1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective C declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/Sema/Lookup.h" 16 #include "clang/Sema/ExternalSemaSource.h" 17 #include "clang/Sema/Scope.h" 18 #include "clang/Sema/ScopeInfo.h" 19 #include "clang/AST/ASTConsumer.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/ASTMutationListener.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Sema/DeclSpec.h" 27 #include "llvm/ADT/DenseSet.h" 28 29 using namespace clang; 30 31 /// Check whether the given method, which must be in the 'init' 32 /// family, is a valid member of that family. 33 /// 34 /// \param receiverTypeIfCall - if null, check this as if declaring it; 35 /// if non-null, check this as if making a call to it with the given 36 /// receiver type 37 /// 38 /// \return true to indicate that there was an error and appropriate 39 /// actions were taken 40 bool Sema::checkInitMethod(ObjCMethodDecl *method, 41 QualType receiverTypeIfCall) { 42 if (method->isInvalidDecl()) return true; 43 44 // This castAs is safe: methods that don't return an object 45 // pointer won't be inferred as inits and will reject an explicit 46 // objc_method_family(init). 47 48 // We ignore protocols here. Should we? What about Class? 49 50 const ObjCObjectType *result = method->getResultType() 51 ->castAs<ObjCObjectPointerType>()->getObjectType(); 52 53 if (result->isObjCId()) { 54 return false; 55 } else if (result->isObjCClass()) { 56 // fall through: always an error 57 } else { 58 ObjCInterfaceDecl *resultClass = result->getInterface(); 59 assert(resultClass && "unexpected object type!"); 60 61 // It's okay for the result type to still be a forward declaration 62 // if we're checking an interface declaration. 63 if (!resultClass->hasDefinition()) { 64 if (receiverTypeIfCall.isNull() && 65 !isa<ObjCImplementationDecl>(method->getDeclContext())) 66 return false; 67 68 // Otherwise, we try to compare class types. 69 } else { 70 // If this method was declared in a protocol, we can't check 71 // anything unless we have a receiver type that's an interface. 72 const ObjCInterfaceDecl *receiverClass = 0; 73 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 74 if (receiverTypeIfCall.isNull()) 75 return false; 76 77 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 78 ->getInterfaceDecl(); 79 80 // This can be null for calls to e.g. id<Foo>. 81 if (!receiverClass) return false; 82 } else { 83 receiverClass = method->getClassInterface(); 84 assert(receiverClass && "method not associated with a class!"); 85 } 86 87 // If either class is a subclass of the other, it's fine. 88 if (receiverClass->isSuperClassOf(resultClass) || 89 resultClass->isSuperClassOf(receiverClass)) 90 return false; 91 } 92 } 93 94 SourceLocation loc = method->getLocation(); 95 96 // If we're in a system header, and this is not a call, just make 97 // the method unusable. 98 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 99 method->addAttr(new (Context) UnavailableAttr(loc, Context, 100 "init method returns a type unrelated to its receiver type")); 101 return true; 102 } 103 104 // Otherwise, it's an error. 105 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 106 method->setInvalidDecl(); 107 return true; 108 } 109 110 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 111 const ObjCMethodDecl *Overridden, 112 bool IsImplementation) { 113 if (Overridden->hasRelatedResultType() && 114 !NewMethod->hasRelatedResultType()) { 115 // This can only happen when the method follows a naming convention that 116 // implies a related result type, and the original (overridden) method has 117 // a suitable return type, but the new (overriding) method does not have 118 // a suitable return type. 119 QualType ResultType = NewMethod->getResultType(); 120 SourceRange ResultTypeRange; 121 if (const TypeSourceInfo *ResultTypeInfo 122 = NewMethod->getResultTypeSourceInfo()) 123 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 124 125 // Figure out which class this method is part of, if any. 126 ObjCInterfaceDecl *CurrentClass 127 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 128 if (!CurrentClass) { 129 DeclContext *DC = NewMethod->getDeclContext(); 130 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 131 CurrentClass = Cat->getClassInterface(); 132 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 133 CurrentClass = Impl->getClassInterface(); 134 else if (ObjCCategoryImplDecl *CatImpl 135 = dyn_cast<ObjCCategoryImplDecl>(DC)) 136 CurrentClass = CatImpl->getClassInterface(); 137 } 138 139 if (CurrentClass) { 140 Diag(NewMethod->getLocation(), 141 diag::warn_related_result_type_compatibility_class) 142 << Context.getObjCInterfaceType(CurrentClass) 143 << ResultType 144 << ResultTypeRange; 145 } else { 146 Diag(NewMethod->getLocation(), 147 diag::warn_related_result_type_compatibility_protocol) 148 << ResultType 149 << ResultTypeRange; 150 } 151 152 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 153 Diag(Overridden->getLocation(), 154 diag::note_related_result_type_overridden_family) 155 << Family; 156 else 157 Diag(Overridden->getLocation(), 158 diag::note_related_result_type_overridden); 159 } 160 if (getLangOptions().ObjCAutoRefCount) { 161 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 162 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 163 Diag(NewMethod->getLocation(), 164 diag::err_nsreturns_retained_attribute_mismatch) << 1; 165 Diag(Overridden->getLocation(), diag::note_previous_decl) 166 << "method"; 167 } 168 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 169 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 170 Diag(NewMethod->getLocation(), 171 diag::err_nsreturns_retained_attribute_mismatch) << 0; 172 Diag(Overridden->getLocation(), diag::note_previous_decl) 173 << "method"; 174 } 175 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(); 176 for (ObjCMethodDecl::param_iterator 177 ni = NewMethod->param_begin(), ne = NewMethod->param_end(); 178 ni != ne; ++ni, ++oi) { 179 const ParmVarDecl *oldDecl = (*oi); 180 ParmVarDecl *newDecl = (*ni); 181 if (newDecl->hasAttr<NSConsumedAttr>() != 182 oldDecl->hasAttr<NSConsumedAttr>()) { 183 Diag(newDecl->getLocation(), 184 diag::err_nsconsumed_attribute_mismatch); 185 Diag(oldDecl->getLocation(), diag::note_previous_decl) 186 << "parameter"; 187 } 188 } 189 } 190 } 191 192 /// \brief Check a method declaration for compatibility with the Objective-C 193 /// ARC conventions. 194 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { 195 ObjCMethodFamily family = method->getMethodFamily(); 196 switch (family) { 197 case OMF_None: 198 case OMF_dealloc: 199 case OMF_finalize: 200 case OMF_retain: 201 case OMF_release: 202 case OMF_autorelease: 203 case OMF_retainCount: 204 case OMF_self: 205 case OMF_performSelector: 206 return false; 207 208 case OMF_init: 209 // If the method doesn't obey the init rules, don't bother annotating it. 210 if (S.checkInitMethod(method, QualType())) 211 return true; 212 213 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), 214 S.Context)); 215 216 // Don't add a second copy of this attribute, but otherwise don't 217 // let it be suppressed. 218 if (method->hasAttr<NSReturnsRetainedAttr>()) 219 return false; 220 break; 221 222 case OMF_alloc: 223 case OMF_copy: 224 case OMF_mutableCopy: 225 case OMF_new: 226 if (method->hasAttr<NSReturnsRetainedAttr>() || 227 method->hasAttr<NSReturnsNotRetainedAttr>() || 228 method->hasAttr<NSReturnsAutoreleasedAttr>()) 229 return false; 230 break; 231 } 232 233 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), 234 S.Context)); 235 return false; 236 } 237 238 static void DiagnoseObjCImplementedDeprecations(Sema &S, 239 NamedDecl *ND, 240 SourceLocation ImplLoc, 241 int select) { 242 if (ND && ND->isDeprecated()) { 243 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 244 if (select == 0) 245 S.Diag(ND->getLocation(), diag::note_method_declared_at); 246 else 247 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 248 } 249 } 250 251 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 252 /// pool. 253 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 254 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 255 256 // If we don't have a valid method decl, simply return. 257 if (!MDecl) 258 return; 259 if (MDecl->isInstanceMethod()) 260 AddInstanceMethodToGlobalPool(MDecl, true); 261 else 262 AddFactoryMethodToGlobalPool(MDecl, true); 263 } 264 265 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 266 /// and user declared, in the method definition's AST. 267 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 268 assert(getCurMethodDecl() == 0 && "Method parsing confused"); 269 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 270 271 // If we don't have a valid method decl, simply return. 272 if (!MDecl) 273 return; 274 275 // Allow all of Sema to see that we are entering a method definition. 276 PushDeclContext(FnBodyScope, MDecl); 277 PushFunctionScope(); 278 279 // Create Decl objects for each parameter, entrring them in the scope for 280 // binding to their use. 281 282 // Insert the invisible arguments, self and _cmd! 283 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 284 285 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 286 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 287 288 // Introduce all of the other parameters into this scope. 289 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 290 E = MDecl->param_end(); PI != E; ++PI) { 291 ParmVarDecl *Param = (*PI); 292 if (!Param->isInvalidDecl() && 293 RequireCompleteType(Param->getLocation(), Param->getType(), 294 diag::err_typecheck_decl_incomplete_type)) 295 Param->setInvalidDecl(); 296 if ((*PI)->getIdentifier()) 297 PushOnScopeChains(*PI, FnBodyScope); 298 } 299 300 // In ARC, disallow definition of retain/release/autorelease/retainCount 301 if (getLangOptions().ObjCAutoRefCount) { 302 switch (MDecl->getMethodFamily()) { 303 case OMF_retain: 304 case OMF_retainCount: 305 case OMF_release: 306 case OMF_autorelease: 307 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 308 << MDecl->getSelector(); 309 break; 310 311 case OMF_None: 312 case OMF_dealloc: 313 case OMF_finalize: 314 case OMF_alloc: 315 case OMF_init: 316 case OMF_mutableCopy: 317 case OMF_copy: 318 case OMF_new: 319 case OMF_self: 320 case OMF_performSelector: 321 break; 322 } 323 } 324 325 // Warn on deprecated methods under -Wdeprecated-implementations, 326 // and prepare for warning on missing super calls. 327 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 328 if (ObjCMethodDecl *IMD = 329 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) 330 DiagnoseObjCImplementedDeprecations(*this, 331 dyn_cast<NamedDecl>(IMD), 332 MDecl->getLocation(), 0); 333 334 // If this is "dealloc" or "finalize", set some bit here. 335 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 336 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 337 // Only do this if the current class actually has a superclass. 338 if (IC->getSuperClass()) { 339 ObjCShouldCallSuperDealloc = 340 !(Context.getLangOptions().ObjCAutoRefCount || 341 Context.getLangOptions().getGC() == LangOptions::GCOnly) && 342 MDecl->getMethodFamily() == OMF_dealloc; 343 ObjCShouldCallSuperFinalize = 344 Context.getLangOptions().getGC() != LangOptions::NonGC && 345 MDecl->getMethodFamily() == OMF_finalize; 346 } 347 } 348 } 349 350 namespace { 351 352 // Callback to only accept typo corrections that are Objective-C classes. 353 // If an ObjCInterfaceDecl* is given to the constructor, then the validation 354 // function will reject corrections to that class. 355 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { 356 public: 357 ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {} 358 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 359 : CurrentIDecl(IDecl) {} 360 361 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 362 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 363 return ID && !declaresSameEntity(ID, CurrentIDecl); 364 } 365 366 private: 367 ObjCInterfaceDecl *CurrentIDecl; 368 }; 369 370 } 371 372 Decl *Sema:: 373 ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 374 IdentifierInfo *ClassName, SourceLocation ClassLoc, 375 IdentifierInfo *SuperName, SourceLocation SuperLoc, 376 Decl * const *ProtoRefs, unsigned NumProtoRefs, 377 const SourceLocation *ProtoLocs, 378 SourceLocation EndProtoLoc, AttributeList *AttrList) { 379 assert(ClassName && "Missing class identifier"); 380 381 // Check for another declaration kind with the same name. 382 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 383 LookupOrdinaryName, ForRedeclaration); 384 385 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 386 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 387 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 388 } 389 390 // Create a declaration to describe this @interface. 391 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 392 ObjCInterfaceDecl *IDecl 393 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 394 PrevIDecl, ClassLoc); 395 396 if (PrevIDecl) { 397 // Class already seen. Was it a definition? 398 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 399 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 400 << PrevIDecl->getDeclName(); 401 Diag(Def->getLocation(), diag::note_previous_definition); 402 IDecl->setInvalidDecl(); 403 } 404 } 405 406 if (AttrList) 407 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 408 PushOnScopeChains(IDecl, TUScope); 409 410 // Start the definition of this class. If we're in a redefinition case, there 411 // may already be a definition, so we'll end up adding to it. 412 if (!IDecl->hasDefinition()) 413 IDecl->startDefinition(); 414 415 if (SuperName) { 416 // Check if a different kind of symbol declared in this scope. 417 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 418 LookupOrdinaryName); 419 420 if (!PrevDecl) { 421 // Try to correct for a typo in the superclass name without correcting 422 // to the class we're defining. 