1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "TypeLocBuilder.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/EvaluatedExprVisitor.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/ParsedTemplate.h"
33 #include "clang/Parse/ParseDiagnostic.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Lex/HeaderSearch.h"
41 #include "clang/Lex/ModuleLoader.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/Triple.h"
44 #include <algorithm>
45 #include <cstring>
46 #include <functional>
47 using namespace clang;
48 using namespace sema;
49 
50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51   if (OwnedType) {
52     Decl *Group[2] = { OwnedType, Ptr };
53     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54   }
55 
56   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57 }
58 
59 namespace {
60 
61 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62  public:
63   TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64     WantExpressionKeywords = false;
65     WantCXXNamedCasts = false;
66     WantRemainingKeywords = false;
67   }
68 
69   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70     if (NamedDecl *ND = candidate.getCorrectionDecl())
71       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72           (AllowInvalidDecl || !ND->isInvalidDecl());
73     else
74       return candidate.isKeyword();
75   }
76 
77  private:
78   bool AllowInvalidDecl;
79 };
80 
81 }
82 
83 /// \brief If the identifier refers to a type name within this scope,
84 /// return the declaration of that type.
85 ///
86 /// This routine performs ordinary name lookup of the identifier II
87 /// within the given scope, with optional C++ scope specifier SS, to
88 /// determine whether the name refers to a type. If so, returns an
89 /// opaque pointer (actually a QualType) corresponding to that
90 /// type. Otherwise, returns NULL.
91 ///
92 /// If name lookup results in an ambiguity, this routine will complain
93 /// and then return NULL.
94 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                              Scope *S, CXXScopeSpec *SS,
96                              bool isClassName, bool HasTrailingDot,
97                              ParsedType ObjectTypePtr,
98                              bool IsCtorOrDtorName,
99                              bool WantNontrivialTypeSourceInfo,
100                              IdentifierInfo **CorrectedII) {
101   // Determine where we will perform name lookup.
102   DeclContext *LookupCtx = 0;
103   if (ObjectTypePtr) {
104     QualType ObjectType = ObjectTypePtr.get();
105     if (ObjectType->isRecordType())
106       LookupCtx = computeDeclContext(ObjectType);
107   } else if (SS && SS->isNotEmpty()) {
108     LookupCtx = computeDeclContext(*SS, false);
109 
110     if (!LookupCtx) {
111       if (isDependentScopeSpecifier(*SS)) {
112         // C++ [temp.res]p3:
113         //   A qualified-id that refers to a type and in which the
114         //   nested-name-specifier depends on a template-parameter (14.6.2)
115         //   shall be prefixed by the keyword typename to indicate that the
116         //   qualified-id denotes a type, forming an
117         //   elaborated-type-specifier (7.1.5.3).
118         //
119         // We therefore do not perform any name lookup if the result would
120         // refer to a member of an unknown specialization.
121         if (!isClassName)
122           return ParsedType();
123 
124         // We know from the grammar that this name refers to a type,
125         // so build a dependent node to describe the type.
126         if (WantNontrivialTypeSourceInfo)
127           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128 
129         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130         QualType T =
131           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                             II, NameLoc);
133 
134           return ParsedType::make(T);
135       }
136 
137       return ParsedType();
138     }
139 
140     if (!LookupCtx->isDependentContext() &&
141         RequireCompleteDeclContext(*SS, LookupCtx))
142       return ParsedType();
143   }
144 
145   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146   // lookup for class-names.
147   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                       LookupOrdinaryName;
149   LookupResult Result(*this, &II, NameLoc, Kind);
150   if (LookupCtx) {
151     // Perform "qualified" name lookup into the declaration context we
152     // computed, which is either the type of the base of a member access
153     // expression or the declaration context associated with a prior
154     // nested-name-specifier.
155     LookupQualifiedName(Result, LookupCtx);
156 
157     if (ObjectTypePtr && Result.empty()) {
158       // C++ [basic.lookup.classref]p3:
159       //   If the unqualified-id is ~type-name, the type-name is looked up
160       //   in the context of the entire postfix-expression. If the type T of
161       //   the object expression is of a class type C, the type-name is also
162       //   looked up in the scope of class C. At least one of the lookups shall
163       //   find a name that refers to (possibly cv-qualified) T.
164       LookupName(Result, S);
165     }
166   } else {
167     // Perform unqualified name lookup.
168     LookupName(Result, S);
169   }
170 
171   NamedDecl *IIDecl = 0;
172   switch (Result.getResultKind()) {
173   case LookupResult::NotFound:
174   case LookupResult::NotFoundInCurrentInstantiation:
175     if (CorrectedII) {
176       TypeNameValidatorCCC Validator(true);
177       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                               Kind, S, SS, Validator);
179       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180       TemplateTy Template;
181       bool MemberOfUnknownSpecialization;
182       UnqualifiedId TemplateName;
183       TemplateName.setIdentifier(NewII, NameLoc);
184       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185       CXXScopeSpec NewSS, *NewSSPtr = SS;
186       if (SS && NNS) {
187         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188         NewSSPtr = &NewSS;
189       }
190       if (Correction && (NNS || NewII != &II) &&
191           // Ignore a correction to a template type as the to-be-corrected
192           // identifier is not a template (typo correction for template names
193           // is handled elsewhere).
194           !(getLangOptions().CPlusPlus && NewSSPtr &&
195             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                            false, Template, MemberOfUnknownSpecialization))) {
197         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                     isClassName, HasTrailingDot, ObjectTypePtr,
199                                     IsCtorOrDtorName,
200                                     WantNontrivialTypeSourceInfo);
201         if (Ty) {
202           std::string CorrectedStr(Correction.getAsString(getLangOptions()));
203           std::string CorrectedQuotedStr(
204               Correction.getQuoted(getLangOptions()));
205           Diag(NameLoc, diag::err_unknown_typename_suggest)
206               << Result.getLookupName() << CorrectedQuotedStr
207               << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                               CorrectedStr);
209           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211               << CorrectedQuotedStr;
212 
213           if (SS && NNS)
214             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215           *CorrectedII = NewII;
216           return Ty;
217         }
218       }
219     }
220     // If typo correction failed or was not performed, fall through
221   case LookupResult::FoundOverloaded:
222   case LookupResult::FoundUnresolvedValue:
223     Result.suppressDiagnostics();
224     return ParsedType();
225 
226   case LookupResult::Ambiguous:
227     // Recover from type-hiding ambiguities by hiding the type.  We'll
228     // do the lookup again when looking for an object, and we can
229     // diagnose the error then.  If we don't do this, then the error
230     // about hiding the type will be immediately followed by an error
231     // that only makes sense if the identifier was treated like a type.
232     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233       Result.suppressDiagnostics();
234       return ParsedType();
235     }
236 
237     // Look to see if we have a type anywhere in the list of results.
238     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239          Res != ResEnd; ++Res) {
240       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241         if (!IIDecl ||
242             (*Res)->getLocation().getRawEncoding() <
243               IIDecl->getLocation().getRawEncoding())
244           IIDecl = *Res;
245       }
246     }
247 
248     if (!IIDecl) {
249       // None of the entities we found is a type, so there is no way
250       // to even assume that the result is a type. In this case, don't
251       // complain about the ambiguity. The parser will either try to
252       // perform this lookup again (e.g., as an object name), which
253       // will produce the ambiguity, or will complain that it expected
254       // a type name.
255       Result.suppressDiagnostics();
256       return ParsedType();
257     }
258 
259     // We found a type within the ambiguous lookup; diagnose the
260     // ambiguity and then return that type. This might be the right
261     // answer, or it might not be, but it suppresses any attempt to
262     // perform the name lookup again.
263     break;
264 
265   case LookupResult::Found:
266     IIDecl = Result.getFoundDecl();
267     break;
268   }
269 
270   assert(IIDecl && "Didn't find decl");
271 
272   QualType T;
273   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274     DiagnoseUseOfDecl(IIDecl, NameLoc);
275 
276     if (T.isNull())
277       T = Context.getTypeDeclType(TD);
278 
279     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280     // constructor or destructor name (in such a case, the scope specifier
281     // will be attached to the enclosing Expr or Decl node).
282     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283       if (WantNontrivialTypeSourceInfo) {
284         // Construct a type with type-source information.
285         TypeLocBuilder Builder;
286         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287 
288         T = getElaboratedType(ETK_None, *SS, T);
289         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290         ElabTL.setElaboratedKeywordLoc(SourceLocation());
291         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293       } else {
294         T = getElaboratedType(ETK_None, *SS, T);
295       }
296     }
297   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299     if (!HasTrailingDot)
300       T = Context.getObjCInterfaceType(IDecl);
301   }
302 
303   if (T.isNull()) {
304     // If it's not plausibly a type, suppress diagnostics.
305     Result.suppressDiagnostics();
306     return ParsedType();
307   }
308   return ParsedType::make(T);
309 }
310 
311 /// isTagName() - This method is called *for error recovery purposes only*
312 /// to determine if the specified name is a valid tag name ("struct foo").  If
313 /// so, this returns the TST for the tag corresponding to it (TST_enum,
314 /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315 /// where the user forgot to specify the tag.
316 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317   // Do a tag name lookup in this scope.
318   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319   LookupName(R, S, false);
320   R.suppressDiagnostics();
321   if (R.getResultKind() == LookupResult::Found)
322     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323       switch (TD->getTagKind()) {
324       case TTK_Struct: return DeclSpec::TST_struct;
325       case TTK_Union:  return DeclSpec::TST_union;
326       case TTK_Class:  return DeclSpec::TST_class;
327       case TTK_Enum:   return DeclSpec::TST_enum;
328       }
329     }
330 
331   return DeclSpec::TST_unspecified;
332 }
333 
334 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
336 /// then downgrade the missing typename error to a warning.
337 /// This is needed for MSVC compatibility; Example:
338 /// @code
339 /// template<class T> class A {
340 /// public:
341 ///   typedef int TYPE;
342 /// };
343 /// template<class T> class B : public A<T> {
344 /// public:
345 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346 /// };
347 /// @endcode
348 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349   if (CurContext->isRecord()) {
350     const Type *Ty = SS->getScopeRep()->getAsType();
351 
352     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356         return true;
357     return S->isFunctionPrototypeScope();
358   }
359   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360 }
361 
362 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                    SourceLocation IILoc,
364                                    Scope *S,
365                                    CXXScopeSpec *SS,
366                                    ParsedType &SuggestedType) {
367   // We don't have anything to suggest (yet).
368   SuggestedType = ParsedType();
369 
370   // There may have been a typo in the name of the type. Look up typo
371   // results, in case we have something that we can suggest.
372   TypeNameValidatorCCC Validator(false);
373   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                              LookupOrdinaryName, S, SS,
375                                              Validator)) {
376     std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
377     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
378 
379     if (Corrected.isKeyword()) {
380       // We corrected to a keyword.
381       // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382       Diag(IILoc, diag::err_unknown_typename_suggest)
383         << &II << CorrectedQuotedStr;
384     } else {
385       NamedDecl *Result = Corrected.getCorrectionDecl();
386       // We found a similarly-named type or interface; suggest that.
387       if (!SS || !SS->isSet())
388         Diag(IILoc, diag::err_unknown_typename_suggest)
389           << &II << CorrectedQuotedStr
390           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391       else if (DeclContext *DC = computeDeclContext(*SS, false))
392         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393           << &II << DC << CorrectedQuotedStr << SS->getRange()
394           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395       else
396         llvm_unreachable("could not have corrected a typo here");
397 
398       Diag(Result->getLocation(), diag::note_previous_decl)
399         << CorrectedQuotedStr;
400 
401       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                   false, false, ParsedType(),
403                                   /*IsCtorOrDtorName=*/false,
404                                   /*NonTrivialTypeSourceInfo=*/true);
405     }
406     return true;
407   }
408 
409   if (getLangOptions().CPlusPlus) {
410     // See if II is a class template that the user forgot to pass arguments to.
