1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/RecursiveASTVisitor.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 
31 using namespace clang;
32 
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 ///   if non-null, check this as if making a call to it with the given
38 ///   receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 ///   actions were taken
42 bool Sema::checkInitMethod(ObjCMethodDecl *method,
43                            QualType receiverTypeIfCall) {
44   if (method->isInvalidDecl()) return true;
45 
46   // This castAs is safe: methods that don't return an object
47   // pointer won't be inferred as inits and will reject an explicit
48   // objc_method_family(init).
49 
50   // We ignore protocols here.  Should we?  What about Class?
51 
52   const ObjCObjectType *result =
53       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54 
55   if (result->isObjCId()) {
56     return false;
57   } else if (result->isObjCClass()) {
58     // fall through: always an error
59   } else {
60     ObjCInterfaceDecl *resultClass = result->getInterface();
61     assert(resultClass && "unexpected object type!");
62 
63     // It's okay for the result type to still be a forward declaration
64     // if we're checking an interface declaration.
65     if (!resultClass->hasDefinition()) {
66       if (receiverTypeIfCall.isNull() &&
67           !isa<ObjCImplementationDecl>(method->getDeclContext()))
68         return false;
69 
70     // Otherwise, we try to compare class types.
71     } else {
72       // If this method was declared in a protocol, we can't check
73       // anything unless we have a receiver type that's an interface.
74       const ObjCInterfaceDecl *receiverClass = nullptr;
75       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76         if (receiverTypeIfCall.isNull())
77           return false;
78 
79         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80           ->getInterfaceDecl();
81 
82         // This can be null for calls to e.g. id<Foo>.
83         if (!receiverClass) return false;
84       } else {
85         receiverClass = method->getClassInterface();
86         assert(receiverClass && "method not associated with a class!");
87       }
88 
89       // If either class is a subclass of the other, it's fine.
90       if (receiverClass->isSuperClassOf(resultClass) ||
91           resultClass->isSuperClassOf(receiverClass))
92         return false;
93     }
94   }
95 
96   SourceLocation loc = method->getLocation();
97 
98   // If we're in a system header, and this is not a call, just make
99   // the method unusable.
100   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103     return true;
104   }
105 
106   // Otherwise, it's an error.
107   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108   method->setInvalidDecl();
109   return true;
110 }
111 
112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
113                                    const ObjCMethodDecl *Overridden) {
114   if (Overridden->hasRelatedResultType() &&
115       !NewMethod->hasRelatedResultType()) {
116     // This can only happen when the method follows a naming convention that
117     // implies a related result type, and the original (overridden) method has
118     // a suitable return type, but the new (overriding) method does not have
119     // a suitable return type.
120     QualType ResultType = NewMethod->getReturnType();
121     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122 
123     // Figure out which class this method is part of, if any.
124     ObjCInterfaceDecl *CurrentClass
125       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126     if (!CurrentClass) {
127       DeclContext *DC = NewMethod->getDeclContext();
128       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129         CurrentClass = Cat->getClassInterface();
130       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131         CurrentClass = Impl->getClassInterface();
132       else if (ObjCCategoryImplDecl *CatImpl
133                = dyn_cast<ObjCCategoryImplDecl>(DC))
134         CurrentClass = CatImpl->getClassInterface();
135     }
136 
137     if (CurrentClass) {
138       Diag(NewMethod->getLocation(),
139            diag::warn_related_result_type_compatibility_class)
140         << Context.getObjCInterfaceType(CurrentClass)
141         << ResultType
142         << ResultTypeRange;
143     } else {
144       Diag(NewMethod->getLocation(),
145            diag::warn_related_result_type_compatibility_protocol)
146         << ResultType
147         << ResultTypeRange;
148     }
149 
150     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151       Diag(Overridden->getLocation(),
152            diag::note_related_result_type_family)
153         << /*overridden method*/ 0
154         << Family;
155     else
156       Diag(Overridden->getLocation(),
157            diag::note_related_result_type_overridden);
158   }
159 
160   if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161        Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162     Diag(NewMethod->getLocation(),
163          getLangOpts().ObjCAutoRefCount
164              ? diag::err_nsreturns_retained_attribute_mismatch
165              : diag::warn_nsreturns_retained_attribute_mismatch)
166         << 1;
167     Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
168   }
169   if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170        Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171     Diag(NewMethod->getLocation(),
172          getLangOpts().ObjCAutoRefCount
173              ? diag::err_nsreturns_retained_attribute_mismatch
174              : diag::warn_nsreturns_retained_attribute_mismatch)
175         << 0;
176     Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
177   }
178 
179   ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
180                                        oe = Overridden->param_end();
181   for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
182                                       ne = NewMethod->param_end();
183        ni != ne && oi != oe; ++ni, ++oi) {
184     const ParmVarDecl *oldDecl = (*oi);
185     ParmVarDecl *newDecl = (*ni);
186     if (newDecl->hasAttr<NSConsumedAttr>() !=
187         oldDecl->hasAttr<NSConsumedAttr>()) {
188       Diag(newDecl->getLocation(),
189            getLangOpts().ObjCAutoRefCount
190                ? diag::err_nsconsumed_attribute_mismatch
191                : diag::warn_nsconsumed_attribute_mismatch);
192       Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
193     }
194 
195     // A parameter of the overriding method should be annotated with noescape
196     // if the corresponding parameter of the overridden method is annotated.
197     if (oldDecl->hasAttr<NoEscapeAttr>() && !newDecl->hasAttr<NoEscapeAttr>()) {
198       Diag(newDecl->getLocation(),
199            diag::warn_overriding_method_missing_noescape);
200       Diag(oldDecl->getLocation(), diag::note_overridden_marked_noescape);
201     }
202   }
203 }
204 
205 /// \brief Check a method declaration for compatibility with the Objective-C
206 /// ARC conventions.
207 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
208   ObjCMethodFamily family = method->getMethodFamily();
209   switch (family) {
210   case OMF_None:
211   case OMF_finalize:
212   case OMF_retain:
213   case OMF_release:
214   case OMF_autorelease:
215   case OMF_retainCount:
216   case OMF_self:
217   case OMF_initialize:
218   case OMF_performSelector:
219     return false;
220 
221   case OMF_dealloc:
222     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
223       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
224       if (ResultTypeRange.isInvalid())
225         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
226             << method->getReturnType()
227             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
228       else
229         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
230             << method->getReturnType()
231             << FixItHint::CreateReplacement(ResultTypeRange, "void");
232       return true;
233     }
234     return false;
235 
236   case OMF_init:
237     // If the method doesn't obey the init rules, don't bother annotating it.
238     if (checkInitMethod(method, QualType()))
239       return true;
240 
241     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
242 
243     // Don't add a second copy of this attribute, but otherwise don't
244     // let it be suppressed.
245     if (method->hasAttr<NSReturnsRetainedAttr>())
246       return false;
247     break;
248 
249   case OMF_alloc:
250   case OMF_copy:
251   case OMF_mutableCopy:
252   case OMF_new:
253     if (method->hasAttr<NSReturnsRetainedAttr>() ||
254         method->hasAttr<NSReturnsNotRetainedAttr>() ||
255         method->hasAttr<NSReturnsAutoreleasedAttr>())
256       return false;
257     break;
258   }
259 
260   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
261   return false;
262 }
263 
264 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
265                                                 SourceLocation ImplLoc) {
266   if (!ND)
267     return;
268   bool IsCategory = false;
269   AvailabilityResult Availability = ND->getAvailability();
270   if (Availability != AR_Deprecated) {
271     if (isa<ObjCMethodDecl>(ND)) {
272       if (Availability != AR_Unavailable)
273         return;
274       // Warn about implementing unavailable methods.
275       S.Diag(ImplLoc, diag::warn_unavailable_def);
276       S.Diag(ND->getLocation(), diag::note_method_declared_at)
277           << ND->getDeclName();
278       return;
279     }
280     if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
281       if (!CD->getClassInterface()->isDeprecated())
282         return;
283       ND = CD->getClassInterface();
284       IsCategory = true;
285     } else
286       return;
287   }
288   S.Diag(ImplLoc, diag::warn_deprecated_def)
289       << (isa<ObjCMethodDecl>(ND)
290               ? /*Method*/ 0
291               : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
292                                                         : /*Class*/ 1);
293   if (isa<ObjCMethodDecl>(ND))
294     S.Diag(ND->getLocation(), diag::note_method_declared_at)
295         << ND->getDeclName();
296   else
297     S.Diag(ND->getLocation(), diag::note_previous_decl)
298         << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
299 }
300 
301 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
302 /// pool.
303 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
304   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
305 
306   // If we don't have a valid method decl, simply return.
307   if (!MDecl)
308     return;
309   if (MDecl->isInstanceMethod())
310     AddInstanceMethodToGlobalPool(MDecl, true);
311   else
312     AddFactoryMethodToGlobalPool(MDecl, true);
313 }
314 
315 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
316 /// has explicit ownership attribute; false otherwise.
317 static bool
318 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
319   QualType T = Param->getType();
320 
321   if (const PointerType *PT = T->getAs<PointerType>()) {
322     T = PT->getPointeeType();
323   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
324     T = RT->getPointeeType();
325   } else {
326     return true;
327   }
328 
329   // If we have a lifetime qualifier, but it's local, we must have
330   // inferred it. So, it is implicit.
331   return !T.getLocalQualifiers().hasObjCLifetime();
332 }
333 
334 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
335 /// and user declared, in the method definition's AST.
336 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
337   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
338   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
339 
340   // If we don't have a valid method decl, simply return.
341   if (!MDecl)
342     return;
343 
344   QualType ResultType = MDecl->getReturnType();
345   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
346       !MDecl->isInvalidDecl() &&
347       RequireCompleteType(MDecl->getLocation(), ResultType,
348                           diag::err_func_def_incomplete_result))
349     MDecl->setInvalidDecl();
350 
351   // Allow all of Sema to see that we are entering a method definition.
352   PushDeclContext(FnBodyScope, MDecl);
353   PushFunctionScope();
354 
355   // Create Decl objects for each parameter, entrring them in the scope for
356   // binding to their use.
357 
358   // Insert the invisible arguments, self and _cmd!
359   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
360 
361   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
362   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
363 
364   // The ObjC parser requires parameter names so there's no need to check.
365   CheckParmsForFunctionDef(MDecl->parameters(),
366                            /*CheckParameterNames=*/false);
367 
368   // Introduce all of the other parameters into this scope.
369   for (auto *Param : MDecl->parameters()) {
370     if (!Param->isInvalidDecl() &&
371         getLangOpts().ObjCAutoRefCount &&
372         !HasExplicitOwnershipAttr(*this, Param))
373       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
374             Param->getType();
375 
376     if (Param->getIdentifier())
377       PushOnScopeChains(Param, FnBodyScope);
378   }
379 
380   // In ARC, disallow definition of retain/release/autorelease/retainCount
381   if (getLangOpts().ObjCAutoRefCount) {
382     switch (MDecl->getMethodFamily()) {
383     case OMF_retain:
384     case OMF_retainCount:
385     case OMF_release:
386     case OMF_autorelease:
387       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
388         << 0 << MDecl->getSelector();
389       break;
390 
391     case OMF_None:
392     case OMF_dealloc:
393     case OMF_finalize:
394     case OMF_alloc:
395     case OMF_init:
396     case OMF_mutableCopy:
397     case OMF_copy:
398     case OMF_new:
399     case OMF_self:
400     case OMF_initialize:
401     case OMF_performSelector:
402       break;
403     }
404   }
405 
406   // Warn on deprecated methods under -Wdeprecated-implementations,
407   // and prepare for warning on missing super calls.
408   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
409     ObjCMethodDecl *IMD =
410       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
411 
412     if (IMD) {
413       ObjCImplDecl *ImplDeclOfMethodDef =
414         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
415       ObjCContainerDecl *ContDeclOfMethodDecl =
416         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
417       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
418       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
419         ImplDeclOfMethodDecl = OID->getImplementation();
420       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
421         if (CD->IsClassExtension()) {
422           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
423             ImplDeclOfMethodDecl = OID->getImplementation();
424         } else
425             ImplDeclOfMethodDecl = CD->getImplementation();
426       }
427       // No need to issue deprecated warning if deprecated mehod in class/category
428       // is being implemented in its own implementation (no overriding is involved).
429       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
430         DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
431     }
432 
433     if (MDecl->getMethodFamily() == OMF_init) {
434       if (MDecl->isDesignatedInitializerForTheInterface()) {
435         getCurFunction()->ObjCIsDesignatedInit = true;
436         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
437             IC->getSuperClass() != nullptr;
438       } else if (IC->hasDesignatedInitializers()) {
439         getCurFunction()->ObjCIsSecondaryInit = true;
440         getCurFunction()->ObjCWarnForNoInitDelegation = true;
441       }
442     }
443 
444     // If this is "dealloc" or "finalize", set some bit here.
445     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
446     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
447     // Only do this if the current class actually has a superclass.
448     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
449       ObjCMethodFamily Family = MDecl->getMethodFamily();
450       if (Family == OMF_dealloc) {
451         if (!(getLangOpts().ObjCAutoRefCount ||
452               getLangOpts().getGC() == LangOptions::GCOnly))
453           getCurFunction()->ObjCShouldCallSuper = true;
454 
455       } else if (Family == OMF_finalize) {
456         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
457           getCurFunction()->ObjCShouldCallSuper = true;
458 
459       } else {
460         const ObjCMethodDecl *SuperMethod =
461           SuperClass->lookupMethod(MDecl->getSelector(),
462                                    MDecl->isInstanceMethod());
463         getCurFunction()->ObjCShouldCallSuper =
464           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
465       }
466     }
467   }
468 }
469 
470 namespace {
471 
472 // Callback to only accept typo corrections that are Objective-C classes.
473 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
474 // function will reject corrections to that class.
475 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
476  public:
477   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
478   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
479       : CurrentIDecl(IDecl) {}
480 
481   bool ValidateCandidate(const TypoCorrection &candidate) override {
482     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
483     return ID && !declaresSameEntity(ID, CurrentIDecl);
484   }
485 
486  private:
487   ObjCInterfaceDecl *CurrentIDecl;
488 };
489 
490 } // end anonymous namespace
491 
492 static void diagnoseUseOfProtocols(Sema &TheSema,
493                                    ObjCContainerDecl *CD,
494                                    ObjCProtocolDecl *const *ProtoRefs,
495                                    unsigned NumProtoRefs,
496                                    const SourceLocation *ProtoLocs) {
497   assert(ProtoRefs);
498   // Diagnose availability in the context of the ObjC container.
499   Sema::ContextRAII SavedContext(TheSema, CD);
500   for (unsigned i = 0; i < NumProtoRefs; ++i) {
501     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
502                                     /*UnknownObjCClass=*/nullptr,
503                                     /*ObjCPropertyAccess=*/false,
504                                     /*AvoidPartialAvailabilityChecks=*/true);
505   }
506 }
507 
508 void Sema::
509 ActOnSuperClassOfClassInterface(Scope *S,
510                                 SourceLocation AtInterfaceLoc,
511                                 ObjCInterfaceDecl *IDecl,
512                                 IdentifierInfo *ClassName,
513                                 SourceLocation ClassLoc,
514                                 IdentifierInfo *SuperName,
515                                 SourceLocation SuperLoc,
516                                 ArrayRef<ParsedType> SuperTypeArgs,
517                                 SourceRange SuperTypeArgsRange) {
518   // Check if a different kind of symbol declared in this scope.
519   NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
520                                          LookupOrdinaryName);
521 
522   if (!PrevDecl) {
523     // Try to correct for a typo in the superclass name without correcting
524     // to the class we're defining.
525     if (TypoCorrection Corrected = CorrectTypo(
526             DeclarationNameInfo(SuperName, SuperLoc),
527             LookupOrdinaryName, TUScope,
528             nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
529             CTK_ErrorRecovery)) {
530       diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
531                    << SuperName << ClassName);
532       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
533     }
534   }
535 
536   if (declaresSameEntity(PrevDecl, IDecl)) {
537     Diag(SuperLoc, diag::err_recursive_superclass)
538       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
539     IDecl->setEndOfDefinitionLoc(ClassLoc);
540   } else {
541     ObjCInterfaceDecl *SuperClassDecl =
542     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
543     QualType SuperClassType;
544 
545     // Diagnose classes that inherit from deprecated classes.
546     if (SuperClassDecl) {
547       (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
548       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
549     }
550 
551     if (PrevDecl && !SuperClassDecl) {
552       // The previous declaration was not a class decl. Check if we have a
553       // typedef. If we do, get the underlying class type.
554       if (const TypedefNameDecl *TDecl =
555           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
556         QualType T = TDecl->getUnderlyingType();
557         if (T->isObjCObjectType()) {
558           if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
559             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
560             SuperClassType = Context.getTypeDeclType(TDecl);
561 
562             // This handles the following case:
563             // @interface NewI @end
564             // typedef NewI DeprI __attribute__((deprecated("blah")))
565             // @interface SI : DeprI /* warn here */ @end
566             (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
567           }
568         }
569       }
570 
571       // This handles the following case:
572       //
573       // typedef int SuperClass;
574       // @interface MyClass : SuperClass {} @end
575       //
576       if (!SuperClassDecl) {
577         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
578         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
579       }
580     }
581 
582     if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
583       if (!SuperClassDecl)
584         Diag(SuperLoc, diag::err_undef_superclass)
585           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
586       else if (RequireCompleteType(SuperLoc,
587                                    SuperClassType,
588                                    diag::err_forward_superclass,
589                                    SuperClassDecl->getDeclName(),
590                                    ClassName,
591                                    SourceRange(AtInterfaceLoc, ClassLoc))) {
592         SuperClassDecl = nullptr;
593         SuperClassType = QualType();
594       }
595     }
596 
597     if (SuperClassType.isNull()) {
598       assert(!SuperClassDecl && "Failed to set SuperClassType?");
599       return;
600     }
601 
602     // Handle type arguments on the superclass.
603     TypeSourceInfo *SuperClassTInfo = nullptr;
604     if (!SuperTypeArgs.empty()) {
605       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
606                                         S,
607                                         SuperLoc,
608                                         CreateParsedType(SuperClassType,
609                                                          nullptr),
610                                         SuperTypeArgsRange.getBegin(),
611                                         SuperTypeArgs,
612                                         SuperTypeArgsRange.getEnd(),
613                                         SourceLocation(),
614                                         { },
615                                         { },
616                                         SourceLocation());
617       if (!fullSuperClassType.isUsable())
618         return;
619 
620       SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
621                                          &SuperClassTInfo);
622     }
623 
624     if (!SuperClassTInfo) {
625       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
626                                                          SuperLoc);
627     }
628 
629     IDecl->setSuperClass(SuperClassTInfo);
630     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
631   }
632 }
633 
634 DeclResult Sema::actOnObjCTypeParam(Scope *S,
635                                     ObjCTypeParamVariance variance,
636                                     SourceLocation varianceLoc,
637                                     unsigned index,
638                                     IdentifierInfo *paramName,
639                                     SourceLocation paramLoc,
640                                     SourceLocation colonLoc,
641                                     ParsedType parsedTypeBound) {
642   // If there was an explicitly-provided type bound, check it.
643   TypeSourceInfo *typeBoundInfo = nullptr;
644   if (parsedTypeBound) {
645     // The type bound can be any Objective-C pointer type.
646     QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
647     if (typeBound->isObjCObjectPointerType()) {
648       // okay
649     } else if (typeBound->isObjCObjectType()) {
650       // The user forgot the * on an Objective-C pointer type, e.g.,
651       // "T : NSView".
652       SourceLocation starLoc = getLocForEndOfToken(
653                                  typeBoundInfo->getTypeLoc().getEndLoc());
654       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
655            diag::err_objc_type_param_bound_missing_pointer)
656         << typeBound << paramName
657         << FixItHint::CreateInsertion(starLoc, " *");
658 
659       // Create a new type location builder so we can update the type
660       // location information we have.
661       TypeLocBuilder builder;
662       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
663 
664       // Create the Objective-C pointer type.
665       typeBound = Context.getObjCObjectPointerType(typeBound);
666       ObjCObjectPointerTypeLoc newT
667         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
668       newT.setStarLoc(starLoc);
669 
670       // Form the new type source information.
671       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
672     } else {
673       // Not a valid type bound.
674       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
675            diag::err_objc_type_param_bound_nonobject)
676         << typeBound << paramName;
677 
678       // Forget the bound; we'll default to id later.
679       typeBoundInfo = nullptr;
680     }
681 
682     // Type bounds cannot have qualifiers (even indirectly) or explicit
683     // nullability.