423 ObjCInterfaceValidatorCCC Validator(IDecl); 424 if (TypoCorrection Corrected = CorrectTypo( 425 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 426 NULL, Validator)) { 427 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 428 Diag(SuperLoc, diag::err_undef_superclass_suggest) 429 << SuperName << ClassName << PrevDecl->getDeclName(); 430 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 431 << PrevDecl->getDeclName(); 432 } 433 } 434 435 if (declaresSameEntity(PrevDecl, IDecl)) { 436 Diag(SuperLoc, diag::err_recursive_superclass) 437 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 438 IDecl->setEndOfDefinitionLoc(ClassLoc); 439 } else { 440 ObjCInterfaceDecl *SuperClassDecl = 441 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 442 443 // Diagnose classes that inherit from deprecated classes. 444 if (SuperClassDecl) 445 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 446 447 if (PrevDecl && SuperClassDecl == 0) { 448 // The previous declaration was not a class decl. Check if we have a 449 // typedef. If we do, get the underlying class type. 450 if (const TypedefNameDecl *TDecl = 451 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 452 QualType T = TDecl->getUnderlyingType(); 453 if (T->isObjCObjectType()) { 454 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 455 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 456 } 457 } 458 459 // This handles the following case: 460 // 461 // typedef int SuperClass; 462 // @interface MyClass : SuperClass {} @end 463 // 464 if (!SuperClassDecl) { 465 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 466 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 467 } 468 } 469 470 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 471 if (!SuperClassDecl) 472 Diag(SuperLoc, diag::err_undef_superclass) 473 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 474 else if (RequireCompleteType(SuperLoc, 475 Context.getObjCInterfaceType(SuperClassDecl), 476 PDiag(diag::err_forward_superclass) 477 << SuperClassDecl->getDeclName() 478 << ClassName 479 << SourceRange(AtInterfaceLoc, ClassLoc))) { 480 SuperClassDecl = 0; 481 } 482 } 483 IDecl->setSuperClass(SuperClassDecl); 484 IDecl->setSuperClassLoc(SuperLoc); 485 IDecl->setEndOfDefinitionLoc(SuperLoc); 486 } 487 } else { // we have a root class. 488 IDecl->setEndOfDefinitionLoc(ClassLoc); 489 } 490 491 // Check then save referenced protocols. 492 if (NumProtoRefs) { 493 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 494 ProtoLocs, Context); 495 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 496 } 497 498 CheckObjCDeclScope(IDecl); 499 return ActOnObjCContainerStartDefinition(IDecl); 500 } 501 502 /// ActOnCompatiblityAlias - this action is called after complete parsing of 503 /// @compatibility_alias declaration. It sets up the alias relationships. 504 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 505 IdentifierInfo *AliasName, 506 SourceLocation AliasLocation, 507 IdentifierInfo *ClassName, 508 SourceLocation ClassLocation) { 509 // Look for previous declaration of alias name 510 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 511 LookupOrdinaryName, ForRedeclaration); 512 if (ADecl) { 513 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 514 Diag(AliasLocation, diag::warn_previous_alias_decl); 515 else 516 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 517 Diag(ADecl->getLocation(), diag::note_previous_declaration); 518 return 0; 519 } 520 // Check for class declaration 521 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 522 LookupOrdinaryName, ForRedeclaration); 523 if (const TypedefNameDecl *TDecl = 524 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 525 QualType T = TDecl->getUnderlyingType(); 526 if (T->isObjCObjectType()) { 527 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 528 ClassName = IDecl->getIdentifier(); 529 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 530 LookupOrdinaryName, ForRedeclaration); 531 } 532 } 533 } 534 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 535 if (CDecl == 0) { 536 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 537 if (CDeclU) 538 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 539 return 0; 540 } 541 542 // Everything checked out, instantiate a new alias declaration AST. 543 ObjCCompatibleAliasDecl *AliasDecl = 544 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 545 546 if (!CheckObjCDeclScope(AliasDecl)) 547 PushOnScopeChains(AliasDecl, TUScope); 548 549 return AliasDecl; 550 } 551 552 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 553 IdentifierInfo *PName, 554 SourceLocation &Ploc, SourceLocation PrevLoc, 555 const ObjCList<ObjCProtocolDecl> &PList) { 556 557 bool res = false; 558 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 559 E = PList.end(); I != E; ++I) { 560 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 561 Ploc)) { 562 if (PDecl->getIdentifier() == PName) { 563 Diag(Ploc, diag::err_protocol_has_circular_dependency); 564 Diag(PrevLoc, diag::note_previous_definition); 565 res = true; 566 } 567 568 if (!PDecl->hasDefinition()) 569 continue; 570 571 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 572 PDecl->getLocation(), PDecl->getReferencedProtocols())) 573 res = true; 574 } 575 } 576 return res; 577 } 578 579 Decl * 580 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 581 IdentifierInfo *ProtocolName, 582 SourceLocation ProtocolLoc, 583 Decl * const *ProtoRefs, 584 unsigned NumProtoRefs, 585 const SourceLocation *ProtoLocs, 586 SourceLocation EndProtoLoc, 587 AttributeList *AttrList) { 588 bool err = false; 589 // FIXME: Deal with AttrList. 590 assert(ProtocolName && "Missing protocol identifier"); 591 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 592 ForRedeclaration); 593 ObjCProtocolDecl *PDecl = 0; 594 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) { 595 // If we already have a definition, complain. 596 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 597 Diag(Def->getLocation(), diag::note_previous_definition); 598 599 // Create a new protocol that is completely distinct from previous 600 // declarations, and do not make this protocol available for name lookup. 601 // That way, we'll end up completely ignoring the duplicate. 602 // FIXME: Can we turn this into an error? 603 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 604 ProtocolLoc, AtProtoInterfaceLoc, 605 /*PrevDecl=*/0); 606 PDecl->startDefinition(); 607 } else { 608 if (PrevDecl) { 609 // Check for circular dependencies among protocol declarations. This can 610 // only happen if this protocol was forward-declared. 611 ObjCList<ObjCProtocolDecl> PList; 612 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 613 err = CheckForwardProtocolDeclarationForCircularDependency( 614 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 615 } 616 617 // Create the new declaration. 618 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 619 ProtocolLoc, AtProtoInterfaceLoc, 620 /*PrevDecl=*/PrevDecl); 621 622 PushOnScopeChains(PDecl, TUScope); 623 PDecl->startDefinition(); 624 } 625 626 if (AttrList) 627 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 628 629 // Merge attributes from previous declarations. 630 if (PrevDecl) 631 mergeDeclAttributes(PDecl, PrevDecl); 632 633 if (!err && NumProtoRefs ) { 634 /// Check then save referenced protocols. 635 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 636 ProtoLocs, Context); 637 } 638 639 CheckObjCDeclScope(PDecl); 640 return ActOnObjCContainerStartDefinition(PDecl); 641 } 642 643 /// FindProtocolDeclaration - This routine looks up protocols and 644 /// issues an error if they are not declared. It returns list of 645 /// protocol declarations in its 'Protocols' argument. 646 void 647 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 648 const IdentifierLocPair *ProtocolId, 649 unsigned NumProtocols, 650 SmallVectorImpl<Decl *> &Protocols) { 651 for (unsigned i = 0; i != NumProtocols; ++i) { 652 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 653 ProtocolId[i].second); 654 if (!PDecl) { 655 DeclFilterCCC<ObjCProtocolDecl> Validator; 656 TypoCorrection Corrected = CorrectTypo( 657 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 658 LookupObjCProtocolName, TUScope, NULL, Validator); 659 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { 660 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 661 << ProtocolId[i].first << Corrected.getCorrection(); 662 Diag(PDecl->getLocation(), diag::note_previous_decl) 663 << PDecl->getDeclName(); 664 } 665 } 666 667 if (!PDecl) { 668 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 669 << ProtocolId[i].first; 670 continue; 671 } 672 673 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 674 675 // If this is a forward declaration and we are supposed to warn in this 676 // case, do it. 677 if (WarnOnDeclarations && !PDecl->hasDefinition()) 678 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 679 << ProtocolId[i].first; 680 Protocols.push_back(PDecl); 681 } 682 } 683 684 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 685 /// a class method in its extension. 686 /// 687 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 688 ObjCInterfaceDecl *ID) { 689 if (!ID) 690 return; // Possibly due to previous error 691 692 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 693 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 694 e = ID->meth_end(); i != e; ++i) { 695 ObjCMethodDecl *MD = *i; 696 MethodMap[MD->getSelector()] = MD; 697 } 698 699 if (MethodMap.empty()) 700 return; 701 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 702 e = CAT->meth_end(); i != e; ++i) { 703 ObjCMethodDecl *Method = *i; 704 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 705 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 706 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 707 << Method->getDeclName(); 708 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 709 } 710 } 711 } 712 713 /// ActOnForwardProtocolDeclaration - Handle @protocol foo; 714 Sema::DeclGroupPtrTy 715 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 716 const IdentifierLocPair *IdentList, 717 unsigned NumElts, 718 AttributeList *attrList) { 719 SmallVector<Decl *, 8> DeclsInGroup; 720 for (unsigned i = 0; i != NumElts; ++i) { 721 IdentifierInfo *Ident = IdentList[i].first; 722 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, 723 ForRedeclaration); 724 ObjCProtocolDecl *PDecl 725 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 726 IdentList[i].second, AtProtocolLoc, 727 PrevDecl); 728 729 PushOnScopeChains(PDecl, TUScope); 730 CheckObjCDeclScope(PDecl); 731 732 if (attrList) 733 ProcessDeclAttributeList(TUScope, PDecl, attrList); 734 735 if (PrevDecl) 736 mergeDeclAttributes(PDecl, PrevDecl); 737 738 DeclsInGroup.push_back(PDecl); 739 } 740 741 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 742 } 743 744 Decl *Sema:: 745 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 746 IdentifierInfo *ClassName, SourceLocation ClassLoc, 747 IdentifierInfo *CategoryName, 748 SourceLocation CategoryLoc, 749 Decl * const *ProtoRefs, 750 unsigned NumProtoRefs, 751 const SourceLocation *ProtoLocs, 752 SourceLocation EndProtoLoc) { 753 ObjCCategoryDecl *CDecl; 754 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 755 756 /// Check that class of this category is already completely declared. 757 758 if (!IDecl 759 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 760 PDiag(diag::err_category_forward_interface) 761 << (CategoryName == 0))) { 762 // Create an invalid ObjCCategoryDecl to serve as context for 763 // the enclosing method declarations. We mark the decl invalid 764 // to make it clear that this isn't a valid AST. 765 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 766 ClassLoc, CategoryLoc, CategoryName,IDecl); 767 CDecl->setInvalidDecl(); 768 769 if (!IDecl) 770 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 771 return ActOnObjCContainerStartDefinition(CDecl); 772 } 773 774 if (!CategoryName && IDecl->getImplementation()) { 775 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 776 Diag(IDecl->getImplementation()->getLocation(), 777 diag::note_implementation_declared); 778 } 779 780 if (CategoryName) { 781 /// Check for duplicate interface declaration for this category 782 ObjCCategoryDecl *CDeclChain; 783 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 784 CDeclChain = CDeclChain->getNextClassCategory()) { 785 if (CDeclChain->getIdentifier() == CategoryName) { 786 // Class extensions can be declared multiple times. 787 Diag(CategoryLoc, diag::warn_dup_category_def) 788 << ClassName << CategoryName; 789 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 790 break; 791 } 792 } 793 } 794 795 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 796 ClassLoc, CategoryLoc, CategoryName, IDecl); 797 // FIXME: PushOnScopeChains? 798 CurContext->addDecl(CDecl); 799 800 if (NumProtoRefs) { 801 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 802 ProtoLocs, Context); 803 // Protocols in the class extension belong to the class. 804 if (CDecl->IsClassExtension()) 805 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 806 NumProtoRefs, Context); 807 } 808 809 CheckObjCDeclScope(CDecl); 810 return ActOnObjCContainerStartDefinition(CDecl); 811 } 812 813 /// ActOnStartCategoryImplementation - Perform semantic checks on the 814 /// category implementation declaration and build an ObjCCategoryImplDecl 815 /// object. 816 Decl *Sema::ActOnStartCategoryImplementation( 817 SourceLocation AtCatImplLoc, 818 IdentifierInfo *ClassName, SourceLocation ClassLoc, 819 IdentifierInfo *CatName, SourceLocation CatLoc) { 820 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 821 ObjCCategoryDecl *CatIDecl = 0; 822 if (IDecl) { 823 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 824 if (!CatIDecl) { 825 // Category @implementation with no corresponding @interface. 