << "";
14697         return ExprError();
14698       }
14699     }
14700 
14701     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
14702     if (LHS.isInvalid()) return ExprError();
14703     LHSExpr = LHS.get();
14704   }
14705 
14706   // Handle pseudo-objects in the RHS.
14707   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
14708     // An overload in the RHS can potentially be resolved by the type
14709     // being assigned to.
14710     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
14711       if (getLangOpts().CPlusPlus &&
14712           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
14713            LHSExpr->getType()->isOverloadableType()))
14714         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14715 
14716       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14717     }
14718 
14719     // Don't resolve overloads if the other type is overloadable.
14720     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
14721         LHSExpr->getType()->isOverloadableType())
14722       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14723 
14724     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14725     if (!resolvedRHS.isUsable()) return ExprError();
14726     RHSExpr = resolvedRHS.get();
14727   }
14728 
14729   if (getLangOpts().CPlusPlus) {
14730     // If either expression is type-dependent, always build an
14731     // overloaded op.
14732     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
14733       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14734 
14735     // Otherwise, build an overloaded op if either expression has an
14736     // overloadable type.
14737     if (LHSExpr->getType()->isOverloadableType() ||
14738         RHSExpr->getType()->isOverloadableType())
14739       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14740   }
14741 
14742   if (getLangOpts().RecoveryAST &&
14743       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
14744     assert(!getLangOpts().CPlusPlus);
14745     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
14746            "Should only occur in error-recovery path.");
14747     if (BinaryOperator::isCompoundAssignmentOp(Opc))
14748       // C [6.15.16] p3:
14749       // An assignment expression has the value of the left operand after the
14750       // assignment, but is not an lvalue.
14751       return CompoundAssignOperator::Create(
14752           Context, LHSExpr, RHSExpr, Opc,
14753           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
14754           OpLoc, CurFPFeatureOverrides());
14755     QualType ResultType;
14756     switch (Opc) {
14757     case BO_Assign:
14758       ResultType = LHSExpr->getType().getUnqualifiedType();
14759       break;
14760     case BO_LT:
14761     case BO_GT:
14762     case BO_LE:
14763     case BO_GE:
14764     case BO_EQ:
14765     case BO_NE:
14766     case BO_LAnd:
14767     case BO_LOr:
14768       // These operators have a fixed result type regardless of operands.
14769       ResultType = Context.IntTy;
14770       break;
14771     case BO_Comma:
14772       ResultType = RHSExpr->getType();
14773       break;
14774     default:
14775       ResultType = Context.DependentTy;
14776       break;
14777     }
14778     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
14779                                   VK_PRValue, OK_Ordinary, OpLoc,
14780                                   CurFPFeatureOverrides());
14781   }
14782 
14783   // Build a built-in binary operation.
14784   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14785 }
14786 
14787 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
14788   if (T.isNull() || T->isDependentType())
14789     return false;
14790 
14791   if (!T->isPromotableIntegerType())
14792     return true;
14793 
14794   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
14795 }
14796 
14797 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
14798                                       UnaryOperatorKind Opc,
14799                                       Expr *InputExpr) {
14800   ExprResult Input = InputExpr;
14801   ExprValueKind VK = VK_PRValue;
14802   ExprObjectKind OK = OK_Ordinary;
14803   QualType resultType;
14804   bool CanOverflow = false;
14805 
14806   bool ConvertHalfVec = false;
14807   if (getLangOpts().OpenCL) {
14808     QualType Ty = InputExpr->getType();
14809     // The only legal unary operation for atomics is '&'.
14810     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
14811     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14812     // only with a builtin functions and therefore should be disallowed here.
14813         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
14814         || Ty->isBlockPointerType())) {
14815       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14816                        << InputExpr->getType()
14817                        << Input.get()->getSourceRange());
14818     }
14819   }
14820 
14821   switch (Opc) {
14822   case UO_PreInc:
14823   case UO_PreDec:
14824   case UO_PostInc:
14825   case UO_PostDec:
14826     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
14827                                                 OpLoc,
14828                                                 Opc == UO_PreInc ||
14829                                                 Opc == UO_PostInc,
14830                                                 Opc == UO_PreInc ||
14831                                                 Opc == UO_PreDec);
14832     CanOverflow = isOverflowingIntegerType(Context, resultType);
14833     break;
14834   case UO_AddrOf:
14835     resultType = CheckAddressOfOperand(Input, OpLoc);
14836     CheckAddressOfNoDeref(InputExpr);
14837     RecordModifiableNonNullParam(*this, InputExpr);
14838     break;
14839   case UO_Deref: {
14840     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14841     if (Input.isInvalid()) return ExprError();
14842     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
14843     break;
14844   }
14845   case UO_Plus:
14846   case UO_Minus:
14847     CanOverflow = Opc == UO_Minus &&
14848                   isOverflowingIntegerType(Context, Input.get()->getType());
14849     Input = UsualUnaryConversions(Input.get());
14850     if (Input.isInvalid()) return ExprError();
14851     // Unary plus and minus require promoting an operand of half vector to a
14852     // float vector and truncating the result back to a half vector. For now, we
14853     // do this only when HalfArgsAndReturns is set (that is, when the target is
14854     // arm or arm64).
14855     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
14856 
14857     // If the operand is a half vector, promote it to a float vector.
14858     if (ConvertHalfVec)
14859       Input = convertVector(Input.get(), Context.FloatTy, *this);
14860     resultType = Input.get()->getType();
14861     if (resultType->isDependentType())
14862       break;
14863     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
14864       break;
14865     else if (resultType->isVectorType() &&
14866              // The z vector extensions don't allow + or - with bool vectors.
14867              (!Context.getLangOpts().ZVector ||
14868               resultType->castAs<VectorType>()->getVectorKind() !=
14869               VectorType::AltiVecBool))
14870       break;
14871     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
14872              Opc == UO_Plus &&
14873              resultType->isPointerType())
14874       break;
14875 
14876     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14877       << resultType << Input.get()->getSourceRange());
14878 
14879   case UO_Not: // bitwise complement
14880     Input = UsualUnaryConversions(Input.get());
14881     if (Input.isInvalid())
14882       return ExprError();
14883     resultType = Input.get()->getType();
14884     if (resultType->isDependentType())
14885       break;
14886     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
14887     if (resultType->isComplexType() || resultType->isComplexIntegerType())
14888       // C99 does not support '~' for complex conjugation.
14889       Diag(OpLoc, diag::ext_integer_complement_complex)
14890           << resultType << Input.get()->getSourceRange();
14891     else if (resultType->hasIntegerRepresentation())
14892       break;
14893     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
14894       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
14895       // on vector float types.
14896       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14897       if (!T->isIntegerType())
14898         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14899                           << resultType << Input.get()->getSourceRange());
14900     } else {
14901       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14902                        << resultType << Input.get()->getSourceRange());
14903     }
14904     break;
14905 
14906   case UO_LNot: // logical negation
14907     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
14908     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14909     if (Input.isInvalid()) return ExprError();
14910     resultType = Input.get()->getType();
14911 
14912     // Though we still have to promote half FP to float...
14913     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
14914       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
14915       resultType = Context.FloatTy;
14916     }
14917 
14918     if (resultType->isDependentType())
14919       break;
14920     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
14921       // C99 6.5.3.3p1: ok, fallthrough;
14922       if (Context.getLangOpts().CPlusPlus) {
14923         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
14924         // operand contextually converted to bool.
14925         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
14926                                   ScalarTypeToBooleanCastKind(resultType));
14927       } else if (Context.getLangOpts().OpenCL &&
14928                  Context.getLangOpts().OpenCLVersion < 120) {
14929         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14930         // operate on scalar float types.
14931         if (!resultType->isIntegerType() && !resultType->isPointerType())
14932           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14933                            << resultType << Input.get()->getSourceRange());
14934       }
14935     } else if (resultType->isExtVectorType()) {
14936       if (Context.getLangOpts().OpenCL &&
14937           Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
14938         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14939         // operate on vector float types.
14940         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14941         if (!T->isIntegerType())
14942           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14943                            << resultType << Input.get()->getSourceRange());
14944       }
14945       // Vector logical not returns the signed variant of the operand type.
14946       resultType = GetSignedVectorType(resultType);
14947       break;
14948     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
14949       const VectorType *VTy = resultType->castAs<VectorType>();
14950       if (VTy->getVectorKind() != VectorType::GenericVector)
14951         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14952                          << resultType << Input.get()->getSourceRange());
14953 
14954       // Vector logical not returns the signed variant of the operand type.
14955       resultType = GetSignedVectorType(resultType);
14956       break;
14957     } else {
14958       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14959         << resultType << Input.get()->getSourceRange());
14960     }
14961 
14962     // LNot always has type int. C99 6.5.3.3p5.
14963     // In C++, it's bool. C++ 5.3.1p8
14964     resultType = Context.getLogicalOperationType();
14965     break;
14966   case UO_Real:
14967   case UO_Imag:
14968     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
14969     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
14970     // complex l-values to ordinary l-values and all other values to r-values.
14971     if (Input.isInvalid()) return ExprError();
14972     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
14973       if (Input.get()->isGLValue() &&
14974           Input.get()->getObjectKind() == OK_Ordinary)
14975         VK = Input.get()->getValueKind();
14976     } else if (!getLangOpts().CPlusPlus) {
14977       // In C, a volatile scalar is read by __imag. In C++, it is not.
14978       Input = DefaultLvalueConversion(Input.get());
14979     }
14980     break;
14981   case UO_Extension:
14982     resultType = Input.get()->getType();
14983     VK = Input.get()->getValueKind();
14984     OK = Input.get()->getObjectKind();
14985     break;
14986   case UO_Coawait:
14987     // It's unnecessary to represent the pass-through operator co_await in the
14988     // AST; just return the input expression instead.
14989     assert(!Input.get()->getType()->isDependentType() &&
14990                    "the co_await expression must be non-dependant before "
14991                    "building operator co_await");
14992     return Input;
14993   }
14994   if (resultType.isNull() || Input.isInvalid())
14995     return ExprError();
14996 
14997   // Check for array bounds violations in the operand of the UnaryOperator,
14998   // except for the '*' and '&' operators that have to be handled specially
14999   // by CheckArrayAccess (as there are special cases like &array[arraysize]
15000   // that are explicitly defined as valid by the standard).
15001   if (Opc != UO_AddrOf && Opc != UO_Deref)
15002     CheckArrayAccess(Input.get());
15003 
15004   auto *UO =
15005       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15006                             OpLoc, CanOverflow, CurFPFeatureOverrides());
15007 
15008   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15009       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15010       !isUnevaluatedContext())
15011     ExprEvalContexts.back().PossibleDerefs.insert(UO);
15012 
15013   // Convert the result back to a half vector.
15014   if (ConvertHalfVec)
15015     return convertVector(UO, Context.HalfTy, *this);
15016   return UO;
15017 }
15018 
15019 /// Determine whether the given expression is a qualified member
15020 /// access expression, of a form that could be turned into a pointer to member
15021 /// with the address-of operator.
15022 bool Sema::isQualifiedMemberAccess(Expr *E) {
15023   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15024     if (!DRE->getQualifier())
15025       return false;
15026 
15027     ValueDecl *VD = DRE->getDecl();
15028     if (!VD->isCXXClassMember())
15029       return false;
15030 
15031     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15032       return true;
15033     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15034       return Method->isInstance();
15035 
15036     return false;
15037   }
15038 
15039   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15040     if (!ULE->getQualifier())
15041       return false;
15042 
15043     for (NamedDecl *D : ULE->decls()) {
15044       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15045         if (Method->isInstance())
15046           return true;
15047       } else {
15048         // Overload set does not contain methods.
15049         break;
15050       }
15051     }
15052 
15053     return false;
15054   }
15055 
15056   return false;
15057 }
15058 
15059 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15060                               UnaryOperatorKind Opc, Expr *Input) {
15061   // First things first: handle placeholders so that the
15062   // overloaded-operator check considers the right type.
15063   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15064     // Increment and decrement of pseudo-object references.
15065     if (pty->getKind() == BuiltinType::PseudoObject &&
15066         UnaryOperator::isIncrementDecrementOp(Opc))
15067       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
15068 
15069     // extension is always a builtin operator.
15070     if (Opc == UO_Extension)
15071       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15072 
15073     // & gets special logic for several kinds of placeholder.
15074     // The builtin code knows what to do.
15075     if (Opc == UO_AddrOf &&
15076         (pty->getKind() == BuiltinType::Overload ||
15077          pty->getKind() == BuiltinType::UnknownAny ||
15078          pty->getKind() == BuiltinType::BoundMember))
15079       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15080 
15081     // Anything else needs to be handled now.
15082     ExprResult Result = CheckPlaceholderExpr(Input);
15083     if (Result.isInvalid()) return ExprError();
15084     Input = Result.get();
15085   }
15086 
15087   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15088       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15089       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15090     // Find all of the overloaded operators visible from this point.
15091     UnresolvedSet<16> Functions;
15092     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15093     if (S && OverOp != OO_None)
15094       LookupOverloadedOperatorName(OverOp, S, Functions);
15095 
15096     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15097   }
15098 
15099   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15100 }
15101 
15102 // Unary Operators.  'Tok' is the token for the operator.
15103 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
15104                               tok::TokenKind Op, Expr *Input) {
15105   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
15106 }
15107 
15108 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
15109 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15110                                 LabelDecl *TheDecl) {
15111   TheDecl->markUsed(Context);
15112   // Create the AST node.  The address of a label always has type 'void*'.
15113   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
15114                                      Context.getPointerType(Context.VoidTy));
15115 }
15116 
15117 void Sema::ActOnStartStmtExpr() {
15118   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15119 }
15120 
15121 void Sema::ActOnStmtExprError() {
15122   // Note that function is also called by TreeTransform when leaving a
15123   // StmtExpr scope without rebuilding anything.
15124 
15125   DiscardCleanupsInEvaluationContext();
15126   PopExpressionEvaluationContext();
15127 }
15128 
15129 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15130                                SourceLocation RPLoc) {
15131   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15132 }
15133 
15134 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15135                                SourceLocation RPLoc, unsigned TemplateDepth) {
15136   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15137   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15138 
15139   if (hasAnyUnrecoverableErrorsInThisFunction())
15140     DiscardCleanupsInEvaluationContext();
15141   assert(!Cleanup.exprNeedsCleanups() &&
15142          "cleanups within StmtExpr not correctly bound!");
15143   PopExpressionEvaluationContext();
15144 
15145   // FIXME: there are a variety of strange constraints to enforce here, for
15146   // example, it is not possible to goto into a stmt expression apparently.
15147   // More semantic analysis is needed.
15148 
15149   // If there are sub-stmts in the compound stmt, take the type of the last one
15150   // as the type of the stmtexpr.
15151   QualType Ty = Context.VoidTy;
15152   bool StmtExprMayBindToTemp = false;
15153   if (!Compound->body_empty()) {
15154     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15155     if (const auto *LastStmt =
15156             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15157       if (const Expr *Value = LastStmt->getExprStmt()) {
15158         StmtExprMayBindToTemp = true;
15159         Ty = Value->getType();
15160       }
15161     }
15162   }
15163 
15164   // FIXME: Check that expression type is complete/non-abstract; statement
15165   // expressions are not lvalues.
15166   Expr *ResStmtExpr =
15167       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15168   if (StmtExprMayBindToTemp)
15169     return MaybeBindToTemporary(ResStmtExpr);
15170   return ResStmtExpr;
15171 }
15172 
15173 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15174   if (ER.isInvalid())
15175     return ExprError();
15176 
15177   // Do function/array conversion on the last expression, but not
15178   // lvalue-to-rvalue.  However, initialize an unqualified type.
15179   ER = DefaultFunctionArrayConversion(ER.get());
15180   if (ER.isInvalid())
15181     return ExprError();
15182   Expr *E = ER.get();
15183 
15184   if (E->isTypeDependent())
15185     return E;
15186 
15187   // In ARC, if the final expression ends in a consume, splice
15188   // the consume out and bind it later.  In the alternate case
15189   // (when dealing with a retainable type), the result
15190   // initialization will create a produce.  In both cases the
15191   // result will be +1, and we'll need to balance that out with
15192   // a bind.
15193   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15194   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15195     return Cast->getSubExpr();
15196 
15197   // FIXME: Provide a better location for the initialization.
15198   return PerformCopyInitialization(
15199       InitializedEntity::InitializeStmtExprResult(
15200           E->getBeginLoc(), E->getType().getUnqualifiedType()),
15201       SourceLocation(), E);
15202 }
15203 
15204 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15205                                       TypeSourceInfo *TInfo,
15206                                       ArrayRef<OffsetOfComponent> Components,
15207                                       SourceLocation RParenLoc) {
15208   QualType ArgTy = TInfo->getType();
15209   bool Dependent = ArgTy->isDependentType();
15210   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15211 
15212   // We must have at least one component that refers to the type, and the first
15213   // one is known to be a field designator.  Verify that the ArgTy represents
15214   // a struct/union/class.
15215   if (!Dependent && !ArgTy->isRecordType())
15216     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15217                        << ArgTy << TypeRange);
15218 
15219   // Type must be complete per C99 7.17p3 because a declaring a variable
15220   // with an incomplete type would be ill-formed.
15221   if (!Dependent
15222       && RequireCompleteType(BuiltinLoc, ArgTy,
15223                              diag::err_offsetof_incomplete_type, TypeRange))
15224     return ExprError();
15225 
15226   bool DidWarnAboutNonPOD = false;
15227   QualType CurrentType = ArgTy;
15228   SmallVector<OffsetOfNode, 4> Comps;
15229   SmallVector<Expr*, 4> Exprs;
15230   for (const OffsetOfComponent &OC : Components) {
15231     if (OC.isBrackets) {
15232       // Offset of an array sub-field.  TODO: Should we allow vector elements?
15233       if (!CurrentType->isDependentType()) {
15234         const ArrayType *AT = Context.getAsArrayType(CurrentType);
15235         if(!AT)
15236           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15237                            << CurrentType);
15238         CurrentType = AT->getElementType();
15239       } else
15240         CurrentType = Context.DependentTy;
15241 
15242       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15243       if (IdxRval.isInvalid())
15244         return ExprError();
15245       Expr *Idx = IdxRval.get();
15246 
15247       // The expression must be an integral expression.
15248       // FIXME: An integral constant expression?
15249       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15250           !Idx->getType()->isIntegerType())
15251         return ExprError(
15252             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15253             << Idx->getSourceRange());
15254 
15255       // Record this array index.
15256       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15257       Exprs.push_back(Idx);
15258       continue;
15259     }
15260 
15261     // Offset of a field.
15262     if (CurrentType->isDependentType()) {
15263       // We have the offset of a field, but we can't look into the dependent
15264       // type. Just record the identifier of the field.
15265       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15266       CurrentType = Context.DependentTy;
15267       continue;
15268     }
15269 
15270     // We need to have a complete type to look into.
15271     if (RequireCompleteType(OC.LocStart, CurrentType,
15272                             diag::err_offsetof_incomplete_type))
15273       return ExprError();
15274 
15275     // Look for the designated field.
15276     const RecordType *RC = CurrentType->getAs<RecordType>();
15277     if (!RC)
15278       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15279                        << CurrentType);
15280     RecordDecl *RD = RC->getDecl();
15281 
15282     // C++ [lib.support.types]p5:
15283     //   The macro offsetof accepts a restricted set of type arguments in this
15284     //   International Standard. type shall be a POD structure or a POD union
15285     //   (clause 9).
15286     // C++11 [support.types]p4:
15287     //   If type is not a standard-layout class (Clause 9), the results are
15288     //   undefined.
15289     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15290       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15291       unsigned DiagID =
15292         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15293                             : diag::ext_offsetof_non_pod_type;
15294 
15295       if (!IsSafe && !DidWarnAboutNonPOD &&
15296           DiagRuntimeBehavior(BuiltinLoc, nullptr,
15297                               PDiag(DiagID)
15298                               << SourceRange(Components[0].LocStart, OC.LocEnd)
15299                               << CurrentType))
15300         DidWarnAboutNonPOD = true;
15301     }
15302 
15303     // Look for the field.
15304     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15305     LookupQualifiedName(R, RD);
15306     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15307     IndirectFieldDecl *IndirectMemberDecl = nullptr;
15308     if (!MemberDecl) {
15309       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15310         MemberDecl = IndirectMemberDecl->getAnonField();
15311     }
15312 
15313     if (!MemberDecl)
15314       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
15315                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
15316                                                               OC.LocEnd));
15317 
15318     // C99 7.17p3:
15319     //   (If the specified member is a bit-field, the behavior is undefined.)
15320     //
15321     // We diagnose this as an error.
15322     if (MemberDecl->isBitField()) {
15323       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15324         << MemberDecl->getDeclName()
15325         << SourceRange(BuiltinLoc, RParenLoc);
15326       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15327       return ExprError();
15328     }
15329 
15330     RecordDecl *Parent = MemberDecl->getParent();
15331     if (IndirectMemberDecl)
15332       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15333 
15334     // If the member was found in a base class, introduce OffsetOfNodes for
15335     // the base class indirections.
