1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/DarwinSDKInfo.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetBuiltins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/DelayedDiagnostic.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedAttr.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/Optional.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/IR/Assumptions.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 
49 using namespace clang;
50 using namespace sema;
51 
52 namespace AttributeLangSupport {
53   enum LANG {
54     C,
55     Cpp,
56     ObjC
57   };
58 } // end namespace AttributeLangSupport
59 
60 //===----------------------------------------------------------------------===//
61 //  Helper functions
62 //===----------------------------------------------------------------------===//
63 
64 /// isFunctionOrMethod - Return true if the given decl has function
65 /// type (function or function-typed variable) or an Objective-C
66 /// method.
67 static bool isFunctionOrMethod(const Decl *D) {
68   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
69 }
70 
71 /// Return true if the given decl has function type (function or
72 /// function-typed variable) or an Objective-C method or a block.
73 static bool isFunctionOrMethodOrBlock(const Decl *D) {
74   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
75 }
76 
77 /// Return true if the given decl has a declarator that should have
78 /// been processed by Sema::GetTypeForDeclarator.
79 static bool hasDeclarator(const Decl *D) {
80   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
81   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
82          isa<ObjCPropertyDecl>(D);
83 }
84 
85 /// hasFunctionProto - Return true if the given decl has a argument
86 /// information. This decl should have already passed
87 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
88 static bool hasFunctionProto(const Decl *D) {
89   if (const FunctionType *FnTy = D->getFunctionType())
90     return isa<FunctionProtoType>(FnTy);
91   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
92 }
93 
94 /// getFunctionOrMethodNumParams - Return number of function or method
95 /// parameters. It is an error to call this on a K&R function (use
96 /// hasFunctionProto first).
97 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
98   if (const FunctionType *FnTy = D->getFunctionType())
99     return cast<FunctionProtoType>(FnTy)->getNumParams();
100   if (const auto *BD = dyn_cast<BlockDecl>(D))
101     return BD->getNumParams();
102   return cast<ObjCMethodDecl>(D)->param_size();
103 }
104 
105 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
106                                                    unsigned Idx) {
107   if (const auto *FD = dyn_cast<FunctionDecl>(D))
108     return FD->getParamDecl(Idx);
109   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
110     return MD->getParamDecl(Idx);
111   if (const auto *BD = dyn_cast<BlockDecl>(D))
112     return BD->getParamDecl(Idx);
113   return nullptr;
114 }
115 
116 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
117   if (const FunctionType *FnTy = D->getFunctionType())
118     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
119   if (const auto *BD = dyn_cast<BlockDecl>(D))
120     return BD->getParamDecl(Idx)->getType();
121 
122   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
123 }
124 
125 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
126   if (auto *PVD = getFunctionOrMethodParam(D, Idx))
127     return PVD->getSourceRange();
128   return SourceRange();
129 }
130 
131 static QualType getFunctionOrMethodResultType(const Decl *D) {
132   if (const FunctionType *FnTy = D->getFunctionType())
133     return FnTy->getReturnType();
134   return cast<ObjCMethodDecl>(D)->getReturnType();
135 }
136 
137 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
138   if (const auto *FD = dyn_cast<FunctionDecl>(D))
139     return FD->getReturnTypeSourceRange();
140   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
141     return MD->getReturnTypeSourceRange();
142   return SourceRange();
143 }
144 
145 static bool isFunctionOrMethodVariadic(const Decl *D) {
146   if (const FunctionType *FnTy = D->getFunctionType())
147     return cast<FunctionProtoType>(FnTy)->isVariadic();
148   if (const auto *BD = dyn_cast<BlockDecl>(D))
149     return BD->isVariadic();
150   return cast<ObjCMethodDecl>(D)->isVariadic();
151 }
152 
153 static bool isInstanceMethod(const Decl *D) {
154   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
155     return MethodDecl->isInstance();
156   return false;
157 }
158 
159 static inline bool isNSStringType(QualType T, ASTContext &Ctx,
160                                   bool AllowNSAttributedString = false) {
161   const auto *PT = T->getAs<ObjCObjectPointerType>();
162   if (!PT)
163     return false;
164 
165   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
166   if (!Cls)
167     return false;
168 
169   IdentifierInfo* ClsName = Cls->getIdentifier();
170 
171   if (AllowNSAttributedString &&
172       ClsName == &Ctx.Idents.get("NSAttributedString"))
173     return true;
174   // FIXME: Should we walk the chain of classes?
175   return ClsName == &Ctx.Idents.get("NSString") ||
176          ClsName == &Ctx.Idents.get("NSMutableString");
177 }
178 
179 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
180   const auto *PT = T->getAs<PointerType>();
181   if (!PT)
182     return false;
183 
184   const auto *RT = PT->getPointeeType()->getAs<RecordType>();
185   if (!RT)
186     return false;
187 
188   const RecordDecl *RD = RT->getDecl();
189   if (RD->getTagKind() != TTK_Struct)
190     return false;
191 
192   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
193 }
194 
195 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
196   // FIXME: Include the type in the argument list.
197   return AL.getNumArgs() + AL.hasParsedType();
198 }
199 
200 /// A helper function to provide Attribute Location for the Attr types
201 /// AND the ParsedAttr.
202 template <typename AttrInfo>
203 static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
204 getAttrLoc(const AttrInfo &AL) {
205   return AL.getLocation();
206 }
207 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
208 
209 /// If Expr is a valid integer constant, get the value of the integer
210 /// expression and return success or failure. May output an error.
211 ///
212 /// Negative argument is implicitly converted to unsigned, unless
213 /// \p StrictlyUnsigned is true.
214 template <typename AttrInfo>
215 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
216                                 uint32_t &Val, unsigned Idx = UINT_MAX,
217                                 bool StrictlyUnsigned = false) {
218   Optional<llvm::APSInt> I = llvm::APSInt(32);
219   if (Expr->isTypeDependent() ||
220       !(I = Expr->getIntegerConstantExpr(S.Context))) {
221     if (Idx != UINT_MAX)
222       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
223           << &AI << Idx << AANT_ArgumentIntegerConstant
224           << Expr->getSourceRange();
225     else
226       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
227           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
228     return false;
229   }
230 
231   if (!I->isIntN(32)) {
232     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
233         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
234     return false;
235   }
236 
237   if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
238     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
239         << &AI << /*non-negative*/ 1;
240     return false;
241   }
242 
243   Val = (uint32_t)I->getZExtValue();
244   return true;
245 }
246 
247 /// Wrapper around checkUInt32Argument, with an extra check to be sure
248 /// that the result will fit into a regular (signed) int. All args have the same
249 /// purpose as they do in checkUInt32Argument.
250 template <typename AttrInfo>
251 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
252                                      int &Val, unsigned Idx = UINT_MAX) {
253   uint32_t UVal;
254   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
255     return false;
256 
257   if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
258     llvm::APSInt I(32); // for toString
259     I = UVal;
260     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
261         << toString(I, 10, false) << 32 << /* Unsigned */ 0;
262     return false;
263   }
264 
265   Val = UVal;
266   return true;
267 }
268 
269 /// Diagnose mutually exclusive attributes when present on a given
270 /// declaration. Returns true if diagnosed.
271 template <typename AttrTy>
272 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
273   if (const auto *A = D->getAttr<AttrTy>()) {
274     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
275     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
276     return true;
277   }
278   return false;
279 }
280 
281 template <typename AttrTy>
282 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
283   if (const auto *A = D->getAttr<AttrTy>()) {
284     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
285                                                                       << A;
286     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
287     return true;
288   }
289   return false;
290 }
291 
292 /// Check if IdxExpr is a valid parameter index for a function or
293 /// instance method D.  May output an error.
294 ///
295 /// \returns true if IdxExpr is a valid index.
296 template <typename AttrInfo>
297 static bool checkFunctionOrMethodParameterIndex(
298     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
299     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
300   assert(isFunctionOrMethodOrBlock(D));
301 
302   // In C++ the implicit 'this' function parameter also counts.
303   // Parameters are counted from one.
304   bool HP = hasFunctionProto(D);
305   bool HasImplicitThisParam = isInstanceMethod(D);
306   bool IV = HP && isFunctionOrMethodVariadic(D);
307   unsigned NumParams =
308       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
309 
310   Optional<llvm::APSInt> IdxInt;
311   if (IdxExpr->isTypeDependent() ||
312       !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
313     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
314         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
315         << IdxExpr->getSourceRange();
316     return false;
317   }
318 
319   unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
320   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
321     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
322         << &AI << AttrArgNum << IdxExpr->getSourceRange();
323     return false;
324   }
325   if (HasImplicitThisParam && !CanIndexImplicitThis) {
326     if (IdxSource == 1) {
327       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
328           << &AI << IdxExpr->getSourceRange();
329       return false;
330     }
331   }
332 
333   Idx = ParamIdx(IdxSource, D);
334   return true;
335 }
336 
337 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
338 /// If not emit an error and return false. If the argument is an identifier it
339 /// will emit an error with a fixit hint and treat it as if it was a string
340 /// literal.
341 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
342                                           StringRef &Str,
343                                           SourceLocation *ArgLocation) {
344   // Look for identifiers. If we have one emit a hint to fix it to a literal.
345   if (AL.isArgIdent(ArgNum)) {
346     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
347     Diag(Loc->Loc, diag::err_attribute_argument_type)
348         << AL << AANT_ArgumentString
349         << FixItHint::CreateInsertion(Loc->Loc, "\"")
350         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
351     Str = Loc->Ident->getName();
352     if (ArgLocation)
353       *ArgLocation = Loc->Loc;
354     return true;
355   }
356 
357   // Now check for an actual string literal.
358   Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
359   const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
360   if (ArgLocation)
361     *ArgLocation = ArgExpr->getBeginLoc();
362 
363   if (!Literal || !Literal->isAscii()) {
364     Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
365         << AL << AANT_ArgumentString;
366     return false;
367   }
368 
369   Str = Literal->getString();
370   return true;
371 }
372 
373 /// Applies the given attribute to the Decl without performing any
374 /// additional semantic checking.
375 template <typename AttrType>
376 static void handleSimpleAttribute(Sema &S, Decl *D,
377                                   const AttributeCommonInfo &CI) {
378   D->addAttr(::new (S.Context) AttrType(S.Context, CI));
379 }
380 
381 template <typename... DiagnosticArgs>
382 static const Sema::SemaDiagnosticBuilder&
383 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
384   return Bldr;
385 }
386 
387 template <typename T, typename... DiagnosticArgs>
388 static const Sema::SemaDiagnosticBuilder&
389 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
390                   DiagnosticArgs &&... ExtraArgs) {
391   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
392                            std::forward<DiagnosticArgs>(ExtraArgs)...);
393 }
394 
395 /// Add an attribute @c AttrType to declaration @c D, provided that
396 /// @c PassesCheck is true.
397 /// Otherwise, emit diagnostic @c DiagID, passing in all parameters
398 /// specified in @c ExtraArgs.
399 template <typename AttrType, typename... DiagnosticArgs>
400 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
401                                             const AttributeCommonInfo &CI,
402                                             bool PassesCheck, unsigned DiagID,
403                                             DiagnosticArgs &&... ExtraArgs) {
404   if (!PassesCheck) {
405     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
406     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
407     return;
408   }
409   handleSimpleAttribute<AttrType>(S, D, CI);
410 }
411 
412 /// Check if the passed-in expression is of type int or bool.
413 static bool isIntOrBool(Expr *Exp) {
414   QualType QT = Exp->getType();
415   return QT->isBooleanType() || QT->isIntegerType();
416 }
417 
418 
419 // Check to see if the type is a smart pointer of some kind.  We assume
420 // it's a smart pointer if it defines both operator-> and operator*.
421 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
422   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
423                                           OverloadedOperatorKind Op) {
424     DeclContextLookupResult Result =
425         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
426     return !Result.empty();
427   };
428 
429   const RecordDecl *Record = RT->getDecl();
430   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
431   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
432   if (foundStarOperator && foundArrowOperator)
433     return true;
434 
435   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
436   if (!CXXRecord)
437     return false;
438 
439   for (auto BaseSpecifier : CXXRecord->bases()) {
440     if (!foundStarOperator)
441       foundStarOperator = IsOverloadedOperatorPresent(
442           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
443     if (!foundArrowOperator)
444       foundArrowOperator = IsOverloadedOperatorPresent(
445           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
446   }
447 
448   if (foundStarOperator && foundArrowOperator)
449     return true;
450 
451   return false;
452 }
453 
454 /// Check if passed in Decl is a pointer type.
455 /// Note that this function may produce an error message.
456 /// \return true if the Decl is a pointer type; false otherwise
457 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
458                                        const ParsedAttr &AL) {
459   const auto *VD = cast<ValueDecl>(D);
460   QualType QT = VD->getType();
461   if (QT->isAnyPointerType())
462     return true;
463 
464   if (const auto *RT = QT->getAs<RecordType>()) {
465     // If it's an incomplete type, it could be a smart pointer; skip it.
466     // (We don't want to force template instantiation if we can avoid it,
467     // since that would alter the order in which templates are instantiated.)
468     if (RT->isIncompleteType())
469       return true;
470 
471     if (threadSafetyCheckIsSmartPointer(S, RT))
472       return true;
473   }
474 
475   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
476   return false;
477 }
478 
479 /// Checks that the passed in QualType either is of RecordType or points
480 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
481 static const RecordType *getRecordType(QualType QT) {
482   if (const auto *RT = QT->getAs<RecordType>())
483     return RT;
484 
485   // Now check if we point to record type.
486   if (const auto *PT = QT->getAs<PointerType>())
487     return PT->getPointeeType()->getAs<RecordType>();
488 
489   return nullptr;
490 }
491 
492 template <typename AttrType>
493 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
494   // Check if the record itself has the attribute.
495   if (RD->hasAttr<AttrType>())
496     return true;
497 
498   // Else check if any base classes have the attribute.
499   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
500     if (!CRD->forallBases([](const CXXRecordDecl *Base) {
501           return !Base->hasAttr<AttrType>();
502         }))
503       return true;
504   }
505   return false;
506 }
507 
508 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
509   const RecordType *RT = getRecordType(Ty);
510 
511   if (!RT)
512     return false;
513 
514   // Don't check for the capability if the class hasn't been defined yet.
515   if (RT->isIncompleteType())
516     return true;
517 
518   // Allow smart pointers to be used as capability objects.
519   // FIXME -- Check the type that the smart pointer points to.
520   if (threadSafetyCheckIsSmartPointer(S, RT))
521     return true;
522 
523   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
524 }
525 
526 static bool checkTypedefTypeForCapability(QualType Ty) {
527   const auto *TD = Ty->getAs<TypedefType>();
528   if (!TD)
529     return false;
530 
531   TypedefNameDecl *TN = TD->getDecl();
532   if (!TN)
533     return false;
534 
535   return TN->hasAttr<CapabilityAttr>();
536 }
537 
538 static bool typeHasCapability(Sema &S, QualType Ty) {
539   if (checkTypedefTypeForCapability(Ty))
540     return true;
541 
542   if (checkRecordTypeForCapability(S, Ty))
543     return true;
544 
545   return false;
546 }
547 
548 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
549   // Capability expressions are simple expressions involving the boolean logic
550   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
551   // a DeclRefExpr is found, its type should be checked to determine whether it
552   // is a capability or not.
553 
554   if (const auto *E = dyn_cast<CastExpr>(Ex))
555     return isCapabilityExpr(S, E->getSubExpr());
556   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
557     return isCapabilityExpr(S, E->getSubExpr());
558   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
559     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
560         E->getOpcode() == UO_Deref)
561       return isCapabilityExpr(S, E->getSubExpr());
562     return false;
563   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
564     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
565       return isCapabilityExpr(S, E->getLHS()) &&
566              isCapabilityExpr(S, E->getRHS());
567     return false;
568   }
569 
570   return typeHasCapability(S, Ex->getType());
571 }
572 
573 /// Checks that all attribute arguments, starting from Sidx, resolve to
574 /// a capability object.
575 /// \param Sidx The attribute argument index to start checking with.
576 /// \param ParamIdxOk Whether an argument can be indexing into a function
577 /// parameter list.
578 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
579                                            const ParsedAttr &AL,
580                                            SmallVectorImpl<Expr *> &Args,
581                                            unsigned Sidx = 0,
582                                            bool ParamIdxOk = false) {
583   if (Sidx == AL.getNumArgs()) {
584     // If we don't have any capability arguments, the attribute implicitly
585     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
586     // a non-static method, and that the class is a (scoped) capability.
587     const auto *MD = dyn_cast<const CXXMethodDecl>(D);
588     if (MD && !MD->isStatic()) {
589       const CXXRecordDecl *RD = MD->getParent();
590       // FIXME -- need to check this again on template instantiation
591       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
592           !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
593         S.Diag(AL.getLoc(),
594                diag::warn_thread_attribute_not_on_capability_member)
595             << AL << MD->getParent();
596     } else {
597       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
598           << AL;
599     }
600   }
601 
602   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
603     Expr *ArgExp = AL.getArgAsExpr(Idx);
604 
605     if (ArgExp->isTypeDependent()) {
606       // FIXME -- need to check this again on template instantiation
607       Args.push_back(ArgExp);
608       continue;
609     }
610 
611     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
612       if (StrLit->getLength() == 0 ||
613           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
614         // Pass empty strings to the analyzer without warnings.
615         // Treat "*" as the universal lock.
616         Args.push_back(ArgExp);
617         continue;
618       }
619 
620       // We allow constant strings to be used as a placeholder for expressions
621       // that are not valid C++ syntax, but warn that they are ignored.
622       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
623       Args.push_back(ArgExp);
624       continue;
625     }
626 
627     QualType ArgTy = ArgExp->getType();
628 
629     // A pointer to member expression of the form  &MyClass::mu is treated
630     // specially -- we need to look at the type of the member.
631     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
632       if (UOp->getOpcode() == UO_AddrOf)
633         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
634           if (DRE->getDecl()->isCXXInstanceMember())
635             ArgTy = DRE->getDecl()->getType();
636 
637     // First see if we can just cast to record type, or pointer to record type.
638     const RecordType *RT = getRecordType(ArgTy);
639 
640     // Now check if we index into a record type function param.
641     if(!RT && ParamIdxOk) {
642       const auto *FD = dyn_cast<FunctionDecl>(D);
643       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
644       if(FD && IL) {
645         unsigned int NumParams = FD->getNumParams();
646         llvm::APInt ArgValue = IL->getValue();
647         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
648         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
649         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
650           S.Diag(AL.getLoc(),
651                  diag::err_attribute_argument_out_of_bounds_extra_info)
652               << AL << Idx + 1 << NumParams;
653           continue;
654         }
655         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
656       }
657     }
658 
659     // If the type does not have a capability, see if the components of the
660     // expression have capabilities. This allows for writing C code where the
661     // capability may be on the type, and the expression is a capability
662     // boolean logic expression. Eg) requires_capability(A || B && !C)
663     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
664       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
665           << AL << ArgTy;
666 
667     Args.push_back(ArgExp);
668   }
669 }
670 
671 //===----------------------------------------------------------------------===//
672 // Attribute Implementations
673 //===----------------------------------------------------------------------===//
674 
675 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
676   if (!threadSafetyCheckIsPointer(S, D, AL))
677     return;
678 
679   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
680 }
681 
682 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
683                                      Expr *&Arg) {
684   SmallVector<Expr *, 1> Args;
685   // check that all arguments are lockable objects
686   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
687   unsigned Size = Args.size();
688   if (Size != 1)
689     return false;
690 
691   Arg = Args[0];
692 
693   return true;
694 }
695 
696 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
697   Expr *Arg = nullptr;
698   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
699     return;
700 
701   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
702 }
703 
704 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
705   Expr *Arg = nullptr;
706   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
707     return;
708 
709   if (!threadSafetyCheckIsPointer(S, D, AL))
710     return;
711 
712   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
713 }
714 
715 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
716                                         SmallVectorImpl<Expr *> &Args) {
717   if (!AL.checkAtLeastNumArgs(S, 1))
718     return false;
719 
720   // Check that this attribute only applies to lockable types.
721   QualType QT = cast<ValueDecl>(D)->getType();
722   if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
723     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
724     return false;
725   }
726 
727   // Check that all arguments are lockable objects.
728   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
729   if (Args.empty())
730     return false;
731 
732   return true;
733 }
734 
735 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
736   SmallVector<Expr *, 1> Args;
737   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
738     return;
739 
740   Expr **StartArg = &Args[0];
741   D->addAttr(::new (S.Context)
742                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
743 }
744 
745 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
746   SmallVector<Expr *, 1> Args;
747   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
748     return;
749 
750   Expr **StartArg = &Args[0];
751   D->addAttr(::new (S.Context)
752                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
753 }
754 
755 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
756                                    SmallVectorImpl<Expr *> &Args) {
757   // zero or more arguments ok
758   // check that all arguments are lockable objects
759   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
760 
761   return true;
762 }
763 
764 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
765   SmallVector<Expr *, 1> Args;
766   if (!checkLockFunAttrCommon(S, D, AL, Args))
767     return;
768 
769   unsigned Size = Args.size();
770   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
771   D->addAttr(::new (S.Context)
772                  AssertSharedLockAttr(S.Context, AL, StartArg, Size));
773 }
774 
775 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
776                                           const ParsedAttr &AL) {
777   SmallVector<Expr *, 1> Args;
778   if (!checkLockFunAttrCommon(S, D, AL, Args))
779     return;
780 
781   unsigned Size = Args.size();
782   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
783   D->addAttr(::new (S.Context)
784                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
785 }
786 
787 /// Checks to be sure that the given parameter number is in bounds, and
788 /// is an integral type. Will emit appropriate diagnostics if this returns
789 /// false.
790 ///
791 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
792 template <typename AttrInfo>
793 static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
794                                     unsigned AttrArgNo) {
795   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
796   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
797   ParamIdx Idx;
798   if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
799                                            Idx))
800     return false;
801 
802   QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
803   if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
804     SourceLocation SrcLoc = AttrArg->getBeginLoc();
805     S.Diag(SrcLoc, diag::err_attribute_integers_only)
806         << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
807     return false;
808   }
809   return true;
810 }
811 
812 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
813   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
814     return;
815 
816   assert(isFunctionOrMethod(D) && hasFunctionProto(D));
817 
818   QualType RetTy = getFunctionOrMethodResultType(D);
819   if (!RetTy->isPointerType()) {
820     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
821     return;
822   }
823 
824   const Expr *SizeExpr = AL.getArgAsExpr(0);
825   int SizeArgNoVal;
826   // Parameter indices are 1-indexed, hence Index=1
827   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
828     return;
829   if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
830     return;
831   ParamIdx SizeArgNo(SizeArgNoVal, D);
832 
833   ParamIdx NumberArgNo;
834   if (AL.getNumArgs() == 2) {
835     const Expr *NumberExpr = AL.getArgAsExpr(1);
836     int Val;
837     // Parameter indices are 1-based, hence Index=2
838     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
839       return;
840     if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
841       return;
842     NumberArgNo = ParamIdx(Val, D);
843   }
844 
845   D->addAttr(::new (S.Context)
846                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
847 }
848 
849 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
850                                       SmallVectorImpl<Expr *> &Args) {
851   if (!AL.checkAtLeastNumArgs(S, 1))
852     return false;
853 
854   if (!isIntOrBool(AL.getArgAsExpr(0))) {
855     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
856         << AL << 1 << AANT_ArgumentIntOrBool;
857     return false;
858   }
859 
860   // check that all arguments are lockable objects
861   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
862 
863   return true;
864 }
865 
866 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
867                                             const ParsedAttr &AL) {
868   SmallVector<Expr*, 2> Args;
869   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
870     return;
871 
872   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
873       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
874 }
875 
876 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
877                                                const ParsedAttr &AL) {
878   SmallVector<Expr*, 2> Args;
879   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
880     return;
881 
882   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
883       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
884 }
885 
886 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
887   // check that the argument is lockable object
888   SmallVector<Expr*, 1> Args;
889   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
890   unsigned Size = Args.size();
891   if (Size == 0)
892     return;
893 
894   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
895 }
896 
897 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
898   if (!AL.checkAtLeastNumArgs(S, 1))
899     return;
900 
901   // check that all arguments are lockable objects
902   SmallVector<Expr*, 1> Args;
903   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
904   unsigned Size = Args.size();
905   if (Size == 0)
906     return;
907   Expr **StartArg = &Args[0];
908 
909   D->addAttr(::new (S.Context)
910                  LocksExcludedAttr(S.Context, AL, StartArg, Size));
911 }
912 
913 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
914                                        Expr *&Cond, StringRef &Msg) {
915   Cond = AL.getArgAsExpr(0);
916   if (!Cond->isTypeDependent()) {
917     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
918     if (Converted.isInvalid())
919       return false;
920     Cond = Converted.get();
921   }
922 
923   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
924     return false;
925 
926   if (Msg.empty())
927     Msg = "<no message provided>";
928 
929   SmallVector<PartialDiagnosticAt, 8> Diags;
930   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
931       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
932                                                 Diags)) {
933     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
934     for (const PartialDiagnosticAt &PDiag : Diags)
935       S.Diag(PDiag.first, PDiag.second);
936     return false;
937   }
938   return true;
939 }
940 
941 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
942   S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
943 
944   Expr *Cond;
945   StringRef Msg;
946   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
947     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
948 }
949 
950 static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
951   StringRef NewUserDiagnostic;
952   if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
953     return;
954   if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
955     D->addAttr(EA);
956 }
957 
958 namespace {
959 /// Determines if a given Expr references any of the given function's
960 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
961 class ArgumentDependenceChecker
962     : public RecursiveASTVisitor<ArgumentDependenceChecker> {
963 #ifndef NDEBUG
964   const CXXRecordDecl *ClassType;
965 #endif
966   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
967   bool Result;
968 
969 public:
970   ArgumentDependenceChecker(const FunctionDecl *FD) {
971 #ifndef NDEBUG
972     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
973       ClassType = MD->getParent();
974     else
975       ClassType = nullptr;
976 #endif
977     Parms.insert(FD->param_begin(), FD->param_end());
978   }
979 
980   bool referencesArgs(Expr *E) {
981     Result = false;
982     TraverseStmt(E);
983     return Result;
984   }
985 
986   bool VisitCXXThisExpr(CXXThisExpr *E) {
987     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
988            "`this` doesn't refer to the enclosing class?");
989     Result = true;
990     return false;
991   }
992 
993   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
994     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
995       if (Parms.count(PVD)) {
996         Result = true;
997         return false;
998       }
999     return true;
1000   }
1001 };
1002 }
1003 
1004 static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D,
1005                                         const ParsedAttr &AL) {
1006   const auto *DeclFD = cast<FunctionDecl>(D);
1007 
1008   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
1009     if (!MethodDecl->isStatic()) {
1010       S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
1011       return;
1012     }
1013 
1014   auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
1015     SourceLocation Loc = [&]() {
1016       auto Union = AL.getArg(Index - 1);
1017       if (Union.is<Expr *>())
1018         return Union.get<Expr *>()->getBeginLoc();
1019       return Union.get<IdentifierLoc *>()->Loc;
1020     }();
1021 
1022     S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
1023   };
1024 
1025   FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
1026     if (!AL.isArgExpr(0))
1027       return nullptr;
1028     auto *F = dyn_cast_or_null<DeclRefExpr>(AL.getArgAsExpr(0));
1029     if (!F)
1030       return nullptr;
1031     return dyn_cast_or_null<FunctionDecl>(F->getFoundDecl());
1032   }();
1033 
1034   if (!AttrFD || !AttrFD->getBuiltinID(true)) {
1035     DiagnoseType(1, AANT_ArgumentBuiltinFunction);
1036     return;
1037   }
1038 
1039   if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
1040     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
1041         << AL << AttrFD << AttrFD->getNumParams();
1042     return;
1043   }
1044 
1045   SmallVector<unsigned, 8> Indices;
1046 
1047   for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
1048     if (!AL.isArgExpr(I)) {
1049       DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
1050       return;
1051     }
1052 
1053     const Expr *IndexExpr = AL.getArgAsExpr(I);
1054     uint32_t Index;
1055 
1056     if (!checkUInt32Argument(S, AL, IndexExpr, Index, I + 1, false))
1057       return;
1058 
1059     if (Index > DeclFD->getNumParams()) {
1060       S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
1061           << AL << Index << DeclFD << DeclFD->getNumParams();
1062       return;
1063     }
1064 
1065     QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
1066     QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
1067 
1068     if (T1.getCanonicalType().getUnqualifiedType() !=
1069         T2.getCanonicalType().getUnqualifiedType()) {
1070       S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
1071           << AL << Index << DeclFD << T2 << I << AttrFD << T1;
1072       return;
1073     }
1074 
1075     Indices.push_back(Index - 1);
1076   }
1077 
1078   D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
1079       S.Context, AL, AttrFD, Indices.data(), Indices.size()));
1080 }
1081 
1082 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1083   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1084 
1085   Expr *Cond;
1086   StringRef Msg;
1087   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1088     return;
1089 
1090   StringRef DiagTypeStr;
1091   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1092     return;
1093 
1094   DiagnoseIfAttr::DiagnosticType DiagType;
1095   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1096     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1097            diag::err_diagnose_if_invalid_diagnostic_type);
1098     return;
1099   }
1100 
1101   bool ArgDependent = false;
1102   if (const auto *FD = dyn_cast<FunctionDecl>(D))
1103     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1104   D->addAttr(::new (S.Context) DiagnoseIfAttr(
1105       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1106 }
1107 
1108 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1109   static constexpr const StringRef kWildcard = "*";
1110 
1111   llvm::SmallVector<StringRef, 16> Names;
1112   bool HasWildcard = false;
1113 
1114   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1115     if (Name == kWildcard)
1116       HasWildcard = true;
1117     Names.push_back(Name);
1118   };
1119 
1120   // Add previously defined attributes.
1121   if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1122     for (StringRef BuiltinName : NBA->builtinNames())
1123       AddBuiltinName(BuiltinName);
1124 
1125   // Add current attributes.
1126   if (AL.getNumArgs() == 0)
1127     AddBuiltinName(kWildcard);
1128   else
1129     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1130       StringRef BuiltinName;
1131       SourceLocation LiteralLoc;
1132       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1133         return;
1134 
1135       if (Builtin::Context::isBuiltinFunc(BuiltinName))
1136         AddBuiltinName(BuiltinName);
1137       else
1138         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1139             << BuiltinName << AL;
1140     }
1141 
1142   // Repeating the same attribute is fine.
1143   llvm::sort(Names);
1144   Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1145 
1146   // Empty no_builtin must be on its own.
1147   if (HasWildcard && Names.size() > 1)
1148     S.Diag(D->getLocation(),
1149            diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1150         << AL;
1151 
1152   if (D->hasAttr<NoBuiltinAttr>())
1153     D->dropAttr<NoBuiltinAttr>();
1154   D->addAttr(::new (S.Context)
1155                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1156 }
1157 
1158 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1159   if (D->hasAttr<PassObjectSizeAttr>()) {
1160     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1161     return;
1162   }
1163 
1164   Expr *E = AL.getArgAsExpr(0);
1165   uint32_t Type;
1166   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1167     return;
1168 
1169   // pass_object_size's argument is passed in as the second argument of
1170   // __builtin_object_size. So, it has the same constraints as that second
1171   // argument; namely, it must be in the range [0, 3].
1172   if (Type > 3) {
1173     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1174         << AL << 0 << 3 << E->getSourceRange();
1175     return;
1176   }
1177 
1178   // pass_object_size is only supported on constant pointer parameters; as a
1179   // kindness to users, we allow the parameter to be non-const for declarations.
1180   // At this point, we have no clue if `D` belongs to a function declaration or
1181   // definition, so we defer the constness check until later.
1182   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1183     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1184     return;
1185   }
1186 
1187   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1188 }
1189 
1190 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1191   ConsumableAttr::ConsumedState DefaultState;
1192 
1193   if (AL.isArgIdent(0)) {
1194     IdentifierLoc *IL = AL.getArgAsIdent(0);
1195     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1196                                                    DefaultState)) {
1197       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1198                                                                << IL->Ident;
1199       return;
1200     }
1201   } else {
1202     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1203         << AL << AANT_ArgumentIdentifier;
1204     return;
1205   }
1206 
1207   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1208 }
1209 
1210 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1211                                     const ParsedAttr &AL) {
1212   QualType ThisType = MD->getThisType()->getPointeeType();
1213 
1214   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1215     if (!RD->hasAttr<ConsumableAttr>()) {
1216       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1217 
1218       return false;
1219     }
1220   }
1221 
1222   return true;
1223 }
1224 
1225 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1226   if (!AL.checkAtLeastNumArgs(S, 1))
1227     return;
1228 
1229   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1230     return;
1231 
1232   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1233   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1234     CallableWhenAttr::ConsumedState CallableState;
1235 
1236     StringRef StateString;
1237     SourceLocation Loc;
1238     if (AL.isArgIdent(ArgIndex)) {
1239       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1240       StateString = Ident->Ident->getName();
1241       Loc = Ident->Loc;
1242     } else {
1243       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1244         return;
1245     }
1246 
1247     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1248                                                      CallableState)) {
1249       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1250       return;
1251     }
1252 
1253     States.push_back(CallableState);
1254   }
1255 
1256   D->addAttr(::new (S.Context)
1257                  CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1258 }
1259 
1260 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1261   ParamTypestateAttr::ConsumedState ParamState;
1262 
1263   if (AL.isArgIdent(0)) {
1264     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1265     StringRef StateString = Ident->Ident->getName();
1266 
1267     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1268                                                        ParamState)) {
1269       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1270           << AL << StateString;
1271       return;
1272     }
1273   } else {
1274     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1275         << AL << AANT_ArgumentIdentifier;
1276     return;
1277   }
1278 
1279   // FIXME: This check is currently being done in the analysis.  It can be
1280   //        enabled here only after the parser propagates attributes at
1281   //        template specialization definition, not declaration.