411     UnqualifiedId Name;
412     Name.setIdentifier(&II, IILoc);
413     CXXScopeSpec EmptySS;
414     TemplateTy TemplateResult;
415     bool MemberOfUnknownSpecialization;
416     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                        Name, ParsedType(), true, TemplateResult,
418                        MemberOfUnknownSpecialization) == TNK_Type_template) {
419       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420       Diag(IILoc, diag::err_template_missing_args) << TplName;
421       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423           << TplDecl->getTemplateParameters()->getSourceRange();
424       }
425       return true;
426     }
427   }
428 
429   // FIXME: Should we move the logic that tries to recover from a missing tag
430   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431 
432   if (!SS || (!SS->isSet() && !SS->isInvalid()))
433     Diag(IILoc, diag::err_unknown_typename) << &II;
434   else if (DeclContext *DC = computeDeclContext(*SS, false))
435     Diag(IILoc, diag::err_typename_nested_not_found)
436       << &II << DC << SS->getRange();
437   else if (isDependentScopeSpecifier(*SS)) {
438     unsigned DiagID = diag::err_typename_missing;
439     if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440       DiagID = diag::warn_typename_missing;
441 
442     Diag(SS->getRange().getBegin(), DiagID)
443       << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444       << SourceRange(SS->getRange().getBegin(), IILoc)
445       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446     SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                          .get();
448   } else {
449     assert(SS && SS->isInvalid() &&
450            "Invalid scope specifier has already been diagnosed");
451   }
452 
453   return true;
454 }
455 
456 /// \brief Determine whether the given result set contains either a type name
457 /// or
458 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459   bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
460                        NextToken.is(tok::less);
461 
462   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464       return true;
465 
466     if (CheckTemplate && isa<TemplateDecl>(*I))
467       return true;
468   }
469 
470   return false;
471 }
472 
473 Sema::NameClassification Sema::ClassifyName(Scope *S,
474                                             CXXScopeSpec &SS,
475                                             IdentifierInfo *&Name,
476                                             SourceLocation NameLoc,
477                                             const Token &NextToken) {
478   DeclarationNameInfo NameInfo(Name, NameLoc);
479   ObjCMethodDecl *CurMethod = getCurMethodDecl();
480 
481   if (NextToken.is(tok::coloncolon)) {
482     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483                                 QualType(), false, SS, 0, false);
484 
485   }
486 
487   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488   LookupParsedName(Result, S, &SS, !CurMethod);
489 
490   // Perform lookup for Objective-C instance variables (including automatically
491   // synthesized instance variables), if we're in an Objective-C method.
492   // FIXME: This lookup really, really needs to be folded in to the normal
493   // unqualified lookup mechanism.
494   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496     if (E.get() || E.isInvalid())
497       return E;
498   }
499 
500   bool SecondTry = false;
501   bool IsFilteredTemplateName = false;
502 
503 Corrected:
504   switch (Result.getResultKind()) {
505   case LookupResult::NotFound:
506     // If an unqualified-id is followed by a '(', then we have a function
507     // call.
508     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509       // In C++, this is an ADL-only call.
510       // FIXME: Reference?
511       if (getLangOptions().CPlusPlus)
512         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513 
514       // C90 6.3.2.2:
515       //   If the expression that precedes the parenthesized argument list in a
516       //   function call consists solely of an identifier, and if no
517       //   declaration is visible for this identifier, the identifier is
518       //   implicitly declared exactly as if, in the innermost block containing
519       //   the function call, the declaration
520       //
521       //     extern int identifier ();
522       //
523       //   appeared.
524       //
525       // We also allow this in C99 as an extension.
526       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527         Result.addDecl(D);
528         Result.resolveKind();
529         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530       }
531     }
532 
533     // In C, we first see whether there is a tag type by the same name, in
534     // which case it's likely that the user just forget to write "enum",
535     // "struct", or "union".
536     if (!getLangOptions().CPlusPlus && !SecondTry) {
537       Result.clear(LookupTagName);
538       LookupParsedName(Result, S, &SS);
539       if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540         const char *TagName = 0;
541         const char *FixItTagName = 0;
542         switch (Tag->getTagKind()) {
543           case TTK_Class:
544             TagName = "class";
545             FixItTagName = "class ";
546             break;
547 
548           case TTK_Enum:
549             TagName = "enum";
550             FixItTagName = "enum ";
551             break;
552 
553           case TTK_Struct:
554             TagName = "struct";
555             FixItTagName = "struct ";
556             break;
557 
558           case TTK_Union:
559             TagName = "union";
560             FixItTagName = "union ";
561             break;
562         }
563 
564         Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565           << Name << TagName << getLangOptions().CPlusPlus
566           << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567         break;
568       }
569 
570       Result.clear(LookupOrdinaryName);
571     }
572 
573     // Perform typo correction to determine if there is another name that is
574     // close to this name.
575     if (!SecondTry) {
576       SecondTry = true;
577       CorrectionCandidateCallback DefaultValidator;
578       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579                                                  Result.getLookupKind(), S,
580                                                  &SS, DefaultValidator)) {
581         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582         unsigned QualifiedDiag = diag::err_no_member_suggest;
583         std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
584         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
585 
586         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587         NamedDecl *UnderlyingFirstDecl
588           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589         if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
590             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591           UnqualifiedDiag = diag::err_no_template_suggest;
592           QualifiedDiag = diag::err_no_member_template_suggest;
593         } else if (UnderlyingFirstDecl &&
594                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
595                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597            UnqualifiedDiag = diag::err_unknown_typename_suggest;
598            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599          }
600 
601         if (SS.isEmpty())
602           Diag(NameLoc, UnqualifiedDiag)
603             << Name << CorrectedQuotedStr
604             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605         else
606           Diag(NameLoc, QualifiedDiag)
607             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608             << SS.getRange()
609             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610 
611         // Update the name, so that the caller has the new name.
612         Name = Corrected.getCorrectionAsIdentifierInfo();
613 
614         // Typo correction corrected to a keyword.
615         if (Corrected.isKeyword())
616           return Corrected.getCorrectionAsIdentifierInfo();
617 
618         // Also update the LookupResult...
619         // FIXME: This should probably go away at some point
620         Result.clear();
621         Result.setLookupName(Corrected.getCorrection());
622         if (FirstDecl) {
623           Result.addDecl(FirstDecl);
624           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625             << CorrectedQuotedStr;
626         }
627 
628         // If we found an Objective-C instance variable, let
629         // LookupInObjCMethod build the appropriate expression to
630         // reference the ivar.
631         // FIXME: This is a gross hack.
632         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633           Result.clear();
634           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635           return move(E);
636         }
637 
638         goto Corrected;
639       }
640     }
641 
642     // We failed to correct; just fall through and let the parser deal with it.
643     Result.suppressDiagnostics();
644     return NameClassification::Unknown();
645 
646   case LookupResult::NotFoundInCurrentInstantiation: {
647     // We performed name lookup into the current instantiation, and there were
648     // dependent bases, so we treat this result the same way as any other
649     // dependent nested-name-specifier.
650 
651     // C++ [temp.res]p2:
652     //   A name used in a template declaration or definition and that is
653     //   dependent on a template-parameter is assumed not to name a type
654     //   unless the applicable name lookup finds a type name or the name is
655     //   qualified by the keyword typename.
656     //
657     // FIXME: If the next token is '<', we might want to ask the parser to
658     // perform some heroics to see if we actually have a
659     // template-argument-list, which would indicate a missing 'template'
660     // keyword here.
661     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662                                      NameInfo, /*TemplateArgs=*/0);
663   }
664 
665   case LookupResult::Found:
666   case LookupResult::FoundOverloaded:
667   case LookupResult::FoundUnresolvedValue:
668     break;
669 
670   case LookupResult::Ambiguous:
671     if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
672         hasAnyAcceptableTemplateNames(Result)) {
673       // C++ [temp.local]p3:
674       //   A lookup that finds an injected-class-name (10.2) can result in an
675       //   ambiguity in certain cases (for example, if it is found in more than
676       //   one base class). If all of the injected-class-names that are found
677       //   refer to specializations of the same class template, and if the name
678       //   is followed by a template-argument-list, the reference refers to the
679       //   class template itself and not a specialization thereof, and is not
680       //   ambiguous.
681       //
682       // This filtering can make an ambiguous result into an unambiguous one,
683       // so try again after filtering out template names.
684       FilterAcceptableTemplateNames(Result);
685       if (!Result.isAmbiguous()) {
686         IsFilteredTemplateName = true;
687         break;
688       }
689     }
690 
691     // Diagnose the ambiguity and return an error.
692     return NameClassification::Error();
693   }
694 
695   if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
696       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697     // C++ [temp.names]p3:
698     //   After name lookup (3.4) finds that a name is a template-name or that
699     //   an operator-function-id or a literal- operator-id refers to a set of
700     //   overloaded functions any member of which is a function template if
701     //   this is followed by a <, the < is always taken as the delimiter of a
702     //   template-argument-list and never as the less-than operator.
703     if (!IsFilteredTemplateName)
704       FilterAcceptableTemplateNames(Result);
705 
706     if (!Result.empty()) {
707       bool IsFunctionTemplate;
708       TemplateName Template;
709       if (Result.end() - Result.begin() > 1) {
710         IsFunctionTemplate = true;
711         Template = Context.getOverloadedTemplateName(Result.begin(),
712                                                      Result.end());
713       } else {
714         TemplateDecl *TD
715           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717 
718         if (SS.isSet() && !SS.isInvalid())
719           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720                                                     /*TemplateKeyword=*/false,
721                                                       TD);
722         else
723           Template = TemplateName(TD);
724       }
725 
726       if (IsFunctionTemplate) {
727         // Function templates always go through overload resolution, at which
728         // point we'll perform the various checks (e.g., accessibility) we need
729         // to based on which function we selected.
730         Result.suppressDiagnostics();
731 
732         return NameClassification::FunctionTemplate(Template);
733       }
734 
735       return NameClassification::TypeTemplate(Template);
736     }
737   }
738 
739   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741     DiagnoseUseOfDecl(Type, NameLoc);
742     QualType T = Context.getTypeDeclType(Type);
743     return ParsedType::make(T);
744   }
745 
746   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747   if (!Class) {
748     // FIXME: It's unfortunate that we don't have a Type node for handling this.
749     if (ObjCCompatibleAliasDecl *Alias
750                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751       Class = Alias->getClassInterface();
752   }
753 
754   if (Class) {
755     DiagnoseUseOfDecl(Class, NameLoc);
756 
757     if (NextToken.is(tok::period)) {
758       // Interface. <something> is parsed as a property reference expression.
759       // Just return "unknown" as a fall-through for now.
760       Result.suppressDiagnostics();
761       return NameClassification::Unknown();
762     }
763 
764     QualType T = Context.getObjCInterfaceType(Class);
765     return ParsedType::make(T);
766   }
767 
768   if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770 
771   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772   return BuildDeclarationNameExpr(SS, Result, ADL);
773 }
774 
775 // Determines the context to return to after temporarily entering a
776 // context.  This depends in an unnecessarily complicated way on the
777 // exact ordering of callbacks from the parser.
778 DeclContext *Sema::getContainingDC(DeclContext *DC) {
779 
780   // Functions defined inline within classes aren't parsed until we've
781   // finished parsing the top-level class, so the top-level class is
782   // the context we'll need to return to.
783   if (isa<FunctionDecl>(DC)) {
784     DC = DC->getLexicalParent();
785 
786     // A function not defined within a class will always return to its
787     // lexical context.
788     if (!isa<CXXRecordDecl>(DC))
789       return DC;
790 
791     // A C++ inline method/friend is parsed *after* the topmost class
792     // it was declared in is fully parsed ("complete");  the topmost
793     // class is the context we need to return to.
794     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795       DC = RD;
796 
797     // Return the declaration context of the topmost class the inline method is
798     // declared in.
799     return DC;
800   }
801 
802   return DC->getLexicalParent();
803 }
804 
805 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806   assert(getContainingDC(DC) == CurContext &&
807       "The next DeclContext should be lexically contained in the current one.");
808   CurContext = DC;
809   S->setEntity(DC);
810 }
811 
812 void Sema::PopDeclContext() {
813   assert(CurContext && "DeclContext imbalance!");
814 
815   CurContext = getContainingDC(CurContext);
816   assert(CurContext && "Popped translation unit!");
817 }
818 
819 /// EnterDeclaratorContext - Used when we must lookup names in the context
820 /// of a declarator's nested name specifier.
821 ///
822 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823   // C++0x [basic.lookup.unqual]p13:
824   //   A name used in the definition of a static data member of class
825   //   X (after the qualified-id of the static member) is looked up as
826   //   if the name was used in a member function of X.
827   // C++0x [basic.lookup.unqual]p14:
828   //   If a variable member of a namespace is defined outside of the
829   //   scope of its namespace then any name used in the definition of
830   //   the variable member (after the declarator-id) is looked up as
831   //   if the definition of the variable member occurred in its
832   //   namespace.
833   // Both of these imply that we should push a scope whose context
834   // is the semantic context of the declaration.  We can't use
835   // PushDeclContext here because that context is not necessarily
836   // lexically contained in the current context.  Fortunately,
837   // the containing scope should have the appropriate information.