15336     CXXBasePaths Paths;
15337     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15338                       Paths)) {
15339       if (Paths.getDetectedVirtual()) {
15340         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15341           << MemberDecl->getDeclName()
15342           << SourceRange(BuiltinLoc, RParenLoc);
15343         return ExprError();
15344       }
15345 
15346       CXXBasePath &Path = Paths.front();
15347       for (const CXXBasePathElement &B : Path)
15348         Comps.push_back(OffsetOfNode(B.Base));
15349     }
15350 
15351     if (IndirectMemberDecl) {
15352       for (auto *FI : IndirectMemberDecl->chain()) {
15353         assert(isa<FieldDecl>(FI));
15354         Comps.push_back(OffsetOfNode(OC.LocStart,
15355                                      cast<FieldDecl>(FI), OC.LocEnd));
15356       }
15357     } else
15358       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15359 
15360     CurrentType = MemberDecl->getType().getNonReferenceType();
15361   }
15362 
15363   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15364                               Comps, Exprs, RParenLoc);
15365 }
15366 
15367 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15368                                       SourceLocation BuiltinLoc,
15369                                       SourceLocation TypeLoc,
15370                                       ParsedType ParsedArgTy,
15371                                       ArrayRef<OffsetOfComponent> Components,
15372                                       SourceLocation RParenLoc) {
15373 
15374   TypeSourceInfo *ArgTInfo;
15375   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15376   if (ArgTy.isNull())
15377     return ExprError();
15378 
15379   if (!ArgTInfo)
15380     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15381 
15382   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15383 }
15384 
15385 
15386 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15387                                  Expr *CondExpr,
15388                                  Expr *LHSExpr, Expr *RHSExpr,
15389                                  SourceLocation RPLoc) {
15390   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
15391 
15392   ExprValueKind VK = VK_PRValue;
15393   ExprObjectKind OK = OK_Ordinary;
15394   QualType resType;
15395   bool CondIsTrue = false;
15396   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15397     resType = Context.DependentTy;
15398   } else {
15399     // The conditional expression is required to be a constant expression.
15400     llvm::APSInt condEval(32);
15401     ExprResult CondICE = VerifyIntegerConstantExpression(
15402         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15403     if (CondICE.isInvalid())
15404       return ExprError();
15405     CondExpr = CondICE.get();
15406     CondIsTrue = condEval.getZExtValue();
15407 
15408     // If the condition is > zero, then the AST type is the same as the LHSExpr.
15409     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15410 
15411     resType = ActiveExpr->getType();
15412     VK = ActiveExpr->getValueKind();
15413     OK = ActiveExpr->getObjectKind();
15414   }
15415 
15416   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15417                                   resType, VK, OK, RPLoc, CondIsTrue);
15418 }
15419 
15420 //===----------------------------------------------------------------------===//
15421 // Clang Extensions.
15422 //===----------------------------------------------------------------------===//
15423 
15424 /// ActOnBlockStart - This callback is invoked when a block literal is started.
15425 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15426   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15427 
15428   if (LangOpts.CPlusPlus) {
15429     MangleNumberingContext *MCtx;
15430     Decl *ManglingContextDecl;
15431     std::tie(MCtx, ManglingContextDecl) =
15432         getCurrentMangleNumberContext(Block->getDeclContext());
15433     if (MCtx) {
15434       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15435       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15436     }
15437   }
15438 
15439   PushBlockScope(CurScope, Block);
15440   CurContext->addDecl(Block);
15441   if (CurScope)
15442     PushDeclContext(CurScope, Block);
15443   else
15444     CurContext = Block;
15445 
15446   getCurBlock()->HasImplicitReturnType = true;
15447 
15448   // Enter a new evaluation context to insulate the block from any
15449   // cleanups from the enclosing full-expression.
15450   PushExpressionEvaluationContext(
15451       ExpressionEvaluationContext::PotentiallyEvaluated);
15452 }
15453 
15454 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15455                                Scope *CurScope) {
15456   assert(ParamInfo.getIdentifier() == nullptr &&
15457          "block-id should have no identifier!");
15458   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
15459   BlockScopeInfo *CurBlock = getCurBlock();
15460 
15461   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
15462   QualType T = Sig->getType();
15463 
15464   // FIXME: We should allow unexpanded parameter packs here, but that would,
15465   // in turn, make the block expression contain unexpanded parameter packs.
15466   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15467     // Drop the parameters.
15468     FunctionProtoType::ExtProtoInfo EPI;
15469     EPI.HasTrailingReturn = false;
15470     EPI.TypeQuals.addConst();
15471     T = Context.getFunctionType(Context.DependentTy, None, EPI);
15472     Sig = Context.getTrivialTypeSourceInfo(T);
15473   }
15474 
15475   // GetTypeForDeclarator always produces a function type for a block
15476   // literal signature.  Furthermore, it is always a FunctionProtoType
15477   // unless the function was written with a typedef.
15478   assert(T->isFunctionType() &&
15479          "GetTypeForDeclarator made a non-function block signature");
15480 
15481   // Look for an explicit signature in that function type.
15482   FunctionProtoTypeLoc ExplicitSignature;
15483 
15484   if ((ExplicitSignature = Sig->getTypeLoc()
15485                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
15486 
15487     // Check whether that explicit signature was synthesized by
15488     // GetTypeForDeclarator.  If so, don't save that as part of the
15489     // written signature.
15490     if (ExplicitSignature.getLocalRangeBegin() ==
15491         ExplicitSignature.getLocalRangeEnd()) {
15492       // This would be much cheaper if we stored TypeLocs instead of
15493       // TypeSourceInfos.
15494       TypeLoc Result = ExplicitSignature.getReturnLoc();
15495       unsigned Size = Result.getFullDataSize();
15496       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
15497       Sig->getTypeLoc().initializeFullCopy(Result, Size);
15498 
15499       ExplicitSignature = FunctionProtoTypeLoc();
15500     }
15501   }
15502 
15503   CurBlock->TheDecl->setSignatureAsWritten(Sig);
15504   CurBlock->FunctionType = T;
15505 
15506   const auto *Fn = T->castAs<FunctionType>();
15507   QualType RetTy = Fn->getReturnType();
15508   bool isVariadic =
15509       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
15510 
15511   CurBlock->TheDecl->setIsVariadic(isVariadic);
15512 
15513   // Context.DependentTy is used as a placeholder for a missing block
15514   // return type.  TODO:  what should we do with declarators like:
15515   //   ^ * { ... }
15516   // If the answer is "apply template argument deduction"....
15517   if (RetTy != Context.DependentTy) {
15518     CurBlock->ReturnType = RetTy;
15519     CurBlock->TheDecl->setBlockMissingReturnType(false);
15520     CurBlock->HasImplicitReturnType = false;
15521   }
15522 
15523   // Push block parameters from the declarator if we had them.
15524   SmallVector<ParmVarDecl*, 8> Params;
15525   if (ExplicitSignature) {
15526     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
15527       ParmVarDecl *Param = ExplicitSignature.getParam(I);
15528       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
15529           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
15530         // Diagnose this as an extension in C17 and earlier.
15531         if (!getLangOpts().C2x)
15532           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15533       }
15534       Params.push_back(Param);
15535     }
15536 
15537   // Fake up parameter variables if we have a typedef, like
15538   //   ^ fntype { ... }
15539   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
15540     for (const auto &I : Fn->param_types()) {
15541       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
15542           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
15543       Params.push_back(Param);
15544     }
15545   }
15546 
15547   // Set the parameters on the block decl.
15548   if (!Params.empty()) {
15549     CurBlock->TheDecl->setParams(Params);
15550     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
15551                              /*CheckParameterNames=*/false);
15552   }
15553 
15554   // Finally we can process decl attributes.
15555   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
15556 
15557   // Put the parameter variables in scope.
15558   for (auto AI : CurBlock->TheDecl->parameters()) {
15559     AI->setOwningFunction(CurBlock->TheDecl);
15560 
15561     // If this has an identifier, add it to the scope stack.
15562     if (AI->getIdentifier()) {
15563       CheckShadow(CurBlock->TheScope, AI);
15564 
15565       PushOnScopeChains(AI, CurBlock->TheScope);
15566     }
15567   }
15568 }
15569 
15570 /// ActOnBlockError - If there is an error parsing a block, this callback
15571 /// is invoked to pop the information about the block from the action impl.
15572 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
15573   // Leave the expression-evaluation context.
15574   DiscardCleanupsInEvaluationContext();
15575   PopExpressionEvaluationContext();
15576 
15577   // Pop off CurBlock, handle nested blocks.
15578   PopDeclContext();
15579   PopFunctionScopeInfo();
15580 }
15581 
15582 /// ActOnBlockStmtExpr - This is called when the body of a block statement
15583 /// literal was successfully completed.  ^(int x){...}
15584 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
15585                                     Stmt *Body, Scope *CurScope) {
15586   // If blocks are disabled, emit an error.
15587   if (!LangOpts.Blocks)
15588     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
15589 
15590   // Leave the expression-evaluation context.
15591   if (hasAnyUnrecoverableErrorsInThisFunction())
15592     DiscardCleanupsInEvaluationContext();
15593   assert(!Cleanup.exprNeedsCleanups() &&
15594          "cleanups within block not correctly bound!");
15595   PopExpressionEvaluationContext();
15596 
15597   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
15598   BlockDecl *BD = BSI->TheDecl;
15599 
15600   if (BSI->HasImplicitReturnType)
15601     deduceClosureReturnType(*BSI);
15602 
15603   QualType RetTy = Context.VoidTy;
15604   if (!BSI->ReturnType.isNull())
15605     RetTy = BSI->ReturnType;
15606 
15607   bool NoReturn = BD->hasAttr<NoReturnAttr>();
15608   QualType BlockTy;
15609 
15610   // If the user wrote a function type in some form, try to use that.
15611   if (!BSI->FunctionType.isNull()) {
15612     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
15613 
15614     FunctionType::ExtInfo Ext = FTy->getExtInfo();
15615     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
15616 
15617     // Turn protoless block types into nullary block types.
15618     if (isa<FunctionNoProtoType>(FTy)) {
15619       FunctionProtoType::ExtProtoInfo EPI;
15620       EPI.ExtInfo = Ext;
15621       BlockTy = Context.getFunctionType(RetTy, None, EPI);
15622 
15623     // Otherwise, if we don't need to change anything about the function type,
15624     // preserve its sugar structure.
15625     } else if (FTy->getReturnType() == RetTy &&
15626                (!NoReturn || FTy->getNoReturnAttr())) {
15627       BlockTy = BSI->FunctionType;
15628 
15629     // Otherwise, make the minimal modifications to the function type.
15630     } else {
15631       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
15632       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
15633       EPI.TypeQuals = Qualifiers();
15634       EPI.ExtInfo = Ext;
15635       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
15636     }
15637 
15638   // If we don't have a function type, just build one from nothing.
15639   } else {
15640     FunctionProtoType::ExtProtoInfo EPI;
15641     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
15642     BlockTy = Context.getFunctionType(RetTy, None, EPI);
15643   }
15644 
15645   DiagnoseUnusedParameters(BD->parameters());
15646   BlockTy = Context.getBlockPointerType(BlockTy);
15647 
15648   // If needed, diagnose invalid gotos and switches in the block.
15649   if (getCurFunction()->NeedsScopeChecking() &&
15650       !PP.isCodeCompletionEnabled())
15651     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
15652 
15653   BD->setBody(cast<CompoundStmt>(Body));
15654 
15655   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
15656     DiagnoseUnguardedAvailabilityViolations(BD);
15657 
15658   // Try to apply the named return value optimization. We have to check again
15659   // if we can do this, though, because blocks keep return statements around
15660   // to deduce an implicit return type.
15661   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
15662       !BD->isDependentContext())
15663     computeNRVO(Body, BSI);
15664 
15665   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
15666       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
15667     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
15668                           NTCUK_Destruct|NTCUK_Copy);
15669 
15670   PopDeclContext();
15671 
15672   // Set the captured variables on the block.
15673   SmallVector<BlockDecl::Capture, 4> Captures;
15674   for (Capture &Cap : BSI->Captures) {
15675     if (Cap.isInvalid() || Cap.isThisCapture())
15676       continue;
15677 
15678     VarDecl *Var = Cap.getVariable();
15679     Expr *CopyExpr = nullptr;
15680     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
15681       if (const RecordType *Record =
15682               Cap.getCaptureType()->getAs<RecordType>()) {
15683         // The capture logic needs the destructor, so make sure we mark it.
15684         // Usually this is unnecessary because most local variables have
15685         // their destructors marked at declaration time, but parameters are
15686         // an exception because it's technically only the call site that
15687         // actually requires the destructor.
15688         if (isa<ParmVarDecl>(Var))
15689           FinalizeVarWithDestructor(Var, Record);
15690 
15691         // Enter a separate potentially-evaluated context while building block
15692         // initializers to isolate their cleanups from those of the block
15693         // itself.
15694         // FIXME: Is this appropriate even when the block itself occurs in an
15695         // unevaluated operand?
15696         EnterExpressionEvaluationContext EvalContext(
15697             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15698 
15699         SourceLocation Loc = Cap.getLocation();
15700 
15701         ExprResult Result = BuildDeclarationNameExpr(
15702             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
15703 
15704         // According to the blocks spec, the capture of a variable from
15705         // the stack requires a const copy constructor.  This is not true
15706         // of the copy/move done to move a __block variable to the heap.
15707         if (!Result.isInvalid() &&
15708             !Result.get()->getType().isConstQualified()) {
15709           Result = ImpCastExprToType(Result.get(),
15710                                      Result.get()->getType().withConst(),
15711                                      CK_NoOp, VK_LValue);
15712         }
15713 
15714         if (!Result.isInvalid()) {
15715           Result = PerformCopyInitialization(
15716               InitializedEntity::InitializeBlock(Var->getLocation(),
15717                                                  Cap.getCaptureType()),
15718               Loc, Result.get());
15719         }
15720 
15721         // Build a full-expression copy expression if initialization
15722         // succeeded and used a non-trivial constructor.  Recover from
15723         // errors by pretending that the copy isn't necessary.
15724         if (!Result.isInvalid() &&
15725             !cast<CXXConstructExpr>(Result.get())->getConstructor()
15726                 ->isTrivial()) {
15727           Result = MaybeCreateExprWithCleanups(Result);
15728           CopyExpr = Result.get();
15729         }
15730       }
15731     }
15732 
15733     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
15734                               CopyExpr);
15735     Captures.push_back(NewCap);
15736   }
15737   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
15738 
15739   // Pop the block scope now but keep it alive to the end of this function.
15740   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15741   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
15742 
15743   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
15744 
15745   // If the block isn't obviously global, i.e. it captures anything at
15746   // all, then we need to do a few things in the surrounding context:
15747   if (Result->getBlockDecl()->hasCaptures()) {
15748     // First, this expression has a new cleanup object.
15749     ExprCleanupObjects.push_back(Result->getBlockDecl());
15750     Cleanup.setExprNeedsCleanups(true);
15751 
15752     // It also gets a branch-protected scope if any of the captured
15753     // variables needs destruction.
15754     for (const auto &CI : Result->getBlockDecl()->captures()) {
15755       const VarDecl *var = CI.getVariable();
15756       if (var->getType().isDestructedType() != QualType::DK_none) {
15757         setFunctionHasBranchProtectedScope();
15758         break;
15759       }
15760     }
15761   }
15762 
15763   if (getCurFunction())
15764     getCurFunction()->addBlock(BD);
15765 
15766   return Result;
15767 }
15768 
15769 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
15770                             SourceLocation RPLoc) {
15771   TypeSourceInfo *TInfo;
15772   GetTypeFromParser(Ty, &TInfo);
15773   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
15774 }
15775 
15776 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
15777                                 Expr *E, TypeSourceInfo *TInfo,
15778                                 SourceLocation RPLoc) {
15779   Expr *OrigExpr = E;
15780   bool IsMS = false;
15781 
15782   // CUDA device code does not support varargs.
15783   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
15784     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
15785       CUDAFunctionTarget T = IdentifyCUDATarget(F);
15786       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
15787         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
15788     }
15789   }
15790 
15791   // NVPTX does not support va_arg expression.
15792   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
15793       Context.getTargetInfo().getTriple().isNVPTX())
15794     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
15795 
15796   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
15797   // as Microsoft ABI on an actual Microsoft platform, where
15798   // __builtin_ms_va_list and __builtin_va_list are the same.)
15799   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
15800       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
15801     QualType MSVaListType = Context.getBuiltinMSVaListType();
15802     if (Context.hasSameType(MSVaListType, E->getType())) {
15803       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
15804         return ExprError();
15805       IsMS = true;
15806     }
15807   }
15808 
15809   // Get the va_list type
15810   QualType VaListType = Context.getBuiltinVaListType();
15811   if (!IsMS) {
15812     if (VaListType->isArrayType()) {
15813       // Deal with implicit array decay; for example, on x86-64,
15814       // va_list is an array, but it's supposed to decay to
15815       // a pointer for va_arg.
15816       VaListType = Context.getArrayDecayedType(VaListType);
15817       // Make sure the input expression also decays appropriately.
15818       ExprResult Result = UsualUnaryConversions(E);
15819       if (Result.isInvalid())
15820         return ExprError();
15821       E = Result.get();
15822     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
15823       // If va_list is a record type and we are compiling in C++ mode,
15824       // check the argument using reference binding.
15825       InitializedEntity Entity = InitializedEntity::InitializeParameter(
15826           Context, Context.getLValueReferenceType(VaListType), false);
15827       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
15828       if (Init.isInvalid())
15829         return ExprError();
15830       E = Init.getAs<Expr>();
15831     } else {
15832       // Otherwise, the va_list argument must be an l-value because
15833       // it is modified by va_arg.
15834       if (!E->isTypeDependent() &&
15835           CheckForModifiableLvalue(E, BuiltinLoc, *this))
15836         return ExprError();
15837     }
15838   }
15839 
15840   if (!IsMS && !E->isTypeDependent() &&
15841       !Context.hasSameType(VaListType, E->getType()))
15842     return ExprError(
15843         Diag(E->getBeginLoc(),
15844              diag::err_first_argument_to_va_arg_not_of_type_va_list)
15845         << OrigExpr->getType() << E->getSourceRange());
15846 
15847   if (!TInfo->getType()->isDependentType()) {
15848     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
15849                             diag::err_second_parameter_to_va_arg_incomplete,
15850                             TInfo->getTypeLoc()))
15851       return ExprError();
15852 
15853     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
15854                                TInfo->getType(),
15855                                diag::err_second_parameter_to_va_arg_abstract,
15856                                TInfo->getTypeLoc()))
15857       return ExprError();
15858 
15859     if (!TInfo->getType().isPODType(Context)) {
15860       Diag(TInfo->getTypeLoc().getBeginLoc(),
15861            TInfo->getType()->isObjCLifetimeType()
15862              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
15863              : diag::warn_second_parameter_to_va_arg_not_pod)
15864         << TInfo->getType()
15865         << TInfo->getTypeLoc().getSourceRange();
15866     }
15867 
15868     // Check for va_arg where arguments of the given type will be promoted
15869     // (i.e. this va_arg is guaranteed to have undefined behavior).
15870     QualType PromoteType;
15871     if (TInfo->getType()->isPromotableIntegerType()) {
15872       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
15873       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
15874       // and C2x 7.16.1.1p2 says, in part:
15875       //   If type is not compatible with the type of the actual next argument
15876       //   (as promoted according to the default argument promotions), the
15877       //   behavior is undefined, except for the following cases:
15878       //     - both types are pointers to qualified or unqualified versions of
15879       //       compatible types;
15880       //     - one type is a signed integer type, the other type is the
15881       //       corresponding unsigned integer type, and the value is
15882       //       representable in both types;
15883       //     - one type is pointer to qualified or unqualified void and the
15884       //       other is a pointer to a qualified or unqualified character type.
15885       // Given that type compatibility is the primary requirement (ignoring
15886       // qualifications), you would think we could call typesAreCompatible()
15887       // directly to test this. However, in C++, that checks for *same type*,
15888       // which causes false positives when passing an enumeration type to
15889       // va_arg. Instead, get the underlying type of the enumeration and pass
15890       // that.
15891       QualType UnderlyingType = TInfo->getType();
15892       if (const auto *ET = UnderlyingType->getAs<EnumType>())
15893         UnderlyingType = ET->getDecl()->getIntegerType();
15894       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
15895                                      /*CompareUnqualified*/ true))
15896         PromoteType = QualType();
15897 
15898       // If the types are still not compatible, we need to test whether the
15899       // promoted type and the underlying type are the same except for
15900       // signedness. Ask the AST for the correctly corresponding type and see
15901       // if that's compatible.
15902       if (!PromoteType.isNull() &&
15903           PromoteType->isUnsignedIntegerType() !=
15904               UnderlyingType->isUnsignedIntegerType()) {
15905         UnderlyingType =
15906             UnderlyingType->isUnsignedIntegerType()
15907                 ? Context.getCorrespondingSignedType(UnderlyingType)
15908                 : Context.getCorrespondingUnsignedType(UnderlyingType);
15909         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
15910                                        /*CompareUnqualified*/ true))
15911           PromoteType = QualType();
15912       }
15913     }
15914     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
15915       PromoteType = Context.DoubleTy;
15916     if (!PromoteType.isNull())
15917       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
15918                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
15919                           << TInfo->getType()
15920                           << PromoteType
15921                           << TInfo->getTypeLoc().getSourceRange());
15922   }
15923 
15924   QualType T = TInfo->getType().getNonLValueExprType(Context);
15925   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
15926 }
15927 
15928 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
15929   // The type of __null will be int or long, depending on the size of
15930   // pointers on the target.
15931   QualType Ty;
15932   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
15933   if (pw == Context.getTargetInfo().getIntWidth())
15934     Ty = Context.IntTy;
15935   else if (pw == Context.getTargetInfo().getLongWidth())
15936     Ty = Context.LongTy;
15937   else if (pw == Context.getTargetInfo().getLongLongWidth())
15938     Ty = Context.LongLongTy;
15939   else {
15940     llvm_unreachable("I don't know size of pointer!");
15941   }
15942 
15943   return new (Context) GNUNullExpr(Ty, TokenLoc);
15944 }
15945 
15946 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
15947                                     SourceLocation BuiltinLoc,
15948                                     SourceLocation RPLoc) {
15949   return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
15950 }
15951 
15952 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
15953                                     SourceLocation BuiltinLoc,
15954                                     SourceLocation RPLoc,
15955                                     DeclContext *ParentContext) {
15956   return new (Context)
15957       SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
15958 }
15959 
15960 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
15961                                         bool Diagnose) {
15962   if (!getLangOpts().ObjC)
15963     return false;
15964 
15965   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
15966   if (!PT)
15967     return false;
15968   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
15969 
15970   // Ignore any parens, implicit casts (should only be
15971   // array-to-pointer decays), and not-so-opaque values.  The last is
15972   // important for making this trigger for property assignments.