684     if (typeBoundInfo) {
685       QualType typeBound = typeBoundInfo->getType();
686       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
687       if (qual || typeBound.hasQualifiers()) {
688         bool diagnosed = false;
689         SourceRange rangeToRemove;
690         if (qual) {
691           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
692             rangeToRemove = attr.getLocalSourceRange();
693             if (attr.getTypePtr()->getImmediateNullability()) {
694               Diag(attr.getLocStart(),
695                    diag::err_objc_type_param_bound_explicit_nullability)
696                 << paramName << typeBound
697                 << FixItHint::CreateRemoval(rangeToRemove);
698               diagnosed = true;
699             }
700           }
701         }
702 
703         if (!diagnosed) {
704           Diag(qual ? qual.getLocStart()
705                     : typeBoundInfo->getTypeLoc().getLocStart(),
706               diag::err_objc_type_param_bound_qualified)
707             << paramName << typeBound << typeBound.getQualifiers().getAsString()
708             << FixItHint::CreateRemoval(rangeToRemove);
709         }
710 
711         // If the type bound has qualifiers other than CVR, we need to strip
712         // them or we'll probably assert later when trying to apply new
713         // qualifiers.
714         Qualifiers quals = typeBound.getQualifiers();
715         quals.removeCVRQualifiers();
716         if (!quals.empty()) {
717           typeBoundInfo =
718              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
719         }
720       }
721     }
722   }
723 
724   // If there was no explicit type bound (or we removed it due to an error),
725   // use 'id' instead.
726   if (!typeBoundInfo) {
727     colonLoc = SourceLocation();
728     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
729   }
730 
731   // Create the type parameter.
732   return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
733                                    index, paramLoc, paramName, colonLoc,
734                                    typeBoundInfo);
735 }
736 
737 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
738                                                 SourceLocation lAngleLoc,
739                                                 ArrayRef<Decl *> typeParamsIn,
740                                                 SourceLocation rAngleLoc) {
741   // We know that the array only contains Objective-C type parameters.
742   ArrayRef<ObjCTypeParamDecl *>
743     typeParams(
744       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
745       typeParamsIn.size());
746 
747   // Diagnose redeclarations of type parameters.
748   // We do this now because Objective-C type parameters aren't pushed into
749   // scope until later (after the instance variable block), but we want the
750   // diagnostics to occur right after we parse the type parameter list.
751   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
752   for (auto typeParam : typeParams) {
753     auto known = knownParams.find(typeParam->getIdentifier());
754     if (known != knownParams.end()) {
755       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
756         << typeParam->getIdentifier()
757         << SourceRange(known->second->getLocation());
758 
759       typeParam->setInvalidDecl();
760     } else {
761       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
762 
763       // Push the type parameter into scope.
764       PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
765     }
766   }
767 
768   // Create the parameter list.
769   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
770 }
771 
772 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
773   for (auto typeParam : *typeParamList) {
774     if (!typeParam->isInvalidDecl()) {
775       S->RemoveDecl(typeParam);
776       IdResolver.RemoveDecl(typeParam);
777     }
778   }
779 }
780 
781 namespace {
782   /// The context in which an Objective-C type parameter list occurs, for use
783   /// in diagnostics.
784   enum class TypeParamListContext {
785     ForwardDeclaration,
786     Definition,
787     Category,
788     Extension
789   };
790 } // end anonymous namespace
791 
792 /// Check consistency between two Objective-C type parameter lists, e.g.,
793 /// between a category/extension and an \@interface or between an \@class and an
794 /// \@interface.
795 static bool checkTypeParamListConsistency(Sema &S,
796                                           ObjCTypeParamList *prevTypeParams,
797                                           ObjCTypeParamList *newTypeParams,
798                                           TypeParamListContext newContext) {
799   // If the sizes don't match, complain about that.
800   if (prevTypeParams->size() != newTypeParams->size()) {
801     SourceLocation diagLoc;
802     if (newTypeParams->size() > prevTypeParams->size()) {
803       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
804     } else {
805       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
806     }
807 
808     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
809       << static_cast<unsigned>(newContext)
810       << (newTypeParams->size() > prevTypeParams->size())
811       << prevTypeParams->size()
812       << newTypeParams->size();
813 
814     return true;
815   }
816 
817   // Match up the type parameters.
818   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
819     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
820     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
821 
822     // Check for consistency of the variance.
823     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
824       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
825           newContext != TypeParamListContext::Definition) {
826         // When the new type parameter is invariant and is not part
827         // of the definition, just propagate the variance.
828         newTypeParam->setVariance(prevTypeParam->getVariance());
829       } else if (prevTypeParam->getVariance()
830                    == ObjCTypeParamVariance::Invariant &&
831                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
832                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
833                      ->getDefinition() == prevTypeParam->getDeclContext())) {
834         // When the old parameter is invariant and was not part of the
835         // definition, just ignore the difference because it doesn't
836         // matter.
837       } else {
838         {
839           // Diagnose the conflict and update the second declaration.
840           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
841           if (diagLoc.isInvalid())
842             diagLoc = newTypeParam->getLocStart();
843 
844           auto diag = S.Diag(diagLoc,
845                              diag::err_objc_type_param_variance_conflict)
846                         << static_cast<unsigned>(newTypeParam->getVariance())
847                         << newTypeParam->getDeclName()
848                         << static_cast<unsigned>(prevTypeParam->getVariance())
849                         << prevTypeParam->getDeclName();
850           switch (prevTypeParam->getVariance()) {
851           case ObjCTypeParamVariance::Invariant:
852             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
853             break;
854 
855           case ObjCTypeParamVariance::Covariant:
856           case ObjCTypeParamVariance::Contravariant: {
857             StringRef newVarianceStr
858                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
859                    ? "__covariant"
860                    : "__contravariant";
861             if (newTypeParam->getVariance()
862                   == ObjCTypeParamVariance::Invariant) {
863               diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
864                                                  (newVarianceStr + " ").str());
865             } else {
866               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
867                                                newVarianceStr);
868             }
869           }
870           }
871         }
872 
873         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
874           << prevTypeParam->getDeclName();
875 
876         // Override the variance.
877         newTypeParam->setVariance(prevTypeParam->getVariance());
878       }
879     }
880 
881     // If the bound types match, there's nothing to do.
882     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
883                               newTypeParam->getUnderlyingType()))
884       continue;
885 
886     // If the new type parameter's bound was explicit, complain about it being
887     // different from the original.
888     if (newTypeParam->hasExplicitBound()) {
889       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
890                                     ->getTypeLoc().getSourceRange();
891       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
892         << newTypeParam->getUnderlyingType()
893         << newTypeParam->getDeclName()
894         << prevTypeParam->hasExplicitBound()
895         << prevTypeParam->getUnderlyingType()
896         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
897         << prevTypeParam->getDeclName()
898         << FixItHint::CreateReplacement(
899              newBoundRange,
900              prevTypeParam->getUnderlyingType().getAsString(
901                S.Context.getPrintingPolicy()));
902 
903       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
904         << prevTypeParam->getDeclName();
905 
906       // Override the new type parameter's bound type with the previous type,
907       // so that it's consistent.
908       newTypeParam->setTypeSourceInfo(
909         S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
910       continue;
911     }
912 
913     // The new type parameter got the implicit bound of 'id'. That's okay for
914     // categories and extensions (overwrite it later), but not for forward
915     // declarations and @interfaces, because those must be standalone.
916     if (newContext == TypeParamListContext::ForwardDeclaration ||
917         newContext == TypeParamListContext::Definition) {
918       // Diagnose this problem for forward declarations and definitions.
919       SourceLocation insertionLoc
920         = S.getLocForEndOfToken(newTypeParam->getLocation());
921       std::string newCode
922         = " : " + prevTypeParam->getUnderlyingType().getAsString(
923                     S.Context.getPrintingPolicy());
924       S.Diag(newTypeParam->getLocation(),
925              diag::err_objc_type_param_bound_missing)
926         << prevTypeParam->getUnderlyingType()
927         << newTypeParam->getDeclName()
928         << (newContext == TypeParamListContext::ForwardDeclaration)
929         << FixItHint::CreateInsertion(insertionLoc, newCode);
930 
931       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
932         << prevTypeParam->getDeclName();
933     }
934 
935     // Update the new type parameter's bound to match the previous one.
936     newTypeParam->setTypeSourceInfo(
937       S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
938   }
939 
940   return false;
941 }
942 
943 Decl *Sema::
944 ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
945                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
946                          ObjCTypeParamList *typeParamList,
947                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
948                          ArrayRef<ParsedType> SuperTypeArgs,
949                          SourceRange SuperTypeArgsRange,
950                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
951                          const SourceLocation *ProtoLocs,
952                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
953   assert(ClassName && "Missing class identifier");
954 
955   // Check for another declaration kind with the same name.
956   NamedDecl *PrevDecl =
957       LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
958                        forRedeclarationInCurContext());
959 
960   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
961     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
962     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
963   }
964 
965   // Create a declaration to describe this @interface.
966   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
967 
968   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
969     // A previous decl with a different name is because of
970     // @compatibility_alias, for example:
971     // \code
972     //   @class NewImage;
973     //   @compatibility_alias OldImage NewImage;
974     // \endcode
975     // A lookup for 'OldImage' will return the 'NewImage' decl.
976     //
977     // In such a case use the real declaration name, instead of the alias one,
978     // otherwise we will break IdentifierResolver and redecls-chain invariants.
979     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
980     // has been aliased.
981     ClassName = PrevIDecl->getIdentifier();
982   }
983 
984   // If there was a forward declaration with type parameters, check
985   // for consistency.
986   if (PrevIDecl) {
987     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
988       if (typeParamList) {
989         // Both have type parameter lists; check for consistency.
990         if (checkTypeParamListConsistency(*this, prevTypeParamList,
991                                           typeParamList,
992                                           TypeParamListContext::Definition)) {
993           typeParamList = nullptr;
994         }
995       } else {
996         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
997           << ClassName;
998         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
999           << ClassName;
1000 
1001         // Clone the type parameter list.
1002         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1003         for (auto typeParam : *prevTypeParamList) {
1004           clonedTypeParams.push_back(
1005             ObjCTypeParamDecl::Create(
1006               Context,
1007               CurContext,
1008               typeParam->getVariance(),
1009               SourceLocation(),
1010               typeParam->getIndex(),
1011               SourceLocation(),
1012               typeParam->getIdentifier(),
1013               SourceLocation(),
1014               Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1015         }
1016 
1017         typeParamList = ObjCTypeParamList::create(Context,
1018                                                   SourceLocation(),
1019                                                   clonedTypeParams,
1020                                                   SourceLocation());
1021       }
1022     }
1023   }
1024 
1025   ObjCInterfaceDecl *IDecl
1026     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1027                                 typeParamList, PrevIDecl, ClassLoc);
1028   if (PrevIDecl) {
1029     // Class already seen. Was it a definition?
1030     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1031       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1032         << PrevIDecl->getDeclName();
1033       Diag(Def->getLocation(), diag::note_previous_definition);
1034       IDecl->setInvalidDecl();
1035     }
1036   }
1037 
1038   if (AttrList)
1039     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1040   AddPragmaAttributes(TUScope, IDecl);
1041   PushOnScopeChains(IDecl, TUScope);
1042 
1043   // Start the definition of this class. If we're in a redefinition case, there
1044   // may already be a definition, so we'll end up adding to it.
1045   if (!IDecl->hasDefinition())
1046     IDecl->startDefinition();
1047 
1048   if (SuperName) {
1049     // Diagnose availability in the context of the @interface.
1050     ContextRAII SavedContext(*this, IDecl);
1051 
1052     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1053                                     ClassName, ClassLoc,
1054                                     SuperName, SuperLoc, SuperTypeArgs,
1055                                     SuperTypeArgsRange);
1056   } else { // we have a root class.
1057     IDecl->setEndOfDefinitionLoc(ClassLoc);
1058   }
1059 
1060   // Check then save referenced protocols.
1061   if (NumProtoRefs) {
1062     diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1063                            NumProtoRefs, ProtoLocs);
1064     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1065                            ProtoLocs, Context);
1066     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1067   }
1068 
1069   CheckObjCDeclScope(IDecl);
1070   return ActOnObjCContainerStartDefinition(IDecl);
1071 }
1072 
1073 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1074 /// typedef'ed use for a qualified super class and adds them to the list
1075 /// of the protocols.
1076 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1077                                   SmallVectorImpl<SourceLocation> &ProtocolLocs,
1078                                    IdentifierInfo *SuperName,
1079                                    SourceLocation SuperLoc) {
1080   if (!SuperName)
1081     return;
1082   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1083                                       LookupOrdinaryName);
1084   if (!IDecl)
1085     return;
1086 
1087   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1088     QualType T = TDecl->getUnderlyingType();
1089     if (T->isObjCObjectType())
1090       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1091         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1092         // FIXME: Consider whether this should be an invalid loc since the loc
1093         // is not actually pointing to a protocol name reference but to the
1094         // typedef reference. Note that the base class name loc is also pointing
1095         // at the typedef.
1096         ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1097       }
1098   }
1099 }
1100 
1101 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1102 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1103 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1104                                     IdentifierInfo *AliasName,
1105                                     SourceLocation AliasLocation,
1106                                     IdentifierInfo *ClassName,
1107                                     SourceLocation ClassLocation) {
1108   // Look for previous declaration of alias name
1109   NamedDecl *ADecl =
1110       LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1111                        forRedeclarationInCurContext());
1112   if (ADecl) {
1113     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1114     Diag(ADecl->getLocation(), diag::note_previous_declaration);
1115     return nullptr;
1116   }
1117   // Check for class declaration
1118   NamedDecl *CDeclU =
1119       LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1120                        forRedeclarationInCurContext());
1121   if (const TypedefNameDecl *TDecl =
1122         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1123     QualType T = TDecl->getUnderlyingType();
1124     if (T->isObjCObjectType()) {
1125       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1126         ClassName = IDecl->getIdentifier();
1127         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1128                                   LookupOrdinaryName,
1129                                   forRedeclarationInCurContext());
1130       }
1131     }
1132   }
1133   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1134   if (!CDecl) {
1135     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1136     if (CDeclU)
1137       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1138     return nullptr;
1139   }
1140 
1141   // Everything checked out, instantiate a new alias declaration AST.
1142   ObjCCompatibleAliasDecl *AliasDecl =
1143     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1144 
1145   if (!CheckObjCDeclScope(AliasDecl))
1146     PushOnScopeChains(AliasDecl, TUScope);
1147 
1148   return AliasDecl;
1149 }
1150 
1151 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1152   IdentifierInfo *PName,
1153   SourceLocation &Ploc, SourceLocation PrevLoc,
1154   const ObjCList<ObjCProtocolDecl> &PList) {
1155 
1156   bool res = false;
1157   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1158        E = PList.end(); I != E; ++I) {
1159     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1160                                                  Ploc)) {
1161       if (PDecl->getIdentifier() == PName) {
1162         Diag(Ploc, diag::err_protocol_has_circular_dependency);
1163         Diag(PrevLoc, diag::note_previous_definition);
1164         res = true;
1165       }
1166 
1167       if (!PDecl->hasDefinition())
1168         continue;
1169 
1170       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1171             PDecl->getLocation(), PDecl->getReferencedProtocols()))
1172         res = true;
1173     }
1174   }
1175   return res;
1176 }
1177 
1178 Decl *
1179 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
1180                                   IdentifierInfo *ProtocolName,
1181                                   SourceLocation ProtocolLoc,
1182                                   Decl * const *ProtoRefs,
1183                                   unsigned NumProtoRefs,
1184                                   const SourceLocation *ProtoLocs,
1185                                   SourceLocation EndProtoLoc,
1186                                   AttributeList *AttrList) {
1187   bool err = false;
1188   // FIXME: Deal with AttrList.
1189   assert(ProtocolName && "Missing protocol identifier");
1190   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1191                                               forRedeclarationInCurContext());
1192   ObjCProtocolDecl *PDecl = nullptr;
1193   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1194     // If we already have a definition, complain.
1195     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1196     Diag(Def->getLocation(), diag::note_previous_definition);
1197 
1198     // Create a new protocol that is completely distinct from previous
1199     // declarations, and do not make this protocol available for name lookup.
1200     // That way, we'll end up completely ignoring the duplicate.
1201     // FIXME: Can we turn this into an error?
1202     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1203                                      ProtocolLoc, AtProtoInterfaceLoc,
1204                                      /*PrevDecl=*/nullptr);
1205     PDecl->startDefinition();
1206   } else {
1207     if (PrevDecl) {
1208       // Check for circular dependencies among protocol declarations. This can
1209       // only happen if this protocol was forward-declared.
1210       ObjCList<ObjCProtocolDecl> PList;
1211       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1212       err = CheckForwardProtocolDeclarationForCircularDependency(
1213               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1214     }
1215 
1216     // Create the new declaration.
1217     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1218                                      ProtocolLoc, AtProtoInterfaceLoc,
1219                                      /*PrevDecl=*/PrevDecl);
1220 
1221     PushOnScopeChains(PDecl, TUScope);
1222     PDecl->startDefinition();
1223   }
1224 
1225   if (AttrList)
1226     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1227   AddPragmaAttributes(TUScope, PDecl);
1228 
1229   // Merge attributes from previous declarations.
1230   if (PrevDecl)
1231     mergeDeclAttributes(PDecl, PrevDecl);
1232 
1233   if (!err && NumProtoRefs ) {
1234     /// Check then save referenced protocols.
1235     diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1236                            NumProtoRefs, ProtoLocs);
1237     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1238                            ProtoLocs, Context);
1239   }
1240 
1241   CheckObjCDeclScope(PDecl);
1242   return ActOnObjCContainerStartDefinition(PDecl);
1243 }
1244 
1245 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1246                                           ObjCProtocolDecl *&UndefinedProtocol) {
1247   if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1248     UndefinedProtocol = PDecl;
1249     return true;
1250   }
1251 
1252   for (auto *PI : PDecl->protocols())
1253     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1254       UndefinedProtocol = PI;
1255       return true;
1256     }
1257   return false;
1258 }
1259 
1260 /// FindProtocolDeclaration - This routine looks up protocols and
1261 /// issues an error if they are not declared. It returns list of
1262 /// protocol declarations in its 'Protocols' argument.
1263 void
1264 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1265                               ArrayRef<IdentifierLocPair> ProtocolId,
1266                               SmallVectorImpl<Decl *> &Protocols) {
1267   for (const IdentifierLocPair &Pair : ProtocolId) {
1268     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1269     if (!PDecl) {
1270       TypoCorrection Corrected = CorrectTypo(
1271           DeclarationNameInfo(Pair.first, Pair.second),
1272           LookupObjCProtocolName, TUScope, nullptr,
1273           llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1274           CTK_ErrorRecovery);
1275       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1276         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1277                                     << Pair.first);
1278     }
1279 
1280     if (!PDecl) {
1281       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1282       continue;
1283     }
1284     // If this is a forward protocol declaration, get its definition.
1285     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1286       PDecl = PDecl->getDefinition();
1287 
1288     // For an objc container, delay protocol reference checking until after we
1289     // can set the objc decl as the availability context, otherwise check now.
1290     if (!ForObjCContainer) {
1291       (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1292     }
1293 
1294     // If this is a forward declaration and we are supposed to warn in this
1295     // case, do it.
1296     // FIXME: Recover nicely in the hidden case.
1297     ObjCProtocolDecl *UndefinedProtocol;
1298 
1299     if (WarnOnDeclarations &&
1300         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1301       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1302       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1303         << UndefinedProtocol;
1304     }
1305     Protocols.push_back(PDecl);
1306   }
1307 }
1308 
1309 namespace {
1310 // Callback to only accept typo corrections that are either
1311 // Objective-C protocols or valid Objective-C type arguments.
1312 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1313   ASTContext &Context;
1314   Sema::LookupNameKind LookupKind;
1315  public:
1316   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1317                                     Sema::LookupNameKind lookupKind)
1318     : Context(context), LookupKind(lookupKind) { }
1319 
1320   bool ValidateCandidate(const TypoCorrection &candidate) override {
1321     // If we're allowed to find protocols and we have a protocol, accept it.
1322     if (LookupKind != Sema::LookupOrdinaryName) {
1323       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1324         return true;
1325     }
1326 
1327     // If we're allowed to find type names and we have one, accept it.
1328     if (LookupKind != Sema::LookupObjCProtocolName) {
1329       // If we have a type declaration, we might accept this result.
1330       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1331         // If we found a tag declaration outside of C++, skip it. This
1332         // can happy because we look for any name when there is no
1333         // bias to protocol or type names.