838 
839   assert(!S->getEntity() && "scope already has entity");
840 
841 #ifndef NDEBUG
842   Scope *Ancestor = S->getParent();
843   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845 #endif
846 
847   CurContext = DC;
848   S->setEntity(DC);
849 }
850 
851 void Sema::ExitDeclaratorContext(Scope *S) {
852   assert(S->getEntity() == CurContext && "Context imbalance!");
853 
854   // Switch back to the lexical context.  The safety of this is
855   // enforced by an assert in EnterDeclaratorContext.
856   Scope *Ancestor = S->getParent();
857   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858   CurContext = (DeclContext*) Ancestor->getEntity();
859 
860   // We don't need to do anything with the scope, which is going to
861   // disappear.
862 }
863 
864 
865 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868     // We assume that the caller has already called
869     // ActOnReenterTemplateScope
870     FD = TFD->getTemplatedDecl();
871   }
872   if (!FD)
873     return;
874 
875   PushDeclContext(S, FD);
876   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
877     ParmVarDecl *Param = FD->getParamDecl(P);
878     // If the parameter has an identifier, then add it to the scope
879     if (Param->getIdentifier()) {
880       S->AddDecl(Param);
881       IdResolver.AddDecl(Param);
882     }
883   }
884 }
885 
886 
887 /// \brief Determine whether we allow overloading of the function
888 /// PrevDecl with another declaration.
889 ///
890 /// This routine determines whether overloading is possible, not
891 /// whether some new function is actually an overload. It will return
892 /// true in C++ (where we can always provide overloads) or, as an
893 /// extension, in C when the previous function is already an
894 /// overloaded function declaration or has the "overloadable"
895 /// attribute.
896 static bool AllowOverloadingOfFunction(LookupResult &Previous,
897                                        ASTContext &Context) {
898   if (Context.getLangOptions().CPlusPlus)
899     return true;
900 
901   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
902     return true;
903 
904   return (Previous.getResultKind() == LookupResult::Found
905           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
906 }
907 
908 /// Add this decl to the scope shadowed decl chains.
909 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
910   // Move up the scope chain until we find the nearest enclosing
911   // non-transparent context. The declaration will be introduced into this
912   // scope.
913   while (S->getEntity() &&
914          ((DeclContext *)S->getEntity())->isTransparentContext())
915     S = S->getParent();
916 
917   // Add scoped declarations into their context, so that they can be
918   // found later. Declarations without a context won't be inserted
919   // into any context.
920   if (AddToContext)
921     CurContext->addDecl(D);
922 
923   // Out-of-line definitions shouldn't be pushed into scope in C++.
924   // Out-of-line variable and function definitions shouldn't even in C.
925   if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
926       D->isOutOfLine() &&
927       !D->getDeclContext()->getRedeclContext()->Equals(
928         D->getLexicalDeclContext()->getRedeclContext()))
929     return;
930 
931   // Template instantiations should also not be pushed into scope.
932   if (isa<FunctionDecl>(D) &&
933       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
934     return;
935 
936   // If this replaces anything in the current scope,
937   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
938                                IEnd = IdResolver.end();
939   for (; I != IEnd; ++I) {
940     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
941       S->RemoveDecl(*I);
942       IdResolver.RemoveDecl(*I);
943 
944       // Should only need to replace one decl.
945       break;
946     }
947   }
948 
949   S->AddDecl(D);
950 
951   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
952     // Implicitly-generated labels may end up getting generated in an order that
953     // isn't strictly lexical, which breaks name lookup. Be careful to insert
954     // the label at the appropriate place in the identifier chain.
955     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
956       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
957       if (IDC == CurContext) {
958         if (!S->isDeclScope(*I))
959           continue;
960       } else if (IDC->Encloses(CurContext))
961         break;
962     }
963 
964     IdResolver.InsertDeclAfter(I, D);
965   } else {
966     IdResolver.AddDecl(D);
967   }
968 }
969 
970 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
971   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
972     TUScope->AddDecl(D);
973 }
974 
975 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
976                          bool ExplicitInstantiationOrSpecialization) {
977   return IdResolver.isDeclInScope(D, Ctx, Context, S,
978                                   ExplicitInstantiationOrSpecialization);
979 }
980 
981 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
982   DeclContext *TargetDC = DC->getPrimaryContext();
983   do {
984     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
985       if (ScopeDC->getPrimaryContext() == TargetDC)
986         return S;
987   } while ((S = S->getParent()));
988 
989   return 0;
990 }
991 
992 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
993                                             DeclContext*,
994                                             ASTContext&);
995 
996 /// Filters out lookup results that don't fall within the given scope
997 /// as determined by isDeclInScope.
998 void Sema::FilterLookupForScope(LookupResult &R,
999                                 DeclContext *Ctx, Scope *S,
1000                                 bool ConsiderLinkage,
1001                                 bool ExplicitInstantiationOrSpecialization) {
1002   LookupResult::Filter F = R.makeFilter();
1003   while (F.hasNext()) {
1004     NamedDecl *D = F.next();
1005 
1006     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1007       continue;
1008 
1009     if (ConsiderLinkage &&
1010         isOutOfScopePreviousDeclaration(D, Ctx, Context))
1011       continue;
1012 
1013     F.erase();
1014   }
1015 
1016   F.done();
1017 }
1018 
1019 static bool isUsingDecl(NamedDecl *D) {
1020   return isa<UsingShadowDecl>(D) ||
1021          isa<UnresolvedUsingTypenameDecl>(D) ||
1022          isa<UnresolvedUsingValueDecl>(D);
1023 }
1024 
1025 /// Removes using shadow declarations from the lookup results.
1026 static void RemoveUsingDecls(LookupResult &R) {
1027   LookupResult::Filter F = R.makeFilter();
1028   while (F.hasNext())
1029     if (isUsingDecl(F.next()))
1030       F.erase();
1031 
1032   F.done();
1033 }
1034 
1035 /// \brief Check for this common pattern:
1036 /// @code
1037 /// class S {
1038 ///   S(const S&); // DO NOT IMPLEMENT
1039 ///   void operator=(const S&); // DO NOT IMPLEMENT
1040 /// };
1041 /// @endcode
1042 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1043   // FIXME: Should check for private access too but access is set after we get
1044   // the decl here.
1045   if (D->doesThisDeclarationHaveABody())
1046     return false;
1047 
1048   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1049     return CD->isCopyConstructor();
1050   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1051     return Method->isCopyAssignmentOperator();
1052   return false;
1053 }
1054 
1055 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1056   assert(D);
1057 
1058   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1059     return false;
1060 
1061   // Ignore class templates.
1062   if (D->getDeclContext()->isDependentContext() ||
1063       D->getLexicalDeclContext()->isDependentContext())
1064     return false;
1065 
1066   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1067     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1068       return false;
1069 
1070     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1071       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1072         return false;
1073     } else {
1074       // 'static inline' functions are used in headers; don't warn.
1075       if (FD->getStorageClass() == SC_Static &&
1076           FD->isInlineSpecified())
1077         return false;
1078     }
1079 
1080     if (FD->doesThisDeclarationHaveABody() &&
1081         Context.DeclMustBeEmitted(FD))
1082       return false;
1083   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1084     if (!VD->isFileVarDecl() ||
1085         VD->getType().isConstant(Context) ||
1086         Context.DeclMustBeEmitted(VD))
1087       return false;
1088 
1089     if (VD->isStaticDataMember() &&
1090         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1091       return false;
1092 
1093   } else {
1094     return false;
1095   }
1096 
1097   // Only warn for unused decls internal to the translation unit.
1098   if (D->getLinkage() == ExternalLinkage)
1099     return false;
1100 
1101   return true;
1102 }
1103 
1104 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1105   if (!D)
1106     return;
1107 
1108   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1109     const FunctionDecl *First = FD->getFirstDeclaration();
1110     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1111       return; // First should already be in the vector.
1112   }
1113 
1114   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1115     const VarDecl *First = VD->getFirstDeclaration();
1116     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1117       return; // First should already be in the vector.
1118   }
1119 
1120    if (ShouldWarnIfUnusedFileScopedDecl(D))
1121      UnusedFileScopedDecls.push_back(D);
1122  }
1123 
1124 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1125   if (D->isInvalidDecl())
1126     return false;
1127 
1128   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1129     return false;
1130 
1131   if (isa<LabelDecl>(D))
1132     return true;
1133 
1134   // White-list anything that isn't a local variable.
1135   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1136       !D->getDeclContext()->isFunctionOrMethod())
1137     return false;
1138 
1139   // Types of valid local variables should be complete, so this should succeed.
1140   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1141 
1142     // White-list anything with an __attribute__((unused)) type.
1143     QualType Ty = VD->getType();
1144 
1145     // Only look at the outermost level of typedef.
1146     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1147       if (TT->getDecl()->hasAttr<UnusedAttr>())
1148         return false;
1149     }
1150 
1151     // If we failed to complete the type for some reason, or if the type is
1152     // dependent, don't diagnose the variable.
1153     if (Ty->isIncompleteType() || Ty->isDependentType())
1154       return false;
1155 
1156     if (const TagType *TT = Ty->getAs<TagType>()) {
1157       const TagDecl *Tag = TT->getDecl();
1158       if (Tag->hasAttr<UnusedAttr>())
1159         return false;
1160 
1161       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1162         if (!RD->hasTrivialDestructor())
1163           return false;
1164 
1165         if (const Expr *Init = VD->getInit()) {
1166           const CXXConstructExpr *Construct =
1167             dyn_cast<CXXConstructExpr>(Init);
1168           if (Construct && !Construct->isElidable()) {
1169             CXXConstructorDecl *CD = Construct->getConstructor();
1170             if (!CD->isTrivial())
1171               return false;
1172           }
1173         }
1174       }
1175     }
1176 
1177     // TODO: __attribute__((unused)) templates?
1178   }
1179 
1180   return true;
1181 }
1182 
1183 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1184                                      FixItHint &Hint) {
1185   if (isa<LabelDecl>(D)) {
1186     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1187                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1188     if (AfterColon.isInvalid())
1189       return;
1190     Hint = FixItHint::CreateRemoval(CharSourceRange::
1191                                     getCharRange(D->getLocStart(), AfterColon));
1192   }
1193   return;
1194 }
1195 
1196 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1197 /// unless they are marked attr(unused).
1198 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1199   FixItHint Hint;
1200   if (!ShouldDiagnoseUnusedDecl(D))
1201     return;
1202 
1203   GenerateFixForUnusedDecl(D, Context, Hint);
1204 
1205   unsigned DiagID;
1206   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1207     DiagID = diag::warn_unused_exception_param;
1208   else if (isa<LabelDecl>(D))
1209     DiagID = diag::warn_unused_label;
1210   else
1211     DiagID = diag::warn_unused_variable;
1212 
1213   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1214 }
1215 
1216 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1217   // Verify that we have no forward references left.  If so, there was a goto
1218   // or address of a label taken, but no definition of it.  Label fwd
1219   // definitions are indicated with a null substmt.
1220   if (L->getStmt() == 0)
1221     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1222 }
1223 
1224 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1225   if (S->decl_empty()) return;
1226   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1227          "Scope shouldn't contain decls!");
1228 
1229   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1230        I != E; ++I) {
1231     Decl *TmpD = (*I);
1232     assert(TmpD && "This decl didn't get pushed??");
1233 
1234     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1235     NamedDecl *D = cast<NamedDecl>(TmpD);
1236 
1237     if (!D->getDeclName()) continue;
1238 
1239     // Diagnose unused variables in this scope.
1240     if (!S->hasErrorOccurred())
1241       DiagnoseUnusedDecl(D);
1242 
1243     // If this was a forward reference to a label, verify it was defined.
1244     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1245       CheckPoppedLabel(LD, *this);
1246 
1247     // Remove this name from our lexical scope.
1248     IdResolver.RemoveDecl(D);
1249   }
1250 }
1251 
1252 /// \brief Look for an Objective-C class in the translation unit.
1253 ///
1254 /// \param Id The name of the Objective-C class we're looking for. If
1255 /// typo-correction fixes this name, the Id will be updated
1256 /// to the fixed name.
1257 ///
1258 /// \param IdLoc The location of the name in the translation unit.
1259 ///
1260 /// \param TypoCorrection If true, this routine will attempt typo correction
1261 /// if there is no class with the given name.
1262 ///
1263 /// \returns The declaration of the named Objective-C class, or NULL if the
1264 /// class could not be found.
1265 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1266                                               SourceLocation IdLoc,
1267                                               bool DoTypoCorrection) {
1268   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1269   // creation from this context.
1270   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1271 
1272   if (!IDecl && DoTypoCorrection) {
1273     // Perform typo correction at the given location, but only if we
1274     // find an Objective-C class name.