1282   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1283   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1284   //
1285   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1286   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1287   //      ReturnType.getAsString();
1288   //    return;
1289   //}
1290 
1291   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1292 }
1293 
1294 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1295   ReturnTypestateAttr::ConsumedState ReturnState;
1296 
1297   if (AL.isArgIdent(0)) {
1298     IdentifierLoc *IL = AL.getArgAsIdent(0);
1299     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1300                                                         ReturnState)) {
1301       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1302                                                                << IL->Ident;
1303       return;
1304     }
1305   } else {
1306     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1307         << AL << AANT_ArgumentIdentifier;
1308     return;
1309   }
1310 
1311   // FIXME: This check is currently being done in the analysis.  It can be
1312   //        enabled here only after the parser propagates attributes at
1313   //        template specialization definition, not declaration.
1314   //QualType ReturnType;
1315   //
1316   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1317   //  ReturnType = Param->getType();
1318   //
1319   //} else if (const CXXConstructorDecl *Constructor =
1320   //             dyn_cast<CXXConstructorDecl>(D)) {
1321   //  ReturnType = Constructor->getThisType()->getPointeeType();
1322   //
1323   //} else {
1324   //
1325   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1326   //}
1327   //
1328   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1329   //
1330   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1331   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1332   //      ReturnType.getAsString();
1333   //    return;
1334   //}
1335 
1336   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1337 }
1338 
1339 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1340   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1341     return;
1342 
1343   SetTypestateAttr::ConsumedState NewState;
1344   if (AL.isArgIdent(0)) {
1345     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1346     StringRef Param = Ident->Ident->getName();
1347     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1348       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1349                                                                   << Param;
1350       return;
1351     }
1352   } else {
1353     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1354         << AL << AANT_ArgumentIdentifier;
1355     return;
1356   }
1357 
1358   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1359 }
1360 
1361 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1362   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1363     return;
1364 
1365   TestTypestateAttr::ConsumedState TestState;
1366   if (AL.isArgIdent(0)) {
1367     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1368     StringRef Param = Ident->Ident->getName();
1369     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1370       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1371                                                                   << Param;
1372       return;
1373     }
1374   } else {
1375     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1376         << AL << AANT_ArgumentIdentifier;
1377     return;
1378   }
1379 
1380   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1381 }
1382 
1383 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1384   // Remember this typedef decl, we will need it later for diagnostics.
1385   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1386 }
1387 
1388 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1389   if (auto *TD = dyn_cast<TagDecl>(D))
1390     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1391   else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1392     bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1393                                 !FD->getType()->isIncompleteType() &&
1394                                 FD->isBitField() &&
1395                                 S.Context.getTypeAlign(FD->getType()) <= 8);
1396 
1397     if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1398       if (BitfieldByteAligned)
1399         // The PS4 target needs to maintain ABI backwards compatibility.
1400         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1401             << AL << FD->getType();
1402       else
1403         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1404     } else {
1405       // Report warning about changed offset in the newer compiler versions.
1406       if (BitfieldByteAligned)
1407         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1408 
1409       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1410     }
1411 
1412   } else
1413     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1414 }
1415 
1416 static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1417   auto *RD = cast<CXXRecordDecl>(D);
1418   ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1419   assert(CTD && "attribute does not appertain to this declaration");
1420 
1421   ParsedType PT = AL.getTypeArg();
1422   TypeSourceInfo *TSI = nullptr;
1423   QualType T = S.GetTypeFromParser(PT, &TSI);
1424   if (!TSI)
1425     TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
1426 
1427   if (!T.hasQualifiers() && T->isTypedefNameType()) {
1428     // Find the template name, if this type names a template specialization.
1429     const TemplateDecl *Template = nullptr;
1430     if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1431             T->getAsCXXRecordDecl())) {
1432       Template = CTSD->getSpecializedTemplate();
1433     } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1434       while (TST && TST->isTypeAlias())
1435         TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1436       if (TST)
1437         Template = TST->getTemplateName().getAsTemplateDecl();
1438     }
1439 
1440     if (Template && declaresSameEntity(Template, CTD)) {
1441       D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1442       return;
1443     }
1444   }
1445 
1446   S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
1447       << T << CTD;
1448   if (const auto *TT = T->getAs<TypedefType>())
1449     S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1450         << TT->getDecl();
1451 }
1452 
1453 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1454   // The IBOutlet/IBOutletCollection attributes only apply to instance
1455   // variables or properties of Objective-C classes.  The outlet must also
1456   // have an object reference type.
1457   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1458     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1459       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1460           << AL << VD->getType() << 0;
1461       return false;
1462     }
1463   }
1464   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1465     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1466       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1467           << AL << PD->getType() << 1;
1468       return false;
1469     }
1470   }
1471   else {
1472     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1473     return false;
1474   }
1475 
1476   return true;
1477 }
1478 
1479 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1480   if (!checkIBOutletCommon(S, D, AL))
1481     return;
1482 
1483   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1484 }
1485 
1486 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1487 
1488   // The iboutletcollection attribute can have zero or one arguments.
1489   if (AL.getNumArgs() > 1) {
1490     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1491     return;
1492   }
1493 
1494   if (!checkIBOutletCommon(S, D, AL))
1495     return;
1496 
1497   ParsedType PT;
1498 
1499   if (AL.hasParsedType())
1500     PT = AL.getTypeArg();
1501   else {
1502     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1503                        S.getScopeForContext(D->getDeclContext()->getParent()));
1504     if (!PT) {
1505       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1506       return;
1507     }
1508   }
1509 
1510   TypeSourceInfo *QTLoc = nullptr;
1511   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1512   if (!QTLoc)
1513     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1514 
1515   // Diagnose use of non-object type in iboutletcollection attribute.
1516   // FIXME. Gnu attribute extension ignores use of builtin types in
1517   // attributes. So, __attribute__((iboutletcollection(char))) will be
1518   // treated as __attribute__((iboutletcollection())).
1519   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1520     S.Diag(AL.getLoc(),
1521            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1522                                : diag::err_iboutletcollection_type) << QT;
1523     return;
1524   }
1525 
1526   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1527 }
1528 
1529 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1530   if (RefOkay) {
1531     if (T->isReferenceType())
1532       return true;
1533   } else {
1534     T = T.getNonReferenceType();
1535   }
1536 
1537   // The nonnull attribute, and other similar attributes, can be applied to a
1538   // transparent union that contains a pointer type.
1539   if (const RecordType *UT = T->getAsUnionType()) {
1540     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1541       RecordDecl *UD = UT->getDecl();
1542       for (const auto *I : UD->fields()) {
1543         QualType QT = I->getType();
1544         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1545           return true;
1546       }
1547     }
1548   }
1549 
1550   return T->isAnyPointerType() || T->isBlockPointerType();
1551 }
1552 
1553 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1554                                 SourceRange AttrParmRange,
1555                                 SourceRange TypeRange,
1556                                 bool isReturnValue = false) {
1557   if (!S.isValidPointerAttrType(T)) {
1558     if (isReturnValue)
1559       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1560           << AL << AttrParmRange << TypeRange;
1561     else
1562       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1563           << AL << AttrParmRange << TypeRange << 0;
1564     return false;
1565   }
1566   return true;
1567 }
1568 
1569 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1570   SmallVector<ParamIdx, 8> NonNullArgs;
1571   for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1572     Expr *Ex = AL.getArgAsExpr(I);
1573     ParamIdx Idx;
1574     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1575       return;
1576 
1577     // Is the function argument a pointer type?
1578     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1579         !attrNonNullArgCheck(
1580             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1581             Ex->getSourceRange(),
1582             getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1583       continue;
1584 
1585     NonNullArgs.push_back(Idx);
1586   }
1587 
1588   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1589   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1590   // check if the attribute came from a macro expansion or a template
1591   // instantiation.
1592   if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1593       !S.inTemplateInstantiation()) {
1594     bool AnyPointers = isFunctionOrMethodVariadic(D);
1595     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1596          I != E && !AnyPointers; ++I) {
1597       QualType T = getFunctionOrMethodParamType(D, I);
1598       if (T->isDependentType() || S.isValidPointerAttrType(T))
1599         AnyPointers = true;
1600     }
1601 
1602     if (!AnyPointers)
1603       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1604   }
1605 
1606   ParamIdx *Start = NonNullArgs.data();
1607   unsigned Size = NonNullArgs.size();
1608   llvm::array_pod_sort(Start, Start + Size);
1609   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1610 }
1611 
1612 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1613                                        const ParsedAttr &AL) {
1614   if (AL.getNumArgs() > 0) {
1615     if (D->getFunctionType()) {
1616       handleNonNullAttr(S, D, AL);
1617     } else {
1618       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1619         << D->getSourceRange();
1620     }
1621     return;
1622   }
1623 
1624   // Is the argument a pointer type?
1625   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1626                            D->getSourceRange()))
1627     return;
1628 
1629   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1630 }
1631 
1632 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1633   QualType ResultType = getFunctionOrMethodResultType(D);
1634   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1635   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1636                            /* isReturnValue */ true))
1637     return;
1638 
1639   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1640 }
1641 
1642 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1643   if (D->isInvalidDecl())
1644     return;
1645 
1646   // noescape only applies to pointer types.
1647   QualType T = cast<ParmVarDecl>(D)->getType();
1648   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1649     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1650         << AL << AL.getRange() << 0;
1651     return;
1652   }
1653 
1654   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1655 }
1656 
1657 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1658   Expr *E = AL.getArgAsExpr(0),
1659        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1660   S.AddAssumeAlignedAttr(D, AL, E, OE);
1661 }
1662 
1663 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1664   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1665 }
1666 
1667 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1668                                 Expr *OE) {
1669   QualType ResultType = getFunctionOrMethodResultType(D);
1670   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1671 
1672   AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1673   SourceLocation AttrLoc = TmpAttr.getLocation();
1674 
1675   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1676     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1677         << &TmpAttr << TmpAttr.getRange() << SR;
1678     return;
1679   }
1680 
1681   if (!E->isValueDependent()) {
1682     Optional<llvm::APSInt> I = llvm::APSInt(64);
1683     if (!(I = E->getIntegerConstantExpr(Context))) {
1684       if (OE)
1685         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1686           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1687           << E->getSourceRange();
1688       else
1689         Diag(AttrLoc, diag::err_attribute_argument_type)
1690           << &TmpAttr << AANT_ArgumentIntegerConstant
1691           << E->getSourceRange();
1692       return;
1693     }
1694 
1695     if (!I->isPowerOf2()) {
1696       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1697         << E->getSourceRange();
1698       return;
1699     }
1700 
1701     if (*I > Sema::MaximumAlignment)
1702       Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1703           << CI.getRange() << Sema::MaximumAlignment;
1704   }
1705 
1706   if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1707     Diag(AttrLoc, diag::err_attribute_argument_n_type)
1708         << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1709         << OE->getSourceRange();
1710     return;
1711   }
1712 
1713   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1714 }
1715 
1716 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1717                              Expr *ParamExpr) {
1718   QualType ResultType = getFunctionOrMethodResultType(D);
1719 
1720   AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1721   SourceLocation AttrLoc = CI.getLoc();
1722 
1723   if (!ResultType->isDependentType() &&
1724       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1725     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1726         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1727     return;
1728   }
1729 
1730   ParamIdx Idx;
1731   const auto *FuncDecl = cast<FunctionDecl>(D);
1732   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1733                                            /*AttrArgNum=*/1, ParamExpr, Idx))
1734     return;
1735 
1736   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1737   if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1738       !Ty->isAlignValT()) {
1739     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1740         << &TmpAttr
1741         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1742     return;
1743   }
1744 
1745   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1746 }
1747 
1748 /// Check if \p AssumptionStr is a known assumption and warn if not.
1749 static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
1750                                 StringRef AssumptionStr) {
1751   if (llvm::KnownAssumptionStrings.count(AssumptionStr))
1752     return;
1753 
1754   unsigned BestEditDistance = 3;
1755   StringRef Suggestion;
1756   for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
1757     unsigned EditDistance =
1758         AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
1759     if (EditDistance < BestEditDistance) {
1760       Suggestion = KnownAssumptionIt.getKey();
1761       BestEditDistance = EditDistance;
1762     }
1763   }
1764 
1765   if (!Suggestion.empty())
1766     S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
1767         << AssumptionStr << Suggestion;
1768   else
1769     S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
1770 }
1771 
1772 static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1773   // Handle the case where the attribute has a text message.
1774   StringRef Str;
1775   SourceLocation AttrStrLoc;
1776   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
1777     return;
1778 
1779   checkAssumptionAttr(S, AttrStrLoc, Str);
1780 
1781   D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
1782 }
1783 
1784 /// Normalize the attribute, __foo__ becomes foo.
1785 /// Returns true if normalization was applied.
1786 static bool normalizeName(StringRef &AttrName) {
1787   if (AttrName.size() > 4 && AttrName.startswith("__") &&
1788       AttrName.endswith("__")) {
1789     AttrName = AttrName.drop_front(2).drop_back(2);
1790     return true;
1791   }
1792   return false;
1793 }
1794 
1795 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1796   // This attribute must be applied to a function declaration. The first
1797   // argument to the attribute must be an identifier, the name of the resource,
1798   // for example: malloc. The following arguments must be argument indexes, the
1799   // arguments must be of integer type for Returns, otherwise of pointer type.
1800   // The difference between Holds and Takes is that a pointer may still be used
1801   // after being held. free() should be __attribute((ownership_takes)), whereas
1802   // a list append function may well be __attribute((ownership_holds)).
1803 
1804   if (!AL.isArgIdent(0)) {
1805     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1806         << AL << 1 << AANT_ArgumentIdentifier;
1807     return;
1808   }
1809 
1810   // Figure out our Kind.
1811   OwnershipAttr::OwnershipKind K =
1812       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1813 
1814   // Check arguments.
1815   switch (K) {
1816   case OwnershipAttr::Takes:
1817   case OwnershipAttr::Holds:
1818     if (AL.getNumArgs() < 2) {
1819       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1820       return;
1821     }
1822     break;
1823   case OwnershipAttr::Returns:
1824     if (AL.getNumArgs() > 2) {
1825       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1826       return;
1827     }
1828     break;
1829   }
1830 
1831   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1832 
1833   StringRef ModuleName = Module->getName();
1834   if (normalizeName(ModuleName)) {
1835     Module = &S.PP.getIdentifierTable().get(ModuleName);
1836   }
1837 
1838   SmallVector<ParamIdx, 8> OwnershipArgs;
1839   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1840     Expr *Ex = AL.getArgAsExpr(i);
1841     ParamIdx Idx;
1842     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1843       return;
1844 
1845     // Is the function argument a pointer type?
1846     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1847     int Err = -1;  // No error
1848     switch (K) {
1849       case OwnershipAttr::Takes:
1850       case OwnershipAttr::Holds:
1851         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1852           Err = 0;
1853         break;
1854       case OwnershipAttr::Returns:
1855         if (!T->isIntegerType())
1856           Err = 1;
1857         break;
1858     }
1859     if (-1 != Err) {
1860       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1861                                                     << Ex->getSourceRange();
1862       return;
1863     }
1864 
1865     // Check we don't have a conflict with another ownership attribute.
1866     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1867       // Cannot have two ownership attributes of different kinds for the same
1868       // index.
1869       if (I->getOwnKind() != K && I->args_end() !=
1870           std::find(I->args_begin(), I->args_end(), Idx)) {
1871         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1872         return;
1873       } else if (K == OwnershipAttr::Returns &&
1874                  I->getOwnKind() == OwnershipAttr::Returns) {
1875         // A returns attribute conflicts with any other returns attribute using
1876         // a different index.
1877         if (!llvm::is_contained(I->args(), Idx)) {
1878           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1879               << I->args_begin()->getSourceIndex();
1880           if (I->args_size())
1881             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1882                 << Idx.getSourceIndex() << Ex->getSourceRange();
1883           return;
1884         }
1885       }
1886     }
1887     OwnershipArgs.push_back(Idx);
1888   }
1889 
1890   ParamIdx *Start = OwnershipArgs.data();
1891   unsigned Size = OwnershipArgs.size();
1892   llvm::array_pod_sort(Start, Start + Size);
1893   D->addAttr(::new (S.Context)
1894                  OwnershipAttr(S.Context, AL, Module, Start, Size));
1895 }
1896 
1897 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1898   // Check the attribute arguments.
1899   if (AL.getNumArgs() > 1) {
1900     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1901     return;
1902   }
1903 
1904   // gcc rejects
1905   // class c {
1906   //   static int a __attribute__((weakref ("v2")));
1907   //   static int b() __attribute__((weakref ("f3")));
1908   // };
1909   // and ignores the attributes of
1910   // void f(void) {
1911   //   static int a __attribute__((weakref ("v2")));
1912   // }
1913   // we reject them
1914   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1915   if (!Ctx->isFileContext()) {
1916     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1917         << cast<NamedDecl>(D);
1918     return;
1919   }
1920 
1921   // The GCC manual says
1922   //
1923   // At present, a declaration to which `weakref' is attached can only
1924   // be `static'.
1925   //
1926   // It also says
1927   //
1928   // Without a TARGET,
1929   // given as an argument to `weakref' or to `alias', `weakref' is
1930   // equivalent to `weak'.
1931   //
1932   // gcc 4.4.1 will accept
1933   // int a7 __attribute__((weakref));
1934   // as
1935   // int a7 __attribute__((weak));
1936   // This looks like a bug in gcc. We reject that for now. We should revisit
1937   // it if this behaviour is actually used.
1938 
1939   // GCC rejects
1940   // static ((alias ("y"), weakref)).
1941   // Should we? How to check that weakref is before or after alias?
1942 
1943   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1944   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1945   // StringRef parameter it was given anyway.
1946   StringRef Str;
1947   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1948     // GCC will accept anything as the argument of weakref. Should we
1949     // check for an existing decl?
1950     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1951 
1952   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1953 }
1954 
1955 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1956   StringRef Str;
1957   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1958     return;
1959 
1960   // Aliases should be on declarations, not definitions.
1961   const auto *FD = cast<FunctionDecl>(D);
1962   if (FD->isThisDeclarationADefinition()) {
1963     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1964     return;
1965   }
1966 
1967   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1968 }
1969 
1970 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1971   StringRef Str;
1972   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1973     return;
1974 
1975   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1976     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1977     return;
1978   }
1979   if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1980     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1981   }
1982 
1983   // Aliases should be on declarations, not definitions.
1984   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1985     if (FD->isThisDeclarationADefinition()) {
1986       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1987       return;
1988     }
1989   } else {
1990     const auto *VD = cast<VarDecl>(D);
1991     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1992       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1993       return;
1994     }
1995   }
1996 
1997   // Mark target used to prevent unneeded-internal-declaration warnings.
1998   if (!S.LangOpts.CPlusPlus) {
1999     // FIXME: demangle Str for C++, as the attribute refers to the mangled
2000     // linkage name, not the pre-mangled identifier.
2001     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
2002     LookupResult LR(S, target, Sema::LookupOrdinaryName);
2003     if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
2004       for (NamedDecl *ND : LR)
2005         ND->markUsed(S.Context);
2006   }
2007 
2008   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
2009 }
2010 
2011 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2012   StringRef Model;
2013   SourceLocation LiteralLoc;
2014   // Check that it is a string.
2015   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
2016     return;
2017 
2018   // Check that the value.
2019   if (Model != "global-dynamic" && Model != "local-dynamic"
2020       && Model != "initial-exec" && Model != "local-exec") {
2021     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
2022     return;
2023   }
2024 
2025   if (S.Context.getTargetInfo().getTriple().isOSAIX() &&
2026       Model != "global-dynamic") {
2027     S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model;
2028     return;
2029   }
2030 
2031   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
2032 }
2033 
2034 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2035   QualType ResultType = getFunctionOrMethodResultType(D);
2036   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
2037     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
2038     return;
2039   }
2040 
2041   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
2042       << AL << getFunctionOrMethodResultSourceRange(D);
2043 }
2044 
2045 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2046   // Ensure we don't combine these with themselves, since that causes some
2047   // confusing behavior.
2048   if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
2049     if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL))
2050       return;
2051 
2052     if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
2053       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2054       S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2055       return;
2056     }
2057   } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
2058     if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL))
2059       return;
2060 
2061     if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
2062       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2063       S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2064       return;
2065     }
2066   }
2067 
2068   FunctionDecl *FD = cast<FunctionDecl>(D);
2069 
2070   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
2071     if (MD->getParent()->isLambda()) {
2072       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
2073       return;
2074     }
2075   }
2076 
2077   if (!AL.checkAtLeastNumArgs(S, 1))
2078     return;
2079 
2080   SmallVector<IdentifierInfo *, 8> CPUs;
2081   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
2082     if (!AL.isArgIdent(ArgNo)) {
2083       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2084           << AL << AANT_ArgumentIdentifier;
2085       return;
2086     }
2087 
2088     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
2089     StringRef CPUName = CPUArg->Ident->getName().trim();
2090 
2091     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
2092       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
2093           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
2094       return;
2095     }
2096 
2097     const TargetInfo &Target = S.Context.getTargetInfo();
2098     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
2099           return Target.CPUSpecificManglingCharacter(CPUName) ==
2100                  Target.CPUSpecificManglingCharacter(Cur->getName());
2101         })) {
2102       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
2103       return;
2104     }
2105     CPUs.push_back(CPUArg->Ident);
2106   }
2107 
2108   FD->setIsMultiVersion(true);
2109   if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
2110     D->addAttr(::new (S.Context)
2111                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2112   else
2113     D->addAttr(::new (S.Context)
2114                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2115 }
2116 
2117 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2118   if (S.LangOpts.CPlusPlus) {
2119     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
2120         << AL << AttributeLangSupport::Cpp;
2121     return;
2122   }
2123 
2124   D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
2125 }
2126 
2127 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2128   if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
2129     S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
2130     return;
2131   }
2132 
2133   const auto *FD = cast<FunctionDecl>(D);
2134   if (!FD->isExternallyVisible()) {
2135     S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2136     return;
2137   }
2138 
2139   D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2140 }
2141 
2142 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2143   if (AL.isDeclspecAttribute()) {
2144     const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2145     const auto &Arch = Triple.getArch();
2146     if (Arch != llvm::Triple::x86 &&
2147         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2148       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2149           << AL << Triple.getArchName();
2150       return;
2151     }
2152   }
2153 
2154   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2155 }
2156 
2157 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2158   if (hasDeclarator(D)) return;
2159 
2160   if (!isa<ObjCMethodDecl>(D)) {
2161     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2162         << Attrs << ExpectedFunctionOrMethod;
2163     return;
2164   }
2165 
2166   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2167 }
2168 
2169 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2170   if (!S.getLangOpts().CFProtectionBranch)
2171     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2172   else
2173     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2174 }
2175 
2176 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2177   if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2178     Attrs.setInvalid();
2179     return true;
2180   }
2181 
2182   return false;
2183 }
2184 
2185 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2186   // Check whether the attribute is valid on the current target.
2187   if (!AL.existsInTarget(Context.getTargetInfo())) {
2188     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2189         << AL << AL.getRange();
2190     AL.setInvalid();
2191     return true;
2192   }
2193 
2194   return false;
2195 }
2196 
2197 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2198 
2199   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2200   // because 'analyzer_noreturn' does not impact the type.
2201   if (!isFunctionOrMethodOrBlock(D)) {
2202     ValueDecl *VD = dyn_cast<ValueDecl>(D);
2203     if (!VD || (!VD->getType()->isBlockPointerType() &&
2204                 !VD->getType()->isFunctionPointerType())) {
2205       S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax()
2206                               ? diag::err_attribute_wrong_decl_type
2207                               : diag::warn_attribute_wrong_decl_type)
2208           << AL << ExpectedFunctionMethodOrBlock;
2209       return;
2210     }
2211   }
2212 
2213   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2214 }
2215 
2216 // PS3 PPU-specific.
2217 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2218   /*
2219     Returning a Vector Class in Registers
2220 
2221     According to the PPU ABI specifications, a class with a single member of
2222     vector type is returned in memory when used as the return value of a
2223     function.
2224     This results in inefficient code when implementing vector classes. To return
2225     the value in a single vector register, add the vecreturn attribute to the
2226     class definition. This attribute is also applicable to struct types.
2227 
2228     Example:
2229 
2230     struct Vector
2231     {
2232       __vector float xyzw;
2233     } __attribute__((vecreturn));
2234 
2235     Vector Add(Vector lhs, Vector rhs)
2236     {
2237       Vector result;
2238       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2239       return result; // This will be returned in a register
2240     }
2241   */
2242   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2243     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2244     return;
2245   }
2246 
2247   const auto *R = cast<RecordDecl>(D);
2248   int count = 0;
2249 
2250   if (!isa<CXXRecordDecl>(R)) {
2251     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2252     return;
2253   }
2254 
2255   if (!cast<CXXRecordDecl>(R)->isPOD()) {
2256     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2257     return;
2258   }
2259 
2260   for (const auto *I : R->fields()) {
2261     if ((count == 1) || !I->getType()->isVectorType()) {
2262       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2263       return;
2264     }
2265     count++;
2266   }
2267 
2268   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2269 }
2270 
2271 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2272                                  const ParsedAttr &AL) {
2273   if (isa<ParmVarDecl>(D)) {
2274     // [[carries_dependency]] can only be applied to a parameter if it is a
2275     // parameter of a function declaration or lambda.
2276     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2277       S.Diag(AL.getLoc(),
2278              diag::err_carries_dependency_param_not_function_decl);
2279       return;
2280     }
2281   }
2282 
2283   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2284 }
2285 
2286 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2287   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2288 
2289   // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2290   // about using it as an extension.
2291   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2292     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2293 
2294   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2295 }
2296 
2297 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2298   uint32_t priority = ConstructorAttr::DefaultPriority;
2299   if (AL.getNumArgs() &&
2300       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2301     return;
2302 
2303   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2304 }
2305 
2306 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2307   uint32_t priority = DestructorAttr::DefaultPriority;
2308   if (AL.getNumArgs() &&
2309       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2310     return;
2311 
2312   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2313 }
2314 
2315 template <typename AttrTy>
2316 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2317   // Handle the case where the attribute has a text message.
2318   StringRef Str;
2319   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2320     return;
2321 
2322   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2323 }
2324 
2325 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2326                                           const ParsedAttr &AL) {
2327   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2328     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2329         << AL << AL.getRange();
2330     return;
2331   }
2332 
2333   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2334 }
2335 
2336 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2337                                   IdentifierInfo *Platform,
2338                                   VersionTuple Introduced,
2339                                   VersionTuple Deprecated,
2340                                   VersionTuple Obsoleted) {
2341   StringRef PlatformName
2342     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2343   if (PlatformName.empty())
2344     PlatformName = Platform->getName();
2345 
2346   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2347   // of these steps are needed).
2348   if (!Introduced.empty() && !Deprecated.empty() &&
2349       !(Introduced <= Deprecated)) {
2350     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2351       << 1 << PlatformName << Deprecated.getAsString()
2352       << 0 << Introduced.getAsString();
2353     return true;
2354   }
2355 
2356   if (!Introduced.empty() && !Obsoleted.empty() &&
2357       !(Introduced <= Obsoleted)) {
2358     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2359       << 2 << PlatformName << Obsoleted.getAsString()
2360       << 0 << Introduced.getAsString();
2361     return true;
2362   }
2363 
2364   if (!Deprecated.empty() && !Obsoleted.empty() &&
2365       !(Deprecated <= Obsoleted)) {
2366     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2367       << 2 << PlatformName << Obsoleted.getAsString()
2368       << 1 << Deprecated.getAsString();
2369     return true;
2370   }
2371 
2372   return false;
2373 }
2374 
2375 /// Check whether the two versions match.
2376 ///
2377 /// If either version tuple is empty, then they are assumed to match. If
2378 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2379 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2380                           bool BeforeIsOkay) {
2381   if (X.empty() || Y.empty())
2382     return true;
2383 
2384   if (X == Y)
2385     return true;
2386 
2387   if (BeforeIsOkay && X < Y)
2388     return true;
2389 
2390   return false;
2391 }
2392 
2393 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2394     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2395     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2396     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2397     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2398     int Priority) {
2399   VersionTuple MergedIntroduced = Introduced;
2400   VersionTuple MergedDeprecated = Deprecated;
2401   VersionTuple MergedObsoleted = Obsoleted;
2402   bool FoundAny = false;
2403   bool OverrideOrImpl = false;
2404   switch (AMK) {
2405   case AMK_None:
2406   case AMK_Redeclaration:
2407     OverrideOrImpl = false;
2408     break;
2409 
2410   case AMK_Override:
2411   case AMK_ProtocolImplementation:
2412   case AMK_OptionalProtocolImplementation:
2413     OverrideOrImpl = true;
2414     break;
2415   }
2416 
2417   if (D->hasAttrs()) {
2418     AttrVec &Attrs = D->getAttrs();
2419     for (unsigned i = 0, e = Attrs.size(); i != e;) {
2420       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2421       if (!OldAA) {
2422         ++i;
2423         continue;
2424       }
2425 
2426       IdentifierInfo *OldPlatform = OldAA->getPlatform();
2427       if (OldPlatform != Platform) {
2428         ++i;
2429         continue;
2430       }
2431 
2432       // If there is an existing availability attribute for this platform that
2433       // has a lower priority use the existing one and discard the new
2434       // attribute.
2435       if (OldAA->getPriority() < Priority)
2436         return nullptr;
2437 
2438       // If there is an existing attribute for this platform that has a higher
2439       // priority than the new attribute then erase the old one and continue
2440       // processing the attributes.
2441       if (OldAA->getPriority() > Priority) {
2442         Attrs.erase(Attrs.begin() + i);
2443         --e;
2444         continue;
2445       }
2446 
2447       FoundAny = true;
2448       VersionTuple OldIntroduced = OldAA->getIntroduced();
2449       VersionTuple OldDeprecated = OldAA->getDeprecated();
2450       VersionTuple OldObsoleted = OldAA->getObsoleted();
2451       bool OldIsUnavailable = OldAA->getUnavailable();
2452 
2453       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2454           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2455           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2456           !(OldIsUnavailable == IsUnavailable ||
2457             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2458         if (OverrideOrImpl) {
2459           int Which = -1;
2460           VersionTuple FirstVersion;
2461           VersionTuple SecondVersion;
2462           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2463             Which = 0;
2464             FirstVersion = OldIntroduced;
2465             SecondVersion = Introduced;
2466           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2467             Which = 1;
2468             FirstVersion = Deprecated;
2469             SecondVersion = OldDeprecated;
2470           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2471             Which = 2;
2472             FirstVersion = Obsoleted;
2473             SecondVersion = OldObsoleted;
2474           }
2475 
2476           if (Which == -1) {
2477             Diag(OldAA->getLocation(),
2478                  diag::warn_mismatched_availability_override_unavail)
2479               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2480               << (AMK == AMK_Override);
2481           } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) {
2482             // Allow different 'introduced' / 'obsoleted' availability versions
2483             // on a method that implements an optional protocol requirement. It
2484             // makes less sense to allow this for 'deprecated' as the user can't
2485             // see if the method is 'deprecated' as 'respondsToSelector' will
2486             // still return true when the method is deprecated.
2487             ++i;
2488             continue;
2489           } else {
2490             Diag(OldAA->getLocation(),
2491                  diag::warn_mismatched_availability_override)
2492               << Which
2493               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2494               << FirstVersion.getAsString() << SecondVersion.getAsString()
2495               << (AMK == AMK_Override);
2496           }
2497           if (AMK == AMK_Override)
2498             Diag(CI.getLoc(), diag::note_overridden_method);
2499           else
2500             Diag(CI.getLoc(), diag::note_protocol_method);
2501         } else {
2502           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2503           Diag(CI.getLoc(), diag::note_previous_attribute);
2504         }
2505 
2506         Attrs.erase(Attrs.begin() + i);
2507         --e;
2508         continue;
2509       }
2510 
2511       VersionTuple MergedIntroduced2 = MergedIntroduced;
2512       VersionTuple MergedDeprecated2 = MergedDeprecated;
2513       VersionTuple MergedObsoleted2 = MergedObsoleted;
2514 
2515       if (MergedIntroduced2.empty())
2516         MergedIntroduced2 = OldIntroduced;
2517       if (MergedDeprecated2.empty())
2518         MergedDeprecated2 = OldDeprecated;
2519       if (MergedObsoleted2.empty())
2520         MergedObsoleted2 = OldObsoleted;
2521 
2522       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2523                                 MergedIntroduced2, MergedDeprecated2,
2524                                 MergedObsoleted2)) {
2525         Attrs.erase(Attrs.begin() + i);
2526         --e;
2527         continue;
2528       }
2529 
2530       MergedIntroduced = MergedIntroduced2;
2531       MergedDeprecated = MergedDeprecated2;
2532       MergedObsoleted = MergedObsoleted2;
2533       ++i;
2534     }
2535   }
2536 
2537   if (FoundAny &&
2538       MergedIntroduced == Introduced &&
2539       MergedDeprecated == Deprecated &&
2540       MergedObsoleted == Obsoleted)
2541     return nullptr;
2542 
2543   // Only create a new attribute if !OverrideOrImpl, but we want to do
2544   // the checking.