1334         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1335           return false;
1336 
1337         // Make sure the type is something we would accept as a type
1338         // argument.
1339         auto type = Context.getTypeDeclType(typeDecl);
1340         if (type->isObjCObjectPointerType() ||
1341             type->isBlockPointerType() ||
1342             type->isDependentType() ||
1343             type->isObjCObjectType())
1344           return true;
1345 
1346         return false;
1347       }
1348 
1349       // If we have an Objective-C class type, accept it; there will
1350       // be another fix to add the '*'.
1351       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1352         return true;
1353 
1354       return false;
1355     }
1356 
1357     return false;
1358   }
1359 };
1360 } // end anonymous namespace
1361 
1362 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1363                                         SourceLocation ProtocolLoc,
1364                                         IdentifierInfo *TypeArgId,
1365                                         SourceLocation TypeArgLoc,
1366                                         bool SelectProtocolFirst) {
1367   Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1368       << SelectProtocolFirst << TypeArgId << ProtocolId
1369       << SourceRange(ProtocolLoc);
1370 }
1371 
1372 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1373        Scope *S,
1374        ParsedType baseType,
1375        SourceLocation lAngleLoc,
1376        ArrayRef<IdentifierInfo *> identifiers,
1377        ArrayRef<SourceLocation> identifierLocs,
1378        SourceLocation rAngleLoc,
1379        SourceLocation &typeArgsLAngleLoc,
1380        SmallVectorImpl<ParsedType> &typeArgs,
1381        SourceLocation &typeArgsRAngleLoc,
1382        SourceLocation &protocolLAngleLoc,
1383        SmallVectorImpl<Decl *> &protocols,
1384        SourceLocation &protocolRAngleLoc,
1385        bool warnOnIncompleteProtocols) {
1386   // Local function that updates the declaration specifiers with
1387   // protocol information.
1388   unsigned numProtocolsResolved = 0;
1389   auto resolvedAsProtocols = [&] {
1390     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1391 
1392     // Determine whether the base type is a parameterized class, in
1393     // which case we want to warn about typos such as
1394     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1395     ObjCInterfaceDecl *baseClass = nullptr;
1396     QualType base = GetTypeFromParser(baseType, nullptr);
1397     bool allAreTypeNames = false;
1398     SourceLocation firstClassNameLoc;
1399     if (!base.isNull()) {
1400       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1401         baseClass = objcObjectType->getInterface();
1402         if (baseClass) {
1403           if (auto typeParams = baseClass->getTypeParamList()) {
1404             if (typeParams->size() == numProtocolsResolved) {
1405               // Note that we should be looking for type names, too.
1406               allAreTypeNames = true;
1407             }
1408           }
1409         }
1410       }
1411     }
1412 
1413     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1414       ObjCProtocolDecl *&proto
1415         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1416       // For an objc container, delay protocol reference checking until after we
1417       // can set the objc decl as the availability context, otherwise check now.
1418       if (!warnOnIncompleteProtocols) {
1419         (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1420       }
1421 
1422       // If this is a forward protocol declaration, get its definition.
1423       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1424         proto = proto->getDefinition();
1425 
1426       // If this is a forward declaration and we are supposed to warn in this
1427       // case, do it.
1428       // FIXME: Recover nicely in the hidden case.
1429       ObjCProtocolDecl *forwardDecl = nullptr;
1430       if (warnOnIncompleteProtocols &&
1431           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1432         Diag(identifierLocs[i], diag::warn_undef_protocolref)
1433           << proto->getDeclName();
1434         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1435           << forwardDecl;
1436       }
1437 
1438       // If everything this far has been a type name (and we care
1439       // about such things), check whether this name refers to a type
1440       // as well.
1441       if (allAreTypeNames) {
1442         if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1443                                           LookupOrdinaryName)) {
1444           if (isa<ObjCInterfaceDecl>(decl)) {
1445             if (firstClassNameLoc.isInvalid())
1446               firstClassNameLoc = identifierLocs[i];
1447           } else if (!isa<TypeDecl>(decl)) {
1448             // Not a type.
1449             allAreTypeNames = false;
1450           }
1451         } else {
1452           allAreTypeNames = false;
1453         }
1454       }
1455     }
1456 
1457     // All of the protocols listed also have type names, and at least
1458     // one is an Objective-C class name. Check whether all of the
1459     // protocol conformances are declared by the base class itself, in
1460     // which case we warn.
1461     if (allAreTypeNames && firstClassNameLoc.isValid()) {
1462       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1463       Context.CollectInheritedProtocols(baseClass, knownProtocols);
1464       bool allProtocolsDeclared = true;
1465       for (auto proto : protocols) {
1466         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1467           allProtocolsDeclared = false;
1468           break;
1469         }
1470       }
1471 
1472       if (allProtocolsDeclared) {
1473         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1474           << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1475           << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1476                                         " *");
1477       }
1478     }
1479 
1480     protocolLAngleLoc = lAngleLoc;
1481     protocolRAngleLoc = rAngleLoc;
1482     assert(protocols.size() == identifierLocs.size());
1483   };
1484 
1485   // Attempt to resolve all of the identifiers as protocols.
1486   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1487     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1488     protocols.push_back(proto);
1489     if (proto)
1490       ++numProtocolsResolved;
1491   }
1492 
1493   // If all of the names were protocols, these were protocol qualifiers.
1494   if (numProtocolsResolved == identifiers.size())
1495     return resolvedAsProtocols();
1496 
1497   // Attempt to resolve all of the identifiers as type names or
1498   // Objective-C class names. The latter is technically ill-formed,
1499   // but is probably something like \c NSArray<NSView *> missing the
1500   // \c*.
1501   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1502   SmallVector<TypeOrClassDecl, 4> typeDecls;
1503   unsigned numTypeDeclsResolved = 0;
1504   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1505     NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1506                                        LookupOrdinaryName);
1507     if (!decl) {
1508       typeDecls.push_back(TypeOrClassDecl());
1509       continue;
1510     }
1511 
1512     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1513       typeDecls.push_back(typeDecl);
1514       ++numTypeDeclsResolved;
1515       continue;
1516     }
1517 
1518     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1519       typeDecls.push_back(objcClass);
1520       ++numTypeDeclsResolved;
1521       continue;
1522     }
1523 
1524     typeDecls.push_back(TypeOrClassDecl());
1525   }
1526 
1527   AttributeFactory attrFactory;
1528 
1529   // Local function that forms a reference to the given type or
1530   // Objective-C class declaration.
1531   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1532                                 -> TypeResult {
1533     // Form declaration specifiers. They simply refer to the type.
1534     DeclSpec DS(attrFactory);
1535     const char* prevSpec; // unused
1536     unsigned diagID; // unused
1537     QualType type;
1538     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1539       type = Context.getTypeDeclType(actualTypeDecl);
1540     else
1541       type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1542     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1543     ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1544     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1545                        parsedType, Context.getPrintingPolicy());
1546     // Use the identifier location for the type source range.
1547     DS.SetRangeStart(loc);
1548     DS.SetRangeEnd(loc);
1549 
1550     // Form the declarator.
1551     Declarator D(DS, DeclaratorContext::TypeNameContext);
1552 
1553     // If we have a typedef of an Objective-C class type that is missing a '*',
1554     // add the '*'.
1555     if (type->getAs<ObjCInterfaceType>()) {
1556       SourceLocation starLoc = getLocForEndOfToken(loc);
1557       ParsedAttributes parsedAttrs(attrFactory);
1558       D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1559                                                 SourceLocation(),
1560                                                 SourceLocation(),
1561                                                 SourceLocation(),
1562                                                 SourceLocation(),
1563                                                 SourceLocation()),
1564                                                 parsedAttrs,
1565                                                 starLoc);
1566 
1567       // Diagnose the missing '*'.
1568       Diag(loc, diag::err_objc_type_arg_missing_star)
1569         << type
1570         << FixItHint::CreateInsertion(starLoc, " *");
1571     }
1572 
1573     // Convert this to a type.
1574     return ActOnTypeName(S, D);
1575   };
1576 
1577   // Local function that updates the declaration specifiers with
1578   // type argument information.
1579   auto resolvedAsTypeDecls = [&] {
1580     // We did not resolve these as protocols.
1581     protocols.clear();
1582 
1583     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1584     // Map type declarations to type arguments.
1585     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1586       // Map type reference to a type.
1587       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1588       if (!type.isUsable()) {
1589         typeArgs.clear();
1590         return;
1591       }
1592 
1593       typeArgs.push_back(type.get());
1594     }
1595 
1596     typeArgsLAngleLoc = lAngleLoc;
1597     typeArgsRAngleLoc = rAngleLoc;
1598   };
1599 
1600   // If all of the identifiers can be resolved as type names or
1601   // Objective-C class names, we have type arguments.
1602   if (numTypeDeclsResolved == identifiers.size())
1603     return resolvedAsTypeDecls();
1604 
1605   // Error recovery: some names weren't found, or we have a mix of
1606   // type and protocol names. Go resolve all of the unresolved names
1607   // and complain if we can't find a consistent answer.
1608   LookupNameKind lookupKind = LookupAnyName;
1609   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1610     // If we already have a protocol or type. Check whether it is the
1611     // right thing.
1612     if (protocols[i] || typeDecls[i]) {
1613       // If we haven't figured out whether we want types or protocols
1614       // yet, try to figure it out from this name.
1615       if (lookupKind == LookupAnyName) {
1616         // If this name refers to both a protocol and a type (e.g., \c
1617         // NSObject), don't conclude anything yet.
1618         if (protocols[i] && typeDecls[i])
1619           continue;
1620 
1621         // Otherwise, let this name decide whether we'll be correcting
1622         // toward types or protocols.
1623         lookupKind = protocols[i] ? LookupObjCProtocolName
1624                                   : LookupOrdinaryName;
1625         continue;
1626       }
1627 
1628       // If we want protocols and we have a protocol, there's nothing
1629       // more to do.
1630       if (lookupKind == LookupObjCProtocolName && protocols[i])
1631         continue;
1632 
1633       // If we want types and we have a type declaration, there's
1634       // nothing more to do.
1635       if (lookupKind == LookupOrdinaryName && typeDecls[i])
1636         continue;
1637 
1638       // We have a conflict: some names refer to protocols and others
1639       // refer to types.
1640       DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1641                                    identifiers[i], identifierLocs[i],
1642                                    protocols[i] != nullptr);
1643 
1644       protocols.clear();
1645       typeArgs.clear();
1646       return;
1647     }
1648 
1649     // Perform typo correction on the name.
1650     TypoCorrection corrected = CorrectTypo(
1651         DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1652         nullptr,
1653         llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1654                                                              lookupKind),
1655         CTK_ErrorRecovery);
1656     if (corrected) {
1657       // Did we find a protocol?
1658       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1659         diagnoseTypo(corrected,
1660                      PDiag(diag::err_undeclared_protocol_suggest)
1661                        << identifiers[i]);
1662         lookupKind = LookupObjCProtocolName;
1663         protocols[i] = proto;
1664         ++numProtocolsResolved;
1665         continue;
1666       }
1667 
1668       // Did we find a type?
1669       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1670         diagnoseTypo(corrected,
1671                      PDiag(diag::err_unknown_typename_suggest)
1672                        << identifiers[i]);
1673         lookupKind = LookupOrdinaryName;
1674         typeDecls[i] = typeDecl;
1675         ++numTypeDeclsResolved;
1676         continue;
1677       }
1678 
1679       // Did we find an Objective-C class?
1680       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1681         diagnoseTypo(corrected,
1682                      PDiag(diag::err_unknown_type_or_class_name_suggest)
1683                        << identifiers[i] << true);
1684         lookupKind = LookupOrdinaryName;
1685         typeDecls[i] = objcClass;
1686         ++numTypeDeclsResolved;
1687         continue;
1688       }
1689     }
1690 
1691     // We couldn't find anything.
1692     Diag(identifierLocs[i],
1693          (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1694           : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1695           : diag::err_unknown_typename))
1696       << identifiers[i];
1697     protocols.clear();
1698     typeArgs.clear();
1699     return;
1700   }
1701 
1702   // If all of the names were (corrected to) protocols, these were
1703   // protocol qualifiers.
1704   if (numProtocolsResolved == identifiers.size())
1705     return resolvedAsProtocols();
1706 
1707   // Otherwise, all of the names were (corrected to) types.
1708   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1709   return resolvedAsTypeDecls();
1710 }
1711 
1712 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1713 /// a class method in its extension.
1714 ///
1715 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1716                                             ObjCInterfaceDecl *ID) {
1717   if (!ID)
1718     return;  // Possibly due to previous error
1719 
1720   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1721   for (auto *MD : ID->methods())
1722     MethodMap[MD->getSelector()] = MD;
1723 
1724   if (MethodMap.empty())
1725     return;
1726   for (const auto *Method : CAT->methods()) {
1727     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1728     if (PrevMethod &&
1729         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1730         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1731       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1732             << Method->getDeclName();
1733       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1734     }
1735   }
1736 }
1737 
1738 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1739 Sema::DeclGroupPtrTy
1740 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1741                                       ArrayRef<IdentifierLocPair> IdentList,
1742                                       AttributeList *attrList) {
1743   SmallVector<Decl *, 8> DeclsInGroup;
1744   for (const IdentifierLocPair &IdentPair : IdentList) {
1745     IdentifierInfo *Ident = IdentPair.first;
1746     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1747                                                 forRedeclarationInCurContext());
1748     ObjCProtocolDecl *PDecl
1749       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1750                                  IdentPair.second, AtProtocolLoc,
1751                                  PrevDecl);
1752 
1753     PushOnScopeChains(PDecl, TUScope);
1754     CheckObjCDeclScope(PDecl);
1755 
1756     if (attrList)
1757       ProcessDeclAttributeList(TUScope, PDecl, attrList);
1758     AddPragmaAttributes(TUScope, PDecl);
1759 
1760     if (PrevDecl)
1761       mergeDeclAttributes(PDecl, PrevDecl);
1762 
1763     DeclsInGroup.push_back(PDecl);
1764   }
1765 
1766   return BuildDeclaratorGroup(DeclsInGroup);
1767 }
1768 
1769 Decl *Sema::
1770 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
1771                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
1772                             ObjCTypeParamList *typeParamList,
1773                             IdentifierInfo *CategoryName,
1774                             SourceLocation CategoryLoc,
1775                             Decl * const *ProtoRefs,
1776                             unsigned NumProtoRefs,
1777                             const SourceLocation *ProtoLocs,
1778                             SourceLocation EndProtoLoc,
1779                             AttributeList *AttrList) {
1780   ObjCCategoryDecl *CDecl;
1781   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1782 
1783   /// Check that class of this category is already completely declared.
1784 
1785   if (!IDecl
1786       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1787                              diag::err_category_forward_interface,
1788                              CategoryName == nullptr)) {
1789     // Create an invalid ObjCCategoryDecl to serve as context for
1790     // the enclosing method declarations.  We mark the decl invalid
1791     // to make it clear that this isn't a valid AST.
1792     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1793                                      ClassLoc, CategoryLoc, CategoryName,
1794                                      IDecl, typeParamList);
1795     CDecl->setInvalidDecl();
1796     CurContext->addDecl(CDecl);
1797 
1798     if (!IDecl)
1799       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1800     return ActOnObjCContainerStartDefinition(CDecl);
1801   }
1802 
1803   if (!CategoryName && IDecl->getImplementation()) {
1804     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1805     Diag(IDecl->getImplementation()->getLocation(),
1806           diag::note_implementation_declared);
1807   }
1808 
1809   if (CategoryName) {
1810     /// Check for duplicate interface declaration for this category
1811     if (ObjCCategoryDecl *Previous
1812           = IDecl->FindCategoryDeclaration(CategoryName)) {
1813       // Class extensions can be declared multiple times, categories cannot.
1814       Diag(CategoryLoc, diag::warn_dup_category_def)
1815         << ClassName << CategoryName;
1816       Diag(Previous->getLocation(), diag::note_previous_definition);
1817     }
1818   }
1819 
1820   // If we have a type parameter list, check it.
1821   if (typeParamList) {
1822     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1823       if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1824                                         CategoryName
1825                                           ? TypeParamListContext::Category
1826                                           : TypeParamListContext::Extension))
1827         typeParamList = nullptr;
1828     } else {
1829       Diag(typeParamList->getLAngleLoc(),
1830            diag::err_objc_parameterized_category_nonclass)
1831         << (CategoryName != nullptr)
1832         << ClassName
1833         << typeParamList->getSourceRange();
1834 
1835       typeParamList = nullptr;
1836     }
1837   }
1838 
1839   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1840                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
1841                                    typeParamList);
1842   // FIXME: PushOnScopeChains?
1843   CurContext->addDecl(CDecl);
1844 
1845   // Process the attributes before looking at protocols to ensure that the
1846   // availability attribute is attached to the category to provide availability
1847   // checking for protocol uses.
1848   if (AttrList)
1849     ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1850   AddPragmaAttributes(TUScope, CDecl);
1851 
1852   if (NumProtoRefs) {
1853     diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1854                            NumProtoRefs, ProtoLocs);
1855     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1856                            ProtoLocs, Context);
1857     // Protocols in the class extension belong to the class.
1858     if (CDecl->IsClassExtension())
1859      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1860                                             NumProtoRefs, Context);
1861   }
1862 
1863   CheckObjCDeclScope(CDecl);
1864   return ActOnObjCContainerStartDefinition(CDecl);
1865 }
1866 
1867 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1868 /// category implementation declaration and build an ObjCCategoryImplDecl
1869 /// object.
1870 Decl *Sema::ActOnStartCategoryImplementation(
1871                       SourceLocation AtCatImplLoc,
1872                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
1873                       IdentifierInfo *CatName, SourceLocation CatLoc) {
1874   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1875   ObjCCategoryDecl *CatIDecl = nullptr;
1876   if (IDecl && IDecl->hasDefinition()) {
1877     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1878     if (!CatIDecl) {
1879       // Category @implementation with no corresponding @interface.
1880       // Create and install one.
1881       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1882                                           ClassLoc, CatLoc,
1883                                           CatName, IDecl,
1884                                           /*typeParamList=*/nullptr);
1885       CatIDecl->setImplicit();
1886     }
1887   }
1888 
1889   ObjCCategoryImplDecl *CDecl =
1890     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1891                                  ClassLoc, AtCatImplLoc, CatLoc);
1892   /// Check that class of this category is already completely declared.
1893   if (!IDecl) {
1894     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1895     CDecl->setInvalidDecl();
1896   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1897                                  diag::err_undef_interface)) {
1898     CDecl->setInvalidDecl();
1899   }
1900 
1901   // FIXME: PushOnScopeChains?
1902   CurContext->addDecl(CDecl);
1903 
1904   // If the interface has the objc_runtime_visible attribute, we
1905   // cannot implement a category for it.
1906   if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1907     Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1908       << IDecl->getDeclName();
1909   }
1910 
1911   /// Check that CatName, category name, is not used in another implementation.
1912   if (CatIDecl) {
1913     if (CatIDecl->getImplementation()) {
1914       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1915         << CatName;
1916       Diag(CatIDecl->getImplementation()->getLocation(),
1917            diag::note_previous_definition);
1918       CDecl->setInvalidDecl();
1919     } else {
1920       CatIDecl->setImplementation(CDecl);
1921       // Warn on implementating category of deprecated class under
1922       // -Wdeprecated-implementations flag.
1923       DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1924                                           CDecl->getLocation());
1925     }
1926   }
1927 
1928   CheckObjCDeclScope(CDecl);
1929   return ActOnObjCContainerStartDefinition(CDecl);
1930 }
1931 
1932 Decl *Sema::ActOnStartClassImplementation(
1933                       SourceLocation AtClassImplLoc,
1934                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
1935                       IdentifierInfo *SuperClassname,
1936                       SourceLocation SuperClassLoc) {
1937   ObjCInterfaceDecl *IDecl = nullptr;
1938   // Check for another declaration kind with the same name.
1939   NamedDecl *PrevDecl
1940     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1941                        forRedeclarationInCurContext());
1942   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1943     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1944     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1945   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1946     // FIXME: This will produce an error if the definition of the interface has
1947     // been imported from a module but is not visible.
1948     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1949                         diag::warn_undef_interface);
1950   } else {
1951     // We did not find anything with the name ClassName; try to correct for
1952     // typos in the class name.
1953     TypoCorrection Corrected = CorrectTypo(
1954         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1955         nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1956     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1957       // Suggest the (potentially) correct interface name. Don't provide a
1958       // code-modification hint or use the typo name for recovery, because
1959       // this is just a warning. The program may actually be correct.