826 // Create and install one. 827 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 828 ClassLoc, CatLoc, 829 CatName, IDecl); 830 CatIDecl->setImplicit(); 831 } 832 } 833 834 ObjCCategoryImplDecl *CDecl = 835 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 836 ClassLoc, AtCatImplLoc, CatLoc); 837 /// Check that class of this category is already completely declared. 838 if (!IDecl) { 839 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 840 CDecl->setInvalidDecl(); 841 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 842 diag::err_undef_interface)) { 843 CDecl->setInvalidDecl(); 844 } 845 846 // FIXME: PushOnScopeChains? 847 CurContext->addDecl(CDecl); 848 849 // If the interface is deprecated/unavailable, warn/error about it. 850 if (IDecl) 851 DiagnoseUseOfDecl(IDecl, ClassLoc); 852 853 /// Check that CatName, category name, is not used in another implementation. 854 if (CatIDecl) { 855 if (CatIDecl->getImplementation()) { 856 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 857 << CatName; 858 Diag(CatIDecl->getImplementation()->getLocation(), 859 diag::note_previous_definition); 860 } else { 861 CatIDecl->setImplementation(CDecl); 862 // Warn on implementating category of deprecated class under 863 // -Wdeprecated-implementations flag. 864 DiagnoseObjCImplementedDeprecations(*this, 865 dyn_cast<NamedDecl>(IDecl), 866 CDecl->getLocation(), 2); 867 } 868 } 869 870 CheckObjCDeclScope(CDecl); 871 return ActOnObjCContainerStartDefinition(CDecl); 872 } 873 874 Decl *Sema::ActOnStartClassImplementation( 875 SourceLocation AtClassImplLoc, 876 IdentifierInfo *ClassName, SourceLocation ClassLoc, 877 IdentifierInfo *SuperClassname, 878 SourceLocation SuperClassLoc) { 879 ObjCInterfaceDecl* IDecl = 0; 880 // Check for another declaration kind with the same name. 881 NamedDecl *PrevDecl 882 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 883 ForRedeclaration); 884 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 885 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 886 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 887 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 888 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 889 diag::warn_undef_interface); 890 } else { 891 // We did not find anything with the name ClassName; try to correct for 892 // typos in the class name. 893 ObjCInterfaceValidatorCCC Validator; 894 if (TypoCorrection Corrected = CorrectTypo( 895 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 896 NULL, Validator)) { 897 // Suggest the (potentially) correct interface name. However, put the 898 // fix-it hint itself in a separate note, since changing the name in 899 // the warning would make the fix-it change semantics.However, don't 900 // provide a code-modification hint or use the typo name for recovery, 901 // because this is just a warning. The program may actually be correct. 902 IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 903 DeclarationName CorrectedName = Corrected.getCorrection(); 904 Diag(ClassLoc, diag::warn_undef_interface_suggest) 905 << ClassName << CorrectedName; 906 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName 907 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); 908 IDecl = 0; 909 } else { 910 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 911 } 912 } 913 914 // Check that super class name is valid class name 915 ObjCInterfaceDecl* SDecl = 0; 916 if (SuperClassname) { 917 // Check if a different kind of symbol declared in this scope. 918 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 919 LookupOrdinaryName); 920 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 921 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 922 << SuperClassname; 923 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 924 } else { 925 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 926 if (!SDecl) 927 Diag(SuperClassLoc, diag::err_undef_superclass) 928 << SuperClassname << ClassName; 929 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 930 // This implementation and its interface do not have the same 931 // super class. 932 Diag(SuperClassLoc, diag::err_conflicting_super_class) 933 << SDecl->getDeclName(); 934 Diag(SDecl->getLocation(), diag::note_previous_definition); 935 } 936 } 937 } 938 939 if (!IDecl) { 940 // Legacy case of @implementation with no corresponding @interface. 941 // Build, chain & install the interface decl into the identifier. 942 943 // FIXME: Do we support attributes on the @implementation? If so we should 944 // copy them over. 945 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 946 ClassName, /*PrevDecl=*/0, ClassLoc, 947 true); 948 IDecl->startDefinition(); 949 if (SDecl) { 950 IDecl->setSuperClass(SDecl); 951 IDecl->setSuperClassLoc(SuperClassLoc); 952 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 953 } else { 954 IDecl->setEndOfDefinitionLoc(ClassLoc); 955 } 956 957 PushOnScopeChains(IDecl, TUScope); 958 } else { 959 // Mark the interface as being completed, even if it was just as 960 // @class ....; 961 // declaration; the user cannot reopen it. 962 if (!IDecl->hasDefinition()) 963 IDecl->startDefinition(); 964 } 965 966 ObjCImplementationDecl* IMPDecl = 967 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 968 ClassLoc, AtClassImplLoc); 969 970 if (CheckObjCDeclScope(IMPDecl)) 971 return ActOnObjCContainerStartDefinition(IMPDecl); 972 973 // Check that there is no duplicate implementation of this class. 974 if (IDecl->getImplementation()) { 975 // FIXME: Don't leak everything! 976 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 977 Diag(IDecl->getImplementation()->getLocation(), 978 diag::note_previous_definition); 979 } else { // add it to the list. 980 IDecl->setImplementation(IMPDecl); 981 PushOnScopeChains(IMPDecl, TUScope); 982 // Warn on implementating deprecated class under 983 // -Wdeprecated-implementations flag. 984 DiagnoseObjCImplementedDeprecations(*this, 985 dyn_cast<NamedDecl>(IDecl), 986 IMPDecl->getLocation(), 1); 987 } 988 return ActOnObjCContainerStartDefinition(IMPDecl); 989 } 990 991 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 992 ObjCIvarDecl **ivars, unsigned numIvars, 993 SourceLocation RBrace) { 994 assert(ImpDecl && "missing implementation decl"); 995 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 996 if (!IDecl) 997 return; 998 /// Check case of non-existing @interface decl. 999 /// (legacy objective-c @implementation decl without an @interface decl). 1000 /// Add implementations's ivar to the synthesize class's ivar list. 1001 if (IDecl->isImplicitInterfaceDecl()) { 1002 IDecl->setEndOfDefinitionLoc(RBrace); 1003 // Add ivar's to class's DeclContext. 1004 for (unsigned i = 0, e = numIvars; i != e; ++i) { 1005 ivars[i]->setLexicalDeclContext(ImpDecl); 1006 IDecl->makeDeclVisibleInContext(ivars[i], false); 1007 ImpDecl->addDecl(ivars[i]); 1008 } 1009 1010 return; 1011 } 1012 // If implementation has empty ivar list, just return. 1013 if (numIvars == 0) 1014 return; 1015 1016 assert(ivars && "missing @implementation ivars"); 1017 if (LangOpts.ObjCNonFragileABI2) { 1018 if (ImpDecl->getSuperClass()) 1019 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 1020 for (unsigned i = 0; i < numIvars; i++) { 1021 ObjCIvarDecl* ImplIvar = ivars[i]; 1022 if (const ObjCIvarDecl *ClsIvar = 1023 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1024 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1025 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1026 continue; 1027 } 1028 // Instance ivar to Implementation's DeclContext. 1029 ImplIvar->setLexicalDeclContext(ImpDecl); 1030 IDecl->makeDeclVisibleInContext(ImplIvar, false); 1031 ImpDecl->addDecl(ImplIvar); 1032 } 1033 return; 1034 } 1035 // Check interface's Ivar list against those in the implementation. 1036 // names and types must match. 1037 // 1038 unsigned j = 0; 1039 ObjCInterfaceDecl::ivar_iterator 1040 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1041 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1042 ObjCIvarDecl* ImplIvar = ivars[j++]; 1043 ObjCIvarDecl* ClsIvar = *IVI; 1044 assert (ImplIvar && "missing implementation ivar"); 1045 assert (ClsIvar && "missing class ivar"); 1046 1047 // First, make sure the types match. 1048 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 1049 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1050 << ImplIvar->getIdentifier() 1051 << ImplIvar->getType() << ClsIvar->getType(); 1052 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1053 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 1054 ImplIvar->getBitWidthValue(Context) != 1055 ClsIvar->getBitWidthValue(Context)) { 1056 Diag(ImplIvar->getBitWidth()->getLocStart(), 1057 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); 1058 Diag(ClsIvar->getBitWidth()->getLocStart(), 1059 diag::note_previous_definition); 1060 } 1061 // Make sure the names are identical. 1062 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1063 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1064 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1065 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1066 } 1067 --numIvars; 1068 } 1069 1070 if (numIvars > 0) 1071 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 1072 else if (IVI != IVE) 1073 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); 1074 } 1075 1076 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 1077 bool &IncompleteImpl, unsigned DiagID) { 1078 // No point warning no definition of method which is 'unavailable'. 1079 if (method->hasAttr<UnavailableAttr>()) 1080 return; 1081 if (!IncompleteImpl) { 1082 Diag(ImpLoc, diag::warn_incomplete_impl); 1083 IncompleteImpl = true; 1084 } 1085 if (DiagID == diag::warn_unimplemented_protocol_method) 1086 Diag(ImpLoc, DiagID) << method->getDeclName(); 1087 else 1088 Diag(method->getLocation(), DiagID) << method->getDeclName(); 1089 } 1090 1091 /// Determines if type B can be substituted for type A. Returns true if we can 1092 /// guarantee that anything that the user will do to an object of type A can 1093 /// also be done to an object of type B. This is trivially true if the two 1094 /// types are the same, or if B is a subclass of A. It becomes more complex 1095 /// in cases where protocols are involved. 1096 /// 1097 /// Object types in Objective-C describe the minimum requirements for an 1098 /// object, rather than providing a complete description of a type. For 1099 /// example, if A is a subclass of B, then B* may refer to an instance of A. 1100 /// The principle of substitutability means that we may use an instance of A 1101 /// anywhere that we may use an instance of B - it will implement all of the 1102 /// ivars of B and all of the methods of B. 1103 /// 1104 /// This substitutability is important when type checking methods, because 1105 /// the implementation may have stricter type definitions than the interface. 1106 /// The interface specifies minimum requirements, but the implementation may 1107 /// have more accurate ones. For example, a method may privately accept 1108 /// instances of B, but only publish that it accepts instances of A. Any 1109 /// object passed to it will be type checked against B, and so will implicitly 1110 /// by a valid A*. Similarly, a method may return a subclass of the class that 1111 /// it is declared as returning. 1112 /// 1113 /// This is most important when considering subclassing. A method in a 1114 /// subclass must accept any object as an argument that its superclass's 1115 /// implementation accepts. It may, however, accept a more general type 1116 /// without breaking substitutability (i.e. you can still use the subclass 1117 /// anywhere that you can use the superclass, but not vice versa). The 1118 /// converse requirement applies to return types: the return type for a 1119 /// subclass method must be a valid object of the kind that the superclass 1120 /// advertises, but it may be specified more accurately. This avoids the need 1121 /// for explicit down-casting by callers. 1122 /// 1123 /// Note: This is a stricter requirement than for assignment. 1124 static bool isObjCTypeSubstitutable(ASTContext &Context, 1125 const ObjCObjectPointerType *A, 1126 const ObjCObjectPointerType *B, 1127 bool rejectId) { 1128 // Reject a protocol-unqualified id. 1129 if (rejectId && B->isObjCIdType()) return false; 1130 1131 // If B is a qualified id, then A must also be a qualified id and it must 1132 // implement all of the protocols in B. It may not be a qualified class. 1133 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1134 // stricter definition so it is not substitutable for id<A>. 1135 if (B->isObjCQualifiedIdType()) { 1136 return A->isObjCQualifiedIdType() && 1137 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1138 QualType(B,0), 1139 false); 1140 } 1141 1142 /* 1143 // id is a special type that bypasses type checking completely. We want a 1144 // warning when it is used in one place but not another. 1145 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1146 1147 1148 // If B is a qualified id, then A must also be a qualified id (which it isn't 1149 // if we've got this far) 1150 if (B->isObjCQualifiedIdType()) return false; 1151 */ 1152 1153 // Now we know that A and B are (potentially-qualified) class types. The 1154 // normal rules for assignment apply. 1155 return Context.canAssignObjCInterfaces(A, B); 1156 } 1157 1158 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1159 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1160 } 1161 1162 static bool CheckMethodOverrideReturn(Sema &S, 1163 ObjCMethodDecl *MethodImpl, 1164 ObjCMethodDecl *MethodDecl, 1165 bool IsProtocolMethodDecl, 1166 bool IsOverridingMode, 1167 bool Warn) { 1168 if (IsProtocolMethodDecl && 1169 (MethodDecl->getObjCDeclQualifier() != 1170 MethodImpl->getObjCDeclQualifier())) { 1171 if (Warn) { 1172 S.Diag(MethodImpl->getLocation(), 1173 (IsOverridingMode ? 