2545   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2546                              MergedDeprecated, MergedObsoleted) &&
2547       !OverrideOrImpl) {
2548     auto *Avail = ::new (Context) AvailabilityAttr(
2549         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2550         Message, IsStrict, Replacement, Priority);
2551     Avail->setImplicit(Implicit);
2552     return Avail;
2553   }
2554   return nullptr;
2555 }
2556 
2557 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2558   if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>(
2559           D)) {
2560     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2561         << AL;
2562     return;
2563   }
2564 
2565   if (!AL.checkExactlyNumArgs(S, 1))
2566     return;
2567   IdentifierLoc *Platform = AL.getArgAsIdent(0);
2568 
2569   IdentifierInfo *II = Platform->Ident;
2570   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2571     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2572       << Platform->Ident;
2573 
2574   auto *ND = dyn_cast<NamedDecl>(D);
2575   if (!ND) // We warned about this already, so just return.
2576     return;
2577 
2578   AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2579   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2580   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2581   bool IsUnavailable = AL.getUnavailableLoc().isValid();
2582   bool IsStrict = AL.getStrictLoc().isValid();
2583   StringRef Str;
2584   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2585     Str = SE->getString();
2586   StringRef Replacement;
2587   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2588     Replacement = SE->getString();
2589 
2590   if (II->isStr("swift")) {
2591     if (Introduced.isValid() || Obsoleted.isValid() ||
2592         (!IsUnavailable && !Deprecated.isValid())) {
2593       S.Diag(AL.getLoc(),
2594              diag::warn_availability_swift_unavailable_deprecated_only);
2595       return;
2596     }
2597   }
2598 
2599   if (II->isStr("fuchsia")) {
2600     Optional<unsigned> Min, Sub;
2601     if ((Min = Introduced.Version.getMinor()) ||
2602         (Sub = Introduced.Version.getSubminor())) {
2603       S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2604       return;
2605     }
2606   }
2607 
2608   int PriorityModifier = AL.isPragmaClangAttribute()
2609                              ? Sema::AP_PragmaClangAttribute
2610                              : Sema::AP_Explicit;
2611   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2612       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2613       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2614       Sema::AMK_None, PriorityModifier);
2615   if (NewAttr)
2616     D->addAttr(NewAttr);
2617 
2618   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2619   // matches before the start of the watchOS platform.
2620   if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2621     IdentifierInfo *NewII = nullptr;
2622     if (II->getName() == "ios")
2623       NewII = &S.Context.Idents.get("watchos");
2624     else if (II->getName() == "ios_app_extension")
2625       NewII = &S.Context.Idents.get("watchos_app_extension");
2626 
2627     if (NewII) {
2628       const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2629       const auto *IOSToWatchOSMapping =
2630           SDKInfo ? SDKInfo->getVersionMapping(
2631                         DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair())
2632                   : nullptr;
2633 
2634       auto adjustWatchOSVersion =
2635           [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple {
2636         if (Version.empty())
2637           return Version;
2638         auto MinimumWatchOSVersion = VersionTuple(2, 0);
2639 
2640         if (IOSToWatchOSMapping) {
2641           if (auto MappedVersion = IOSToWatchOSMapping->map(
2642                   Version, MinimumWatchOSVersion, None)) {
2643             return MappedVersion.getValue();
2644           }
2645         }
2646 
2647         auto Major = Version.getMajor();
2648         auto NewMajor = Major >= 9 ? Major - 7 : 0;
2649         if (NewMajor >= 2) {
2650           if (Version.getMinor().hasValue()) {
2651             if (Version.getSubminor().hasValue())
2652               return VersionTuple(NewMajor, Version.getMinor().getValue(),
2653                                   Version.getSubminor().getValue());
2654             else
2655               return VersionTuple(NewMajor, Version.getMinor().getValue());
2656           }
2657           return VersionTuple(NewMajor);
2658         }
2659 
2660         return MinimumWatchOSVersion;
2661       };
2662 
2663       auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2664       auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2665       auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2666 
2667       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2668           ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2669           NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2670           Sema::AMK_None,
2671           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2672       if (NewAttr)
2673         D->addAttr(NewAttr);
2674     }
2675   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2676     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2677     // matches before the start of the tvOS platform.
2678     IdentifierInfo *NewII = nullptr;
2679     if (II->getName() == "ios")
2680       NewII = &S.Context.Idents.get("tvos");
2681     else if (II->getName() == "ios_app_extension")
2682       NewII = &S.Context.Idents.get("tvos_app_extension");
2683 
2684     if (NewII) {
2685       const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2686       const auto *IOSToTvOSMapping =
2687           SDKInfo ? SDKInfo->getVersionMapping(
2688                         DarwinSDKInfo::OSEnvPair::iOStoTvOSPair())
2689                   : nullptr;
2690 
2691       auto AdjustTvOSVersion =
2692           [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple {
2693         if (Version.empty())
2694           return Version;
2695 
2696         if (IOSToTvOSMapping) {
2697           if (auto MappedVersion =
2698                   IOSToTvOSMapping->map(Version, VersionTuple(0, 0), None)) {
2699             return MappedVersion.getValue();
2700           }
2701         }
2702         return Version;
2703       };
2704 
2705       auto NewIntroduced = AdjustTvOSVersion(Introduced.Version);
2706       auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version);
2707       auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version);
2708 
2709       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2710           ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2711           NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2712           Sema::AMK_None,
2713           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2714       if (NewAttr)
2715         D->addAttr(NewAttr);
2716     }
2717   } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2718                  llvm::Triple::IOS &&
2719              S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2720     auto GetSDKInfo = [&]() {
2721       return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(),
2722                                                        "macOS");
2723     };
2724 
2725     // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2726     IdentifierInfo *NewII = nullptr;
2727     if (II->getName() == "ios")
2728       NewII = &S.Context.Idents.get("maccatalyst");
2729     else if (II->getName() == "ios_app_extension")
2730       NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2731     if (NewII) {
2732       auto MinMacCatalystVersion = [](const VersionTuple &V) {
2733         if (V.empty())
2734           return V;
2735         if (V.getMajor() < 13 ||
2736             (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2737           return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2738         return V;
2739       };
2740       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2741           ND, AL.getRange(), NewII, true /*Implicit*/,
2742           MinMacCatalystVersion(Introduced.Version),
2743           MinMacCatalystVersion(Deprecated.Version),
2744           MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2745           IsStrict, Replacement, Sema::AMK_None,
2746           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2747       if (NewAttr)
2748         D->addAttr(NewAttr);
2749     } else if (II->getName() == "macos" && GetSDKInfo() &&
2750                (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2751                 !Obsoleted.Version.empty())) {
2752       if (const auto *MacOStoMacCatalystMapping =
2753               GetSDKInfo()->getVersionMapping(
2754                   DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) {
2755         // Infer Mac Catalyst availability from the macOS availability attribute
2756         // if it has versioned availability. Don't infer 'unavailable'. This
2757         // inferred availability has lower priority than the other availability
2758         // attributes that are inferred from 'ios'.
2759         NewII = &S.Context.Idents.get("maccatalyst");
2760         auto RemapMacOSVersion =
2761             [&](const VersionTuple &V) -> Optional<VersionTuple> {
2762           if (V.empty())
2763             return None;
2764           // API_TO_BE_DEPRECATED is 100000.
2765           if (V.getMajor() == 100000)
2766             return VersionTuple(100000);
2767           // The minimum iosmac version is 13.1
2768           return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), None);
2769         };
2770         Optional<VersionTuple> NewIntroduced =
2771                                    RemapMacOSVersion(Introduced.Version),
2772                                NewDeprecated =
2773                                    RemapMacOSVersion(Deprecated.Version),
2774                                NewObsoleted =
2775                                    RemapMacOSVersion(Obsoleted.Version);
2776         if (NewIntroduced || NewDeprecated || NewObsoleted) {
2777           auto VersionOrEmptyVersion =
2778               [](const Optional<VersionTuple> &V) -> VersionTuple {
2779             return V ? *V : VersionTuple();
2780           };
2781           AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2782               ND, AL.getRange(), NewII, true /*Implicit*/,
2783               VersionOrEmptyVersion(NewIntroduced),
2784               VersionOrEmptyVersion(NewDeprecated),
2785               VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2786               IsStrict, Replacement, Sema::AMK_None,
2787               PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2788                   Sema::AP_InferredFromOtherPlatform);
2789           if (NewAttr)
2790             D->addAttr(NewAttr);
2791         }
2792       }
2793     }
2794   }
2795 }
2796 
2797 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2798                                            const ParsedAttr &AL) {
2799   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
2800     return;
2801 
2802   StringRef Language;
2803   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2804     Language = SE->getString();
2805   StringRef DefinedIn;
2806   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2807     DefinedIn = SE->getString();
2808   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2809 
2810   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2811       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2812 }
2813 
2814 template <class T>
2815 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2816                               typename T::VisibilityType value) {
2817   T *existingAttr = D->getAttr<T>();
2818   if (existingAttr) {
2819     typename T::VisibilityType existingValue = existingAttr->getVisibility();
2820     if (existingValue == value)
2821       return nullptr;
2822     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2823     S.Diag(CI.getLoc(), diag::note_previous_attribute);
2824     D->dropAttr<T>();
2825   }
2826   return ::new (S.Context) T(S.Context, CI, value);
2827 }
2828 
2829 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2830                                           const AttributeCommonInfo &CI,
2831                                           VisibilityAttr::VisibilityType Vis) {
2832   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2833 }
2834 
2835 TypeVisibilityAttr *
2836 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2837                               TypeVisibilityAttr::VisibilityType Vis) {
2838   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2839 }
2840 
2841 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2842                                  bool isTypeVisibility) {
2843   // Visibility attributes don't mean anything on a typedef.
2844   if (isa<TypedefNameDecl>(D)) {
2845     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2846     return;
2847   }
2848 
2849   // 'type_visibility' can only go on a type or namespace.
2850   if (isTypeVisibility &&
2851       !(isa<TagDecl>(D) ||
2852         isa<ObjCInterfaceDecl>(D) ||
2853         isa<NamespaceDecl>(D))) {
2854     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2855         << AL << ExpectedTypeOrNamespace;
2856     return;
2857   }
2858 
2859   // Check that the argument is a string literal.
2860   StringRef TypeStr;
2861   SourceLocation LiteralLoc;
2862   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2863     return;
2864 
2865   VisibilityAttr::VisibilityType type;
2866   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2867     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2868                                                                 << TypeStr;
2869     return;
2870   }
2871 
2872   // Complain about attempts to use protected visibility on targets
2873   // (like Darwin) that don't support it.
2874   if (type == VisibilityAttr::Protected &&
2875       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2876     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2877     type = VisibilityAttr::Default;
2878   }
2879 
2880   Attr *newAttr;
2881   if (isTypeVisibility) {
2882     newAttr = S.mergeTypeVisibilityAttr(
2883         D, AL, (TypeVisibilityAttr::VisibilityType)type);
2884   } else {
2885     newAttr = S.mergeVisibilityAttr(D, AL, type);
2886   }
2887   if (newAttr)
2888     D->addAttr(newAttr);
2889 }
2890 
2891 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2892   // objc_direct cannot be set on methods declared in the context of a protocol
2893   if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2894     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2895     return;
2896   }
2897 
2898   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2899     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2900   } else {
2901     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2902   }
2903 }
2904 
2905 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2906                                         const ParsedAttr &AL) {
2907   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2908     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2909   } else {
2910     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2911   }
2912 }
2913 
2914 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2915   const auto *M = cast<ObjCMethodDecl>(D);
2916   if (!AL.isArgIdent(0)) {
2917     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2918         << AL << 1 << AANT_ArgumentIdentifier;
2919     return;
2920   }
2921 
2922   IdentifierLoc *IL = AL.getArgAsIdent(0);
2923   ObjCMethodFamilyAttr::FamilyKind F;
2924   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2925     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2926     return;
2927   }
2928 
2929   if (F == ObjCMethodFamilyAttr::OMF_init &&
2930       !M->getReturnType()->isObjCObjectPointerType()) {
2931     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2932         << M->getReturnType();
2933     // Ignore the attribute.
2934     return;
2935   }
2936 
2937   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2938 }
2939 
2940 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2941   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2942     QualType T = TD->getUnderlyingType();
2943     if (!T->isCARCBridgableType()) {
2944       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2945       return;
2946     }
2947   }
2948   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2949     QualType T = PD->getType();
2950     if (!T->isCARCBridgableType()) {
2951       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2952       return;
2953     }
2954   }
2955   else {
2956     // It is okay to include this attribute on properties, e.g.:
2957     //
2958     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2959     //
2960     // In this case it follows tradition and suppresses an error in the above
2961     // case.
2962     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2963   }
2964   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
2965 }
2966 
2967 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2968   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2969     QualType T = TD->getUnderlyingType();
2970     if (!T->isObjCObjectPointerType()) {
2971       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2972       return;
2973     }
2974   } else {
2975     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2976     return;
2977   }
2978   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
2979 }
2980 
2981 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2982   if (!AL.isArgIdent(0)) {
2983     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2984         << AL << 1 << AANT_ArgumentIdentifier;
2985     return;
2986   }
2987 
2988   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2989   BlocksAttr::BlockType type;
2990   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2991     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
2992     return;
2993   }
2994 
2995   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
2996 }
2997 
2998 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2999   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
3000   if (AL.getNumArgs() > 0) {
3001     Expr *E = AL.getArgAsExpr(0);
3002     Optional<llvm::APSInt> Idx = llvm::APSInt(32);
3003     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3004       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3005           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3006       return;
3007     }
3008 
3009     if (Idx->isSigned() && Idx->isNegative()) {
3010       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
3011         << E->getSourceRange();
3012       return;
3013     }
3014 
3015     sentinel = Idx->getZExtValue();
3016   }
3017 
3018   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
3019   if (AL.getNumArgs() > 1) {
3020     Expr *E = AL.getArgAsExpr(1);
3021     Optional<llvm::APSInt> Idx = llvm::APSInt(32);
3022     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3023       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3024           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3025       return;
3026     }
3027     nullPos = Idx->getZExtValue();
3028 
3029     if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
3030       // FIXME: This error message could be improved, it would be nice
3031       // to say what the bounds actually are.
3032       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
3033         << E->getSourceRange();
3034       return;
3035     }
3036   }
3037 
3038   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3039     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
3040     if (isa<FunctionNoProtoType>(FT)) {
3041       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
3042       return;
3043     }
3044 
3045     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3046       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3047       return;
3048     }
3049   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
3050     if (!MD->isVariadic()) {
3051       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3052       return;
3053     }
3054   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3055     if (!BD->isVariadic()) {
3056       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
3057       return;
3058     }
3059   } else if (const auto *V = dyn_cast<VarDecl>(D)) {
3060     QualType Ty = V->getType();
3061     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
3062       const FunctionType *FT = Ty->isFunctionPointerType()
3063                                    ? D->getFunctionType()
3064                                    : Ty->castAs<BlockPointerType>()
3065                                          ->getPointeeType()
3066                                          ->castAs<FunctionType>();
3067       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3068         int m = Ty->isFunctionPointerType() ? 0 : 1;
3069         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
3070         return;
3071       }
3072     } else {
3073       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3074           << AL << ExpectedFunctionMethodOrBlock;
3075       return;
3076     }
3077   } else {
3078     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3079         << AL << ExpectedFunctionMethodOrBlock;
3080     return;
3081   }
3082   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
3083 }
3084 
3085 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
3086   if (D->getFunctionType() &&
3087       D->getFunctionType()->getReturnType()->isVoidType() &&
3088       !isa<CXXConstructorDecl>(D)) {
3089     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
3090     return;
3091   }
3092   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
3093     if (MD->getReturnType()->isVoidType()) {
3094       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
3095       return;
3096     }
3097 
3098   StringRef Str;
3099   if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) {
3100     // The standard attribute cannot be applied to variable declarations such
3101     // as a function pointer.
3102     if (isa<VarDecl>(D))
3103       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
3104           << AL << "functions, classes, or enumerations";
3105 
3106     // If this is spelled as the standard C++17 attribute, but not in C++17,
3107     // warn about using it as an extension. If there are attribute arguments,
3108     // then claim it's a C++2a extension instead.
3109     // FIXME: If WG14 does not seem likely to adopt the same feature, add an
3110     // extension warning for C2x mode.
3111     const LangOptions &LO = S.getLangOpts();
3112     if (AL.getNumArgs() == 1) {
3113       if (LO.CPlusPlus && !LO.CPlusPlus20)
3114         S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
3115 
3116       // Since this this is spelled [[nodiscard]], get the optional string
3117       // literal. If in C++ mode, but not in C++2a mode, diagnose as an
3118       // extension.
3119       // FIXME: C2x should support this feature as well, even as an extension.
3120       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
3121         return;
3122     } else if (LO.CPlusPlus && !LO.CPlusPlus17)
3123       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
3124   }
3125 
3126   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
3127 }
3128 
3129 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3130   // weak_import only applies to variable & function declarations.
3131   bool isDef = false;
3132   if (!D->canBeWeakImported(isDef)) {
3133     if (isDef)
3134       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
3135         << "weak_import";
3136     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
3137              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
3138               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
3139       // Nothing to warn about here.
3140     } else
3141       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3142           << AL << ExpectedVariableOrFunction;
3143 
3144     return;
3145   }
3146 
3147   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3148 }
3149 
3150 // Handles reqd_work_group_size and work_group_size_hint.
3151 template <typename WorkGroupAttr>
3152 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3153   uint32_t WGSize[3];
3154   for (unsigned i = 0; i < 3; ++i) {
3155     const Expr *E = AL.getArgAsExpr(i);
3156     if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
3157                              /*StrictlyUnsigned=*/true))
3158       return;
3159     if (WGSize[i] == 0) {
3160       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3161           << AL << E->getSourceRange();
3162       return;
3163     }
3164   }
3165 
3166   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3167   if (Existing && !(Existing->getXDim() == WGSize[0] &&
3168                     Existing->getYDim() == WGSize[1] &&
3169                     Existing->getZDim() == WGSize[2]))
3170     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3171 
3172   D->addAttr(::new (S.Context)
3173                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3174 }
3175 
3176 // Handles intel_reqd_sub_group_size.
3177 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3178   uint32_t SGSize;
3179   const Expr *E = AL.getArgAsExpr(0);
3180   if (!checkUInt32Argument(S, AL, E, SGSize))
3181     return;
3182   if (SGSize == 0) {
3183     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3184         << AL << E->getSourceRange();
3185     return;
3186   }
3187 
3188   OpenCLIntelReqdSubGroupSizeAttr *Existing =
3189       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
3190   if (Existing && Existing->getSubGroupSize() != SGSize)
3191     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3192 
3193   D->addAttr(::new (S.Context)
3194                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
3195 }
3196 
3197 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3198   if (!AL.hasParsedType()) {
3199     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3200     return;
3201   }
3202 
3203   TypeSourceInfo *ParmTSI = nullptr;
3204   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3205   assert(ParmTSI && "no type source info for attribute argument");
3206 
3207   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3208       (ParmType->isBooleanType() ||
3209        !ParmType->isIntegralType(S.getASTContext()))) {
3210     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3211     return;
3212   }
3213 
3214   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3215     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3216       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3217       return;
3218     }
3219   }
3220 
3221   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3222 }
3223 
3224 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3225                                     StringRef Name) {
3226   // Explicit or partial specializations do not inherit
3227   // the section attribute from the primary template.
3228   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3229     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3230         FD->isFunctionTemplateSpecialization())
3231       return nullptr;
3232   }
3233   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3234     if (ExistingAttr->getName() == Name)
3235       return nullptr;
3236     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3237          << 1 /*section*/;
3238     Diag(CI.getLoc(), diag::note_previous_attribute);
3239     return nullptr;
3240   }
3241   return ::new (Context) SectionAttr(Context, CI, Name);
3242 }
3243 
3244 /// Used to implement to perform semantic checking on
3245 /// attribute((section("foo"))) specifiers.
3246 ///
3247 /// In this case, "foo" is passed in to be checked.  If the section
3248 /// specifier is invalid, return an Error that indicates the problem.
3249 ///
3250 /// This is a simple quality of implementation feature to catch errors
3251 /// and give good diagnostics in cases when the assembler or code generator
3252 /// would otherwise reject the section specifier.
3253 llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3254   if (!Context.getTargetInfo().getTriple().isOSDarwin())
3255     return llvm::Error::success();
3256 
3257   // Let MCSectionMachO validate this.
3258   StringRef Segment, Section;
3259   unsigned TAA, StubSize;
3260   bool HasTAA;
3261   return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3262                                                      TAA, HasTAA, StubSize);
3263 }
3264 
3265 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3266   if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3267     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3268         << toString(std::move(E)) << 1 /*'section'*/;
3269     return false;
3270   }
3271   return true;
3272 }
3273 
3274 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3275   // Make sure that there is a string literal as the sections's single
3276   // argument.
3277   StringRef Str;
3278   SourceLocation LiteralLoc;
3279   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3280     return;
3281 
3282   if (!S.checkSectionName(LiteralLoc, Str))
3283     return;
3284 
3285   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3286   if (NewAttr) {
3287     D->addAttr(NewAttr);
3288     if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
3289             ObjCPropertyDecl>(D))
3290       S.UnifySection(NewAttr->getName(),
3291                      ASTContext::PSF_Execute | ASTContext::PSF_Read,
3292                      cast<NamedDecl>(D));
3293   }
3294 }
3295 
3296 // This is used for `__declspec(code_seg("segname"))` on a decl.
3297 // `#pragma code_seg("segname")` uses checkSectionName() instead.
3298 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3299                              StringRef CodeSegName) {
3300   if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3301     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3302         << toString(std::move(E)) << 0 /*'code-seg'*/;
3303     return false;
3304   }
3305 
3306   return true;
3307 }
3308 
3309 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3310                                     StringRef Name) {
3311   // Explicit or partial specializations do not inherit
3312   // the code_seg attribute from the primary template.
3313   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3314     if (FD->isFunctionTemplateSpecialization())
3315       return nullptr;
3316   }
3317   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3318     if (ExistingAttr->getName() == Name)
3319       return nullptr;
3320     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3321          << 0 /*codeseg*/;
3322     Diag(CI.getLoc(), diag::note_previous_attribute);
3323     return nullptr;
3324   }
3325   return ::new (Context) CodeSegAttr(Context, CI, Name);
3326 }
3327 
3328 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3329   StringRef Str;
3330   SourceLocation LiteralLoc;
3331   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3332     return;
3333   if (!checkCodeSegName(S, LiteralLoc, Str))
3334     return;
3335   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3336     if (!ExistingAttr->isImplicit()) {
3337       S.Diag(AL.getLoc(),
3338              ExistingAttr->getName() == Str
3339              ? diag::warn_duplicate_codeseg_attribute
3340              : diag::err_conflicting_codeseg_attribute);
3341       return;
3342     }
3343     D->dropAttr<CodeSegAttr>();
3344   }
3345   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3346     D->addAttr(CSA);
3347 }
3348 
3349 // Check for things we'd like to warn about. Multiversioning issues are
3350 // handled later in the process, once we know how many exist.
3351 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3352   enum FirstParam { Unsupported, Duplicate, Unknown };
3353   enum SecondParam { None, Architecture, Tune };
3354   enum ThirdParam { Target, TargetClones };
3355   if (AttrStr.contains("fpmath="))
3356     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3357            << Unsupported << None << "fpmath=" << Target;
3358 
3359   // Diagnose use of tune if target doesn't support it.
3360   if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3361       AttrStr.contains("tune="))
3362     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3363            << Unsupported << None << "tune=" << Target;
3364 
3365   ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
3366 
3367   if (!ParsedAttrs.Architecture.empty() &&
3368       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
3369     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3370            << Unknown << Architecture << ParsedAttrs.Architecture << Target;
3371 
3372   if (!ParsedAttrs.Tune.empty() &&
3373       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3374     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3375            << Unknown << Tune << ParsedAttrs.Tune << Target;
3376 
3377   if (ParsedAttrs.DuplicateArchitecture)
3378     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3379            << Duplicate << None << "arch=" << Target;
3380   if (ParsedAttrs.DuplicateTune)
3381     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3382            << Duplicate << None << "tune=" << Target;
3383 
3384   for (const auto &Feature : ParsedAttrs.Features) {
3385     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3386     if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3387       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3388              << Unsupported << None << CurFeature << Target;
3389   }
3390 
3391   TargetInfo::BranchProtectionInfo BPI;
3392   StringRef DiagMsg;
3393   if (ParsedAttrs.BranchProtection.empty())
3394     return false;
3395   if (!Context.getTargetInfo().validateBranchProtection(
3396           ParsedAttrs.BranchProtection, BPI, DiagMsg)) {
3397     if (DiagMsg.empty())
3398       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3399              << Unsupported << None << "branch-protection" << Target;
3400     return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3401            << DiagMsg;
3402   }
3403   if (!DiagMsg.empty())
3404     Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3405 
3406   return false;
3407 }
3408 
3409 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3410   StringRef Str;
3411   SourceLocation LiteralLoc;
3412   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3413       S.checkTargetAttr(LiteralLoc, Str))
3414     return;
3415 
3416   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3417   D->addAttr(NewAttr);
3418 }
3419 
3420 bool Sema::checkTargetClonesAttrString(SourceLocation LiteralLoc, StringRef Str,
3421                                        const StringLiteral *Literal,
3422                                        bool &HasDefault, bool &HasCommas,
3423                                        SmallVectorImpl<StringRef> &Strings) {
3424   enum FirstParam { Unsupported, Duplicate, Unknown };
3425   enum SecondParam { None, Architecture, Tune };
3426   enum ThirdParam { Target, TargetClones };
3427   HasCommas = HasCommas || Str.contains(',');
3428   // Warn on empty at the beginning of a string.
3429   if (Str.size() == 0)
3430     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3431            << Unsupported << None << "" << TargetClones;
3432 
3433   std::pair<StringRef, StringRef> Parts = {{}, Str};
3434   while (!Parts.second.empty()) {
3435     Parts = Parts.second.split(',');
3436     StringRef Cur = Parts.first.trim();
3437     SourceLocation CurLoc = Literal->getLocationOfByte(
3438         Cur.data() - Literal->getString().data(), getSourceManager(),
3439         getLangOpts(), Context.getTargetInfo());
3440 
3441     bool DefaultIsDupe = false;
3442     if (Cur.empty())
3443       return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3444              << Unsupported << None << "" << TargetClones;
3445 
3446     if (Cur.startswith("arch=")) {
3447       if (!Context.getTargetInfo().isValidCPUName(
3448               Cur.drop_front(sizeof("arch=") - 1)))
3449         return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3450                << Unsupported << Architecture
3451                << Cur.drop_front(sizeof("arch=") - 1) << TargetClones;
3452     } else if (Cur == "default") {
3453       DefaultIsDupe = HasDefault;
3454       HasDefault = true;
3455     } else if (!Context.getTargetInfo().isValidFeatureName(Cur))
3456       return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3457              << Unsupported << None << Cur << TargetClones;
3458 
3459     if (llvm::find(Strings, Cur) != Strings.end() || DefaultIsDupe)
3460       Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3461     // Note: Add even if there are duplicates, since it changes name mangling.
3462     Strings.push_back(Cur);
3463   }
3464 
3465   if (Str.rtrim().endswith(","))
3466     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3467            << Unsupported << None << "" << TargetClones;
3468   return false;
3469 }
3470 
3471 static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3472   // Ensure we don't combine these with themselves, since that causes some
3473   // confusing behavior.
3474   if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3475     S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3476     S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3477     return;
3478   }
3479   if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL))
3480     return;
3481 
3482   SmallVector<StringRef, 2> Strings;
3483   bool HasCommas = false, HasDefault = false;
3484 
3485   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3486     StringRef CurStr;
3487     SourceLocation LiteralLoc;
3488     if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) ||
3489         S.checkTargetClonesAttrString(
3490             LiteralLoc, CurStr,
3491             cast<StringLiteral>(AL.getArgAsExpr(I)->IgnoreParenCasts()),
3492             HasDefault, HasCommas, Strings))
3493       return;
3494   }
3495 
3496   if (HasCommas && AL.getNumArgs() > 1)
3497     S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values);
3498 
3499   if (!HasDefault) {
3500     S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default);
3501     return;
3502   }
3503 
3504   // FIXME: We could probably figure out how to get this to work for lambdas
3505   // someday.
3506   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3507     if (MD->getParent()->isLambda()) {
3508       S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3509           << static_cast<unsigned>(MultiVersionKind::TargetClones)
3510           << /*Lambda*/ 9;
3511       return;
3512     }
3513   }
3514 
3515   cast<FunctionDecl>(D)->setIsMultiVersion();
3516   TargetClonesAttr *NewAttr = ::new (S.Context)
3517       TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size());
3518   D->addAttr(NewAttr);
3519 }
3520 
3521 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3522   Expr *E = AL.getArgAsExpr(0);
3523   uint32_t VecWidth;
3524   if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3525     AL.setInvalid();
3526     return;
3527   }
3528 
3529   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3530   if (Existing && Existing->getVectorWidth() != VecWidth) {
3531     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3532     return;
3533   }
3534 
3535   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3536 }
3537 
3538 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3539   Expr *E = AL.getArgAsExpr(0);
3540   SourceLocation Loc = E->getExprLoc();
3541   FunctionDecl *FD = nullptr;
3542   DeclarationNameInfo NI;
3543 
3544   // gcc only allows for simple identifiers. Since we support more than gcc, we
3545   // will warn the user.
3546   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3547     if (DRE->hasQualifier())
3548       S.Diag(Loc, diag::warn_cleanup_ext);
3549     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3550     NI = DRE->getNameInfo();
3551     if (!FD) {
3552       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3553         << NI.getName();
3554       return;
3555     }
3556   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3557     if (ULE->hasExplicitTemplateArgs())
3558       S.Diag(Loc, diag::warn_cleanup_ext);
3559     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3560     NI = ULE->getNameInfo();
3561     if (!FD) {
3562       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3563         << NI.getName();
3564       if (ULE->getType() == S.Context.OverloadTy)
3565         S.NoteAllOverloadCandidates(ULE);
3566       return;
3567     }
3568   } else {
3569     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3570     return;
3571   }
3572 
3573   if (FD->getNumParams() != 1) {
3574     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3575       << NI.getName();
3576     return;
3577   }
3578 
3579   // We're currently more strict than GCC about what function types we accept.
3580   // If this ever proves to be a problem it should be easy to fix.
3581   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3582   QualType ParamTy = FD->getParamDecl(0)->getType();
3583   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3584                                    ParamTy, Ty) != Sema::Compatible) {
3585     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3586       << NI.getName() << ParamTy << Ty;
3587     return;
3588   }
3589 
3590   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3591 }
3592 
3593 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3594                                         const ParsedAttr &AL) {
3595   if (!AL.isArgIdent(0)) {
3596     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3597         << AL << 0 << AANT_ArgumentIdentifier;
3598     return;
3599   }
3600 
3601   EnumExtensibilityAttr::Kind ExtensibilityKind;
3602   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3603   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3604                                                ExtensibilityKind)) {
3605     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3606     return;
3607   }
3608 
3609   D->addAttr(::new (S.Context)
3610                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3611 }
3612 
3613 /// Handle __attribute__((format_arg((idx)))) attribute based on
3614 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3615 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3616   Expr *IdxExpr = AL.getArgAsExpr(0);
3617   ParamIdx Idx;
3618   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3619     return;
3620 
3621   // Make sure the format string is really a string.
3622   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3623 
3624   bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3625   if (NotNSStringTy &&
3626       !isCFStringType(Ty, S.Context) &&
3627       (!Ty->isPointerType() ||
3628        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3629     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3630         << "a string type" << IdxExpr->getSourceRange()
3631         << getFunctionOrMethodParamRange(D, 0);
3632     return;
3633   }
3634   Ty = getFunctionOrMethodResultType(D);
3635   // replace instancetype with the class type
3636   auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl();
3637   if (Ty->getAs<TypedefType>() == Instancetype)
3638     if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3639       if (auto *Interface = OMD->getClassInterface())
3640         Ty = S.Context.getObjCObjectPointerType(
3641             QualType(Interface->getTypeForDecl(), 0));
3642   if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) &&
3643       !isCFStringType(Ty, S.Context) &&
3644       (!Ty->isPointerType() ||
3645        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3646     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3647         << (NotNSStringTy ? "string type" : "NSString")
3648         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3649     return;
3650   }
3651 
3652   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3653 }
3654 
3655 enum FormatAttrKind {
3656   CFStringFormat,
3657   NSStringFormat,
3658   StrftimeFormat,
3659   SupportedFormat,
3660   IgnoredFormat,
3661   InvalidFormat
3662 };
3663 
3664 /// getFormatAttrKind - Map from format attribute names to supported format
3665 /// types.
3666 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3667   return llvm::StringSwitch<FormatAttrKind>(Format)
3668       // Check for formats that get handled specially.