1275     DeclFilterCCC<ObjCInterfaceDecl> Validator;
1276     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1277                                        LookupOrdinaryName, TUScope, NULL,
1278                                        Validator)) {
1279       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1280       Diag(IdLoc, diag::err_undef_interface_suggest)
1281         << Id << IDecl->getDeclName()
1282         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1283       Diag(IDecl->getLocation(), diag::note_previous_decl)
1284         << IDecl->getDeclName();
1285 
1286       Id = IDecl->getIdentifier();
1287     }
1288   }
1289   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1290   // This routine must always return a class definition, if any.
1291   if (Def && Def->getDefinition())
1292       Def = Def->getDefinition();
1293   return Def;
1294 }
1295 
1296 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1297 /// from S, where a non-field would be declared. This routine copes
1298 /// with the difference between C and C++ scoping rules in structs and
1299 /// unions. For example, the following code is well-formed in C but
1300 /// ill-formed in C++:
1301 /// @code
1302 /// struct S6 {
1303 ///   enum { BAR } e;
1304 /// };
1305 ///
1306 /// void test_S6() {
1307 ///   struct S6 a;
1308 ///   a.e = BAR;
1309 /// }
1310 /// @endcode
1311 /// For the declaration of BAR, this routine will return a different
1312 /// scope. The scope S will be the scope of the unnamed enumeration
1313 /// within S6. In C++, this routine will return the scope associated
1314 /// with S6, because the enumeration's scope is a transparent
1315 /// context but structures can contain non-field names. In C, this
1316 /// routine will return the translation unit scope, since the
1317 /// enumeration's scope is a transparent context and structures cannot
1318 /// contain non-field names.
1319 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1320   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1321          (S->getEntity() &&
1322           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1323          (S->isClassScope() && !getLangOptions().CPlusPlus))
1324     S = S->getParent();
1325   return S;
1326 }
1327 
1328 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1329 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1330 /// if we're creating this built-in in anticipation of redeclaring the
1331 /// built-in.
1332 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1333                                      Scope *S, bool ForRedeclaration,
1334                                      SourceLocation Loc) {
1335   Builtin::ID BID = (Builtin::ID)bid;
1336 
1337   ASTContext::GetBuiltinTypeError Error;
1338   QualType R = Context.GetBuiltinType(BID, Error);
1339   switch (Error) {
1340   case ASTContext::GE_None:
1341     // Okay
1342     break;
1343 
1344   case ASTContext::GE_Missing_stdio:
1345     if (ForRedeclaration)
1346       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1347         << Context.BuiltinInfo.GetName(BID);
1348     return 0;
1349 
1350   case ASTContext::GE_Missing_setjmp:
1351     if (ForRedeclaration)
1352       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1353         << Context.BuiltinInfo.GetName(BID);
1354     return 0;
1355 
1356   case ASTContext::GE_Missing_ucontext:
1357     if (ForRedeclaration)
1358       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1359         << Context.BuiltinInfo.GetName(BID);
1360     return 0;
1361   }
1362 
1363   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1364     Diag(Loc, diag::ext_implicit_lib_function_decl)
1365       << Context.BuiltinInfo.GetName(BID)
1366       << R;
1367     if (Context.BuiltinInfo.getHeaderName(BID) &&
1368         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1369           != DiagnosticsEngine::Ignored)
1370       Diag(Loc, diag::note_please_include_header)
1371         << Context.BuiltinInfo.getHeaderName(BID)
1372         << Context.BuiltinInfo.GetName(BID);
1373   }
1374 
1375   FunctionDecl *New = FunctionDecl::Create(Context,
1376                                            Context.getTranslationUnitDecl(),
1377                                            Loc, Loc, II, R, /*TInfo=*/0,
1378                                            SC_Extern,
1379                                            SC_None, false,
1380                                            /*hasPrototype=*/true);
1381   New->setImplicit();
1382 
1383   // Create Decl objects for each parameter, adding them to the
1384   // FunctionDecl.
1385   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1386     SmallVector<ParmVarDecl*, 16> Params;
1387     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1388       ParmVarDecl *parm =
1389         ParmVarDecl::Create(Context, New, SourceLocation(),
1390                             SourceLocation(), 0,
1391                             FT->getArgType(i), /*TInfo=*/0,
1392                             SC_None, SC_None, 0);
1393       parm->setScopeInfo(0, i);
1394       Params.push_back(parm);
1395     }
1396     New->setParams(Params);
1397   }
1398 
1399   AddKnownFunctionAttributes(New);
1400 
1401   // TUScope is the translation-unit scope to insert this function into.
1402   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1403   // relate Scopes to DeclContexts, and probably eliminate CurContext
1404   // entirely, but we're not there yet.
1405   DeclContext *SavedContext = CurContext;
1406   CurContext = Context.getTranslationUnitDecl();
1407   PushOnScopeChains(New, TUScope);
1408   CurContext = SavedContext;
1409   return New;
1410 }
1411 
1412 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1413   QualType OldType;
1414   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1415     OldType = OldTypedef->getUnderlyingType();
1416   else
1417     OldType = Context.getTypeDeclType(Old);
1418   QualType NewType = New->getUnderlyingType();
1419 
1420   if (NewType->isVariablyModifiedType()) {
1421     // Must not redefine a typedef with a variably-modified type.
1422     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1423     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1424       << Kind << NewType;
1425     if (Old->getLocation().isValid())
1426       Diag(Old->getLocation(), diag::note_previous_definition);
1427     New->setInvalidDecl();
1428     return true;
1429   }
1430 
1431   if (OldType != NewType &&
1432       !OldType->isDependentType() &&
1433       !NewType->isDependentType() &&
1434       !Context.hasSameType(OldType, NewType)) {
1435     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1436     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1437       << Kind << NewType << OldType;
1438     if (Old->getLocation().isValid())
1439       Diag(Old->getLocation(), diag::note_previous_definition);
1440     New->setInvalidDecl();
1441     return true;
1442   }
1443   return false;
1444 }
1445 
1446 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1447 /// same name and scope as a previous declaration 'Old'.  Figure out
1448 /// how to resolve this situation, merging decls or emitting
1449 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1450 ///
1451 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1452   // If the new decl is known invalid already, don't bother doing any
1453   // merging checks.
1454   if (New->isInvalidDecl()) return;
1455 
1456   // Allow multiple definitions for ObjC built-in typedefs.
1457   // FIXME: Verify the underlying types are equivalent!
1458   if (getLangOptions().ObjC1) {
1459     const IdentifierInfo *TypeID = New->getIdentifier();
1460     switch (TypeID->getLength()) {
1461     default: break;
1462     case 2:
1463       if (!TypeID->isStr("id"))
1464         break;
1465       Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1466       // Install the built-in type for 'id', ignoring the current definition.
1467       New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1468       return;
1469     case 5:
1470       if (!TypeID->isStr("Class"))
1471         break;
1472       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1473       // Install the built-in type for 'Class', ignoring the current definition.
1474       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1475       return;
1476     case 3:
1477       if (!TypeID->isStr("SEL"))
1478         break;
1479       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1480       // Install the built-in type for 'SEL', ignoring the current definition.
1481       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1482       return;
1483     }
1484     // Fall through - the typedef name was not a builtin type.
1485   }
1486 
1487   // Verify the old decl was also a type.
1488   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1489   if (!Old) {
1490     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1491       << New->getDeclName();
1492 
1493     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1494     if (OldD->getLocation().isValid())
1495       Diag(OldD->getLocation(), diag::note_previous_definition);
1496 
1497     return New->setInvalidDecl();
1498   }
1499 
1500   // If the old declaration is invalid, just give up here.
1501   if (Old->isInvalidDecl())
1502     return New->setInvalidDecl();
1503 
1504   // If the typedef types are not identical, reject them in all languages and
1505   // with any extensions enabled.
1506   if (isIncompatibleTypedef(Old, New))
1507     return;
1508 
1509   // The types match.  Link up the redeclaration chain if the old
1510   // declaration was a typedef.
1511   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1512     New->setPreviousDeclaration(Typedef);
1513 
1514   if (getLangOptions().MicrosoftExt)
1515     return;
1516 
1517   if (getLangOptions().CPlusPlus) {
1518     // C++ [dcl.typedef]p2:
1519     //   In a given non-class scope, a typedef specifier can be used to
1520     //   redefine the name of any type declared in that scope to refer
1521     //   to the type to which it already refers.
1522     if (!isa<CXXRecordDecl>(CurContext))
1523       return;
1524 
1525     // C++0x [dcl.typedef]p4:
1526     //   In a given class scope, a typedef specifier can be used to redefine
1527     //   any class-name declared in that scope that is not also a typedef-name
1528     //   to refer to the type to which it already refers.
1529     //
1530     // This wording came in via DR424, which was a correction to the
1531     // wording in DR56, which accidentally banned code like:
1532     //
1533     //   struct S {
1534     //     typedef struct A { } A;
1535     //   };
1536     //
1537     // in the C++03 standard. We implement the C++0x semantics, which
1538     // allow the above but disallow
1539     //
1540     //   struct S {
1541     //     typedef int I;
1542     //     typedef int I;
1543     //   };
1544     //
1545     // since that was the intent of DR56.
1546     if (!isa<TypedefNameDecl>(Old))
1547       return;
1548 
1549     Diag(New->getLocation(), diag::err_redefinition)
1550       << New->getDeclName();
1551     Diag(Old->getLocation(), diag::note_previous_definition);
1552     return New->setInvalidDecl();
1553   }
1554 
1555   // Modules always permit redefinition of typedefs, as does C11.
1556   if (getLangOptions().Modules || getLangOptions().C11)
1557     return;
1558 
1559   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1560   // is normally mapped to an error, but can be controlled with
1561   // -Wtypedef-redefinition.  If either the original or the redefinition is
1562   // in a system header, don't emit this for compatibility with GCC.
1563   if (getDiagnostics().getSuppressSystemWarnings() &&
1564       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1565        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1566     return;
1567 
1568   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1569     << New->getDeclName();
1570   Diag(Old->getLocation(), diag::note_previous_definition);
1571   return;
1572 }
1573 
1574 /// DeclhasAttr - returns true if decl Declaration already has the target
1575 /// attribute.
1576 static bool
1577 DeclHasAttr(const Decl *D, const Attr *A) {
1578   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1579   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1580   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1581     if ((*i)->getKind() == A->getKind()) {
1582       if (Ann) {
1583         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1584           return true;
1585         continue;
1586       }
1587       // FIXME: Don't hardcode this check
1588       if (OA && isa<OwnershipAttr>(*i))
1589         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1590       return true;
1591     }
1592 
1593   return false;
1594 }
1595 
1596 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1597 void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1598                                bool MergeDeprecation) {
1599   if (!Old->hasAttrs())
1600     return;
1601 
1602   bool foundAny = New->hasAttrs();
1603 
1604   // Ensure that any moving of objects within the allocated map is done before
1605   // we process them.
1606   if (!foundAny) New->setAttrs(AttrVec());
1607 
1608   for (specific_attr_iterator<InheritableAttr>
1609          i = Old->specific_attr_begin<InheritableAttr>(),
1610          e = Old->specific_attr_end<InheritableAttr>();
1611        i != e; ++i) {
1612     // Ignore deprecated/unavailable/availability attributes if requested.
1613     if (!MergeDeprecation &&
1614         (isa<DeprecatedAttr>(*i) ||
1615          isa<UnavailableAttr>(*i) ||
1616          isa<AvailabilityAttr>(*i)))
1617       continue;
1618 
1619     if (!DeclHasAttr(New, *i)) {
1620       InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1621       newAttr->setInherited(true);
1622       New->addAttr(newAttr);
1623       foundAny = true;
1624     }
1625   }
1626 
1627   if (!foundAny) New->dropAttrs();
1628 }
1629 
1630 /// mergeParamDeclAttributes - Copy attributes from the old parameter
1631 /// to the new one.
1632 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1633                                      const ParmVarDecl *oldDecl,
1634                                      ASTContext &C) {
1635   if (!oldDecl->hasAttrs())
1636     return;
1637 
1638   bool foundAny = newDecl->hasAttrs();
1639 
1640   // Ensure that any moving of objects within the allocated map is
1641   // done before we process them.
1642   if (!foundAny) newDecl->setAttrs(AttrVec());
1643 
1644   for (specific_attr_iterator<InheritableParamAttr>
1645        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1646        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1647     if (!DeclHasAttr(newDecl, *i)) {
1648       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1649       newAttr->setInherited(true);
1650       newDecl->addAttr(newAttr);
1651       foundAny = true;
1652     }
1653   }
1654 
1655   if (!foundAny) newDecl->dropAttrs();
1656 }
1657 
1658 namespace {
1659 
1660 /// Used in MergeFunctionDecl to keep track of function parameters in
1661 /// C.