1960       diagnoseTypo(Corrected,
1961                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
1962                    /*ErrorRecovery*/false);
1963     } else {
1964       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1965     }
1966   }
1967 
1968   // Check that super class name is valid class name
1969   ObjCInterfaceDecl *SDecl = nullptr;
1970   if (SuperClassname) {
1971     // Check if a different kind of symbol declared in this scope.
1972     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1973                                 LookupOrdinaryName);
1974     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1975       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1976         << SuperClassname;
1977       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1978     } else {
1979       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1980       if (SDecl && !SDecl->hasDefinition())
1981         SDecl = nullptr;
1982       if (!SDecl)
1983         Diag(SuperClassLoc, diag::err_undef_superclass)
1984           << SuperClassname << ClassName;
1985       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1986         // This implementation and its interface do not have the same
1987         // super class.
1988         Diag(SuperClassLoc, diag::err_conflicting_super_class)
1989           << SDecl->getDeclName();
1990         Diag(SDecl->getLocation(), diag::note_previous_definition);
1991       }
1992     }
1993   }
1994 
1995   if (!IDecl) {
1996     // Legacy case of @implementation with no corresponding @interface.
1997     // Build, chain & install the interface decl into the identifier.
1998 
1999     // FIXME: Do we support attributes on the @implementation? If so we should
2000     // copy them over.
2001     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2002                                       ClassName, /*typeParamList=*/nullptr,
2003                                       /*PrevDecl=*/nullptr, ClassLoc,
2004                                       true);
2005     AddPragmaAttributes(TUScope, IDecl);
2006     IDecl->startDefinition();
2007     if (SDecl) {
2008       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2009                              Context.getObjCInterfaceType(SDecl),
2010                              SuperClassLoc));
2011       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2012     } else {
2013       IDecl->setEndOfDefinitionLoc(ClassLoc);
2014     }
2015 
2016     PushOnScopeChains(IDecl, TUScope);
2017   } else {
2018     // Mark the interface as being completed, even if it was just as
2019     //   @class ....;
2020     // declaration; the user cannot reopen it.
2021     if (!IDecl->hasDefinition())
2022       IDecl->startDefinition();
2023   }
2024 
2025   ObjCImplementationDecl* IMPDecl =
2026     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2027                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
2028 
2029   if (CheckObjCDeclScope(IMPDecl))
2030     return ActOnObjCContainerStartDefinition(IMPDecl);
2031 
2032   // Check that there is no duplicate implementation of this class.
2033   if (IDecl->getImplementation()) {
2034     // FIXME: Don't leak everything!
2035     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2036     Diag(IDecl->getImplementation()->getLocation(),
2037          diag::note_previous_definition);
2038     IMPDecl->setInvalidDecl();
2039   } else { // add it to the list.
2040     IDecl->setImplementation(IMPDecl);
2041     PushOnScopeChains(IMPDecl, TUScope);
2042     // Warn on implementating deprecated class under
2043     // -Wdeprecated-implementations flag.
2044     DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2045   }
2046 
2047   // If the superclass has the objc_runtime_visible attribute, we
2048   // cannot implement a subclass of it.
2049   if (IDecl->getSuperClass() &&
2050       IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2051     Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2052       << IDecl->getDeclName()
2053       << IDecl->getSuperClass()->getDeclName();
2054   }
2055 
2056   return ActOnObjCContainerStartDefinition(IMPDecl);
2057 }
2058 
2059 Sema::DeclGroupPtrTy
2060 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2061   SmallVector<Decl *, 64> DeclsInGroup;
2062   DeclsInGroup.reserve(Decls.size() + 1);
2063 
2064   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2065     Decl *Dcl = Decls[i];
2066     if (!Dcl)
2067       continue;
2068     if (Dcl->getDeclContext()->isFileContext())
2069       Dcl->setTopLevelDeclInObjCContainer();
2070     DeclsInGroup.push_back(Dcl);
2071   }
2072 
2073   DeclsInGroup.push_back(ObjCImpDecl);
2074 
2075   return BuildDeclaratorGroup(DeclsInGroup);
2076 }
2077 
2078 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2079                                     ObjCIvarDecl **ivars, unsigned numIvars,
2080                                     SourceLocation RBrace) {
2081   assert(ImpDecl && "missing implementation decl");
2082   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2083   if (!IDecl)
2084     return;
2085   /// Check case of non-existing \@interface decl.
2086   /// (legacy objective-c \@implementation decl without an \@interface decl).
2087   /// Add implementations's ivar to the synthesize class's ivar list.
2088   if (IDecl->isImplicitInterfaceDecl()) {
2089     IDecl->setEndOfDefinitionLoc(RBrace);
2090     // Add ivar's to class's DeclContext.
2091     for (unsigned i = 0, e = numIvars; i != e; ++i) {
2092       ivars[i]->setLexicalDeclContext(ImpDecl);
2093       IDecl->makeDeclVisibleInContext(ivars[i]);
2094       ImpDecl->addDecl(ivars[i]);
2095     }
2096 
2097     return;
2098   }
2099   // If implementation has empty ivar list, just return.
2100   if (numIvars == 0)
2101     return;
2102 
2103   assert(ivars && "missing @implementation ivars");
2104   if (LangOpts.ObjCRuntime.isNonFragile()) {
2105     if (ImpDecl->getSuperClass())
2106       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2107     for (unsigned i = 0; i < numIvars; i++) {
2108       ObjCIvarDecl* ImplIvar = ivars[i];
2109       if (const ObjCIvarDecl *ClsIvar =
2110             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2111         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2112         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2113         continue;
2114       }
2115       // Check class extensions (unnamed categories) for duplicate ivars.
2116       for (const auto *CDecl : IDecl->visible_extensions()) {
2117         if (const ObjCIvarDecl *ClsExtIvar =
2118             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2119           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2120           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2121           continue;
2122         }
2123       }
2124       // Instance ivar to Implementation's DeclContext.
2125       ImplIvar->setLexicalDeclContext(ImpDecl);
2126       IDecl->makeDeclVisibleInContext(ImplIvar);
2127       ImpDecl->addDecl(ImplIvar);
2128     }
2129     return;
2130   }
2131   // Check interface's Ivar list against those in the implementation.
2132   // names and types must match.
2133   //
2134   unsigned j = 0;
2135   ObjCInterfaceDecl::ivar_iterator
2136     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2137   for (; numIvars > 0 && IVI != IVE; ++IVI) {
2138     ObjCIvarDecl* ImplIvar = ivars[j++];
2139     ObjCIvarDecl* ClsIvar = *IVI;
2140     assert (ImplIvar && "missing implementation ivar");
2141     assert (ClsIvar && "missing class ivar");
2142 
2143     // First, make sure the types match.
2144     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2145       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2146         << ImplIvar->getIdentifier()
2147         << ImplIvar->getType() << ClsIvar->getType();
2148       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2149     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2150                ImplIvar->getBitWidthValue(Context) !=
2151                ClsIvar->getBitWidthValue(Context)) {
2152       Diag(ImplIvar->getBitWidth()->getLocStart(),
2153            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2154       Diag(ClsIvar->getBitWidth()->getLocStart(),
2155            diag::note_previous_definition);
2156     }
2157     // Make sure the names are identical.
2158     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2159       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2160         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2161       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2162     }
2163     --numIvars;
2164   }
2165 
2166   if (numIvars > 0)
2167     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2168   else if (IVI != IVE)
2169     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2170 }
2171 
2172 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2173                                 ObjCMethodDecl *method,
2174                                 bool &IncompleteImpl,
2175                                 unsigned DiagID,
2176                                 NamedDecl *NeededFor = nullptr) {
2177   // No point warning no definition of method which is 'unavailable'.
2178   switch (method->getAvailability()) {
2179   case AR_Available:
2180   case AR_Deprecated:
2181     break;
2182 
2183       // Don't warn about unavailable or not-yet-introduced methods.
2184   case AR_NotYetIntroduced:
2185   case AR_Unavailable:
2186     return;
2187   }
2188 
2189   // FIXME: For now ignore 'IncompleteImpl'.
2190   // Previously we grouped all unimplemented methods under a single
2191   // warning, but some users strongly voiced that they would prefer
2192   // separate warnings.  We will give that approach a try, as that
2193   // matches what we do with protocols.
2194   {
2195     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2196     B << method;
2197     if (NeededFor)
2198       B << NeededFor;
2199   }
2200 
2201   // Issue a note to the original declaration.
2202   SourceLocation MethodLoc = method->getLocStart();
2203   if (MethodLoc.isValid())
2204     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2205 }
2206 
2207 /// Determines if type B can be substituted for type A.  Returns true if we can
2208 /// guarantee that anything that the user will do to an object of type A can
2209 /// also be done to an object of type B.  This is trivially true if the two
2210 /// types are the same, or if B is a subclass of A.  It becomes more complex
2211 /// in cases where protocols are involved.
2212 ///
2213 /// Object types in Objective-C describe the minimum requirements for an
2214 /// object, rather than providing a complete description of a type.  For
2215 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2216 /// The principle of substitutability means that we may use an instance of A
2217 /// anywhere that we may use an instance of B - it will implement all of the
2218 /// ivars of B and all of the methods of B.
2219 ///
2220 /// This substitutability is important when type checking methods, because
2221 /// the implementation may have stricter type definitions than the interface.
2222 /// The interface specifies minimum requirements, but the implementation may
2223 /// have more accurate ones.  For example, a method may privately accept
2224 /// instances of B, but only publish that it accepts instances of A.  Any
2225 /// object passed to it will be type checked against B, and so will implicitly
2226 /// by a valid A*.  Similarly, a method may return a subclass of the class that
2227 /// it is declared as returning.
2228 ///
2229 /// This is most important when considering subclassing.  A method in a
2230 /// subclass must accept any object as an argument that its superclass's
2231 /// implementation accepts.  It may, however, accept a more general type
2232 /// without breaking substitutability (i.e. you can still use the subclass
2233 /// anywhere that you can use the superclass, but not vice versa).  The
2234 /// converse requirement applies to return types: the return type for a
2235 /// subclass method must be a valid object of the kind that the superclass
2236 /// advertises, but it may be specified more accurately.  This avoids the need
2237 /// for explicit down-casting by callers.
2238 ///
2239 /// Note: This is a stricter requirement than for assignment.
2240 static bool isObjCTypeSubstitutable(ASTContext &Context,
2241                                     const ObjCObjectPointerType *A,
2242                                     const ObjCObjectPointerType *B,
2243                                     bool rejectId) {
2244   // Reject a protocol-unqualified id.
2245   if (rejectId && B->isObjCIdType()) return false;
2246 
2247   // If B is a qualified id, then A must also be a qualified id and it must
2248   // implement all of the protocols in B.  It may not be a qualified class.
2249   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2250   // stricter definition so it is not substitutable for id<A>.
2251   if (B->isObjCQualifiedIdType()) {
2252     return A->isObjCQualifiedIdType() &&
2253            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2254                                                      QualType(B,0),
2255                                                      false);
2256   }
2257 
2258   /*
2259   // id is a special type that bypasses type checking completely.  We want a
2260   // warning when it is used in one place but not another.
2261   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2262 
2263 
2264   // If B is a qualified id, then A must also be a qualified id (which it isn't
2265   // if we've got this far)
2266   if (B->isObjCQualifiedIdType()) return false;
2267   */
2268 
2269   // Now we know that A and B are (potentially-qualified) class types.  The
2270   // normal rules for assignment apply.
2271   return Context.canAssignObjCInterfaces(A, B);
2272 }
2273 
2274 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2275   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2276 }
2277 
2278 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2279 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2280                                   Decl::ObjCDeclQualifier y) {
2281   return (x & ~Decl::OBJC_TQ_CSNullability) !=
2282          (y & ~Decl::OBJC_TQ_CSNullability);
2283 }
2284 
2285 static bool CheckMethodOverrideReturn(Sema &S,
2286                                       ObjCMethodDecl *MethodImpl,
2287                                       ObjCMethodDecl *MethodDecl,
2288                                       bool IsProtocolMethodDecl,
2289                                       bool IsOverridingMode,
2290                                       bool Warn) {
2291   if (IsProtocolMethodDecl &&
2292       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2293                             MethodImpl->getObjCDeclQualifier())) {
2294     if (Warn) {
2295       S.Diag(MethodImpl->getLocation(),
2296              (IsOverridingMode
2297                   ? diag::warn_conflicting_overriding_ret_type_modifiers
2298                   : diag::warn_conflicting_ret_type_modifiers))
2299           << MethodImpl->getDeclName()
2300           << MethodImpl->getReturnTypeSourceRange();
2301       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2302           << MethodDecl->getReturnTypeSourceRange();
2303     }
2304     else
2305       return false;
2306   }
2307   if (Warn && IsOverridingMode &&
2308       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2309       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2310                                                  MethodDecl->getReturnType(),
2311                                                  false)) {
2312     auto nullabilityMethodImpl =
2313       *MethodImpl->getReturnType()->getNullability(S.Context);
2314     auto nullabilityMethodDecl =
2315       *MethodDecl->getReturnType()->getNullability(S.Context);
2316       S.Diag(MethodImpl->getLocation(),
2317              diag::warn_conflicting_nullability_attr_overriding_ret_types)
2318         << DiagNullabilityKind(
2319              nullabilityMethodImpl,
2320              ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2321               != 0))
2322         << DiagNullabilityKind(
2323              nullabilityMethodDecl,
2324              ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2325                 != 0));
2326       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2327   }
2328 
2329   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2330                                        MethodDecl->getReturnType()))
2331     return true;
2332   if (!Warn)
2333     return false;
2334 
2335   unsigned DiagID =
2336     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2337                      : diag::warn_conflicting_ret_types;
2338 
2339   // Mismatches between ObjC pointers go into a different warning
2340   // category, and sometimes they're even completely whitelisted.
2341   if (const ObjCObjectPointerType *ImplPtrTy =
2342           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2343     if (const ObjCObjectPointerType *IfacePtrTy =
2344             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2345       // Allow non-matching return types as long as they don't violate
2346       // the principle of substitutability.  Specifically, we permit
2347       // return types that are subclasses of the declared return type,
2348       // or that are more-qualified versions of the declared type.
2349       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2350         return false;
2351 
2352       DiagID =
2353         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2354                          : diag::warn_non_covariant_ret_types;
2355     }
2356   }
2357 
2358   S.Diag(MethodImpl->getLocation(), DiagID)
2359       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2360       << MethodImpl->getReturnType()
2361       << MethodImpl->getReturnTypeSourceRange();
2362   S.Diag(MethodDecl->getLocation(), IsOverridingMode
2363                                         ? diag::note_previous_declaration
2364                                         : diag::note_previous_definition)
2365       << MethodDecl->getReturnTypeSourceRange();
2366   return false;
2367 }
2368 
2369 static bool CheckMethodOverrideParam(Sema &S,
2370                                      ObjCMethodDecl *MethodImpl,
2371                                      ObjCMethodDecl *MethodDecl,
2372                                      ParmVarDecl *ImplVar,
2373                                      ParmVarDecl *IfaceVar,
2374                                      bool IsProtocolMethodDecl,
2375                                      bool IsOverridingMode,
2376                                      bool Warn) {
2377   if (IsProtocolMethodDecl &&
2378       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2379                             IfaceVar->getObjCDeclQualifier())) {
2380     if (Warn) {
2381       if (IsOverridingMode)
2382         S.Diag(ImplVar->getLocation(),
2383                diag::warn_conflicting_overriding_param_modifiers)
2384             << getTypeRange(ImplVar->getTypeSourceInfo())
2385             << MethodImpl->getDeclName();
2386       else S.Diag(ImplVar->getLocation(),
2387              diag::warn_conflicting_param_modifiers)
2388           << getTypeRange(ImplVar->getTypeSourceInfo())
2389           << MethodImpl->getDeclName();
2390       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2391           << getTypeRange(IfaceVar->getTypeSourceInfo());
2392     }
2393     else
2394       return false;
2395   }
2396 
2397   QualType ImplTy = ImplVar->getType();
2398   QualType IfaceTy = IfaceVar->getType();
2399   if (Warn && IsOverridingMode &&
2400       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2401       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2402     S.Diag(ImplVar->getLocation(),
2403            diag::warn_conflicting_nullability_attr_overriding_param_types)
2404       << DiagNullabilityKind(
2405            *ImplTy->getNullability(S.Context),
2406            ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2407             != 0))
2408       << DiagNullabilityKind(
2409            *IfaceTy->getNullability(S.Context),
2410            ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2411             != 0));
2412     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2413   }
2414   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2415     return true;
2416 
2417   if (!Warn)
2418     return false;
2419   unsigned DiagID =
2420     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2421                      : diag::warn_conflicting_param_types;
2422 
2423   // Mismatches between ObjC pointers go into a different warning
2424   // category, and sometimes they're even completely whitelisted.
2425   if (const ObjCObjectPointerType *ImplPtrTy =
2426         ImplTy->getAs<ObjCObjectPointerType>()) {
2427     if (const ObjCObjectPointerType *IfacePtrTy =
2428           IfaceTy->getAs<ObjCObjectPointerType>()) {
2429       // Allow non-matching argument types as long as they don't
2430       // violate the principle of substitutability.  Specifically, the
2431       // implementation must accept any objects that the superclass
2432       // accepts, however it may also accept others.
2433       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2434         return false;
2435 
2436       DiagID =
2437       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2438                        : diag::warn_non_contravariant_param_types;
2439     }
2440   }
2441 
2442   S.Diag(ImplVar->getLocation(), DiagID)
2443     << getTypeRange(ImplVar->getTypeSourceInfo())
2444     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2445   S.Diag(IfaceVar->getLocation(),
2446          (IsOverridingMode ? diag::note_previous_declaration
2447                            : diag::note_previous_definition))
2448     << getTypeRange(IfaceVar->getTypeSourceInfo());
2449   return false;
2450 }
2451 
2452 /// In ARC, check whether the conventional meanings of the two methods
2453 /// match.  If they don't, it's a hard error.
2454 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2455                                       ObjCMethodDecl *decl) {
2456   ObjCMethodFamily implFamily = impl->getMethodFamily();
2457   ObjCMethodFamily declFamily = decl->getMethodFamily();
2458   if (implFamily == declFamily) return false;
2459 
2460   // Since conventions are sorted by selector, the only possibility is
2461   // that the types differ enough to cause one selector or the other
2462   // to fall out of the family.
2463   assert(implFamily == OMF_None || declFamily == OMF_None);
2464 
2465   // No further diagnostics required on invalid declarations.
2466   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2467 
2468   const ObjCMethodDecl *unmatched = impl;
2469   ObjCMethodFamily family = declFamily;
2470   unsigned errorID = diag::err_arc_lost_method_convention;
2471   unsigned noteID = diag::note_arc_lost_method_convention;
2472   if (declFamily == OMF_None) {
2473     unmatched = decl;
2474     family = implFamily;
2475     errorID = diag::err_arc_gained_method_convention;
2476     noteID = diag::note_arc_gained_method_convention;
2477   }
2478 
2479   // Indexes into a %select clause in the diagnostic.
2480   enum FamilySelector {
2481     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2482   };
2483   FamilySelector familySelector = FamilySelector();
2484 
2485   switch (family) {
2486   case OMF_None: llvm_unreachable("logic error, no method convention");
2487   case OMF_retain:
2488   case OMF_release:
2489   case OMF_autorelease:
2490   case OMF_dealloc:
2491   case OMF_finalize:
2492   case OMF_retainCount:
2493   case OMF_self:
2494   case OMF_initialize:
2495   case OMF_performSelector:
2496     // Mismatches for these methods don't change ownership
2497     // conventions, so we don't care.
2498     return false;
2499 
2500   case OMF_init: familySelector = F_init; break;
2501   case OMF_alloc: familySelector = F_alloc; break;
2502   case OMF_copy: familySelector = F_copy; break;
2503   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2504   case OMF_new: familySelector = F_new; break;
2505   }
2506 
2507   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2508   ReasonSelector reasonSelector;
2509 
2510   // The only reason these methods don't fall within their families is
2511   // due to unusual result types.