1174 diag::warn_conflicting_overriding_ret_type_modifiers 1175 : diag::warn_conflicting_ret_type_modifiers)) 1176 << MethodImpl->getDeclName() 1177 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1178 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1179 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1180 } 1181 else 1182 return false; 1183 } 1184 1185 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), 1186 MethodDecl->getResultType())) 1187 return true; 1188 if (!Warn) 1189 return false; 1190 1191 unsigned DiagID = 1192 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 1193 : diag::warn_conflicting_ret_types; 1194 1195 // Mismatches between ObjC pointers go into a different warning 1196 // category, and sometimes they're even completely whitelisted. 1197 if (const ObjCObjectPointerType *ImplPtrTy = 1198 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { 1199 if (const ObjCObjectPointerType *IfacePtrTy = 1200 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { 1201 // Allow non-matching return types as long as they don't violate 1202 // the principle of substitutability. Specifically, we permit 1203 // return types that are subclasses of the declared return type, 1204 // or that are more-qualified versions of the declared type. 1205 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1206 return false; 1207 1208 DiagID = 1209 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 1210 : diag::warn_non_covariant_ret_types; 1211 } 1212 } 1213 1214 S.Diag(MethodImpl->getLocation(), DiagID) 1215 << MethodImpl->getDeclName() 1216 << MethodDecl->getResultType() 1217 << MethodImpl->getResultType() 1218 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1219 S.Diag(MethodDecl->getLocation(), 1220 IsOverridingMode ? diag::note_previous_declaration 1221 : diag::note_previous_definition) 1222 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1223 return false; 1224 } 1225 1226 static bool CheckMethodOverrideParam(Sema &S, 1227 ObjCMethodDecl *MethodImpl, 1228 ObjCMethodDecl *MethodDecl, 1229 ParmVarDecl *ImplVar, 1230 ParmVarDecl *IfaceVar, 1231 bool IsProtocolMethodDecl, 1232 bool IsOverridingMode, 1233 bool Warn) { 1234 if (IsProtocolMethodDecl && 1235 (ImplVar->getObjCDeclQualifier() != 1236 IfaceVar->getObjCDeclQualifier())) { 1237 if (Warn) { 1238 if (IsOverridingMode) 1239 S.Diag(ImplVar->getLocation(), 1240 diag::warn_conflicting_overriding_param_modifiers) 1241 << getTypeRange(ImplVar->getTypeSourceInfo()) 1242 << MethodImpl->getDeclName(); 1243 else S.Diag(ImplVar->getLocation(), 1244 diag::warn_conflicting_param_modifiers) 1245 << getTypeRange(ImplVar->getTypeSourceInfo()) 1246 << MethodImpl->getDeclName(); 1247 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1248 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1249 } 1250 else 1251 return false; 1252 } 1253 1254 QualType ImplTy = ImplVar->getType(); 1255 QualType IfaceTy = IfaceVar->getType(); 1256 1257 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1258 return true; 1259 1260 if (!Warn) 1261 return false; 1262 unsigned DiagID = 1263 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 1264 : diag::warn_conflicting_param_types; 1265 1266 // Mismatches between ObjC pointers go into a different warning 1267 // category, and sometimes they're even completely whitelisted. 1268 if (const ObjCObjectPointerType *ImplPtrTy = 1269 ImplTy->getAs<ObjCObjectPointerType>()) { 1270 if (const ObjCObjectPointerType *IfacePtrTy = 1271 IfaceTy->getAs<ObjCObjectPointerType>()) { 1272 // Allow non-matching argument types as long as they don't 1273 // violate the principle of substitutability. Specifically, the 1274 // implementation must accept any objects that the superclass 1275 // accepts, however it may also accept others. 1276 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1277 return false; 1278 1279 DiagID = 1280 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 1281 : diag::warn_non_contravariant_param_types; 1282 } 1283 } 1284 1285 S.Diag(ImplVar->getLocation(), DiagID) 1286 << getTypeRange(ImplVar->getTypeSourceInfo()) 1287 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1288 S.Diag(IfaceVar->getLocation(), 1289 (IsOverridingMode ? diag::note_previous_declaration 1290 : diag::note_previous_definition)) 1291 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1292 return false; 1293 } 1294 1295 /// In ARC, check whether the conventional meanings of the two methods 1296 /// match. If they don't, it's a hard error. 1297 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1298 ObjCMethodDecl *decl) { 1299 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1300 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1301 if (implFamily == declFamily) return false; 1302 1303 // Since conventions are sorted by selector, the only possibility is 1304 // that the types differ enough to cause one selector or the other 1305 // to fall out of the family. 1306 assert(implFamily == OMF_None || declFamily == OMF_None); 1307 1308 // No further diagnostics required on invalid declarations. 1309 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1310 1311 const ObjCMethodDecl *unmatched = impl; 1312 ObjCMethodFamily family = declFamily; 1313 unsigned errorID = diag::err_arc_lost_method_convention; 1314 unsigned noteID = diag::note_arc_lost_method_convention; 1315 if (declFamily == OMF_None) { 1316 unmatched = decl; 1317 family = implFamily; 1318 errorID = diag::err_arc_gained_method_convention; 1319 noteID = diag::note_arc_gained_method_convention; 1320 } 1321 1322 // Indexes into a %select clause in the diagnostic. 1323 enum FamilySelector { 1324 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1325 }; 1326 FamilySelector familySelector = FamilySelector(); 1327 1328 switch (family) { 1329 case OMF_None: llvm_unreachable("logic error, no method convention"); 1330 case OMF_retain: 1331 case OMF_release: 1332 case OMF_autorelease: 1333 case OMF_dealloc: 1334 case OMF_finalize: 1335 case OMF_retainCount: 1336 case OMF_self: 1337 case OMF_performSelector: 1338 // Mismatches for these methods don't change ownership 1339 // conventions, so we don't care. 1340 return false; 1341 1342 case OMF_init: familySelector = F_init; break; 1343 case OMF_alloc: familySelector = F_alloc; break; 1344 case OMF_copy: familySelector = F_copy; break; 1345 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1346 case OMF_new: familySelector = F_new; break; 1347 } 1348 1349 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1350 ReasonSelector reasonSelector; 1351 1352 // The only reason these methods don't fall within their families is 1353 // due to unusual result types. 1354 if (unmatched->getResultType()->isObjCObjectPointerType()) { 1355 reasonSelector = R_UnrelatedReturn; 1356 } else { 1357 reasonSelector = R_NonObjectReturn; 1358 } 1359 1360 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; 1361 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; 1362 1363 return true; 1364 } 1365 1366 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1367 ObjCMethodDecl *MethodDecl, 1368 bool IsProtocolMethodDecl) { 1369 if (getLangOptions().ObjCAutoRefCount && 1370 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1371 return; 1372 1373 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1374 IsProtocolMethodDecl, false, 1375 true); 1376 1377 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1378 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1379 IM != EM; ++IM, ++IF) { 1380 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1381 IsProtocolMethodDecl, false, true); 1382 } 1383 1384 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1385 Diag(ImpMethodDecl->getLocation(), 1386 diag::warn_conflicting_variadic); 1387 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1388 } 1389 } 1390 1391 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 1392 ObjCMethodDecl *Overridden, 1393 bool IsProtocolMethodDecl) { 1394 1395 CheckMethodOverrideReturn(*this, Method, Overridden, 1396 IsProtocolMethodDecl, true, 1397 true); 1398 1399 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 1400 IF = Overridden->param_begin(), EM = Method->param_end(); 1401 IM != EM; ++IM, ++IF) { 1402 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 1403 IsProtocolMethodDecl, true, true); 1404 } 1405 1406 if (Method->isVariadic() != Overridden->isVariadic()) { 1407 Diag(Method->getLocation(), 1408 diag::warn_conflicting_overriding_variadic); 1409 Diag(Overridden->getLocation(), diag::note_previous_declaration); 1410 } 1411 } 1412 1413 /// WarnExactTypedMethods - This routine issues a warning if method 1414 /// implementation declaration matches exactly that of its declaration. 1415 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1416 ObjCMethodDecl *MethodDecl, 1417 bool IsProtocolMethodDecl) { 1418 // don't issue warning when protocol method is optional because primary 1419 // class is not required to implement it and it is safe for protocol 1420 // to implement it. 1421 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 1422 return; 1423 // don't issue warning when primary class's method is 1424 // depecated/unavailable. 1425 if (MethodDecl->hasAttr<UnavailableAttr>() || 1426 MethodDecl->hasAttr<DeprecatedAttr>()) 1427 return; 1428 1429 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1430 IsProtocolMethodDecl, false, false); 1431 if (match) 1432 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1433 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1434 IM != EM; ++IM, ++IF) { 1435 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 1436 *IM, *IF, 1437 IsProtocolMethodDecl, false, false); 1438 if (!match) 1439 break; 1440 } 1441 if (match) 1442 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 1443 if (match) 1444 match = !(MethodDecl->isClassMethod() && 1445 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 1446 1447 if (match) { 1448 Diag(ImpMethodDecl->getLocation(), 1449 diag::warn_category_method_impl_match); 1450 Diag(MethodDecl->getLocation(), diag::note_method_declared_at); 1451 } 1452 } 1453 1454 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1455 /// improve the efficiency of selector lookups and type checking by associating 1456 /// with each protocol / interface / category the flattened instance tables. If 1457 /// we used an immutable set to keep the table then it wouldn't add significant 1458 /// memory cost and it would be handy for lookups. 1459 1460 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 1461 /// Declared in protocol, and those referenced by it. 1462 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 1463 ObjCProtocolDecl *PDecl, 1464 bool& IncompleteImpl, 1465 const llvm::DenseSet<Selector> &InsMap, 1466 const llvm::DenseSet<Selector> &ClsMap, 1467 ObjCContainerDecl *CDecl) { 1468 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 1469 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 1470 : dyn_cast<ObjCInterfaceDecl>(CDecl); 1471 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1472 1473 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1474 ObjCInterfaceDecl *NSIDecl = 0; 1475 if (getLangOptions().NeXTRuntime) { 1476 // check to see if class implements forwardInvocation method and objects 1477 // of this class are derived from 'NSProxy' so that to forward requests 1478 // from one object to another. 1479 // Under such conditions, which means that every method possible is 1480 // implemented in the class, we should not issue "Method definition not 1481 // found" warnings. 1482 // FIXME: Use a general GetUnarySelector method for this. 1483 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 1484 Selector fISelector = Context.Selectors.getSelector(1, &II); 1485 if (InsMap.count(fISelector)) 1486 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1487 // need be implemented in the implementation. 1488 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 1489 } 1490 1491 // If a method lookup fails locally we still need to look and see if 1492 // the method was implemented by a base class or an inherited 1493 // protocol. This lookup is slow, but occurs rarely in correct code 1494 // and otherwise would terminate in a warning. 1495 1496 // check unimplemented instance methods. 1497 if (!NSIDecl) 1498 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 1499 E = PDecl->instmeth_end(); I != E; ++I) { 1500 ObjCMethodDecl *method = *I; 1501 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1502 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 1503 (!Super || 1504 !Super->lookupInstanceMethod(method->getSelector()))) { 1505 // If a method is not implemented in the category implementation but 1506 // has been declared in its primary class, superclass, 1507 // or in one of their protocols, no need to issue the warning. 1508 // This is because method will be implemented in the primary class 1509 // or one of its super class implementation. 1510 1511 // Ugly, but necessary. Method declared in protcol might have 1512 // have been synthesized due to a property declared in the class which 1513 // uses the protocol. 1514 if (ObjCMethodDecl *MethodInClass = 1515 IDecl->lookupInstanceMethod(method->getSelector(), 1516 true /*noCategoryLookup*/)) 1517 if (C || MethodInClass->isSynthesized()) 1518 continue; 1519 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1520 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) 1521 != DiagnosticsEngine::Ignored) { 1522 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1523 Diag(method->getLocation(), diag::note_method_declared_at); 1524 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 1525 << PDecl->getDeclName(); 1526 } 1527 } 1528 } 1529 // check unimplemented class methods 1530 for (ObjCProtocolDecl::classmeth_iterator 1531 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 1532 I != E; ++I) { 1533 ObjCMethodDecl *method = *I; 1534 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1535 !ClsMap.count(method->getSelector()) && 1536 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 1537 // See above comment for instance method lookups. 