15973   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
15974   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
15975     if (OV->getSourceExpr())
15976       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
15977 
15978   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
15979     if (!PT->isObjCIdType() &&
15980         !(ID && ID->getIdentifier()->isStr("NSString")))
15981       return false;
15982     if (!SL->isAscii())
15983       return false;
15984 
15985     if (Diagnose) {
15986       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
15987           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
15988       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
15989     }
15990     return true;
15991   }
15992 
15993   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
15994       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
15995       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
15996       !SrcExpr->isNullPointerConstant(
15997           getASTContext(), Expr::NPC_NeverValueDependent)) {
15998     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
15999       return false;
16000     if (Diagnose) {
16001       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
16002           << /*number*/1
16003           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
16004       Expr *NumLit =
16005           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
16006       if (NumLit)
16007         Exp = NumLit;
16008     }
16009     return true;
16010   }
16011 
16012   return false;
16013 }
16014 
16015 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16016                                               const Expr *SrcExpr) {
16017   if (!DstType->isFunctionPointerType() ||
16018       !SrcExpr->getType()->isFunctionType())
16019     return false;
16020 
16021   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16022   if (!DRE)
16023     return false;
16024 
16025   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16026   if (!FD)
16027     return false;
16028 
16029   return !S.checkAddressOfFunctionIsAvailable(FD,
16030                                               /*Complain=*/true,
16031                                               SrcExpr->getBeginLoc());
16032 }
16033 
16034 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16035                                     SourceLocation Loc,
16036                                     QualType DstType, QualType SrcType,
16037                                     Expr *SrcExpr, AssignmentAction Action,
16038                                     bool *Complained) {
16039   if (Complained)
16040     *Complained = false;
16041 
16042   // Decode the result (notice that AST's are still created for extensions).
16043   bool CheckInferredResultType = false;
16044   bool isInvalid = false;
16045   unsigned DiagKind = 0;
16046   ConversionFixItGenerator ConvHints;
16047   bool MayHaveConvFixit = false;
16048   bool MayHaveFunctionDiff = false;
16049   const ObjCInterfaceDecl *IFace = nullptr;
16050   const ObjCProtocolDecl *PDecl = nullptr;
16051 
16052   switch (ConvTy) {
16053   case Compatible:
16054       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16055       return false;
16056 
16057   case PointerToInt:
16058     if (getLangOpts().CPlusPlus) {
16059       DiagKind = diag::err_typecheck_convert_pointer_int;
16060       isInvalid = true;
16061     } else {
16062       DiagKind = diag::ext_typecheck_convert_pointer_int;
16063     }
16064     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16065     MayHaveConvFixit = true;
16066     break;
16067   case IntToPointer:
16068     if (getLangOpts().CPlusPlus) {
16069       DiagKind = diag::err_typecheck_convert_int_pointer;
16070       isInvalid = true;
16071     } else {
16072       DiagKind = diag::ext_typecheck_convert_int_pointer;
16073     }
16074     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16075     MayHaveConvFixit = true;
16076     break;
16077   case IncompatibleFunctionPointer:
16078     if (getLangOpts().CPlusPlus) {
16079       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16080       isInvalid = true;
16081     } else {
16082       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16083     }
16084     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16085     MayHaveConvFixit = true;
16086     break;
16087   case IncompatiblePointer:
16088     if (Action == AA_Passing_CFAudited) {
16089       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16090     } else if (getLangOpts().CPlusPlus) {
16091       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16092       isInvalid = true;
16093     } else {
16094       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16095     }
16096     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16097       SrcType->isObjCObjectPointerType();
16098     if (!CheckInferredResultType) {
16099       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16100     } else if (CheckInferredResultType) {
16101       SrcType = SrcType.getUnqualifiedType();
16102       DstType = DstType.getUnqualifiedType();
16103     }
16104     MayHaveConvFixit = true;
16105     break;
16106   case IncompatiblePointerSign:
16107     if (getLangOpts().CPlusPlus) {
16108       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16109       isInvalid = true;
16110     } else {
16111       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16112     }
16113     break;
16114   case FunctionVoidPointer:
16115     if (getLangOpts().CPlusPlus) {
16116       DiagKind = diag::err_typecheck_convert_pointer_void_func;
16117       isInvalid = true;
16118     } else {
16119       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16120     }
16121     break;
16122   case IncompatiblePointerDiscardsQualifiers: {
16123     // Perform array-to-pointer decay if necessary.
16124     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16125 
16126     isInvalid = true;
16127 
16128     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16129     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16130     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16131       DiagKind = diag::err_typecheck_incompatible_address_space;
16132       break;
16133 
16134     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16135       DiagKind = diag::err_typecheck_incompatible_ownership;
16136       break;
16137     }
16138 
16139     llvm_unreachable("unknown error case for discarding qualifiers!");
16140     // fallthrough
16141   }
16142   case CompatiblePointerDiscardsQualifiers:
16143     // If the qualifiers lost were because we were applying the
16144     // (deprecated) C++ conversion from a string literal to a char*
16145     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
16146     // Ideally, this check would be performed in
16147     // checkPointerTypesForAssignment. However, that would require a
16148     // bit of refactoring (so that the second argument is an
16149     // expression, rather than a type), which should be done as part
16150     // of a larger effort to fix checkPointerTypesForAssignment for
16151     // C++ semantics.
16152     if (getLangOpts().CPlusPlus &&
16153         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16154       return false;
16155     if (getLangOpts().CPlusPlus) {
16156       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
16157       isInvalid = true;
16158     } else {
16159       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
16160     }
16161 
16162     break;
16163   case IncompatibleNestedPointerQualifiers:
16164     if (getLangOpts().CPlusPlus) {
16165       isInvalid = true;
16166       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16167     } else {
16168       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16169     }
16170     break;
16171   case IncompatibleNestedPointerAddressSpaceMismatch:
16172     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16173     isInvalid = true;
16174     break;
16175   case IntToBlockPointer:
16176     DiagKind = diag::err_int_to_block_pointer;
16177     isInvalid = true;
16178     break;
16179   case IncompatibleBlockPointer:
16180     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16181     isInvalid = true;
16182     break;
16183   case IncompatibleObjCQualifiedId: {
16184     if (SrcType->isObjCQualifiedIdType()) {
16185       const ObjCObjectPointerType *srcOPT =
16186                 SrcType->castAs<ObjCObjectPointerType>();
16187       for (auto *srcProto : srcOPT->quals()) {
16188         PDecl = srcProto;
16189         break;
16190       }
16191       if (const ObjCInterfaceType *IFaceT =
16192             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16193         IFace = IFaceT->getDecl();
16194     }
16195     else if (DstType->isObjCQualifiedIdType()) {
16196       const ObjCObjectPointerType *dstOPT =
16197         DstType->castAs<ObjCObjectPointerType>();
16198       for (auto *dstProto : dstOPT->quals()) {
16199         PDecl = dstProto;
16200         break;
16201       }
16202       if (const ObjCInterfaceType *IFaceT =
16203             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16204         IFace = IFaceT->getDecl();
16205     }
16206     if (getLangOpts().CPlusPlus) {
16207       DiagKind = diag::err_incompatible_qualified_id;
16208       isInvalid = true;
16209     } else {
16210       DiagKind = diag::warn_incompatible_qualified_id;
16211     }
16212     break;
16213   }
16214   case IncompatibleVectors:
16215     if (getLangOpts().CPlusPlus) {
16216       DiagKind = diag::err_incompatible_vectors;
16217       isInvalid = true;
16218     } else {
16219       DiagKind = diag::warn_incompatible_vectors;
16220     }
16221     break;
16222   case IncompatibleObjCWeakRef:
16223     DiagKind = diag::err_arc_weak_unavailable_assign;
16224     isInvalid = true;
16225     break;
16226   case Incompatible:
16227     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
16228       if (Complained)
16229         *Complained = true;
16230       return true;
16231     }
16232 
16233     DiagKind = diag::err_typecheck_convert_incompatible;
16234     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16235     MayHaveConvFixit = true;
16236     isInvalid = true;
16237     MayHaveFunctionDiff = true;
16238     break;
16239   }
16240 
16241   QualType FirstType, SecondType;
16242   switch (Action) {
16243   case AA_Assigning:
16244   case AA_Initializing:
16245     // The destination type comes first.
16246     FirstType = DstType;
16247     SecondType = SrcType;
16248     break;
16249 
16250   case AA_Returning:
16251   case AA_Passing:
16252   case AA_Passing_CFAudited:
16253   case AA_Converting:
16254   case AA_Sending:
16255   case AA_Casting:
16256     // The source type comes first.
16257     FirstType = SrcType;
16258     SecondType = DstType;
16259     break;
16260   }
16261 
16262   PartialDiagnostic FDiag = PDiag(DiagKind);
16263   if (Action == AA_Passing_CFAudited)
16264     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
16265   else
16266     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
16267 
16268   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16269       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16270     auto isPlainChar = [](const clang::Type *Type) {
16271       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
16272              Type->isSpecificBuiltinType(BuiltinType::Char_U);
16273     };
16274     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16275               isPlainChar(SecondType->getPointeeOrArrayElementType()));
16276   }
16277 
16278   // If we can fix the conversion, suggest the FixIts.
16279   if (!ConvHints.isNull()) {
16280     for (FixItHint &H : ConvHints.Hints)
16281       FDiag << H;
16282   }
16283 
16284   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
16285 
16286   if (MayHaveFunctionDiff)
16287     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
16288 
16289   Diag(Loc, FDiag);
16290   if ((DiagKind == diag::warn_incompatible_qualified_id ||
16291        DiagKind == diag::err_incompatible_qualified_id) &&
16292       PDecl && IFace && !IFace->hasDefinition())
16293     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
16294         << IFace << PDecl;
16295 
16296   if (SecondType == Context.OverloadTy)
16297     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
16298                               FirstType, /*TakingAddress=*/true);
16299 
16300   if (CheckInferredResultType)
16301     EmitRelatedResultTypeNote(SrcExpr);
16302 
16303   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16304     EmitRelatedResultTypeNoteForReturn(DstType);
16305 
16306   if (Complained)
16307     *Complained = true;
16308   return isInvalid;
16309 }
16310 
16311 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16312                                                  llvm::APSInt *Result,
16313                                                  AllowFoldKind CanFold) {
16314   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16315   public:
16316     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16317                                              QualType T) override {
16318       return S.Diag(Loc, diag::err_ice_not_integral)
16319              << T << S.LangOpts.CPlusPlus;
16320     }
16321     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16322       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16323     }
16324   } Diagnoser;
16325 
16326   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16327 }
16328 
16329 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16330                                                  llvm::APSInt *Result,
16331                                                  unsigned DiagID,
16332                                                  AllowFoldKind CanFold) {
16333   class IDDiagnoser : public VerifyICEDiagnoser {
16334     unsigned DiagID;
16335 
16336   public:
16337     IDDiagnoser(unsigned DiagID)
16338       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16339 
16340     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16341       return S.Diag(Loc, DiagID);
16342     }
16343   } Diagnoser(DiagID);
16344 
16345   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16346 }
16347 
16348 Sema::SemaDiagnosticBuilder
16349 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16350                                              QualType T) {
16351   return diagnoseNotICE(S, Loc);
16352 }
16353 
16354 Sema::SemaDiagnosticBuilder
16355 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16356   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16357 }
16358 
16359 ExprResult
16360 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16361                                       VerifyICEDiagnoser &Diagnoser,
16362                                       AllowFoldKind CanFold) {
16363   SourceLocation DiagLoc = E->getBeginLoc();
16364 
16365   if (getLangOpts().CPlusPlus11) {
16366     // C++11 [expr.const]p5:
16367     //   If an expression of literal class type is used in a context where an
16368     //   integral constant expression is required, then that class type shall
16369     //   have a single non-explicit conversion function to an integral or
16370     //   unscoped enumeration type
16371     ExprResult Converted;
16372     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16373       VerifyICEDiagnoser &BaseDiagnoser;
16374     public:
16375       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16376           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16377                                 BaseDiagnoser.Suppress, true),
16378             BaseDiagnoser(BaseDiagnoser) {}
16379 
16380       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16381                                            QualType T) override {
16382         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16383       }
16384 
16385       SemaDiagnosticBuilder diagnoseIncomplete(
16386           Sema &S, SourceLocation Loc, QualType T) override {
16387         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16388       }
16389 
16390       SemaDiagnosticBuilder diagnoseExplicitConv(
16391           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16392         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16393       }
16394 
16395       SemaDiagnosticBuilder noteExplicitConv(
16396           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16397         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16398                  << ConvTy->isEnumeralType() << ConvTy;
16399       }
16400 
16401       SemaDiagnosticBuilder diagnoseAmbiguous(
16402           Sema &S, SourceLocation Loc, QualType T) override {
16403         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16404       }
16405 
16406       SemaDiagnosticBuilder noteAmbiguous(
16407           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16408         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16409                  << ConvTy->isEnumeralType() << ConvTy;
16410       }
16411 
16412       SemaDiagnosticBuilder diagnoseConversion(
16413           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16414         llvm_unreachable("conversion functions are permitted");
16415       }
16416     } ConvertDiagnoser(Diagnoser);
16417 
16418     Converted = PerformContextualImplicitConversion(DiagLoc, E,
16419                                                     ConvertDiagnoser);
16420     if (Converted.isInvalid())
16421       return Converted;
16422     E = Converted.get();
16423     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
16424       return ExprError();
16425   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16426     // An ICE must be of integral or unscoped enumeration type.
16427     if (!Diagnoser.Suppress)
16428       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
16429           << E->getSourceRange();
16430     return ExprError();
16431   }
16432 
16433   ExprResult RValueExpr = DefaultLvalueConversion(E);
16434   if (RValueExpr.isInvalid())
16435     return ExprError();
16436 
16437   E = RValueExpr.get();
16438 
16439   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
16440   // in the non-ICE case.
16441   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
16442     if (Result)
16443       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
16444     if (!isa<ConstantExpr>(E))
16445       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
16446                  : ConstantExpr::Create(Context, E);
16447     return E;
16448   }
16449 
16450   Expr::EvalResult EvalResult;
16451   SmallVector<PartialDiagnosticAt, 8> Notes;
16452   EvalResult.Diag = &Notes;
16453 
16454   // Try to evaluate the expression, and produce diagnostics explaining why it's
16455   // not a constant expression as a side-effect.
16456   bool Folded =
16457       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
16458       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
16459 
16460   if (!isa<ConstantExpr>(E))
16461     E = ConstantExpr::Create(Context, E, EvalResult.Val);
16462 
16463   // In C++11, we can rely on diagnostics being produced for any expression
16464   // which is not a constant expression. If no diagnostics were produced, then
16465   // this is a constant expression.
16466   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
16467     if (Result)
16468       *Result = EvalResult.Val.getInt();
16469     return E;
16470   }
16471 
16472   // If our only note is the usual "invalid subexpression" note, just point
16473   // the caret at its location rather than producing an essentially
16474   // redundant note.
16475   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
16476         diag::note_invalid_subexpr_in_const_expr) {
16477     DiagLoc = Notes[0].first;
16478     Notes.clear();
16479   }
16480 
16481   if (!Folded || !CanFold) {
16482     if (!Diagnoser.Suppress) {
16483       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
16484       for (const PartialDiagnosticAt &Note : Notes)
16485         Diag(Note.first, Note.second);
16486     }
16487 
16488     return ExprError();
16489   }
16490 
16491   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
16492   for (const PartialDiagnosticAt &Note : Notes)
16493     Diag(Note.first, Note.second);
16494 
16495   if (Result)
16496     *Result = EvalResult.Val.getInt();
16497   return E;
16498 }
16499 
16500 namespace {
16501   // Handle the case where we conclude a expression which we speculatively
16502   // considered to be unevaluated is actually evaluated.
16503   class TransformToPE : public TreeTransform<TransformToPE> {
16504     typedef TreeTransform<TransformToPE> BaseTransform;
16505 
16506   public:
16507     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
16508 
16509     // Make sure we redo semantic analysis
16510     bool AlwaysRebuild() { return true; }
16511     bool ReplacingOriginal() { return true; }
16512 
16513     // We need to special-case DeclRefExprs referring to FieldDecls which
16514     // are not part of a member pointer formation; normal TreeTransforming
16515     // doesn't catch this case because of the way we represent them in the AST.
16516     // FIXME: This is a bit ugly; is it really the best way to handle this
16517     // case?
16518     //
16519     // Error on DeclRefExprs referring to FieldDecls.
16520     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16521       if (isa<FieldDecl>(E->getDecl()) &&
16522           !SemaRef.isUnevaluatedContext())
16523         return SemaRef.Diag(E->getLocation(),
16524                             diag::err_invalid_non_static_member_use)
16525             << E->getDecl() << E->getSourceRange();
16526 
16527       return BaseTransform::TransformDeclRefExpr(E);
16528     }
16529 
16530     // Exception: filter out member pointer formation
16531     ExprResult TransformUnaryOperator(UnaryOperator *E) {
16532       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
16533         return E;
16534 
16535       return BaseTransform::TransformUnaryOperator(E);
16536     }
16537 
16538     // The body of a lambda-expression is in a separate expression evaluation
16539     // context so never needs to be transformed.
16540     // FIXME: Ideally we wouldn't transform the closure type either, and would
16541     // just recreate the capture expressions and lambda expression.
16542     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
16543       return SkipLambdaBody(E, Body);
16544     }
16545   };
16546 }
16547 
16548 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
16549   assert(isUnevaluatedContext() &&
16550          "Should only transform unevaluated expressions");
16551   ExprEvalContexts.back().Context =
16552       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
16553   if (isUnevaluatedContext())
16554     return E;
16555   return TransformToPE(*this).TransformExpr(E);
16556 }
16557 
16558 void
16559 Sema::PushExpressionEvaluationContext(
16560     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
16561     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16562   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
16563                                 LambdaContextDecl, ExprContext);
16564   Cleanup.reset();
16565   if (!MaybeODRUseExprs.empty())
16566     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
16567 }
16568 
16569 void
16570 Sema::PushExpressionEvaluationContext(
16571     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
16572     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16573   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
16574   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
16575 }
16576 
16577 namespace {
16578 
16579 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
16580   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
16581   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
16582     if (E->getOpcode() == UO_Deref)
16583       return CheckPossibleDeref(S, E->getSubExpr());
16584   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
16585     return CheckPossibleDeref(S, E->getBase());
16586   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
16587     return CheckPossibleDeref(S, E->getBase());
16588   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
16589     QualType Inner;
16590     QualType Ty = E->getType();
16591     if (const auto *Ptr = Ty->getAs<PointerType>())
16592       Inner = Ptr->getPointeeType();
16593     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
16594       Inner = Arr->getElementType();
16595     else
16596       return nullptr;
16597 
16598     if (Inner->hasAttr(attr::NoDeref))
16599       return E;
16600   }
16601   return nullptr;
16602 }
16603 
16604 } // namespace
16605 
16606 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
16607   for (const Expr *E : Rec.PossibleDerefs) {
16608     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
16609     if (DeclRef) {
16610       const ValueDecl *Decl = DeclRef->getDecl();
16611       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
16612           << Decl->getName() << E->getSourceRange();
16613       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
16614     } else {
16615       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
16616           << E->getSourceRange();
16617     }
16618   }
16619   Rec.PossibleDerefs.clear();
16620 }
16621 
16622 /// Check whether E, which is either a discarded-value expression or an
16623 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
16624 /// and if so, remove it from the list of volatile-qualified assignments that
16625 /// we are going to warn are deprecated.
16626 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
16627   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
16628     return;
16629 
16630   // Note: ignoring parens here is not justified by the standard rules, but
16631   // ignoring parentheses seems like a more reasonable approach, and this only
16632   // drives a deprecation warning so doesn't affect conformance.
16633   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
16634     if (BO->getOpcode() == BO_Assign) {
16635       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
16636       LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
16637                  LHSs.end());
16638     }
16639   }
16640 }
16641 
16642 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
16643   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
16644       !Decl->isConsteval() || isConstantEvaluated() ||
16645       RebuildingImmediateInvocation)
16646     return E;
16647 
16648   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
16649   /// It's OK if this fails; we'll also remove this in
16650   /// HandleImmediateInvocations, but catching it here allows us to avoid
16651   /// walking the AST looking for it in simple cases.