3669       .Case("NSString", NSStringFormat)
3670       .Case("CFString", CFStringFormat)
3671       .Case("strftime", StrftimeFormat)
3672 
3673       // Otherwise, check for supported formats.
3674       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3675       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3676       .Case("kprintf", SupportedFormat)         // OpenBSD.
3677       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3678       .Case("os_trace", SupportedFormat)
3679       .Case("os_log", SupportedFormat)
3680 
3681       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3682       .Default(InvalidFormat);
3683 }
3684 
3685 /// Handle __attribute__((init_priority(priority))) attributes based on
3686 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3687 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3688   if (!S.getLangOpts().CPlusPlus) {
3689     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3690     return;
3691   }
3692 
3693   if (S.getCurFunctionOrMethodDecl()) {
3694     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3695     AL.setInvalid();
3696     return;
3697   }
3698   QualType T = cast<VarDecl>(D)->getType();
3699   if (S.Context.getAsArrayType(T))
3700     T = S.Context.getBaseElementType(T);
3701   if (!T->getAs<RecordType>()) {
3702     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3703     AL.setInvalid();
3704     return;
3705   }
3706 
3707   Expr *E = AL.getArgAsExpr(0);
3708   uint32_t prioritynum;
3709   if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3710     AL.setInvalid();
3711     return;
3712   }
3713 
3714   // Only perform the priority check if the attribute is outside of a system
3715   // header. Values <= 100 are reserved for the implementation, and libc++
3716   // benefits from being able to specify values in that range.
3717   if ((prioritynum < 101 || prioritynum > 65535) &&
3718       !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3719     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3720         << E->getSourceRange() << AL << 101 << 65535;
3721     AL.setInvalid();
3722     return;
3723   }
3724   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3725 }
3726 
3727 ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3728                                 StringRef NewUserDiagnostic) {
3729   if (const auto *EA = D->getAttr<ErrorAttr>()) {
3730     std::string NewAttr = CI.getNormalizedFullName();
3731     assert((NewAttr == "error" || NewAttr == "warning") &&
3732            "unexpected normalized full name");
3733     bool Match = (EA->isError() && NewAttr == "error") ||
3734                  (EA->isWarning() && NewAttr == "warning");
3735     if (!Match) {
3736       Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3737           << CI << EA;
3738       Diag(CI.getLoc(), diag::note_conflicting_attribute);
3739       return nullptr;
3740     }
3741     if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3742       Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3743       Diag(EA->getLoc(), diag::note_previous_attribute);
3744     }
3745     D->dropAttr<ErrorAttr>();
3746   }
3747   return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3748 }
3749 
3750 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3751                                   IdentifierInfo *Format, int FormatIdx,
3752                                   int FirstArg) {
3753   // Check whether we already have an equivalent format attribute.
3754   for (auto *F : D->specific_attrs<FormatAttr>()) {
3755     if (F->getType() == Format &&
3756         F->getFormatIdx() == FormatIdx &&
3757         F->getFirstArg() == FirstArg) {
3758       // If we don't have a valid location for this attribute, adopt the
3759       // location.
3760       if (F->getLocation().isInvalid())
3761         F->setRange(CI.getRange());
3762       return nullptr;
3763     }
3764   }
3765 
3766   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3767 }
3768 
3769 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3770 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3771 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3772   if (!AL.isArgIdent(0)) {
3773     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3774         << AL << 1 << AANT_ArgumentIdentifier;
3775     return;
3776   }
3777 
3778   // In C++ the implicit 'this' function parameter also counts, and they are
3779   // counted from one.
3780   bool HasImplicitThisParam = isInstanceMethod(D);
3781   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3782 
3783   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3784   StringRef Format = II->getName();
3785 
3786   if (normalizeName(Format)) {
3787     // If we've modified the string name, we need a new identifier for it.
3788     II = &S.Context.Idents.get(Format);
3789   }
3790 
3791   // Check for supported formats.
3792   FormatAttrKind Kind = getFormatAttrKind(Format);
3793 
3794   if (Kind == IgnoredFormat)
3795     return;
3796 
3797   if (Kind == InvalidFormat) {
3798     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3799         << AL << II->getName();
3800     return;
3801   }
3802 
3803   // checks for the 2nd argument
3804   Expr *IdxExpr = AL.getArgAsExpr(1);
3805   uint32_t Idx;
3806   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3807     return;
3808 
3809   if (Idx < 1 || Idx > NumArgs) {
3810     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3811         << AL << 2 << IdxExpr->getSourceRange();
3812     return;
3813   }
3814 
3815   // FIXME: Do we need to bounds check?
3816   unsigned ArgIdx = Idx - 1;
3817 
3818   if (HasImplicitThisParam) {
3819     if (ArgIdx == 0) {
3820       S.Diag(AL.getLoc(),
3821              diag::err_format_attribute_implicit_this_format_string)
3822         << IdxExpr->getSourceRange();
3823       return;
3824     }
3825     ArgIdx--;
3826   }
3827 
3828   // make sure the format string is really a string
3829   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3830 
3831   if (Kind == CFStringFormat) {
3832     if (!isCFStringType(Ty, S.Context)) {
3833       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3834         << "a CFString" << IdxExpr->getSourceRange()
3835         << getFunctionOrMethodParamRange(D, ArgIdx);
3836       return;
3837     }
3838   } else if (Kind == NSStringFormat) {
3839     // FIXME: do we need to check if the type is NSString*?  What are the
3840     // semantics?
3841     if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true)) {
3842       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3843         << "an NSString" << IdxExpr->getSourceRange()
3844         << getFunctionOrMethodParamRange(D, ArgIdx);
3845       return;
3846     }
3847   } else if (!Ty->isPointerType() ||
3848              !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
3849     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3850       << "a string type" << IdxExpr->getSourceRange()
3851       << getFunctionOrMethodParamRange(D, ArgIdx);
3852     return;
3853   }
3854 
3855   // check the 3rd argument
3856   Expr *FirstArgExpr = AL.getArgAsExpr(2);
3857   uint32_t FirstArg;
3858   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3859     return;
3860 
3861   // check if the function is variadic if the 3rd argument non-zero
3862   if (FirstArg != 0) {
3863     if (isFunctionOrMethodVariadic(D)) {
3864       ++NumArgs; // +1 for ...
3865     } else {
3866       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3867       return;
3868     }
3869   }
3870 
3871   // strftime requires FirstArg to be 0 because it doesn't read from any
3872   // variable the input is just the current time + the format string.
3873   if (Kind == StrftimeFormat) {
3874     if (FirstArg != 0) {
3875       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3876         << FirstArgExpr->getSourceRange();
3877       return;
3878     }
3879   // if 0 it disables parameter checking (to use with e.g. va_list)
3880   } else if (FirstArg != 0 && FirstArg != NumArgs) {
3881     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3882         << AL << 3 << FirstArgExpr->getSourceRange();
3883     return;
3884   }
3885 
3886   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
3887   if (NewAttr)
3888     D->addAttr(NewAttr);
3889 }
3890 
3891 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3892 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3893   // The index that identifies the callback callee is mandatory.
3894   if (AL.getNumArgs() == 0) {
3895     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3896         << AL.getRange();
3897     return;
3898   }
3899 
3900   bool HasImplicitThisParam = isInstanceMethod(D);
3901   int32_t NumArgs = getFunctionOrMethodNumParams(D);
3902 
3903   FunctionDecl *FD = D->getAsFunction();
3904   assert(FD && "Expected a function declaration!");
3905 
3906   llvm::StringMap<int> NameIdxMapping;
3907   NameIdxMapping["__"] = -1;
3908 
3909   NameIdxMapping["this"] = 0;
3910 
3911   int Idx = 1;
3912   for (const ParmVarDecl *PVD : FD->parameters())
3913     NameIdxMapping[PVD->getName()] = Idx++;
3914 
3915   auto UnknownName = NameIdxMapping.end();
3916 
3917   SmallVector<int, 8> EncodingIndices;
3918   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3919     SourceRange SR;
3920     int32_t ArgIdx;
3921 
3922     if (AL.isArgIdent(I)) {
3923       IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3924       auto It = NameIdxMapping.find(IdLoc->Ident->getName());
3925       if (It == UnknownName) {
3926         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3927             << IdLoc->Ident << IdLoc->Loc;
3928         return;
3929       }
3930 
3931       SR = SourceRange(IdLoc->Loc);
3932       ArgIdx = It->second;
3933     } else if (AL.isArgExpr(I)) {
3934       Expr *IdxExpr = AL.getArgAsExpr(I);
3935 
3936       // If the expression is not parseable as an int32_t we have a problem.
3937       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3938                                false)) {
3939         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3940             << AL << (I + 1) << IdxExpr->getSourceRange();
3941         return;
3942       }
3943 
3944       // Check oob, excluding the special values, 0 and -1.
3945       if (ArgIdx < -1 || ArgIdx > NumArgs) {
3946         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3947             << AL << (I + 1) << IdxExpr->getSourceRange();
3948         return;
3949       }
3950 
3951       SR = IdxExpr->getSourceRange();
3952     } else {
3953       llvm_unreachable("Unexpected ParsedAttr argument type!");
3954     }
3955 
3956     if (ArgIdx == 0 && !HasImplicitThisParam) {
3957       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3958           << (I + 1) << SR;
3959       return;
3960     }
3961 
3962     // Adjust for the case we do not have an implicit "this" parameter. In this
3963     // case we decrease all positive values by 1 to get LLVM argument indices.
3964     if (!HasImplicitThisParam && ArgIdx > 0)
3965       ArgIdx -= 1;
3966 
3967     EncodingIndices.push_back(ArgIdx);
3968   }
3969 
3970   int CalleeIdx = EncodingIndices.front();
3971   // Check if the callee index is proper, thus not "this" and not "unknown".
3972   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3973   // is false and positive if "HasImplicitThisParam" is true.
3974   if (CalleeIdx < (int)HasImplicitThisParam) {
3975     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
3976         << AL.getRange();
3977     return;
3978   }
3979 
3980   // Get the callee type, note the index adjustment as the AST doesn't contain
3981   // the this type (which the callee cannot reference anyway!).
3982   const Type *CalleeType =
3983       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
3984           .getTypePtr();
3985   if (!CalleeType || !CalleeType->isFunctionPointerType()) {
3986     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3987         << AL.getRange();
3988     return;
3989   }
3990 
3991   const Type *CalleeFnType =
3992       CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
3993 
3994   // TODO: Check the type of the callee arguments.
3995 
3996   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
3997   if (!CalleeFnProtoType) {
3998     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3999         << AL.getRange();
4000     return;
4001   }
4002 
4003   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
4004     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4005         << AL << (unsigned)(EncodingIndices.size() - 1);
4006     return;
4007   }
4008 
4009   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
4010     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4011         << AL << (unsigned)(EncodingIndices.size() - 1);
4012     return;
4013   }
4014 
4015   if (CalleeFnProtoType->isVariadic()) {
4016     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
4017     return;
4018   }
4019 
4020   // Do not allow multiple callback attributes.
4021   if (D->hasAttr<CallbackAttr>()) {
4022     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
4023     return;
4024   }
4025 
4026   D->addAttr(::new (S.Context) CallbackAttr(
4027       S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
4028 }
4029 
4030 static bool isFunctionLike(const Type &T) {
4031   // Check for explicit function types.
4032   // 'called_once' is only supported in Objective-C and it has
4033   // function pointers and block pointers.
4034   return T.isFunctionPointerType() || T.isBlockPointerType();
4035 }
4036 
4037 /// Handle 'called_once' attribute.
4038 static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4039   // 'called_once' only applies to parameters representing functions.
4040   QualType T = cast<ParmVarDecl>(D)->getType();
4041 
4042   if (!isFunctionLike(*T)) {
4043     S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4044     return;
4045   }
4046 
4047   D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4048 }
4049 
4050 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4051   // Try to find the underlying union declaration.
4052   RecordDecl *RD = nullptr;
4053   const auto *TD = dyn_cast<TypedefNameDecl>(D);
4054   if (TD && TD->getUnderlyingType()->isUnionType())
4055     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
4056   else
4057     RD = dyn_cast<RecordDecl>(D);
4058 
4059   if (!RD || !RD->isUnion()) {
4060     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
4061                                                               << ExpectedUnion;
4062     return;
4063   }
4064 
4065   if (!RD->isCompleteDefinition()) {
4066     if (!RD->isBeingDefined())
4067       S.Diag(AL.getLoc(),
4068              diag::warn_transparent_union_attribute_not_definition);
4069     return;
4070   }
4071 
4072   RecordDecl::field_iterator Field = RD->field_begin(),
4073                           FieldEnd = RD->field_end();
4074   if (Field == FieldEnd) {
4075     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4076     return;
4077   }
4078 
4079   FieldDecl *FirstField = *Field;
4080   QualType FirstType = FirstField->getType();
4081   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4082     S.Diag(FirstField->getLocation(),
4083            diag::warn_transparent_union_attribute_floating)
4084       << FirstType->isVectorType() << FirstType;
4085     return;
4086   }
4087 
4088   if (FirstType->isIncompleteType())
4089     return;
4090   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4091   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4092   for (; Field != FieldEnd; ++Field) {
4093     QualType FieldType = Field->getType();
4094     if (FieldType->isIncompleteType())
4095       return;
4096     // FIXME: this isn't fully correct; we also need to test whether the
4097     // members of the union would all have the same calling convention as the
4098     // first member of the union. Checking just the size and alignment isn't
4099     // sufficient (consider structs passed on the stack instead of in registers
4100     // as an example).
4101     if (S.Context.getTypeSize(FieldType) != FirstSize ||
4102         S.Context.getTypeAlign(FieldType) > FirstAlign) {
4103       // Warn if we drop the attribute.
4104       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4105       unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4106                                   : S.Context.getTypeAlign(FieldType);
4107       S.Diag(Field->getLocation(),
4108              diag::warn_transparent_union_attribute_field_size_align)
4109           << isSize << *Field << FieldBits;
4110       unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4111       S.Diag(FirstField->getLocation(),
4112              diag::note_transparent_union_first_field_size_align)
4113           << isSize << FirstBits;
4114       return;
4115     }
4116   }
4117 
4118   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4119 }
4120 
4121 void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
4122                              StringRef Str, MutableArrayRef<Expr *> Args) {
4123   auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
4124   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4125   for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) {
4126     Expr *&E = Attr->args_begin()[Idx];
4127     assert(E && "error are handled before");
4128     if (E->isValueDependent() || E->isTypeDependent())
4129       continue;
4130 
4131     if (E->getType()->isArrayType())
4132       E = ImpCastExprToType(E, Context.getPointerType(E->getType()),
4133                             clang::CK_ArrayToPointerDecay)
4134               .get();
4135     if (E->getType()->isFunctionType())
4136       E = ImplicitCastExpr::Create(Context,
4137                                    Context.getPointerType(E->getType()),
4138                                    clang::CK_FunctionToPointerDecay, E, nullptr,
4139                                    VK_PRValue, FPOptionsOverride());
4140     if (E->isLValue())
4141       E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(),
4142                                    clang::CK_LValueToRValue, E, nullptr,
4143                                    VK_PRValue, FPOptionsOverride());
4144 
4145     Expr::EvalResult Eval;
4146     Notes.clear();
4147     Eval.Diag = &Notes;
4148 
4149     bool Result =
4150         E->EvaluateAsConstantExpr(Eval, Context);
4151 
4152     /// Result means the expression can be folded to a constant.
4153     /// Note.empty() means the expression is a valid constant expression in the
4154     /// current language mode.
4155     if (!Result || !Notes.empty()) {
4156       Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type)
4157           << CI << (Idx + 1) << AANT_ArgumentConstantExpr;
4158       for (auto &Note : Notes)
4159         Diag(Note.first, Note.second);
4160       return;
4161     }
4162     assert(Eval.Val.hasValue());
4163     E = ConstantExpr::Create(Context, E, Eval.Val);
4164   }
4165   D->addAttr(Attr);
4166 }
4167 
4168 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4169   // Make sure that there is a string literal as the annotation's first
4170   // argument.
4171   StringRef Str;
4172   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
4173     return;
4174 
4175   llvm::SmallVector<Expr *, 4> Args;
4176   Args.reserve(AL.getNumArgs() - 1);
4177   for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
4178     assert(!AL.isArgIdent(Idx));
4179     Args.push_back(AL.getArgAsExpr(Idx));
4180   }
4181 
4182   S.AddAnnotationAttr(D, AL, Str, Args);
4183 }
4184 
4185 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4186   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4187 }
4188 
4189 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
4190   AlignValueAttr TmpAttr(Context, CI, E);
4191   SourceLocation AttrLoc = CI.getLoc();
4192 
4193   QualType T;
4194   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4195     T = TD->getUnderlyingType();
4196   else if (const auto *VD = dyn_cast<ValueDecl>(D))
4197     T = VD->getType();
4198   else
4199     llvm_unreachable("Unknown decl type for align_value");
4200 
4201   if (!T->isDependentType() && !T->isAnyPointerType() &&
4202       !T->isReferenceType() && !T->isMemberPointerType()) {
4203     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4204       << &TmpAttr << T << D->getSourceRange();
4205     return;
4206   }
4207 
4208   if (!E->isValueDependent()) {
4209     llvm::APSInt Alignment;
4210     ExprResult ICE = VerifyIntegerConstantExpression(
4211         E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4212     if (ICE.isInvalid())
4213       return;
4214 
4215     if (!Alignment.isPowerOf2()) {
4216       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4217         << E->getSourceRange();
4218       return;
4219     }
4220 
4221     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4222     return;
4223   }
4224 
4225   // Save dependent expressions in the AST to be instantiated.
4226   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4227 }
4228 
4229 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4230   // check the attribute arguments.
4231   if (AL.getNumArgs() > 1) {
4232     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4233     return;
4234   }
4235 
4236   if (AL.getNumArgs() == 0) {
4237     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4238     return;
4239   }
4240 
4241   Expr *E = AL.getArgAsExpr(0);
4242   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
4243     S.Diag(AL.getEllipsisLoc(),
4244            diag::err_pack_expansion_without_parameter_packs);
4245     return;
4246   }
4247 
4248   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
4249     return;
4250 
4251   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4252 }
4253 
4254 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
4255                           bool IsPackExpansion) {
4256   AlignedAttr TmpAttr(Context, CI, true, E);
4257   SourceLocation AttrLoc = CI.getLoc();
4258 
4259   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4260   if (TmpAttr.isAlignas()) {
4261     // C++11 [dcl.align]p1:
4262     //   An alignment-specifier may be applied to a variable or to a class
4263     //   data member, but it shall not be applied to a bit-field, a function
4264     //   parameter, the formal parameter of a catch clause, or a variable
4265     //   declared with the register storage class specifier. An
4266     //   alignment-specifier may also be applied to the declaration of a class
4267     //   or enumeration type.
4268     // C11 6.7.5/2:
4269     //   An alignment attribute shall not be specified in a declaration of
4270     //   a typedef, or a bit-field, or a function, or a parameter, or an
4271     //   object declared with the register storage-class specifier.
4272     int DiagKind = -1;
4273     if (isa<ParmVarDecl>(D)) {
4274       DiagKind = 0;
4275     } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4276       if (VD->getStorageClass() == SC_Register)
4277         DiagKind = 1;
4278       if (VD->isExceptionVariable())
4279         DiagKind = 2;
4280     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4281       if (FD->isBitField())
4282         DiagKind = 3;
4283     } else if (!isa<TagDecl>(D)) {
4284       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
4285         << (TmpAttr.isC11() ? ExpectedVariableOrField
4286                             : ExpectedVariableFieldOrTag);
4287       return;
4288     }
4289     if (DiagKind != -1) {
4290       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4291         << &TmpAttr << DiagKind;
4292       return;
4293     }
4294   }
4295 
4296   if (E->isValueDependent()) {
4297     // We can't support a dependent alignment on a non-dependent type,
4298     // because we have no way to model that a type is "alignment-dependent"
4299     // but not dependent in any other way.
4300     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4301       if (!TND->getUnderlyingType()->isDependentType()) {
4302         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4303             << E->getSourceRange();
4304         return;
4305       }
4306     }
4307 
4308     // Save dependent expressions in the AST to be instantiated.
4309     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4310     AA->setPackExpansion(IsPackExpansion);
4311     D->addAttr(AA);
4312     return;
4313   }
4314 
4315   // FIXME: Cache the number on the AL object?
4316   llvm::APSInt Alignment;
4317   ExprResult ICE = VerifyIntegerConstantExpression(
4318       E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4319   if (ICE.isInvalid())
4320     return;
4321 
4322   uint64_t AlignVal = Alignment.getZExtValue();
4323   // 16 byte ByVal alignment not due to a vector member is not honoured by XL
4324   // on AIX. Emit a warning here that users are generating binary incompatible
4325   // code to be safe.
4326   if (AlignVal >= 16 && isa<FieldDecl>(D) &&
4327       Context.getTargetInfo().getTriple().isOSAIX())
4328     Diag(AttrLoc, diag::warn_not_xl_compatible) << E->getSourceRange();
4329 
4330   // C++11 [dcl.align]p2:
4331   //   -- if the constant expression evaluates to zero, the alignment
4332   //      specifier shall have no effect
4333   // C11 6.7.5p6:
4334   //   An alignment specification of zero has no effect.
4335   if (!(TmpAttr.isAlignas() && !Alignment)) {
4336     if (!llvm::isPowerOf2_64(AlignVal)) {
4337       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4338         << E->getSourceRange();
4339       return;
4340     }
4341   }
4342 
4343   uint64_t MaximumAlignment = Sema::MaximumAlignment;
4344   if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4345     MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4346   if (AlignVal > MaximumAlignment) {
4347     Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4348         << MaximumAlignment << E->getSourceRange();
4349     return;
4350   }
4351 
4352   const auto *VD = dyn_cast<VarDecl>(D);
4353   if (VD && Context.getTargetInfo().isTLSSupported()) {
4354     unsigned MaxTLSAlign =
4355         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4356             .getQuantity();
4357     if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4358         VD->getTLSKind() != VarDecl::TLS_None) {
4359       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4360           << (unsigned)AlignVal << VD << MaxTLSAlign;
4361       return;
4362     }
4363   }
4364 
4365   // On AIX, an aligned attribute can not decrease the alignment when applied
4366   // to a variable declaration with vector type.
4367   if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4368     const Type *Ty = VD->getType().getTypePtr();
4369     if (Ty->isVectorType() && AlignVal < 16) {
4370       Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4371           << VD->getType() << 16;
4372       return;
4373     }
4374   }
4375 
4376   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4377   AA->setPackExpansion(IsPackExpansion);
4378   D->addAttr(AA);
4379 }
4380 
4381 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
4382                           TypeSourceInfo *TS, bool IsPackExpansion) {
4383   // FIXME: Cache the number on the AL object if non-dependent?
4384   // FIXME: Perform checking of type validity
4385   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4386   AA->setPackExpansion(IsPackExpansion);
4387   D->addAttr(AA);
4388 }
4389 
4390 void Sema::CheckAlignasUnderalignment(Decl *D) {
4391   assert(D->hasAttrs() && "no attributes on decl");
4392 
4393   QualType UnderlyingTy, DiagTy;
4394   if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4395     UnderlyingTy = DiagTy = VD->getType();
4396   } else {
4397     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
4398     if (const auto *ED = dyn_cast<EnumDecl>(D))
4399       UnderlyingTy = ED->getIntegerType();
4400   }
4401   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4402     return;
4403 
4404   // C++11 [dcl.align]p5, C11 6.7.5/4:
4405   //   The combined effect of all alignment attributes in a declaration shall
4406   //   not specify an alignment that is less strict than the alignment that
4407   //   would otherwise be required for the entity being declared.
4408   AlignedAttr *AlignasAttr = nullptr;
4409   AlignedAttr *LastAlignedAttr = nullptr;
4410   unsigned Align = 0;
4411   for (auto *I : D->specific_attrs<AlignedAttr>()) {
4412     if (I->isAlignmentDependent())
4413       return;
4414     if (I->isAlignas())
4415       AlignasAttr = I;
4416     Align = std::max(Align, I->getAlignment(Context));
4417     LastAlignedAttr = I;
4418   }
4419 
4420   if (Align && DiagTy->isSizelessType()) {
4421     Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4422         << LastAlignedAttr << DiagTy;
4423   } else if (AlignasAttr && Align) {
4424     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4425     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4426     if (NaturalAlign > RequestedAlign)
4427       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4428         << DiagTy << (unsigned)NaturalAlign.getQuantity();
4429   }
4430 }
4431 
4432 bool Sema::checkMSInheritanceAttrOnDefinition(
4433     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4434     MSInheritanceModel ExplicitModel) {
4435   assert(RD->hasDefinition() && "RD has no definition!");
4436 
4437   // We may not have seen base specifiers or any virtual methods yet.  We will
4438   // have to wait until the record is defined to catch any mismatches.
4439   if (!RD->getDefinition()->isCompleteDefinition())
4440     return false;
4441 
4442   // The unspecified model never matches what a definition could need.
4443   if (ExplicitModel == MSInheritanceModel::Unspecified)
4444     return false;
4445 
4446   if (BestCase) {
4447     if (RD->calculateInheritanceModel() == ExplicitModel)
4448       return false;
4449   } else {
4450     if (RD->calculateInheritanceModel() <= ExplicitModel)
4451       return false;
4452   }
4453 
4454   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4455       << 0 /*definition*/;
4456   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4457   return true;
4458 }
4459 
4460 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
4461 /// attribute.
4462 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4463                              bool &IntegerMode, bool &ComplexMode,
4464                              FloatModeKind &ExplicitType) {
4465   IntegerMode = true;
4466   ComplexMode = false;
4467   ExplicitType = FloatModeKind::NoFloat;
4468   switch (Str.size()) {
4469   case 2:
4470     switch (Str[0]) {
4471     case 'Q':
4472       DestWidth = 8;
4473       break;
4474     case 'H':
4475       DestWidth = 16;
4476       break;
4477     case 'S':
4478       DestWidth = 32;
4479       break;
4480     case 'D':
4481       DestWidth = 64;
4482       break;
4483     case 'X':
4484       DestWidth = 96;
4485       break;
4486     case 'K': // KFmode - IEEE quad precision (__float128)
4487       ExplicitType = FloatModeKind::Float128;
4488       DestWidth = Str[1] == 'I' ? 0 : 128;
4489       break;
4490     case 'T':
4491       ExplicitType = FloatModeKind::LongDouble;
4492       DestWidth = 128;
4493       break;
4494     case 'I':
4495       ExplicitType = FloatModeKind::Ibm128;
4496       DestWidth = Str[1] == 'I' ? 0 : 128;
4497       break;
4498     }
4499     if (Str[1] == 'F') {
4500       IntegerMode = false;
4501     } else if (Str[1] == 'C') {
4502       IntegerMode = false;
4503       ComplexMode = true;
4504     } else if (Str[1] != 'I') {
4505       DestWidth = 0;
4506     }
4507     break;
4508   case 4:
4509     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4510     // pointer on PIC16 and other embedded platforms.
4511     if (Str == "word")
4512       DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4513     else if (Str == "byte")
4514       DestWidth = S.Context.getTargetInfo().getCharWidth();
4515     break;
4516   case 7:
4517     if (Str == "pointer")
4518       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
4519     break;
4520   case 11:
4521     if (Str == "unwind_word")
4522       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4523     break;
4524   }
4525 }
4526 
4527 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4528 /// type.
4529 ///
4530 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4531 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4532 /// HImode, not an intermediate pointer.
4533 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4534   // This attribute isn't documented, but glibc uses it.  It changes
4535   // the width of an int or unsigned int to the specified size.
4536   if (!AL.isArgIdent(0)) {
4537     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4538         << AL << AANT_ArgumentIdentifier;
4539     return;
4540   }
4541 
4542   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4543 
4544   S.AddModeAttr(D, AL, Name);
4545 }
4546 
4547 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4548                        IdentifierInfo *Name, bool InInstantiation) {
4549   StringRef Str = Name->getName();
4550   normalizeName(Str);
4551   SourceLocation AttrLoc = CI.getLoc();
4552 
4553   unsigned DestWidth = 0;
4554   bool IntegerMode = true;
4555   bool ComplexMode = false;
4556   FloatModeKind ExplicitType = FloatModeKind::NoFloat;
4557   llvm::APInt VectorSize(64, 0);
4558   if (Str.size() >= 4 && Str[0] == 'V') {
4559     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4560     size_t StrSize = Str.size();
4561     size_t VectorStringLength = 0;
4562     while ((VectorStringLength + 1) < StrSize &&
4563            isdigit(Str[VectorStringLength + 1]))
4564       ++VectorStringLength;
4565     if (VectorStringLength &&
4566         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4567         VectorSize.isPowerOf2()) {
4568       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4569                        IntegerMode, ComplexMode, ExplicitType);
4570       // Avoid duplicate warning from template instantiation.
4571       if (!InInstantiation)
4572         Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4573     } else {
4574       VectorSize = 0;
4575     }
4576   }
4577 
4578   if (!VectorSize)
4579     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4580                      ExplicitType);
4581 
4582   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4583   // and friends, at least with glibc.
4584   // FIXME: Make sure floating-point mappings are accurate
4585   // FIXME: Support XF and TF types
4586   if (!DestWidth) {
4587     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4588     return;
4589   }
4590 
4591   QualType OldTy;
4592   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4593     OldTy = TD->getUnderlyingType();
4594   else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4595     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4596     // Try to get type from enum declaration, default to int.
4597     OldTy = ED->getIntegerType();
4598     if (OldTy.isNull())
4599       OldTy = Context.IntTy;
4600   } else
4601     OldTy = cast<ValueDecl>(D)->getType();
4602 
4603   if (OldTy->isDependentType()) {
4604     D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4605     return;
4606   }
4607 
4608   // Base type can also be a vector type (see PR17453).
4609   // Distinguish between base type and base element type.
4610   QualType OldElemTy = OldTy;
4611   if (const auto *VT = OldTy->getAs<VectorType>())
4612     OldElemTy = VT->getElementType();
4613 
4614   // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4615   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4616   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4617   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4618       VectorSize.getBoolValue()) {
4619     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4620     return;
4621   }
4622   bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4623                                 !OldElemTy->isBitIntType()) ||
4624                                OldElemTy->getAs<EnumType>();
4625 
4626   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4627       !IntegralOrAnyEnumType)
4628     Diag(AttrLoc, diag::err_mode_not_primitive);
4629   else if (IntegerMode) {
4630     if (!IntegralOrAnyEnumType)
4631       Diag(AttrLoc, diag::err_mode_wrong_type);
4632   } else if (ComplexMode) {
4633     if (!OldElemTy->isComplexType())
4634       Diag(AttrLoc, diag::err_mode_wrong_type);
4635   } else {
4636     if (!OldElemTy->isFloatingType())
4637       Diag(AttrLoc, diag::err_mode_wrong_type);
4638   }
4639 
4640   QualType NewElemTy;
4641 
4642   if (IntegerMode)
4643     NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4644                                               OldElemTy->isSignedIntegerType());
4645   else
4646     NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4647 
4648   if (NewElemTy.isNull()) {
4649     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4650     return;
4651   }
4652 
4653   if (ComplexMode) {
4654     NewElemTy = Context.getComplexType(NewElemTy);
4655   }
4656 
4657   QualType NewTy = NewElemTy;
4658   if (VectorSize.getBoolValue()) {
4659     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4660                                   VectorType::GenericVector);
4661   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4662     // Complex machine mode does not support base vector types.
4663     if (ComplexMode) {
4664       Diag(AttrLoc, diag::err_complex_mode_vector_type);
4665       return;
4666     }
4667     unsigned NumElements = Context.getTypeSize(OldElemTy) *
4668                            OldVT->getNumElements() /
4669                            Context.getTypeSize(NewElemTy);
4670     NewTy =
4671         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4672   }
4673 
4674   if (NewTy.isNull()) {
4675     Diag(AttrLoc, diag::err_mode_wrong_type);
4676     return;
4677   }
4678 
4679   // Install the new type.
4680   if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4681     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4682   else if (auto *ED = dyn_cast<EnumDecl>(D))
4683     ED->setIntegerType(NewTy);
4684   else
4685     cast<ValueDecl>(D)->setType(NewTy);
4686 
4687   D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4688 }
4689 
4690 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4691   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4692 }
4693 
4694 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4695                                               const AttributeCommonInfo &CI,
4696                                               const IdentifierInfo *Ident) {
4697   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4698     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4699     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4700     return nullptr;
4701   }
4702 
4703   if (D->hasAttr<AlwaysInlineAttr>())
4704     return nullptr;
4705 
4706   return ::new (Context) AlwaysInlineAttr(Context, CI);
4707 }
4708 
4709 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4710                                                     const ParsedAttr &AL) {
4711   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4712     // Attribute applies to Var but not any subclass of it (like ParmVar,
4713     // ImplicitParm or VarTemplateSpecialization).
4714     if (VD->getKind() != Decl::Var) {
4715       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4716           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4717                                             : ExpectedVariableOrFunction);
4718       return nullptr;
4719     }
4720     // Attribute does not apply to non-static local variables.
4721     if (VD->hasLocalStorage()) {
4722       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4723       return nullptr;
4724     }
4725   }
4726 
4727   return ::new (Context) InternalLinkageAttr(Context, AL);
4728 }
4729 InternalLinkageAttr *
4730 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4731   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4732     // Attribute applies to Var but not any subclass of it (like ParmVar,
4733     // ImplicitParm or VarTemplateSpecialization).