2512   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2513     reasonSelector = R_UnrelatedReturn;
2514   } else {
2515     reasonSelector = R_NonObjectReturn;
2516   }
2517 
2518   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2519   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2520 
2521   return true;
2522 }
2523 
2524 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2525                                        ObjCMethodDecl *MethodDecl,
2526                                        bool IsProtocolMethodDecl) {
2527   if (getLangOpts().ObjCAutoRefCount &&
2528       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2529     return;
2530 
2531   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2532                             IsProtocolMethodDecl, false,
2533                             true);
2534 
2535   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2536        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2537        EF = MethodDecl->param_end();
2538        IM != EM && IF != EF; ++IM, ++IF) {
2539     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2540                              IsProtocolMethodDecl, false, true);
2541   }
2542 
2543   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2544     Diag(ImpMethodDecl->getLocation(),
2545          diag::warn_conflicting_variadic);
2546     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2547   }
2548 }
2549 
2550 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2551                                        ObjCMethodDecl *Overridden,
2552                                        bool IsProtocolMethodDecl) {
2553 
2554   CheckMethodOverrideReturn(*this, Method, Overridden,
2555                             IsProtocolMethodDecl, true,
2556                             true);
2557 
2558   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2559        IF = Overridden->param_begin(), EM = Method->param_end(),
2560        EF = Overridden->param_end();
2561        IM != EM && IF != EF; ++IM, ++IF) {
2562     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2563                              IsProtocolMethodDecl, true, true);
2564   }
2565 
2566   if (Method->isVariadic() != Overridden->isVariadic()) {
2567     Diag(Method->getLocation(),
2568          diag::warn_conflicting_overriding_variadic);
2569     Diag(Overridden->getLocation(), diag::note_previous_declaration);
2570   }
2571 }
2572 
2573 /// WarnExactTypedMethods - This routine issues a warning if method
2574 /// implementation declaration matches exactly that of its declaration.
2575 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2576                                  ObjCMethodDecl *MethodDecl,
2577                                  bool IsProtocolMethodDecl) {
2578   // don't issue warning when protocol method is optional because primary
2579   // class is not required to implement it and it is safe for protocol
2580   // to implement it.
2581   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2582     return;
2583   // don't issue warning when primary class's method is
2584   // depecated/unavailable.
2585   if (MethodDecl->hasAttr<UnavailableAttr>() ||
2586       MethodDecl->hasAttr<DeprecatedAttr>())
2587     return;
2588 
2589   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2590                                       IsProtocolMethodDecl, false, false);
2591   if (match)
2592     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2593          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2594          EF = MethodDecl->param_end();
2595          IM != EM && IF != EF; ++IM, ++IF) {
2596       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2597                                        *IM, *IF,
2598                                        IsProtocolMethodDecl, false, false);
2599       if (!match)
2600         break;
2601     }
2602   if (match)
2603     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2604   if (match)
2605     match = !(MethodDecl->isClassMethod() &&
2606               MethodDecl->getSelector() == GetNullarySelector("load", Context));
2607 
2608   if (match) {
2609     Diag(ImpMethodDecl->getLocation(),
2610          diag::warn_category_method_impl_match);
2611     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2612       << MethodDecl->getDeclName();
2613   }
2614 }
2615 
2616 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2617 /// improve the efficiency of selector lookups and type checking by associating
2618 /// with each protocol / interface / category the flattened instance tables. If
2619 /// we used an immutable set to keep the table then it wouldn't add significant
2620 /// memory cost and it would be handy for lookups.
2621 
2622 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2623 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2624 
2625 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2626                                            ProtocolNameSet &PNS) {
2627   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2628     PNS.insert(PDecl->getIdentifier());
2629   for (const auto *PI : PDecl->protocols())
2630     findProtocolsWithExplicitImpls(PI, PNS);
2631 }
2632 
2633 /// Recursively populates a set with all conformed protocols in a class
2634 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2635 /// attribute.
2636 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2637                                            ProtocolNameSet &PNS) {
2638   if (!Super)
2639     return;
2640 
2641   for (const auto *I : Super->all_referenced_protocols())
2642     findProtocolsWithExplicitImpls(I, PNS);
2643 
2644   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2645 }
2646 
2647 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2648 /// Declared in protocol, and those referenced by it.
2649 static void CheckProtocolMethodDefs(Sema &S,
2650                                     SourceLocation ImpLoc,
2651                                     ObjCProtocolDecl *PDecl,
2652                                     bool& IncompleteImpl,
2653                                     const Sema::SelectorSet &InsMap,
2654                                     const Sema::SelectorSet &ClsMap,
2655                                     ObjCContainerDecl *CDecl,
2656                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
2657   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2658   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2659                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
2660   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2661 
2662   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2663   ObjCInterfaceDecl *NSIDecl = nullptr;
2664 
2665   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2666   // then we should check if any class in the super class hierarchy also
2667   // conforms to this protocol, either directly or via protocol inheritance.
2668   // If so, we can skip checking this protocol completely because we
2669   // know that a parent class already satisfies this protocol.
2670   //
2671   // Note: we could generalize this logic for all protocols, and merely
2672   // add the limit on looking at the super class chain for just
2673   // specially marked protocols.  This may be a good optimization.  This
2674   // change is restricted to 'objc_protocol_requires_explicit_implementation'
2675   // protocols for now for controlled evaluation.
2676   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2677     if (!ProtocolsExplictImpl) {
2678       ProtocolsExplictImpl.reset(new ProtocolNameSet);
2679       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2680     }
2681     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2682         ProtocolsExplictImpl->end())
2683       return;
2684 
2685     // If no super class conforms to the protocol, we should not search
2686     // for methods in the super class to implicitly satisfy the protocol.
2687     Super = nullptr;
2688   }
2689 
2690   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2691     // check to see if class implements forwardInvocation method and objects
2692     // of this class are derived from 'NSProxy' so that to forward requests
2693     // from one object to another.
2694     // Under such conditions, which means that every method possible is
2695     // implemented in the class, we should not issue "Method definition not
2696     // found" warnings.
2697     // FIXME: Use a general GetUnarySelector method for this.
2698     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2699     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2700     if (InsMap.count(fISelector))
2701       // Is IDecl derived from 'NSProxy'? If so, no instance methods
2702       // need be implemented in the implementation.
2703       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2704   }
2705 
2706   // If this is a forward protocol declaration, get its definition.
2707   if (!PDecl->isThisDeclarationADefinition() &&
2708       PDecl->getDefinition())
2709     PDecl = PDecl->getDefinition();
2710 
2711   // If a method lookup fails locally we still need to look and see if
2712   // the method was implemented by a base class or an inherited
2713   // protocol. This lookup is slow, but occurs rarely in correct code
2714   // and otherwise would terminate in a warning.
2715 
2716   // check unimplemented instance methods.
2717   if (!NSIDecl)
2718     for (auto *method : PDecl->instance_methods()) {
2719       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2720           !method->isPropertyAccessor() &&
2721           !InsMap.count(method->getSelector()) &&
2722           (!Super || !Super->lookupMethod(method->getSelector(),
2723                                           true /* instance */,
2724                                           false /* shallowCategory */,
2725                                           true /* followsSuper */,
2726                                           nullptr /* category */))) {
2727             // If a method is not implemented in the category implementation but
2728             // has been declared in its primary class, superclass,
2729             // or in one of their protocols, no need to issue the warning.
2730             // This is because method will be implemented in the primary class
2731             // or one of its super class implementation.
2732 
2733             // Ugly, but necessary. Method declared in protocol might have
2734             // have been synthesized due to a property declared in the class which
2735             // uses the protocol.
2736             if (ObjCMethodDecl *MethodInClass =
2737                   IDecl->lookupMethod(method->getSelector(),
2738                                       true /* instance */,
2739                                       true /* shallowCategoryLookup */,
2740                                       false /* followSuper */))
2741               if (C || MethodInClass->isPropertyAccessor())
2742                 continue;
2743             unsigned DIAG = diag::warn_unimplemented_protocol_method;
2744             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2745               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2746                                   PDecl);
2747             }
2748           }
2749     }
2750   // check unimplemented class methods
2751   for (auto *method : PDecl->class_methods()) {
2752     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2753         !ClsMap.count(method->getSelector()) &&
2754         (!Super || !Super->lookupMethod(method->getSelector(),
2755                                         false /* class method */,
2756                                         false /* shallowCategoryLookup */,
2757                                         true  /* followSuper */,
2758                                         nullptr /* category */))) {
2759       // See above comment for instance method lookups.
2760       if (C && IDecl->lookupMethod(method->getSelector(),
2761                                    false /* class */,
2762                                    true /* shallowCategoryLookup */,
2763                                    false /* followSuper */))
2764         continue;
2765 
2766       unsigned DIAG = diag::warn_unimplemented_protocol_method;
2767       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2768         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2769       }
2770     }
2771   }
2772   // Check on this protocols's referenced protocols, recursively.
2773   for (auto *PI : PDecl->protocols())
2774     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2775                             CDecl, ProtocolsExplictImpl);
2776 }
2777 
2778 /// MatchAllMethodDeclarations - Check methods declared in interface
2779 /// or protocol against those declared in their implementations.
2780 ///
2781 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2782                                       const SelectorSet &ClsMap,
2783                                       SelectorSet &InsMapSeen,
2784                                       SelectorSet &ClsMapSeen,
2785                                       ObjCImplDecl* IMPDecl,
2786                                       ObjCContainerDecl* CDecl,
2787                                       bool &IncompleteImpl,
2788                                       bool ImmediateClass,
2789                                       bool WarnCategoryMethodImpl) {
2790   // Check and see if instance methods in class interface have been
2791   // implemented in the implementation class. If so, their types match.
2792   for (auto *I : CDecl->instance_methods()) {
2793     if (!InsMapSeen.insert(I->getSelector()).second)
2794       continue;
2795     if (!I->isPropertyAccessor() &&
2796         !InsMap.count(I->getSelector())) {
2797       if (ImmediateClass)
2798         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2799                             diag::warn_undef_method_impl);
2800       continue;
2801     } else {
2802       ObjCMethodDecl *ImpMethodDecl =
2803         IMPDecl->getInstanceMethod(I->getSelector());
2804       assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2805              "Expected to find the method through lookup as well");
2806       // ImpMethodDecl may be null as in a @dynamic property.
2807       if (ImpMethodDecl) {
2808         if (!WarnCategoryMethodImpl)
2809           WarnConflictingTypedMethods(ImpMethodDecl, I,
2810                                       isa<ObjCProtocolDecl>(CDecl));
2811         else if (!I->isPropertyAccessor())
2812           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2813       }
2814     }
2815   }
2816 
2817   // Check and see if class methods in class interface have been
2818   // implemented in the implementation class. If so, their types match.
2819   for (auto *I : CDecl->class_methods()) {
2820     if (!ClsMapSeen.insert(I->getSelector()).second)
2821       continue;
2822     if (!I->isPropertyAccessor() &&
2823         !ClsMap.count(I->getSelector())) {
2824       if (ImmediateClass)
2825         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2826                             diag::warn_undef_method_impl);
2827     } else {
2828       ObjCMethodDecl *ImpMethodDecl =
2829         IMPDecl->getClassMethod(I->getSelector());
2830       assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2831              "Expected to find the method through lookup as well");
2832       // ImpMethodDecl may be null as in a @dynamic property.
2833       if (ImpMethodDecl) {
2834         if (!WarnCategoryMethodImpl)
2835           WarnConflictingTypedMethods(ImpMethodDecl, I,
2836                                       isa<ObjCProtocolDecl>(CDecl));
2837         else if (!I->isPropertyAccessor())
2838           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2839       }
2840     }
2841   }
2842 
2843   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2844     // Also, check for methods declared in protocols inherited by
2845     // this protocol.
2846     for (auto *PI : PD->protocols())
2847       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2848                                  IMPDecl, PI, IncompleteImpl, false,
2849                                  WarnCategoryMethodImpl);
2850   }
2851 
2852   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2853     // when checking that methods in implementation match their declaration,
2854     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2855     // extension; as well as those in categories.
2856     if (!WarnCategoryMethodImpl) {
2857       for (auto *Cat : I->visible_categories())
2858         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2859                                    IMPDecl, Cat, IncompleteImpl,
2860                                    ImmediateClass && Cat->IsClassExtension(),
2861                                    WarnCategoryMethodImpl);
2862     } else {
2863       // Also methods in class extensions need be looked at next.
2864       for (auto *Ext : I->visible_extensions())
2865         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2866                                    IMPDecl, Ext, IncompleteImpl, false,
2867                                    WarnCategoryMethodImpl);
2868     }
2869 
2870     // Check for any implementation of a methods declared in protocol.
2871     for (auto *PI : I->all_referenced_protocols())
2872       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2873                                  IMPDecl, PI, IncompleteImpl, false,
2874                                  WarnCategoryMethodImpl);
2875 
2876     // FIXME. For now, we are not checking for extact match of methods
2877     // in category implementation and its primary class's super class.
2878     if (!WarnCategoryMethodImpl && I->getSuperClass())
2879       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2880                                  IMPDecl,
2881                                  I->getSuperClass(), IncompleteImpl, false);
2882   }
2883 }
2884 
2885 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2886 /// category matches with those implemented in its primary class and
2887 /// warns each time an exact match is found.
2888 void Sema::CheckCategoryVsClassMethodMatches(
2889                                   ObjCCategoryImplDecl *CatIMPDecl) {
2890   // Get category's primary class.
2891   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2892   if (!CatDecl)
2893     return;
2894   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2895   if (!IDecl)
2896     return;
2897   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2898   SelectorSet InsMap, ClsMap;
2899 
2900   for (const auto *I : CatIMPDecl->instance_methods()) {
2901     Selector Sel = I->getSelector();
2902     // When checking for methods implemented in the category, skip over
2903     // those declared in category class's super class. This is because
2904     // the super class must implement the method.
2905     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2906       continue;
2907     InsMap.insert(Sel);
2908   }
2909 
2910   for (const auto *I : CatIMPDecl->class_methods()) {
2911     Selector Sel = I->getSelector();
2912     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2913       continue;
2914     ClsMap.insert(Sel);
2915   }
2916   if (InsMap.empty() && ClsMap.empty())
2917     return;
2918 
2919   SelectorSet InsMapSeen, ClsMapSeen;
2920   bool IncompleteImpl = false;
2921   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2922                              CatIMPDecl, IDecl,
2923                              IncompleteImpl, false,
2924                              true /*WarnCategoryMethodImpl*/);
2925 }
2926 
2927 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2928                                      ObjCContainerDecl* CDecl,
2929                                      bool IncompleteImpl) {
2930   SelectorSet InsMap;
2931   // Check and see if instance methods in class interface have been
2932   // implemented in the implementation class.
2933   for (const auto *I : IMPDecl->instance_methods())
2934     InsMap.insert(I->getSelector());
2935 
2936   // Add the selectors for getters/setters of @dynamic properties.
2937   for (const auto *PImpl : IMPDecl->property_impls()) {
2938     // We only care about @dynamic implementations.
2939     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2940       continue;
2941 
2942     const auto *P = PImpl->getPropertyDecl();
2943     if (!P) continue;
2944 
2945     InsMap.insert(P->getGetterName());
2946     if (!P->getSetterName().isNull())
2947       InsMap.insert(P->getSetterName());
2948   }
2949 
2950   // Check and see if properties declared in the interface have either 1)
2951   // an implementation or 2) there is a @synthesize/@dynamic implementation
2952   // of the property in the @implementation.
2953   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2954     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2955                                 LangOpts.ObjCRuntime.isNonFragile() &&
2956                                 !IDecl->isObjCRequiresPropertyDefs();
2957     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2958   }
2959 
2960   // Diagnose null-resettable synthesized setters.
2961   diagnoseNullResettableSynthesizedSetters(IMPDecl);
2962 
2963   SelectorSet ClsMap;
2964   for (const auto *I : IMPDecl->class_methods())
2965     ClsMap.insert(I->getSelector());
2966 
2967   // Check for type conflict of methods declared in a class/protocol and
2968   // its implementation; if any.
2969   SelectorSet InsMapSeen, ClsMapSeen;
2970   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2971                              IMPDecl, CDecl,
2972                              IncompleteImpl, true);
2973 
2974   // check all methods implemented in category against those declared
2975   // in its primary class.
2976   if (ObjCCategoryImplDecl *CatDecl =
2977         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2978     CheckCategoryVsClassMethodMatches(CatDecl);
2979 
2980   // Check the protocol list for unimplemented methods in the @implementation
2981   // class.
2982   // Check and see if class methods in class interface have been
2983   // implemented in the implementation class.
2984 
2985   LazyProtocolNameSet ExplicitImplProtocols;
2986 
2987   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2988     for (auto *PI : I->all_referenced_protocols())
2989       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2990                               InsMap, ClsMap, I, ExplicitImplProtocols);
2991   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2992     // For extended class, unimplemented methods in its protocols will
2993     // be reported in the primary class.
2994     if (!C->IsClassExtension()) {
2995       for (auto *P : C->protocols())
2996         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2997                                 IncompleteImpl, InsMap, ClsMap, CDecl,
2998                                 ExplicitImplProtocols);
2999       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3000                                       /*SynthesizeProperties=*/false);
3001     }
3002   } else
3003     llvm_unreachable("invalid ObjCContainerDecl type.");
3004 }
3005 
3006 Sema::DeclGroupPtrTy
3007 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3008                                    IdentifierInfo **IdentList,
3009                                    SourceLocation *IdentLocs,
3010                                    ArrayRef<ObjCTypeParamList *> TypeParamLists,
3011                                    unsigned NumElts) {
3012   SmallVector<Decl *, 8> DeclsInGroup;
3013   for (unsigned i = 0; i != NumElts; ++i) {
3014     // Check for another declaration kind with the same name.
3015     NamedDecl *PrevDecl
3016       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3017                          LookupOrdinaryName, forRedeclarationInCurContext());
3018     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3019       // GCC apparently allows the following idiom:
3020       //
3021       // typedef NSObject < XCElementTogglerP > XCElementToggler;
3022       // @class XCElementToggler;
3023       //
3024       // Here we have chosen to ignore the forward class declaration
3025       // with a warning. Since this is the implied behavior.
3026       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3027       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3028         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3029         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3030       } else {
3031         // a forward class declaration matching a typedef name of a class refers
3032         // to the underlying class. Just ignore the forward class with a warning
3033         // as this will force the intended behavior which is to lookup the
3034         // typedef name.
3035         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3036           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3037               << IdentList[i];
3038           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3039           continue;
3040         }
3041       }
3042     }
3043 
3044     // Create a declaration to describe this forward declaration.
3045     ObjCInterfaceDecl *PrevIDecl
3046       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3047 
3048     IdentifierInfo *ClassName = IdentList[i];
3049     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3050       // A previous decl with a different name is because of
3051       // @compatibility_alias, for example:
3052       // \code
3053       //   @class NewImage;
3054       //   @compatibility_alias OldImage NewImage;
3055       // \endcode
3056       // A lookup for 'OldImage' will return the 'NewImage' decl.
3057       //
3058       // In such a case use the real declaration name, instead of the alias one,
3059       // otherwise we will break IdentifierResolver and redecls-chain invariants.
3060       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3061       // has been aliased.
3062       ClassName = PrevIDecl->getIdentifier();
3063     }
3064 
3065     // If this forward declaration has type parameters, compare them with the
3066     // type parameters of the previous declaration.
3067     ObjCTypeParamList *TypeParams = TypeParamLists[i];
3068     if (PrevIDecl && TypeParams) {
3069       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3070         // Check for consistency with the previous declaration.
3071         if (checkTypeParamListConsistency(
3072               *this, PrevTypeParams, TypeParams,
3073               TypeParamListContext::ForwardDeclaration)) {
3074           TypeParams = nullptr;
3075         }
3076       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3077         // The @interface does not have type parameters. Complain.
3078         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3079           << ClassName
3080           << TypeParams->getSourceRange();
3081         Diag(Def->getLocation(), diag::note_defined_here)
3082           << ClassName;
3083 
3084         TypeParams = nullptr;
3085       }
3086     }
3087 
3088     ObjCInterfaceDecl *IDecl
3089       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3090                                   ClassName, TypeParams, PrevIDecl,
3091                                   IdentLocs[i]);
3092     IDecl->setAtEndRange(IdentLocs[i]);
3093 
3094     PushOnScopeChains(IDecl, TUScope);
3095     CheckObjCDeclScope(IDecl);
3096     DeclsInGroup.push_back(IDecl);
3097   }
3098 
3099   return BuildDeclaratorGroup(DeclsInGroup);
3100 }
3101 
3102 static bool tryMatchRecordTypes(ASTContext &Context,
3103                                 Sema::MethodMatchStrategy strategy,
3104                                 const Type *left, const Type *right);
3105 
3106 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3107                        QualType leftQT, QualType rightQT) {
3108   const Type *left =
3109     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3110   const Type *right =
3111     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3112 
3113   if (left == right) return true;
3114 
3115   // If we're doing a strict match, the types have to match exactly.
3116   if (strategy == Sema::MMS_strict) return false;
3117 
3118   if (left->isIncompleteType() || right->isIncompleteType()) return false;
3119 
3120   // Otherwise, use this absurdly complicated algorithm to try to
3121   // validate the basic, low-level compatibility of the two types.