16652   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
16653     if (auto *DeclRef =
16654             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
16655       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
16656 
16657   E = MaybeCreateExprWithCleanups(E);
16658 
16659   ConstantExpr *Res = ConstantExpr::Create(
16660       getASTContext(), E.get(),
16661       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
16662                                    getASTContext()),
16663       /*IsImmediateInvocation*/ true);
16664   ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
16665   return Res;
16666 }
16667 
16668 static void EvaluateAndDiagnoseImmediateInvocation(
16669     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
16670   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
16671   Expr::EvalResult Eval;
16672   Eval.Diag = &Notes;
16673   ConstantExpr *CE = Candidate.getPointer();
16674   bool Result = CE->EvaluateAsConstantExpr(
16675       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
16676   if (!Result || !Notes.empty()) {
16677     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
16678     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
16679       InnerExpr = FunctionalCast->getSubExpr();
16680     FunctionDecl *FD = nullptr;
16681     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
16682       FD = cast<FunctionDecl>(Call->getCalleeDecl());
16683     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
16684       FD = Call->getConstructor();
16685     else
16686       llvm_unreachable("unhandled decl kind");
16687     assert(FD->isConsteval());
16688     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
16689     for (auto &Note : Notes)
16690       SemaRef.Diag(Note.first, Note.second);
16691     return;
16692   }
16693   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
16694 }
16695 
16696 static void RemoveNestedImmediateInvocation(
16697     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
16698     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
16699   struct ComplexRemove : TreeTransform<ComplexRemove> {
16700     using Base = TreeTransform<ComplexRemove>;
16701     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16702     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
16703     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
16704         CurrentII;
16705     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
16706                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
16707                   SmallVector<Sema::ImmediateInvocationCandidate,
16708                               4>::reverse_iterator Current)
16709         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
16710     void RemoveImmediateInvocation(ConstantExpr* E) {
16711       auto It = std::find_if(CurrentII, IISet.rend(),
16712                              [E](Sema::ImmediateInvocationCandidate Elem) {
16713                                return Elem.getPointer() == E;
16714                              });
16715       assert(It != IISet.rend() &&
16716              "ConstantExpr marked IsImmediateInvocation should "
16717              "be present");
16718       It->setInt(1); // Mark as deleted
16719     }
16720     ExprResult TransformConstantExpr(ConstantExpr *E) {
16721       if (!E->isImmediateInvocation())
16722         return Base::TransformConstantExpr(E);
16723       RemoveImmediateInvocation(E);
16724       return Base::TransformExpr(E->getSubExpr());
16725     }
16726     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
16727     /// we need to remove its DeclRefExpr from the DRSet.
16728     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
16729       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
16730       return Base::TransformCXXOperatorCallExpr(E);
16731     }
16732     /// Base::TransformInitializer skip ConstantExpr so we need to visit them
16733     /// here.
16734     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
16735       if (!Init)
16736         return Init;
16737       /// ConstantExpr are the first layer of implicit node to be removed so if
16738       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
16739       if (auto *CE = dyn_cast<ConstantExpr>(Init))
16740         if (CE->isImmediateInvocation())
16741           RemoveImmediateInvocation(CE);
16742       return Base::TransformInitializer(Init, NotCopyInit);
16743     }
16744     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16745       DRSet.erase(E);
16746       return E;
16747     }
16748     bool AlwaysRebuild() { return false; }
16749     bool ReplacingOriginal() { return true; }
16750     bool AllowSkippingCXXConstructExpr() {
16751       bool Res = AllowSkippingFirstCXXConstructExpr;
16752       AllowSkippingFirstCXXConstructExpr = true;
16753       return Res;
16754     }
16755     bool AllowSkippingFirstCXXConstructExpr = true;
16756   } Transformer(SemaRef, Rec.ReferenceToConsteval,
16757                 Rec.ImmediateInvocationCandidates, It);
16758 
16759   /// CXXConstructExpr with a single argument are getting skipped by
16760   /// TreeTransform in some situtation because they could be implicit. This
16761   /// can only occur for the top-level CXXConstructExpr because it is used
16762   /// nowhere in the expression being transformed therefore will not be rebuilt.
16763   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
16764   /// skipping the first CXXConstructExpr.
16765   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
16766     Transformer.AllowSkippingFirstCXXConstructExpr = false;
16767 
16768   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
16769   assert(Res.isUsable());
16770   Res = SemaRef.MaybeCreateExprWithCleanups(Res);
16771   It->getPointer()->setSubExpr(Res.get());
16772 }
16773 
16774 static void
16775 HandleImmediateInvocations(Sema &SemaRef,
16776                            Sema::ExpressionEvaluationContextRecord &Rec) {
16777   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
16778        Rec.ReferenceToConsteval.size() == 0) ||
16779       SemaRef.RebuildingImmediateInvocation)
16780     return;
16781 
16782   /// When we have more then 1 ImmediateInvocationCandidates we need to check
16783   /// for nested ImmediateInvocationCandidates. when we have only 1 we only
16784   /// need to remove ReferenceToConsteval in the immediate invocation.
16785   if (Rec.ImmediateInvocationCandidates.size() > 1) {
16786 
16787     /// Prevent sema calls during the tree transform from adding pointers that
16788     /// are already in the sets.
16789     llvm::SaveAndRestore<bool> DisableIITracking(
16790         SemaRef.RebuildingImmediateInvocation, true);
16791 
16792     /// Prevent diagnostic during tree transfrom as they are duplicates
16793     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
16794 
16795     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
16796          It != Rec.ImmediateInvocationCandidates.rend(); It++)
16797       if (!It->getInt())
16798         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
16799   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
16800              Rec.ReferenceToConsteval.size()) {
16801     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
16802       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16803       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
16804       bool VisitDeclRefExpr(DeclRefExpr *E) {
16805         DRSet.erase(E);
16806         return DRSet.size();
16807       }
16808     } Visitor(Rec.ReferenceToConsteval);
16809     Visitor.TraverseStmt(
16810         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
16811   }
16812   for (auto CE : Rec.ImmediateInvocationCandidates)
16813     if (!CE.getInt())
16814       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
16815   for (auto DR : Rec.ReferenceToConsteval) {
16816     auto *FD = cast<FunctionDecl>(DR->getDecl());
16817     SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
16818         << FD;
16819     SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
16820   }
16821 }
16822 
16823 void Sema::PopExpressionEvaluationContext() {
16824   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
16825   unsigned NumTypos = Rec.NumTypos;
16826 
16827   if (!Rec.Lambdas.empty()) {
16828     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
16829     if (!getLangOpts().CPlusPlus20 &&
16830         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
16831          Rec.isUnevaluated() ||
16832          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
16833       unsigned D;
16834       if (Rec.isUnevaluated()) {
16835         // C++11 [expr.prim.lambda]p2:
16836         //   A lambda-expression shall not appear in an unevaluated operand
16837         //   (Clause 5).
16838         D = diag::err_lambda_unevaluated_operand;
16839       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
16840         // C++1y [expr.const]p2:
16841         //   A conditional-expression e is a core constant expression unless the
16842         //   evaluation of e, following the rules of the abstract machine, would
16843         //   evaluate [...] a lambda-expression.
16844         D = diag::err_lambda_in_constant_expression;
16845       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
16846         // C++17 [expr.prim.lamda]p2:
16847         // A lambda-expression shall not appear [...] in a template-argument.
16848         D = diag::err_lambda_in_invalid_context;
16849       } else
16850         llvm_unreachable("Couldn't infer lambda error message.");
16851 
16852       for (const auto *L : Rec.Lambdas)
16853         Diag(L->getBeginLoc(), D);
16854     }
16855   }
16856 
16857   WarnOnPendingNoDerefs(Rec);
16858   HandleImmediateInvocations(*this, Rec);
16859 
16860   // Warn on any volatile-qualified simple-assignments that are not discarded-
16861   // value expressions nor unevaluated operands (those cases get removed from
16862   // this list by CheckUnusedVolatileAssignment).
16863   for (auto *BO : Rec.VolatileAssignmentLHSs)
16864     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
16865         << BO->getType();
16866 
16867   // When are coming out of an unevaluated context, clear out any
16868   // temporaries that we may have created as part of the evaluation of
16869   // the expression in that context: they aren't relevant because they
16870   // will never be constructed.
16871   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
16872     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
16873                              ExprCleanupObjects.end());
16874     Cleanup = Rec.ParentCleanup;
16875     CleanupVarDeclMarking();
16876     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
16877   // Otherwise, merge the contexts together.
16878   } else {
16879     Cleanup.mergeFrom(Rec.ParentCleanup);
16880     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
16881                             Rec.SavedMaybeODRUseExprs.end());
16882   }
16883 
16884   // Pop the current expression evaluation context off the stack.
16885   ExprEvalContexts.pop_back();
16886 
16887   // The global expression evaluation context record is never popped.
16888   ExprEvalContexts.back().NumTypos += NumTypos;
16889 }
16890 
16891 void Sema::DiscardCleanupsInEvaluationContext() {
16892   ExprCleanupObjects.erase(
16893          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
16894          ExprCleanupObjects.end());
16895   Cleanup.reset();
16896   MaybeODRUseExprs.clear();
16897 }
16898 
16899 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
16900   ExprResult Result = CheckPlaceholderExpr(E);
16901   if (Result.isInvalid())
16902     return ExprError();
16903   E = Result.get();
16904   if (!E->getType()->isVariablyModifiedType())
16905     return E;
16906   return TransformToPotentiallyEvaluated(E);
16907 }
16908 
16909 /// Are we in a context that is potentially constant evaluated per C++20
16910 /// [expr.const]p12?
16911 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
16912   /// C++2a [expr.const]p12:
16913   //   An expression or conversion is potentially constant evaluated if it is
16914   switch (SemaRef.ExprEvalContexts.back().Context) {
16915     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16916       // -- a manifestly constant-evaluated expression,
16917     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16918     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16919     case Sema::ExpressionEvaluationContext::DiscardedStatement:
16920       // -- a potentially-evaluated expression,
16921     case Sema::ExpressionEvaluationContext::UnevaluatedList:
16922       // -- an immediate subexpression of a braced-init-list,
16923 
16924       // -- [FIXME] an expression of the form & cast-expression that occurs
16925       //    within a templated entity
16926       // -- a subexpression of one of the above that is not a subexpression of
16927       // a nested unevaluated operand.
16928       return true;
16929 
16930     case Sema::ExpressionEvaluationContext::Unevaluated:
16931     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16932       // Expressions in this context are never evaluated.
16933       return false;
16934   }
16935   llvm_unreachable("Invalid context");
16936 }
16937 
16938 /// Return true if this function has a calling convention that requires mangling
16939 /// in the size of the parameter pack.
16940 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
16941   // These manglings don't do anything on non-Windows or non-x86 platforms, so
16942   // we don't need parameter type sizes.
16943   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
16944   if (!TT.isOSWindows() || !TT.isX86())
16945     return false;
16946 
16947   // If this is C++ and this isn't an extern "C" function, parameters do not
16948   // need to be complete. In this case, C++ mangling will apply, which doesn't
16949   // use the size of the parameters.
16950   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
16951     return false;
16952 
16953   // Stdcall, fastcall, and vectorcall need this special treatment.
16954   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16955   switch (CC) {
16956   case CC_X86StdCall:
16957   case CC_X86FastCall:
16958   case CC_X86VectorCall:
16959     return true;
16960   default:
16961     break;
16962   }
16963   return false;
16964 }
16965 
16966 /// Require that all of the parameter types of function be complete. Normally,
16967 /// parameter types are only required to be complete when a function is called
16968 /// or defined, but to mangle functions with certain calling conventions, the
16969 /// mangler needs to know the size of the parameter list. In this situation,
16970 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
16971 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
16972 /// result in a linker error. Clang doesn't implement this behavior, and instead
16973 /// attempts to error at compile time.
16974 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
16975                                                   SourceLocation Loc) {
16976   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
16977     FunctionDecl *FD;
16978     ParmVarDecl *Param;
16979 
16980   public:
16981     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
16982         : FD(FD), Param(Param) {}
16983 
16984     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
16985       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16986       StringRef CCName;
16987       switch (CC) {
16988       case CC_X86StdCall:
16989         CCName = "stdcall";
16990         break;
16991       case CC_X86FastCall:
16992         CCName = "fastcall";
16993         break;
16994       case CC_X86VectorCall:
16995         CCName = "vectorcall";
16996         break;
16997       default:
16998         llvm_unreachable("CC does not need mangling");
16999       }
17000 
17001       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17002           << Param->getDeclName() << FD->getDeclName() << CCName;
17003     }
17004   };
17005 
17006   for (ParmVarDecl *Param : FD->parameters()) {
17007     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17008     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17009   }
17010 }
17011 
17012 namespace {
17013 enum class OdrUseContext {
17014   /// Declarations in this context are not odr-used.
17015   None,
17016   /// Declarations in this context are formally odr-used, but this is a
17017   /// dependent context.
17018   Dependent,
17019   /// Declarations in this context are odr-used but not actually used (yet).
17020   FormallyOdrUsed,
17021   /// Declarations in this context are used.
17022   Used
17023 };
17024 }
17025 
17026 /// Are we within a context in which references to resolved functions or to
17027 /// variables result in odr-use?
17028 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17029   OdrUseContext Result;
17030 
17031   switch (SemaRef.ExprEvalContexts.back().Context) {
17032     case Sema::ExpressionEvaluationContext::Unevaluated:
17033     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17034     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17035       return OdrUseContext::None;
17036 
17037     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17038     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17039       Result = OdrUseContext::Used;
17040       break;
17041 
17042     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17043       Result = OdrUseContext::FormallyOdrUsed;
17044       break;
17045 
17046     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17047       // A default argument formally results in odr-use, but doesn't actually
17048       // result in a use in any real sense until it itself is used.
17049       Result = OdrUseContext::FormallyOdrUsed;
17050       break;
17051   }
17052 
17053   if (SemaRef.CurContext->isDependentContext())
17054     return OdrUseContext::Dependent;
17055 
17056   return Result;
17057 }
17058 
17059 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17060   if (!Func->isConstexpr())
17061     return false;
17062 
17063   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17064     return true;
17065   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17066   return CCD && CCD->getInheritedConstructor();
17067 }
17068 
17069 /// Mark a function referenced, and check whether it is odr-used
17070 /// (C++ [basic.def.odr]p2, C99 6.9p3)
17071 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17072                                   bool MightBeOdrUse) {
17073   assert(Func && "No function?");
17074 
17075   Func->setReferenced();
17076 
17077   // Recursive functions aren't really used until they're used from some other
17078   // context.
17079   bool IsRecursiveCall = CurContext == Func;
17080 
17081   // C++11 [basic.def.odr]p3:
17082   //   A function whose name appears as a potentially-evaluated expression is
17083   //   odr-used if it is the unique lookup result or the selected member of a
17084   //   set of overloaded functions [...].
17085   //
17086   // We (incorrectly) mark overload resolution as an unevaluated context, so we
17087   // can just check that here.
17088   OdrUseContext OdrUse =
17089       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17090   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17091     OdrUse = OdrUseContext::FormallyOdrUsed;
17092 
17093   // Trivial default constructors and destructors are never actually used.
17094   // FIXME: What about other special members?
17095   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17096       OdrUse == OdrUseContext::Used) {
17097     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17098       if (Constructor->isDefaultConstructor())
17099         OdrUse = OdrUseContext::FormallyOdrUsed;
17100     if (isa<CXXDestructorDecl>(Func))
17101       OdrUse = OdrUseContext::FormallyOdrUsed;
17102   }
17103 
17104   // C++20 [expr.const]p12:
17105   //   A function [...] is needed for constant evaluation if it is [...] a
17106   //   constexpr function that is named by an expression that is potentially
17107   //   constant evaluated
17108   bool NeededForConstantEvaluation =
17109       isPotentiallyConstantEvaluatedContext(*this) &&
17110       isImplicitlyDefinableConstexprFunction(Func);
17111 
17112   // Determine whether we require a function definition to exist, per
17113   // C++11 [temp.inst]p3:
17114   //   Unless a function template specialization has been explicitly
17115   //   instantiated or explicitly specialized, the function template
17116   //   specialization is implicitly instantiated when the specialization is
17117   //   referenced in a context that requires a function definition to exist.
17118   // C++20 [temp.inst]p7:
17119   //   The existence of a definition of a [...] function is considered to
17120   //   affect the semantics of the program if the [...] function is needed for
17121   //   constant evaluation by an expression
17122   // C++20 [basic.def.odr]p10:
17123   //   Every program shall contain exactly one definition of every non-inline
17124   //   function or variable that is odr-used in that program outside of a
17125   //   discarded statement
17126   // C++20 [special]p1:
17127   //   The implementation will implicitly define [defaulted special members]
17128   //   if they are odr-used or needed for constant evaluation.
17129   //
17130   // Note that we skip the implicit instantiation of templates that are only
17131   // used in unused default arguments or by recursive calls to themselves.
17132   // This is formally non-conforming, but seems reasonable in practice.
17133   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
17134                                              NeededForConstantEvaluation);
17135 
17136   // C++14 [temp.expl.spec]p6:
17137   //   If a template [...] is explicitly specialized then that specialization
17138   //   shall be declared before the first use of that specialization that would
17139   //   cause an implicit instantiation to take place, in every translation unit
17140   //   in which such a use occurs
17141   if (NeedDefinition &&
17142       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
17143        Func->getMemberSpecializationInfo()))
17144     checkSpecializationVisibility(Loc, Func);
17145 
17146   if (getLangOpts().CUDA)
17147     CheckCUDACall(Loc, Func);
17148 
17149   if (getLangOpts().SYCLIsDevice)
17150     checkSYCLDeviceFunction(Loc, Func);
17151 
17152   // If we need a definition, try to create one.
17153   if (NeedDefinition && !Func->getBody()) {
17154     runWithSufficientStackSpace(Loc, [&] {
17155       if (CXXConstructorDecl *Constructor =
17156               dyn_cast<CXXConstructorDecl>(Func)) {
17157         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
17158         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
17159           if (Constructor->isDefaultConstructor()) {
17160             if (Constructor->isTrivial() &&
17161                 !Constructor->hasAttr<DLLExportAttr>())
17162               return;
17163             DefineImplicitDefaultConstructor(Loc, Constructor);
17164           } else if (Constructor->isCopyConstructor()) {
17165             DefineImplicitCopyConstructor(Loc, Constructor);
17166           } else if (Constructor->isMoveConstructor()) {
17167             DefineImplicitMoveConstructor(Loc, Constructor);
17168           }
17169         } else if (Constructor->getInheritedConstructor()) {
17170           DefineInheritingConstructor(Loc, Constructor);
17171         }
17172       } else if (CXXDestructorDecl *Destructor =
17173                      dyn_cast<CXXDestructorDecl>(Func)) {
17174         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
17175         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
17176           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
17177             return;
17178           DefineImplicitDestructor(Loc, Destructor);
17179         }
17180         if (Destructor->isVirtual() && getLangOpts().AppleKext)
17181           MarkVTableUsed(Loc, Destructor->getParent());
17182       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
17183         if (MethodDecl->isOverloadedOperator() &&
17184             MethodDecl->getOverloadedOperator() == OO_Equal) {
17185           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
17186           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
17187             if (MethodDecl->isCopyAssignmentOperator())
17188               DefineImplicitCopyAssignment(Loc, MethodDecl);
17189             else if (MethodDecl->isMoveAssignmentOperator())
17190               DefineImplicitMoveAssignment(Loc, MethodDecl);
17191           }
17192         } else if (isa<CXXConversionDecl>(MethodDecl) &&
17193                    MethodDecl->getParent()->isLambda()) {
17194           CXXConversionDecl *Conversion =
17195               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
17196           if (Conversion->isLambdaToBlockPointerConversion())
17197             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
17198           else
17199             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
17200         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
17201           MarkVTableUsed(Loc, MethodDecl->getParent());
17202       }
17203 
17204       if (Func->isDefaulted() && !Func->isDeleted()) {
17205         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
17206         if (DCK != DefaultedComparisonKind::None)
17207           DefineDefaultedComparison(Loc, Func, DCK);
17208       }
17209 
17210       // Implicit instantiation of function templates and member functions of
17211       // class templates.
17212       if (Func->isImplicitlyInstantiable()) {
17213         TemplateSpecializationKind TSK =
17214             Func->getTemplateSpecializationKindForInstantiation();
17215         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
17216         bool FirstInstantiation = PointOfInstantiation.isInvalid();
17217         if (FirstInstantiation) {
17218           PointOfInstantiation = Loc;
17219           if (auto *MSI = Func->getMemberSpecializationInfo())
17220             MSI->setPointOfInstantiation(Loc);
17221             // FIXME: Notify listener.
17222           else
17223             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
17224         } else if (TSK != TSK_ImplicitInstantiation) {
17225           // Use the point of use as the point of instantiation, instead of the
17226           // point of explicit instantiation (which we track as the actual point
17227           // of instantiation). This gives better backtraces in diagnostics.
17228           PointOfInstantiation = Loc;
17229         }
17230 
17231         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
17232             Func->isConstexpr()) {
17233           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
17234               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
17235               CodeSynthesisContexts.size())
17236             PendingLocalImplicitInstantiations.push_back(
17237                 std::make_pair(Func, PointOfInstantiation));
17238           else if (Func->isConstexpr())
17239             // Do not defer instantiations of constexpr functions, to avoid the
17240             // expression evaluator needing to call back into Sema if it sees a
17241             // call to such a function.
17242             InstantiateFunctionDefinition(PointOfInstantiation, Func);
17243           else {
17244             Func->setInstantiationIsPending(true);
17245             PendingInstantiations.push_back(
17246                 std::make_pair(Func, PointOfInstantiation));
17247             // Notify the consumer that a function was implicitly instantiated.
17248             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
17249           }
17250         }
17251       } else {
17252         // Walk redefinitions, as some of them may be instantiable.
17253         for (auto i : Func->redecls()) {
17254           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
17255             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
17256         }
17257       }
17258     });
17259   }
17260 
17261   // C++14 [except.spec]p17:
17262   //   An exception-specification is considered to be needed when:
17263   //   - the function is odr-used or, if it appears in an unevaluated operand,
17264   //     would be odr-used if the expression were potentially-evaluated;
17265   //
17266   // Note, we do this even if MightBeOdrUse is false. That indicates that the
17267   // function is a pure virtual function we're calling, and in that case the
17268   // function was selected by overload resolution and we need to resolve its
17269   // exception specification for a different reason.
17270   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
17271   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
17272     ResolveExceptionSpec(Loc, FPT);
17273 
17274   // If this is the first "real" use, act on that.
17275   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
17276     // Keep track of used but undefined functions.
17277     if (!Func->isDefined()) {
17278       if (mightHaveNonExternalLinkage(Func))
17279         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17280       else if (Func->getMostRecentDecl()->isInlined() &&
17281                !LangOpts.GNUInline &&
17282                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
17283         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17284       else if (isExternalWithNoLinkageType(Func))
17285         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17286     }
17287 
17288     // Some x86 Windows calling conventions mangle the size of the parameter
17289     // pack into the name. Computing the size of the parameters requires the
17290     // parameter types to be complete. Check that now.