1662 struct GNUCompatibleParamWarning {
1663   ParmVarDecl *OldParm;
1664   ParmVarDecl *NewParm;
1665   QualType PromotedType;
1666 };
1667 
1668 }
1669 
1670 /// getSpecialMember - get the special member enum for a method.
1671 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1672   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1673     if (Ctor->isDefaultConstructor())
1674       return Sema::CXXDefaultConstructor;
1675 
1676     if (Ctor->isCopyConstructor())
1677       return Sema::CXXCopyConstructor;
1678 
1679     if (Ctor->isMoveConstructor())
1680       return Sema::CXXMoveConstructor;
1681   } else if (isa<CXXDestructorDecl>(MD)) {
1682     return Sema::CXXDestructor;
1683   } else if (MD->isCopyAssignmentOperator()) {
1684     return Sema::CXXCopyAssignment;
1685   } else if (MD->isMoveAssignmentOperator()) {
1686     return Sema::CXXMoveAssignment;
1687   }
1688 
1689   return Sema::CXXInvalid;
1690 }
1691 
1692 /// canRedefineFunction - checks if a function can be redefined. Currently,
1693 /// only extern inline functions can be redefined, and even then only in
1694 /// GNU89 mode.
1695 static bool canRedefineFunction(const FunctionDecl *FD,
1696                                 const LangOptions& LangOpts) {
1697   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1698           !LangOpts.CPlusPlus &&
1699           FD->isInlineSpecified() &&
1700           FD->getStorageClass() == SC_Extern);
1701 }
1702 
1703 /// MergeFunctionDecl - We just parsed a function 'New' from
1704 /// declarator D which has the same name and scope as a previous
1705 /// declaration 'Old'.  Figure out how to resolve this situation,
1706 /// merging decls or emitting diagnostics as appropriate.
1707 ///
1708 /// In C++, New and Old must be declarations that are not
1709 /// overloaded. Use IsOverload to determine whether New and Old are
1710 /// overloaded, and to select the Old declaration that New should be
1711 /// merged with.
1712 ///
1713 /// Returns true if there was an error, false otherwise.
1714 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1715   // Verify the old decl was also a function.
1716   FunctionDecl *Old = 0;
1717   if (FunctionTemplateDecl *OldFunctionTemplate
1718         = dyn_cast<FunctionTemplateDecl>(OldD))
1719     Old = OldFunctionTemplate->getTemplatedDecl();
1720   else
1721     Old = dyn_cast<FunctionDecl>(OldD);
1722   if (!Old) {
1723     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1724       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1725       Diag(Shadow->getTargetDecl()->getLocation(),
1726            diag::note_using_decl_target);
1727       Diag(Shadow->getUsingDecl()->getLocation(),
1728            diag::note_using_decl) << 0;
1729       return true;
1730     }
1731 
1732     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1733       << New->getDeclName();
1734     Diag(OldD->getLocation(), diag::note_previous_definition);
1735     return true;
1736   }
1737 
1738   // Determine whether the previous declaration was a definition,
1739   // implicit declaration, or a declaration.
1740   diag::kind PrevDiag;
1741   if (Old->isThisDeclarationADefinition())
1742     PrevDiag = diag::note_previous_definition;
1743   else if (Old->isImplicit())
1744     PrevDiag = diag::note_previous_implicit_declaration;
1745   else
1746     PrevDiag = diag::note_previous_declaration;
1747 
1748   QualType OldQType = Context.getCanonicalType(Old->getType());
1749   QualType NewQType = Context.getCanonicalType(New->getType());
1750 
1751   // Don't complain about this if we're in GNU89 mode and the old function
1752   // is an extern inline function.
1753   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1754       New->getStorageClass() == SC_Static &&
1755       Old->getStorageClass() != SC_Static &&
1756       !canRedefineFunction(Old, getLangOptions())) {
1757     if (getLangOptions().MicrosoftExt) {
1758       Diag(New->getLocation(), diag::warn_static_non_static) << New;
1759       Diag(Old->getLocation(), PrevDiag);
1760     } else {
1761       Diag(New->getLocation(), diag::err_static_non_static) << New;
1762       Diag(Old->getLocation(), PrevDiag);
1763       return true;
1764     }
1765   }
1766 
1767   // If a function is first declared with a calling convention, but is
1768   // later declared or defined without one, the second decl assumes the
1769   // calling convention of the first.
1770   //
1771   // For the new decl, we have to look at the NON-canonical type to tell the
1772   // difference between a function that really doesn't have a calling
1773   // convention and one that is declared cdecl. That's because in
1774   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1775   // because it is the default calling convention.
1776   //
1777   // Note also that we DO NOT return at this point, because we still have
1778   // other tests to run.
1779   const FunctionType *OldType = cast<FunctionType>(OldQType);
1780   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1781   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1782   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1783   bool RequiresAdjustment = false;
1784   if (OldTypeInfo.getCC() != CC_Default &&
1785       NewTypeInfo.getCC() == CC_Default) {
1786     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1787     RequiresAdjustment = true;
1788   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1789                                      NewTypeInfo.getCC())) {
1790     // Calling conventions really aren't compatible, so complain.
1791     Diag(New->getLocation(), diag::err_cconv_change)
1792       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1793       << (OldTypeInfo.getCC() == CC_Default)
1794       << (OldTypeInfo.getCC() == CC_Default ? "" :
1795           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1796     Diag(Old->getLocation(), diag::note_previous_declaration);
1797     return true;
1798   }
1799 
1800   // FIXME: diagnose the other way around?
1801   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1802     NewTypeInfo = NewTypeInfo.withNoReturn(true);
1803     RequiresAdjustment = true;
1804   }
1805 
1806   // Merge regparm attribute.
1807   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1808       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1809     if (NewTypeInfo.getHasRegParm()) {
1810       Diag(New->getLocation(), diag::err_regparm_mismatch)
1811         << NewType->getRegParmType()
1812         << OldType->getRegParmType();
1813       Diag(Old->getLocation(), diag::note_previous_declaration);
1814       return true;
1815     }
1816 
1817     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1818     RequiresAdjustment = true;
1819   }
1820 
1821   // Merge ns_returns_retained attribute.
1822   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1823     if (NewTypeInfo.getProducesResult()) {
1824       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1825       Diag(Old->getLocation(), diag::note_previous_declaration);
1826       return true;
1827     }
1828 
1829     NewTypeInfo = NewTypeInfo.withProducesResult(true);
1830     RequiresAdjustment = true;
1831   }
1832 
1833   if (RequiresAdjustment) {
1834     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1835     New->setType(QualType(NewType, 0));
1836     NewQType = Context.getCanonicalType(New->getType());
1837   }
1838 
1839   if (getLangOptions().CPlusPlus) {
1840     // (C++98 13.1p2):
1841     //   Certain function declarations cannot be overloaded:
1842     //     -- Function declarations that differ only in the return type
1843     //        cannot be overloaded.
1844     QualType OldReturnType = OldType->getResultType();
1845     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1846     QualType ResQT;
1847     if (OldReturnType != NewReturnType) {
1848       if (NewReturnType->isObjCObjectPointerType()
1849           && OldReturnType->isObjCObjectPointerType())
1850         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1851       if (ResQT.isNull()) {
1852         if (New->isCXXClassMember() && New->isOutOfLine())
1853           Diag(New->getLocation(),
1854                diag::err_member_def_does_not_match_ret_type) << New;
1855         else
1856           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1857         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1858         return true;
1859       }
1860       else
1861         NewQType = ResQT;
1862     }
1863 
1864     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1865     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1866     if (OldMethod && NewMethod) {
1867       // Preserve triviality.
1868       NewMethod->setTrivial(OldMethod->isTrivial());
1869 
1870       // MSVC allows explicit template specialization at class scope:
1871       // 2 CXMethodDecls referring to the same function will be injected.
1872       // We don't want a redeclartion error.
1873       bool IsClassScopeExplicitSpecialization =
1874                               OldMethod->isFunctionTemplateSpecialization() &&
1875                               NewMethod->isFunctionTemplateSpecialization();
1876       bool isFriend = NewMethod->getFriendObjectKind();
1877 
1878       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1879           !IsClassScopeExplicitSpecialization) {
1880         //    -- Member function declarations with the same name and the
1881         //       same parameter types cannot be overloaded if any of them
1882         //       is a static member function declaration.
1883         if (OldMethod->isStatic() || NewMethod->isStatic()) {
1884           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1885           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1886           return true;
1887         }
1888 
1889         // C++ [class.mem]p1:
1890         //   [...] A member shall not be declared twice in the
1891         //   member-specification, except that a nested class or member
1892         //   class template can be declared and then later defined.
1893         unsigned NewDiag;
1894         if (isa<CXXConstructorDecl>(OldMethod))
1895           NewDiag = diag::err_constructor_redeclared;
1896         else if (isa<CXXDestructorDecl>(NewMethod))
1897           NewDiag = diag::err_destructor_redeclared;
1898         else if (isa<CXXConversionDecl>(NewMethod))
1899           NewDiag = diag::err_conv_function_redeclared;
1900         else
1901           NewDiag = diag::err_member_redeclared;
1902 
1903         Diag(New->getLocation(), NewDiag);
1904         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1905 
1906       // Complain if this is an explicit declaration of a special
1907       // member that was initially declared implicitly.
1908       //
1909       // As an exception, it's okay to befriend such methods in order
1910       // to permit the implicit constructor/destructor/operator calls.
1911       } else if (OldMethod->isImplicit()) {
1912         if (isFriend) {
1913           NewMethod->setImplicit();
1914         } else {
1915           Diag(NewMethod->getLocation(),
1916                diag::err_definition_of_implicitly_declared_member)
1917             << New << getSpecialMember(OldMethod);
1918           return true;
1919         }
1920       } else if (OldMethod->isExplicitlyDefaulted()) {
1921         Diag(NewMethod->getLocation(),
1922              diag::err_definition_of_explicitly_defaulted_member)
1923           << getSpecialMember(OldMethod);
1924         return true;
1925       }
1926     }
1927 
1928     // (C++98 8.3.5p3):
1929     //   All declarations for a function shall agree exactly in both the
1930     //   return type and the parameter-type-list.
1931     // We also want to respect all the extended bits except noreturn.
1932 
1933     // noreturn should now match unless the old type info didn't have it.
1934     QualType OldQTypeForComparison = OldQType;
1935     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1936       assert(OldQType == QualType(OldType, 0));
1937       const FunctionType *OldTypeForComparison
1938         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1939       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1940       assert(OldQTypeForComparison.isCanonical());
1941     }
1942 
1943     if (OldQTypeForComparison == NewQType)
1944       return MergeCompatibleFunctionDecls(New, Old);
1945 
1946     // Fall through for conflicting redeclarations and redefinitions.
1947   }
1948 
1949   // C: Function types need to be compatible, not identical. This handles
1950   // duplicate function decls like "void f(int); void f(enum X);" properly.
1951   if (!getLangOptions().CPlusPlus &&
1952       Context.typesAreCompatible(OldQType, NewQType)) {
1953     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1954     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1955     const FunctionProtoType *OldProto = 0;
1956     if (isa<FunctionNoProtoType>(NewFuncType) &&
1957         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1958       // The old declaration provided a function prototype, but the
1959       // new declaration does not. Merge in the prototype.
1960       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1961       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1962                                                  OldProto->arg_type_end());
1963       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1964                                          ParamTypes.data(), ParamTypes.size(),
1965                                          OldProto->getExtProtoInfo());
1966       New->setType(NewQType);
1967       New->setHasInheritedPrototype();
1968 
1969       // Synthesize a parameter for each argument type.
1970       SmallVector<ParmVarDecl*, 16> Params;
1971       for (FunctionProtoType::arg_type_iterator
1972              ParamType = OldProto->arg_type_begin(),
1973              ParamEnd = OldProto->arg_type_end();
1974            ParamType != ParamEnd; ++ParamType) {
1975         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1976                                                  SourceLocation(),
1977                                                  SourceLocation(), 0,
1978                                                  *ParamType, /*TInfo=*/0,
1979                                                  SC_None, SC_None,
1980                                                  0);
1981         Param->setScopeInfo(0, Params.size());
1982         Param->setImplicit();
1983         Params.push_back(Param);
1984       }
1985 
1986       New->setParams(Params);
1987     }
1988 
1989     return MergeCompatibleFunctionDecls(New, Old);
1990   }
1991 
1992   // GNU C permits a K&R definition to follow a prototype declaration
1993   // if the declared types of the parameters in the K&R definition
1994   // match the types in the prototype declaration, even when the
1995   // promoted types of the parameters from the K&R definition differ
1996   // from the types in the prototype. GCC then keeps the types from
1997   // the prototype.