1538 if (C && IDecl->lookupClassMethod(method->getSelector(), 1539 true /*noCategoryLookup*/)) 1540 continue; 1541 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1542 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != 1543 DiagnosticsEngine::Ignored) { 1544 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1545 Diag(method->getLocation(), diag::note_method_declared_at); 1546 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 1547 PDecl->getDeclName(); 1548 } 1549 } 1550 } 1551 // Check on this protocols's referenced protocols, recursively. 1552 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 1553 E = PDecl->protocol_end(); PI != E; ++PI) 1554 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl); 1555 } 1556 1557 /// MatchAllMethodDeclarations - Check methods declared in interface 1558 /// or protocol against those declared in their implementations. 1559 /// 1560 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, 1561 const llvm::DenseSet<Selector> &ClsMap, 1562 llvm::DenseSet<Selector> &InsMapSeen, 1563 llvm::DenseSet<Selector> &ClsMapSeen, 1564 ObjCImplDecl* IMPDecl, 1565 ObjCContainerDecl* CDecl, 1566 bool &IncompleteImpl, 1567 bool ImmediateClass, 1568 bool WarnCategoryMethodImpl) { 1569 // Check and see if instance methods in class interface have been 1570 // implemented in the implementation class. If so, their types match. 1571 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 1572 E = CDecl->instmeth_end(); I != E; ++I) { 1573 if (InsMapSeen.count((*I)->getSelector())) 1574 continue; 1575 InsMapSeen.insert((*I)->getSelector()); 1576 if (!(*I)->isSynthesized() && 1577 !InsMap.count((*I)->getSelector())) { 1578 if (ImmediateClass) 1579 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1580 diag::note_undef_method_impl); 1581 continue; 1582 } else { 1583 ObjCMethodDecl *ImpMethodDecl = 1584 IMPDecl->getInstanceMethod((*I)->getSelector()); 1585 assert(CDecl->getInstanceMethod((*I)->getSelector()) && 1586 "Expected to find the method through lookup as well"); 1587 ObjCMethodDecl *MethodDecl = *I; 1588 // ImpMethodDecl may be null as in a @dynamic property. 1589 if (ImpMethodDecl) { 1590 if (!WarnCategoryMethodImpl) 1591 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1592 isa<ObjCProtocolDecl>(CDecl)); 1593 else if (!MethodDecl->isSynthesized()) 1594 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1595 isa<ObjCProtocolDecl>(CDecl)); 1596 } 1597 } 1598 } 1599 1600 // Check and see if class methods in class interface have been 1601 // implemented in the implementation class. If so, their types match. 1602 for (ObjCInterfaceDecl::classmeth_iterator 1603 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 1604 if (ClsMapSeen.count((*I)->getSelector())) 1605 continue; 1606 ClsMapSeen.insert((*I)->getSelector()); 1607 if (!ClsMap.count((*I)->getSelector())) { 1608 if (ImmediateClass) 1609 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1610 diag::note_undef_method_impl); 1611 } else { 1612 ObjCMethodDecl *ImpMethodDecl = 1613 IMPDecl->getClassMethod((*I)->getSelector()); 1614 assert(CDecl->getClassMethod((*I)->getSelector()) && 1615 "Expected to find the method through lookup as well"); 1616 ObjCMethodDecl *MethodDecl = *I; 1617 if (!WarnCategoryMethodImpl) 1618 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1619 isa<ObjCProtocolDecl>(CDecl)); 1620 else 1621 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1622 isa<ObjCProtocolDecl>(CDecl)); 1623 } 1624 } 1625 1626 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1627 // Also methods in class extensions need be looked at next. 1628 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 1629 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) 1630 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1631 IMPDecl, 1632 const_cast<ObjCCategoryDecl *>(ClsExtDecl), 1633 IncompleteImpl, false, 1634 WarnCategoryMethodImpl); 1635 1636 // Check for any implementation of a methods declared in protocol. 1637 for (ObjCInterfaceDecl::all_protocol_iterator 1638 PI = I->all_referenced_protocol_begin(), 1639 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1640 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1641 IMPDecl, 1642 (*PI), IncompleteImpl, false, 1643 WarnCategoryMethodImpl); 1644 1645 // FIXME. For now, we are not checking for extact match of methods 1646 // in category implementation and its primary class's super class. 1647 if (!WarnCategoryMethodImpl && I->getSuperClass()) 1648 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1649 IMPDecl, 1650 I->getSuperClass(), IncompleteImpl, false); 1651 } 1652 } 1653 1654 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 1655 /// category matches with those implemented in its primary class and 1656 /// warns each time an exact match is found. 1657 void Sema::CheckCategoryVsClassMethodMatches( 1658 ObjCCategoryImplDecl *CatIMPDecl) { 1659 llvm::DenseSet<Selector> InsMap, ClsMap; 1660 1661 for (ObjCImplementationDecl::instmeth_iterator 1662 I = CatIMPDecl->instmeth_begin(), 1663 E = CatIMPDecl->instmeth_end(); I!=E; ++I) 1664 InsMap.insert((*I)->getSelector()); 1665 1666 for (ObjCImplementationDecl::classmeth_iterator 1667 I = CatIMPDecl->classmeth_begin(), 1668 E = CatIMPDecl->classmeth_end(); I != E; ++I) 1669 ClsMap.insert((*I)->getSelector()); 1670 if (InsMap.empty() && ClsMap.empty()) 1671 return; 1672 1673 // Get category's primary class. 1674 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 1675 if (!CatDecl) 1676 return; 1677 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 1678 if (!IDecl) 1679 return; 1680 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1681 bool IncompleteImpl = false; 1682 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1683 CatIMPDecl, IDecl, 1684 IncompleteImpl, false, 1685 true /*WarnCategoryMethodImpl*/); 1686 } 1687 1688 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1689 ObjCContainerDecl* CDecl, 1690 bool IncompleteImpl) { 1691 llvm::DenseSet<Selector> InsMap; 1692 // Check and see if instance methods in class interface have been 1693 // implemented in the implementation class. 1694 for (ObjCImplementationDecl::instmeth_iterator 1695 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 1696 InsMap.insert((*I)->getSelector()); 1697 1698 // Check and see if properties declared in the interface have either 1) 1699 // an implementation or 2) there is a @synthesize/@dynamic implementation 1700 // of the property in the @implementation. 1701 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) 1702 if (!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2) || 1703 IDecl->isObjCRequiresPropertyDefs()) 1704 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1705 1706 llvm::DenseSet<Selector> ClsMap; 1707 for (ObjCImplementationDecl::classmeth_iterator 1708 I = IMPDecl->classmeth_begin(), 1709 E = IMPDecl->classmeth_end(); I != E; ++I) 1710 ClsMap.insert((*I)->getSelector()); 1711 1712 // Check for type conflict of methods declared in a class/protocol and 1713 // its implementation; if any. 1714 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1715 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1716 IMPDecl, CDecl, 1717 IncompleteImpl, true); 1718 1719 // check all methods implemented in category against those declared 1720 // in its primary class. 1721 if (ObjCCategoryImplDecl *CatDecl = 1722 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 1723 CheckCategoryVsClassMethodMatches(CatDecl); 1724 1725 // Check the protocol list for unimplemented methods in the @implementation 1726 // class. 1727 // Check and see if class methods in class interface have been 1728 // implemented in the implementation class. 1729 1730 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1731 for (ObjCInterfaceDecl::all_protocol_iterator 1732 PI = I->all_referenced_protocol_begin(), 1733 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1734 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1735 InsMap, ClsMap, I); 1736 // Check class extensions (unnamed categories) 1737 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 1738 Categories; Categories = Categories->getNextClassExtension()) 1739 ImplMethodsVsClassMethods(S, IMPDecl, 1740 const_cast<ObjCCategoryDecl*>(Categories), 1741 IncompleteImpl); 1742 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1743 // For extended class, unimplemented methods in its protocols will 1744 // be reported in the primary class. 1745 if (!C->IsClassExtension()) { 1746 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 1747 E = C->protocol_end(); PI != E; ++PI) 1748 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1749 InsMap, ClsMap, CDecl); 1750 // Report unimplemented properties in the category as well. 1751 // When reporting on missing setter/getters, do not report when 1752 // setter/getter is implemented in category's primary class 1753 // implementation. 1754 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 1755 if (ObjCImplDecl *IMP = ID->getImplementation()) { 1756 for (ObjCImplementationDecl::instmeth_iterator 1757 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1758 InsMap.insert((*I)->getSelector()); 1759 } 1760 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1761 } 1762 } else 1763 llvm_unreachable("invalid ObjCContainerDecl type."); 1764 } 1765 1766 /// ActOnForwardClassDeclaration - 1767 Sema::DeclGroupPtrTy 1768 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1769 IdentifierInfo **IdentList, 1770 SourceLocation *IdentLocs, 1771 unsigned NumElts) { 1772 SmallVector<Decl *, 8> DeclsInGroup; 1773 for (unsigned i = 0; i != NumElts; ++i) { 1774 // Check for another declaration kind with the same name. 1775 NamedDecl *PrevDecl 1776 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1777 LookupOrdinaryName, ForRedeclaration); 1778 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1779 // Maybe we will complain about the shadowed template parameter. 1780 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1781 // Just pretend that we didn't see the previous declaration. 1782 PrevDecl = 0; 1783 } 1784 1785 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1786 // GCC apparently allows the following idiom: 1787 // 1788 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1789 // @class XCElementToggler; 1790 // 1791 // Here we have chosen to ignore the forward class declaration 1792 // with a warning. Since this is the implied behavior. 1793 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 1794 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1795 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1796 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1797 } else { 1798 // a forward class declaration matching a typedef name of a class refers 1799 // to the underlying class. Just ignore the forward class with a warning 1800 // as this will force the intended behavior which is to lookup the typedef 1801 // name. 1802 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 1803 Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i]; 1804 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1805 continue; 1806 } 1807 } 1808 } 1809 1810 // Create a declaration to describe this forward declaration. 1811 ObjCInterfaceDecl *PrevIDecl 1812 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1813 ObjCInterfaceDecl *IDecl 1814 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1815 IdentList[i], PrevIDecl, IdentLocs[i]); 1816 IDecl->setAtEndRange(IdentLocs[i]); 1817 1818 PushOnScopeChains(IDecl, TUScope); 1819 CheckObjCDeclScope(IDecl); 1820 DeclsInGroup.push_back(IDecl); 1821 } 1822 1823 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 1824 } 1825 1826 static bool tryMatchRecordTypes(ASTContext &Context, 1827 Sema::MethodMatchStrategy strategy, 1828 const Type *left, const Type *right); 1829 1830 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 1831 QualType leftQT, QualType rightQT) { 1832 const Type *left = 1833 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 1834 const Type *right = 1835 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 1836 1837 if (left == right) return true; 1838 1839 // If we're doing a strict match, the types have to match exactly. 1840 if (strategy == Sema::MMS_strict) return false; 1841 1842 if (left->isIncompleteType() || right->isIncompleteType()) return false; 1843 1844 // Otherwise, use this absurdly complicated algorithm to try to 1845 // validate the basic, low-level compatibility of the two types. 1846 1847 // As a minimum, require the sizes and alignments to match. 1848 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 1849 return false; 1850 1851 // Consider all the kinds of non-dependent canonical types: 1852 // - functions and arrays aren't possible as return and parameter types 1853 1854 // - vector types of equal size can be arbitrarily mixed 1855 if (isa<VectorType>(left)) return isa<VectorType>(right); 1856 if (isa<VectorType>(right)) return false; 1857 1858 // - references should only match references of identical type 1859 // - structs, unions, and Objective-C objects must match more-or-less 1860 // exactly 1861 // - everything else should be a scalar 1862 if (!left->isScalarType() || !right->isScalarType()) 1863 return tryMatchRecordTypes(Context, strategy, left, right); 1864 1865 // Make scalars agree in kind, except count bools as chars, and group 1866 // all non-member pointers together. 1867 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 1868 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 1869 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 1870 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 1871 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 1872 leftSK = Type::STK_ObjCObjectPointer; 1873 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 1874 rightSK = Type::STK_ObjCObjectPointer; 1875 1876 // Note that data member pointers and function member pointers don't 1877 // intermix because of the size differences. 