3122 
3123   // As a minimum, require the sizes and alignments to match.
3124   TypeInfo LeftTI = Context.getTypeInfo(left);
3125   TypeInfo RightTI = Context.getTypeInfo(right);
3126   if (LeftTI.Width != RightTI.Width)
3127     return false;
3128 
3129   if (LeftTI.Align != RightTI.Align)
3130     return false;
3131 
3132   // Consider all the kinds of non-dependent canonical types:
3133   // - functions and arrays aren't possible as return and parameter types
3134 
3135   // - vector types of equal size can be arbitrarily mixed
3136   if (isa<VectorType>(left)) return isa<VectorType>(right);
3137   if (isa<VectorType>(right)) return false;
3138 
3139   // - references should only match references of identical type
3140   // - structs, unions, and Objective-C objects must match more-or-less
3141   //   exactly
3142   // - everything else should be a scalar
3143   if (!left->isScalarType() || !right->isScalarType())
3144     return tryMatchRecordTypes(Context, strategy, left, right);
3145 
3146   // Make scalars agree in kind, except count bools as chars, and group
3147   // all non-member pointers together.
3148   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3149   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3150   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3151   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3152   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3153     leftSK = Type::STK_ObjCObjectPointer;
3154   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3155     rightSK = Type::STK_ObjCObjectPointer;
3156 
3157   // Note that data member pointers and function member pointers don't
3158   // intermix because of the size differences.
3159 
3160   return (leftSK == rightSK);
3161 }
3162 
3163 static bool tryMatchRecordTypes(ASTContext &Context,
3164                                 Sema::MethodMatchStrategy strategy,
3165                                 const Type *lt, const Type *rt) {
3166   assert(lt && rt && lt != rt);
3167 
3168   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3169   RecordDecl *left = cast<RecordType>(lt)->getDecl();
3170   RecordDecl *right = cast<RecordType>(rt)->getDecl();
3171 
3172   // Require union-hood to match.
3173   if (left->isUnion() != right->isUnion()) return false;
3174 
3175   // Require an exact match if either is non-POD.
3176   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3177       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3178     return false;
3179 
3180   // Require size and alignment to match.
3181   TypeInfo LeftTI = Context.getTypeInfo(lt);
3182   TypeInfo RightTI = Context.getTypeInfo(rt);
3183   if (LeftTI.Width != RightTI.Width)
3184     return false;
3185 
3186   if (LeftTI.Align != RightTI.Align)
3187     return false;
3188 
3189   // Require fields to match.
3190   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3191   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3192   for (; li != le && ri != re; ++li, ++ri) {
3193     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3194       return false;
3195   }
3196   return (li == le && ri == re);
3197 }
3198 
3199 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3200 /// returns true, or false, accordingly.
3201 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3202 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3203                                       const ObjCMethodDecl *right,
3204                                       MethodMatchStrategy strategy) {
3205   if (!matchTypes(Context, strategy, left->getReturnType(),
3206                   right->getReturnType()))
3207     return false;
3208 
3209   // If either is hidden, it is not considered to match.
3210   if (left->isHidden() || right->isHidden())
3211     return false;
3212 
3213   if (getLangOpts().ObjCAutoRefCount &&
3214       (left->hasAttr<NSReturnsRetainedAttr>()
3215          != right->hasAttr<NSReturnsRetainedAttr>() ||
3216        left->hasAttr<NSConsumesSelfAttr>()
3217          != right->hasAttr<NSConsumesSelfAttr>()))
3218     return false;
3219 
3220   ObjCMethodDecl::param_const_iterator
3221     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3222     re = right->param_end();
3223 
3224   for (; li != le && ri != re; ++li, ++ri) {
3225     assert(ri != right->param_end() && "Param mismatch");
3226     const ParmVarDecl *lparm = *li, *rparm = *ri;
3227 
3228     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3229       return false;
3230 
3231     if (getLangOpts().ObjCAutoRefCount &&
3232         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3233       return false;
3234   }
3235   return true;
3236 }
3237 
3238 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3239                                                ObjCMethodDecl *MethodInList) {
3240   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3241   auto *MethodInListProtocol =
3242       dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3243   // If this method belongs to a protocol but the method in list does not, or
3244   // vice versa, we say the context is not the same.
3245   if ((MethodProtocol && !MethodInListProtocol) ||
3246       (!MethodProtocol && MethodInListProtocol))
3247     return false;
3248 
3249   if (MethodProtocol && MethodInListProtocol)
3250     return true;
3251 
3252   ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3253   ObjCInterfaceDecl *MethodInListInterface =
3254       MethodInList->getClassInterface();
3255   return MethodInterface == MethodInListInterface;
3256 }
3257 
3258 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3259                                  ObjCMethodDecl *Method) {
3260   // Record at the head of the list whether there were 0, 1, or >= 2 methods
3261   // inside categories.
3262   if (ObjCCategoryDecl *CD =
3263           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3264     if (!CD->IsClassExtension() && List->getBits() < 2)
3265       List->setBits(List->getBits() + 1);
3266 
3267   // If the list is empty, make it a singleton list.
3268   if (List->getMethod() == nullptr) {
3269     List->setMethod(Method);
3270     List->setNext(nullptr);
3271     return;
3272   }
3273 
3274   // We've seen a method with this name, see if we have already seen this type
3275   // signature.
3276   ObjCMethodList *Previous = List;
3277   ObjCMethodList *ListWithSameDeclaration = nullptr;
3278   for (; List; Previous = List, List = List->getNext()) {
3279     // If we are building a module, keep all of the methods.
3280     if (getLangOpts().isCompilingModule())
3281       continue;
3282 
3283     bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3284                                                       List->getMethod());
3285     // Looking for method with a type bound requires the correct context exists.
3286     // We need to insert a method into the list if the context is different.
3287     // If the method's declaration matches the list
3288     // a> the method belongs to a different context: we need to insert it, in
3289     //    order to emit the availability message, we need to prioritize over
3290     //    availability among the methods with the same declaration.
3291     // b> the method belongs to the same context: there is no need to insert a
3292     //    new entry.
3293     // If the method's declaration does not match the list, we insert it to the
3294     // end.
3295     if (!SameDeclaration ||
3296         !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3297       // Even if two method types do not match, we would like to say
3298       // there is more than one declaration so unavailability/deprecated
3299       // warning is not too noisy.
3300       if (!Method->isDefined())
3301         List->setHasMoreThanOneDecl(true);
3302 
3303       // For methods with the same declaration, the one that is deprecated
3304       // should be put in the front for better diagnostics.
3305       if (Method->isDeprecated() && SameDeclaration &&
3306           !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3307         ListWithSameDeclaration = List;
3308 
3309       if (Method->isUnavailable() && SameDeclaration &&
3310           !ListWithSameDeclaration &&
3311           List->getMethod()->getAvailability() < AR_Deprecated)
3312         ListWithSameDeclaration = List;
3313       continue;
3314     }
3315 
3316     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3317 
3318     // Propagate the 'defined' bit.
3319     if (Method->isDefined())
3320       PrevObjCMethod->setDefined(true);
3321     else {
3322       // Objective-C doesn't allow an @interface for a class after its
3323       // @implementation. So if Method is not defined and there already is
3324       // an entry for this type signature, Method has to be for a different
3325       // class than PrevObjCMethod.
3326       List->setHasMoreThanOneDecl(true);
3327     }
3328 
3329     // If a method is deprecated, push it in the global pool.
3330     // This is used for better diagnostics.
3331     if (Method->isDeprecated()) {
3332       if (!PrevObjCMethod->isDeprecated())
3333         List->setMethod(Method);
3334     }
3335     // If the new method is unavailable, push it into global pool
3336     // unless previous one is deprecated.
3337     if (Method->isUnavailable()) {
3338       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3339         List->setMethod(Method);
3340     }
3341 
3342     return;
3343   }
3344 
3345   // We have a new signature for an existing method - add it.
3346   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3347   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3348 
3349   // We insert it right before ListWithSameDeclaration.
3350   if (ListWithSameDeclaration) {
3351     auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3352     // FIXME: should we clear the other bits in ListWithSameDeclaration?
3353     ListWithSameDeclaration->setMethod(Method);
3354     ListWithSameDeclaration->setNext(List);
3355     return;
3356   }
3357 
3358   Previous->setNext(new (Mem) ObjCMethodList(Method));
3359 }
3360 
3361 /// \brief Read the contents of the method pool for a given selector from
3362 /// external storage.
3363 void Sema::ReadMethodPool(Selector Sel) {
3364   assert(ExternalSource && "We need an external AST source");
3365   ExternalSource->ReadMethodPool(Sel);
3366 }
3367 
3368 void Sema::updateOutOfDateSelector(Selector Sel) {
3369   if (!ExternalSource)
3370     return;
3371   ExternalSource->updateOutOfDateSelector(Sel);
3372 }
3373 
3374 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3375                                  bool instance) {
3376   // Ignore methods of invalid containers.
3377   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3378     return;
3379 
3380   if (ExternalSource)
3381     ReadMethodPool(Method->getSelector());
3382 
3383   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3384   if (Pos == MethodPool.end())
3385     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3386                                            GlobalMethods())).first;
3387 
3388   Method->setDefined(impl);
3389 
3390   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3391   addMethodToGlobalList(&Entry, Method);
3392 }
3393 
3394 /// Determines if this is an "acceptable" loose mismatch in the global
3395 /// method pool.  This exists mostly as a hack to get around certain
3396 /// global mismatches which we can't afford to make warnings / errors.
3397 /// Really, what we want is a way to take a method out of the global
3398 /// method pool.
3399 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3400                                        ObjCMethodDecl *other) {
3401   if (!chosen->isInstanceMethod())
3402     return false;
3403 
3404   Selector sel = chosen->getSelector();
3405   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3406     return false;
3407 
3408   // Don't complain about mismatches for -length if the method we
3409   // chose has an integral result type.
3410   return (chosen->getReturnType()->isIntegerType());
3411 }
3412 
3413 /// Return true if the given method is wthin the type bound.
3414 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3415                                      const ObjCObjectType *TypeBound) {
3416   if (!TypeBound)
3417     return true;
3418 
3419   if (TypeBound->isObjCId())
3420     // FIXME: should we handle the case of bounding to id<A, B> differently?
3421     return true;
3422 
3423   auto *BoundInterface = TypeBound->getInterface();
3424   assert(BoundInterface && "unexpected object type!");
3425 
3426   // Check if the Method belongs to a protocol. We should allow any method
3427   // defined in any protocol, because any subclass could adopt the protocol.
3428   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3429   if (MethodProtocol) {
3430     return true;
3431   }
3432 
3433   // If the Method belongs to a class, check if it belongs to the class
3434   // hierarchy of the class bound.
3435   if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3436     // We allow methods declared within classes that are part of the hierarchy
3437     // of the class bound (superclass of, subclass of, or the same as the class
3438     // bound).
3439     return MethodInterface == BoundInterface ||
3440            MethodInterface->isSuperClassOf(BoundInterface) ||
3441            BoundInterface->isSuperClassOf(MethodInterface);
3442   }
3443   llvm_unreachable("unknown method context");
3444 }
3445 
3446 /// We first select the type of the method: Instance or Factory, then collect
3447 /// all methods with that type.
3448 bool Sema::CollectMultipleMethodsInGlobalPool(
3449     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3450     bool InstanceFirst, bool CheckTheOther,
3451     const ObjCObjectType *TypeBound) {
3452   if (ExternalSource)
3453     ReadMethodPool(Sel);
3454 
3455   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3456   if (Pos == MethodPool.end())
3457     return false;
3458 
3459   // Gather the non-hidden methods.
3460   ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3461                              Pos->second.second;
3462   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3463     if (M->getMethod() && !M->getMethod()->isHidden()) {
3464       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3465         Methods.push_back(M->getMethod());
3466     }
3467 
3468   // Return if we find any method with the desired kind.
3469   if (!Methods.empty())
3470     return Methods.size() > 1;
3471 
3472   if (!CheckTheOther)
3473     return false;
3474 
3475   // Gather the other kind.
3476   ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3477                               Pos->second.first;
3478   for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3479     if (M->getMethod() && !M->getMethod()->isHidden()) {
3480       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3481         Methods.push_back(M->getMethod());
3482     }
3483 
3484   return Methods.size() > 1;
3485 }
3486 
3487 bool Sema::AreMultipleMethodsInGlobalPool(
3488     Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3489     bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3490   // Diagnose finding more than one method in global pool.
3491   SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3492   FilteredMethods.push_back(BestMethod);
3493 
3494   for (auto *M : Methods)
3495     if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3496       FilteredMethods.push_back(M);
3497 
3498   if (FilteredMethods.size() > 1)
3499     DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3500                                        receiverIdOrClass);
3501 
3502   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3503   // Test for no method in the pool which should not trigger any warning by
3504   // caller.
3505   if (Pos == MethodPool.end())
3506     return true;
3507   ObjCMethodList &MethList =
3508     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3509   return MethList.hasMoreThanOneDecl();
3510 }
3511 
3512 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3513                                                bool receiverIdOrClass,
3514                                                bool instance) {
3515   if (ExternalSource)
3516     ReadMethodPool(Sel);
3517 
3518   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3519   if (Pos == MethodPool.end())
3520     return nullptr;
3521 
3522   // Gather the non-hidden methods.
3523   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3524   SmallVector<ObjCMethodDecl *, 4> Methods;
3525   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3526     if (M->getMethod() && !M->getMethod()->isHidden())
3527       return M->getMethod();
3528   }
3529   return nullptr;
3530 }
3531 
3532 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3533                                               Selector Sel, SourceRange R,
3534                                               bool receiverIdOrClass) {
3535   // We found multiple methods, so we may have to complain.
3536   bool issueDiagnostic = false, issueError = false;
3537 
3538   // We support a warning which complains about *any* difference in
3539   // method signature.
3540   bool strictSelectorMatch =
3541   receiverIdOrClass &&
3542   !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3543   if (strictSelectorMatch) {
3544     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3545       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3546         issueDiagnostic = true;
3547         break;
3548       }
3549     }
3550   }
3551 
3552   // If we didn't see any strict differences, we won't see any loose
3553   // differences.  In ARC, however, we also need to check for loose
3554   // mismatches, because most of them are errors.
3555   if (!strictSelectorMatch ||
3556       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3557     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3558       // This checks if the methods differ in type mismatch.
3559       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3560           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3561         issueDiagnostic = true;
3562         if (getLangOpts().ObjCAutoRefCount)
3563           issueError = true;
3564         break;
3565       }
3566     }
3567 
3568   if (issueDiagnostic) {
3569     if (issueError)
3570       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3571     else if (strictSelectorMatch)
3572       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3573     else
3574       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3575 
3576     Diag(Methods[0]->getLocStart(),
3577          issueError ? diag::note_possibility : diag::note_using)
3578     << Methods[0]->getSourceRange();
3579     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3580       Diag(Methods[I]->getLocStart(), diag::note_also_found)
3581       << Methods[I]->getSourceRange();
3582     }
3583   }
3584 }
3585 
3586 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3587   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3588   if (Pos == MethodPool.end())
3589     return nullptr;
3590 
3591   GlobalMethods &Methods = Pos->second;
3592   for (const ObjCMethodList *Method = &Methods.first; Method;
3593        Method = Method->getNext())
3594     if (Method->getMethod() &&
3595         (Method->getMethod()->isDefined() ||
3596          Method->getMethod()->isPropertyAccessor()))
3597       return Method->getMethod();
3598 
3599   for (const ObjCMethodList *Method = &Methods.second; Method;
3600        Method = Method->getNext())
3601     if (Method->getMethod() &&
3602         (Method->getMethod()->isDefined() ||
3603          Method->getMethod()->isPropertyAccessor()))
3604       return Method->getMethod();
3605   return nullptr;
3606 }
3607 
3608 static void
3609 HelperSelectorsForTypoCorrection(
3610                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3611                       StringRef Typo, const ObjCMethodDecl * Method) {
3612   const unsigned MaxEditDistance = 1;
3613   unsigned BestEditDistance = MaxEditDistance + 1;
3614   std::string MethodName = Method->getSelector().getAsString();
3615 
3616   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3617   if (MinPossibleEditDistance > 0 &&
3618       Typo.size() / MinPossibleEditDistance < 1)
3619     return;
3620   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3621   if (EditDistance > MaxEditDistance)
3622     return;
3623   if (EditDistance == BestEditDistance)
3624     BestMethod.push_back(Method);
3625   else if (EditDistance < BestEditDistance) {
3626     BestMethod.clear();
3627     BestMethod.push_back(Method);
3628   }
3629 }
3630 
3631 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3632                                      QualType ObjectType) {
3633   if (ObjectType.isNull())
3634     return true;
3635   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3636     return true;
3637   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3638          nullptr;
3639 }
3640 
3641 const ObjCMethodDecl *
3642 Sema::SelectorsForTypoCorrection(Selector Sel,
3643                                  QualType ObjectType) {
3644   unsigned NumArgs = Sel.getNumArgs();
3645   SmallVector<const ObjCMethodDecl *, 8> Methods;
3646   bool ObjectIsId = true, ObjectIsClass = true;
3647   if (ObjectType.isNull())
3648     ObjectIsId = ObjectIsClass = false;
3649   else if (!ObjectType->isObjCObjectPointerType())
3650     return nullptr;
3651   else if (const ObjCObjectPointerType *ObjCPtr =
3652            ObjectType->getAsObjCInterfacePointerType()) {
3653     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3654     ObjectIsId = ObjectIsClass = false;
3655   }
3656   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3657     ObjectIsClass = false;
3658   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3659     ObjectIsId = false;
3660   else
3661     return nullptr;
3662 
3663   for (GlobalMethodPool::iterator b = MethodPool.begin(),
3664        e = MethodPool.end(); b != e; b++) {
3665     // instance methods
3666     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3667       if (M->getMethod() &&
3668           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3669           (M->getMethod()->getSelector() != Sel)) {
3670         if (ObjectIsId)
3671           Methods.push_back(M->getMethod());
3672         else if (!ObjectIsClass &&
3673                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3674                                           ObjectType))
3675           Methods.push_back(M->getMethod());
3676       }
3677     // class methods
3678     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3679       if (M->getMethod() &&
3680           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3681           (M->getMethod()->getSelector() != Sel)) {
3682         if (ObjectIsClass)
3683           Methods.push_back(M->getMethod());
3684         else if (!ObjectIsId &&
3685                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3686                                           ObjectType))
3687           Methods.push_back(M->getMethod());
3688       }
3689   }
3690 
3691   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3692   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3693     HelperSelectorsForTypoCorrection(SelectedMethods,
3694                                      Sel.getAsString(), Methods[i]);
3695   }
3696   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3697 }
3698 
3699 /// DiagnoseDuplicateIvars -
3700 /// Check for duplicate ivars in the entire class at the start of
3701 /// \@implementation. This becomes necesssary because class extension can
3702 /// add ivars to a class in random order which will not be known until
3703 /// class's \@implementation is seen.
3704 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3705                                   ObjCInterfaceDecl *SID) {
3706   for (auto *Ivar : ID->ivars()) {
3707     if (Ivar->isInvalidDecl())
3708       continue;
3709     if (IdentifierInfo *II = Ivar->getIdentifier()) {
3710       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3711       if (prevIvar) {
3712         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3713         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3714         Ivar->setInvalidDecl();
3715       }
3716     }
3717   }
3718 }
3719 
3720 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3721 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3722   if (S.getLangOpts().ObjCWeak) return;
3723 
3724   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3725          ivar; ivar = ivar->getNextIvar()) {
3726     if (ivar->isInvalidDecl()) continue;
3727     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3728       if (S.getLangOpts().ObjCWeakRuntime) {
3729         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3730       } else {
3731         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3732       }
3733     }
3734   }
3735 }
3736 
3737 /// Diagnose attempts to use flexible array member with retainable object type.