17291     if (funcHasParameterSizeMangling(*this, Func))
17292       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
17293 
17294     // In the MS C++ ABI, the compiler emits destructor variants where they are
17295     // used. If the destructor is used here but defined elsewhere, mark the
17296     // virtual base destructors referenced. If those virtual base destructors
17297     // are inline, this will ensure they are defined when emitting the complete
17298     // destructor variant. This checking may be redundant if the destructor is
17299     // provided later in this TU.
17300     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17301       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
17302         CXXRecordDecl *Parent = Dtor->getParent();
17303         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
17304           CheckCompleteDestructorVariant(Loc, Dtor);
17305       }
17306     }
17307 
17308     Func->markUsed(Context);
17309   }
17310 }
17311 
17312 /// Directly mark a variable odr-used. Given a choice, prefer to use
17313 /// MarkVariableReferenced since it does additional checks and then
17314 /// calls MarkVarDeclODRUsed.
17315 /// If the variable must be captured:
17316 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
17317 ///  - else capture it in the DeclContext that maps to the
17318 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
17319 static void
17320 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
17321                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
17322   // Keep track of used but undefined variables.
17323   // FIXME: We shouldn't suppress this warning for static data members.
17324   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
17325       (!Var->isExternallyVisible() || Var->isInline() ||
17326        SemaRef.isExternalWithNoLinkageType(Var)) &&
17327       !(Var->isStaticDataMember() && Var->hasInit())) {
17328     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
17329     if (old.isInvalid())
17330       old = Loc;
17331   }
17332   QualType CaptureType, DeclRefType;
17333   if (SemaRef.LangOpts.OpenMP)
17334     SemaRef.tryCaptureOpenMPLambdas(Var);
17335   SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
17336     /*EllipsisLoc*/ SourceLocation(),
17337     /*BuildAndDiagnose*/ true,
17338     CaptureType, DeclRefType,
17339     FunctionScopeIndexToStopAt);
17340 
17341   if (SemaRef.LangOpts.CUDA && Var && Var->hasGlobalStorage()) {
17342     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
17343     auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
17344     auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
17345     if (VarTarget == Sema::CVT_Host &&
17346         (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
17347          UserTarget == Sema::CFT_Global)) {
17348       // Diagnose ODR-use of host global variables in device functions.
17349       // Reference of device global variables in host functions is allowed
17350       // through shadow variables therefore it is not diagnosed.
17351       if (SemaRef.LangOpts.CUDAIsDevice) {
17352         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
17353             << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
17354         SemaRef.targetDiag(Var->getLocation(),
17355                            Var->getType().isConstQualified()
17356                                ? diag::note_cuda_const_var_unpromoted
17357                                : diag::note_cuda_host_var);
17358       }
17359     } else if (VarTarget == Sema::CVT_Device &&
17360                (UserTarget == Sema::CFT_Host ||
17361                 UserTarget == Sema::CFT_HostDevice) &&
17362                !Var->hasExternalStorage()) {
17363       // Record a CUDA/HIP device side variable if it is ODR-used
17364       // by host code. This is done conservatively, when the variable is
17365       // referenced in any of the following contexts:
17366       //   - a non-function context
17367       //   - a host function
17368       //   - a host device function
17369       // This makes the ODR-use of the device side variable by host code to
17370       // be visible in the device compilation for the compiler to be able to
17371       // emit template variables instantiated by host code only and to
17372       // externalize the static device side variable ODR-used by host code.
17373       SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
17374     }
17375   }
17376 
17377   Var->markUsed(SemaRef.Context);
17378 }
17379 
17380 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
17381                                              SourceLocation Loc,
17382                                              unsigned CapturingScopeIndex) {
17383   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
17384 }
17385 
17386 static void
17387 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
17388                                    ValueDecl *var, DeclContext *DC) {
17389   DeclContext *VarDC = var->getDeclContext();
17390 
17391   //  If the parameter still belongs to the translation unit, then
17392   //  we're actually just using one parameter in the declaration of
17393   //  the next.
17394   if (isa<ParmVarDecl>(var) &&
17395       isa<TranslationUnitDecl>(VarDC))
17396     return;
17397 
17398   // For C code, don't diagnose about capture if we're not actually in code
17399   // right now; it's impossible to write a non-constant expression outside of
17400   // function context, so we'll get other (more useful) diagnostics later.
17401   //
17402   // For C++, things get a bit more nasty... it would be nice to suppress this
17403   // diagnostic for certain cases like using a local variable in an array bound
17404   // for a member of a local class, but the correct predicate is not obvious.
17405   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
17406     return;
17407 
17408   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
17409   unsigned ContextKind = 3; // unknown
17410   if (isa<CXXMethodDecl>(VarDC) &&
17411       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
17412     ContextKind = 2;
17413   } else if (isa<FunctionDecl>(VarDC)) {
17414     ContextKind = 0;
17415   } else if (isa<BlockDecl>(VarDC)) {
17416     ContextKind = 1;
17417   }
17418 
17419   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
17420     << var << ValueKind << ContextKind << VarDC;
17421   S.Diag(var->getLocation(), diag::note_entity_declared_at)
17422       << var;
17423 
17424   // FIXME: Add additional diagnostic info about class etc. which prevents
17425   // capture.
17426 }
17427 
17428 
17429 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
17430                                       bool &SubCapturesAreNested,
17431                                       QualType &CaptureType,
17432                                       QualType &DeclRefType) {
17433    // Check whether we've already captured it.
17434   if (CSI->CaptureMap.count(Var)) {
17435     // If we found a capture, any subcaptures are nested.
17436     SubCapturesAreNested = true;
17437 
17438     // Retrieve the capture type for this variable.
17439     CaptureType = CSI->getCapture(Var).getCaptureType();
17440 
17441     // Compute the type of an expression that refers to this variable.
17442     DeclRefType = CaptureType.getNonReferenceType();
17443 
17444     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
17445     // are mutable in the sense that user can change their value - they are
17446     // private instances of the captured declarations.
17447     const Capture &Cap = CSI->getCapture(Var);
17448     if (Cap.isCopyCapture() &&
17449         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
17450         !(isa<CapturedRegionScopeInfo>(CSI) &&
17451           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
17452       DeclRefType.addConst();
17453     return true;
17454   }
17455   return false;
17456 }
17457 
17458 // Only block literals, captured statements, and lambda expressions can
17459 // capture; other scopes don't work.
17460 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
17461                                  SourceLocation Loc,
17462                                  const bool Diagnose, Sema &S) {
17463   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
17464     return getLambdaAwareParentOfDeclContext(DC);
17465   else if (Var->hasLocalStorage()) {
17466     if (Diagnose)
17467        diagnoseUncapturableValueReference(S, Loc, Var, DC);
17468   }
17469   return nullptr;
17470 }
17471 
17472 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17473 // certain types of variables (unnamed, variably modified types etc.)
17474 // so check for eligibility.
17475 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
17476                                  SourceLocation Loc,
17477                                  const bool Diagnose, Sema &S) {
17478 
17479   bool IsBlock = isa<BlockScopeInfo>(CSI);
17480   bool IsLambda = isa<LambdaScopeInfo>(CSI);
17481 
17482   // Lambdas are not allowed to capture unnamed variables
17483   // (e.g. anonymous unions).
17484   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
17485   // assuming that's the intent.
17486   if (IsLambda && !Var->getDeclName()) {
17487     if (Diagnose) {
17488       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
17489       S.Diag(Var->getLocation(), diag::note_declared_at);
17490     }
17491     return false;
17492   }
17493 
17494   // Prohibit variably-modified types in blocks; they're difficult to deal with.
17495   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
17496     if (Diagnose) {
17497       S.Diag(Loc, diag::err_ref_vm_type);
17498       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17499     }
17500     return false;
17501   }
17502   // Prohibit structs with flexible array members too.
17503   // We cannot capture what is in the tail end of the struct.
17504   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
17505     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
17506       if (Diagnose) {
17507         if (IsBlock)
17508           S.Diag(Loc, diag::err_ref_flexarray_type);
17509         else
17510           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
17511         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17512       }
17513       return false;
17514     }
17515   }
17516   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17517   // Lambdas and captured statements are not allowed to capture __block
17518   // variables; they don't support the expected semantics.
17519   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
17520     if (Diagnose) {
17521       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
17522       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17523     }
17524     return false;
17525   }
17526   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
17527   if (S.getLangOpts().OpenCL && IsBlock &&
17528       Var->getType()->isBlockPointerType()) {
17529     if (Diagnose)
17530       S.Diag(Loc, diag::err_opencl_block_ref_block);
17531     return false;
17532   }
17533 
17534   return true;
17535 }
17536 
17537 // Returns true if the capture by block was successful.
17538 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
17539                                  SourceLocation Loc,
17540                                  const bool BuildAndDiagnose,
17541                                  QualType &CaptureType,
17542                                  QualType &DeclRefType,
17543                                  const bool Nested,
17544                                  Sema &S, bool Invalid) {
17545   bool ByRef = false;
17546 
17547   // Blocks are not allowed to capture arrays, excepting OpenCL.
17548   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
17549   // (decayed to pointers).
17550   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
17551     if (BuildAndDiagnose) {
17552       S.Diag(Loc, diag::err_ref_array_type);
17553       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17554       Invalid = true;
17555     } else {
17556       return false;
17557     }
17558   }
17559 
17560   // Forbid the block-capture of autoreleasing variables.
17561   if (!Invalid &&
17562       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17563     if (BuildAndDiagnose) {
17564       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
17565         << /*block*/ 0;
17566       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17567       Invalid = true;
17568     } else {
17569       return false;
17570     }
17571   }
17572 
17573   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
17574   if (const auto *PT = CaptureType->getAs<PointerType>()) {
17575     QualType PointeeTy = PT->getPointeeType();
17576 
17577     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
17578         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
17579         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
17580       if (BuildAndDiagnose) {
17581         SourceLocation VarLoc = Var->getLocation();
17582         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
17583         S.Diag(VarLoc, diag::note_declare_parameter_strong);
17584       }
17585     }
17586   }
17587 
17588   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17589   if (HasBlocksAttr || CaptureType->isReferenceType() ||
17590       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
17591     // Block capture by reference does not change the capture or
17592     // declaration reference types.
17593     ByRef = true;
17594   } else {
17595     // Block capture by copy introduces 'const'.
17596     CaptureType = CaptureType.getNonReferenceType().withConst();
17597     DeclRefType = CaptureType;
17598   }
17599 
17600   // Actually capture the variable.
17601   if (BuildAndDiagnose)
17602     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
17603                     CaptureType, Invalid);
17604 
17605   return !Invalid;
17606 }
17607 
17608 
17609 /// Capture the given variable in the captured region.
17610 static bool captureInCapturedRegion(
17611     CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc,
17612     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
17613     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
17614     bool IsTopScope, Sema &S, bool Invalid) {
17615   // By default, capture variables by reference.
17616   bool ByRef = true;
17617   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17618     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17619   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
17620     // Using an LValue reference type is consistent with Lambdas (see below).
17621     if (S.isOpenMPCapturedDecl(Var)) {
17622       bool HasConst = DeclRefType.isConstQualified();
17623       DeclRefType = DeclRefType.getUnqualifiedType();
17624       // Don't lose diagnostics about assignments to const.
17625       if (HasConst)
17626         DeclRefType.addConst();
17627     }
17628     // Do not capture firstprivates in tasks.
17629     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
17630         OMPC_unknown)
17631       return true;
17632     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
17633                                     RSI->OpenMPCaptureLevel);
17634   }
17635 
17636   if (ByRef)
17637     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17638   else
17639     CaptureType = DeclRefType;
17640 
17641   // Actually capture the variable.
17642   if (BuildAndDiagnose)
17643     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
17644                     Loc, SourceLocation(), CaptureType, Invalid);
17645 
17646   return !Invalid;
17647 }
17648 
17649 /// Capture the given variable in the lambda.
17650 static bool captureInLambda(LambdaScopeInfo *LSI,
17651                             VarDecl *Var,
17652                             SourceLocation Loc,
17653                             const bool BuildAndDiagnose,
17654                             QualType &CaptureType,
17655                             QualType &DeclRefType,
17656                             const bool RefersToCapturedVariable,
17657                             const Sema::TryCaptureKind Kind,
17658                             SourceLocation EllipsisLoc,
17659                             const bool IsTopScope,
17660                             Sema &S, bool Invalid) {
17661   // Determine whether we are capturing by reference or by value.
17662   bool ByRef = false;
17663   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17664     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17665   } else {
17666     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
17667   }
17668 
17669   // Compute the type of the field that will capture this variable.
17670   if (ByRef) {
17671     // C++11 [expr.prim.lambda]p15:
17672     //   An entity is captured by reference if it is implicitly or
17673     //   explicitly captured but not captured by copy. It is
17674     //   unspecified whether additional unnamed non-static data
17675     //   members are declared in the closure type for entities
17676     //   captured by reference.
17677     //
17678     // FIXME: It is not clear whether we want to build an lvalue reference
17679     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
17680     // to do the former, while EDG does the latter. Core issue 1249 will
17681     // clarify, but for now we follow GCC because it's a more permissive and
17682     // easily defensible position.
17683     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17684   } else {
17685     // C++11 [expr.prim.lambda]p14:
17686     //   For each entity captured by copy, an unnamed non-static
17687     //   data member is declared in the closure type. The
17688     //   declaration order of these members is unspecified. The type
17689     //   of such a data member is the type of the corresponding
17690     //   captured entity if the entity is not a reference to an
17691     //   object, or the referenced type otherwise. [Note: If the
17692     //   captured entity is a reference to a function, the
17693     //   corresponding data member is also a reference to a
17694     //   function. - end note ]
17695     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
17696       if (!RefType->getPointeeType()->isFunctionType())
17697         CaptureType = RefType->getPointeeType();
17698     }
17699 
17700     // Forbid the lambda copy-capture of autoreleasing variables.
17701     if (!Invalid &&
17702         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17703       if (BuildAndDiagnose) {
17704         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
17705         S.Diag(Var->getLocation(), diag::note_previous_decl)
17706           << Var->getDeclName();
17707         Invalid = true;
17708       } else {
17709         return false;
17710       }
17711     }
17712 
17713     // Make sure that by-copy captures are of a complete and non-abstract type.
17714     if (!Invalid && BuildAndDiagnose) {
17715       if (!CaptureType->isDependentType() &&
17716           S.RequireCompleteSizedType(
17717               Loc, CaptureType,
17718               diag::err_capture_of_incomplete_or_sizeless_type,
17719               Var->getDeclName()))
17720         Invalid = true;
17721       else if (S.RequireNonAbstractType(Loc, CaptureType,
17722                                         diag::err_capture_of_abstract_type))
17723         Invalid = true;
17724     }
17725   }
17726 
17727   // Compute the type of a reference to this captured variable.
17728   if (ByRef)
17729     DeclRefType = CaptureType.getNonReferenceType();
17730   else {
17731     // C++ [expr.prim.lambda]p5:
17732     //   The closure type for a lambda-expression has a public inline
17733     //   function call operator [...]. This function call operator is
17734     //   declared const (9.3.1) if and only if the lambda-expression's
17735     //   parameter-declaration-clause is not followed by mutable.
17736     DeclRefType = CaptureType.getNonReferenceType();
17737     if (!LSI->Mutable && !CaptureType->isReferenceType())
17738       DeclRefType.addConst();
17739   }
17740 
17741   // Add the capture.
17742   if (BuildAndDiagnose)
17743     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
17744                     Loc, EllipsisLoc, CaptureType, Invalid);
17745 
17746   return !Invalid;
17747 }
17748 
17749 static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) {
17750   // Offer a Copy fix even if the type is dependent.
17751   if (Var->getType()->isDependentType())
17752     return true;
17753   QualType T = Var->getType().getNonReferenceType();
17754   if (T.isTriviallyCopyableType(Context))
17755     return true;
17756   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
17757 
17758     if (!(RD = RD->getDefinition()))
17759       return false;
17760     if (RD->hasSimpleCopyConstructor())
17761       return true;
17762     if (RD->hasUserDeclaredCopyConstructor())
17763       for (CXXConstructorDecl *Ctor : RD->ctors())
17764         if (Ctor->isCopyConstructor())
17765           return !Ctor->isDeleted();
17766   }
17767   return false;
17768 }
17769 
17770 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
17771 /// default capture. Fixes may be omitted if they aren't allowed by the
17772 /// standard, for example we can't emit a default copy capture fix-it if we
17773 /// already explicitly copy capture capture another variable.
17774 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
17775                                     VarDecl *Var) {
17776   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
17777   // Don't offer Capture by copy of default capture by copy fixes if Var is
17778   // known not to be copy constructible.
17779   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
17780 
17781   SmallString<32> FixBuffer;
17782   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
17783   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
17784     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
17785     if (ShouldOfferCopyFix) {
17786       // Offer fixes to insert an explicit capture for the variable.
17787       // [] -> [VarName]
17788       // [OtherCapture] -> [OtherCapture, VarName]
17789       FixBuffer.assign({Separator, Var->getName()});
17790       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17791           << Var << /*value*/ 0
17792           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17793     }
17794     // As above but capture by reference.
17795     FixBuffer.assign({Separator, "&", Var->getName()});
17796     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17797         << Var << /*reference*/ 1
17798         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17799   }
17800 
17801   // Only try to offer default capture if there are no captures excluding this
17802   // and init captures.
17803   // [this]: OK.
17804   // [X = Y]: OK.
17805   // [&A, &B]: Don't offer.
17806   // [A, B]: Don't offer.
17807   if (llvm::any_of(LSI->Captures, [](Capture &C) {
17808         return !C.isThisCapture() && !C.isInitCapture();
17809       }))
17810     return;
17811 
17812   // The default capture specifiers, '=' or '&', must appear first in the
17813   // capture body.
17814   SourceLocation DefaultInsertLoc =
17815       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
17816 
17817   if (ShouldOfferCopyFix) {
17818     bool CanDefaultCopyCapture = true;
17819     // [=, *this] OK since c++17
17820     // [=, this] OK since c++20
17821     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
17822       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
17823                                   ? LSI->getCXXThisCapture().isCopyCapture()
17824                                   : false;
17825     // We can't use default capture by copy if any captures already specified
17826     // capture by copy.
17827     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
17828           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
17829         })) {
17830       FixBuffer.assign({"=", Separator});
17831       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17832           << /*value*/ 0
17833           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17834     }
17835   }
17836 
17837   // We can't use default capture by reference if any captures already specified
17838   // capture by reference.
17839   if (llvm::none_of(LSI->Captures, [](Capture &C) {
17840         return !C.isInitCapture() && C.isReferenceCapture() &&
17841                !C.isThisCapture();
17842       })) {
17843     FixBuffer.assign({"&", Separator});
17844     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17845         << /*reference*/ 1
17846         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17847   }
17848 }
17849 
17850 bool Sema::tryCaptureVariable(
17851     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
17852     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
17853     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
17854   // An init-capture is notionally from the context surrounding its
17855   // declaration, but its parent DC is the lambda class.
17856   DeclContext *VarDC = Var->getDeclContext();
17857   if (Var->isInitCapture())
17858     VarDC = VarDC->getParent();
17859 
17860   DeclContext *DC = CurContext;
17861   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
17862       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
17863   // We need to sync up the Declaration Context with the
17864   // FunctionScopeIndexToStopAt
17865   if (FunctionScopeIndexToStopAt) {
17866     unsigned FSIndex = FunctionScopes.size() - 1;
17867     while (FSIndex != MaxFunctionScopesIndex) {
17868       DC = getLambdaAwareParentOfDeclContext(DC);
17869       --FSIndex;
17870     }
17871   }
17872 
17873 
17874   // If the variable is declared in the current context, there is no need to
17875   // capture it.
17876   if (VarDC == DC) return true;
17877 
17878   // Capture global variables if it is required to use private copy of this
17879   // variable.
17880   bool IsGlobal = !Var->hasLocalStorage();
17881   if (IsGlobal &&
17882       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
17883                                                 MaxFunctionScopesIndex)))
17884     return true;
17885   Var = Var->getCanonicalDecl();
17886 
17887   // Walk up the stack to determine whether we can capture the variable,
17888   // performing the "simple" checks that don't depend on type. We stop when
17889   // we've either hit the declared scope of the variable or find an existing
17890   // capture of that variable.  We start from the innermost capturing-entity
17891   // (the DC) and ensure that all intervening capturing-entities
17892   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
17893   // declcontext can either capture the variable or have already captured
17894   // the variable.
17895   CaptureType = Var->getType();
17896   DeclRefType = CaptureType.getNonReferenceType();
17897   bool Nested = false;
17898   bool Explicit = (Kind != TryCapture_Implicit);
17899   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
17900   do {
17901     // Only block literals, captured statements, and lambda expressions can
17902     // capture; other scopes don't work.
17903     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
17904                                                               ExprLoc,
17905                                                               BuildAndDiagnose,
17906                                                               *this);
17907     // We need to check for the parent *first* because, if we *have*
17908     // private-captured a global variable, we need to recursively capture it in
17909     // intermediate blocks, lambdas, etc.
17910     if (!ParentDC) {
17911       if (IsGlobal) {
17912         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
17913         break;
17914       }
17915       return true;
17916     }
17917 
17918     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
17919     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
17920 
17921 
17922     // Check whether we've already captured it.
17923     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
17924                                              DeclRefType)) {
17925       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
17926       break;
17927     }
17928     // If we are instantiating a generic lambda call operator body,
17929     // we do not want to capture new variables.  What was captured
17930     // during either a lambdas transformation or initial parsing
17931     // should be used.