4734     if (VD->getKind() != Decl::Var) {
4735       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4736           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4737                                              : ExpectedVariableOrFunction);
4738       return nullptr;
4739     }
4740     // Attribute does not apply to non-static local variables.
4741     if (VD->hasLocalStorage()) {
4742       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4743       return nullptr;
4744     }
4745   }
4746 
4747   return ::new (Context) InternalLinkageAttr(Context, AL);
4748 }
4749 
4750 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4751   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4752     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4753     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4754     return nullptr;
4755   }
4756 
4757   if (D->hasAttr<MinSizeAttr>())
4758     return nullptr;
4759 
4760   return ::new (Context) MinSizeAttr(Context, CI);
4761 }
4762 
4763 SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
4764                                         StringRef Name) {
4765   if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
4766     if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
4767       Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
4768           << PrevSNA << &SNA;
4769       Diag(SNA.getLoc(), diag::note_conflicting_attribute);
4770     }
4771 
4772     D->dropAttr<SwiftNameAttr>();
4773   }
4774   return ::new (Context) SwiftNameAttr(Context, SNA, Name);
4775 }
4776 
4777 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4778                                               const AttributeCommonInfo &CI) {
4779   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4780     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4781     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4782     D->dropAttr<AlwaysInlineAttr>();
4783   }
4784   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4785     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4786     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4787     D->dropAttr<MinSizeAttr>();
4788   }
4789 
4790   if (D->hasAttr<OptimizeNoneAttr>())
4791     return nullptr;
4792 
4793   return ::new (Context) OptimizeNoneAttr(Context, CI);
4794 }
4795 
4796 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4797   if (AlwaysInlineAttr *Inline =
4798           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4799     D->addAttr(Inline);
4800 }
4801 
4802 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4803   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4804     D->addAttr(MinSize);
4805 }
4806 
4807 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4808   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4809     D->addAttr(Optnone);
4810 }
4811 
4812 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4813   const auto *VD = cast<VarDecl>(D);
4814   if (VD->hasLocalStorage()) {
4815     S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4816     return;
4817   }
4818   // constexpr variable may already get an implicit constant attr, which should
4819   // be replaced by the explicit constant attr.
4820   if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4821     if (!A->isImplicit())
4822       return;
4823     D->dropAttr<CUDAConstantAttr>();
4824   }
4825   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4826 }
4827 
4828 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4829   const auto *VD = cast<VarDecl>(D);
4830   // extern __shared__ is only allowed on arrays with no length (e.g.
4831   // "int x[]").
4832   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4833       !isa<IncompleteArrayType>(VD->getType())) {
4834     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4835     return;
4836   }
4837   if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4838       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4839           << S.CurrentCUDATarget())
4840     return;
4841   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4842 }
4843 
4844 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4845   const auto *FD = cast<FunctionDecl>(D);
4846   if (!FD->getReturnType()->isVoidType() &&
4847       !FD->getReturnType()->getAs<AutoType>() &&
4848       !FD->getReturnType()->isInstantiationDependentType()) {
4849     SourceRange RTRange = FD->getReturnTypeSourceRange();
4850     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4851         << FD->getType()
4852         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4853                               : FixItHint());
4854     return;
4855   }
4856   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4857     if (Method->isInstance()) {
4858       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4859           << Method;
4860       return;
4861     }
4862     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4863   }
4864   // Only warn for "inline" when compiling for host, to cut down on noise.
4865   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4866     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4867 
4868   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4869   // In host compilation the kernel is emitted as a stub function, which is
4870   // a helper function for launching the kernel. The instructions in the helper
4871   // function has nothing to do with the source code of the kernel. Do not emit
4872   // debug info for the stub function to avoid confusing the debugger.
4873   if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
4874     D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
4875 }
4876 
4877 static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4878   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4879     if (VD->hasLocalStorage()) {
4880       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4881       return;
4882     }
4883   }
4884 
4885   if (auto *A = D->getAttr<CUDADeviceAttr>()) {
4886     if (!A->isImplicit())
4887       return;
4888     D->dropAttr<CUDADeviceAttr>();
4889   }
4890   D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
4891 }
4892 
4893 static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4894   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4895     if (VD->hasLocalStorage()) {
4896       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4897       return;
4898     }
4899   }
4900   if (!D->hasAttr<HIPManagedAttr>())
4901     D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
4902   if (!D->hasAttr<CUDADeviceAttr>())
4903     D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
4904 }
4905 
4906 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4907   const auto *Fn = cast<FunctionDecl>(D);
4908   if (!Fn->isInlineSpecified()) {
4909     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4910     return;
4911   }
4912 
4913   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
4914     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
4915 
4916   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
4917 }
4918 
4919 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4920   if (hasDeclarator(D)) return;
4921 
4922   // Diagnostic is emitted elsewhere: here we store the (valid) AL
4923   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4924   CallingConv CC;
4925   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4926     return;
4927 
4928   if (!isa<ObjCMethodDecl>(D)) {
4929     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4930         << AL << ExpectedFunctionOrMethod;
4931     return;
4932   }
4933 
4934   switch (AL.getKind()) {
4935   case ParsedAttr::AT_FastCall:
4936     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
4937     return;
4938   case ParsedAttr::AT_StdCall:
4939     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
4940     return;
4941   case ParsedAttr::AT_ThisCall:
4942     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
4943     return;
4944   case ParsedAttr::AT_CDecl:
4945     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
4946     return;
4947   case ParsedAttr::AT_Pascal:
4948     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
4949     return;
4950   case ParsedAttr::AT_SwiftCall:
4951     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
4952     return;
4953   case ParsedAttr::AT_SwiftAsyncCall:
4954     D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
4955     return;
4956   case ParsedAttr::AT_VectorCall:
4957     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
4958     return;
4959   case ParsedAttr::AT_MSABI:
4960     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
4961     return;
4962   case ParsedAttr::AT_SysVABI:
4963     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
4964     return;
4965   case ParsedAttr::AT_RegCall:
4966     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
4967     return;
4968   case ParsedAttr::AT_Pcs: {
4969     PcsAttr::PCSType PCS;
4970     switch (CC) {
4971     case CC_AAPCS:
4972       PCS = PcsAttr::AAPCS;
4973       break;
4974     case CC_AAPCS_VFP:
4975       PCS = PcsAttr::AAPCS_VFP;
4976       break;
4977     default:
4978       llvm_unreachable("unexpected calling convention in pcs attribute");
4979     }
4980 
4981     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
4982     return;
4983   }
4984   case ParsedAttr::AT_AArch64VectorPcs:
4985     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
4986     return;
4987   case ParsedAttr::AT_IntelOclBicc:
4988     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
4989     return;
4990   case ParsedAttr::AT_PreserveMost:
4991     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
4992     return;
4993   case ParsedAttr::AT_PreserveAll:
4994     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
4995     return;
4996   default:
4997     llvm_unreachable("unexpected attribute kind");
4998   }
4999 }
5000 
5001 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5002   if (!AL.checkAtLeastNumArgs(S, 1))
5003     return;
5004 
5005   std::vector<StringRef> DiagnosticIdentifiers;
5006   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5007     StringRef RuleName;
5008 
5009     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
5010       return;
5011 
5012     // FIXME: Warn if the rule name is unknown. This is tricky because only
5013     // clang-tidy knows about available rules.
5014     DiagnosticIdentifiers.push_back(RuleName);
5015   }
5016   D->addAttr(::new (S.Context)
5017                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
5018                               DiagnosticIdentifiers.size()));
5019 }
5020 
5021 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5022   TypeSourceInfo *DerefTypeLoc = nullptr;
5023   QualType ParmType;
5024   if (AL.hasParsedType()) {
5025     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
5026 
5027     unsigned SelectIdx = ~0U;
5028     if (ParmType->isReferenceType())
5029       SelectIdx = 0;
5030     else if (ParmType->isArrayType())
5031       SelectIdx = 1;
5032 
5033     if (SelectIdx != ~0U) {
5034       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
5035           << SelectIdx << AL;
5036       return;
5037     }
5038   }
5039 
5040   // To check if earlier decl attributes do not conflict the newly parsed ones
5041   // we always add (and check) the attribute to the canonical decl. We need
5042   // to repeat the check for attribute mutual exclusion because we're attaching
5043   // all of the attributes to the canonical declaration rather than the current
5044   // declaration.
5045   D = D->getCanonicalDecl();
5046   if (AL.getKind() == ParsedAttr::AT_Owner) {
5047     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
5048       return;
5049     if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5050       const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5051                                           ? OAttr->getDerefType().getTypePtr()
5052                                           : nullptr;
5053       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5054         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5055             << AL << OAttr;
5056         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5057       }
5058       return;
5059     }
5060     for (Decl *Redecl : D->redecls()) {
5061       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5062     }
5063   } else {
5064     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
5065       return;
5066     if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5067       const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5068                                           ? PAttr->getDerefType().getTypePtr()
5069                                           : nullptr;
5070       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5071         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5072             << AL << PAttr;
5073         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5074       }
5075       return;
5076     }
5077     for (Decl *Redecl : D->redecls()) {
5078       Redecl->addAttr(::new (S.Context)
5079                           PointerAttr(S.Context, AL, DerefTypeLoc));
5080     }
5081   }
5082 }
5083 
5084 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
5085                                 const FunctionDecl *FD) {
5086   if (Attrs.isInvalid())
5087     return true;
5088 
5089   if (Attrs.hasProcessingCache()) {
5090     CC = (CallingConv) Attrs.getProcessingCache();
5091     return false;
5092   }
5093 
5094   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5095   if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5096     Attrs.setInvalid();
5097     return true;
5098   }
5099 
5100   // TODO: diagnose uses of these conventions on the wrong target.
5101   switch (Attrs.getKind()) {
5102   case ParsedAttr::AT_CDecl:
5103     CC = CC_C;
5104     break;
5105   case ParsedAttr::AT_FastCall:
5106     CC = CC_X86FastCall;
5107     break;
5108   case ParsedAttr::AT_StdCall:
5109     CC = CC_X86StdCall;
5110     break;
5111   case ParsedAttr::AT_ThisCall:
5112     CC = CC_X86ThisCall;
5113     break;
5114   case ParsedAttr::AT_Pascal:
5115     CC = CC_X86Pascal;
5116     break;
5117   case ParsedAttr::AT_SwiftCall:
5118     CC = CC_Swift;
5119     break;
5120   case ParsedAttr::AT_SwiftAsyncCall:
5121     CC = CC_SwiftAsync;
5122     break;
5123   case ParsedAttr::AT_VectorCall:
5124     CC = CC_X86VectorCall;
5125     break;
5126   case ParsedAttr::AT_AArch64VectorPcs:
5127     CC = CC_AArch64VectorCall;
5128     break;
5129   case ParsedAttr::AT_RegCall:
5130     CC = CC_X86RegCall;
5131     break;
5132   case ParsedAttr::AT_MSABI:
5133     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
5134                                                              CC_Win64;
5135     break;
5136   case ParsedAttr::AT_SysVABI:
5137     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
5138                                                              CC_C;
5139     break;
5140   case ParsedAttr::AT_Pcs: {
5141     StringRef StrRef;
5142     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5143       Attrs.setInvalid();
5144       return true;
5145     }
5146     if (StrRef == "aapcs") {
5147       CC = CC_AAPCS;
5148       break;
5149     } else if (StrRef == "aapcs-vfp") {
5150       CC = CC_AAPCS_VFP;
5151       break;
5152     }
5153 
5154     Attrs.setInvalid();
5155     Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5156     return true;
5157   }
5158   case ParsedAttr::AT_IntelOclBicc:
5159     CC = CC_IntelOclBicc;
5160     break;
5161   case ParsedAttr::AT_PreserveMost:
5162     CC = CC_PreserveMost;
5163     break;
5164   case ParsedAttr::AT_PreserveAll:
5165     CC = CC_PreserveAll;
5166     break;
5167   default: llvm_unreachable("unexpected attribute kind");
5168   }
5169 
5170   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
5171   const TargetInfo &TI = Context.getTargetInfo();
5172   // CUDA functions may have host and/or device attributes which indicate
5173   // their targeted execution environment, therefore the calling convention
5174   // of functions in CUDA should be checked against the target deduced based
5175   // on their host/device attributes.
5176   if (LangOpts.CUDA) {
5177     auto *Aux = Context.getAuxTargetInfo();
5178     auto CudaTarget = IdentifyCUDATarget(FD);
5179     bool CheckHost = false, CheckDevice = false;
5180     switch (CudaTarget) {
5181     case CFT_HostDevice:
5182       CheckHost = true;
5183       CheckDevice = true;
5184       break;
5185     case CFT_Host:
5186       CheckHost = true;
5187       break;
5188     case CFT_Device:
5189     case CFT_Global:
5190       CheckDevice = true;
5191       break;
5192     case CFT_InvalidTarget:
5193       llvm_unreachable("unexpected cuda target");
5194     }
5195     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5196     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5197     if (CheckHost && HostTI)
5198       A = HostTI->checkCallingConvention(CC);
5199     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5200       A = DeviceTI->checkCallingConvention(CC);
5201   } else {
5202     A = TI.checkCallingConvention(CC);
5203   }
5204 
5205   switch (A) {
5206   case TargetInfo::CCCR_OK:
5207     break;
5208 
5209   case TargetInfo::CCCR_Ignore:
5210     // Treat an ignored convention as if it was an explicit C calling convention
5211     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5212     // that command line flags that change the default convention to
5213     // __vectorcall don't affect declarations marked __stdcall.
5214     CC = CC_C;
5215     break;
5216 
5217   case TargetInfo::CCCR_Error:
5218     Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5219         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5220     break;
5221 
5222   case TargetInfo::CCCR_Warning: {
5223     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5224         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5225 
5226     // This convention is not valid for the target. Use the default function or
5227     // method calling convention.
5228     bool IsCXXMethod = false, IsVariadic = false;
5229     if (FD) {
5230       IsCXXMethod = FD->isCXXInstanceMember();
5231       IsVariadic = FD->isVariadic();
5232     }
5233     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5234     break;
5235   }
5236   }
5237 
5238   Attrs.setProcessingCache((unsigned) CC);
5239   return false;
5240 }
5241 
5242 /// Pointer-like types in the default address space.
5243 static bool isValidSwiftContextType(QualType Ty) {
5244   if (!Ty->hasPointerRepresentation())
5245     return Ty->isDependentType();
5246   return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
5247 }
5248 
5249 /// Pointers and references in the default address space.
5250 static bool isValidSwiftIndirectResultType(QualType Ty) {
5251   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5252     Ty = PtrType->getPointeeType();
5253   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5254     Ty = RefType->getPointeeType();
5255   } else {
5256     return Ty->isDependentType();
5257   }
5258   return Ty.getAddressSpace() == LangAS::Default;
5259 }
5260 
5261 /// Pointers and references to pointers in the default address space.
5262 static bool isValidSwiftErrorResultType(QualType Ty) {
5263   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5264     Ty = PtrType->getPointeeType();
5265   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5266     Ty = RefType->getPointeeType();
5267   } else {
5268     return Ty->isDependentType();
5269   }
5270   if (!Ty.getQualifiers().empty())
5271     return false;
5272   return isValidSwiftContextType(Ty);
5273 }
5274 
5275 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
5276                                ParameterABI abi) {
5277 
5278   QualType type = cast<ParmVarDecl>(D)->getType();
5279 
5280   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
5281     if (existingAttr->getABI() != abi) {
5282       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
5283           << getParameterABISpelling(abi) << existingAttr;
5284       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
5285       return;
5286     }
5287   }
5288 
5289   switch (abi) {
5290   case ParameterABI::Ordinary:
5291     llvm_unreachable("explicit attribute for ordinary parameter ABI?");
5292 
5293   case ParameterABI::SwiftContext:
5294     if (!isValidSwiftContextType(type)) {
5295       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5296           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5297     }
5298     D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
5299     return;
5300 
5301   case ParameterABI::SwiftAsyncContext:
5302     if (!isValidSwiftContextType(type)) {
5303       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5304           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5305     }
5306     D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
5307     return;
5308 
5309   case ParameterABI::SwiftErrorResult:
5310     if (!isValidSwiftErrorResultType(type)) {
5311       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5312           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
5313     }
5314     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
5315     return;
5316 
5317   case ParameterABI::SwiftIndirectResult:
5318     if (!isValidSwiftIndirectResultType(type)) {
5319       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5320           << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
5321     }
5322     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
5323     return;
5324   }
5325   llvm_unreachable("bad parameter ABI attribute");
5326 }
5327 
5328 /// Checks a regparm attribute, returning true if it is ill-formed and
5329 /// otherwise setting numParams to the appropriate value.
5330 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5331   if (AL.isInvalid())
5332     return true;
5333 
5334   if (!AL.checkExactlyNumArgs(*this, 1)) {
5335     AL.setInvalid();
5336     return true;
5337   }
5338 
5339   uint32_t NP;
5340   Expr *NumParamsExpr = AL.getArgAsExpr(0);
5341   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
5342     AL.setInvalid();
5343     return true;
5344   }
5345 
5346   if (Context.getTargetInfo().getRegParmMax() == 0) {
5347     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5348       << NumParamsExpr->getSourceRange();
5349     AL.setInvalid();
5350     return true;
5351   }
5352 
5353   numParams = NP;
5354   if (numParams > Context.getTargetInfo().getRegParmMax()) {
5355     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5356       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5357     AL.setInvalid();
5358     return true;
5359   }
5360 
5361   return false;
5362 }
5363 
5364 // Checks whether an argument of launch_bounds attribute is
5365 // acceptable, performs implicit conversion to Rvalue, and returns
5366 // non-nullptr Expr result on success. Otherwise, it returns nullptr
5367 // and may output an error.
5368 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
5369                                      const CUDALaunchBoundsAttr &AL,
5370                                      const unsigned Idx) {
5371   if (S.DiagnoseUnexpandedParameterPack(E))
5372     return nullptr;
5373 
5374   // Accept template arguments for now as they depend on something else.
5375   // We'll get to check them when they eventually get instantiated.
5376   if (E->isValueDependent())
5377     return E;
5378 
5379   Optional<llvm::APSInt> I = llvm::APSInt(64);
5380   if (!(I = E->getIntegerConstantExpr(S.Context))) {
5381     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5382         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5383     return nullptr;
5384   }
5385   // Make sure we can fit it in 32 bits.
5386   if (!I->isIntN(32)) {
5387     S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5388         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5389     return nullptr;
5390   }
5391   if (*I < 0)
5392     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5393         << &AL << Idx << E->getSourceRange();
5394 
5395   // We may need to perform implicit conversion of the argument.
5396   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5397       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5398   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5399   assert(!ValArg.isInvalid() &&
5400          "Unexpected PerformCopyInitialization() failure.");
5401 
5402   return ValArg.getAs<Expr>();
5403 }
5404 
5405 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
5406                                Expr *MaxThreads, Expr *MinBlocks) {
5407   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
5408   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5409   if (MaxThreads == nullptr)
5410     return;
5411 
5412   if (MinBlocks) {
5413     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5414     if (MinBlocks == nullptr)
5415       return;
5416   }
5417 
5418   D->addAttr(::new (Context)
5419                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
5420 }
5421 
5422 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5423   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
5424     return;
5425 
5426   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5427                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
5428 }
5429 
5430 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
5431                                           const ParsedAttr &AL) {
5432   if (!AL.isArgIdent(0)) {
5433     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5434         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5435     return;
5436   }
5437 
5438   ParamIdx ArgumentIdx;
5439   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
5440                                            ArgumentIdx))
5441     return;
5442 
5443   ParamIdx TypeTagIdx;
5444   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
5445                                            TypeTagIdx))
5446     return;
5447 
5448   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5449   if (IsPointer) {
5450     // Ensure that buffer has a pointer type.
5451     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5452     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5453         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5454       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5455   }
5456 
5457   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5458       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
5459       IsPointer));
5460 }
5461 
5462 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
5463                                          const ParsedAttr &AL) {
5464   if (!AL.isArgIdent(0)) {
5465     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5466         << AL << 1 << AANT_ArgumentIdentifier;
5467     return;
5468   }
5469 
5470   if (!AL.checkExactlyNumArgs(S, 1))
5471     return;
5472 
5473   if (!isa<VarDecl>(D)) {
5474     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5475         << AL << ExpectedVariable;
5476     return;
5477   }
5478 
5479   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
5480   TypeSourceInfo *MatchingCTypeLoc = nullptr;
5481   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5482   assert(MatchingCTypeLoc && "no type source info for attribute argument");
5483 
5484   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5485       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5486       AL.getMustBeNull()));
5487 }
5488 
5489 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5490   ParamIdx ArgCount;
5491 
5492   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
5493                                            ArgCount,
5494                                            true /* CanIndexImplicitThis */))
5495     return;
5496 
5497   // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5498   D->addAttr(::new (S.Context)
5499                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5500 }
5501 
5502 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
5503                                              const ParsedAttr &AL) {
5504   uint32_t Count = 0, Offset = 0;
5505   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
5506     return;
5507   if (AL.getNumArgs() == 2) {
5508     Expr *Arg = AL.getArgAsExpr(1);
5509     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
5510       return;
5511     if (Count < Offset) {
5512       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5513           << &AL << 0 << Count << Arg->getBeginLoc();
5514       return;
5515     }
5516   }
5517   D->addAttr(::new (S.Context)
5518                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
5519 }
5520 
5521 namespace {
5522 struct IntrinToName {
5523   uint32_t Id;
5524   int32_t FullName;
5525   int32_t ShortName;
5526 };
5527 } // unnamed namespace
5528 
5529 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
5530                                  ArrayRef<IntrinToName> Map,
5531                                  const char *IntrinNames) {
5532   if (AliasName.startswith("__arm_"))
5533     AliasName = AliasName.substr(6);
5534   const IntrinToName *It = std::lower_bound(
5535       Map.begin(), Map.end(), BuiltinID,
5536       [](const IntrinToName &L, unsigned Id) { return L.Id < Id; });
5537   if (It == Map.end() || It->Id != BuiltinID)
5538     return false;
5539   StringRef FullName(&IntrinNames[It->FullName]);
5540   if (AliasName == FullName)
5541     return true;
5542   if (It->ShortName == -1)
5543     return false;
5544   StringRef ShortName(&IntrinNames[It->ShortName]);
5545   return AliasName == ShortName;
5546 }
5547 
5548 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5549 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5550   // The included file defines:
5551   // - ArrayRef<IntrinToName> Map
5552   // - const char IntrinNames[]
5553   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5554 }
5555 
5556 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5557 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5558   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5559 }
5560 
5561 static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID,
5562                              StringRef AliasName) {
5563   if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5564     BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5565   return BuiltinID >= AArch64::FirstSVEBuiltin &&
5566          BuiltinID <= AArch64::LastSVEBuiltin;
5567 }
5568 
5569 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5570   if (!AL.isArgIdent(0)) {
5571     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5572         << AL << 1 << AANT_ArgumentIdentifier;
5573     return;
5574   }
5575 
5576   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5577   unsigned BuiltinID = Ident->getBuiltinID();
5578   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5579 
5580   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5581   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5582       (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5583        !ArmCdeAliasValid(BuiltinID, AliasName))) {
5584     S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5585     return;
5586   }
5587 
5588   D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5589 }
5590 
5591 static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) {
5592   return BuiltinID >= RISCV::FirstRVVBuiltin &&
5593          BuiltinID <= RISCV::LastRVVBuiltin;
5594 }
5595 
5596 static void handleBuiltinAliasAttr(Sema &S, Decl *D,
5597                                         const ParsedAttr &AL) {
5598   if (!AL.isArgIdent(0)) {
5599     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5600         << AL << 1 << AANT_ArgumentIdentifier;
5601     return;
5602   }
5603 
5604   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5605   unsigned BuiltinID = Ident->getBuiltinID();
5606   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5607 
5608   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5609   bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5610   bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5611   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5612       (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) &&
5613        !ArmCdeAliasValid(BuiltinID, AliasName)) ||
5614       (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) ||
5615       (!IsAArch64 && !IsARM && !IsRISCV)) {
5616     S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5617     return;
5618   }
5619 
5620   D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5621 }
5622 
5623 //===----------------------------------------------------------------------===//
5624 // Checker-specific attribute handlers.
5625 //===----------------------------------------------------------------------===//
5626 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5627   return QT->isDependentType() || QT->isObjCRetainableType();
5628 }
5629 
5630 static bool isValidSubjectOfNSAttribute(QualType QT) {
5631   return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5632          QT->isObjCNSObjectType();
5633 }
5634 
5635 static bool isValidSubjectOfCFAttribute(QualType QT) {
5636   return QT->isDependentType() || QT->isPointerType() ||
5637          isValidSubjectOfNSAttribute(QT);
5638 }
5639 
5640 static bool isValidSubjectOfOSAttribute(QualType QT) {
5641   if (QT->isDependentType())
5642     return true;
5643   QualType PT = QT->getPointeeType();
5644   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5645 }
5646 
5647 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5648                             RetainOwnershipKind K,
5649                             bool IsTemplateInstantiation) {
5650   ValueDecl *VD = cast<ValueDecl>(D);
5651   switch (K) {
5652   case RetainOwnershipKind::OS:
5653     handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5654         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5655         diag::warn_ns_attribute_wrong_parameter_type,
5656         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5657     return;
5658   case RetainOwnershipKind::NS:
5659     handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5660         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5661 
5662         // These attributes are normally just advisory, but in ARC, ns_consumed
5663         // is significant.  Allow non-dependent code to contain inappropriate
5664         // attributes even in ARC, but require template instantiations to be
5665         // set up correctly.
5666         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5667              ? diag::err_ns_attribute_wrong_parameter_type
5668              : diag::warn_ns_attribute_wrong_parameter_type),
5669         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5670     return;
5671   case RetainOwnershipKind::CF:
5672     handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5673         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5674         diag::warn_ns_attribute_wrong_parameter_type,
5675         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5676     return;
5677   }
5678 }
5679 
5680 static Sema::RetainOwnershipKind
5681 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5682   switch (AL.getKind()) {
5683   case ParsedAttr::AT_CFConsumed:
5684   case ParsedAttr::AT_CFReturnsRetained:
5685   case ParsedAttr::AT_CFReturnsNotRetained:
5686     return Sema::RetainOwnershipKind::CF;
5687   case ParsedAttr::AT_OSConsumesThis:
5688   case ParsedAttr::AT_OSConsumed:
5689   case ParsedAttr::AT_OSReturnsRetained:
5690   case ParsedAttr::AT_OSReturnsNotRetained:
5691   case ParsedAttr::AT_OSReturnsRetainedOnZero:
5692   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5693     return Sema::RetainOwnershipKind::OS;
5694   case ParsedAttr::AT_NSConsumesSelf:
5695   case ParsedAttr::AT_NSConsumed:
5696   case ParsedAttr::AT_NSReturnsRetained:
5697   case ParsedAttr::AT_NSReturnsNotRetained:
5698   case ParsedAttr::AT_NSReturnsAutoreleased:
5699     return Sema::RetainOwnershipKind::NS;
5700   default:
5701     llvm_unreachable("Wrong argument supplied");
5702   }
5703 }
5704 
5705 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5706   if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5707     return false;
5708 
5709   Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5710       << "'ns_returns_retained'" << 0 << 0;
5711   return true;
5712 }
5713 
5714 /// \return whether the parameter is a pointer to OSObject pointer.
5715 static bool isValidOSObjectOutParameter(const Decl *D) {
5716   const auto *PVD = dyn_cast<ParmVarDecl>(D);
5717   if (!PVD)
5718     return false;
5719   QualType QT = PVD->getType();
5720   QualType PT = QT->getPointeeType();
5721   return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5722 }
5723 
5724 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5725                                         const ParsedAttr &AL) {
5726   QualType ReturnType;
5727   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5728 
5729   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5730     ReturnType = MD->getReturnType();
5731   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5732              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5733     return; // ignore: was handled as a type attribute
5734   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5735     ReturnType = PD->getType();
5736   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5737     ReturnType = FD->getReturnType();
5738   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5739     // Attributes on parameters are used for out-parameters,
5740     // passed as pointers-to-pointers.
5741     unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5742             ? /*pointer-to-CF-pointer*/2
5743             : /*pointer-to-OSObject-pointer*/3;
5744     ReturnType = Param->getType()->getPointeeType();
5745     if (ReturnType.isNull()) {
5746       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5747           << AL << DiagID << AL.getRange();
5748       return;
5749     }
5750   } else if (AL.isUsedAsTypeAttr()) {
5751     return;
5752   } else {
5753     AttributeDeclKind ExpectedDeclKind;
5754     switch (AL.getKind()) {
5755     default: llvm_unreachable("invalid ownership attribute");
5756     case ParsedAttr::AT_NSReturnsRetained:
5757     case ParsedAttr::AT_NSReturnsAutoreleased:
5758     case ParsedAttr::AT_NSReturnsNotRetained:
5759       ExpectedDeclKind = ExpectedFunctionOrMethod;
5760       break;
5761 
5762     case ParsedAttr::AT_OSReturnsRetained:
5763     case ParsedAttr::AT_OSReturnsNotRetained:
5764     case ParsedAttr::AT_CFReturnsRetained:
5765     case ParsedAttr::AT_CFReturnsNotRetained:
5766       ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5767       break;
5768     }
5769     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5770         << AL.getRange() << AL << ExpectedDeclKind;
5771     return;
5772   }
5773 
5774   bool TypeOK;
5775   bool Cf;
5776   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5777   switch (AL.getKind()) {
5778   default: llvm_unreachable("invalid ownership attribute");
5779   case ParsedAttr::AT_NSReturnsRetained:
5780     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5781     Cf = false;
5782     break;
5783 
5784   case ParsedAttr::AT_NSReturnsAutoreleased:
5785   case ParsedAttr::AT_NSReturnsNotRetained:
5786     TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5787     Cf = false;
5788     break;
5789 
5790   case ParsedAttr::AT_CFReturnsRetained:
5791   case ParsedAttr::AT_CFReturnsNotRetained:
5792     TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5793     Cf = true;
5794     break;
5795 
5796   case ParsedAttr::AT_OSReturnsRetained:
5797   case ParsedAttr::AT_OSReturnsNotRetained:
5798     TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5799     Cf = true;
5800     ParmDiagID = 3; // Pointer-to-OSObject-pointer
5801     break;
5802   }
5803 
5804   if (!TypeOK) {
5805     if (AL.isUsedAsTypeAttr())
5806       return;
5807 
5808     if (isa<ParmVarDecl>(D)) {
5809       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5810           << AL << ParmDiagID << AL.getRange();
5811     } else {
5812       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5813       enum : unsigned {
5814         Function,
5815         Method,
5816         Property
5817       } SubjectKind = Function;
5818       if (isa<ObjCMethodDecl>(D))
5819         SubjectKind = Method;
5820       else if (isa<ObjCPropertyDecl>(D))
5821         SubjectKind = Property;
5822       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5823           << AL << SubjectKind << Cf << AL.getRange();
5824     }
5825     return;
5826   }
5827 
5828   switch (AL.getKind()) {
5829     default:
5830       llvm_unreachable("invalid ownership attribute");
5831     case ParsedAttr::AT_NSReturnsAutoreleased:
5832       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5833       return;
5834     case ParsedAttr::AT_CFReturnsNotRetained:
5835       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5836       return;
5837     case ParsedAttr::AT_NSReturnsNotRetained:
5838       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5839       return;
5840     case ParsedAttr::AT_CFReturnsRetained:
5841       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5842       return;
5843     case ParsedAttr::AT_NSReturnsRetained:
5844       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5845       return;
5846     case ParsedAttr::AT_OSReturnsRetained:
5847       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5848       return;
5849     case ParsedAttr::AT_OSReturnsNotRetained:
5850       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5851       return;
5852   };
5853 }
5854 
5855 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5856                                               const ParsedAttr &Attrs) {
5857   const int EP_ObjCMethod = 1;
5858   const int EP_ObjCProperty = 2;
5859 
5860   SourceLocation loc = Attrs.getLoc();
5861   QualType resultType;
5862   if (isa<ObjCMethodDecl>(D))
5863     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5864   else
5865     resultType = cast<ObjCPropertyDecl>(D)->getType();
5866 
5867   if (!resultType->isReferenceType() &&
5868       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
5869     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5870         << SourceRange(loc) << Attrs
5871         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
5872         << /*non-retainable pointer*/ 2;
5873 
5874     // Drop the attribute.
5875     return;
5876   }
5877 
5878   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
5879 }
5880 
5881 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
5882                                         const ParsedAttr &Attrs) {
5883   const auto *Method = cast<ObjCMethodDecl>(D);
5884 
5885   const DeclContext *DC = Method->getDeclContext();
5886   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
5887     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5888                                                                       << 0;
5889     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
5890     return;
5891   }
5892   if (Method->getMethodFamily() == OMF_dealloc) {
5893     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5894                                                                       << 1;
5895     return;
5896   }
5897 
5898   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
5899 }
5900 
5901 static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
5902   auto *E = AL.getArgAsExpr(0);
5903   auto Loc = E ? E->getBeginLoc() : AL.getLoc();
5904 
5905   auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
5906   if (!DRE) {
5907     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
5908     return;
5909   }
5910 
5911   auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
5912   if (!VD) {
5913     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
5914     return;
5915   }
5916 
5917   if (!isNSStringType(VD->getType(), S.Context) &&
5918       !isCFStringType(VD->getType(), S.Context)) {
5919     S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
5920     return;
5921   }
5922 
5923   D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
5924 }
5925 
5926 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5927   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5928 
5929   if (!Parm) {
5930     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5931     return;
5932   }
5933 
5934   // Typedefs only allow objc_bridge(id) and have some additional checking.