3738 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3739                                                   ObjCInterfaceDecl *ID) {
3740   if (!S.getLangOpts().ObjCAutoRefCount)
3741     return;
3742 
3743   for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3744        ivar = ivar->getNextIvar()) {
3745     if (ivar->isInvalidDecl())
3746       continue;
3747     QualType IvarTy = ivar->getType();
3748     if (IvarTy->isIncompleteArrayType() &&
3749         (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3750         IvarTy->isObjCLifetimeType()) {
3751       S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3752       ivar->setInvalidDecl();
3753     }
3754   }
3755 }
3756 
3757 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3758   switch (CurContext->getDeclKind()) {
3759     case Decl::ObjCInterface:
3760       return Sema::OCK_Interface;
3761     case Decl::ObjCProtocol:
3762       return Sema::OCK_Protocol;
3763     case Decl::ObjCCategory:
3764       if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3765         return Sema::OCK_ClassExtension;
3766       return Sema::OCK_Category;
3767     case Decl::ObjCImplementation:
3768       return Sema::OCK_Implementation;
3769     case Decl::ObjCCategoryImpl:
3770       return Sema::OCK_CategoryImplementation;
3771 
3772     default:
3773       return Sema::OCK_None;
3774   }
3775 }
3776 
3777 static bool IsVariableSizedType(QualType T) {
3778   if (T->isIncompleteArrayType())
3779     return true;
3780   const auto *RecordTy = T->getAs<RecordType>();
3781   return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3782 }
3783 
3784 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3785   ObjCInterfaceDecl *IntfDecl = nullptr;
3786   ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3787       ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3788   if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3789     Ivars = IntfDecl->ivars();
3790   } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3791     IntfDecl = ImplDecl->getClassInterface();
3792     Ivars = ImplDecl->ivars();
3793   } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3794     if (CategoryDecl->IsClassExtension()) {
3795       IntfDecl = CategoryDecl->getClassInterface();
3796       Ivars = CategoryDecl->ivars();
3797     }
3798   }
3799 
3800   // Check if variable sized ivar is in interface and visible to subclasses.
3801   if (!isa<ObjCInterfaceDecl>(OCD)) {
3802     for (auto ivar : Ivars) {
3803       if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3804         S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3805             << ivar->getDeclName() << ivar->getType();
3806       }
3807     }
3808   }
3809 
3810   // Subsequent checks require interface decl.
3811   if (!IntfDecl)
3812     return;
3813 
3814   // Check if variable sized ivar is followed by another ivar.
3815   for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3816        ivar = ivar->getNextIvar()) {
3817     if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3818       continue;
3819     QualType IvarTy = ivar->getType();
3820     bool IsInvalidIvar = false;
3821     if (IvarTy->isIncompleteArrayType()) {
3822       S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3823           << ivar->getDeclName() << IvarTy
3824           << TTK_Class; // Use "class" for Obj-C.
3825       IsInvalidIvar = true;
3826     } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3827       if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3828         S.Diag(ivar->getLocation(),
3829                diag::err_objc_variable_sized_type_not_at_end)
3830             << ivar->getDeclName() << IvarTy;
3831         IsInvalidIvar = true;
3832       }
3833     }
3834     if (IsInvalidIvar) {
3835       S.Diag(ivar->getNextIvar()->getLocation(),
3836              diag::note_next_ivar_declaration)
3837           << ivar->getNextIvar()->getSynthesize();
3838       ivar->setInvalidDecl();
3839     }
3840   }
3841 
3842   // Check if ObjC container adds ivars after variable sized ivar in superclass.
3843   // Perform the check only if OCD is the first container to declare ivars to
3844   // avoid multiple warnings for the same ivar.
3845   ObjCIvarDecl *FirstIvar =
3846       (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3847   if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3848     const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3849     while (SuperClass && SuperClass->ivar_empty())
3850       SuperClass = SuperClass->getSuperClass();
3851     if (SuperClass) {
3852       auto IvarIter = SuperClass->ivar_begin();
3853       std::advance(IvarIter, SuperClass->ivar_size() - 1);
3854       const ObjCIvarDecl *LastIvar = *IvarIter;
3855       if (IsVariableSizedType(LastIvar->getType())) {
3856         S.Diag(FirstIvar->getLocation(),
3857                diag::warn_superclass_variable_sized_type_not_at_end)
3858             << FirstIvar->getDeclName() << LastIvar->getDeclName()
3859             << LastIvar->getType() << SuperClass->getDeclName();
3860         S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3861             << LastIvar->getDeclName();
3862       }
3863     }
3864   }
3865 }
3866 
3867 // Note: For class/category implementations, allMethods is always null.
3868 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3869                        ArrayRef<DeclGroupPtrTy> allTUVars) {
3870   if (getObjCContainerKind() == Sema::OCK_None)
3871     return nullptr;
3872 
3873   assert(AtEnd.isValid() && "Invalid location for '@end'");
3874 
3875   auto *OCD = cast<ObjCContainerDecl>(CurContext);
3876   Decl *ClassDecl = OCD;
3877 
3878   bool isInterfaceDeclKind =
3879         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3880          || isa<ObjCProtocolDecl>(ClassDecl);
3881   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3882 
3883   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3884   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3885   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3886 
3887   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3888     ObjCMethodDecl *Method =
3889       cast_or_null<ObjCMethodDecl>(allMethods[i]);
3890 
3891     if (!Method) continue;  // Already issued a diagnostic.
3892     if (Method->isInstanceMethod()) {
3893       /// Check for instance method of the same name with incompatible types
3894       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3895       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3896                               : false;
3897       if ((isInterfaceDeclKind && PrevMethod && !match)
3898           || (checkIdenticalMethods && match)) {
3899           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3900             << Method->getDeclName();
3901           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3902         Method->setInvalidDecl();
3903       } else {
3904         if (PrevMethod) {
3905           Method->setAsRedeclaration(PrevMethod);
3906           if (!Context.getSourceManager().isInSystemHeader(
3907                  Method->getLocation()))
3908             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3909               << Method->getDeclName();
3910           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3911         }
3912         InsMap[Method->getSelector()] = Method;
3913         /// The following allows us to typecheck messages to "id".
3914         AddInstanceMethodToGlobalPool(Method);
3915       }
3916     } else {
3917       /// Check for class method of the same name with incompatible types
3918       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3919       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3920                               : false;
3921       if ((isInterfaceDeclKind && PrevMethod && !match)
3922           || (checkIdenticalMethods && match)) {
3923         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3924           << Method->getDeclName();
3925         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3926         Method->setInvalidDecl();
3927       } else {
3928         if (PrevMethod) {
3929           Method->setAsRedeclaration(PrevMethod);
3930           if (!Context.getSourceManager().isInSystemHeader(
3931                  Method->getLocation()))
3932             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3933               << Method->getDeclName();
3934           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3935         }
3936         ClsMap[Method->getSelector()] = Method;
3937         AddFactoryMethodToGlobalPool(Method);
3938       }
3939     }
3940   }
3941   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3942     // Nothing to do here.
3943   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3944     // Categories are used to extend the class by declaring new methods.
3945     // By the same token, they are also used to add new properties. No
3946     // need to compare the added property to those in the class.
3947 
3948     if (C->IsClassExtension()) {
3949       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3950       DiagnoseClassExtensionDupMethods(C, CCPrimary);
3951     }
3952   }
3953   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3954     if (CDecl->getIdentifier())
3955       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3956       // user-defined setter/getter. It also synthesizes setter/getter methods
3957       // and adds them to the DeclContext and global method pools.
3958       for (auto *I : CDecl->properties())
3959         ProcessPropertyDecl(I);
3960     CDecl->setAtEndRange(AtEnd);
3961   }
3962   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3963     IC->setAtEndRange(AtEnd);
3964     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3965       // Any property declared in a class extension might have user
3966       // declared setter or getter in current class extension or one
3967       // of the other class extensions. Mark them as synthesized as
3968       // property will be synthesized when property with same name is
3969       // seen in the @implementation.
3970       for (const auto *Ext : IDecl->visible_extensions()) {
3971         for (const auto *Property : Ext->instance_properties()) {
3972           // Skip over properties declared @dynamic
3973           if (const ObjCPropertyImplDecl *PIDecl
3974               = IC->FindPropertyImplDecl(Property->getIdentifier(),
3975                                          Property->getQueryKind()))
3976             if (PIDecl->getPropertyImplementation()
3977                   == ObjCPropertyImplDecl::Dynamic)
3978               continue;
3979 
3980           for (const auto *Ext : IDecl->visible_extensions()) {
3981             if (ObjCMethodDecl *GetterMethod
3982                   = Ext->getInstanceMethod(Property->getGetterName()))
3983               GetterMethod->setPropertyAccessor(true);
3984             if (!Property->isReadOnly())
3985               if (ObjCMethodDecl *SetterMethod
3986                     = Ext->getInstanceMethod(Property->getSetterName()))
3987                 SetterMethod->setPropertyAccessor(true);
3988           }
3989         }
3990       }
3991       ImplMethodsVsClassMethods(S, IC, IDecl);
3992       AtomicPropertySetterGetterRules(IC, IDecl);
3993       DiagnoseOwningPropertyGetterSynthesis(IC);
3994       DiagnoseUnusedBackingIvarInAccessor(S, IC);
3995       if (IDecl->hasDesignatedInitializers())
3996         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
3997       DiagnoseWeakIvars(*this, IC);
3998       DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
3999 
4000       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4001       if (IDecl->getSuperClass() == nullptr) {
4002         // This class has no superclass, so check that it has been marked with
4003         // __attribute((objc_root_class)).
4004         if (!HasRootClassAttr) {
4005           SourceLocation DeclLoc(IDecl->getLocation());
4006           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4007           Diag(DeclLoc, diag::warn_objc_root_class_missing)
4008             << IDecl->getIdentifier();
4009           // See if NSObject is in the current scope, and if it is, suggest
4010           // adding " : NSObject " to the class declaration.
4011           NamedDecl *IF = LookupSingleName(TUScope,
4012                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4013                                            DeclLoc, LookupOrdinaryName);
4014           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4015           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4016             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4017               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4018           } else {
4019             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4020           }
4021         }
4022       } else if (HasRootClassAttr) {
4023         // Complain that only root classes may have this attribute.
4024         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4025       }
4026 
4027       if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4028         // An interface can subclass another interface with a
4029         // objc_subclassing_restricted attribute when it has that attribute as
4030         // well (because of interfaces imported from Swift). Therefore we have
4031         // to check if we can subclass in the implementation as well.
4032         if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4033             Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4034           Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4035           Diag(Super->getLocation(), diag::note_class_declared);
4036         }
4037       }
4038 
4039       if (LangOpts.ObjCRuntime.isNonFragile()) {
4040         while (IDecl->getSuperClass()) {
4041           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4042           IDecl = IDecl->getSuperClass();
4043         }
4044       }
4045     }
4046     SetIvarInitializers(IC);
4047   } else if (ObjCCategoryImplDecl* CatImplClass =
4048                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4049     CatImplClass->setAtEndRange(AtEnd);
4050 
4051     // Find category interface decl and then check that all methods declared
4052     // in this interface are implemented in the category @implementation.
4053     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4054       if (ObjCCategoryDecl *Cat
4055             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4056         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4057       }
4058     }
4059   } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4060     if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4061       if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4062           Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4063         Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4064         Diag(Super->getLocation(), diag::note_class_declared);
4065       }
4066     }
4067   }
4068   DiagnoseVariableSizedIvars(*this, OCD);
4069   if (isInterfaceDeclKind) {
4070     // Reject invalid vardecls.
4071     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4072       DeclGroupRef DG = allTUVars[i].get();
4073       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4074         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4075           if (!VDecl->hasExternalStorage())
4076             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4077         }
4078     }
4079   }
4080   ActOnObjCContainerFinishDefinition();
4081 
4082   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4083     DeclGroupRef DG = allTUVars[i].get();
4084     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4085       (*I)->setTopLevelDeclInObjCContainer();
4086     Consumer.HandleTopLevelDeclInObjCContainer(DG);
4087   }
4088 
4089   ActOnDocumentableDecl(ClassDecl);
4090   return ClassDecl;
4091 }
4092 
4093 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4094 /// objective-c's type qualifier from the parser version of the same info.
4095 static Decl::ObjCDeclQualifier
4096 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4097   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4098 }
4099 
4100 /// \brief Check whether the declared result type of the given Objective-C
4101 /// method declaration is compatible with the method's class.
4102 ///
4103 static Sema::ResultTypeCompatibilityKind
4104 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4105                                     ObjCInterfaceDecl *CurrentClass) {
4106   QualType ResultType = Method->getReturnType();
4107 
4108   // If an Objective-C method inherits its related result type, then its
4109   // declared result type must be compatible with its own class type. The
4110   // declared result type is compatible if:
4111   if (const ObjCObjectPointerType *ResultObjectType
4112                                 = ResultType->getAs<ObjCObjectPointerType>()) {
4113     //   - it is id or qualified id, or
4114     if (ResultObjectType->isObjCIdType() ||
4115         ResultObjectType->isObjCQualifiedIdType())
4116       return Sema::RTC_Compatible;
4117 
4118     if (CurrentClass) {
4119       if (ObjCInterfaceDecl *ResultClass
4120                                       = ResultObjectType->getInterfaceDecl()) {
4121         //   - it is the same as the method's class type, or
4122         if (declaresSameEntity(CurrentClass, ResultClass))
4123           return Sema::RTC_Compatible;
4124 
4125         //   - it is a superclass of the method's class type
4126         if (ResultClass->isSuperClassOf(CurrentClass))
4127           return Sema::RTC_Compatible;
4128       }
4129     } else {
4130       // Any Objective-C pointer type might be acceptable for a protocol
4131       // method; we just don't know.
4132       return Sema::RTC_Unknown;
4133     }
4134   }
4135 
4136   return Sema::RTC_Incompatible;
4137 }
4138 
4139 namespace {
4140 /// A helper class for searching for methods which a particular method
4141 /// overrides.
4142 class OverrideSearch {
4143 public:
4144   Sema &S;
4145   ObjCMethodDecl *Method;
4146   llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4147   bool Recursive;
4148 
4149 public:
4150   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4151     Selector selector = method->getSelector();
4152 
4153     // Bypass this search if we've never seen an instance/class method
4154     // with this selector before.
4155     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4156     if (it == S.MethodPool.end()) {
4157       if (!S.getExternalSource()) return;
4158       S.ReadMethodPool(selector);
4159 
4160       it = S.MethodPool.find(selector);
4161       if (it == S.MethodPool.end())
4162         return;
4163     }
4164     ObjCMethodList &list =
4165       method->isInstanceMethod() ? it->second.first : it->second.second;
4166     if (!list.getMethod()) return;
4167 
4168     ObjCContainerDecl *container
4169       = cast<ObjCContainerDecl>(method->getDeclContext());
4170 
4171     // Prevent the search from reaching this container again.  This is
4172     // important with categories, which override methods from the
4173     // interface and each other.
4174     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4175       searchFromContainer(container);
4176       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4177         searchFromContainer(Interface);
4178     } else {
4179       searchFromContainer(container);
4180     }
4181   }
4182 
4183   typedef decltype(Overridden)::iterator iterator;
4184   iterator begin() const { return Overridden.begin(); }
4185   iterator end() const { return Overridden.end(); }
4186 
4187 private:
4188   void searchFromContainer(ObjCContainerDecl *container) {
4189     if (container->isInvalidDecl()) return;
4190 
4191     switch (container->getDeclKind()) {
4192 #define OBJCCONTAINER(type, base) \
4193     case Decl::type: \
4194       searchFrom(cast<type##Decl>(container)); \
4195       break;
4196 #define ABSTRACT_DECL(expansion)
4197 #define DECL(type, base) \
4198     case Decl::type:
4199 #include "clang/AST/DeclNodes.inc"
4200       llvm_unreachable("not an ObjC container!");
4201     }
4202   }
4203 
4204   void searchFrom(ObjCProtocolDecl *protocol) {
4205     if (!protocol->hasDefinition())
4206       return;
4207 
4208     // A method in a protocol declaration overrides declarations from
4209     // referenced ("parent") protocols.
4210     search(protocol->getReferencedProtocols());
4211   }
4212 
4213   void searchFrom(ObjCCategoryDecl *category) {
4214     // A method in a category declaration overrides declarations from
4215     // the main class and from protocols the category references.
4216     // The main class is handled in the constructor.
4217     search(category->getReferencedProtocols());
4218   }
4219 
4220   void searchFrom(ObjCCategoryImplDecl *impl) {
4221     // A method in a category definition that has a category
4222     // declaration overrides declarations from the category
4223     // declaration.
4224     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4225       search(category);
4226       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4227         search(Interface);
4228 
4229     // Otherwise it overrides declarations from the class.
4230     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4231       search(Interface);
4232     }
4233   }
4234 
4235   void searchFrom(ObjCInterfaceDecl *iface) {
4236     // A method in a class declaration overrides declarations from
4237     if (!iface->hasDefinition())
4238       return;
4239 
4240     //   - categories,
4241     for (auto *Cat : iface->known_categories())
4242       search(Cat);
4243 
4244     //   - the super class, and
4245     if (ObjCInterfaceDecl *super = iface->getSuperClass())
4246       search(super);
4247 
4248     //   - any referenced protocols.
4249     search(iface->getReferencedProtocols());
4250   }
4251 
4252   void searchFrom(ObjCImplementationDecl *impl) {
4253     // A method in a class implementation overrides declarations from
4254     // the class interface.
4255     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4256       search(Interface);
4257   }
4258 
4259   void search(const ObjCProtocolList &protocols) {
4260     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4261          i != e; ++i)
4262       search(*i);
4263   }
4264 
4265   void search(ObjCContainerDecl *container) {
4266     // Check for a method in this container which matches this selector.
4267     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4268                                                 Method->isInstanceMethod(),
4269                                                 /*AllowHidden=*/true);
4270 
4271     // If we find one, record it and bail out.
4272     if (meth) {
4273       Overridden.insert(meth);
4274       return;
4275     }
4276 
4277     // Otherwise, search for methods that a hypothetical method here
4278     // would have overridden.
4279 
4280     // Note that we're now in a recursive case.
4281     Recursive = true;
4282 
4283     searchFromContainer(container);
4284   }
4285 };
4286 } // end anonymous namespace
4287 
4288 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4289                                     ObjCInterfaceDecl *CurrentClass,
4290                                     ResultTypeCompatibilityKind RTC) {
4291   // Search for overridden methods and merge information down from them.
4292   OverrideSearch overrides(*this, ObjCMethod);
4293   // Keep track if the method overrides any method in the class's base classes,
4294   // its protocols, or its categories' protocols; we will keep that info
4295   // in the ObjCMethodDecl.
4296   // For this info, a method in an implementation is not considered as
4297   // overriding the same method in the interface or its categories.
4298   bool hasOverriddenMethodsInBaseOrProtocol = false;
4299   for (OverrideSearch::iterator
4300          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4301     ObjCMethodDecl *overridden = *i;
4302 
4303     if (!hasOverriddenMethodsInBaseOrProtocol) {
4304       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4305           CurrentClass != overridden->getClassInterface() ||
4306           overridden->isOverriding()) {
4307         hasOverriddenMethodsInBaseOrProtocol = true;
4308 
4309       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4310         // OverrideSearch will return as "overridden" the same method in the
4311         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4312         // check whether a category of a base class introduced a method with the
4313         // same selector, after the interface method declaration.
4314         // To avoid unnecessary lookups in the majority of cases, we use the
4315         // extra info bits in GlobalMethodPool to check whether there were any
4316         // category methods with this selector.
4317         GlobalMethodPool::iterator It =
4318             MethodPool.find(ObjCMethod->getSelector());
4319         if (It != MethodPool.end()) {
4320           ObjCMethodList &List =
4321             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4322           unsigned CategCount = List.getBits();
4323           if (CategCount > 0) {
4324             // If the method is in a category we'll do lookup if there were at
4325             // least 2 category methods recorded, otherwise only one will do.
4326             if (CategCount > 1 ||
4327                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4328               OverrideSearch overrides(*this, overridden);
4329               for (OverrideSearch::iterator
4330                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4331                 ObjCMethodDecl *SuperOverridden = *OI;
4332                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4333                     CurrentClass != SuperOverridden->getClassInterface()) {
4334                   hasOverriddenMethodsInBaseOrProtocol = true;
4335                   overridden->setOverriding(true);
4336                   break;
4337                 }
4338               }
4339             }
4340           }
4341         }
4342       }
4343     }
4344 
4345     // Propagate down the 'related result type' bit from overridden methods.
4346     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4347       ObjCMethod->SetRelatedResultType();
4348 
4349     // Then merge the declarations.
4350     mergeObjCMethodDecls(ObjCMethod, overridden);
4351 
4352     if (ObjCMethod->isImplicit() && overridden->isImplicit())
4353       continue; // Conflicting properties are detected elsewhere.