17932     if (isGenericLambdaCallOperatorSpecialization(DC)) {
17933       if (BuildAndDiagnose) {
17934         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17935         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
17936           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17937           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17938           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
17939           buildLambdaCaptureFixit(*this, LSI, Var);
17940         } else
17941           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
17942       }
17943       return true;
17944     }
17945 
17946     // Try to capture variable-length arrays types.
17947     if (Var->getType()->isVariablyModifiedType()) {
17948       // We're going to walk down into the type and look for VLA
17949       // expressions.
17950       QualType QTy = Var->getType();
17951       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17952         QTy = PVD->getOriginalType();
17953       captureVariablyModifiedType(Context, QTy, CSI);
17954     }
17955 
17956     if (getLangOpts().OpenMP) {
17957       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17958         // OpenMP private variables should not be captured in outer scope, so
17959         // just break here. Similarly, global variables that are captured in a
17960         // target region should not be captured outside the scope of the region.
17961         if (RSI->CapRegionKind == CR_OpenMP) {
17962           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
17963               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
17964           // If the variable is private (i.e. not captured) and has variably
17965           // modified type, we still need to capture the type for correct
17966           // codegen in all regions, associated with the construct. Currently,
17967           // it is captured in the innermost captured region only.
17968           if (IsOpenMPPrivateDecl != OMPC_unknown &&
17969               Var->getType()->isVariablyModifiedType()) {
17970             QualType QTy = Var->getType();
17971             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17972               QTy = PVD->getOriginalType();
17973             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
17974                  I < E; ++I) {
17975               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
17976                   FunctionScopes[FunctionScopesIndex - I]);
17977               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
17978                      "Wrong number of captured regions associated with the "
17979                      "OpenMP construct.");
17980               captureVariablyModifiedType(Context, QTy, OuterRSI);
17981             }
17982           }
17983           bool IsTargetCap =
17984               IsOpenMPPrivateDecl != OMPC_private &&
17985               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
17986                                          RSI->OpenMPCaptureLevel);
17987           // Do not capture global if it is not privatized in outer regions.
17988           bool IsGlobalCap =
17989               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
17990                                                      RSI->OpenMPCaptureLevel);
17991 
17992           // When we detect target captures we are looking from inside the
17993           // target region, therefore we need to propagate the capture from the
17994           // enclosing region. Therefore, the capture is not initially nested.
17995           if (IsTargetCap)
17996             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
17997 
17998           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
17999               (IsGlobal && !IsGlobalCap)) {
18000             Nested = !IsTargetCap;
18001             bool HasConst = DeclRefType.isConstQualified();
18002             DeclRefType = DeclRefType.getUnqualifiedType();
18003             // Don't lose diagnostics about assignments to const.
18004             if (HasConst)
18005               DeclRefType.addConst();
18006             CaptureType = Context.getLValueReferenceType(DeclRefType);
18007             break;
18008           }
18009         }
18010       }
18011     }
18012     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18013       // No capture-default, and this is not an explicit capture
18014       // so cannot capture this variable.
18015       if (BuildAndDiagnose) {
18016         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18017         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18018         auto *LSI = cast<LambdaScopeInfo>(CSI);
18019         if (LSI->Lambda) {
18020           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18021           buildLambdaCaptureFixit(*this, LSI, Var);
18022         }
18023         // FIXME: If we error out because an outer lambda can not implicitly
18024         // capture a variable that an inner lambda explicitly captures, we
18025         // should have the inner lambda do the explicit capture - because
18026         // it makes for cleaner diagnostics later.  This would purely be done
18027         // so that the diagnostic does not misleadingly claim that a variable
18028         // can not be captured by a lambda implicitly even though it is captured
18029         // explicitly.  Suggestion:
18030         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18031         //    at the function head
18032         //  - cache the StartingDeclContext - this must be a lambda
18033         //  - captureInLambda in the innermost lambda the variable.
18034       }
18035       return true;
18036     }
18037 
18038     FunctionScopesIndex--;
18039     DC = ParentDC;
18040     Explicit = false;
18041   } while (!VarDC->Equals(DC));
18042 
18043   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18044   // computing the type of the capture at each step, checking type-specific
18045   // requirements, and adding captures if requested.
18046   // If the variable had already been captured previously, we start capturing
18047   // at the lambda nested within that one.
18048   bool Invalid = false;
18049   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18050        ++I) {
18051     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18052 
18053     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18054     // certain types of variables (unnamed, variably modified types etc.)
18055     // so check for eligibility.
18056     if (!Invalid)
18057       Invalid =
18058           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18059 
18060     // After encountering an error, if we're actually supposed to capture, keep
18061     // capturing in nested contexts to suppress any follow-on diagnostics.
18062     if (Invalid && !BuildAndDiagnose)
18063       return true;
18064 
18065     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18066       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18067                                DeclRefType, Nested, *this, Invalid);
18068       Nested = true;
18069     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18070       Invalid = !captureInCapturedRegion(
18071           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18072           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18073       Nested = true;
18074     } else {
18075       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18076       Invalid =
18077           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18078                            DeclRefType, Nested, Kind, EllipsisLoc,
18079                            /*IsTopScope*/ I == N - 1, *this, Invalid);
18080       Nested = true;
18081     }
18082 
18083     if (Invalid && !BuildAndDiagnose)
18084       return true;
18085   }
18086   return Invalid;
18087 }
18088 
18089 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
18090                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18091   QualType CaptureType;
18092   QualType DeclRefType;
18093   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
18094                             /*BuildAndDiagnose=*/true, CaptureType,
18095                             DeclRefType, nullptr);
18096 }
18097 
18098 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
18099   QualType CaptureType;
18100   QualType DeclRefType;
18101   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18102                              /*BuildAndDiagnose=*/false, CaptureType,
18103                              DeclRefType, nullptr);
18104 }
18105 
18106 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
18107   QualType CaptureType;
18108   QualType DeclRefType;
18109 
18110   // Determine whether we can capture this variable.
18111   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18112                          /*BuildAndDiagnose=*/false, CaptureType,
18113                          DeclRefType, nullptr))
18114     return QualType();
18115 
18116   return DeclRefType;
18117 }
18118 
18119 namespace {
18120 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
18121 // The produced TemplateArgumentListInfo* points to data stored within this
18122 // object, so should only be used in contexts where the pointer will not be
18123 // used after the CopiedTemplateArgs object is destroyed.
18124 class CopiedTemplateArgs {
18125   bool HasArgs;
18126   TemplateArgumentListInfo TemplateArgStorage;
18127 public:
18128   template<typename RefExpr>
18129   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
18130     if (HasArgs)
18131       E->copyTemplateArgumentsInto(TemplateArgStorage);
18132   }
18133   operator TemplateArgumentListInfo*()
18134 #ifdef __has_cpp_attribute
18135 #if __has_cpp_attribute(clang::lifetimebound)
18136   [[clang::lifetimebound]]
18137 #endif
18138 #endif
18139   {
18140     return HasArgs ? &TemplateArgStorage : nullptr;
18141   }
18142 };
18143 }
18144 
18145 /// Walk the set of potential results of an expression and mark them all as
18146 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
18147 ///
18148 /// \return A new expression if we found any potential results, ExprEmpty() if
18149 ///         not, and ExprError() if we diagnosed an error.
18150 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
18151                                                       NonOdrUseReason NOUR) {
18152   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
18153   // an object that satisfies the requirements for appearing in a
18154   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
18155   // is immediately applied."  This function handles the lvalue-to-rvalue
18156   // conversion part.
18157   //
18158   // If we encounter a node that claims to be an odr-use but shouldn't be, we
18159   // transform it into the relevant kind of non-odr-use node and rebuild the
18160   // tree of nodes leading to it.
18161   //
18162   // This is a mini-TreeTransform that only transforms a restricted subset of
18163   // nodes (and only certain operands of them).
18164 
18165   // Rebuild a subexpression.
18166   auto Rebuild = [&](Expr *Sub) {
18167     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
18168   };
18169 
18170   // Check whether a potential result satisfies the requirements of NOUR.
18171   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
18172     // Any entity other than a VarDecl is always odr-used whenever it's named
18173     // in a potentially-evaluated expression.
18174     auto *VD = dyn_cast<VarDecl>(D);
18175     if (!VD)
18176       return true;
18177 
18178     // C++2a [basic.def.odr]p4:
18179     //   A variable x whose name appears as a potentially-evalauted expression
18180     //   e is odr-used by e unless
18181     //   -- x is a reference that is usable in constant expressions, or
18182     //   -- x is a variable of non-reference type that is usable in constant
18183     //      expressions and has no mutable subobjects, and e is an element of
18184     //      the set of potential results of an expression of
18185     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
18186     //      conversion is applied, or
18187     //   -- x is a variable of non-reference type, and e is an element of the
18188     //      set of potential results of a discarded-value expression to which
18189     //      the lvalue-to-rvalue conversion is not applied
18190     //
18191     // We check the first bullet and the "potentially-evaluated" condition in
18192     // BuildDeclRefExpr. We check the type requirements in the second bullet
18193     // in CheckLValueToRValueConversionOperand below.
18194     switch (NOUR) {
18195     case NOUR_None:
18196     case NOUR_Unevaluated:
18197       llvm_unreachable("unexpected non-odr-use-reason");
18198 
18199     case NOUR_Constant:
18200       // Constant references were handled when they were built.
18201       if (VD->getType()->isReferenceType())
18202         return true;
18203       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
18204         if (RD->hasMutableFields())
18205           return true;
18206       if (!VD->isUsableInConstantExpressions(S.Context))
18207         return true;
18208       break;
18209 
18210     case NOUR_Discarded:
18211       if (VD->getType()->isReferenceType())
18212         return true;
18213       break;
18214     }
18215     return false;
18216   };
18217 
18218   // Mark that this expression does not constitute an odr-use.
18219   auto MarkNotOdrUsed = [&] {
18220     S.MaybeODRUseExprs.remove(E);
18221     if (LambdaScopeInfo *LSI = S.getCurLambda())
18222       LSI->markVariableExprAsNonODRUsed(E);
18223   };
18224 
18225   // C++2a [basic.def.odr]p2:
18226   //   The set of potential results of an expression e is defined as follows:
18227   switch (E->getStmtClass()) {
18228   //   -- If e is an id-expression, ...
18229   case Expr::DeclRefExprClass: {
18230     auto *DRE = cast<DeclRefExpr>(E);
18231     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
18232       break;
18233 
18234     // Rebuild as a non-odr-use DeclRefExpr.
18235     MarkNotOdrUsed();
18236     return DeclRefExpr::Create(
18237         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
18238         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
18239         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
18240         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
18241   }
18242 
18243   case Expr::FunctionParmPackExprClass: {
18244     auto *FPPE = cast<FunctionParmPackExpr>(E);
18245     // If any of the declarations in the pack is odr-used, then the expression
18246     // as a whole constitutes an odr-use.
18247     for (VarDecl *D : *FPPE)
18248       if (IsPotentialResultOdrUsed(D))
18249         return ExprEmpty();
18250 
18251     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
18252     // nothing cares about whether we marked this as an odr-use, but it might
18253     // be useful for non-compiler tools.
18254     MarkNotOdrUsed();
18255     break;
18256   }
18257 
18258   //   -- If e is a subscripting operation with an array operand...
18259   case Expr::ArraySubscriptExprClass: {
18260     auto *ASE = cast<ArraySubscriptExpr>(E);
18261     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
18262     if (!OldBase->getType()->isArrayType())
18263       break;
18264     ExprResult Base = Rebuild(OldBase);
18265     if (!Base.isUsable())
18266       return Base;
18267     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
18268     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
18269     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
18270     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
18271                                      ASE->getRBracketLoc());
18272   }
18273 
18274   case Expr::MemberExprClass: {
18275     auto *ME = cast<MemberExpr>(E);
18276     // -- If e is a class member access expression [...] naming a non-static
18277     //    data member...
18278     if (isa<FieldDecl>(ME->getMemberDecl())) {
18279       ExprResult Base = Rebuild(ME->getBase());
18280       if (!Base.isUsable())
18281         return Base;
18282       return MemberExpr::Create(
18283           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
18284           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
18285           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
18286           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
18287           ME->getObjectKind(), ME->isNonOdrUse());
18288     }
18289 
18290     if (ME->getMemberDecl()->isCXXInstanceMember())
18291       break;
18292 
18293     // -- If e is a class member access expression naming a static data member,
18294     //    ...
18295     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
18296       break;
18297 
18298     // Rebuild as a non-odr-use MemberExpr.
18299     MarkNotOdrUsed();
18300     return MemberExpr::Create(
18301         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
18302         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
18303         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
18304         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
18305   }
18306 
18307   case Expr::BinaryOperatorClass: {
18308     auto *BO = cast<BinaryOperator>(E);
18309     Expr *LHS = BO->getLHS();
18310     Expr *RHS = BO->getRHS();
18311     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
18312     if (BO->getOpcode() == BO_PtrMemD) {
18313       ExprResult Sub = Rebuild(LHS);
18314       if (!Sub.isUsable())
18315         return Sub;
18316       LHS = Sub.get();
18317     //   -- If e is a comma expression, ...
18318     } else if (BO->getOpcode() == BO_Comma) {
18319       ExprResult Sub = Rebuild(RHS);
18320       if (!Sub.isUsable())
18321         return Sub;
18322       RHS = Sub.get();
18323     } else {
18324       break;
18325     }
18326     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
18327                         LHS, RHS);
18328   }
18329 
18330   //   -- If e has the form (e1)...
18331   case Expr::ParenExprClass: {
18332     auto *PE = cast<ParenExpr>(E);
18333     ExprResult Sub = Rebuild(PE->getSubExpr());
18334     if (!Sub.isUsable())
18335       return Sub;
18336     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
18337   }
18338 
18339   //   -- If e is a glvalue conditional expression, ...
18340   // We don't apply this to a binary conditional operator. FIXME: Should we?
18341   case Expr::ConditionalOperatorClass: {
18342     auto *CO = cast<ConditionalOperator>(E);
18343     ExprResult LHS = Rebuild(CO->getLHS());
18344     if (LHS.isInvalid())
18345       return ExprError();
18346     ExprResult RHS = Rebuild(CO->getRHS());
18347     if (RHS.isInvalid())
18348       return ExprError();
18349     if (!LHS.isUsable() && !RHS.isUsable())
18350       return ExprEmpty();
18351     if (!LHS.isUsable())
18352       LHS = CO->getLHS();
18353     if (!RHS.isUsable())
18354       RHS = CO->getRHS();
18355     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
18356                                 CO->getCond(), LHS.get(), RHS.get());
18357   }
18358 
18359   // [Clang extension]
18360   //   -- If e has the form __extension__ e1...
18361   case Expr::UnaryOperatorClass: {
18362     auto *UO = cast<UnaryOperator>(E);
18363     if (UO->getOpcode() != UO_Extension)
18364       break;
18365     ExprResult Sub = Rebuild(UO->getSubExpr());
18366     if (!Sub.isUsable())
18367       return Sub;
18368     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
18369                           Sub.get());
18370   }
18371 
18372   // [Clang extension]
18373   //   -- If e has the form _Generic(...), the set of potential results is the
18374   //      union of the sets of potential results of the associated expressions.
18375   case Expr::GenericSelectionExprClass: {
18376     auto *GSE = cast<GenericSelectionExpr>(E);
18377 
18378     SmallVector<Expr *, 4> AssocExprs;
18379     bool AnyChanged = false;
18380     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
18381       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
18382       if (AssocExpr.isInvalid())
18383         return ExprError();
18384       if (AssocExpr.isUsable()) {
18385         AssocExprs.push_back(AssocExpr.get());
18386         AnyChanged = true;
18387       } else {
18388         AssocExprs.push_back(OrigAssocExpr);
18389       }
18390     }
18391 
18392     return AnyChanged ? S.CreateGenericSelectionExpr(
18393                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
18394                             GSE->getRParenLoc(), GSE->getControllingExpr(),
18395                             GSE->getAssocTypeSourceInfos(), AssocExprs)
18396                       : ExprEmpty();
18397   }
18398 
18399   // [Clang extension]
18400   //   -- If e has the form __builtin_choose_expr(...), the set of potential
18401   //      results is the union of the sets of potential results of the
18402   //      second and third subexpressions.
18403   case Expr::ChooseExprClass: {
18404     auto *CE = cast<ChooseExpr>(E);
18405 
18406     ExprResult LHS = Rebuild(CE->getLHS());
18407     if (LHS.isInvalid())
18408       return ExprError();
18409 
18410     ExprResult RHS = Rebuild(CE->getLHS());
18411     if (RHS.isInvalid())
18412       return ExprError();
18413 
18414     if (!LHS.get() && !RHS.get())
18415       return ExprEmpty();
18416     if (!LHS.isUsable())
18417       LHS = CE->getLHS();
18418     if (!RHS.isUsable())
18419       RHS = CE->getRHS();
18420 
18421     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
18422                              RHS.get(), CE->getRParenLoc());
18423   }
18424 
18425   // Step through non-syntactic nodes.
18426   case Expr::ConstantExprClass: {
18427     auto *CE = cast<ConstantExpr>(E);
18428     ExprResult Sub = Rebuild(CE->getSubExpr());
18429     if (!Sub.isUsable())
18430       return Sub;
18431     return ConstantExpr::Create(S.Context, Sub.get());
18432   }
18433 
18434   // We could mostly rely on the recursive rebuilding to rebuild implicit
18435   // casts, but not at the top level, so rebuild them here.
18436   case Expr::ImplicitCastExprClass: {
18437     auto *ICE = cast<ImplicitCastExpr>(E);
18438     // Only step through the narrow set of cast kinds we expect to encounter.
18439     // Anything else suggests we've left the region in which potential results
18440     // can be found.
18441     switch (ICE->getCastKind()) {
18442     case CK_NoOp:
18443     case CK_DerivedToBase:
18444     case CK_UncheckedDerivedToBase: {
18445       ExprResult Sub = Rebuild(ICE->getSubExpr());
18446       if (!Sub.isUsable())
18447         return Sub;
18448       CXXCastPath Path(ICE->path());
18449       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
18450                                  ICE->getValueKind(), &Path);
18451     }
18452 
18453     default:
18454       break;
18455     }
18456     break;
18457   }
18458 
18459   default:
18460     break;
18461   }
18462 
18463   // Can't traverse through this node. Nothing to do.
18464   return ExprEmpty();
18465 }
18466 
18467 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
18468   // Check whether the operand is or contains an object of non-trivial C union
18469   // type.
18470   if (E->getType().isVolatileQualified() &&
18471       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
18472        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
18473     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
18474                           Sema::NTCUC_LValueToRValueVolatile,
18475                           NTCUK_Destruct|NTCUK_Copy);
18476 
18477   // C++2a [basic.def.odr]p4:
18478   //   [...] an expression of non-volatile-qualified non-class type to which
18479   //   the lvalue-to-rvalue conversion is applied [...]
18480   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
18481     return E;
18482 
18483   ExprResult Result =
18484       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
18485   if (Result.isInvalid())
18486     return ExprError();
18487   return Result.get() ? Result : E;
18488 }
18489 
18490 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
18491   Res = CorrectDelayedTyposInExpr(Res);
18492 
18493   if (!Res.isUsable())
18494     return Res;
18495 
18496   // If a constant-expression is a reference to a variable where we delay
18497   // deciding whether it is an odr-use, just assume we will apply the
18498   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
18499   // (a non-type template argument), we have special handling anyway.
18500   return CheckLValueToRValueConversionOperand(Res.get());
18501 }
18502 
18503 void Sema::CleanupVarDeclMarking() {
18504   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
18505   // call.
18506   MaybeODRUseExprSet LocalMaybeODRUseExprs;
18507   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
18508 
18509   for (Expr *E : LocalMaybeODRUseExprs) {
18510     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
18511       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
18512                          DRE->getLocation(), *this);
18513     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
18514       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
18515                          *this);
18516     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
18517       for (VarDecl *VD : *FP)
18518         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
18519     } else {
18520       llvm_unreachable("Unexpected expression");
18521     }
18522   }
18523 
18524   assert(MaybeODRUseExprs.empty() &&
18525          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
18526 }
18527 
18528 static void DoMarkVarDeclReferenced(
18529     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
18530     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
18531   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
18532           isa<FunctionParmPackExpr>(E)) &&
18533          "Invalid Expr argument to DoMarkVarDeclReferenced");
18534   Var->setReferenced();
18535 
18536   if (Var->isInvalidDecl())
18537     return;
18538 
18539   auto *MSI = Var->getMemberSpecializationInfo();
18540   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
18541                                        : Var->getTemplateSpecializationKind();
18542 
18543   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
18544   bool UsableInConstantExpr =
18545       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
18546 
18547   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
18548     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
18549   }
18550 
18551   // C++20 [expr.const]p12:
18552   //   A variable [...] is needed for constant evaluation if it is [...] a
18553   //   variable whose name appears as a potentially constant evaluated
18554   //   expression that is either a contexpr variable or is of non-volatile
18555   //   const-qualified integral type or of reference type
18556   bool NeededForConstantEvaluation =
18557       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
18558 
18559   bool NeedDefinition =
18560       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
18561 
18562   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
18563          "Can't instantiate a partial template specialization.");
18564 
18565   // If this might be a member specialization of a static data member, check
18566   // the specialization is visible. We already did the checks for variable
18567   // template specializations when we created them.
18568   if (NeedDefinition && TSK != TSK_Undeclared &&
18569       !isa<VarTemplateSpecializationDecl>(Var))
18570     SemaRef.checkSpecializationVisibility(Loc, Var);
18571 
18572   // Perform implicit instantiation of static data members, static data member
18573   // templates of class templates, and variable template specializations. Delay
18574   // instantiations of variable templates, except for those that could be used
18575   // in a constant expression.
18576   if (NeedDefinition && isTemplateInstantiation(TSK)) {
18577     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
18578     // instantiation declaration if a variable is usable in a constant
18579     // expression (among other cases).