1878 1879 return (leftSK == rightSK); 1880 } 1881 1882 static bool tryMatchRecordTypes(ASTContext &Context, 1883 Sema::MethodMatchStrategy strategy, 1884 const Type *lt, const Type *rt) { 1885 assert(lt && rt && lt != rt); 1886 1887 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 1888 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 1889 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 1890 1891 // Require union-hood to match. 1892 if (left->isUnion() != right->isUnion()) return false; 1893 1894 // Require an exact match if either is non-POD. 1895 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 1896 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 1897 return false; 1898 1899 // Require size and alignment to match. 1900 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 1901 1902 // Require fields to match. 1903 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 1904 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 1905 for (; li != le && ri != re; ++li, ++ri) { 1906 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 1907 return false; 1908 } 1909 return (li == le && ri == re); 1910 } 1911 1912 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1913 /// returns true, or false, accordingly. 1914 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1915 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 1916 const ObjCMethodDecl *right, 1917 MethodMatchStrategy strategy) { 1918 if (!matchTypes(Context, strategy, 1919 left->getResultType(), right->getResultType())) 1920 return false; 1921 1922 if (getLangOptions().ObjCAutoRefCount && 1923 (left->hasAttr<NSReturnsRetainedAttr>() 1924 != right->hasAttr<NSReturnsRetainedAttr>() || 1925 left->hasAttr<NSConsumesSelfAttr>() 1926 != right->hasAttr<NSConsumesSelfAttr>())) 1927 return false; 1928 1929 ObjCMethodDecl::param_const_iterator 1930 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); 1931 1932 for (; li != le; ++li, ++ri) { 1933 assert(ri != right->param_end() && "Param mismatch"); 1934 const ParmVarDecl *lparm = *li, *rparm = *ri; 1935 1936 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 1937 return false; 1938 1939 if (getLangOptions().ObjCAutoRefCount && 1940 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 1941 return false; 1942 } 1943 return true; 1944 } 1945 1946 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) { 1947 // If the list is empty, make it a singleton list. 1948 if (List->Method == 0) { 1949 List->Method = Method; 1950 List->Next = 0; 1951 return; 1952 } 1953 1954 // We've seen a method with this name, see if we have already seen this type 1955 // signature. 1956 ObjCMethodList *Previous = List; 1957 for (; List; Previous = List, List = List->Next) { 1958 if (!MatchTwoMethodDeclarations(Method, List->Method)) 1959 continue; 1960 1961 ObjCMethodDecl *PrevObjCMethod = List->Method; 1962 1963 // Propagate the 'defined' bit. 1964 if (Method->isDefined()) 1965 PrevObjCMethod->setDefined(true); 1966 1967 // If a method is deprecated, push it in the global pool. 1968 // This is used for better diagnostics. 1969 if (Method->isDeprecated()) { 1970 if (!PrevObjCMethod->isDeprecated()) 1971 List->Method = Method; 1972 } 1973 // If new method is unavailable, push it into global pool 1974 // unless previous one is deprecated. 1975 if (Method->isUnavailable()) { 1976 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 1977 List->Method = Method; 1978 } 1979 1980 return; 1981 } 1982 1983 // We have a new signature for an existing method - add it. 1984 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1985 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1986 Previous->Next = new (Mem) ObjCMethodList(Method, 0); 1987 } 1988 1989 /// \brief Read the contents of the method pool for a given selector from 1990 /// external storage. 1991 void Sema::ReadMethodPool(Selector Sel) { 1992 assert(ExternalSource && "We need an external AST source"); 1993 ExternalSource->ReadMethodPool(Sel); 1994 } 1995 1996 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 1997 bool instance) { 1998 if (ExternalSource) 1999 ReadMethodPool(Method->getSelector()); 2000 2001 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 2002 if (Pos == MethodPool.end()) 2003 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 2004 GlobalMethods())).first; 2005 2006 Method->setDefined(impl); 2007 2008 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 2009 addMethodToGlobalList(&Entry, Method); 2010 } 2011 2012 /// Determines if this is an "acceptable" loose mismatch in the global 2013 /// method pool. This exists mostly as a hack to get around certain 2014 /// global mismatches which we can't afford to make warnings / errors. 2015 /// Really, what we want is a way to take a method out of the global 2016 /// method pool. 2017 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 2018 ObjCMethodDecl *other) { 2019 if (!chosen->isInstanceMethod()) 2020 return false; 2021 2022 Selector sel = chosen->getSelector(); 2023 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 2024 return false; 2025 2026 // Don't complain about mismatches for -length if the method we 2027 // chose has an integral result type. 2028 return (chosen->getResultType()->isIntegerType()); 2029 } 2030 2031 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 2032 bool receiverIdOrClass, 2033 bool warn, bool instance) { 2034 if (ExternalSource) 2035 ReadMethodPool(Sel); 2036 2037 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2038 if (Pos == MethodPool.end()) 2039 return 0; 2040 2041 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 2042 2043 if (warn && MethList.Method && MethList.Next) { 2044 bool issueDiagnostic = false, issueError = false; 2045 2046 // We support a warning which complains about *any* difference in 2047 // method signature. 2048 bool strictSelectorMatch = 2049 (receiverIdOrClass && warn && 2050 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, 2051 R.getBegin()) != 2052 DiagnosticsEngine::Ignored)); 2053 if (strictSelectorMatch) 2054 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 2055 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 2056 MMS_strict)) { 2057 issueDiagnostic = true; 2058 break; 2059 } 2060 } 2061 2062 // If we didn't see any strict differences, we won't see any loose 2063 // differences. In ARC, however, we also need to check for loose 2064 // mismatches, because most of them are errors. 2065 if (!strictSelectorMatch || 2066 (issueDiagnostic && getLangOptions().ObjCAutoRefCount)) 2067 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 2068 // This checks if the methods differ in type mismatch. 2069 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 2070 MMS_loose) && 2071 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { 2072 issueDiagnostic = true; 2073 if (getLangOptions().ObjCAutoRefCount) 2074 issueError = true; 2075 break; 2076 } 2077 } 2078 2079 if (issueDiagnostic) { 2080 if (issueError) 2081 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 2082 else if (strictSelectorMatch) 2083 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 2084 else 2085 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 2086 2087 Diag(MethList.Method->getLocStart(), 2088 issueError ? diag::note_possibility : diag::note_using) 2089 << MethList.Method->getSourceRange(); 2090 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 2091 Diag(Next->Method->getLocStart(), diag::note_also_found) 2092 << Next->Method->getSourceRange(); 2093 } 2094 } 2095 return MethList.Method; 2096 } 2097 2098 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 2099 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2100 if (Pos == MethodPool.end()) 2101 return 0; 2102 2103 GlobalMethods &Methods = Pos->second; 2104 2105 if (Methods.first.Method && Methods.first.Method->isDefined()) 2106 return Methods.first.Method; 2107 if (Methods.second.Method && Methods.second.Method->isDefined()) 2108 return Methods.second.Method; 2109 return 0; 2110 } 2111 2112 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with 2113 /// identical selector names in current and its super classes and issues 2114 /// a warning if any of their argument types are incompatible. 2115 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, 2116 ObjCMethodDecl *Method, 2117 bool IsInstance) { 2118 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2119 if (ID == 0) return; 2120 2121 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { 2122 ObjCMethodDecl *SuperMethodDecl = 2123 SD->lookupMethod(Method->getSelector(), IsInstance); 2124 if (SuperMethodDecl == 0) { 2125 ID = SD; 2126 continue; 2127 } 2128 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 2129 E = Method->param_end(); 2130 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); 2131 for (; ParamI != E; ++ParamI, ++PrevI) { 2132 // Number of parameters are the same and is guaranteed by selector match. 2133 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); 2134 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 2135 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 2136 // If type of argument of method in this class does not match its 2137 // respective argument type in the super class method, issue warning; 2138 if (!Context.typesAreCompatible(T1, T2)) { 2139 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 2140 << T1 << T2; 2141 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); 2142 return; 2143 } 2144 } 2145 ID = SD; 2146 } 2147 } 2148 2149 /// DiagnoseDuplicateIvars - 2150 /// Check for duplicate ivars in the entire class at the start of 2151 /// @implementation. This becomes necesssary because class extension can 2152 /// add ivars to a class in random order which will not be known until 2153 /// class's @implementation is seen. 2154 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 2155 ObjCInterfaceDecl *SID) { 2156 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 2157 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 2158 ObjCIvarDecl* Ivar = (*IVI); 2159 if (Ivar->isInvalidDecl()) 2160 continue; 2161 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2162 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2163 if (prevIvar) { 2164 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2165 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2166 Ivar->setInvalidDecl(); 2167 } 2168 } 2169 } 2170 } 2171 2172 Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 2173 switch (CurContext->getDeclKind()) { 2174 case Decl::ObjCInterface: 2175 return Sema::OCK_Interface; 2176 case Decl::ObjCProtocol: 2177 return Sema::OCK_Protocol; 2178 case Decl::ObjCCategory: 2179 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 2180 return Sema::OCK_ClassExtension; 2181 else 2182 return Sema::OCK_Category; 2183 case Decl::ObjCImplementation: 2184 return Sema::OCK_Implementation; 2185 case Decl::ObjCCategoryImpl: 2186 return Sema::OCK_CategoryImplementation; 2187 2188 default: 2189 return Sema::OCK_None; 2190 } 2191 } 2192 2193 // Note: For class/category implemenations, allMethods/allProperties is 2194 // always null. 2195 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 2196 Decl **allMethods, unsigned allNum, 2197 Decl **allProperties, unsigned pNum, 2198 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 2199 2200 if (getObjCContainerKind() == Sema::OCK_None) 2201 return 0; 2202 2203 assert(AtEnd.isValid() && "Invalid location for '@end'"); 2204 2205 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2206 Decl *ClassDecl = cast<Decl>(OCD); 2207 2208 bool isInterfaceDeclKind = 2209 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2210 || isa<ObjCProtocolDecl>(ClassDecl); 2211 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2212 2213 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2214 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2215 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2216 2217 for (unsigned i = 0; i < allNum; i++ ) { 2218 ObjCMethodDecl *Method = 2219 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2220 2221 if (!Method) continue; // Already issued a diagnostic. 2222 if (Method->isInstanceMethod()) { 2223 /// Check for instance method of the same name with incompatible types 2224 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2225 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2226 : false; 2227 if ((isInterfaceDeclKind && PrevMethod && !match) 2228 || (checkIdenticalMethods && match)) { 2229 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2230 << Method->getDeclName(); 2231 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2232 Method->setInvalidDecl(); 2233 } else { 2234 if (PrevMethod) { 2235 Method->setAsRedeclaration(PrevMethod); 2236 if (!Context.getSourceManager().isInSystemHeader( 2237 Method->getLocation())) 2238 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2239 << Method->getDeclName(); 2240 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2241 } 2242 InsMap[Method->getSelector()] = Method; 2243 /// The following allows us to typecheck messages to "id". 2244 AddInstanceMethodToGlobalPool(Method); 2245 // verify that the instance method conforms to the same definition of 2246 // parent methods if it shadows one. 2247 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); 2248 } 2249 } else { 2250 /// Check for class method of the same name with incompatible types 2251 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2252 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2253 : false; 2254 if ((isInterfaceDeclKind && PrevMethod && !match) 2255 || (checkIdenticalMethods && match)) { 2256 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2257 << Method->getDeclName(); 2258 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2259 Method->setInvalidDecl(); 2260 } else { 2261 if (PrevMethod) { 2262 Method->setAsRedeclaration(PrevMethod); 2263 if (!Context.getSourceManager().isInSystemHeader( 2264 Method->getLocation())) 2265 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2266 << Method->getDeclName(); 2267 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2268 } 2269 ClsMap[Method->getSelector()] = Method; 2270 /// The following allows us to typecheck messages to "Class". 