1998   //
1999   // If a variadic prototype is followed by a non-variadic K&R definition,
2000   // the K&R definition becomes variadic.  This is sort of an edge case, but
2001   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2002   // C99 6.9.1p8.
2003   if (!getLangOptions().CPlusPlus &&
2004       Old->hasPrototype() && !New->hasPrototype() &&
2005       New->getType()->getAs<FunctionProtoType>() &&
2006       Old->getNumParams() == New->getNumParams()) {
2007     SmallVector<QualType, 16> ArgTypes;
2008     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2009     const FunctionProtoType *OldProto
2010       = Old->getType()->getAs<FunctionProtoType>();
2011     const FunctionProtoType *NewProto
2012       = New->getType()->getAs<FunctionProtoType>();
2013 
2014     // Determine whether this is the GNU C extension.
2015     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2016                                                NewProto->getResultType());
2017     bool LooseCompatible = !MergedReturn.isNull();
2018     for (unsigned Idx = 0, End = Old->getNumParams();
2019          LooseCompatible && Idx != End; ++Idx) {
2020       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2021       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2022       if (Context.typesAreCompatible(OldParm->getType(),
2023                                      NewProto->getArgType(Idx))) {
2024         ArgTypes.push_back(NewParm->getType());
2025       } else if (Context.typesAreCompatible(OldParm->getType(),
2026                                             NewParm->getType(),
2027                                             /*CompareUnqualified=*/true)) {
2028         GNUCompatibleParamWarning Warn
2029           = { OldParm, NewParm, NewProto->getArgType(Idx) };
2030         Warnings.push_back(Warn);
2031         ArgTypes.push_back(NewParm->getType());
2032       } else
2033         LooseCompatible = false;
2034     }
2035 
2036     if (LooseCompatible) {
2037       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2038         Diag(Warnings[Warn].NewParm->getLocation(),
2039              diag::ext_param_promoted_not_compatible_with_prototype)
2040           << Warnings[Warn].PromotedType
2041           << Warnings[Warn].OldParm->getType();
2042         if (Warnings[Warn].OldParm->getLocation().isValid())
2043           Diag(Warnings[Warn].OldParm->getLocation(),
2044                diag::note_previous_declaration);
2045       }
2046 
2047       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2048                                            ArgTypes.size(),
2049                                            OldProto->getExtProtoInfo()));
2050       return MergeCompatibleFunctionDecls(New, Old);
2051     }
2052 
2053     // Fall through to diagnose conflicting types.
2054   }
2055 
2056   // A function that has already been declared has been redeclared or defined
2057   // with a different type- show appropriate diagnostic
2058   if (unsigned BuiltinID = Old->getBuiltinID()) {
2059     // The user has declared a builtin function with an incompatible
2060     // signature.
2061     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2062       // The function the user is redeclaring is a library-defined
2063       // function like 'malloc' or 'printf'. Warn about the
2064       // redeclaration, then pretend that we don't know about this
2065       // library built-in.
2066       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2067       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2068         << Old << Old->getType();
2069       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2070       Old->setInvalidDecl();
2071       return false;
2072     }
2073 
2074     PrevDiag = diag::note_previous_builtin_declaration;
2075   }
2076 
2077   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2078   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2079   return true;
2080 }
2081 
2082 /// \brief Completes the merge of two function declarations that are
2083 /// known to be compatible.
2084 ///
2085 /// This routine handles the merging of attributes and other
2086 /// properties of function declarations form the old declaration to
2087 /// the new declaration, once we know that New is in fact a
2088 /// redeclaration of Old.
2089 ///
2090 /// \returns false
2091 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2092   // Merge the attributes
2093   mergeDeclAttributes(New, Old);
2094 
2095   // Merge the storage class.
2096   if (Old->getStorageClass() != SC_Extern &&
2097       Old->getStorageClass() != SC_None)
2098     New->setStorageClass(Old->getStorageClass());
2099 
2100   // Merge "pure" flag.
2101   if (Old->isPure())
2102     New->setPure();
2103 
2104   // Merge attributes from the parameters.  These can mismatch with K&R
2105   // declarations.
2106   if (New->getNumParams() == Old->getNumParams())
2107     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2108       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2109                                Context);
2110 
2111   if (getLangOptions().CPlusPlus)
2112     return MergeCXXFunctionDecl(New, Old);
2113 
2114   return false;
2115 }
2116 
2117 
2118 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2119                                 ObjCMethodDecl *oldMethod) {
2120   // We don't want to merge unavailable and deprecated attributes
2121   // except from interface to implementation.
2122   bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2123 
2124   // Merge the attributes.
2125   mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2126 
2127   // Merge attributes from the parameters.
2128   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2129   for (ObjCMethodDecl::param_iterator
2130          ni = newMethod->param_begin(), ne = newMethod->param_end();
2131        ni != ne; ++ni, ++oi)
2132     mergeParamDeclAttributes(*ni, *oi, Context);
2133 
2134   CheckObjCMethodOverride(newMethod, oldMethod, true);
2135 }
2136 
2137 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2138 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2139 /// emitting diagnostics as appropriate.
2140 ///
2141 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2142 /// to here in AddInitializerToDecl. We can't check them before the initializer
2143 /// is attached.
2144 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2145   if (New->isInvalidDecl() || Old->isInvalidDecl())
2146     return;
2147 
2148   QualType MergedT;
2149   if (getLangOptions().CPlusPlus) {
2150     AutoType *AT = New->getType()->getContainedAutoType();
2151     if (AT && !AT->isDeduced()) {
2152       // We don't know what the new type is until the initializer is attached.
2153       return;
2154     } else if (Context.hasSameType(New->getType(), Old->getType())) {
2155       // These could still be something that needs exception specs checked.
2156       return MergeVarDeclExceptionSpecs(New, Old);
2157     }
2158     // C++ [basic.link]p10:
2159     //   [...] the types specified by all declarations referring to a given
2160     //   object or function shall be identical, except that declarations for an
2161     //   array object can specify array types that differ by the presence or
2162     //   absence of a major array bound (8.3.4).
2163     else if (Old->getType()->isIncompleteArrayType() &&
2164              New->getType()->isArrayType()) {
2165       CanQual<ArrayType> OldArray
2166         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2167       CanQual<ArrayType> NewArray
2168         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2169       if (OldArray->getElementType() == NewArray->getElementType())
2170         MergedT = New->getType();
2171     } else if (Old->getType()->isArrayType() &&
2172              New->getType()->isIncompleteArrayType()) {
2173       CanQual<ArrayType> OldArray
2174         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2175       CanQual<ArrayType> NewArray
2176         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2177       if (OldArray->getElementType() == NewArray->getElementType())
2178         MergedT = Old->getType();
2179     } else if (New->getType()->isObjCObjectPointerType()
2180                && Old->getType()->isObjCObjectPointerType()) {
2181         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2182                                                         Old->getType());
2183     }
2184   } else {
2185     MergedT = Context.mergeTypes(New->getType(), Old->getType());
2186   }
2187   if (MergedT.isNull()) {
2188     Diag(New->getLocation(), diag::err_redefinition_different_type)
2189       << New->getDeclName();
2190     Diag(Old->getLocation(), diag::note_previous_definition);
2191     return New->setInvalidDecl();
2192   }
2193   New->setType(MergedT);
2194 }
2195 
2196 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2197 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2198 /// situation, merging decls or emitting diagnostics as appropriate.
2199 ///
2200 /// Tentative definition rules (C99 6.9.2p2) are checked by
2201 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2202 /// definitions here, since the initializer hasn't been attached.
2203 ///
2204 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2205   // If the new decl is already invalid, don't do any other checking.
2206   if (New->isInvalidDecl())
2207     return;
2208 
2209   // Verify the old decl was also a variable.
2210   VarDecl *Old = 0;
2211   if (!Previous.isSingleResult() ||
2212       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2213     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2214       << New->getDeclName();
2215     Diag(Previous.getRepresentativeDecl()->getLocation(),
2216          diag::note_previous_definition);
2217     return New->setInvalidDecl();
2218   }
2219 
2220   // C++ [class.mem]p1:
2221   //   A member shall not be declared twice in the member-specification [...]
2222   //
2223   // Here, we need only consider static data members.
2224   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2225     Diag(New->getLocation(), diag::err_duplicate_member)
2226       << New->getIdentifier();
2227     Diag(Old->getLocation(), diag::note_previous_declaration);
2228     New->setInvalidDecl();
2229   }
2230 
2231   mergeDeclAttributes(New, Old);
2232   // Warn if an already-declared variable is made a weak_import in a subsequent
2233   // declaration
2234   if (New->getAttr<WeakImportAttr>() &&
2235       Old->getStorageClass() == SC_None &&
2236       !Old->getAttr<WeakImportAttr>()) {
2237     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2238     Diag(Old->getLocation(), diag::note_previous_definition);
2239     // Remove weak_import attribute on new declaration.
2240     New->dropAttr<WeakImportAttr>();
2241   }
2242 
2243   // Merge the types.
2244   MergeVarDeclTypes(New, Old);
2245   if (New->isInvalidDecl())
2246     return;
2247 
2248   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2249   if (New->getStorageClass() == SC_Static &&
2250       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2251     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2252     Diag(Old->getLocation(), diag::note_previous_definition);
2253     return New->setInvalidDecl();
2254   }
2255   // C99 6.2.2p4:
2256   //   For an identifier declared with the storage-class specifier
2257   //   extern in a scope in which a prior declaration of that
2258   //   identifier is visible,23) if the prior declaration specifies
2259   //   internal or external linkage, the linkage of the identifier at
2260   //   the later declaration is the same as the linkage specified at
2261   //   the prior declaration. If no prior declaration is visible, or
2262   //   if the prior declaration specifies no linkage, then the
2263   //   identifier has external linkage.
2264   if (New->hasExternalStorage() && Old->hasLinkage())
2265     /* Okay */;
2266   else if (New->getStorageClass() != SC_Static &&
2267            Old->getStorageClass() == SC_Static) {
2268     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2269     Diag(Old->getLocation(), diag::note_previous_definition);
2270     return New->setInvalidDecl();
2271   }
2272 
2273   // Check if extern is followed by non-extern and vice-versa.
2274   if (New->hasExternalStorage() &&
2275       !Old->hasLinkage() && Old->isLocalVarDecl()) {
2276     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2277     Diag(Old->getLocation(), diag::note_previous_definition);
2278     return New->setInvalidDecl();
2279   }
2280   if (Old->hasExternalStorage() &&
2281       !New->hasLinkage() && New->isLocalVarDecl()) {
2282     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2283     Diag(Old->getLocation(), diag::note_previous_definition);
2284     return New->setInvalidDecl();
2285   }
2286 
2287   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2288 
2289   // FIXME: The test for external storage here seems wrong? We still
2290   // need to check for mismatches.
2291   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2292       // Don't complain about out-of-line definitions of static members.
2293       !(Old->getLexicalDeclContext()->isRecord() &&
2294         !New->getLexicalDeclContext()->isRecord())) {
2295     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2296     Diag(Old->getLocation(), diag::note_previous_definition);
2297     return New->setInvalidDecl();
2298   }
2299 
2300   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2301     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2302     Diag(Old->getLocation(), diag::note_previous_definition);
2303   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2304     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2305     Diag(Old->getLocation(), diag::note_previous_definition);
2306   }
2307 
2308   // C++ doesn't have tentative definitions, so go right ahead and check here.
2309   const VarDecl *Def;
2310   if (getLangOptions().CPlusPlus &&
2311       New->isThisDeclarationADefinition() == VarDecl::Definition &&
2312       (Def = Old->getDefinition())) {
2313     Diag(New->getLocation(), diag::err_redefinition)
2314       << New->getDeclName();
2315     Diag(Def->getLocation(), diag::note_previous_definition);
2316     New->setInvalidDecl();
2317     return;
2318   }
2319   // c99 6.2.2 P4.
2320   // For an identifier declared with the storage-class specifier extern in a
2321   // scope in which a prior declaration of that identifier is visible, if
2322   // the prior declaration specifies internal or external linkage, the linkage
2323   // of the identifier at the later declaration is the same as the linkage
2324   // specified at the prior declaration.
2325   // FIXME. revisit this code.