18580     bool TryInstantiating =
18581         TSK == TSK_ImplicitInstantiation ||
18582         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
18583 
18584     if (TryInstantiating) {
18585       SourceLocation PointOfInstantiation =
18586           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
18587       bool FirstInstantiation = PointOfInstantiation.isInvalid();
18588       if (FirstInstantiation) {
18589         PointOfInstantiation = Loc;
18590         if (MSI)
18591           MSI->setPointOfInstantiation(PointOfInstantiation);
18592           // FIXME: Notify listener.
18593         else
18594           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18595       }
18596 
18597       if (UsableInConstantExpr) {
18598         // Do not defer instantiations of variables that could be used in a
18599         // constant expression.
18600         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
18601           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
18602         });
18603 
18604         // Re-set the member to trigger a recomputation of the dependence bits
18605         // for the expression.
18606         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18607           DRE->setDecl(DRE->getDecl());
18608         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
18609           ME->setMemberDecl(ME->getMemberDecl());
18610       } else if (FirstInstantiation ||
18611                  isa<VarTemplateSpecializationDecl>(Var)) {
18612         // FIXME: For a specialization of a variable template, we don't
18613         // distinguish between "declaration and type implicitly instantiated"
18614         // and "implicit instantiation of definition requested", so we have
18615         // no direct way to avoid enqueueing the pending instantiation
18616         // multiple times.
18617         SemaRef.PendingInstantiations
18618             .push_back(std::make_pair(Var, PointOfInstantiation));
18619       }
18620     }
18621   }
18622 
18623   // C++2a [basic.def.odr]p4:
18624   //   A variable x whose name appears as a potentially-evaluated expression e
18625   //   is odr-used by e unless
18626   //   -- x is a reference that is usable in constant expressions
18627   //   -- x is a variable of non-reference type that is usable in constant
18628   //      expressions and has no mutable subobjects [FIXME], and e is an
18629   //      element of the set of potential results of an expression of
18630   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
18631   //      conversion is applied
18632   //   -- x is a variable of non-reference type, and e is an element of the set
18633   //      of potential results of a discarded-value expression to which the
18634   //      lvalue-to-rvalue conversion is not applied [FIXME]
18635   //
18636   // We check the first part of the second bullet here, and
18637   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
18638   // FIXME: To get the third bullet right, we need to delay this even for
18639   // variables that are not usable in constant expressions.
18640 
18641   // If we already know this isn't an odr-use, there's nothing more to do.
18642   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18643     if (DRE->isNonOdrUse())
18644       return;
18645   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
18646     if (ME->isNonOdrUse())
18647       return;
18648 
18649   switch (OdrUse) {
18650   case OdrUseContext::None:
18651     assert((!E || isa<FunctionParmPackExpr>(E)) &&
18652            "missing non-odr-use marking for unevaluated decl ref");
18653     break;
18654 
18655   case OdrUseContext::FormallyOdrUsed:
18656     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
18657     // behavior.
18658     break;
18659 
18660   case OdrUseContext::Used:
18661     // If we might later find that this expression isn't actually an odr-use,
18662     // delay the marking.
18663     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
18664       SemaRef.MaybeODRUseExprs.insert(E);
18665     else
18666       MarkVarDeclODRUsed(Var, Loc, SemaRef);
18667     break;
18668 
18669   case OdrUseContext::Dependent:
18670     // If this is a dependent context, we don't need to mark variables as
18671     // odr-used, but we may still need to track them for lambda capture.
18672     // FIXME: Do we also need to do this inside dependent typeid expressions
18673     // (which are modeled as unevaluated at this point)?
18674     const bool RefersToEnclosingScope =
18675         (SemaRef.CurContext != Var->getDeclContext() &&
18676          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
18677     if (RefersToEnclosingScope) {
18678       LambdaScopeInfo *const LSI =
18679           SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
18680       if (LSI && (!LSI->CallOperator ||
18681                   !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
18682         // If a variable could potentially be odr-used, defer marking it so
18683         // until we finish analyzing the full expression for any
18684         // lvalue-to-rvalue
18685         // or discarded value conversions that would obviate odr-use.
18686         // Add it to the list of potential captures that will be analyzed
18687         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
18688         // unless the variable is a reference that was initialized by a constant
18689         // expression (this will never need to be captured or odr-used).
18690         //
18691         // FIXME: We can simplify this a lot after implementing P0588R1.
18692         assert(E && "Capture variable should be used in an expression.");
18693         if (!Var->getType()->isReferenceType() ||
18694             !Var->isUsableInConstantExpressions(SemaRef.Context))
18695           LSI->addPotentialCapture(E->IgnoreParens());
18696       }
18697     }
18698     break;
18699   }
18700 }
18701 
18702 /// Mark a variable referenced, and check whether it is odr-used
18703 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
18704 /// used directly for normal expressions referring to VarDecl.
18705 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
18706   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
18707 }
18708 
18709 static void
18710 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
18711                    bool MightBeOdrUse,
18712                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
18713   if (SemaRef.isInOpenMPDeclareTargetContext())
18714     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
18715 
18716   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
18717     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
18718     return;
18719   }
18720 
18721   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
18722 
18723   // If this is a call to a method via a cast, also mark the method in the
18724   // derived class used in case codegen can devirtualize the call.
18725   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
18726   if (!ME)
18727     return;
18728   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
18729   if (!MD)
18730     return;
18731   // Only attempt to devirtualize if this is truly a virtual call.
18732   bool IsVirtualCall = MD->isVirtual() &&
18733                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
18734   if (!IsVirtualCall)
18735     return;
18736 
18737   // If it's possible to devirtualize the call, mark the called function
18738   // referenced.
18739   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
18740       ME->getBase(), SemaRef.getLangOpts().AppleKext);
18741   if (DM)
18742     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
18743 }
18744 
18745 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
18746 ///
18747 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
18748 /// handled with care if the DeclRefExpr is not newly-created.
18749 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
18750   // TODO: update this with DR# once a defect report is filed.
18751   // C++11 defect. The address of a pure member should not be an ODR use, even
18752   // if it's a qualified reference.
18753   bool OdrUse = true;
18754   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
18755     if (Method->isVirtual() &&
18756         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
18757       OdrUse = false;
18758 
18759   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
18760     if (!isUnevaluatedContext() && !isConstantEvaluated() &&
18761         FD->isConsteval() && !RebuildingImmediateInvocation)
18762       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
18763   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
18764                      RefsMinusAssignments);
18765 }
18766 
18767 /// Perform reference-marking and odr-use handling for a MemberExpr.
18768 void Sema::MarkMemberReferenced(MemberExpr *E) {
18769   // C++11 [basic.def.odr]p2:
18770   //   A non-overloaded function whose name appears as a potentially-evaluated
18771   //   expression or a member of a set of candidate functions, if selected by
18772   //   overload resolution when referred to from a potentially-evaluated
18773   //   expression, is odr-used, unless it is a pure virtual function and its
18774   //   name is not explicitly qualified.
18775   bool MightBeOdrUse = true;
18776   if (E->performsVirtualDispatch(getLangOpts())) {
18777     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
18778       if (Method->isPure())
18779         MightBeOdrUse = false;
18780   }
18781   SourceLocation Loc =
18782       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
18783   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
18784                      RefsMinusAssignments);
18785 }
18786 
18787 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
18788 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
18789   for (VarDecl *VD : *E)
18790     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
18791                        RefsMinusAssignments);
18792 }
18793 
18794 /// Perform marking for a reference to an arbitrary declaration.  It
18795 /// marks the declaration referenced, and performs odr-use checking for
18796 /// functions and variables. This method should not be used when building a
18797 /// normal expression which refers to a variable.
18798 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
18799                                  bool MightBeOdrUse) {
18800   if (MightBeOdrUse) {
18801     if (auto *VD = dyn_cast<VarDecl>(D)) {
18802       MarkVariableReferenced(Loc, VD);
18803       return;
18804     }
18805   }
18806   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
18807     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
18808     return;
18809   }
18810   D->setReferenced();
18811 }
18812 
18813 namespace {
18814   // Mark all of the declarations used by a type as referenced.
18815   // FIXME: Not fully implemented yet! We need to have a better understanding
18816   // of when we're entering a context we should not recurse into.
18817   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
18818   // TreeTransforms rebuilding the type in a new context. Rather than
18819   // duplicating the TreeTransform logic, we should consider reusing it here.
18820   // Currently that causes problems when rebuilding LambdaExprs.
18821   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
18822     Sema &S;
18823     SourceLocation Loc;
18824 
18825   public:
18826     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
18827 
18828     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
18829 
18830     bool TraverseTemplateArgument(const TemplateArgument &Arg);
18831   };
18832 }
18833 
18834 bool MarkReferencedDecls::TraverseTemplateArgument(
18835     const TemplateArgument &Arg) {
18836   {
18837     // A non-type template argument is a constant-evaluated context.
18838     EnterExpressionEvaluationContext Evaluated(
18839         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
18840     if (Arg.getKind() == TemplateArgument::Declaration) {
18841       if (Decl *D = Arg.getAsDecl())
18842         S.MarkAnyDeclReferenced(Loc, D, true);
18843     } else if (Arg.getKind() == TemplateArgument::Expression) {
18844       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
18845     }
18846   }
18847 
18848   return Inherited::TraverseTemplateArgument(Arg);
18849 }
18850 
18851 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
18852   MarkReferencedDecls Marker(*this, Loc);
18853   Marker.TraverseType(T);
18854 }
18855 
18856 namespace {
18857 /// Helper class that marks all of the declarations referenced by
18858 /// potentially-evaluated subexpressions as "referenced".
18859 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
18860 public:
18861   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
18862   bool SkipLocalVariables;
18863 
18864   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
18865       : Inherited(S), SkipLocalVariables(SkipLocalVariables) {}
18866 
18867   void visitUsedDecl(SourceLocation Loc, Decl *D) {
18868     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
18869   }
18870 
18871   void VisitDeclRefExpr(DeclRefExpr *E) {
18872     // If we were asked not to visit local variables, don't.
18873     if (SkipLocalVariables) {
18874       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
18875         if (VD->hasLocalStorage())
18876           return;
18877     }
18878 
18879     // FIXME: This can trigger the instantiation of the initializer of a
18880     // variable, which can cause the expression to become value-dependent
18881     // or error-dependent. Do we need to propagate the new dependence bits?
18882     S.MarkDeclRefReferenced(E);
18883   }
18884 
18885   void VisitMemberExpr(MemberExpr *E) {
18886     S.MarkMemberReferenced(E);
18887     Visit(E->getBase());
18888   }
18889 };
18890 } // namespace
18891 
18892 /// Mark any declarations that appear within this expression or any
18893 /// potentially-evaluated subexpressions as "referenced".
18894 ///
18895 /// \param SkipLocalVariables If true, don't mark local variables as
18896 /// 'referenced'.
18897 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
18898                                             bool SkipLocalVariables) {
18899   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
18900 }
18901 
18902 /// Emit a diagnostic when statements are reachable.
18903 /// FIXME: check for reachability even in expressions for which we don't build a
18904 ///        CFG (eg, in the initializer of a global or in a constant expression).
18905 ///        For example,
18906 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
18907 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
18908                            const PartialDiagnostic &PD) {
18909   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
18910     if (!FunctionScopes.empty())
18911       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
18912           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
18913     return true;
18914   }
18915 
18916   // The initializer of a constexpr variable or of the first declaration of a
18917   // static data member is not syntactically a constant evaluated constant,
18918   // but nonetheless is always required to be a constant expression, so we
18919   // can skip diagnosing.
18920   // FIXME: Using the mangling context here is a hack.
18921   if (auto *VD = dyn_cast_or_null<VarDecl>(
18922           ExprEvalContexts.back().ManglingContextDecl)) {
18923     if (VD->isConstexpr() ||
18924         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
18925       return false;
18926     // FIXME: For any other kind of variable, we should build a CFG for its
18927     // initializer and check whether the context in question is reachable.
18928   }
18929 
18930   Diag(Loc, PD);
18931   return true;
18932 }
18933 
18934 /// Emit a diagnostic that describes an effect on the run-time behavior
18935 /// of the program being compiled.
18936 ///
18937 /// This routine emits the given diagnostic when the code currently being
18938 /// type-checked is "potentially evaluated", meaning that there is a
18939 /// possibility that the code will actually be executable. Code in sizeof()
18940 /// expressions, code used only during overload resolution, etc., are not
18941 /// potentially evaluated. This routine will suppress such diagnostics or,
18942 /// in the absolutely nutty case of potentially potentially evaluated
18943 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
18944 /// later.
18945 ///
18946 /// This routine should be used for all diagnostics that describe the run-time
18947 /// behavior of a program, such as passing a non-POD value through an ellipsis.
18948 /// Failure to do so will likely result in spurious diagnostics or failures
18949 /// during overload resolution or within sizeof/alignof/typeof/typeid.
18950 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
18951                                const PartialDiagnostic &PD) {
18952   switch (ExprEvalContexts.back().Context) {
18953   case ExpressionEvaluationContext::Unevaluated:
18954   case ExpressionEvaluationContext::UnevaluatedList:
18955   case ExpressionEvaluationContext::UnevaluatedAbstract:
18956   case ExpressionEvaluationContext::DiscardedStatement:
18957     // The argument will never be evaluated, so don't complain.
18958     break;
18959 
18960   case ExpressionEvaluationContext::ConstantEvaluated:
18961     // Relevant diagnostics should be produced by constant evaluation.
18962     break;
18963 
18964   case ExpressionEvaluationContext::PotentiallyEvaluated:
18965   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18966     return DiagIfReachable(Loc, Stmts, PD);
18967   }
18968 
18969   return false;
18970 }
18971 
18972 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
18973                                const PartialDiagnostic &PD) {
18974   return DiagRuntimeBehavior(
18975       Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
18976 }
18977 
18978 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
18979                                CallExpr *CE, FunctionDecl *FD) {
18980   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
18981     return false;
18982 
18983   // If we're inside a decltype's expression, don't check for a valid return
18984   // type or construct temporaries until we know whether this is the last call.
18985   if (ExprEvalContexts.back().ExprContext ==
18986       ExpressionEvaluationContextRecord::EK_Decltype) {
18987     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
18988     return false;
18989   }
18990 
18991   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
18992     FunctionDecl *FD;
18993     CallExpr *CE;
18994 
18995   public:
18996     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
18997       : FD(FD), CE(CE) { }
18998 
18999     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
19000       if (!FD) {
19001         S.Diag(Loc, diag::err_call_incomplete_return)
19002           << T << CE->getSourceRange();
19003         return;
19004       }
19005 
19006       S.Diag(Loc, diag::err_call_function_incomplete_return)
19007           << CE->getSourceRange() << FD << T;
19008       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
19009           << FD->getDeclName();
19010     }
19011   } Diagnoser(FD, CE);
19012 
19013   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
19014     return true;
19015 
19016   return false;
19017 }
19018 
19019 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
19020 // will prevent this condition from triggering, which is what we want.
19021 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
19022   SourceLocation Loc;
19023 
19024   unsigned diagnostic = diag::warn_condition_is_assignment;
19025   bool IsOrAssign = false;
19026 
19027   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
19028     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
19029       return;
19030 
19031     IsOrAssign = Op->getOpcode() == BO_OrAssign;
19032 
19033     // Greylist some idioms by putting them into a warning subcategory.
19034     if (ObjCMessageExpr *ME
19035           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
19036       Selector Sel = ME->getSelector();
19037 
19038       // self = [<foo> init...]
19039       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
19040         diagnostic = diag::warn_condition_is_idiomatic_assignment;
19041 
19042       // <foo> = [<bar> nextObject]
19043       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
19044         diagnostic = diag::warn_condition_is_idiomatic_assignment;
19045     }
19046 
19047     Loc = Op->getOperatorLoc();
19048   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
19049     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
19050       return;
19051 
19052     IsOrAssign = Op->getOperator() == OO_PipeEqual;
19053     Loc = Op->getOperatorLoc();
19054   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
19055     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
19056   else {
19057     // Not an assignment.
19058     return;
19059   }
19060 
19061   Diag(Loc, diagnostic) << E->getSourceRange();
19062 
19063   SourceLocation Open = E->getBeginLoc();
19064   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
19065   Diag(Loc, diag::note_condition_assign_silence)
19066         << FixItHint::CreateInsertion(Open, "(")
19067         << FixItHint::CreateInsertion(Close, ")");
19068 
19069   if (IsOrAssign)
19070     Diag(Loc, diag::note_condition_or_assign_to_comparison)
19071       << FixItHint::CreateReplacement(Loc, "!=");
19072   else
19073     Diag(Loc, diag::note_condition_assign_to_comparison)
19074       << FixItHint::CreateReplacement(Loc, "==");
19075 }
19076 
19077 /// Redundant parentheses over an equality comparison can indicate
19078 /// that the user intended an assignment used as condition.
19079 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
19080   // Don't warn if the parens came from a macro.
19081   SourceLocation parenLoc = ParenE->getBeginLoc();
19082   if (parenLoc.isInvalid() || parenLoc.isMacroID())
19083     return;
19084   // Don't warn for dependent expressions.
19085   if (ParenE->isTypeDependent())
19086     return;
19087 
19088   Expr *E = ParenE->IgnoreParens();
19089 
19090   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
19091     if (opE->getOpcode() == BO_EQ &&
19092         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
19093                                                            == Expr::MLV_Valid) {
19094       SourceLocation Loc = opE->getOperatorLoc();
19095 
19096       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
19097       SourceRange ParenERange = ParenE->getSourceRange();
19098       Diag(Loc, diag::note_equality_comparison_silence)
19099         << FixItHint::CreateRemoval(ParenERange.getBegin())
19100         << FixItHint::CreateRemoval(ParenERange.getEnd());
19101       Diag(Loc, diag::note_equality_comparison_to_assign)
19102         << FixItHint::CreateReplacement(Loc, "=");
19103     }
19104 }
19105 
19106 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
19107                                        bool IsConstexpr) {
19108   DiagnoseAssignmentAsCondition(E);
19109   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
19110     DiagnoseEqualityWithExtraParens(parenE);
19111 
19112   ExprResult result = CheckPlaceholderExpr(E);
19113   if (result.isInvalid()) return ExprError();
19114   E = result.get();
19115 
19116   if (!E->isTypeDependent()) {
19117     if (getLangOpts().CPlusPlus)
19118       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
19119 
19120     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
19121     if (ERes.isInvalid())
19122       return ExprError();
19123     E = ERes.get();
19124 
19125     QualType T = E->getType();
19126     if (!T->isScalarType()) { // C99 6.8.4.1p1
19127       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
19128         << T << E->getSourceRange();
19129       return ExprError();
19130     }
19131     CheckBoolLikeConversion(E, Loc);
19132   }
19133 
19134   return E;
19135 }
19136 
19137 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
19138                                            Expr *SubExpr, ConditionKind CK) {
19139   // Empty conditions are valid in for-statements.
19140   if (!SubExpr)
19141     return ConditionResult();
19142 
19143   ExprResult Cond;
19144   switch (CK) {
19145   case ConditionKind::Boolean:
19146     Cond = CheckBooleanCondition(Loc, SubExpr);
19147     break;
19148 
19149   case ConditionKind::ConstexprIf:
19150     Cond = CheckBooleanCondition(Loc, SubExpr, true);
19151     break;
19152 
19153   case ConditionKind::Switch:
19154     Cond = CheckSwitchCondition(Loc, SubExpr);
19155     break;
19156   }
19157   if (Cond.isInvalid()) {
19158     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
19159                               {SubExpr});
19160     if (!Cond.get())
19161       return ConditionError();
19162   }
19163   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
19164   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
19165   if (!FullExpr.get())
19166     return ConditionError();
19167 
19168   return ConditionResult(*this, nullptr, FullExpr,
19169                          CK == ConditionKind::ConstexprIf);
19170 }
19171 
19172 namespace {
19173   /// A visitor for rebuilding a call to an __unknown_any expression
19174   /// to have an appropriate type.
19175   struct RebuildUnknownAnyFunction
19176     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
19177 
19178     Sema &S;
19179 
19180     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
19181 
19182     ExprResult VisitStmt(Stmt *S) {
19183       llvm_unreachable("unexpected statement!");
19184     }
19185 
19186     ExprResult VisitExpr(Expr *E) {
19187       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
19188         << E->getSourceRange();
19189       return ExprError();
19190     }
19191 
19192     /// Rebuild an expression which simply semantically wraps another
19193     /// expression which it shares the type and value kind of.
19194     template <class T> ExprResult rebuildSugarExpr(T *E) {
19195       ExprResult SubResult = Visit(E->getSubExpr());
19196       if (SubResult.isInvalid()) return ExprError();
19197 
19198       Expr *SubExpr = SubResult.get();
19199       E->setSubExpr(SubExpr);
19200       E->setType(SubExpr->getType());
19201       E->setValueKind(SubExpr->getValueKind());
19202       assert(E->getObjectKind() == OK_Ordinary);
19203       return E;
19204     }
19205 
19206     ExprResult VisitParenExpr(ParenExpr *E) {
19207       return rebuildSugarExpr(E);
19208     }
19209 
19210     ExprResult VisitUnaryExtension(UnaryOperator *E) {
19211       return rebuildSugarExpr(E);
19212     }
19213 
19214     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
19215       ExprResult SubResult = Visit(E->getSubExpr());
19216       if (SubResult.isInvalid()) return ExprError();
19217 
19218       Expr *SubExpr = SubResult.get();
19219       E->setSubExpr(SubExpr);
19220       E->setType(S.Context.getPointerType(SubExpr->getType()));
19221       assert(E->isPRValue());
19222       assert(E->getObjectKind() == OK_Ordinary);
19223       return E;
19224     }
19225 
19226     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
19227       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
19228 
19229       E->setType(VD->getType());
19230 
19231       assert(E->isPRValue());
19232       if (S.getLangOpts().CPlusPlus &&
19233           !(isa<CXXMethodDecl>(VD) &&
19234             cast<CXXMethodDecl>(VD)->isInstance()))
19235         E->setValueKind(VK_LValue);
19236 
19237       return E;
19238     }
19239 
19240     ExprResult VisitMemberExpr(MemberExpr *E) {
19241       return resolveDecl(E, E->getMemberDecl());
19242     }
19243 
19244     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19245       return resolveDecl(E, E->getDecl());
19246     }
19247   };
19248 }
19249 
19250 /// Given a function expression of unknown-any type, try to rebuild it
19251 /// to have a function type.