5935   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
5936     if (!Parm->Ident->isStr("id")) {
5937       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
5938       return;
5939     }
5940 
5941     // Only allow 'cv void *'.
5942     QualType T = TD->getUnderlyingType();
5943     if (!T->isVoidPointerType()) {
5944       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
5945       return;
5946     }
5947   }
5948 
5949   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
5950 }
5951 
5952 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
5953                                         const ParsedAttr &AL) {
5954   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5955 
5956   if (!Parm) {
5957     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5958     return;
5959   }
5960 
5961   D->addAttr(::new (S.Context)
5962                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
5963 }
5964 
5965 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
5966                                         const ParsedAttr &AL) {
5967   IdentifierInfo *RelatedClass =
5968       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
5969   if (!RelatedClass) {
5970     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5971     return;
5972   }
5973   IdentifierInfo *ClassMethod =
5974     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
5975   IdentifierInfo *InstanceMethod =
5976     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
5977   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
5978       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
5979 }
5980 
5981 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
5982                                             const ParsedAttr &AL) {
5983   DeclContext *Ctx = D->getDeclContext();
5984 
5985   // This attribute can only be applied to methods in interfaces or class
5986   // extensions.
5987   if (!isa<ObjCInterfaceDecl>(Ctx) &&
5988       !(isa<ObjCCategoryDecl>(Ctx) &&
5989         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
5990     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
5991     return;
5992   }
5993 
5994   ObjCInterfaceDecl *IFace;
5995   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
5996     IFace = CatDecl->getClassInterface();
5997   else
5998     IFace = cast<ObjCInterfaceDecl>(Ctx);
5999 
6000   if (!IFace)
6001     return;
6002 
6003   IFace->setHasDesignatedInitializers();
6004   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
6005 }
6006 
6007 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
6008   StringRef MetaDataName;
6009   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
6010     return;
6011   D->addAttr(::new (S.Context)
6012                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
6013 }
6014 
6015 // When a user wants to use objc_boxable with a union or struct
6016 // but they don't have access to the declaration (legacy/third-party code)
6017 // then they can 'enable' this feature with a typedef:
6018 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
6019 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
6020   bool notify = false;
6021 
6022   auto *RD = dyn_cast<RecordDecl>(D);
6023   if (RD && RD->getDefinition()) {
6024     RD = RD->getDefinition();
6025     notify = true;
6026   }
6027 
6028   if (RD) {
6029     ObjCBoxableAttr *BoxableAttr =
6030         ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
6031     RD->addAttr(BoxableAttr);
6032     if (notify) {
6033       // we need to notify ASTReader/ASTWriter about
6034       // modification of existing declaration
6035       if (ASTMutationListener *L = S.getASTMutationListener())
6036         L->AddedAttributeToRecord(BoxableAttr, RD);
6037     }
6038   }
6039 }
6040 
6041 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6042   if (hasDeclarator(D)) return;
6043 
6044   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
6045       << AL.getRange() << AL << ExpectedVariable;
6046 }
6047 
6048 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
6049                                           const ParsedAttr &AL) {
6050   const auto *VD = cast<ValueDecl>(D);
6051   QualType QT = VD->getType();
6052 
6053   if (!QT->isDependentType() &&
6054       !QT->isObjCLifetimeType()) {
6055     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
6056       << QT;
6057     return;
6058   }
6059 
6060   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
6061 
6062   // If we have no lifetime yet, check the lifetime we're presumably
6063   // going to infer.
6064   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
6065     Lifetime = QT->getObjCARCImplicitLifetime();
6066 
6067   switch (Lifetime) {
6068   case Qualifiers::OCL_None:
6069     assert(QT->isDependentType() &&
6070            "didn't infer lifetime for non-dependent type?");
6071     break;
6072 
6073   case Qualifiers::OCL_Weak:   // meaningful
6074   case Qualifiers::OCL_Strong: // meaningful
6075     break;
6076 
6077   case Qualifiers::OCL_ExplicitNone:
6078   case Qualifiers::OCL_Autoreleasing:
6079     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
6080         << (Lifetime == Qualifiers::OCL_Autoreleasing);
6081     break;
6082   }
6083 
6084   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
6085 }
6086 
6087 static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6088   // Make sure that there is a string literal as the annotation's single
6089   // argument.
6090   StringRef Str;
6091   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6092     return;
6093 
6094   D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
6095 }
6096 
6097 static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
6098   // Make sure that there is a string literal as the annotation's single
6099   // argument.
6100   StringRef BT;
6101   if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
6102     return;
6103 
6104   // Warn about duplicate attributes if they have different arguments, but drop
6105   // any duplicate attributes regardless.
6106   if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
6107     if (Other->getSwiftType() != BT)
6108       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
6109     return;
6110   }
6111 
6112   D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
6113 }
6114 
6115 static bool isErrorParameter(Sema &S, QualType QT) {
6116   const auto *PT = QT->getAs<PointerType>();
6117   if (!PT)
6118     return false;
6119 
6120   QualType Pointee = PT->getPointeeType();
6121 
6122   // Check for NSError**.
6123   if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
6124     if (const auto *ID = OPT->getInterfaceDecl())
6125       if (ID->getIdentifier() == S.getNSErrorIdent())
6126         return true;
6127 
6128   // Check for CFError**.
6129   if (const auto *PT = Pointee->getAs<PointerType>())
6130     if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
6131       if (S.isCFError(RT->getDecl()))
6132         return true;
6133 
6134   return false;
6135 }
6136 
6137 static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
6138   auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6139     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
6140       if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
6141         return true;
6142     }
6143 
6144     S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
6145         << AL << isa<ObjCMethodDecl>(D);
6146     return false;
6147   };
6148 
6149   auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6150     // - C, ObjC, and block pointers are definitely okay.
6151     // - References are definitely not okay.
6152     // - nullptr_t is weird, but acceptable.
6153     QualType RT = getFunctionOrMethodResultType(D);
6154     if (RT->hasPointerRepresentation() && !RT->isReferenceType())
6155       return true;
6156 
6157     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6158         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6159         << /*pointer*/ 1;
6160     return false;
6161   };
6162 
6163   auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6164     QualType RT = getFunctionOrMethodResultType(D);
6165     if (RT->isIntegralType(S.Context))
6166       return true;
6167 
6168     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6169         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6170         << /*integral*/ 0;
6171     return false;
6172   };
6173 
6174   if (D->isInvalidDecl())
6175     return;
6176 
6177   IdentifierLoc *Loc = AL.getArgAsIdent(0);
6178   SwiftErrorAttr::ConventionKind Convention;
6179   if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
6180                                                   Convention)) {
6181     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6182         << AL << Loc->Ident;
6183     return;
6184   }
6185 
6186   switch (Convention) {
6187   case SwiftErrorAttr::None:
6188     // No additional validation required.
6189     break;
6190 
6191   case SwiftErrorAttr::NonNullError:
6192     if (!hasErrorParameter(S, D, AL))
6193       return;
6194     break;
6195 
6196   case SwiftErrorAttr::NullResult:
6197     if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
6198       return;
6199     break;
6200 
6201   case SwiftErrorAttr::NonZeroResult:
6202   case SwiftErrorAttr::ZeroResult:
6203     if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
6204       return;
6205     break;
6206   }
6207 
6208   D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
6209 }
6210 
6211 static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
6212                                       const SwiftAsyncErrorAttr *ErrorAttr,
6213                                       const SwiftAsyncAttr *AsyncAttr) {
6214   if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
6215     if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
6216       S.Diag(AsyncAttr->getLocation(),
6217              diag::err_swift_async_error_without_swift_async)
6218           << AsyncAttr << isa<ObjCMethodDecl>(D);
6219     }
6220     return;
6221   }
6222 
6223   const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
6224       D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
6225   // handleSwiftAsyncAttr already verified the type is correct, so no need to
6226   // double-check it here.
6227   const auto *FuncTy = HandlerParam->getType()
6228                            ->castAs<BlockPointerType>()
6229                            ->getPointeeType()
6230                            ->getAs<FunctionProtoType>();
6231   ArrayRef<QualType> BlockParams;
6232   if (FuncTy)
6233     BlockParams = FuncTy->getParamTypes();
6234 
6235   switch (ErrorAttr->getConvention()) {
6236   case SwiftAsyncErrorAttr::ZeroArgument:
6237   case SwiftAsyncErrorAttr::NonZeroArgument: {
6238     uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
6239     if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
6240       S.Diag(ErrorAttr->getLocation(),
6241              diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2;
6242       return;
6243     }
6244     QualType ErrorParam = BlockParams[ParamIdx - 1];
6245     if (!ErrorParam->isIntegralType(S.Context)) {
6246       StringRef ConvStr =
6247           ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
6248               ? "zero_argument"
6249               : "nonzero_argument";
6250       S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
6251           << ErrorAttr << ConvStr << ParamIdx << ErrorParam;
6252       return;
6253     }
6254     break;
6255   }
6256   case SwiftAsyncErrorAttr::NonNullError: {
6257     bool AnyErrorParams = false;
6258     for (QualType Param : BlockParams) {
6259       // Check for NSError *.
6260       if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
6261         if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
6262           if (ID->getIdentifier() == S.getNSErrorIdent()) {
6263             AnyErrorParams = true;
6264             break;
6265           }
6266         }
6267       }
6268       // Check for CFError *.
6269       if (const auto *PtrTy = Param->getAs<PointerType>()) {
6270         if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
6271           if (S.isCFError(RT->getDecl())) {
6272             AnyErrorParams = true;
6273             break;
6274           }
6275         }
6276       }
6277     }
6278 
6279     if (!AnyErrorParams) {
6280       S.Diag(ErrorAttr->getLocation(),
6281              diag::err_swift_async_error_no_error_parameter)
6282           << ErrorAttr << isa<ObjCMethodDecl>(D);
6283       return;
6284     }
6285     break;
6286   }
6287   case SwiftAsyncErrorAttr::None:
6288     break;
6289   }
6290 }
6291 
6292 static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) {
6293   IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
6294   SwiftAsyncErrorAttr::ConventionKind ConvKind;
6295   if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
6296                                                        ConvKind)) {
6297     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6298         << AL << IDLoc->Ident;
6299     return;
6300   }
6301 
6302   uint32_t ParamIdx = 0;
6303   switch (ConvKind) {
6304   case SwiftAsyncErrorAttr::ZeroArgument:
6305   case SwiftAsyncErrorAttr::NonZeroArgument: {
6306     if (!AL.checkExactlyNumArgs(S, 2))
6307       return;
6308 
6309     Expr *IdxExpr = AL.getArgAsExpr(1);
6310     if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx))
6311       return;
6312     break;
6313   }
6314   case SwiftAsyncErrorAttr::NonNullError:
6315   case SwiftAsyncErrorAttr::None: {
6316     if (!AL.checkExactlyNumArgs(S, 1))
6317       return;
6318     break;
6319   }
6320   }
6321 
6322   auto *ErrorAttr =
6323       ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx);
6324   D->addAttr(ErrorAttr);
6325 
6326   if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
6327     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6328 }
6329 
6330 // For a function, this will validate a compound Swift name, e.g.
6331 // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
6332 // the function will output the number of parameter names, and whether this is a
6333 // single-arg initializer.
6334 //
6335 // For a type, enum constant, property, or variable declaration, this will
6336 // validate either a simple identifier, or a qualified
6337 // <code>context.identifier</code> name.
6338 static bool
6339 validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
6340                           StringRef Name, unsigned &SwiftParamCount,
6341                           bool &IsSingleParamInit) {
6342   SwiftParamCount = 0;
6343   IsSingleParamInit = false;
6344 
6345   // Check whether this will be mapped to a getter or setter of a property.
6346   bool IsGetter = false, IsSetter = false;
6347   if (Name.startswith("getter:")) {
6348     IsGetter = true;
6349     Name = Name.substr(7);
6350   } else if (Name.startswith("setter:")) {
6351     IsSetter = true;
6352     Name = Name.substr(7);
6353   }
6354 
6355   if (Name.back() != ')') {
6356     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6357     return false;
6358   }
6359 
6360   bool IsMember = false;
6361   StringRef ContextName, BaseName, Parameters;
6362 
6363   std::tie(BaseName, Parameters) = Name.split('(');
6364 
6365   // Split at the first '.', if it exists, which separates the context name
6366   // from the base name.
6367   std::tie(ContextName, BaseName) = BaseName.split('.');
6368   if (BaseName.empty()) {
6369     BaseName = ContextName;
6370     ContextName = StringRef();
6371   } else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
6372     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6373         << AL << /*context*/ 1;
6374     return false;
6375   } else {
6376     IsMember = true;
6377   }
6378 
6379   if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
6380     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6381         << AL << /*basename*/ 0;
6382     return false;
6383   }
6384 
6385   bool IsSubscript = BaseName == "subscript";
6386   // A subscript accessor must be a getter or setter.
6387   if (IsSubscript && !IsGetter && !IsSetter) {
6388     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6389         << AL << /* getter or setter */ 0;
6390     return false;
6391   }
6392 
6393   if (Parameters.empty()) {
6394     S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
6395     return false;
6396   }
6397 
6398   assert(Parameters.back() == ')' && "expected ')'");
6399   Parameters = Parameters.drop_back(); // ')'
6400 
6401   if (Parameters.empty()) {
6402     // Setters and subscripts must have at least one parameter.
6403     if (IsSubscript) {
6404       S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6405           << AL << /* have at least one parameter */1;
6406       return false;
6407     }
6408 
6409     if (IsSetter) {
6410       S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
6411       return false;
6412     }
6413 
6414     return true;
6415   }
6416 
6417   if (Parameters.back() != ':') {
6418     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6419     return false;
6420   }
6421 
6422   StringRef CurrentParam;
6423   llvm::Optional<unsigned> SelfLocation;
6424   unsigned NewValueCount = 0;
6425   llvm::Optional<unsigned> NewValueLocation;
6426   do {
6427     std::tie(CurrentParam, Parameters) = Parameters.split(':');
6428 
6429     if (!isValidAsciiIdentifier(CurrentParam)) {
6430       S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6431           << AL << /*parameter*/2;
6432       return false;
6433     }
6434 
6435     if (IsMember && CurrentParam == "self") {
6436       // "self" indicates the "self" argument for a member.
6437 
6438       // More than one "self"?
6439       if (SelfLocation) {
6440         S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
6441         return false;
6442       }
6443 
6444       // The "self" location is the current parameter.
6445       SelfLocation = SwiftParamCount;
6446     } else if (CurrentParam == "newValue") {
6447       // "newValue" indicates the "newValue" argument for a setter.
6448 
6449       // There should only be one 'newValue', but it's only significant for
6450       // subscript accessors, so don't error right away.
6451       ++NewValueCount;
6452 
6453       NewValueLocation = SwiftParamCount;
6454     }
6455 
6456     ++SwiftParamCount;
6457   } while (!Parameters.empty());
6458 
6459   // Only instance subscripts are currently supported.
6460   if (IsSubscript && !SelfLocation) {
6461     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6462         << AL << /*have a 'self:' parameter*/2;
6463     return false;
6464   }
6465 
6466   IsSingleParamInit =
6467         SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
6468 
6469   // Check the number of parameters for a getter/setter.
6470   if (IsGetter || IsSetter) {
6471     // Setters have one parameter for the new value.
6472     unsigned NumExpectedParams = IsGetter ? 0 : 1;
6473     unsigned ParamDiag =
6474         IsGetter ? diag::warn_attr_swift_name_getter_parameters
6475                  : diag::warn_attr_swift_name_setter_parameters;
6476 
6477     // Instance methods have one parameter for "self".
6478     if (SelfLocation)
6479       ++NumExpectedParams;
6480 
6481     // Subscripts may have additional parameters beyond the expected params for
6482     // the index.
6483     if (IsSubscript) {
6484       if (SwiftParamCount < NumExpectedParams) {
6485         S.Diag(Loc, ParamDiag) << AL;
6486         return false;
6487       }
6488 
6489       // A subscript setter must explicitly label its newValue parameter to
6490       // distinguish it from index parameters.
6491       if (IsSetter) {
6492         if (!NewValueLocation) {
6493           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
6494               << AL;
6495           return false;
6496         }
6497         if (NewValueCount > 1) {
6498           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
6499               << AL;
6500           return false;
6501         }
6502       } else {
6503         // Subscript getters should have no 'newValue:' parameter.
6504         if (NewValueLocation) {
6505           S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
6506               << AL;
6507           return false;
6508         }
6509       }
6510     } else {
6511       // Property accessors must have exactly the number of expected params.
6512       if (SwiftParamCount != NumExpectedParams) {
6513         S.Diag(Loc, ParamDiag) << AL;
6514         return false;
6515       }
6516     }
6517   }
6518 
6519   return true;
6520 }
6521 
6522 bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
6523                              const ParsedAttr &AL, bool IsAsync) {
6524   if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
6525     ArrayRef<ParmVarDecl*> Params;
6526     unsigned ParamCount;
6527 
6528     if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
6529       ParamCount = Method->getSelector().getNumArgs();
6530       Params = Method->parameters().slice(0, ParamCount);
6531     } else {
6532       const auto *F = cast<FunctionDecl>(D);
6533 
6534       ParamCount = F->getNumParams();
6535       Params = F->parameters();
6536 
6537       if (!F->hasWrittenPrototype()) {
6538         Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL
6539             << ExpectedFunctionWithProtoType;
6540         return false;
6541       }
6542     }
6543 
6544     // The async name drops the last callback parameter.
6545     if (IsAsync) {
6546       if (ParamCount == 0) {
6547         Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
6548             << AL << isa<ObjCMethodDecl>(D);
6549         return false;
6550       }
6551       ParamCount -= 1;
6552     }
6553 
6554     unsigned SwiftParamCount;
6555     bool IsSingleParamInit;
6556     if (!validateSwiftFunctionName(*this, AL, Loc, Name,
6557                                    SwiftParamCount, IsSingleParamInit))
6558       return false;
6559 
6560     bool ParamCountValid;
6561     if (SwiftParamCount == ParamCount) {
6562       ParamCountValid = true;
6563     } else if (SwiftParamCount > ParamCount) {
6564       ParamCountValid = IsSingleParamInit && ParamCount == 0;
6565     } else {
6566       // We have fewer Swift parameters than Objective-C parameters, but that
6567       // might be because we've transformed some of them. Check for potential
6568       // "out" parameters and err on the side of not warning.
6569       unsigned MaybeOutParamCount =
6570           llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
6571             QualType ParamTy = Param->getType();
6572             if (ParamTy->isReferenceType() || ParamTy->isPointerType())
6573               return !ParamTy->getPointeeType().isConstQualified();
6574             return false;
6575           });
6576 
6577       ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
6578     }
6579 
6580     if (!ParamCountValid) {
6581       Diag(Loc, diag::warn_attr_swift_name_num_params)
6582           << (SwiftParamCount > ParamCount) << AL << ParamCount
6583           << SwiftParamCount;
6584       return false;
6585     }
6586   } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
6587               isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
6588               isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
6589               isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
6590              !IsAsync) {
6591     StringRef ContextName, BaseName;
6592 
6593     std::tie(ContextName, BaseName) = Name.split('.');
6594     if (BaseName.empty()) {
6595       BaseName = ContextName;
6596       ContextName = StringRef();
6597     } else if (!isValidAsciiIdentifier(ContextName)) {
6598       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6599           << /*context*/1;
6600       return false;
6601     }
6602 
6603     if (!isValidAsciiIdentifier(BaseName)) {
6604       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6605           << /*basename*/0;
6606       return false;
6607     }
6608   } else {
6609     Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
6610     return false;
6611   }
6612   return true;
6613 }
6614 
6615 static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
6616   StringRef Name;
6617   SourceLocation Loc;
6618   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6619     return;
6620 
6621   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
6622     return;
6623 
6624   D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
6625 }
6626 
6627 static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
6628   StringRef Name;
6629   SourceLocation Loc;
6630   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6631     return;
6632 
6633   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
6634     return;
6635 
6636   D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
6637 }
6638 
6639 static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
6640   // Make sure that there is an identifier as the annotation's single argument.
6641   if (!AL.checkExactlyNumArgs(S, 1))
6642     return;
6643 
6644   if (!AL.isArgIdent(0)) {
6645     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6646         << AL << AANT_ArgumentIdentifier;
6647     return;
6648   }
6649 
6650   SwiftNewTypeAttr::NewtypeKind Kind;
6651   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6652   if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
6653     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6654     return;
6655   }
6656 
6657   if (!isa<TypedefNameDecl>(D)) {
6658     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
6659         << AL << "typedefs";
6660     return;
6661   }
6662 
6663   D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
6664 }
6665 
6666 static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6667   if (!AL.isArgIdent(0)) {
6668     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
6669         << AL << 1 << AANT_ArgumentIdentifier;
6670     return;
6671   }
6672 
6673   SwiftAsyncAttr::Kind Kind;
6674   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6675   if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
6676     S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
6677     return;
6678   }
6679 
6680   ParamIdx Idx;
6681   if (Kind == SwiftAsyncAttr::None) {
6682     // If this is 'none', then there shouldn't be any additional arguments.
6683     if (!AL.checkExactlyNumArgs(S, 1))
6684       return;
6685   } else {
6686     // Non-none swift_async requires a completion handler index argument.
6687     if (!AL.checkExactlyNumArgs(S, 2))
6688       return;
6689 
6690     Expr *HandlerIdx = AL.getArgAsExpr(1);
6691     if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
6692       return;
6693 
6694     const ParmVarDecl *CompletionBlock =
6695         getFunctionOrMethodParam(D, Idx.getASTIndex());
6696     QualType CompletionBlockType = CompletionBlock->getType();
6697     if (!CompletionBlockType->isBlockPointerType()) {
6698       S.Diag(CompletionBlock->getLocation(),
6699              diag::err_swift_async_bad_block_type)
6700           << CompletionBlock->getType();
6701       return;
6702     }
6703     QualType BlockTy =
6704         CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
6705     if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
6706       S.Diag(CompletionBlock->getLocation(),
6707              diag::err_swift_async_bad_block_type)
6708           << CompletionBlock->getType();
6709       return;
6710     }
6711   }
6712 
6713   auto *AsyncAttr =
6714       ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx);
6715   D->addAttr(AsyncAttr);
6716 
6717   if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
6718     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6719 }
6720 
6721 //===----------------------------------------------------------------------===//
6722 // Microsoft specific attribute handlers.
6723 //===----------------------------------------------------------------------===//
6724 
6725 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
6726                               StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
6727   if (const auto *UA = D->getAttr<UuidAttr>()) {
6728     if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
6729       return nullptr;
6730     if (!UA->getGuid().empty()) {
6731       Diag(UA->getLocation(), diag::err_mismatched_uuid);
6732       Diag(CI.getLoc(), diag::note_previous_uuid);
6733       D->dropAttr<UuidAttr>();
6734     }
6735   }
6736 
6737   return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
6738 }
6739 
6740 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6741   if (!S.LangOpts.CPlusPlus) {
6742     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6743         << AL << AttributeLangSupport::C;
6744     return;
6745   }
6746 
6747   StringRef OrigStrRef;
6748   SourceLocation LiteralLoc;
6749   if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
6750     return;
6751 
6752   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
6753   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
6754   StringRef StrRef = OrigStrRef;
6755   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
6756     StrRef = StrRef.drop_front().drop_back();
6757 
6758   // Validate GUID length.
6759   if (StrRef.size() != 36) {
6760     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6761     return;
6762   }
6763 
6764   for (unsigned i = 0; i < 36; ++i) {
6765     if (i == 8 || i == 13 || i == 18 || i == 23) {
6766       if (StrRef[i] != '-') {
6767         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6768         return;
6769       }
6770     } else if (!isHexDigit(StrRef[i])) {
6771       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6772       return;
6773     }
6774   }
6775 
6776   // Convert to our parsed format and canonicalize.
6777   MSGuidDecl::Parts Parsed;
6778   StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
6779   StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
6780   StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
6781   for (unsigned i = 0; i != 8; ++i)
6782     StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
6783         .getAsInteger(16, Parsed.Part4And5[i]);
6784   MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
6785 
6786   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
6787   // the only thing in the [] list, the [] too), and add an insertion of
6788   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
6789   // separating attributes nor of the [ and the ] are in the AST.
6790   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
6791   // on cfe-dev.
6792   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
6793     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
6794 
6795   UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
6796   if (UA)
6797     D->addAttr(UA);
6798 }
6799 
6800 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6801   if (!S.LangOpts.CPlusPlus) {
6802     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6803         << AL << AttributeLangSupport::C;
6804     return;
6805   }
6806   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
6807       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
6808   if (IA) {
6809     D->addAttr(IA);
6810     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
6811   }
6812 }
6813 
6814 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6815   const auto *VD = cast<VarDecl>(D);
6816   if (!S.Context.getTargetInfo().isTLSSupported()) {
6817     S.Diag(AL.getLoc(), diag::err_thread_unsupported);
6818     return;
6819   }
6820   if (VD->getTSCSpec() != TSCS_unspecified) {
6821     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
6822     return;
6823   }
6824   if (VD->hasLocalStorage()) {
6825     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
6826     return;
6827   }
6828   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
6829 }
6830 
6831 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6832   SmallVector<StringRef, 4> Tags;
6833   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6834     StringRef Tag;
6835     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
6836       return;
6837     Tags.push_back(Tag);
6838   }
6839 
6840   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
6841     if (!NS->isInline()) {
6842       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
6843       return;
6844     }
6845     if (NS->isAnonymousNamespace()) {
6846       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
6847       return;
6848     }
6849     if (AL.getNumArgs() == 0)
6850       Tags.push_back(NS->getName());
6851   } else if (!AL.checkAtLeastNumArgs(S, 1))
6852     return;
6853 
6854   // Store tags sorted and without duplicates.
6855   llvm::sort(Tags);
6856   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
6857 
6858   D->addAttr(::new (S.Context)
6859                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
6860 }
6861 
6862 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6863   // Check the attribute arguments.
6864   if (AL.getNumArgs() > 1) {
6865     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6866     return;
6867   }
6868 
6869   StringRef Str;
6870   SourceLocation ArgLoc;
6871 
6872   if (AL.getNumArgs() == 0)
6873     Str = "";
6874   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6875     return;
6876 
6877   ARMInterruptAttr::InterruptType Kind;
6878   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6879     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
6880                                                                  << ArgLoc;
6881     return;
6882   }
6883 
6884   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
6885 }
6886 
6887 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6888   // MSP430 'interrupt' attribute is applied to
6889   // a function with no parameters and void return type.
6890   if (!isFunctionOrMethod(D)) {
6891     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6892         << "'interrupt'" << ExpectedFunctionOrMethod;
6893     return;
6894   }
6895 
6896   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6897     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6898         << /*MSP430*/ 1 << 0;
6899     return;
6900   }
6901 
6902   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6903     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6904         << /*MSP430*/ 1 << 1;
6905     return;
6906   }
6907 
6908   // The attribute takes one integer argument.
6909   if (!AL.checkExactlyNumArgs(S, 1))
6910     return;
6911 
6912   if (!AL.isArgExpr(0)) {
6913     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6914         << AL << AANT_ArgumentIntegerConstant;
6915     return;
6916   }
6917 
6918   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6919   Optional<llvm::APSInt> NumParams = llvm::APSInt(32);
6920   if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
6921     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6922         << AL << AANT_ArgumentIntegerConstant
6923         << NumParamsExpr->getSourceRange();
6924     return;
6925   }
6926   // The argument should be in range 0..63.
6927   unsigned Num = NumParams->getLimitedValue(255);
6928   if (Num > 63) {
6929     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6930         << AL << (int)NumParams->getSExtValue()
6931         << NumParamsExpr->getSourceRange();
6932     return;
6933   }
6934 
6935   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
6936   D->addAttr(UsedAttr::CreateImplicit(S.Context));
6937 }
6938 
6939 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6940   // Only one optional argument permitted.
6941   if (AL.getNumArgs() > 1) {
6942     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6943     return;
6944   }
6945 
6946   StringRef Str;
6947   SourceLocation ArgLoc;
6948 
6949   if (AL.getNumArgs() == 0)
6950     Str = "";
6951   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6952     return;
6953 
6954   // Semantic checks for a function with the 'interrupt' attribute for MIPS:
6955   // a) Must be a function.
6956   // b) Must have no parameters.
6957   // c) Must have the 'void' return type.
6958   // d) Cannot have the 'mips16' attribute, as that instruction set
6959   //    lacks the 'eret' instruction.
6960   // e) The attribute itself must either have no argument or one of the
6961   //    valid interrupt types, see [MipsInterruptDocs].
6962 
6963   if (!isFunctionOrMethod(D)) {
6964     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6965         << "'interrupt'" << ExpectedFunctionOrMethod;
6966     return;
6967   }
6968 
6969   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6970     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6971         << /*MIPS*/ 0 << 0;
6972     return;
6973   }
6974 
6975   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6976     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6977         << /*MIPS*/ 0 << 1;
6978     return;
6979   }
6980 
6981   // We still have to do this manually because the Interrupt attributes are
6982   // a bit special due to sharing their spellings across targets.
6983   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
6984     return;
6985 
6986   MipsInterruptAttr::InterruptType Kind;
6987   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6988     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6989         << AL << "'" + std::string(Str) + "'";
6990     return;
6991   }
6992 
6993   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
6994 }
6995 
6996 static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6997   if (!AL.checkExactlyNumArgs(S, 1))
6998     return;
6999 
7000   if (!AL.isArgExpr(0)) {
7001     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7002         << AL << AANT_ArgumentIntegerConstant;
7003     return;
7004   }
7005 
7006   // FIXME: Check for decl - it should be void ()(void).
7007 
7008   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7009   auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context);
7010   if (!MaybeNumParams) {
7011     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7012         << AL << AANT_ArgumentIntegerConstant
7013         << NumParamsExpr->getSourceRange();
7014     return;
7015   }
7016 
7017   unsigned Num = MaybeNumParams->getLimitedValue(255);
7018   if ((Num & 1) || Num > 30) {
7019     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7020         << AL << (int)MaybeNumParams->getSExtValue()
7021         << NumParamsExpr->getSourceRange();
7022     return;
7023   }
7024 
7025   D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num));
7026   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7027 }
7028 
7029 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7030   // Semantic checks for a function with the 'interrupt' attribute.
7031   // a) Must be a function.
7032   // b) Must have the 'void' return type.
7033   // c) Must take 1 or 2 arguments.
7034   // d) The 1st argument must be a pointer.
7035   // e) The 2nd argument (if any) must be an unsigned integer.
7036   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
7037       CXXMethodDecl::isStaticOverloadedOperator(
7038           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
7039     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7040         << AL << ExpectedFunctionWithProtoType;
7041     return;
7042   }
7043   // Interrupt handler must have void return type.
7044   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7045     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
7046            diag::err_anyx86_interrupt_attribute)
7047         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7048                 ? 0
7049                 : 1)
7050         << 0;
7051     return;
7052   }
7053   // Interrupt handler must have 1 or 2 parameters.
7054   unsigned NumParams = getFunctionOrMethodNumParams(D);
7055   if (NumParams < 1 || NumParams > 2) {
7056     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
7057         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7058                 ? 0
7059                 : 1)
7060         << 1;
7061     return;
7062   }
7063   // The first argument must be a pointer.
7064   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
7065     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
7066            diag::err_anyx86_interrupt_attribute)
7067         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7068                 ? 0
7069                 : 1)
7070         << 2;
7071     return;
7072   }
7073   // The second argument, if present, must be an unsigned integer.
7074   unsigned TypeSize =
7075       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
7076           ? 64
7077           : 32;
7078   if (NumParams == 2 &&
7079       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
7080        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
7081     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
7082            diag::err_anyx86_interrupt_attribute)
7083         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7084                 ? 0
7085                 : 1)
7086         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
7087     return;
7088   }
7089   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
7090   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7091 }
7092 
7093 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7094   if (!isFunctionOrMethod(D)) {
7095     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7096         << "'interrupt'" << ExpectedFunction;
7097     return;
7098   }
7099 
7100   if (!AL.checkExactlyNumArgs(S, 0))
7101     return;
7102 
7103   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
7104 }
7105 
7106 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7107   if (!isFunctionOrMethod(D)) {
7108     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7109         << "'signal'" << ExpectedFunction;
7110     return;
7111   }
7112 
7113   if (!AL.checkExactlyNumArgs(S, 0))
7114     return;
7115 
7116   handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
7117 }
7118 
7119 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
7120   // Add preserve_access_index attribute to all fields and inner records.