4354 
4355     // Check for overriding methods
4356     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4357         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4358       CheckConflictingOverridingMethod(ObjCMethod, overridden,
4359               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4360 
4361     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4362         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4363         !overridden->isImplicit() /* not meant for properties */) {
4364       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4365                                           E = ObjCMethod->param_end();
4366       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4367                                      PrevE = overridden->param_end();
4368       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4369         assert(PrevI != overridden->param_end() && "Param mismatch");
4370         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4371         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4372         // If type of argument of method in this class does not match its
4373         // respective argument type in the super class method, issue warning;
4374         if (!Context.typesAreCompatible(T1, T2)) {
4375           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4376             << T1 << T2;
4377           Diag(overridden->getLocation(), diag::note_previous_declaration);
4378           break;
4379         }
4380       }
4381     }
4382   }
4383 
4384   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4385 }
4386 
4387 /// Merge type nullability from for a redeclaration of the same entity,
4388 /// producing the updated type of the redeclared entity.
4389 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4390                                               QualType type,
4391                                               bool usesCSKeyword,
4392                                               SourceLocation prevLoc,
4393                                               QualType prevType,
4394                                               bool prevUsesCSKeyword) {
4395   // Determine the nullability of both types.
4396   auto nullability = type->getNullability(S.Context);
4397   auto prevNullability = prevType->getNullability(S.Context);
4398 
4399   // Easy case: both have nullability.
4400   if (nullability.hasValue() == prevNullability.hasValue()) {
4401     // Neither has nullability; continue.
4402     if (!nullability)
4403       return type;
4404 
4405     // The nullabilities are equivalent; do nothing.
4406     if (*nullability == *prevNullability)
4407       return type;
4408 
4409     // Complain about mismatched nullability.
4410     S.Diag(loc, diag::err_nullability_conflicting)
4411       << DiagNullabilityKind(*nullability, usesCSKeyword)
4412       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4413     return type;
4414   }
4415 
4416   // If it's the redeclaration that has nullability, don't change anything.
4417   if (nullability)
4418     return type;
4419 
4420   // Otherwise, provide the result with the same nullability.
4421   return S.Context.getAttributedType(
4422            AttributedType::getNullabilityAttrKind(*prevNullability),
4423            type, type);
4424 }
4425 
4426 /// Merge information from the declaration of a method in the \@interface
4427 /// (or a category/extension) into the corresponding method in the
4428 /// @implementation (for a class or category).
4429 static void mergeInterfaceMethodToImpl(Sema &S,
4430                                        ObjCMethodDecl *method,
4431                                        ObjCMethodDecl *prevMethod) {
4432   // Merge the objc_requires_super attribute.
4433   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4434       !method->hasAttr<ObjCRequiresSuperAttr>()) {
4435     // merge the attribute into implementation.
4436     method->addAttr(
4437       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4438                                             method->getLocation()));
4439   }
4440 
4441   // Merge nullability of the result type.
4442   QualType newReturnType
4443     = mergeTypeNullabilityForRedecl(
4444         S, method->getReturnTypeSourceRange().getBegin(),
4445         method->getReturnType(),
4446         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4447         prevMethod->getReturnTypeSourceRange().getBegin(),
4448         prevMethod->getReturnType(),
4449         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4450   method->setReturnType(newReturnType);
4451 
4452   // Handle each of the parameters.
4453   unsigned numParams = method->param_size();
4454   unsigned numPrevParams = prevMethod->param_size();
4455   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4456     ParmVarDecl *param = method->param_begin()[i];
4457     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4458 
4459     // Merge nullability.
4460     QualType newParamType
4461       = mergeTypeNullabilityForRedecl(
4462           S, param->getLocation(), param->getType(),
4463           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4464           prevParam->getLocation(), prevParam->getType(),
4465           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4466     param->setType(newParamType);
4467   }
4468 }
4469 
4470 /// Verify that the method parameters/return value have types that are supported
4471 /// by the x86 target.
4472 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4473                                           const ObjCMethodDecl *Method) {
4474   assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4475              llvm::Triple::x86 &&
4476          "x86-specific check invoked for a different target");
4477   SourceLocation Loc;
4478   QualType T;
4479   for (const ParmVarDecl *P : Method->parameters()) {
4480     if (P->getType()->isVectorType()) {
4481       Loc = P->getLocStart();
4482       T = P->getType();
4483       break;
4484     }
4485   }
4486   if (Loc.isInvalid()) {
4487     if (Method->getReturnType()->isVectorType()) {
4488       Loc = Method->getReturnTypeSourceRange().getBegin();
4489       T = Method->getReturnType();
4490     } else
4491       return;
4492   }
4493 
4494   // Vector parameters/return values are not supported by objc_msgSend on x86 in
4495   // iOS < 9 and macOS < 10.11.
4496   const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4497   VersionTuple AcceptedInVersion;
4498   if (Triple.getOS() == llvm::Triple::IOS)
4499     AcceptedInVersion = VersionTuple(/*Major=*/9);
4500   else if (Triple.isMacOSX())
4501     AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4502   else
4503     return;
4504   if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4505       AcceptedInVersion)
4506     return;
4507   SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4508       << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4509                                                        : /*parameter*/ 0)
4510       << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4511 }
4512 
4513 Decl *Sema::ActOnMethodDeclaration(
4514     Scope *S,
4515     SourceLocation MethodLoc, SourceLocation EndLoc,
4516     tok::TokenKind MethodType,
4517     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4518     ArrayRef<SourceLocation> SelectorLocs,
4519     Selector Sel,
4520     // optional arguments. The number of types/arguments is obtained
4521     // from the Sel.getNumArgs().
4522     ObjCArgInfo *ArgInfo,
4523     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4524     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4525     bool isVariadic, bool MethodDefinition) {
4526   // Make sure we can establish a context for the method.
4527   if (!CurContext->isObjCContainer()) {
4528     Diag(MethodLoc, diag::err_missing_method_context);
4529     return nullptr;
4530   }
4531   Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4532   QualType resultDeclType;
4533 
4534   bool HasRelatedResultType = false;
4535   TypeSourceInfo *ReturnTInfo = nullptr;
4536   if (ReturnType) {
4537     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4538 
4539     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4540       return nullptr;
4541 
4542     QualType bareResultType = resultDeclType;
4543     (void)AttributedType::stripOuterNullability(bareResultType);
4544     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4545   } else { // get the type for "id".
4546     resultDeclType = Context.getObjCIdType();
4547     Diag(MethodLoc, diag::warn_missing_method_return_type)
4548       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4549   }
4550 
4551   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4552       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4553       MethodType == tok::minus, isVariadic,
4554       /*isPropertyAccessor=*/false,
4555       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4556       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4557                                            : ObjCMethodDecl::Required,
4558       HasRelatedResultType);
4559 
4560   SmallVector<ParmVarDecl*, 16> Params;
4561 
4562   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4563     QualType ArgType;
4564     TypeSourceInfo *DI;
4565 
4566     if (!ArgInfo[i].Type) {
4567       ArgType = Context.getObjCIdType();
4568       DI = nullptr;
4569     } else {
4570       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4571     }
4572 
4573     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4574                    LookupOrdinaryName, forRedeclarationInCurContext());
4575     LookupName(R, S);
4576     if (R.isSingleResult()) {
4577       NamedDecl *PrevDecl = R.getFoundDecl();
4578       if (S->isDeclScope(PrevDecl)) {
4579         Diag(ArgInfo[i].NameLoc,
4580              (MethodDefinition ? diag::warn_method_param_redefinition
4581                                : diag::warn_method_param_declaration))
4582           << ArgInfo[i].Name;
4583         Diag(PrevDecl->getLocation(),
4584              diag::note_previous_declaration);
4585       }
4586     }
4587 
4588     SourceLocation StartLoc = DI
4589       ? DI->getTypeLoc().getBeginLoc()
4590       : ArgInfo[i].NameLoc;
4591 
4592     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4593                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
4594                                         ArgType, DI, SC_None);
4595 
4596     Param->setObjCMethodScopeInfo(i);
4597 
4598     Param->setObjCDeclQualifier(
4599       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4600 
4601     // Apply the attributes to the parameter.
4602     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4603     AddPragmaAttributes(TUScope, Param);
4604 
4605     if (Param->hasAttr<BlocksAttr>()) {
4606       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4607       Param->setInvalidDecl();
4608     }
4609     S->AddDecl(Param);
4610     IdResolver.AddDecl(Param);
4611 
4612     Params.push_back(Param);
4613   }
4614 
4615   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4616     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4617     QualType ArgType = Param->getType();
4618     if (ArgType.isNull())
4619       ArgType = Context.getObjCIdType();
4620     else
4621       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4622       ArgType = Context.getAdjustedParameterType(ArgType);
4623 
4624     Param->setDeclContext(ObjCMethod);
4625     Params.push_back(Param);
4626   }
4627 
4628   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4629   ObjCMethod->setObjCDeclQualifier(
4630     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4631 
4632   if (AttrList)
4633     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4634   AddPragmaAttributes(TUScope, ObjCMethod);
4635 
4636   // Add the method now.
4637   const ObjCMethodDecl *PrevMethod = nullptr;
4638   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4639     if (MethodType == tok::minus) {
4640       PrevMethod = ImpDecl->getInstanceMethod(Sel);
4641       ImpDecl->addInstanceMethod(ObjCMethod);
4642     } else {
4643       PrevMethod = ImpDecl->getClassMethod(Sel);
4644       ImpDecl->addClassMethod(ObjCMethod);
4645     }
4646 
4647     // Merge information from the @interface declaration into the
4648     // @implementation.
4649     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4650       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4651                                           ObjCMethod->isInstanceMethod())) {
4652         mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4653 
4654         // Warn about defining -dealloc in a category.
4655         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4656             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4657           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4658             << ObjCMethod->getDeclName();
4659         }
4660       }
4661     }
4662   } else {
4663     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4664   }
4665 
4666   if (PrevMethod) {
4667     // You can never have two method definitions with the same name.
4668     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4669       << ObjCMethod->getDeclName();
4670     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4671     ObjCMethod->setInvalidDecl();
4672     return ObjCMethod;
4673   }
4674 
4675   // If this Objective-C method does not have a related result type, but we
4676   // are allowed to infer related result types, try to do so based on the
4677   // method family.
4678   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4679   if (!CurrentClass) {
4680     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4681       CurrentClass = Cat->getClassInterface();
4682     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4683       CurrentClass = Impl->getClassInterface();
4684     else if (ObjCCategoryImplDecl *CatImpl
4685                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4686       CurrentClass = CatImpl->getClassInterface();
4687   }
4688 
4689   ResultTypeCompatibilityKind RTC
4690     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4691 
4692   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4693 
4694   bool ARCError = false;
4695   if (getLangOpts().ObjCAutoRefCount)
4696     ARCError = CheckARCMethodDecl(ObjCMethod);
4697 
4698   // Infer the related result type when possible.
4699   if (!ARCError && RTC == Sema::RTC_Compatible &&
4700       !ObjCMethod->hasRelatedResultType() &&
4701       LangOpts.ObjCInferRelatedResultType) {
4702     bool InferRelatedResultType = false;
4703     switch (ObjCMethod->getMethodFamily()) {
4704     case OMF_None:
4705     case OMF_copy:
4706     case OMF_dealloc:
4707     case OMF_finalize:
4708     case OMF_mutableCopy:
4709     case OMF_release:
4710     case OMF_retainCount:
4711     case OMF_initialize:
4712     case OMF_performSelector:
4713       break;
4714 
4715     case OMF_alloc:
4716     case OMF_new:
4717         InferRelatedResultType = ObjCMethod->isClassMethod();
4718       break;
4719 
4720     case OMF_init:
4721     case OMF_autorelease:
4722     case OMF_retain:
4723     case OMF_self:
4724       InferRelatedResultType = ObjCMethod->isInstanceMethod();
4725       break;
4726     }
4727 
4728     if (InferRelatedResultType &&
4729         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4730       ObjCMethod->SetRelatedResultType();
4731   }
4732 
4733   if (MethodDefinition &&
4734       Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4735     checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4736 
4737   ActOnDocumentableDecl(ObjCMethod);
4738 
4739   return ObjCMethod;
4740 }
4741 
4742 bool Sema::CheckObjCDeclScope(Decl *D) {
4743   // Following is also an error. But it is caused by a missing @end
4744   // and diagnostic is issued elsewhere.
4745   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4746     return false;
4747 
4748   // If we switched context to translation unit while we are still lexically in
4749   // an objc container, it means the parser missed emitting an error.
4750   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4751     return false;
4752 
4753   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4754   D->setInvalidDecl();
4755 
4756   return true;
4757 }
4758 
4759 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
4760 /// instance variables of ClassName into Decls.
4761 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4762                      IdentifierInfo *ClassName,
4763                      SmallVectorImpl<Decl*> &Decls) {
4764   // Check that ClassName is a valid class
4765   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4766   if (!Class) {
4767     Diag(DeclStart, diag::err_undef_interface) << ClassName;
4768     return;
4769   }
4770   if (LangOpts.ObjCRuntime.isNonFragile()) {
4771     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4772     return;
4773   }
4774 
4775   // Collect the instance variables
4776   SmallVector<const ObjCIvarDecl*, 32> Ivars;
4777   Context.DeepCollectObjCIvars(Class, true, Ivars);
4778   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4779   for (unsigned i = 0; i < Ivars.size(); i++) {
4780     const FieldDecl* ID = Ivars[i];
4781     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4782     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4783                                            /*FIXME: StartL=*/ID->getLocation(),
4784                                            ID->getLocation(),
4785                                            ID->getIdentifier(), ID->getType(),
4786                                            ID->getBitWidth());
4787     Decls.push_back(FD);
4788   }
4789 
4790   // Introduce all of these fields into the appropriate scope.
4791   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4792        D != Decls.end(); ++D) {
4793     FieldDecl *FD = cast<FieldDecl>(*D);
4794     if (getLangOpts().CPlusPlus)
4795       PushOnScopeChains(FD, S);
4796     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4797       Record->addDecl(FD);
4798   }
4799 }
4800 
4801 /// \brief Build a type-check a new Objective-C exception variable declaration.
4802 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4803                                       SourceLocation StartLoc,
4804                                       SourceLocation IdLoc,
4805                                       IdentifierInfo *Id,
4806                                       bool Invalid) {
4807   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4808   // duration shall not be qualified by an address-space qualifier."
4809   // Since all parameters have automatic store duration, they can not have
4810   // an address space.
4811   if (T.getAddressSpace() != LangAS::Default) {
4812     Diag(IdLoc, diag::err_arg_with_address_space);
4813     Invalid = true;
4814   }
4815 
4816   // An @catch parameter must be an unqualified object pointer type;
4817   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4818   if (Invalid) {
4819     // Don't do any further checking.
4820   } else if (T->isDependentType()) {
4821     // Okay: we don't know what this type will instantiate to.
4822   } else if (!T->isObjCObjectPointerType()) {
4823     Invalid = true;
4824     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4825   } else if (T->isObjCQualifiedIdType()) {
4826     Invalid = true;
4827     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4828   }
4829 
4830   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4831                                  T, TInfo, SC_None);
4832   New->setExceptionVariable(true);
4833 
4834   // In ARC, infer 'retaining' for variables of retainable type.
4835   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4836     Invalid = true;
4837 
4838   if (Invalid)
4839     New->setInvalidDecl();
4840   return New;
4841 }
4842 
4843 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4844   const DeclSpec &DS = D.getDeclSpec();
4845 
4846   // We allow the "register" storage class on exception variables because
4847   // GCC did, but we drop it completely. Any other storage class is an error.
4848   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4849     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4850       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4851   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4852     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4853       << DeclSpec::getSpecifierName(SCS);
4854   }
4855   if (DS.isInlineSpecified())
4856     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4857         << getLangOpts().CPlusPlus17;
4858   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4859     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4860          diag::err_invalid_thread)
4861      << DeclSpec::getSpecifierName(TSCS);
4862   D.getMutableDeclSpec().ClearStorageClassSpecs();
4863 
4864   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4865 
4866   // Check that there are no default arguments inside the type of this
4867   // exception object (C++ only).
4868   if (getLangOpts().CPlusPlus)
4869     CheckExtraCXXDefaultArguments(D);
4870 
4871   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4872   QualType ExceptionType = TInfo->getType();
4873 
4874   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4875                                         D.getSourceRange().getBegin(),
4876                                         D.getIdentifierLoc(),
4877                                         D.getIdentifier(),
4878                                         D.isInvalidType());
4879 
4880   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4881   if (D.getCXXScopeSpec().isSet()) {
4882     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4883       << D.getCXXScopeSpec().getRange();
4884     New->setInvalidDecl();
4885   }
4886 
4887   // Add the parameter declaration into this scope.
4888   S->AddDecl(New);
4889   if (D.getIdentifier())
4890     IdResolver.AddDecl(New);
4891 
4892   ProcessDeclAttributes(S, New, D);
4893 
4894   if (New->hasAttr<BlocksAttr>())
4895     Diag(New->getLocation(), diag::err_block_on_nonlocal);
4896   return New;
4897 }
4898 
4899 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4900 /// initialization.
4901 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4902                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4903   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4904        Iv= Iv->getNextIvar()) {
4905     QualType QT = Context.getBaseElementType(Iv->getType());
4906     if (QT->isRecordType())
4907       Ivars.push_back(Iv);
4908   }
4909 }
4910 
4911 void Sema::DiagnoseUseOfUnimplementedSelectors() {
4912   // Load referenced selectors from the external source.
4913   if (ExternalSource) {
4914     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4915     ExternalSource->ReadReferencedSelectors(Sels);
4916     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4917       ReferencedSelectors[Sels[I].first] = Sels[I].second;
4918   }
4919 
4920   // Warning will be issued only when selector table is
4921   // generated (which means there is at lease one implementation
4922   // in the TU). This is to match gcc's behavior.
4923   if (ReferencedSelectors.empty() ||
4924       !Context.AnyObjCImplementation())
4925     return;
4926   for (auto &SelectorAndLocation : ReferencedSelectors) {
4927     Selector Sel = SelectorAndLocation.first;
4928     SourceLocation Loc = SelectorAndLocation.second;
4929     if (!LookupImplementedMethodInGlobalPool(Sel))
4930       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4931   }
4932 }
4933 
4934 ObjCIvarDecl *
4935 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4936                                      const ObjCPropertyDecl *&PDecl) const {
4937   if (Method->isClassMethod())
4938     return nullptr;
4939   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4940   if (!IDecl)
4941     return nullptr;
4942   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4943                                /*shallowCategoryLookup=*/false,
4944                                /*followSuper=*/false);
4945   if (!Method || !Method->isPropertyAccessor())
4946     return nullptr;
4947   if ((PDecl = Method->findPropertyDecl()))
4948     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4949       // property backing ivar must belong to property's class
4950       // or be a private ivar in class's implementation.
4951       // FIXME. fix the const-ness issue.
4952       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4953                                                         IV->getIdentifier());
4954       return IV;
4955     }
4956   return nullptr;
4957 }
4958 
4959 namespace {
4960   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4961   /// accessor references the backing ivar.
4962   class UnusedBackingIvarChecker :
4963       public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4964   public:
4965     Sema &S;
4966     const ObjCMethodDecl *Method;
4967     const ObjCIvarDecl *IvarD;
4968     bool AccessedIvar;
4969     bool InvokedSelfMethod;
4970 
4971     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4972                              const ObjCIvarDecl *IvarD)
4973       : S(S), Method(Method), IvarD(IvarD),
4974         AccessedIvar(false), InvokedSelfMethod(false) {
4975       assert(IvarD);
4976     }
4977 
4978     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4979       if (E->getDecl() == IvarD) {
4980         AccessedIvar = true;
4981         return false;
4982       }
4983       return true;
4984     }
4985 
4986     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4987       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
4988           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4989         InvokedSelfMethod = true;
4990       }
4991       return true;
4992     }
4993   };
4994 } // end anonymous namespace
4995 
4996 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4997                                           const ObjCImplementationDecl *ImplD) {
4998   if (S->hasUnrecoverableErrorOccurred())
4999     return;
5000 
5001   for (const auto *CurMethod : ImplD->instance_methods()) {
5002     unsigned DIAG = diag::warn_unused_property_backing_ivar;
5003     SourceLocation Loc = CurMethod->getLocation();
5004     if (Diags.isIgnored(DIAG, Loc))
5005       continue;
5006 
5007     const ObjCPropertyDecl *PDecl;
5008     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5009     if (!IV)
5010       continue;
5011 
5012     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5013     Checker.TraverseStmt(CurMethod->getBody());
5014     if (Checker.AccessedIvar)
5015       continue;
5016 
5017     // Do not issue this warning if backing ivar is used somewhere and accessor
5018     // implementation makes a self call. This is to prevent false positive in
5019     // cases where the ivar is accessed by another method that the accessor
5020     // delegates to.
5021     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5022       Diag(Loc, DIAG) << IV;
5023       Diag(PDecl->getLocation(), diag::note_property_declare);
5024     }
5025   }
5026 }
5027