19252 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
19253   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
19254   if (Result.isInvalid()) return ExprError();
19255   return S.DefaultFunctionArrayConversion(Result.get());
19256 }
19257 
19258 namespace {
19259   /// A visitor for rebuilding an expression of type __unknown_anytype
19260   /// into one which resolves the type directly on the referring
19261   /// expression.  Strict preservation of the original source
19262   /// structure is not a goal.
19263   struct RebuildUnknownAnyExpr
19264     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
19265 
19266     Sema &S;
19267 
19268     /// The current destination type.
19269     QualType DestType;
19270 
19271     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
19272       : S(S), DestType(CastType) {}
19273 
19274     ExprResult VisitStmt(Stmt *S) {
19275       llvm_unreachable("unexpected statement!");
19276     }
19277 
19278     ExprResult VisitExpr(Expr *E) {
19279       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19280         << E->getSourceRange();
19281       return ExprError();
19282     }
19283 
19284     ExprResult VisitCallExpr(CallExpr *E);
19285     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
19286 
19287     /// Rebuild an expression which simply semantically wraps another
19288     /// expression which it shares the type and value kind of.
19289     template <class T> ExprResult rebuildSugarExpr(T *E) {
19290       ExprResult SubResult = Visit(E->getSubExpr());
19291       if (SubResult.isInvalid()) return ExprError();
19292       Expr *SubExpr = SubResult.get();
19293       E->setSubExpr(SubExpr);
19294       E->setType(SubExpr->getType());
19295       E->setValueKind(SubExpr->getValueKind());
19296       assert(E->getObjectKind() == OK_Ordinary);
19297       return E;
19298     }
19299 
19300     ExprResult VisitParenExpr(ParenExpr *E) {
19301       return rebuildSugarExpr(E);
19302     }
19303 
19304     ExprResult VisitUnaryExtension(UnaryOperator *E) {
19305       return rebuildSugarExpr(E);
19306     }
19307 
19308     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
19309       const PointerType *Ptr = DestType->getAs<PointerType>();
19310       if (!Ptr) {
19311         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
19312           << E->getSourceRange();
19313         return ExprError();
19314       }
19315 
19316       if (isa<CallExpr>(E->getSubExpr())) {
19317         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
19318           << E->getSourceRange();
19319         return ExprError();
19320       }
19321 
19322       assert(E->isPRValue());
19323       assert(E->getObjectKind() == OK_Ordinary);
19324       E->setType(DestType);
19325 
19326       // Build the sub-expression as if it were an object of the pointee type.
19327       DestType = Ptr->getPointeeType();
19328       ExprResult SubResult = Visit(E->getSubExpr());
19329       if (SubResult.isInvalid()) return ExprError();
19330       E->setSubExpr(SubResult.get());
19331       return E;
19332     }
19333 
19334     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
19335 
19336     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
19337 
19338     ExprResult VisitMemberExpr(MemberExpr *E) {
19339       return resolveDecl(E, E->getMemberDecl());
19340     }
19341 
19342     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19343       return resolveDecl(E, E->getDecl());
19344     }
19345   };
19346 }
19347 
19348 /// Rebuilds a call expression which yielded __unknown_anytype.
19349 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
19350   Expr *CalleeExpr = E->getCallee();
19351 
19352   enum FnKind {
19353     FK_MemberFunction,
19354     FK_FunctionPointer,
19355     FK_BlockPointer
19356   };
19357 
19358   FnKind Kind;
19359   QualType CalleeType = CalleeExpr->getType();
19360   if (CalleeType == S.Context.BoundMemberTy) {
19361     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
19362     Kind = FK_MemberFunction;
19363     CalleeType = Expr::findBoundMemberType(CalleeExpr);
19364   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
19365     CalleeType = Ptr->getPointeeType();
19366     Kind = FK_FunctionPointer;
19367   } else {
19368     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
19369     Kind = FK_BlockPointer;
19370   }
19371   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
19372 
19373   // Verify that this is a legal result type of a function.
19374   if (DestType->isArrayType() || DestType->isFunctionType()) {
19375     unsigned diagID = diag::err_func_returning_array_function;
19376     if (Kind == FK_BlockPointer)
19377       diagID = diag::err_block_returning_array_function;
19378 
19379     S.Diag(E->getExprLoc(), diagID)
19380       << DestType->isFunctionType() << DestType;
19381     return ExprError();
19382   }
19383 
19384   // Otherwise, go ahead and set DestType as the call's result.
19385   E->setType(DestType.getNonLValueExprType(S.Context));
19386   E->setValueKind(Expr::getValueKindForType(DestType));
19387   assert(E->getObjectKind() == OK_Ordinary);
19388 
19389   // Rebuild the function type, replacing the result type with DestType.
19390   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
19391   if (Proto) {
19392     // __unknown_anytype(...) is a special case used by the debugger when
19393     // it has no idea what a function's signature is.
19394     //
19395     // We want to build this call essentially under the K&R
19396     // unprototyped rules, but making a FunctionNoProtoType in C++
19397     // would foul up all sorts of assumptions.  However, we cannot
19398     // simply pass all arguments as variadic arguments, nor can we
19399     // portably just call the function under a non-variadic type; see
19400     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
19401     // However, it turns out that in practice it is generally safe to
19402     // call a function declared as "A foo(B,C,D);" under the prototype
19403     // "A foo(B,C,D,...);".  The only known exception is with the
19404     // Windows ABI, where any variadic function is implicitly cdecl
19405     // regardless of its normal CC.  Therefore we change the parameter
19406     // types to match the types of the arguments.
19407     //
19408     // This is a hack, but it is far superior to moving the
19409     // corresponding target-specific code from IR-gen to Sema/AST.
19410 
19411     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
19412     SmallVector<QualType, 8> ArgTypes;
19413     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
19414       ArgTypes.reserve(E->getNumArgs());
19415       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
19416         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
19417       }
19418       ParamTypes = ArgTypes;
19419     }
19420     DestType = S.Context.getFunctionType(DestType, ParamTypes,
19421                                          Proto->getExtProtoInfo());
19422   } else {
19423     DestType = S.Context.getFunctionNoProtoType(DestType,
19424                                                 FnType->getExtInfo());
19425   }
19426 
19427   // Rebuild the appropriate pointer-to-function type.
19428   switch (Kind) {
19429   case FK_MemberFunction:
19430     // Nothing to do.
19431     break;
19432 
19433   case FK_FunctionPointer:
19434     DestType = S.Context.getPointerType(DestType);
19435     break;
19436 
19437   case FK_BlockPointer:
19438     DestType = S.Context.getBlockPointerType(DestType);
19439     break;
19440   }
19441 
19442   // Finally, we can recurse.
19443   ExprResult CalleeResult = Visit(CalleeExpr);
19444   if (!CalleeResult.isUsable()) return ExprError();
19445   E->setCallee(CalleeResult.get());
19446 
19447   // Bind a temporary if necessary.
19448   return S.MaybeBindToTemporary(E);
19449 }
19450 
19451 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
19452   // Verify that this is a legal result type of a call.
19453   if (DestType->isArrayType() || DestType->isFunctionType()) {
19454     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
19455       << DestType->isFunctionType() << DestType;
19456     return ExprError();
19457   }
19458 
19459   // Rewrite the method result type if available.
19460   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
19461     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
19462     Method->setReturnType(DestType);
19463   }
19464 
19465   // Change the type of the message.
19466   E->setType(DestType.getNonReferenceType());
19467   E->setValueKind(Expr::getValueKindForType(DestType));
19468 
19469   return S.MaybeBindToTemporary(E);
19470 }
19471 
19472 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
19473   // The only case we should ever see here is a function-to-pointer decay.
19474   if (E->getCastKind() == CK_FunctionToPointerDecay) {
19475     assert(E->isPRValue());
19476     assert(E->getObjectKind() == OK_Ordinary);
19477 
19478     E->setType(DestType);
19479 
19480     // Rebuild the sub-expression as the pointee (function) type.
19481     DestType = DestType->castAs<PointerType>()->getPointeeType();
19482 
19483     ExprResult Result = Visit(E->getSubExpr());
19484     if (!Result.isUsable()) return ExprError();
19485 
19486     E->setSubExpr(Result.get());
19487     return E;
19488   } else if (E->getCastKind() == CK_LValueToRValue) {
19489     assert(E->isPRValue());
19490     assert(E->getObjectKind() == OK_Ordinary);
19491 
19492     assert(isa<BlockPointerType>(E->getType()));
19493 
19494     E->setType(DestType);
19495 
19496     // The sub-expression has to be a lvalue reference, so rebuild it as such.
19497     DestType = S.Context.getLValueReferenceType(DestType);
19498 
19499     ExprResult Result = Visit(E->getSubExpr());
19500     if (!Result.isUsable()) return ExprError();
19501 
19502     E->setSubExpr(Result.get());
19503     return E;
19504   } else {
19505     llvm_unreachable("Unhandled cast type!");
19506   }
19507 }
19508 
19509 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
19510   ExprValueKind ValueKind = VK_LValue;
19511   QualType Type = DestType;
19512 
19513   // We know how to make this work for certain kinds of decls:
19514 
19515   //  - functions
19516   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
19517     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
19518       DestType = Ptr->getPointeeType();
19519       ExprResult Result = resolveDecl(E, VD);
19520       if (Result.isInvalid()) return ExprError();
19521       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
19522                                  VK_PRValue);
19523     }
19524 
19525     if (!Type->isFunctionType()) {
19526       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
19527         << VD << E->getSourceRange();
19528       return ExprError();
19529     }
19530     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
19531       // We must match the FunctionDecl's type to the hack introduced in
19532       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
19533       // type. See the lengthy commentary in that routine.
19534       QualType FDT = FD->getType();
19535       const FunctionType *FnType = FDT->castAs<FunctionType>();
19536       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
19537       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
19538       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
19539         SourceLocation Loc = FD->getLocation();
19540         FunctionDecl *NewFD = FunctionDecl::Create(
19541             S.Context, FD->getDeclContext(), Loc, Loc,
19542             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
19543             SC_None, S.getCurFPFeatures().isFPConstrained(),
19544             false /*isInlineSpecified*/, FD->hasPrototype(),
19545             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
19546 
19547         if (FD->getQualifier())
19548           NewFD->setQualifierInfo(FD->getQualifierLoc());
19549 
19550         SmallVector<ParmVarDecl*, 16> Params;
19551         for (const auto &AI : FT->param_types()) {
19552           ParmVarDecl *Param =
19553             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
19554           Param->setScopeInfo(0, Params.size());
19555           Params.push_back(Param);
19556         }
19557         NewFD->setParams(Params);
19558         DRE->setDecl(NewFD);
19559         VD = DRE->getDecl();
19560       }
19561     }
19562 
19563     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
19564       if (MD->isInstance()) {
19565         ValueKind = VK_PRValue;
19566         Type = S.Context.BoundMemberTy;
19567       }
19568 
19569     // Function references aren't l-values in C.
19570     if (!S.getLangOpts().CPlusPlus)
19571       ValueKind = VK_PRValue;
19572 
19573   //  - variables
19574   } else if (isa<VarDecl>(VD)) {
19575     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
19576       Type = RefTy->getPointeeType();
19577     } else if (Type->isFunctionType()) {
19578       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
19579         << VD << E->getSourceRange();
19580       return ExprError();
19581     }
19582 
19583   //  - nothing else
19584   } else {
19585     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
19586       << VD << E->getSourceRange();
19587     return ExprError();
19588   }
19589 
19590   // Modifying the declaration like this is friendly to IR-gen but
19591   // also really dangerous.
19592   VD->setType(DestType);
19593   E->setType(Type);
19594   E->setValueKind(ValueKind);
19595   return E;
19596 }
19597 
19598 /// Check a cast of an unknown-any type.  We intentionally only
19599 /// trigger this for C-style casts.
19600 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
19601                                      Expr *CastExpr, CastKind &CastKind,
19602                                      ExprValueKind &VK, CXXCastPath &Path) {
19603   // The type we're casting to must be either void or complete.
19604   if (!CastType->isVoidType() &&
19605       RequireCompleteType(TypeRange.getBegin(), CastType,
19606                           diag::err_typecheck_cast_to_incomplete))
19607     return ExprError();
19608 
19609   // Rewrite the casted expression from scratch.
19610   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
19611   if (!result.isUsable()) return ExprError();
19612 
19613   CastExpr = result.get();
19614   VK = CastExpr->getValueKind();
19615   CastKind = CK_NoOp;
19616 
19617   return CastExpr;
19618 }
19619 
19620 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
19621   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
19622 }
19623 
19624 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
19625                                     Expr *arg, QualType &paramType) {
19626   // If the syntactic form of the argument is not an explicit cast of
19627   // any sort, just do default argument promotion.
19628   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
19629   if (!castArg) {
19630     ExprResult result = DefaultArgumentPromotion(arg);
19631     if (result.isInvalid()) return ExprError();
19632     paramType = result.get()->getType();
19633     return result;
19634   }
19635 
19636   // Otherwise, use the type that was written in the explicit cast.
19637   assert(!arg->hasPlaceholderType());
19638   paramType = castArg->getTypeAsWritten();
19639 
19640   // Copy-initialize a parameter of that type.
19641   InitializedEntity entity =
19642     InitializedEntity::InitializeParameter(Context, paramType,
19643                                            /*consumed*/ false);
19644   return PerformCopyInitialization(entity, callLoc, arg);
19645 }
19646 
19647 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
19648   Expr *orig = E;
19649   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
19650   while (true) {
19651     E = E->IgnoreParenImpCasts();
19652     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
19653       E = call->getCallee();
19654       diagID = diag::err_uncasted_call_of_unknown_any;
19655     } else {
19656       break;
19657     }
19658   }
19659 
19660   SourceLocation loc;
19661   NamedDecl *d;
19662   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
19663     loc = ref->getLocation();
19664     d = ref->getDecl();
19665   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
19666     loc = mem->getMemberLoc();
19667     d = mem->getMemberDecl();
19668   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
19669     diagID = diag::err_uncasted_call_of_unknown_any;
19670     loc = msg->getSelectorStartLoc();
19671     d = msg->getMethodDecl();
19672     if (!d) {
19673       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
19674         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
19675         << orig->getSourceRange();
19676       return ExprError();
19677     }
19678   } else {
19679     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19680       << E->getSourceRange();
19681     return ExprError();
19682   }
19683 
19684   S.Diag(loc, diagID) << d << orig->getSourceRange();
19685 
19686   // Never recoverable.
19687   return ExprError();
19688 }
19689 
19690 /// Check for operands with placeholder types and complain if found.
19691 /// Returns ExprError() if there was an error and no recovery was possible.
19692 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
19693   if (!Context.isDependenceAllowed()) {
19694     // C cannot handle TypoExpr nodes on either side of a binop because it
19695     // doesn't handle dependent types properly, so make sure any TypoExprs have
19696     // been dealt with before checking the operands.
19697     ExprResult Result = CorrectDelayedTyposInExpr(E);
19698     if (!Result.isUsable()) return ExprError();
19699     E = Result.get();
19700   }
19701 
19702   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
19703   if (!placeholderType) return E;
19704 
19705   switch (placeholderType->getKind()) {
19706 
19707   // Overloaded expressions.
19708   case BuiltinType::Overload: {
19709     // Try to resolve a single function template specialization.
19710     // This is obligatory.
19711     ExprResult Result = E;
19712     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
19713       return Result;
19714 
19715     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
19716     // leaves Result unchanged on failure.
19717     Result = E;
19718     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
19719       return Result;
19720 
19721     // If that failed, try to recover with a call.
19722     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
19723                          /*complain*/ true);
19724     return Result;
19725   }
19726 
19727   // Bound member functions.
19728   case BuiltinType::BoundMember: {
19729     ExprResult result = E;
19730     const Expr *BME = E->IgnoreParens();
19731     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
19732     // Try to give a nicer diagnostic if it is a bound member that we recognize.
19733     if (isa<CXXPseudoDestructorExpr>(BME)) {
19734       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
19735     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
19736       if (ME->getMemberNameInfo().getName().getNameKind() ==
19737           DeclarationName::CXXDestructorName)
19738         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
19739     }
19740     tryToRecoverWithCall(result, PD,
19741                          /*complain*/ true);
19742     return result;
19743   }
19744 
19745   // ARC unbridged casts.
19746   case BuiltinType::ARCUnbridgedCast: {
19747     Expr *realCast = stripARCUnbridgedCast(E);
19748     diagnoseARCUnbridgedCast(realCast);
19749     return realCast;
19750   }
19751 
19752   // Expressions of unknown type.
19753   case BuiltinType::UnknownAny:
19754     return diagnoseUnknownAnyExpr(*this, E);
19755 
19756   // Pseudo-objects.
19757   case BuiltinType::PseudoObject:
19758     return checkPseudoObjectRValue(E);
19759 
19760   case BuiltinType::BuiltinFn: {
19761     // Accept __noop without parens by implicitly converting it to a call expr.
19762     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
19763     if (DRE) {
19764       auto *FD = cast<FunctionDecl>(DRE->getDecl());
19765       if (FD->getBuiltinID() == Builtin::BI__noop) {
19766         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
19767                               CK_BuiltinFnToFnPtr)
19768                 .get();
19769         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
19770                                 VK_PRValue, SourceLocation(),
19771                                 FPOptionsOverride());
19772       }
19773     }
19774 
19775     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
19776     return ExprError();
19777   }
19778 
19779   case BuiltinType::IncompleteMatrixIdx:
19780     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
19781              ->getRowIdx()
19782              ->getBeginLoc(),
19783          diag::err_matrix_incomplete_index);
19784     return ExprError();
19785 
19786   // Expressions of unknown type.
19787   case BuiltinType::OMPArraySection:
19788     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
19789     return ExprError();
19790 
19791   // Expressions of unknown type.
19792   case BuiltinType::OMPArrayShaping:
19793     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
19794 
19795   case BuiltinType::OMPIterator:
19796     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
19797 
19798   // Everything else should be impossible.
19799 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
19800   case BuiltinType::Id:
19801 #include "clang/Basic/OpenCLImageTypes.def"
19802 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
19803   case BuiltinType::Id:
19804 #include "clang/Basic/OpenCLExtensionTypes.def"
19805 #define SVE_TYPE(Name, Id, SingletonId) \
19806   case BuiltinType::Id:
19807 #include "clang/Basic/AArch64SVEACLETypes.def"
19808 #define PPC_VECTOR_TYPE(Name, Id, Size) \
19809   case BuiltinType::Id:
19810 #include "clang/Basic/PPCTypes.def"
19811 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
19812 #include "clang/Basic/RISCVVTypes.def"
19813 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
19814 #define PLACEHOLDER_TYPE(Id, SingletonId)
19815 #include "clang/AST/BuiltinTypes.def"
19816     break;
19817   }
19818 
19819   llvm_unreachable("invalid placeholder type!");
19820 }
19821 
19822 bool Sema::CheckCaseExpression(Expr *E) {
19823   if (E->isTypeDependent())
19824     return true;
19825   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
19826     return E->getType()->isIntegralOrEnumerationType();
19827   return false;
19828 }
19829 
19830 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
19831 ExprResult
19832 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
19833   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
19834          "Unknown Objective-C Boolean value!");
19835   QualType BoolT = Context.ObjCBuiltinBoolTy;
19836   if (!Context.getBOOLDecl()) {
19837     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
19838                         Sema::LookupOrdinaryName);
19839     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
19840       NamedDecl *ND = Result.getFoundDecl();
19841       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
19842         Context.setBOOLDecl(TD);
19843     }
19844   }
19845   if (Context.getBOOLDecl())
19846     BoolT = Context.getBOOLType();
19847   return new (Context)
19848       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
19849 }
19850 
19851 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
19852     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
19853     SourceLocation RParen) {
19854   auto FindSpecVersion = [&](StringRef Platform) -> Optional<VersionTuple> {
19855     auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19856       return Spec.getPlatform() == Platform;
19857     });
19858     // Transcribe the "ios" availability check to "maccatalyst" when compiling
19859     // for "maccatalyst" if "maccatalyst" is not specified.
19860     if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
19861       Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19862         return Spec.getPlatform() == "ios";
19863       });
19864     }
19865     if (Spec == AvailSpecs.end())
19866       return None;
19867     return Spec->getVersion();
19868   };
19869 
19870   VersionTuple Version;
19871   if (auto MaybeVersion =
19872           FindSpecVersion(Context.getTargetInfo().getPlatformName()))
19873     Version = *MaybeVersion;
19874 
19875   // The use of `@available` in the enclosing context should be analyzed to
19876   // warn when it's used inappropriately (i.e. not if(@available)).
19877   if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
19878     Context->HasPotentialAvailabilityViolations = true;
19879 
19880   return new (Context)
19881       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
19882 }
19883 
19884 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
19885                                     ArrayRef<Expr *> SubExprs, QualType T) {
19886   if (!Context.getLangOpts().RecoveryAST)
19887     return ExprError();
19888 
19889   if (isSFINAEContext())
19890     return ExprError();
19891 
19892   if (T.isNull() || T->isUndeducedType() ||
19893       !Context.getLangOpts().RecoveryASTType)
19894     // We don't know the concrete type, fallback to dependent type.
19895     T = Context.DependentTy;
19896 
19897   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
19898 }
19899