7121   for (auto D : RD->decls()) {
7122     if (D->hasAttr<BPFPreserveAccessIndexAttr>())
7123       continue;
7124 
7125     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
7126     if (auto *Rec = dyn_cast<RecordDecl>(D))
7127       handleBPFPreserveAIRecord(S, Rec);
7128   }
7129 }
7130 
7131 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
7132     const ParsedAttr &AL) {
7133   auto *Rec = cast<RecordDecl>(D);
7134   handleBPFPreserveAIRecord(S, Rec);
7135   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
7136 }
7137 
7138 static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
7139   for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
7140     if (I->getBTFDeclTag() == Tag)
7141       return true;
7142   }
7143   return false;
7144 }
7145 
7146 static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7147   StringRef Str;
7148   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
7149     return;
7150   if (hasBTFDeclTagAttr(D, Str))
7151     return;
7152 
7153   D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
7154 }
7155 
7156 BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
7157   if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
7158     return nullptr;
7159   return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
7160 }
7161 
7162 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7163   if (!isFunctionOrMethod(D)) {
7164     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7165         << "'export_name'" << ExpectedFunction;
7166     return;
7167   }
7168 
7169   auto *FD = cast<FunctionDecl>(D);
7170   if (FD->isThisDeclarationADefinition()) {
7171     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
7172     return;
7173   }
7174 
7175   StringRef Str;
7176   SourceLocation ArgLoc;
7177   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7178     return;
7179 
7180   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
7181   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7182 }
7183 
7184 WebAssemblyImportModuleAttr *
7185 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
7186   auto *FD = cast<FunctionDecl>(D);
7187 
7188   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
7189     if (ExistingAttr->getImportModule() == AL.getImportModule())
7190       return nullptr;
7191     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
7192       << ExistingAttr->getImportModule() << AL.getImportModule();
7193     Diag(AL.getLoc(), diag::note_previous_attribute);
7194     return nullptr;
7195   }
7196   if (FD->hasBody()) {
7197     Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7198     return nullptr;
7199   }
7200   return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
7201                                                      AL.getImportModule());
7202 }
7203 
7204 WebAssemblyImportNameAttr *
7205 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
7206   auto *FD = cast<FunctionDecl>(D);
7207 
7208   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
7209     if (ExistingAttr->getImportName() == AL.getImportName())
7210       return nullptr;
7211     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
7212       << ExistingAttr->getImportName() << AL.getImportName();
7213     Diag(AL.getLoc(), diag::note_previous_attribute);
7214     return nullptr;
7215   }
7216   if (FD->hasBody()) {
7217     Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7218     return nullptr;
7219   }
7220   return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
7221                                                    AL.getImportName());
7222 }
7223 
7224 static void
7225 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7226   auto *FD = cast<FunctionDecl>(D);
7227 
7228   StringRef Str;
7229   SourceLocation ArgLoc;
7230   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7231     return;
7232   if (FD->hasBody()) {
7233     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7234     return;
7235   }
7236 
7237   FD->addAttr(::new (S.Context)
7238                   WebAssemblyImportModuleAttr(S.Context, AL, Str));
7239 }
7240 
7241 static void
7242 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7243   auto *FD = cast<FunctionDecl>(D);
7244 
7245   StringRef Str;
7246   SourceLocation ArgLoc;
7247   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7248     return;
7249   if (FD->hasBody()) {
7250     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7251     return;
7252   }
7253 
7254   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
7255 }
7256 
7257 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
7258                                      const ParsedAttr &AL) {
7259   // Warn about repeated attributes.
7260   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
7261     S.Diag(AL.getRange().getBegin(),
7262       diag::warn_riscv_repeated_interrupt_attribute);
7263     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
7264     return;
7265   }
7266 
7267   // Check the attribute argument. Argument is optional.
7268   if (!AL.checkAtMostNumArgs(S, 1))
7269     return;
7270 
7271   StringRef Str;
7272   SourceLocation ArgLoc;
7273 
7274   // 'machine'is the default interrupt mode.
7275   if (AL.getNumArgs() == 0)
7276     Str = "machine";
7277   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7278     return;
7279 
7280   // Semantic checks for a function with the 'interrupt' attribute:
7281   // - Must be a function.
7282   // - Must have no parameters.
7283   // - Must have the 'void' return type.
7284   // - The attribute itself must either have no argument or one of the
7285   //   valid interrupt types, see [RISCVInterruptDocs].
7286 
7287   if (D->getFunctionType() == nullptr) {
7288     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7289       << "'interrupt'" << ExpectedFunction;
7290     return;
7291   }
7292 
7293   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7294     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7295       << /*RISC-V*/ 2 << 0;
7296     return;
7297   }
7298 
7299   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7300     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7301       << /*RISC-V*/ 2 << 1;
7302     return;
7303   }
7304 
7305   RISCVInterruptAttr::InterruptType Kind;
7306   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7307     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7308                                                                  << ArgLoc;
7309     return;
7310   }
7311 
7312   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
7313 }
7314 
7315 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7316   // Dispatch the interrupt attribute based on the current target.
7317   switch (S.Context.getTargetInfo().getTriple().getArch()) {
7318   case llvm::Triple::msp430:
7319     handleMSP430InterruptAttr(S, D, AL);
7320     break;
7321   case llvm::Triple::mipsel:
7322   case llvm::Triple::mips:
7323     handleMipsInterruptAttr(S, D, AL);
7324     break;
7325   case llvm::Triple::m68k:
7326     handleM68kInterruptAttr(S, D, AL);
7327     break;
7328   case llvm::Triple::x86:
7329   case llvm::Triple::x86_64:
7330     handleAnyX86InterruptAttr(S, D, AL);
7331     break;
7332   case llvm::Triple::avr:
7333     handleAVRInterruptAttr(S, D, AL);
7334     break;
7335   case llvm::Triple::riscv32:
7336   case llvm::Triple::riscv64:
7337     handleRISCVInterruptAttr(S, D, AL);
7338     break;
7339   default:
7340     handleARMInterruptAttr(S, D, AL);
7341     break;
7342   }
7343 }
7344 
7345 static bool
7346 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
7347                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) {
7348   // Accept template arguments for now as they depend on something else.
7349   // We'll get to check them when they eventually get instantiated.
7350   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
7351     return false;
7352 
7353   uint32_t Min = 0;
7354   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7355     return true;
7356 
7357   uint32_t Max = 0;
7358   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7359     return true;
7360 
7361   if (Min == 0 && Max != 0) {
7362     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7363         << &Attr << 0;
7364     return true;
7365   }
7366   if (Min > Max) {
7367     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7368         << &Attr << 1;
7369     return true;
7370   }
7371 
7372   return false;
7373 }
7374 
7375 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
7376                                           const AttributeCommonInfo &CI,
7377                                           Expr *MinExpr, Expr *MaxExpr) {
7378   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7379 
7380   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
7381     return;
7382 
7383   D->addAttr(::new (Context)
7384                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
7385 }
7386 
7387 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
7388                                               const ParsedAttr &AL) {
7389   Expr *MinExpr = AL.getArgAsExpr(0);
7390   Expr *MaxExpr = AL.getArgAsExpr(1);
7391 
7392   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
7393 }
7394 
7395 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
7396                                            Expr *MaxExpr,
7397                                            const AMDGPUWavesPerEUAttr &Attr) {
7398   if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
7399       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
7400     return true;
7401 
7402   // Accept template arguments for now as they depend on something else.
7403   // We'll get to check them when they eventually get instantiated.
7404   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
7405     return false;
7406 
7407   uint32_t Min = 0;
7408   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7409     return true;
7410 
7411   uint32_t Max = 0;
7412   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7413     return true;
7414 
7415   if (Min == 0 && Max != 0) {
7416     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7417         << &Attr << 0;
7418     return true;
7419   }
7420   if (Max != 0 && Min > Max) {
7421     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7422         << &Attr << 1;
7423     return true;
7424   }
7425 
7426   return false;
7427 }
7428 
7429 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
7430                                    Expr *MinExpr, Expr *MaxExpr) {
7431   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7432 
7433   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
7434     return;
7435 
7436   D->addAttr(::new (Context)
7437                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
7438 }
7439 
7440 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7441   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
7442     return;
7443 
7444   Expr *MinExpr = AL.getArgAsExpr(0);
7445   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
7446 
7447   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
7448 }
7449 
7450 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7451   uint32_t NumSGPR = 0;
7452   Expr *NumSGPRExpr = AL.getArgAsExpr(0);
7453   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
7454     return;
7455 
7456   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
7457 }
7458 
7459 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7460   uint32_t NumVGPR = 0;
7461   Expr *NumVGPRExpr = AL.getArgAsExpr(0);
7462   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
7463     return;
7464 
7465   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
7466 }
7467 
7468 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
7469                                               const ParsedAttr &AL) {
7470   // If we try to apply it to a function pointer, don't warn, but don't
7471   // do anything, either. It doesn't matter anyway, because there's nothing
7472   // special about calling a force_align_arg_pointer function.
7473   const auto *VD = dyn_cast<ValueDecl>(D);
7474   if (VD && VD->getType()->isFunctionPointerType())
7475     return;
7476   // Also don't warn on function pointer typedefs.
7477   const auto *TD = dyn_cast<TypedefNameDecl>(D);
7478   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
7479     TD->getUnderlyingType()->isFunctionType()))
7480     return;
7481   // Attribute can only be applied to function types.
7482   if (!isa<FunctionDecl>(D)) {
7483     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7484         << AL << ExpectedFunction;
7485     return;
7486   }
7487 
7488   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
7489 }
7490 
7491 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
7492   uint32_t Version;
7493   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7494   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
7495     return;
7496 
7497   // TODO: Investigate what happens with the next major version of MSVC.
7498   if (Version != LangOptions::MSVC2015 / 100) {
7499     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7500         << AL << Version << VersionExpr->getSourceRange();
7501     return;
7502   }
7503 
7504   // The attribute expects a "major" version number like 19, but new versions of
7505   // MSVC have moved to updating the "minor", or less significant numbers, so we
7506   // have to multiply by 100 now.
7507   Version *= 100;
7508 
7509   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
7510 }
7511 
7512 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
7513                                         const AttributeCommonInfo &CI) {
7514   if (D->hasAttr<DLLExportAttr>()) {
7515     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
7516     return nullptr;
7517   }
7518 
7519   if (D->hasAttr<DLLImportAttr>())
7520     return nullptr;
7521 
7522   return ::new (Context) DLLImportAttr(Context, CI);
7523 }
7524 
7525 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
7526                                         const AttributeCommonInfo &CI) {
7527   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
7528     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
7529     D->dropAttr<DLLImportAttr>();
7530   }
7531 
7532   if (D->hasAttr<DLLExportAttr>())
7533     return nullptr;
7534 
7535   return ::new (Context) DLLExportAttr(Context, CI);
7536 }
7537 
7538 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7539   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
7540       (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7541     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
7542     return;
7543   }
7544 
7545   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7546     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
7547         !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7548       // MinGW doesn't allow dllimport on inline functions.
7549       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
7550           << A;
7551       return;
7552     }
7553   }
7554 
7555   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
7556     if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
7557         MD->getParent()->isLambda()) {
7558       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
7559       return;
7560     }
7561   }
7562 
7563   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
7564                       ? (Attr *)S.mergeDLLExportAttr(D, A)
7565                       : (Attr *)S.mergeDLLImportAttr(D, A);
7566   if (NewAttr)
7567     D->addAttr(NewAttr);
7568 }
7569 
7570 MSInheritanceAttr *
7571 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
7572                              bool BestCase,
7573                              MSInheritanceModel Model) {
7574   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
7575     if (IA->getInheritanceModel() == Model)
7576       return nullptr;
7577     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
7578         << 1 /*previous declaration*/;
7579     Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
7580     D->dropAttr<MSInheritanceAttr>();
7581   }
7582 
7583   auto *RD = cast<CXXRecordDecl>(D);
7584   if (RD->hasDefinition()) {
7585     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
7586                                            Model)) {
7587       return nullptr;
7588     }
7589   } else {
7590     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
7591       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7592           << 1 /*partial specialization*/;
7593       return nullptr;
7594     }
7595     if (RD->getDescribedClassTemplate()) {
7596       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7597           << 0 /*primary template*/;
7598       return nullptr;
7599     }
7600   }
7601 
7602   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
7603 }
7604 
7605 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7606   // The capability attributes take a single string parameter for the name of
7607   // the capability they represent. The lockable attribute does not take any
7608   // parameters. However, semantically, both attributes represent the same
7609   // concept, and so they use the same semantic attribute. Eventually, the
7610   // lockable attribute will be removed.
7611   //
7612   // For backward compatibility, any capability which has no specified string
7613   // literal will be considered a "mutex."
7614   StringRef N("mutex");
7615   SourceLocation LiteralLoc;
7616   if (AL.getKind() == ParsedAttr::AT_Capability &&
7617       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
7618     return;
7619 
7620   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
7621 }
7622 
7623 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7624   SmallVector<Expr*, 1> Args;
7625   if (!checkLockFunAttrCommon(S, D, AL, Args))
7626     return;
7627 
7628   D->addAttr(::new (S.Context)
7629                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
7630 }
7631 
7632 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
7633                                         const ParsedAttr &AL) {
7634   SmallVector<Expr*, 1> Args;
7635   if (!checkLockFunAttrCommon(S, D, AL, Args))
7636     return;
7637 
7638   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
7639                                                      Args.size()));
7640 }
7641 
7642 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
7643                                            const ParsedAttr &AL) {
7644   SmallVector<Expr*, 2> Args;
7645   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
7646     return;
7647 
7648   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
7649       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
7650 }
7651 
7652 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
7653                                         const ParsedAttr &AL) {
7654   // Check that all arguments are lockable objects.
7655   SmallVector<Expr *, 1> Args;
7656   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
7657 
7658   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
7659                                                      Args.size()));
7660 }
7661 
7662 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
7663                                          const ParsedAttr &AL) {
7664   if (!AL.checkAtLeastNumArgs(S, 1))
7665     return;
7666 
7667   // check that all arguments are lockable objects
7668   SmallVector<Expr*, 1> Args;
7669   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
7670   if (Args.empty())
7671     return;
7672 
7673   RequiresCapabilityAttr *RCA = ::new (S.Context)
7674       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
7675 
7676   D->addAttr(RCA);
7677 }
7678 
7679 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7680   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
7681     if (NSD->isAnonymousNamespace()) {
7682       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
7683       // Do not want to attach the attribute to the namespace because that will
7684       // cause confusing diagnostic reports for uses of declarations within the
7685       // namespace.
7686       return;
7687     }
7688   } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl,
7689                  UnresolvedUsingValueDecl>(D)) {
7690     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
7691         << AL;
7692     return;
7693   }
7694 
7695   // Handle the cases where the attribute has a text message.
7696   StringRef Str, Replacement;
7697   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
7698       !S.checkStringLiteralArgumentAttr(AL, 0, Str))
7699     return;
7700 
7701   // Support a single optional message only for Declspec and [[]] spellings.
7702   if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax())
7703     AL.checkAtMostNumArgs(S, 1);
7704   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
7705            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
7706     return;
7707 
7708   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
7709     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
7710 
7711   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
7712 }
7713 
7714 static bool isGlobalVar(const Decl *D) {
7715   if (const auto *S = dyn_cast<VarDecl>(D))
7716     return S->hasGlobalStorage();
7717   return false;
7718 }
7719 
7720 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7721   if (!AL.checkAtLeastNumArgs(S, 1))
7722     return;
7723 
7724   std::vector<StringRef> Sanitizers;
7725 
7726   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
7727     StringRef SanitizerName;
7728     SourceLocation LiteralLoc;
7729 
7730     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
7731       return;
7732 
7733     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
7734             SanitizerMask() &&
7735         SanitizerName != "coverage")
7736       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
7737     else if (isGlobalVar(D) && SanitizerName != "address")
7738       S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7739           << AL << ExpectedFunctionOrMethod;
7740     Sanitizers.push_back(SanitizerName);
7741   }
7742 
7743   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
7744                                               Sanitizers.size()));
7745 }
7746 
7747 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
7748                                          const ParsedAttr &AL) {
7749   StringRef AttrName = AL.getAttrName()->getName();
7750   normalizeName(AttrName);
7751   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
7752                                 .Case("no_address_safety_analysis", "address")
7753                                 .Case("no_sanitize_address", "address")
7754                                 .Case("no_sanitize_thread", "thread")
7755                                 .Case("no_sanitize_memory", "memory");
7756   if (isGlobalVar(D) && SanitizerName != "address")
7757     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7758         << AL << ExpectedFunction;
7759 
7760   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
7761   // NoSanitizeAttr object; but we need to calculate the correct spelling list
7762   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
7763   // has the same spellings as the index for NoSanitizeAttr. We don't have a
7764   // general way to "translate" between the two, so this hack attempts to work
7765   // around the issue with hard-coded indices. This is critical for calling
7766   // getSpelling() or prettyPrint() on the resulting semantic attribute object
7767   // without failing assertions.
7768   unsigned TranslatedSpellingIndex = 0;
7769   if (AL.isStandardAttributeSyntax())
7770     TranslatedSpellingIndex = 1;
7771 
7772   AttributeCommonInfo Info = AL;
7773   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
7774   D->addAttr(::new (S.Context)
7775                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
7776 }
7777 
7778 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7779   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
7780     D->addAttr(Internal);
7781 }
7782 
7783 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7784   if (S.LangOpts.getOpenCLCompatibleVersion() < 200)
7785     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
7786         << AL << "2.0" << 1;
7787   else
7788     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
7789         << AL << S.LangOpts.getOpenCLVersionString();
7790 }
7791 
7792 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7793   if (D->isInvalidDecl())
7794     return;
7795 
7796   // Check if there is only one access qualifier.
7797   if (D->hasAttr<OpenCLAccessAttr>()) {
7798     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
7799         AL.getSemanticSpelling()) {
7800       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
7801           << AL.getAttrName()->getName() << AL.getRange();
7802     } else {
7803       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
7804           << D->getSourceRange();
7805       D->setInvalidDecl(true);
7806       return;
7807     }
7808   }
7809 
7810   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that
7811   // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel
7812   // cannot read from and write to the same pipe object. Using the read_write
7813   // (or __read_write) qualifier with the pipe qualifier is a compilation error.
7814   // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the
7815   // __opencl_c_read_write_images feature, image objects specified as arguments
7816   // to a kernel can additionally be declared to be read-write.
7817   // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0.
7818   // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0.
7819   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
7820     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
7821     if (AL.getAttrName()->getName().contains("read_write")) {
7822       bool ReadWriteImagesUnsupported =
7823           (S.getLangOpts().getOpenCLCompatibleVersion() < 200) ||
7824           (S.getLangOpts().getOpenCLCompatibleVersion() == 300 &&
7825            !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images",
7826                                              S.getLangOpts()));
7827       if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) {
7828         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
7829             << AL << PDecl->getType() << DeclTy->isImageType();
7830         D->setInvalidDecl(true);
7831         return;
7832       }
7833     }
7834   }
7835 
7836   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
7837 }
7838 
7839 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7840   // The 'sycl_kernel' attribute applies only to function templates.
7841   const auto *FD = cast<FunctionDecl>(D);
7842   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
7843   assert(FT && "Function template is expected");
7844 
7845   // Function template must have at least two template parameters.
7846   const TemplateParameterList *TL = FT->getTemplateParameters();
7847   if (TL->size() < 2) {
7848     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
7849     return;
7850   }
7851 
7852   // Template parameters must be typenames.
7853   for (unsigned I = 0; I < 2; ++I) {
7854     const NamedDecl *TParam = TL->getParam(I);
7855     if (isa<NonTypeTemplateParmDecl>(TParam)) {
7856       S.Diag(FT->getLocation(),
7857              diag::warn_sycl_kernel_invalid_template_param_type);
7858       return;
7859     }
7860   }
7861 
7862   // Function must have at least one argument.
7863   if (getFunctionOrMethodNumParams(D) != 1) {
7864     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
7865     return;
7866   }
7867 
7868   // Function must return void.
7869   QualType RetTy = getFunctionOrMethodResultType(D);
7870   if (!RetTy->isVoidType()) {
7871     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
7872     return;
7873   }
7874 
7875   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
7876 }
7877 
7878 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7879   if (!cast<VarDecl>(D)->hasGlobalStorage()) {
7880     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
7881         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
7882     return;
7883   }
7884 
7885   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
7886     handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A);
7887   else
7888     handleSimpleAttribute<NoDestroyAttr>(S, D, A);
7889 }
7890 
7891 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7892   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
7893          "uninitialized is only valid on automatic duration variables");
7894   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
7895 }
7896 
7897 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
7898                                         bool DiagnoseFailure) {
7899   QualType Ty = VD->getType();
7900   if (!Ty->isObjCRetainableType()) {
7901     if (DiagnoseFailure) {
7902       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7903           << 0;
7904     }
7905     return false;
7906   }
7907 
7908   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
7909 
7910   // Sema::inferObjCARCLifetime must run after processing decl attributes
7911   // (because __block lowers to an attribute), so if the lifetime hasn't been
7912   // explicitly specified, infer it locally now.
7913   if (LifetimeQual == Qualifiers::OCL_None)
7914     LifetimeQual = Ty->getObjCARCImplicitLifetime();
7915 
7916   // The attributes only really makes sense for __strong variables; ignore any
7917   // attempts to annotate a parameter with any other lifetime qualifier.
7918   if (LifetimeQual != Qualifiers::OCL_Strong) {
7919     if (DiagnoseFailure) {
7920       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7921           << 1;
7922     }
7923     return false;
7924   }
7925 
7926   // Tampering with the type of a VarDecl here is a bit of a hack, but we need
7927   // to ensure that the variable is 'const' so that we can error on
7928   // modification, which can otherwise over-release.
7929   VD->setType(Ty.withConst());
7930   VD->setARCPseudoStrong(true);
7931   return true;
7932 }
7933 
7934 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
7935                                              const ParsedAttr &AL) {
7936   if (auto *VD = dyn_cast<VarDecl>(D)) {
7937     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
7938     if (!VD->hasLocalStorage()) {
7939       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7940           << 0;
7941       return;
7942     }
7943 
7944     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
7945       return;
7946 
7947     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7948     return;
7949   }
7950 
7951   // If D is a function-like declaration (method, block, or function), then we
7952   // make every parameter psuedo-strong.
7953   unsigned NumParams =
7954       hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
7955   for (unsigned I = 0; I != NumParams; ++I) {
7956     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
7957     QualType Ty = PVD->getType();
7958 
7959     // If a user wrote a parameter with __strong explicitly, then assume they
7960     // want "real" strong semantics for that parameter. This works because if
7961     // the parameter was written with __strong, then the strong qualifier will
7962     // be non-local.
7963     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
7964         Qualifiers::OCL_Strong)
7965       continue;
7966 
7967     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
7968   }
7969   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7970 }
7971 
7972 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7973   // Check that the return type is a `typedef int kern_return_t` or a typedef
7974   // around it, because otherwise MIG convention checks make no sense.
7975   // BlockDecl doesn't store a return type, so it's annoying to check,
7976   // so let's skip it for now.
7977   if (!isa<BlockDecl>(D)) {
7978     QualType T = getFunctionOrMethodResultType(D);
7979     bool IsKernReturnT = false;
7980     while (const auto *TT = T->getAs<TypedefType>()) {
7981       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
7982       T = TT->desugar();
7983     }
7984     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
7985       S.Diag(D->getBeginLoc(),
7986              diag::warn_mig_server_routine_does_not_return_kern_return_t);
7987       return;
7988     }
7989   }
7990 
7991   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
7992 }
7993 
7994 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7995   // Warn if the return type is not a pointer or reference type.
7996   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7997     QualType RetTy = FD->getReturnType();
7998     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
7999       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
8000           << AL.getRange() << RetTy;
8001       return;
8002     }
8003   }
8004 
8005   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
8006 }
8007 
8008 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8009   if (AL.isUsedAsTypeAttr())
8010     return;
8011   // Warn if the parameter is definitely not an output parameter.
8012   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
8013     if (PVD->getType()->isIntegerType()) {
8014       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
8015           << AL.getRange();
8016       return;
8017     }
8018   }
8019   StringRef Argument;
8020   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8021     return;
8022   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
8023 }
8024 
8025 template<typename Attr>
8026 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8027   StringRef Argument;
8028   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8029     return;
8030   D->addAttr(Attr::Create(S.Context, Argument, AL));
8031 }
8032 
8033 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8034   // The guard attribute takes a single identifier argument.
8035 
8036   if (!AL.isArgIdent(0)) {
8037     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
8038         << AL << AANT_ArgumentIdentifier;
8039     return;
8040   }
8041 
8042   CFGuardAttr::GuardArg Arg;
8043   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
8044   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
8045     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
8046     return;
8047   }
8048 
8049   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
8050 }
8051 
8052 
8053 template <typename AttrTy>
8054 static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
8055   auto Attrs = D->specific_attrs<AttrTy>();
8056   auto I = llvm::find_if(Attrs,
8057                          [Name](const AttrTy *A) {
8058                            return A->getTCBName() == Name;
8059                          });
8060   return I == Attrs.end() ? nullptr : *I;
8061 }
8062 
8063 template <typename AttrTy, typename ConflictingAttrTy>
8064 static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8065   StringRef Argument;
8066   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8067     return;
8068 
8069   // A function cannot be have both regular and leaf membership in the same TCB.
8070   if (const ConflictingAttrTy *ConflictingAttr =
8071       findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
8072     // We could attach a note to the other attribute but in this case
8073     // there's no need given how the two are very close to each other.
8074     S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
8075       << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
8076       << Argument;
8077 
8078     // Error recovery: drop the non-leaf attribute so that to suppress
8079     // all future warnings caused by erroneous attributes. The leaf attribute
8080     // needs to be kept because it can only suppresses warnings, not cause them.
8081     D->dropAttr<EnforceTCBAttr>();
8082     return;
8083   }
8084 
8085   D->addAttr(AttrTy::Create(S.Context, Argument, AL));
8086 }
8087 
8088 template <typename AttrTy, typename ConflictingAttrTy>
8089 static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
8090   // Check if the new redeclaration has different leaf-ness in the same TCB.
8091   StringRef TCBName = AL.getTCBName();
8092   if (const ConflictingAttrTy *ConflictingAttr =
8093       findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
8094     S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
8095       << ConflictingAttr->getAttrName()->getName()
8096       << AL.getAttrName()->getName() << TCBName;
8097 
8098     // Add a note so that the user could easily find the conflicting attribute.
8099     S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
8100 
8101     // More error recovery.
8102     D->dropAttr<EnforceTCBAttr>();
8103     return nullptr;
8104   }
8105 
8106   ASTContext &Context = S.getASTContext();
8107   return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
8108 }
8109 
8110 EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
8111   return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
8112       *this, D, AL);
8113 }
8114 
8115 EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
8116     Decl *D, const EnforceTCBLeafAttr &AL) {
8117   return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
8118       *this, D, AL);
8119 }
8120 
8121 //===----------------------------------------------------------------------===//
8122 // Top Level Sema Entry Points
8123 //===----------------------------------------------------------------------===//
8124 
8125 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
8126 /// the attribute applies to decls.  If the attribute is a type attribute, just
8127 /// silently ignore it if a GNU attribute.
8128 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
8129                                  const ParsedAttr &AL,
8130                                  bool IncludeCXX11Attributes) {
8131   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
8132     return;
8133 
8134   // Ignore C++11 attributes on declarator chunks: they appertain to the type
8135   // instead.
8136   if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
8137     return;
8138 
8139   // Unknown attributes are automatically warned on. Target-specific attributes
8140   // which do not apply to the current target architecture are treated as
8141   // though they were unknown attributes.
8142   if (AL.getKind() == ParsedAttr::UnknownAttribute ||
8143       !AL.existsInTarget(S.Context.getTargetInfo())) {
8144     S.Diag(AL.getLoc(),
8145            AL.isDeclspecAttribute()
8146                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
8147                : (unsigned)diag::warn_unknown_attribute_ignored)
8148         << AL << AL.getRange();
8149     return;
8150   }
8151 
8152   if (S.checkCommonAttributeFeatures(D, AL))
8153     return;
8154 
8155   switch (AL.getKind()) {
8156   default:
8157     if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
8158       break;
8159     if (!AL.isStmtAttr()) {
8160       // Type attributes are handled elsewhere; silently move on.
8161       assert(AL.isTypeAttr() && "Non-type attribute not handled");
8162       break;
8163     }
8164     // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
8165     // statement attribute is not written on a declaration, but this code is
8166     // needed for attributes in Attr.td that do not list any subjects.