2326   if (New->hasExternalStorage() &&
2327       Old->getLinkage() == InternalLinkage &&
2328       New->getDeclContext() == Old->getDeclContext())
2329     New->setStorageClass(Old->getStorageClass());
2330 
2331   // Keep a chain of previous declarations.
2332   New->setPreviousDeclaration(Old);
2333 
2334   // Inherit access appropriately.
2335   New->setAccess(Old->getAccess());
2336 }
2337 
2338 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2339 /// no declarator (e.g. "struct foo;") is parsed.
2340 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2341                                        DeclSpec &DS) {
2342   return ParsedFreeStandingDeclSpec(S, AS, DS,
2343                                     MultiTemplateParamsArg(*this, 0, 0));
2344 }
2345 
2346 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2347 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2348 /// parameters to cope with template friend declarations.
2349 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2350                                        DeclSpec &DS,
2351                                        MultiTemplateParamsArg TemplateParams) {
2352   Decl *TagD = 0;
2353   TagDecl *Tag = 0;
2354   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2355       DS.getTypeSpecType() == DeclSpec::TST_struct ||
2356       DS.getTypeSpecType() == DeclSpec::TST_union ||
2357       DS.getTypeSpecType() == DeclSpec::TST_enum) {
2358     TagD = DS.getRepAsDecl();
2359 
2360     if (!TagD) // We probably had an error
2361       return 0;
2362 
2363     // Note that the above type specs guarantee that the
2364     // type rep is a Decl, whereas in many of the others
2365     // it's a Type.
2366     if (isa<TagDecl>(TagD))
2367       Tag = cast<TagDecl>(TagD);
2368     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2369       Tag = CTD->getTemplatedDecl();
2370   }
2371 
2372   if (Tag)
2373     Tag->setFreeStanding();
2374 
2375   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2376     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2377     // or incomplete types shall not be restrict-qualified."
2378     if (TypeQuals & DeclSpec::TQ_restrict)
2379       Diag(DS.getRestrictSpecLoc(),
2380            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2381            << DS.getSourceRange();
2382   }
2383 
2384   if (DS.isConstexprSpecified()) {
2385     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2386     // and definitions of functions and variables.
2387     if (Tag)
2388       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2389         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2390             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2391             DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2392     else
2393       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2394     // Don't emit warnings after this error.
2395     return TagD;
2396   }
2397 
2398   if (DS.isFriendSpecified()) {
2399     // If we're dealing with a decl but not a TagDecl, assume that
2400     // whatever routines created it handled the friendship aspect.
2401     if (TagD && !Tag)
2402       return 0;
2403     return ActOnFriendTypeDecl(S, DS, TemplateParams);
2404   }
2405 
2406   // Track whether we warned about the fact that there aren't any
2407   // declarators.
2408   bool emittedWarning = false;
2409 
2410   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2411     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2412         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2413       if (getLangOptions().CPlusPlus ||
2414           Record->getDeclContext()->isRecord())
2415         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2416 
2417       Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2418         << DS.getSourceRange();
2419       emittedWarning = true;
2420     }
2421   }
2422 
2423   // Check for Microsoft C extension: anonymous struct.
2424   if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2425       CurContext->isRecord() &&
2426       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2427     // Handle 2 kinds of anonymous struct:
2428     //   struct STRUCT;
2429     // and
2430     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2431     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2432     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2433         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2434          DS.getRepAsType().get()->isStructureType())) {
2435       Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2436         << DS.getSourceRange();
2437       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2438     }
2439   }
2440 
2441   if (getLangOptions().CPlusPlus &&
2442       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2443     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2444       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2445           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2446         Diag(Enum->getLocation(), diag::ext_no_declarators)
2447           << DS.getSourceRange();
2448         emittedWarning = true;
2449       }
2450 
2451   // Skip all the checks below if we have a type error.
2452   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2453 
2454   if (!DS.isMissingDeclaratorOk()) {
2455     // Warn about typedefs of enums without names, since this is an
2456     // extension in both Microsoft and GNU.
2457     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2458         Tag && isa<EnumDecl>(Tag)) {
2459       Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2460         << DS.getSourceRange();
2461       return Tag;
2462     }
2463 
2464     Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2465       << DS.getSourceRange();
2466     emittedWarning = true;
2467   }
2468 
2469   // We're going to complain about a bunch of spurious specifiers;
2470   // only do this if we're declaring a tag, because otherwise we
2471   // should be getting diag::ext_no_declarators.
2472   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2473     return TagD;
2474 
2475   // Note that a linkage-specification sets a storage class, but
2476   // 'extern "C" struct foo;' is actually valid and not theoretically
2477   // useless.
2478   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2479     if (!DS.isExternInLinkageSpec())
2480       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2481         << DeclSpec::getSpecifierName(scs);
2482 
2483   if (DS.isThreadSpecified())
2484     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2485   if (DS.getTypeQualifiers()) {
2486     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2487       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2488     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2489       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2490     // Restrict is covered above.
2491   }
2492   if (DS.isInlineSpecified())
2493     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2494   if (DS.isVirtualSpecified())
2495     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2496   if (DS.isExplicitSpecified())
2497     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2498 
2499   if (DS.isModulePrivateSpecified() &&
2500       Tag && Tag->getDeclContext()->isFunctionOrMethod())
2501     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2502       << Tag->getTagKind()
2503       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2504 
2505   // Warn about ignored type attributes, for example:
2506   // __attribute__((aligned)) struct A;
2507   // Attributes should be placed after tag to apply to type declaration.
2508   if (!DS.getAttributes().empty()) {
2509     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2510     if (TypeSpecType == DeclSpec::TST_class ||
2511         TypeSpecType == DeclSpec::TST_struct ||
2512         TypeSpecType == DeclSpec::TST_union ||
2513         TypeSpecType == DeclSpec::TST_enum) {
2514       AttributeList* attrs = DS.getAttributes().getList();
2515       while (attrs) {
2516         Diag(attrs->getScopeLoc(),
2517              diag::warn_declspec_attribute_ignored)
2518         << attrs->getName()
2519         << (TypeSpecType == DeclSpec::TST_class ? 0 :
2520             TypeSpecType == DeclSpec::TST_struct ? 1 :
2521             TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2522         attrs = attrs->getNext();
2523       }
2524     }
2525   }
2526 
2527   return TagD;
2528 }
2529 
2530 /// We are trying to inject an anonymous member into the given scope;
2531 /// check if there's an existing declaration that can't be overloaded.
2532 ///
2533 /// \return true if this is a forbidden redeclaration
2534 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2535                                          Scope *S,
2536                                          DeclContext *Owner,
2537                                          DeclarationName Name,
2538                                          SourceLocation NameLoc,
2539                                          unsigned diagnostic) {
2540   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2541                  Sema::ForRedeclaration);
2542   if (!SemaRef.LookupName(R, S)) return false;
2543 
2544   if (R.getAsSingle<TagDecl>())
2545     return false;
2546 
2547   // Pick a representative declaration.
2548   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2549   assert(PrevDecl && "Expected a non-null Decl");
2550 
2551   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2552     return false;
2553 
2554   SemaRef.Diag(NameLoc, diagnostic) << Name;
2555   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2556 
2557   return true;
2558 }
2559 
2560 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
2561 /// anonymous struct or union AnonRecord into the owning context Owner
2562 /// and scope S. This routine will be invoked just after we realize
2563 /// that an unnamed union or struct is actually an anonymous union or
2564 /// struct, e.g.,
2565 ///
2566 /// @code
2567 /// union {
2568 ///   int i;
2569 ///   float f;
2570 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2571 ///    // f into the surrounding scope.x
2572 /// @endcode
2573 ///
2574 /// This routine is recursive, injecting the names of nested anonymous
2575 /// structs/unions into the owning context and scope as well.
2576 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2577                                                 DeclContext *Owner,
2578                                                 RecordDecl *AnonRecord,
2579                                                 AccessSpecifier AS,
2580                               SmallVector<NamedDecl*, 2> &Chaining,
2581                                                       bool MSAnonStruct) {
2582   unsigned diagKind
2583     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2584                             : diag::err_anonymous_struct_member_redecl;
2585 
2586   bool Invalid = false;
2587 
2588   // Look every FieldDecl and IndirectFieldDecl with a name.
2589   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2590                                DEnd = AnonRecord->decls_end();
2591        D != DEnd; ++D) {
2592     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2593         cast<NamedDecl>(*D)->getDeclName()) {
2594       ValueDecl *VD = cast<ValueDecl>(*D);
2595       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2596                                        VD->getLocation(), diagKind)) {
2597         // C++ [class.union]p2:
2598         //   The names of the members of an anonymous union shall be
2599         //   distinct from the names of any other entity in the
2600         //   scope in which the anonymous union is declared.
2601         Invalid = true;
2602       } else {
2603         // C++ [class.union]p2:
2604         //   For the purpose of name lookup, after the anonymous union
2605         //   definition, the members of the anonymous union are
2606         //   considered to have been defined in the scope in which the
2607         //   anonymous union is declared.
2608         unsigned OldChainingSize = Chaining.size();
2609         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2610           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2611                PE = IF->chain_end(); PI != PE; ++PI)
2612             Chaining.push_back(*PI);
2613         else
2614           Chaining.push_back(VD);
2615 
2616         assert(Chaining.size() >= 2);
2617         NamedDecl **NamedChain =
2618           new (SemaRef.Context)NamedDecl*[Chaining.size()];
2619         for (unsigned i = 0; i < Chaining.size(); i++)
2620           NamedChain[i] = Chaining[i];
2621 
2622         IndirectFieldDecl* IndirectField =
2623           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2624                                     VD->getIdentifier(), VD->getType(),
2625                                     NamedChain, Chaining.size());
2626 
2627         IndirectField->setAccess(AS);
2628         IndirectField->setImplicit();
2629         SemaRef.PushOnScopeChains(IndirectField, S);
2630 
2631         // That includes picking up the appropriate access specifier.
2632         if (AS != AS_none) IndirectField->setAccess(AS);
2633 
2634         Chaining.resize(OldChainingSize);
2635       }
2636     }
2637   }
2638 
2639   return Invalid;
2640 }
2641 
2642 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2643 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
2644 /// illegal input values are mapped to SC_None.
2645 static StorageClass
2646 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2647   switch (StorageClassSpec) {
2648   case DeclSpec::SCS_unspecified:    return SC_None;
2649   case DeclSpec::SCS_extern:         return SC_Extern;
2650   case DeclSpec::SCS_static:         return SC_Static;
2651   case DeclSpec::SCS_auto:           return SC_Auto;
2652   case DeclSpec::SCS_register:       return SC_Register;
2653   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2654     // Illegal SCSs map to None: error reporting is up to the caller.
2655   case DeclSpec::SCS_mutable:        // Fall through.
2656   case DeclSpec::SCS_typedef:        return SC_None;
2657   }
2658   llvm_unreachable("unknown storage class specifier");
2659 }
2660 
2661 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2662 /// a StorageClass. Any error reporting is up to the caller:
2663 /// illegal input values are mapped to SC_None.
2664 static StorageClass
2665 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2666   switch (StorageClassSpec) {
2667   case DeclSpec::SCS_unspecified:    return SC_None;
2668   case DeclSpec::SCS_extern:         return SC_Extern;
2669   case DeclSpec::SCS_static:         return SC_Static;
2670   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2671     // Illegal SCSs map to None: error reporting is up to the caller.
2672   case DeclSpec::SCS_auto:           // Fall through.
2673   case DeclSpec::SCS_mutable:        // Fall through.
2674   case DeclSpec::SCS_register:       // Fall through.
2675   case DeclSpec::SCS_typedef:        return SC_None;
2676   }
2677   llvm_unreachable("unknown storage class specifier");
2678 }
2679 
2680 /// BuildAnonymousStructOrUnion - Handle the declaration of an
2681 /// anonymous structure or union. Anonymous unions are a C++ feature
2682 /// (C++ [class.union]) and a C11 feature; anonymous structures
2683 /// are a C11 feature and GNU C++ extension.
2684 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2685                                              AccessSpecifier AS,
2686                                              RecordDecl *Record) {
2687   DeclContext *Owner = Record->getDeclContext();
2688 
2689   // Diagnose whether this anonymous struct/union is an extension.
2690   if (Record->isUnion() && !getLangOptions().CPlusPlus && !getLangOptions().C11)
2691     Diag(Record->getLocation(), diag::ext_anonymous_union);
2692   else if (!Record->isUnion() && getLangOptions().CPlusPlus)
2693     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2694   else if (!Record->isUnion() && !getLangOptions().C11)
2695     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2696 
2697   // C and C++ require different kinds of checks for anonymous
2698   // structs/unions.