2271 AddFactoryMethodToGlobalPool(Method); 2272 // verify that the class method conforms to the same definition of 2273 // parent methods if it shadows one. 2274 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); 2275 } 2276 } 2277 } 2278 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 2279 // Compares properties declared in this class to those of its 2280 // super class. 2281 ComparePropertiesInBaseAndSuper(I); 2282 CompareProperties(I, I); 2283 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2284 // Categories are used to extend the class by declaring new methods. 2285 // By the same token, they are also used to add new properties. No 2286 // need to compare the added property to those in the class. 2287 2288 // Compare protocol properties with those in category 2289 CompareProperties(C, C); 2290 if (C->IsClassExtension()) { 2291 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2292 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2293 } 2294 } 2295 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2296 if (CDecl->getIdentifier()) 2297 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2298 // user-defined setter/getter. It also synthesizes setter/getter methods 2299 // and adds them to the DeclContext and global method pools. 2300 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 2301 E = CDecl->prop_end(); 2302 I != E; ++I) 2303 ProcessPropertyDecl(*I, CDecl); 2304 CDecl->setAtEndRange(AtEnd); 2305 } 2306 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2307 IC->setAtEndRange(AtEnd); 2308 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2309 // Any property declared in a class extension might have user 2310 // declared setter or getter in current class extension or one 2311 // of the other class extensions. Mark them as synthesized as 2312 // property will be synthesized when property with same name is 2313 // seen in the @implementation. 2314 for (const ObjCCategoryDecl *ClsExtDecl = 2315 IDecl->getFirstClassExtension(); 2316 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { 2317 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), 2318 E = ClsExtDecl->prop_end(); I != E; ++I) { 2319 ObjCPropertyDecl *Property = (*I); 2320 // Skip over properties declared @dynamic 2321 if (const ObjCPropertyImplDecl *PIDecl 2322 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2323 if (PIDecl->getPropertyImplementation() 2324 == ObjCPropertyImplDecl::Dynamic) 2325 continue; 2326 2327 for (const ObjCCategoryDecl *CExtDecl = 2328 IDecl->getFirstClassExtension(); 2329 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { 2330 if (ObjCMethodDecl *GetterMethod = 2331 CExtDecl->getInstanceMethod(Property->getGetterName())) 2332 GetterMethod->setSynthesized(true); 2333 if (!Property->isReadOnly()) 2334 if (ObjCMethodDecl *SetterMethod = 2335 CExtDecl->getInstanceMethod(Property->getSetterName())) 2336 SetterMethod->setSynthesized(true); 2337 } 2338 } 2339 } 2340 ImplMethodsVsClassMethods(S, IC, IDecl); 2341 AtomicPropertySetterGetterRules(IC, IDecl); 2342 DiagnoseOwningPropertyGetterSynthesis(IC); 2343 2344 if (LangOpts.ObjCNonFragileABI2) 2345 while (IDecl->getSuperClass()) { 2346 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2347 IDecl = IDecl->getSuperClass(); 2348 } 2349 } 2350 SetIvarInitializers(IC); 2351 } else if (ObjCCategoryImplDecl* CatImplClass = 2352 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2353 CatImplClass->setAtEndRange(AtEnd); 2354 2355 // Find category interface decl and then check that all methods declared 2356 // in this interface are implemented in the category @implementation. 2357 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2358 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 2359 Categories; Categories = Categories->getNextClassCategory()) { 2360 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 2361 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 2362 break; 2363 } 2364 } 2365 } 2366 } 2367 if (isInterfaceDeclKind) { 2368 // Reject invalid vardecls. 2369 for (unsigned i = 0; i != tuvNum; i++) { 2370 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2371 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2372 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2373 if (!VDecl->hasExternalStorage()) 2374 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2375 } 2376 } 2377 } 2378 ActOnObjCContainerFinishDefinition(); 2379 2380 for (unsigned i = 0; i != tuvNum; i++) { 2381 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2382 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2383 (*I)->setTopLevelDeclInObjCContainer(); 2384 Consumer.HandleTopLevelDeclInObjCContainer(DG); 2385 } 2386 2387 return ClassDecl; 2388 } 2389 2390 2391 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2392 /// objective-c's type qualifier from the parser version of the same info. 2393 static Decl::ObjCDeclQualifier 2394 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2395 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2396 } 2397 2398 static inline 2399 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD, 2400 const AttrVec &A) { 2401 // If method is only declared in implementation (private method), 2402 // No need to issue any diagnostics on method definition with attributes. 2403 if (!IMD) 2404 return false; 2405 2406 // method declared in interface has no attribute. 2407 // But implementation has attributes. This is invalid 2408 if (!IMD->hasAttrs()) 2409 return true; 2410 2411 const AttrVec &D = IMD->getAttrs(); 2412 if (D.size() != A.size()) 2413 return true; 2414 2415 // attributes on method declaration and definition must match exactly. 2416 // Note that we have at most a couple of attributes on methods, so this 2417 // n*n search is good enough. 2418 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) { 2419 bool match = false; 2420 for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) { 2421 if ((*i)->getKind() == (*i1)->getKind()) { 2422 match = true; 2423 break; 2424 } 2425 } 2426 if (!match) 2427 return true; 2428 } 2429 return false; 2430 } 2431 2432 namespace { 2433 /// \brief Describes the compatibility of a result type with its method. 2434 enum ResultTypeCompatibilityKind { 2435 RTC_Compatible, 2436 RTC_Incompatible, 2437 RTC_Unknown 2438 }; 2439 } 2440 2441 /// \brief Check whether the declared result type of the given Objective-C 2442 /// method declaration is compatible with the method's class. 2443 /// 2444 static ResultTypeCompatibilityKind 2445 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2446 ObjCInterfaceDecl *CurrentClass) { 2447 QualType ResultType = Method->getResultType(); 2448 2449 // If an Objective-C method inherits its related result type, then its 2450 // declared result type must be compatible with its own class type. The 2451 // declared result type is compatible if: 2452 if (const ObjCObjectPointerType *ResultObjectType 2453 = ResultType->getAs<ObjCObjectPointerType>()) { 2454 // - it is id or qualified id, or 2455 if (ResultObjectType->isObjCIdType() || 2456 ResultObjectType->isObjCQualifiedIdType()) 2457 return RTC_Compatible; 2458 2459 if (CurrentClass) { 2460 if (ObjCInterfaceDecl *ResultClass 2461 = ResultObjectType->getInterfaceDecl()) { 2462 // - it is the same as the method's class type, or 2463 if (declaresSameEntity(CurrentClass, ResultClass)) 2464 return RTC_Compatible; 2465 2466 // - it is a superclass of the method's class type 2467 if (ResultClass->isSuperClassOf(CurrentClass)) 2468 return RTC_Compatible; 2469 } 2470 } else { 2471 // Any Objective-C pointer type might be acceptable for a protocol 2472 // method; we just don't know. 2473 return RTC_Unknown; 2474 } 2475 } 2476 2477 return RTC_Incompatible; 2478 } 2479 2480 namespace { 2481 /// A helper class for searching for methods which a particular method 2482 /// overrides. 2483 class OverrideSearch { 2484 Sema &S; 2485 ObjCMethodDecl *Method; 2486 llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched; 2487 llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden; 2488 bool Recursive; 2489 2490 public: 2491 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 2492 Selector selector = method->getSelector(); 2493 2494 // Bypass this search if we've never seen an instance/class method 2495 // with this selector before. 2496 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 2497 if (it == S.MethodPool.end()) { 2498 if (!S.ExternalSource) return; 2499 S.ReadMethodPool(selector); 2500 2501 it = S.MethodPool.find(selector); 2502 if (it == S.MethodPool.end()) 2503 return; 2504 } 2505 ObjCMethodList &list = 2506 method->isInstanceMethod() ? it->second.first : it->second.second; 2507 if (!list.Method) return; 2508 2509 ObjCContainerDecl *container 2510 = cast<ObjCContainerDecl>(method->getDeclContext()); 2511 2512 // Prevent the search from reaching this container again. This is 2513 // important with categories, which override methods from the 2514 // interface and each other. 2515 Searched.insert(container); 2516 searchFromContainer(container); 2517 } 2518 2519 typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator; 2520 iterator begin() const { return Overridden.begin(); } 2521 iterator end() const { return Overridden.end(); } 2522 2523 private: 2524 void searchFromContainer(ObjCContainerDecl *container) { 2525 if (container->isInvalidDecl()) return; 2526 2527 switch (container->getDeclKind()) { 2528 #define OBJCCONTAINER(type, base) \ 2529 case Decl::type: \ 2530 searchFrom(cast<type##Decl>(container)); \ 2531 break; 2532 #define ABSTRACT_DECL(expansion) 2533 #define DECL(type, base) \ 2534 case Decl::type: 2535 #include "clang/AST/DeclNodes.inc" 2536 llvm_unreachable("not an ObjC container!"); 2537 } 2538 } 2539 2540 void searchFrom(ObjCProtocolDecl *protocol) { 2541 if (!protocol->hasDefinition()) 2542 return; 2543 2544 // A method in a protocol declaration overrides declarations from 2545 // referenced ("parent") protocols. 2546 search(protocol->getReferencedProtocols()); 2547 } 2548 2549 void searchFrom(ObjCCategoryDecl *category) { 2550 // A method in a category declaration overrides declarations from 2551 // the main class and from protocols the category references. 2552 search(category->getClassInterface()); 2553 search(category->getReferencedProtocols()); 2554 } 2555 2556 void searchFrom(ObjCCategoryImplDecl *impl) { 2557 // A method in a category definition that has a category 2558 // declaration overrides declarations from the category 2559 // declaration. 2560 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 2561 search(category); 2562 2563 // Otherwise it overrides declarations from the class. 2564 } else { 2565 search(impl->getClassInterface()); 2566 } 2567 } 2568 2569 void searchFrom(ObjCInterfaceDecl *iface) { 2570 // A method in a class declaration overrides declarations from 2571 if (!iface->hasDefinition()) 2572 return; 2573 2574 // - categories, 2575 for (ObjCCategoryDecl *category = iface->getCategoryList(); 2576 category; category = category->getNextClassCategory()) 2577 search(category); 2578 2579 // - the super class, and 2580 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 2581 search(super); 2582 2583 // - any referenced protocols. 2584 search(iface->getReferencedProtocols()); 2585 } 2586 2587 void searchFrom(ObjCImplementationDecl *impl) { 2588 // A method in a class implementation overrides declarations from 2589 // the class interface. 2590 search(impl->getClassInterface()); 2591 } 2592 2593 2594 void search(const ObjCProtocolList &protocols) { 2595 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 2596 i != e; ++i) 2597 search(*i); 2598 } 2599 2600 void search(ObjCContainerDecl *container) { 2601 // Abort if we've already searched this container. 2602 if (!Searched.insert(container)) return; 2603 2604 // Check for a method in this container which matches this selector. 2605 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 2606 Method->isInstanceMethod()); 2607 2608 // If we find one, record it and bail out. 2609 if (meth) { 2610 Overridden.insert(meth); 2611 return; 2612 } 2613 2614 // Otherwise, search for methods that a hypothetical method here 2615 // would have overridden. 2616 2617 // Note that we're now in a recursive case. 2618 Recursive = true; 2619 2620 searchFromContainer(container); 2621 } 2622 }; 2623 } 2624 2625 Decl *Sema::ActOnMethodDeclaration( 2626 Scope *S, 2627 SourceLocation MethodLoc, SourceLocation EndLoc, 2628 tok::TokenKind MethodType, 2629 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 2630 ArrayRef<SourceLocation> SelectorLocs, 2631 Selector Sel, 2632 // optional arguments. The number of types/arguments is obtained 2633 // from the Sel.getNumArgs(). 2634 ObjCArgInfo *ArgInfo, 2635 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 2636 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 2637 bool isVariadic, bool MethodDefinition) { 2638 // Make sure we can establish a context for the method. 2639 if (!CurContext->isObjCContainer()) { 2640 Diag(MethodLoc, diag::error_missing_method_context); 2641 return 0; 2642 } 2643 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2644 Decl *ClassDecl = cast<Decl>(OCD); 2645 QualType resultDeclType; 2646 2647 bool HasRelatedResultType = false; 2648 TypeSourceInfo *ResultTInfo = 0; 2649 if (ReturnType) { 2650 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 2651 2652 // Methods cannot return interface types. All ObjC objects are 2653 // passed by reference. 