8167     S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
8168         << AL << D->getLocation();
8169     break;
8170   case ParsedAttr::AT_Interrupt:
8171     handleInterruptAttr(S, D, AL);
8172     break;
8173   case ParsedAttr::AT_X86ForceAlignArgPointer:
8174     handleX86ForceAlignArgPointerAttr(S, D, AL);
8175     break;
8176   case ParsedAttr::AT_DLLExport:
8177   case ParsedAttr::AT_DLLImport:
8178     handleDLLAttr(S, D, AL);
8179     break;
8180   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
8181     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
8182     break;
8183   case ParsedAttr::AT_AMDGPUWavesPerEU:
8184     handleAMDGPUWavesPerEUAttr(S, D, AL);
8185     break;
8186   case ParsedAttr::AT_AMDGPUNumSGPR:
8187     handleAMDGPUNumSGPRAttr(S, D, AL);
8188     break;
8189   case ParsedAttr::AT_AMDGPUNumVGPR:
8190     handleAMDGPUNumVGPRAttr(S, D, AL);
8191     break;
8192   case ParsedAttr::AT_AVRSignal:
8193     handleAVRSignalAttr(S, D, AL);
8194     break;
8195   case ParsedAttr::AT_BPFPreserveAccessIndex:
8196     handleBPFPreserveAccessIndexAttr(S, D, AL);
8197     break;
8198   case ParsedAttr::AT_BTFDeclTag:
8199     handleBTFDeclTagAttr(S, D, AL);
8200     break;
8201   case ParsedAttr::AT_WebAssemblyExportName:
8202     handleWebAssemblyExportNameAttr(S, D, AL);
8203     break;
8204   case ParsedAttr::AT_WebAssemblyImportModule:
8205     handleWebAssemblyImportModuleAttr(S, D, AL);
8206     break;
8207   case ParsedAttr::AT_WebAssemblyImportName:
8208     handleWebAssemblyImportNameAttr(S, D, AL);
8209     break;
8210   case ParsedAttr::AT_IBOutlet:
8211     handleIBOutlet(S, D, AL);
8212     break;
8213   case ParsedAttr::AT_IBOutletCollection:
8214     handleIBOutletCollection(S, D, AL);
8215     break;
8216   case ParsedAttr::AT_IFunc:
8217     handleIFuncAttr(S, D, AL);
8218     break;
8219   case ParsedAttr::AT_Alias:
8220     handleAliasAttr(S, D, AL);
8221     break;
8222   case ParsedAttr::AT_Aligned:
8223     handleAlignedAttr(S, D, AL);
8224     break;
8225   case ParsedAttr::AT_AlignValue:
8226     handleAlignValueAttr(S, D, AL);
8227     break;
8228   case ParsedAttr::AT_AllocSize:
8229     handleAllocSizeAttr(S, D, AL);
8230     break;
8231   case ParsedAttr::AT_AlwaysInline:
8232     handleAlwaysInlineAttr(S, D, AL);
8233     break;
8234   case ParsedAttr::AT_AnalyzerNoReturn:
8235     handleAnalyzerNoReturnAttr(S, D, AL);
8236     break;
8237   case ParsedAttr::AT_TLSModel:
8238     handleTLSModelAttr(S, D, AL);
8239     break;
8240   case ParsedAttr::AT_Annotate:
8241     handleAnnotateAttr(S, D, AL);
8242     break;
8243   case ParsedAttr::AT_Availability:
8244     handleAvailabilityAttr(S, D, AL);
8245     break;
8246   case ParsedAttr::AT_CarriesDependency:
8247     handleDependencyAttr(S, scope, D, AL);
8248     break;
8249   case ParsedAttr::AT_CPUDispatch:
8250   case ParsedAttr::AT_CPUSpecific:
8251     handleCPUSpecificAttr(S, D, AL);
8252     break;
8253   case ParsedAttr::AT_Common:
8254     handleCommonAttr(S, D, AL);
8255     break;
8256   case ParsedAttr::AT_CUDAConstant:
8257     handleConstantAttr(S, D, AL);
8258     break;
8259   case ParsedAttr::AT_PassObjectSize:
8260     handlePassObjectSizeAttr(S, D, AL);
8261     break;
8262   case ParsedAttr::AT_Constructor:
8263       handleConstructorAttr(S, D, AL);
8264     break;
8265   case ParsedAttr::AT_Deprecated:
8266     handleDeprecatedAttr(S, D, AL);
8267     break;
8268   case ParsedAttr::AT_Destructor:
8269       handleDestructorAttr(S, D, AL);
8270     break;
8271   case ParsedAttr::AT_EnableIf:
8272     handleEnableIfAttr(S, D, AL);
8273     break;
8274   case ParsedAttr::AT_Error:
8275     handleErrorAttr(S, D, AL);
8276     break;
8277   case ParsedAttr::AT_DiagnoseIf:
8278     handleDiagnoseIfAttr(S, D, AL);
8279     break;
8280   case ParsedAttr::AT_DiagnoseAsBuiltin:
8281     handleDiagnoseAsBuiltinAttr(S, D, AL);
8282     break;
8283   case ParsedAttr::AT_NoBuiltin:
8284     handleNoBuiltinAttr(S, D, AL);
8285     break;
8286   case ParsedAttr::AT_ExtVectorType:
8287     handleExtVectorTypeAttr(S, D, AL);
8288     break;
8289   case ParsedAttr::AT_ExternalSourceSymbol:
8290     handleExternalSourceSymbolAttr(S, D, AL);
8291     break;
8292   case ParsedAttr::AT_MinSize:
8293     handleMinSizeAttr(S, D, AL);
8294     break;
8295   case ParsedAttr::AT_OptimizeNone:
8296     handleOptimizeNoneAttr(S, D, AL);
8297     break;
8298   case ParsedAttr::AT_EnumExtensibility:
8299     handleEnumExtensibilityAttr(S, D, AL);
8300     break;
8301   case ParsedAttr::AT_SYCLKernel:
8302     handleSYCLKernelAttr(S, D, AL);
8303     break;
8304   case ParsedAttr::AT_Format:
8305     handleFormatAttr(S, D, AL);
8306     break;
8307   case ParsedAttr::AT_FormatArg:
8308     handleFormatArgAttr(S, D, AL);
8309     break;
8310   case ParsedAttr::AT_Callback:
8311     handleCallbackAttr(S, D, AL);
8312     break;
8313   case ParsedAttr::AT_CalledOnce:
8314     handleCalledOnceAttr(S, D, AL);
8315     break;
8316   case ParsedAttr::AT_CUDAGlobal:
8317     handleGlobalAttr(S, D, AL);
8318     break;
8319   case ParsedAttr::AT_CUDADevice:
8320     handleDeviceAttr(S, D, AL);
8321     break;
8322   case ParsedAttr::AT_HIPManaged:
8323     handleManagedAttr(S, D, AL);
8324     break;
8325   case ParsedAttr::AT_GNUInline:
8326     handleGNUInlineAttr(S, D, AL);
8327     break;
8328   case ParsedAttr::AT_CUDALaunchBounds:
8329     handleLaunchBoundsAttr(S, D, AL);
8330     break;
8331   case ParsedAttr::AT_Restrict:
8332     handleRestrictAttr(S, D, AL);
8333     break;
8334   case ParsedAttr::AT_Mode:
8335     handleModeAttr(S, D, AL);
8336     break;
8337   case ParsedAttr::AT_NonNull:
8338     if (auto *PVD = dyn_cast<ParmVarDecl>(D))
8339       handleNonNullAttrParameter(S, PVD, AL);
8340     else
8341       handleNonNullAttr(S, D, AL);
8342     break;
8343   case ParsedAttr::AT_ReturnsNonNull:
8344     handleReturnsNonNullAttr(S, D, AL);
8345     break;
8346   case ParsedAttr::AT_NoEscape:
8347     handleNoEscapeAttr(S, D, AL);
8348     break;
8349   case ParsedAttr::AT_AssumeAligned:
8350     handleAssumeAlignedAttr(S, D, AL);
8351     break;
8352   case ParsedAttr::AT_AllocAlign:
8353     handleAllocAlignAttr(S, D, AL);
8354     break;
8355   case ParsedAttr::AT_Ownership:
8356     handleOwnershipAttr(S, D, AL);
8357     break;
8358   case ParsedAttr::AT_Naked:
8359     handleNakedAttr(S, D, AL);
8360     break;
8361   case ParsedAttr::AT_NoReturn:
8362     handleNoReturnAttr(S, D, AL);
8363     break;
8364   case ParsedAttr::AT_AnyX86NoCfCheck:
8365     handleNoCfCheckAttr(S, D, AL);
8366     break;
8367   case ParsedAttr::AT_NoThrow:
8368     if (!AL.isUsedAsTypeAttr())
8369       handleSimpleAttribute<NoThrowAttr>(S, D, AL);
8370     break;
8371   case ParsedAttr::AT_CUDAShared:
8372     handleSharedAttr(S, D, AL);
8373     break;
8374   case ParsedAttr::AT_VecReturn:
8375     handleVecReturnAttr(S, D, AL);
8376     break;
8377   case ParsedAttr::AT_ObjCOwnership:
8378     handleObjCOwnershipAttr(S, D, AL);
8379     break;
8380   case ParsedAttr::AT_ObjCPreciseLifetime:
8381     handleObjCPreciseLifetimeAttr(S, D, AL);
8382     break;
8383   case ParsedAttr::AT_ObjCReturnsInnerPointer:
8384     handleObjCReturnsInnerPointerAttr(S, D, AL);
8385     break;
8386   case ParsedAttr::AT_ObjCRequiresSuper:
8387     handleObjCRequiresSuperAttr(S, D, AL);
8388     break;
8389   case ParsedAttr::AT_ObjCBridge:
8390     handleObjCBridgeAttr(S, D, AL);
8391     break;
8392   case ParsedAttr::AT_ObjCBridgeMutable:
8393     handleObjCBridgeMutableAttr(S, D, AL);
8394     break;
8395   case ParsedAttr::AT_ObjCBridgeRelated:
8396     handleObjCBridgeRelatedAttr(S, D, AL);
8397     break;
8398   case ParsedAttr::AT_ObjCDesignatedInitializer:
8399     handleObjCDesignatedInitializer(S, D, AL);
8400     break;
8401   case ParsedAttr::AT_ObjCRuntimeName:
8402     handleObjCRuntimeName(S, D, AL);
8403     break;
8404   case ParsedAttr::AT_ObjCBoxable:
8405     handleObjCBoxable(S, D, AL);
8406     break;
8407   case ParsedAttr::AT_NSErrorDomain:
8408     handleNSErrorDomain(S, D, AL);
8409     break;
8410   case ParsedAttr::AT_CFConsumed:
8411   case ParsedAttr::AT_NSConsumed:
8412   case ParsedAttr::AT_OSConsumed:
8413     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
8414                        /*IsTemplateInstantiation=*/false);
8415     break;
8416   case ParsedAttr::AT_OSReturnsRetainedOnZero:
8417     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
8418         S, D, AL, isValidOSObjectOutParameter(D),
8419         diag::warn_ns_attribute_wrong_parameter_type,
8420         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
8421     break;
8422   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
8423     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
8424         S, D, AL, isValidOSObjectOutParameter(D),
8425         diag::warn_ns_attribute_wrong_parameter_type,
8426         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
8427     break;
8428   case ParsedAttr::AT_NSReturnsAutoreleased:
8429   case ParsedAttr::AT_NSReturnsNotRetained:
8430   case ParsedAttr::AT_NSReturnsRetained:
8431   case ParsedAttr::AT_CFReturnsNotRetained:
8432   case ParsedAttr::AT_CFReturnsRetained:
8433   case ParsedAttr::AT_OSReturnsNotRetained:
8434   case ParsedAttr::AT_OSReturnsRetained:
8435     handleXReturnsXRetainedAttr(S, D, AL);
8436     break;
8437   case ParsedAttr::AT_WorkGroupSizeHint:
8438     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
8439     break;
8440   case ParsedAttr::AT_ReqdWorkGroupSize:
8441     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
8442     break;
8443   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
8444     handleSubGroupSize(S, D, AL);
8445     break;
8446   case ParsedAttr::AT_VecTypeHint:
8447     handleVecTypeHint(S, D, AL);
8448     break;
8449   case ParsedAttr::AT_InitPriority:
8450       handleInitPriorityAttr(S, D, AL);
8451     break;
8452   case ParsedAttr::AT_Packed:
8453     handlePackedAttr(S, D, AL);
8454     break;
8455   case ParsedAttr::AT_PreferredName:
8456     handlePreferredName(S, D, AL);
8457     break;
8458   case ParsedAttr::AT_Section:
8459     handleSectionAttr(S, D, AL);
8460     break;
8461   case ParsedAttr::AT_CodeSeg:
8462     handleCodeSegAttr(S, D, AL);
8463     break;
8464   case ParsedAttr::AT_Target:
8465     handleTargetAttr(S, D, AL);
8466     break;
8467   case ParsedAttr::AT_TargetClones:
8468     handleTargetClonesAttr(S, D, AL);
8469     break;
8470   case ParsedAttr::AT_MinVectorWidth:
8471     handleMinVectorWidthAttr(S, D, AL);
8472     break;
8473   case ParsedAttr::AT_Unavailable:
8474     handleAttrWithMessage<UnavailableAttr>(S, D, AL);
8475     break;
8476   case ParsedAttr::AT_Assumption:
8477     handleAssumumptionAttr(S, D, AL);
8478     break;
8479   case ParsedAttr::AT_ObjCDirect:
8480     handleObjCDirectAttr(S, D, AL);
8481     break;
8482   case ParsedAttr::AT_ObjCDirectMembers:
8483     handleObjCDirectMembersAttr(S, D, AL);
8484     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
8485     break;
8486   case ParsedAttr::AT_ObjCExplicitProtocolImpl:
8487     handleObjCSuppresProtocolAttr(S, D, AL);
8488     break;
8489   case ParsedAttr::AT_Unused:
8490     handleUnusedAttr(S, D, AL);
8491     break;
8492   case ParsedAttr::AT_Visibility:
8493     handleVisibilityAttr(S, D, AL, false);
8494     break;
8495   case ParsedAttr::AT_TypeVisibility:
8496     handleVisibilityAttr(S, D, AL, true);
8497     break;
8498   case ParsedAttr::AT_WarnUnusedResult:
8499     handleWarnUnusedResult(S, D, AL);
8500     break;
8501   case ParsedAttr::AT_WeakRef:
8502     handleWeakRefAttr(S, D, AL);
8503     break;
8504   case ParsedAttr::AT_WeakImport:
8505     handleWeakImportAttr(S, D, AL);
8506     break;
8507   case ParsedAttr::AT_TransparentUnion:
8508     handleTransparentUnionAttr(S, D, AL);
8509     break;
8510   case ParsedAttr::AT_ObjCMethodFamily:
8511     handleObjCMethodFamilyAttr(S, D, AL);
8512     break;
8513   case ParsedAttr::AT_ObjCNSObject:
8514     handleObjCNSObject(S, D, AL);
8515     break;
8516   case ParsedAttr::AT_ObjCIndependentClass:
8517     handleObjCIndependentClass(S, D, AL);
8518     break;
8519   case ParsedAttr::AT_Blocks:
8520     handleBlocksAttr(S, D, AL);
8521     break;
8522   case ParsedAttr::AT_Sentinel:
8523     handleSentinelAttr(S, D, AL);
8524     break;
8525   case ParsedAttr::AT_Cleanup:
8526     handleCleanupAttr(S, D, AL);
8527     break;
8528   case ParsedAttr::AT_NoDebug:
8529     handleNoDebugAttr(S, D, AL);
8530     break;
8531   case ParsedAttr::AT_CmseNSEntry:
8532     handleCmseNSEntryAttr(S, D, AL);
8533     break;
8534   case ParsedAttr::AT_StdCall:
8535   case ParsedAttr::AT_CDecl:
8536   case ParsedAttr::AT_FastCall:
8537   case ParsedAttr::AT_ThisCall:
8538   case ParsedAttr::AT_Pascal:
8539   case ParsedAttr::AT_RegCall:
8540   case ParsedAttr::AT_SwiftCall:
8541   case ParsedAttr::AT_SwiftAsyncCall:
8542   case ParsedAttr::AT_VectorCall:
8543   case ParsedAttr::AT_MSABI:
8544   case ParsedAttr::AT_SysVABI:
8545   case ParsedAttr::AT_Pcs:
8546   case ParsedAttr::AT_IntelOclBicc:
8547   case ParsedAttr::AT_PreserveMost:
8548   case ParsedAttr::AT_PreserveAll:
8549   case ParsedAttr::AT_AArch64VectorPcs:
8550     handleCallConvAttr(S, D, AL);
8551     break;
8552   case ParsedAttr::AT_Suppress:
8553     handleSuppressAttr(S, D, AL);
8554     break;
8555   case ParsedAttr::AT_Owner:
8556   case ParsedAttr::AT_Pointer:
8557     handleLifetimeCategoryAttr(S, D, AL);
8558     break;
8559   case ParsedAttr::AT_OpenCLAccess:
8560     handleOpenCLAccessAttr(S, D, AL);
8561     break;
8562   case ParsedAttr::AT_OpenCLNoSVM:
8563     handleOpenCLNoSVMAttr(S, D, AL);
8564     break;
8565   case ParsedAttr::AT_SwiftContext:
8566     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
8567     break;
8568   case ParsedAttr::AT_SwiftAsyncContext:
8569     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext);
8570     break;
8571   case ParsedAttr::AT_SwiftErrorResult:
8572     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
8573     break;
8574   case ParsedAttr::AT_SwiftIndirectResult:
8575     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
8576     break;
8577   case ParsedAttr::AT_InternalLinkage:
8578     handleInternalLinkageAttr(S, D, AL);
8579     break;
8580 
8581   // Microsoft attributes:
8582   case ParsedAttr::AT_LayoutVersion:
8583     handleLayoutVersion(S, D, AL);
8584     break;
8585   case ParsedAttr::AT_Uuid:
8586     handleUuidAttr(S, D, AL);
8587     break;
8588   case ParsedAttr::AT_MSInheritance:
8589     handleMSInheritanceAttr(S, D, AL);
8590     break;
8591   case ParsedAttr::AT_Thread:
8592     handleDeclspecThreadAttr(S, D, AL);
8593     break;
8594 
8595   case ParsedAttr::AT_AbiTag:
8596     handleAbiTagAttr(S, D, AL);
8597     break;
8598   case ParsedAttr::AT_CFGuard:
8599     handleCFGuardAttr(S, D, AL);
8600     break;
8601 
8602   // Thread safety attributes:
8603   case ParsedAttr::AT_AssertExclusiveLock:
8604     handleAssertExclusiveLockAttr(S, D, AL);
8605     break;
8606   case ParsedAttr::AT_AssertSharedLock:
8607     handleAssertSharedLockAttr(S, D, AL);
8608     break;
8609   case ParsedAttr::AT_PtGuardedVar:
8610     handlePtGuardedVarAttr(S, D, AL);
8611     break;
8612   case ParsedAttr::AT_NoSanitize:
8613     handleNoSanitizeAttr(S, D, AL);
8614     break;
8615   case ParsedAttr::AT_NoSanitizeSpecific:
8616     handleNoSanitizeSpecificAttr(S, D, AL);
8617     break;
8618   case ParsedAttr::AT_GuardedBy:
8619     handleGuardedByAttr(S, D, AL);
8620     break;
8621   case ParsedAttr::AT_PtGuardedBy:
8622     handlePtGuardedByAttr(S, D, AL);
8623     break;
8624   case ParsedAttr::AT_ExclusiveTrylockFunction:
8625     handleExclusiveTrylockFunctionAttr(S, D, AL);
8626     break;
8627   case ParsedAttr::AT_LockReturned:
8628     handleLockReturnedAttr(S, D, AL);
8629     break;
8630   case ParsedAttr::AT_LocksExcluded:
8631     handleLocksExcludedAttr(S, D, AL);
8632     break;
8633   case ParsedAttr::AT_SharedTrylockFunction:
8634     handleSharedTrylockFunctionAttr(S, D, AL);
8635     break;
8636   case ParsedAttr::AT_AcquiredBefore:
8637     handleAcquiredBeforeAttr(S, D, AL);
8638     break;
8639   case ParsedAttr::AT_AcquiredAfter:
8640     handleAcquiredAfterAttr(S, D, AL);
8641     break;
8642 
8643   // Capability analysis attributes.
8644   case ParsedAttr::AT_Capability:
8645   case ParsedAttr::AT_Lockable:
8646     handleCapabilityAttr(S, D, AL);
8647     break;
8648   case ParsedAttr::AT_RequiresCapability:
8649     handleRequiresCapabilityAttr(S, D, AL);
8650     break;
8651 
8652   case ParsedAttr::AT_AssertCapability:
8653     handleAssertCapabilityAttr(S, D, AL);
8654     break;
8655   case ParsedAttr::AT_AcquireCapability:
8656     handleAcquireCapabilityAttr(S, D, AL);
8657     break;
8658   case ParsedAttr::AT_ReleaseCapability:
8659     handleReleaseCapabilityAttr(S, D, AL);
8660     break;
8661   case ParsedAttr::AT_TryAcquireCapability:
8662     handleTryAcquireCapabilityAttr(S, D, AL);
8663     break;
8664 
8665   // Consumed analysis attributes.
8666   case ParsedAttr::AT_Consumable:
8667     handleConsumableAttr(S, D, AL);
8668     break;
8669   case ParsedAttr::AT_CallableWhen:
8670     handleCallableWhenAttr(S, D, AL);
8671     break;
8672   case ParsedAttr::AT_ParamTypestate:
8673     handleParamTypestateAttr(S, D, AL);
8674     break;
8675   case ParsedAttr::AT_ReturnTypestate:
8676     handleReturnTypestateAttr(S, D, AL);
8677     break;
8678   case ParsedAttr::AT_SetTypestate:
8679     handleSetTypestateAttr(S, D, AL);
8680     break;
8681   case ParsedAttr::AT_TestTypestate:
8682     handleTestTypestateAttr(S, D, AL);
8683     break;
8684 
8685   // Type safety attributes.
8686   case ParsedAttr::AT_ArgumentWithTypeTag:
8687     handleArgumentWithTypeTagAttr(S, D, AL);
8688     break;
8689   case ParsedAttr::AT_TypeTagForDatatype:
8690     handleTypeTagForDatatypeAttr(S, D, AL);
8691     break;
8692 
8693   // Swift attributes.
8694   case ParsedAttr::AT_SwiftAsyncName:
8695     handleSwiftAsyncName(S, D, AL);
8696     break;
8697   case ParsedAttr::AT_SwiftAttr:
8698     handleSwiftAttrAttr(S, D, AL);
8699     break;
8700   case ParsedAttr::AT_SwiftBridge:
8701     handleSwiftBridge(S, D, AL);
8702     break;
8703   case ParsedAttr::AT_SwiftError:
8704     handleSwiftError(S, D, AL);
8705     break;
8706   case ParsedAttr::AT_SwiftName:
8707     handleSwiftName(S, D, AL);
8708     break;
8709   case ParsedAttr::AT_SwiftNewType:
8710     handleSwiftNewType(S, D, AL);
8711     break;
8712   case ParsedAttr::AT_SwiftAsync:
8713     handleSwiftAsyncAttr(S, D, AL);
8714     break;
8715   case ParsedAttr::AT_SwiftAsyncError:
8716     handleSwiftAsyncError(S, D, AL);
8717     break;
8718 
8719   // XRay attributes.
8720   case ParsedAttr::AT_XRayLogArgs:
8721     handleXRayLogArgsAttr(S, D, AL);
8722     break;
8723 
8724   case ParsedAttr::AT_PatchableFunctionEntry:
8725     handlePatchableFunctionEntryAttr(S, D, AL);
8726     break;
8727 
8728   case ParsedAttr::AT_AlwaysDestroy:
8729   case ParsedAttr::AT_NoDestroy:
8730     handleDestroyAttr(S, D, AL);
8731     break;
8732 
8733   case ParsedAttr::AT_Uninitialized:
8734     handleUninitializedAttr(S, D, AL);
8735     break;
8736 
8737   case ParsedAttr::AT_ObjCExternallyRetained:
8738     handleObjCExternallyRetainedAttr(S, D, AL);
8739     break;
8740 
8741   case ParsedAttr::AT_MIGServerRoutine:
8742     handleMIGServerRoutineAttr(S, D, AL);
8743     break;
8744 
8745   case ParsedAttr::AT_MSAllocator:
8746     handleMSAllocatorAttr(S, D, AL);
8747     break;
8748 
8749   case ParsedAttr::AT_ArmBuiltinAlias:
8750     handleArmBuiltinAliasAttr(S, D, AL);
8751     break;
8752 
8753   case ParsedAttr::AT_AcquireHandle:
8754     handleAcquireHandleAttr(S, D, AL);
8755     break;
8756 
8757   case ParsedAttr::AT_ReleaseHandle:
8758     handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
8759     break;
8760 
8761   case ParsedAttr::AT_UseHandle:
8762     handleHandleAttr<UseHandleAttr>(S, D, AL);
8763     break;
8764 
8765   case ParsedAttr::AT_EnforceTCB:
8766     handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
8767     break;
8768 
8769   case ParsedAttr::AT_EnforceTCBLeaf:
8770     handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
8771     break;
8772 
8773   case ParsedAttr::AT_BuiltinAlias:
8774     handleBuiltinAliasAttr(S, D, AL);
8775     break;
8776 
8777   case ParsedAttr::AT_UsingIfExists:
8778     handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL);
8779     break;
8780   }
8781 }
8782 
8783 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
8784 /// attribute list to the specified decl, ignoring any type attributes.
8785 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
8786                                     const ParsedAttributesView &AttrList,
8787                                     bool IncludeCXX11Attributes) {
8788   if (AttrList.empty())
8789     return;
8790 
8791   for (const ParsedAttr &AL : AttrList)
8792     ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
8793 
8794   // FIXME: We should be able to handle these cases in TableGen.
8795   // GCC accepts
8796   // static int a9 __attribute__((weakref));
8797   // but that looks really pointless. We reject it.
8798   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
8799     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
8800         << cast<NamedDecl>(D);
8801     D->dropAttr<WeakRefAttr>();
8802     return;
8803   }
8804 
8805   // FIXME: We should be able to handle this in TableGen as well. It would be
8806   // good to have a way to specify "these attributes must appear as a group",
8807   // for these. Additionally, it would be good to have a way to specify "these
8808   // attribute must never appear as a group" for attributes like cold and hot.
8809   if (!D->hasAttr<OpenCLKernelAttr>()) {
8810     // These attributes cannot be applied to a non-kernel function.
8811     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
8812       // FIXME: This emits a different error message than
8813       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
8814       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8815       D->setInvalidDecl();
8816     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
8817       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8818       D->setInvalidDecl();
8819     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
8820       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8821       D->setInvalidDecl();
8822     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
8823       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8824       D->setInvalidDecl();
8825     } else if (!D->hasAttr<CUDAGlobalAttr>()) {
8826       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
8827         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8828             << A << ExpectedKernelFunction;
8829         D->setInvalidDecl();
8830       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
8831         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8832             << A << ExpectedKernelFunction;
8833         D->setInvalidDecl();
8834       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
8835         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8836             << A << ExpectedKernelFunction;
8837         D->setInvalidDecl();
8838       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
8839         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8840             << A << ExpectedKernelFunction;
8841         D->setInvalidDecl();
8842       }
8843     }
8844   }
8845 
8846   // Do this check after processing D's attributes because the attribute
8847   // objc_method_family can change whether the given method is in the init
8848   // family, and it can be applied after objc_designated_initializer. This is a
8849   // bit of a hack, but we need it to be compatible with versions of clang that
8850   // processed the attribute list in the wrong order.
8851   if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
8852       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
8853     Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
8854     D->dropAttr<ObjCDesignatedInitializerAttr>();
8855   }
8856 }
8857 
8858 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
8859 // attribute.
8860 void Sema::ProcessDeclAttributeDelayed(Decl *D,
8861                                        const ParsedAttributesView &AttrList) {
8862   for (const ParsedAttr &AL : AttrList)
8863     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
8864       handleTransparentUnionAttr(*this, D, AL);
8865       break;
8866     }
8867 
8868   // For BPFPreserveAccessIndexAttr, we want to populate the attributes
8869   // to fields and inner records as well.
8870   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
8871     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
8872 }
8873 
8874 // Annotation attributes are the only attributes allowed after an access
8875 // specifier.
8876 bool Sema::ProcessAccessDeclAttributeList(
8877     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
8878   for (const ParsedAttr &AL : AttrList) {
8879     if (AL.getKind() == ParsedAttr::AT_Annotate) {
8880       ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
8881     } else {
8882       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
8883       return true;
8884     }
8885   }
8886   return false;
8887 }
8888 
8889 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
8890 /// contains any decl attributes that we should warn about.
8891 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
8892   for (const ParsedAttr &AL : A) {
8893     // Only warn if the attribute is an unignored, non-type attribute.
8894     if (AL.isUsedAsTypeAttr() || AL.isInvalid())
8895       continue;
8896     if (AL.getKind() == ParsedAttr::IgnoredAttribute)
8897       continue;
8898 
8899     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
8900       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
8901           << AL << AL.getRange();
8902     } else {
8903       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
8904                                                             << AL.getRange();
8905     }
8906   }
8907 }
8908 
8909 /// checkUnusedDeclAttributes - Given a declarator which is not being
8910 /// used to build a declaration, complain about any decl attributes
8911 /// which might be lying around on it.
8912 void Sema::checkUnusedDeclAttributes(Declarator &D) {
8913   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
8914   ::checkUnusedDeclAttributes(*this, D.getAttributes());
8915   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
8916     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
8917 }
8918 
8919 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
8920 /// \#pragma weak needs a non-definition decl and source may not have one.
8921 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
8922                                       SourceLocation Loc) {
8923   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
8924   NamedDecl *NewD = nullptr;
8925   if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
8926     FunctionDecl *NewFD;
8927     // FIXME: Missing call to CheckFunctionDeclaration().
8928     // FIXME: Mangling?
8929     // FIXME: Is the qualifier info correct?
8930     // FIXME: Is the DeclContext correct?
8931     NewFD = FunctionDecl::Create(
8932         FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
8933         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
8934         getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
8935         FD->hasPrototype(), ConstexprSpecKind::Unspecified,
8936         FD->getTrailingRequiresClause());
8937     NewD = NewFD;
8938 
8939     if (FD->getQualifier())
8940       NewFD->setQualifierInfo(FD->getQualifierLoc());
8941 
8942     // Fake up parameter variables; they are declared as if this were
8943     // a typedef.
8944     QualType FDTy = FD->getType();
8945     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
8946       SmallVector<ParmVarDecl*, 16> Params;
8947       for (const auto &AI : FT->param_types()) {
8948         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
8949         Param->setScopeInfo(0, Params.size());
8950         Params.push_back(Param);
8951       }
8952       NewFD->setParams(Params);
8953     }
8954   } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
8955     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
8956                            VD->getInnerLocStart(), VD->getLocation(), II,
8957                            VD->getType(), VD->getTypeSourceInfo(),
8958                            VD->getStorageClass());
8959     if (VD->getQualifier())
8960       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
8961   }
8962   return NewD;
8963 }
8964 
8965 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
8966 /// applied to it, possibly with an alias.
8967 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
8968   if (W.getUsed()) return; // only do this once
8969   W.setUsed(true);
8970   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
8971     IdentifierInfo *NDId = ND->getIdentifier();
8972     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
8973     NewD->addAttr(
8974         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
8975     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8976                                            AttributeCommonInfo::AS_Pragma));
8977     WeakTopLevelDecl.push_back(NewD);
8978     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
8979     // to insert Decl at TU scope, sorry.
8980     DeclContext *SavedContext = CurContext;
8981     CurContext = Context.getTranslationUnitDecl();
8982     NewD->setDeclContext(CurContext);
8983     NewD->setLexicalDeclContext(CurContext);
8984     PushOnScopeChains(NewD, S);
8985     CurContext = SavedContext;
8986   } else { // just add weak to existing
8987     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8988                                          AttributeCommonInfo::AS_Pragma));
8989   }
8990 }
8991 
8992 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
8993   // It's valid to "forward-declare" #pragma weak, in which case we
8994   // have to do this.
8995   LoadExternalWeakUndeclaredIdentifiers();
8996   if (!WeakUndeclaredIdentifiers.empty()) {
8997     NamedDecl *ND = nullptr;
8998     if (auto *VD = dyn_cast<VarDecl>(D))
8999       if (VD->isExternC())
9000         ND = VD;
9001     if (auto *FD = dyn_cast<FunctionDecl>(D))
9002       if (FD->isExternC())
9003         ND = FD;
9004     if (ND) {
9005       if (IdentifierInfo *Id = ND->getIdentifier()) {
9006         auto I = WeakUndeclaredIdentifiers.find(Id);
9007         if (I != WeakUndeclaredIdentifiers.end()) {
9008           WeakInfo W = I->second;
9009           DeclApplyPragmaWeak(S, ND, W);
9010           WeakUndeclaredIdentifiers[Id] = W;
9011         }
9012       }
9013     }
9014   }
9015 }
9016 
9017 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
9018 /// it, apply them to D.  This is a bit tricky because PD can have attributes
9019 /// specified in many different places, and we need to find and apply them all.
9020 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
9021   // Apply decl attributes from the DeclSpec if present.
9022   if (!PD.getDeclSpec().getAttributes().empty())
9023     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
9024 
9025   // Walk the declarator structure, applying decl attributes that were in a type
9026   // position to the decl itself.  This handles cases like:
9027   //   int *__attr__(x)** D;
9028   // when X is a decl attribute.
9029   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
9030     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
9031                              /*IncludeCXX11Attributes=*/false);
9032 
9033   // Finally, apply any attributes on the decl itself.
9034   ProcessDeclAttributeList(S, D, PD.getAttributes());
9035 
9036   // Apply additional attributes specified by '#pragma clang attribute'.
9037   AddPragmaAttributes(S, D);
9038 }
9039 
9040 /// Is the given declaration allowed to use a forbidden type?
9041 /// If so, it'll still be annotated with an attribute that makes it
9042 /// illegal to actually use.
9043 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
9044                                    const DelayedDiagnostic &diag,
9045                                    UnavailableAttr::ImplicitReason &reason) {
9046   // Private ivars are always okay.  Unfortunately, people don't
9047   // always properly make their ivars private, even in system headers.
9048   // Plus we need to make fields okay, too.
9049   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
9050       !isa<FunctionDecl>(D))
9051     return false;
9052 
9053   // Silently accept unsupported uses of __weak in both user and system
9054   // declarations when it's been disabled, for ease of integration with
9055   // -fno-objc-arc files.  We do have to take some care against attempts
9056   // to define such things;  for now, we've only done that for ivars
9057   // and properties.
9058   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
9059     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
9060         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
9061       reason = UnavailableAttr::IR_ForbiddenWeak;
9062       return true;
9063     }
9064   }
9065 
9066   // Allow all sorts of things in system headers.
9067   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
9068     // Currently, all the failures dealt with this way are due to ARC
9069     // restrictions.
9070     reason = UnavailableAttr::IR_ARCForbiddenType;
9071     return true;
9072   }
9073 
9074   return false;
9075 }
9076 
9077 /// Handle a delayed forbidden-type diagnostic.
9078 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
9079                                        Decl *D) {
9080   auto Reason = UnavailableAttr::IR_None;
9081   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
9082     assert(Reason && "didn't set reason?");
9083     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
9084     return;
9085   }
9086   if (S.getLangOpts().ObjCAutoRefCount)
9087     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
9088       // FIXME: we may want to suppress diagnostics for all
9089       // kind of forbidden type messages on unavailable functions.
9090       if (FD->hasAttr<UnavailableAttr>() &&
9091           DD.getForbiddenTypeDiagnostic() ==
9092               diag::err_arc_array_param_no_ownership) {
9093         DD.Triggered = true;
9094         return;
9095       }
9096     }
9097 
9098   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
9099       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
9100   DD.Triggered = true;
9101 }
9102 
9103 
9104 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
9105   assert(DelayedDiagnostics.getCurrentPool());
9106   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
9107   DelayedDiagnostics.popWithoutEmitting(state);
9108 
9109   // When delaying diagnostics to run in the context of a parsed
9110   // declaration, we only want to actually emit anything if parsing
9111   // succeeds.
9112   if (!decl) return;
9113 
9114   // We emit all the active diagnostics in this pool or any of its
9115   // parents.  In general, we'll get one pool for the decl spec
9116   // and a child pool for each declarator; in a decl group like:
9117   //   deprecated_typedef foo, *bar, baz();
9118   // only the declarator pops will be passed decls.  This is correct;
9119   // we really do need to consider delayed diagnostics from the decl spec
9120   // for each of the different declarations.
9121   const DelayedDiagnosticPool *pool = &poppedPool;
9122   do {
9123     bool AnyAccessFailures = false;
9124     for (DelayedDiagnosticPool::pool_iterator
9125            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
9126       // This const_cast is a bit lame.  Really, Triggered should be mutable.
9127       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
9128       if (diag.Triggered)
9129         continue;
9130 
9131       switch (diag.Kind) {
9132       case DelayedDiagnostic::Availability:
9133         // Don't bother giving deprecation/unavailable diagnostics if
9134         // the decl is invalid.
9135         if (!decl->isInvalidDecl())
9136           handleDelayedAvailabilityCheck(diag, decl);
9137         break;
9138 
9139       case DelayedDiagnostic::Access:
9140         // Only produce one access control diagnostic for a structured binding
9141         // declaration: we don't need to tell the user that all the fields are
9142         // inaccessible one at a time.
9143         if (AnyAccessFailures && isa<DecompositionDecl>(decl))
9144           continue;
9145         HandleDelayedAccessCheck(diag, decl);
9146         if (diag.Triggered)
9147           AnyAccessFailures = true;
9148         break;
9149 
9150       case DelayedDiagnostic::ForbiddenType:
9151         handleDelayedForbiddenType(*this, diag, decl);
9152         break;
9153       }
9154     }
9155   } while ((pool = pool->getParent()));
9156 }
9157 
9158 /// Given a set of delayed diagnostics, re-emit them as if they had
9159 /// been delayed in the current context instead of in the given pool.
9160 /// Essentially, this just moves them to the current pool.
9161 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
9162   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
9163   assert(curPool && "re-emitting in undelayed context not supported");
9164   curPool->steal(pool);
9165 }
9166