2654 if (resultDeclType->isObjCObjectType()) { 2655 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 2656 << 0 << resultDeclType; 2657 return 0; 2658 } 2659 2660 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); 2661 } else { // get the type for "id". 2662 resultDeclType = Context.getObjCIdType(); 2663 Diag(MethodLoc, diag::warn_missing_method_return_type) 2664 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 2665 } 2666 2667 ObjCMethodDecl* ObjCMethod = 2668 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, 2669 resultDeclType, 2670 ResultTInfo, 2671 CurContext, 2672 MethodType == tok::minus, isVariadic, 2673 /*isSynthesized=*/false, 2674 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 2675 MethodDeclKind == tok::objc_optional 2676 ? ObjCMethodDecl::Optional 2677 : ObjCMethodDecl::Required, 2678 HasRelatedResultType); 2679 2680 SmallVector<ParmVarDecl*, 16> Params; 2681 2682 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 2683 QualType ArgType; 2684 TypeSourceInfo *DI; 2685 2686 if (ArgInfo[i].Type == 0) { 2687 ArgType = Context.getObjCIdType(); 2688 DI = 0; 2689 } else { 2690 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 2691 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2692 ArgType = Context.getAdjustedParameterType(ArgType); 2693 } 2694 2695 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 2696 LookupOrdinaryName, ForRedeclaration); 2697 LookupName(R, S); 2698 if (R.isSingleResult()) { 2699 NamedDecl *PrevDecl = R.getFoundDecl(); 2700 if (S->isDeclScope(PrevDecl)) { 2701 Diag(ArgInfo[i].NameLoc, 2702 (MethodDefinition ? diag::warn_method_param_redefinition 2703 : diag::warn_method_param_declaration)) 2704 << ArgInfo[i].Name; 2705 Diag(PrevDecl->getLocation(), 2706 diag::note_previous_declaration); 2707 } 2708 } 2709 2710 SourceLocation StartLoc = DI 2711 ? DI->getTypeLoc().getBeginLoc() 2712 : ArgInfo[i].NameLoc; 2713 2714 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 2715 ArgInfo[i].NameLoc, ArgInfo[i].Name, 2716 ArgType, DI, SC_None, SC_None); 2717 2718 Param->setObjCMethodScopeInfo(i); 2719 2720 Param->setObjCDeclQualifier( 2721 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 2722 2723 // Apply the attributes to the parameter. 2724 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 2725 2726 if (Param->hasAttr<BlocksAttr>()) { 2727 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 2728 Param->setInvalidDecl(); 2729 } 2730 S->AddDecl(Param); 2731 IdResolver.AddDecl(Param); 2732 2733 Params.push_back(Param); 2734 } 2735 2736 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 2737 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 2738 QualType ArgType = Param->getType(); 2739 if (ArgType.isNull()) 2740 ArgType = Context.getObjCIdType(); 2741 else 2742 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2743 ArgType = Context.getAdjustedParameterType(ArgType); 2744 if (ArgType->isObjCObjectType()) { 2745 Diag(Param->getLocation(), 2746 diag::err_object_cannot_be_passed_returned_by_value) 2747 << 1 << ArgType; 2748 Param->setInvalidDecl(); 2749 } 2750 Param->setDeclContext(ObjCMethod); 2751 2752 Params.push_back(Param); 2753 } 2754 2755 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 2756 ObjCMethod->setObjCDeclQualifier( 2757 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 2758 2759 if (AttrList) 2760 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 2761 2762 // Add the method now. 2763 const ObjCMethodDecl *PrevMethod = 0; 2764 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 2765 if (MethodType == tok::minus) { 2766 PrevMethod = ImpDecl->getInstanceMethod(Sel); 2767 ImpDecl->addInstanceMethod(ObjCMethod); 2768 } else { 2769 PrevMethod = ImpDecl->getClassMethod(Sel); 2770 ImpDecl->addClassMethod(ObjCMethod); 2771 } 2772 2773 ObjCMethodDecl *IMD = 0; 2774 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) 2775 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 2776 ObjCMethod->isInstanceMethod()); 2777 if (ObjCMethod->hasAttrs() && 2778 containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) { 2779 SourceLocation MethodLoc = IMD->getLocation(); 2780 if (!getSourceManager().isInSystemHeader(MethodLoc)) { 2781 Diag(EndLoc, diag::warn_attribute_method_def); 2782 Diag(MethodLoc, diag::note_method_declared_at); 2783 } 2784 } 2785 } else { 2786 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 2787 } 2788 2789 if (PrevMethod) { 2790 // You can never have two method definitions with the same name. 2791 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 2792 << ObjCMethod->getDeclName(); 2793 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2794 } 2795 2796 // If this Objective-C method does not have a related result type, but we 2797 // are allowed to infer related result types, try to do so based on the 2798 // method family. 2799 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2800 if (!CurrentClass) { 2801 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 2802 CurrentClass = Cat->getClassInterface(); 2803 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 2804 CurrentClass = Impl->getClassInterface(); 2805 else if (ObjCCategoryImplDecl *CatImpl 2806 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 2807 CurrentClass = CatImpl->getClassInterface(); 2808 } 2809 2810 ResultTypeCompatibilityKind RTC 2811 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 2812 2813 // Search for overridden methods and merge information down from them. 2814 OverrideSearch overrides(*this, ObjCMethod); 2815 for (OverrideSearch::iterator 2816 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 2817 ObjCMethodDecl *overridden = *i; 2818 2819 // Propagate down the 'related result type' bit from overridden methods. 2820 if (RTC != RTC_Incompatible && overridden->hasRelatedResultType()) 2821 ObjCMethod->SetRelatedResultType(); 2822 2823 // Then merge the declarations. 2824 mergeObjCMethodDecls(ObjCMethod, overridden); 2825 2826 // Check for overriding methods 2827 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 2828 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 2829 CheckConflictingOverridingMethod(ObjCMethod, overridden, 2830 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 2831 } 2832 2833 bool ARCError = false; 2834 if (getLangOptions().ObjCAutoRefCount) 2835 ARCError = CheckARCMethodDecl(*this, ObjCMethod); 2836 2837 // Infer the related result type when possible. 2838 if (!ARCError && RTC == RTC_Compatible && 2839 !ObjCMethod->hasRelatedResultType() && 2840 LangOpts.ObjCInferRelatedResultType) { 2841 bool InferRelatedResultType = false; 2842 switch (ObjCMethod->getMethodFamily()) { 2843 case OMF_None: 2844 case OMF_copy: 2845 case OMF_dealloc: 2846 case OMF_finalize: 2847 case OMF_mutableCopy: 2848 case OMF_release: 2849 case OMF_retainCount: 2850 case OMF_performSelector: 2851 break; 2852 2853 case OMF_alloc: 2854 case OMF_new: 2855 InferRelatedResultType = ObjCMethod->isClassMethod(); 2856 break; 2857 2858 case OMF_init: 2859 case OMF_autorelease: 2860 case OMF_retain: 2861 case OMF_self: 2862 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 2863 break; 2864 } 2865 2866 if (InferRelatedResultType) 2867 ObjCMethod->SetRelatedResultType(); 2868 } 2869 2870 return ObjCMethod; 2871 } 2872 2873 bool Sema::CheckObjCDeclScope(Decl *D) { 2874 if (isa<TranslationUnitDecl>(CurContext->getRedeclContext())) 2875 return false; 2876 // Following is also an error. But it is caused by a missing @end 2877 // and diagnostic is issued elsewhere. 2878 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) { 2879 return false; 2880 } 2881 2882 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 2883 D->setInvalidDecl(); 2884 2885 return true; 2886 } 2887 2888 /// Called whenever @defs(ClassName) is encountered in the source. Inserts the 2889 /// instance variables of ClassName into Decls. 2890 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 2891 IdentifierInfo *ClassName, 2892 SmallVectorImpl<Decl*> &Decls) { 2893 // Check that ClassName is a valid class 2894 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 2895 if (!Class) { 2896 Diag(DeclStart, diag::err_undef_interface) << ClassName; 2897 return; 2898 } 2899 if (LangOpts.ObjCNonFragileABI) { 2900 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 2901 return; 2902 } 2903 2904 // Collect the instance variables 2905 SmallVector<const ObjCIvarDecl*, 32> Ivars; 2906 Context.DeepCollectObjCIvars(Class, true, Ivars); 2907 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 2908 for (unsigned i = 0; i < Ivars.size(); i++) { 2909 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 2910 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 2911 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 2912 /*FIXME: StartL=*/ID->getLocation(), 2913 ID->getLocation(), 2914 ID->getIdentifier(), ID->getType(), 2915 ID->getBitWidth()); 2916 Decls.push_back(FD); 2917 } 2918 2919 // Introduce all of these fields into the appropriate scope. 2920 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 2921 D != Decls.end(); ++D) { 2922 FieldDecl *FD = cast<FieldDecl>(*D); 2923 if (getLangOptions().CPlusPlus) 2924 PushOnScopeChains(cast<FieldDecl>(FD), S); 2925 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 2926 Record->addDecl(FD); 2927 } 2928 } 2929 2930 /// \brief Build a type-check a new Objective-C exception variable declaration. 2931 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 2932 SourceLocation StartLoc, 2933 SourceLocation IdLoc, 2934 IdentifierInfo *Id, 2935 bool Invalid) { 2936 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 2937 // duration shall not be qualified by an address-space qualifier." 2938 // Since all parameters have automatic store duration, they can not have 2939 // an address space. 2940 if (T.getAddressSpace() != 0) { 2941 Diag(IdLoc, diag::err_arg_with_address_space); 2942 Invalid = true; 2943 } 2944 2945 // An @catch parameter must be an unqualified object pointer type; 2946 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 2947 if (Invalid) { 2948 // Don't do any further checking. 2949 } else if (T->isDependentType()) { 2950 // Okay: we don't know what this type will instantiate to. 2951 } else if (!T->isObjCObjectPointerType()) { 2952 Invalid = true; 2953 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 2954 } else if (T->isObjCQualifiedIdType()) { 2955 Invalid = true; 2956 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 2957 } 2958 2959 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 2960 T, TInfo, SC_None, SC_None); 2961 New->setExceptionVariable(true); 2962 2963 // In ARC, infer 'retaining' for variables of retainable type. 2964 if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(New)) 2965 Invalid = true; 2966 2967 if (Invalid) 2968 New->setInvalidDecl(); 2969 return New; 2970 } 2971 2972 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 2973 const DeclSpec &DS = D.getDeclSpec(); 2974 2975 // We allow the "register" storage class on exception variables because 2976 // GCC did, but we drop it completely. Any other storage class is an error. 2977 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 2978 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 2979 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 2980 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 2981 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 2982 << DS.getStorageClassSpec(); 2983 } 2984 if (D.getDeclSpec().isThreadSpecified()) 2985 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 2986 D.getMutableDeclSpec().ClearStorageClassSpecs(); 2987 2988 DiagnoseFunctionSpecifiers(D); 2989 2990 // Check that there are no default arguments inside the type of this 2991 // exception object (C++ only). 2992 if (getLangOptions().CPlusPlus) 2993 CheckExtraCXXDefaultArguments(D); 2994 2995 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 2996 QualType ExceptionType = TInfo->getType(); 2997 2998 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 2999 D.getSourceRange().getBegin(), 3000 D.getIdentifierLoc(), 3001 D.getIdentifier(), 3002 D.isInvalidType()); 3003 3004 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 3005 if (D.getCXXScopeSpec().isSet()) { 3006 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 3007 << D.getCXXScopeSpec().getRange(); 3008 New->setInvalidDecl(); 3009 } 3010 3011 // Add the parameter declaration into this scope. 3012 S->AddDecl(New); 3013 if (D.getIdentifier()) 3014 IdResolver.AddDecl(New); 3015 3016 ProcessDeclAttributes(S, New, D); 3017 3018 if (New->hasAttr<BlocksAttr>()) 3019 Diag(New->getLocation(), diag::err_block_on_nonlocal); 3020 return New; 3021 } 3022 3023 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 3024 /// initialization. 3025 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 3026 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 3027 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 3028 Iv= Iv->getNextIvar()) { 3029 QualType QT = Context.getBaseElementType(Iv->getType()); 3030 if (QT->isRecordType()) 3031 Ivars.push_back(Iv); 3032 } 3033 } 3034 3035 void Sema::DiagnoseUseOfUnimplementedSelectors() { 3036 // Load referenced selectors from the external source. 3037 if (ExternalSource) { 3038 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 3039 ExternalSource->ReadReferencedSelectors(Sels); 3040 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 3041 ReferencedSelectors[Sels[I].first] = Sels[I].second; 3042 } 3043 3044 // Warning will be issued only when selector table is 3045 // generated (which means there is at lease one implementation 3046 // in the TU). This is to match gcc's behavior. 3047 if (ReferencedSelectors.empty() || 3048 !Context.AnyObjCImplementation()) 3049 return; 3050 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 3051 ReferencedSelectors.begin(), 3052 E = ReferencedSelectors.end(); S != E; ++S) { 3053 Selector Sel = (*S).first; 3054 if (!LookupImplementedMethodInGlobalPool(Sel)) 3055 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 3056 } 3057 return; 3058 } 3059