2699   bool Invalid = false;
2700   if (getLangOptions().CPlusPlus) {
2701     const char* PrevSpec = 0;
2702     unsigned DiagID;
2703     if (Record->isUnion()) {
2704       // C++ [class.union]p6:
2705       //   Anonymous unions declared in a named namespace or in the
2706       //   global namespace shall be declared static.
2707       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2708           (isa<TranslationUnitDecl>(Owner) ||
2709            (isa<NamespaceDecl>(Owner) &&
2710             cast<NamespaceDecl>(Owner)->getDeclName()))) {
2711         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2712           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2713 
2714         // Recover by adding 'static'.
2715         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2716                                PrevSpec, DiagID);
2717       }
2718       // C++ [class.union]p6:
2719       //   A storage class is not allowed in a declaration of an
2720       //   anonymous union in a class scope.
2721       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2722                isa<RecordDecl>(Owner)) {
2723         Diag(DS.getStorageClassSpecLoc(),
2724              diag::err_anonymous_union_with_storage_spec)
2725           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2726 
2727         // Recover by removing the storage specifier.
2728         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2729                                SourceLocation(),
2730                                PrevSpec, DiagID);
2731       }
2732     }
2733 
2734     // Ignore const/volatile/restrict qualifiers.
2735     if (DS.getTypeQualifiers()) {
2736       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2737         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2738           << Record->isUnion() << 0
2739           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2740       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2741         Diag(DS.getVolatileSpecLoc(),
2742              diag::ext_anonymous_struct_union_qualified)
2743           << Record->isUnion() << 1
2744           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2745       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2746         Diag(DS.getRestrictSpecLoc(),
2747              diag::ext_anonymous_struct_union_qualified)
2748           << Record->isUnion() << 2
2749           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2750 
2751       DS.ClearTypeQualifiers();
2752     }
2753 
2754     // C++ [class.union]p2:
2755     //   The member-specification of an anonymous union shall only
2756     //   define non-static data members. [Note: nested types and
2757     //   functions cannot be declared within an anonymous union. ]
2758     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2759                                  MemEnd = Record->decls_end();
2760          Mem != MemEnd; ++Mem) {
2761       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2762         // C++ [class.union]p3:
2763         //   An anonymous union shall not have private or protected
2764         //   members (clause 11).
2765         assert(FD->getAccess() != AS_none);
2766         if (FD->getAccess() != AS_public) {
2767           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2768             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2769           Invalid = true;
2770         }
2771 
2772         // C++ [class.union]p1
2773         //   An object of a class with a non-trivial constructor, a non-trivial
2774         //   copy constructor, a non-trivial destructor, or a non-trivial copy
2775         //   assignment operator cannot be a member of a union, nor can an
2776         //   array of such objects.
2777         if (CheckNontrivialField(FD))
2778           Invalid = true;
2779       } else if ((*Mem)->isImplicit()) {
2780         // Any implicit members are fine.
2781       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2782         // This is a type that showed up in an
2783         // elaborated-type-specifier inside the anonymous struct or
2784         // union, but which actually declares a type outside of the
2785         // anonymous struct or union. It's okay.
2786       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2787         if (!MemRecord->isAnonymousStructOrUnion() &&
2788             MemRecord->getDeclName()) {
2789           // Visual C++ allows type definition in anonymous struct or union.
2790           if (getLangOptions().MicrosoftExt)
2791             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2792               << (int)Record->isUnion();
2793           else {
2794             // This is a nested type declaration.
2795             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2796               << (int)Record->isUnion();
2797             Invalid = true;
2798           }
2799         }
2800       } else if (isa<AccessSpecDecl>(*Mem)) {
2801         // Any access specifier is fine.
2802       } else {
2803         // We have something that isn't a non-static data
2804         // member. Complain about it.
2805         unsigned DK = diag::err_anonymous_record_bad_member;
2806         if (isa<TypeDecl>(*Mem))
2807           DK = diag::err_anonymous_record_with_type;
2808         else if (isa<FunctionDecl>(*Mem))
2809           DK = diag::err_anonymous_record_with_function;
2810         else if (isa<VarDecl>(*Mem))
2811           DK = diag::err_anonymous_record_with_static;
2812 
2813         // Visual C++ allows type definition in anonymous struct or union.
2814         if (getLangOptions().MicrosoftExt &&
2815             DK == diag::err_anonymous_record_with_type)
2816           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2817             << (int)Record->isUnion();
2818         else {
2819           Diag((*Mem)->getLocation(), DK)
2820               << (int)Record->isUnion();
2821           Invalid = true;
2822         }
2823       }
2824     }
2825   }
2826 
2827   if (!Record->isUnion() && !Owner->isRecord()) {
2828     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2829       << (int)getLangOptions().CPlusPlus;
2830     Invalid = true;
2831   }
2832 
2833   // Mock up a declarator.
2834   Declarator Dc(DS, Declarator::MemberContext);
2835   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2836   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2837 
2838   // Create a declaration for this anonymous struct/union.
2839   NamedDecl *Anon = 0;
2840   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2841     Anon = FieldDecl::Create(Context, OwningClass,
2842                              DS.getSourceRange().getBegin(),
2843                              Record->getLocation(),
2844                              /*IdentifierInfo=*/0,
2845                              Context.getTypeDeclType(Record),
2846                              TInfo,
2847                              /*BitWidth=*/0, /*Mutable=*/false,
2848                              /*HasInit=*/false);
2849     Anon->setAccess(AS);
2850     if (getLangOptions().CPlusPlus)
2851       FieldCollector->Add(cast<FieldDecl>(Anon));
2852   } else {
2853     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2854     assert(SCSpec != DeclSpec::SCS_typedef &&
2855            "Parser allowed 'typedef' as storage class VarDecl.");
2856     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2857     if (SCSpec == DeclSpec::SCS_mutable) {
2858       // mutable can only appear on non-static class members, so it's always
2859       // an error here
2860       Diag(Record->getLocation(), diag::err_mutable_nonmember);
2861       Invalid = true;
2862       SC = SC_None;
2863     }
2864     SCSpec = DS.getStorageClassSpecAsWritten();
2865     VarDecl::StorageClass SCAsWritten
2866       = StorageClassSpecToVarDeclStorageClass(SCSpec);
2867 
2868     Anon = VarDecl::Create(Context, Owner,
2869                            DS.getSourceRange().getBegin(),
2870                            Record->getLocation(), /*IdentifierInfo=*/0,
2871                            Context.getTypeDeclType(Record),
2872                            TInfo, SC, SCAsWritten);
2873 
2874     // Default-initialize the implicit variable. This initialization will be
2875     // trivial in almost all cases, except if a union member has an in-class
2876     // initializer:
2877     //   union { int n = 0; };
2878     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2879   }
2880   Anon->setImplicit();
2881 
2882   // Add the anonymous struct/union object to the current
2883   // context. We'll be referencing this object when we refer to one of
2884   // its members.
2885   Owner->addDecl(Anon);
2886 
2887   // Inject the members of the anonymous struct/union into the owning
2888   // context and into the identifier resolver chain for name lookup
2889   // purposes.
2890   SmallVector<NamedDecl*, 2> Chain;
2891   Chain.push_back(Anon);
2892 
2893   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2894                                           Chain, false))
2895     Invalid = true;
2896 
2897   // Mark this as an anonymous struct/union type. Note that we do not
2898   // do this until after we have already checked and injected the
2899   // members of this anonymous struct/union type, because otherwise
2900   // the members could be injected twice: once by DeclContext when it
2901   // builds its lookup table, and once by
2902   // InjectAnonymousStructOrUnionMembers.
2903   Record->setAnonymousStructOrUnion(true);
2904 
2905   if (Invalid)
2906     Anon->setInvalidDecl();
2907 
2908   return Anon;
2909 }
2910 
2911 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2912 /// Microsoft C anonymous structure.
2913 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2914 /// Example:
2915 ///
2916 /// struct A { int a; };
2917 /// struct B { struct A; int b; };
2918 ///
2919 /// void foo() {
2920 ///   B var;
2921 ///   var.a = 3;
2922 /// }
2923 ///
2924 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2925                                            RecordDecl *Record) {
2926 
2927   // If there is no Record, get the record via the typedef.
2928   if (!Record)
2929     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2930 
2931   // Mock up a declarator.
2932   Declarator Dc(DS, Declarator::TypeNameContext);
2933   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2934   assert(TInfo && "couldn't build declarator info for anonymous struct");
2935 
2936   // Create a declaration for this anonymous struct.
2937   NamedDecl* Anon = FieldDecl::Create(Context,
2938                              cast<RecordDecl>(CurContext),
2939                              DS.getSourceRange().getBegin(),
2940                              DS.getSourceRange().getBegin(),
2941                              /*IdentifierInfo=*/0,
2942                              Context.getTypeDeclType(Record),
2943                              TInfo,
2944                              /*BitWidth=*/0, /*Mutable=*/false,
2945                              /*HasInit=*/false);
2946   Anon->setImplicit();
2947 
2948   // Add the anonymous struct object to the current context.
2949   CurContext->addDecl(Anon);
2950 
2951   // Inject the members of the anonymous struct into the current
2952   // context and into the identifier resolver chain for name lookup
2953   // purposes.
2954   SmallVector<NamedDecl*, 2> Chain;
2955   Chain.push_back(Anon);
2956 
2957   RecordDecl *RecordDef = Record->getDefinition();
2958   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2959                                                         RecordDef, AS_none,
2960                                                         Chain, true))
2961     Anon->setInvalidDecl();
2962 
2963   return Anon;
2964 }
2965 
2966 /// GetNameForDeclarator - Determine the full declaration name for the
2967 /// given Declarator.
2968 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2969   return GetNameFromUnqualifiedId(D.getName());
2970 }
2971 
2972 /// \brief Retrieves the declaration name from a parsed unqualified-id.
2973 DeclarationNameInfo
2974 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2975   DeclarationNameInfo NameInfo;
2976   NameInfo.setLoc(Name.StartLocation);
2977 
2978   switch (Name.getKind()) {
2979 
2980   case UnqualifiedId::IK_ImplicitSelfParam:
2981   case UnqualifiedId::IK_Identifier:
2982     NameInfo.setName(Name.Identifier);
2983     NameInfo.setLoc(Name.StartLocation);
2984     return NameInfo;
2985 
2986   case UnqualifiedId::IK_OperatorFunctionId:
2987     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2988                                            Name.OperatorFunctionId.Operator));
2989     NameInfo.setLoc(Name.StartLocation);
2990     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2991       = Name.OperatorFunctionId.SymbolLocations[0];
2992     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2993       = Name.EndLocation.getRawEncoding();
2994     return NameInfo;
2995 
2996   case UnqualifiedId::IK_LiteralOperatorId:
2997     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2998                                                            Name.Identifier));
2999     NameInfo.setLoc(Name.StartLocation);
3000     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3001     return NameInfo;
3002 
3003   case UnqualifiedId::IK_ConversionFunctionId: {
3004     TypeSourceInfo *TInfo;
3005     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3006     if (Ty.isNull())
3007       return DeclarationNameInfo();
3008     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3009                                                Context.getCanonicalType(Ty)));
3010     NameInfo.setLoc(Name.StartLocation);
3011     NameInfo.setNamedTypeInfo(TInfo);
3012     return NameInfo;
3013   }
3014 
3015   case UnqualifiedId::IK_ConstructorName: {
3016     TypeSourceInfo *TInfo;
3017     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3018     if (Ty.isNull())
3019       return DeclarationNameInfo();
3020     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3021                                               Context.getCanonicalType(Ty)));
3022     NameInfo.setLoc(Name.StartLocation);
3023     NameInfo.setNamedTypeInfo(TInfo);
3024     return NameInfo;
3025   }
3026 
3027   case UnqualifiedId::IK_ConstructorTemplateId: {
3028     // In well-formed code, we can only have a constructor
3029     // template-id that refers to the current context, so go there
3030     // to find the actual type being constructed.
3031     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3032     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3033       return DeclarationNameInfo();
3034 
3035     // Determine the type of the class being constructed.
3036     QualType CurClassType = Context.getTypeDeclType(CurClass);
3037 
3038     // FIXME: Check two things: that the template-id names the same type as
3039     // CurClassType, and that the template-id does not occur when the name
3040     // was qualified.
3041 
3042     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3043                                     Context.getCanonicalType(CurClassType)));
3044     NameInfo.setLoc(Name.StartLocation);
3045     // FIXME: should we retrieve TypeSourceInfo?
3046     NameInfo.setNamedTypeInfo(0);
3047     return NameInfo;
3048   }
3049 
3050   case UnqualifiedId::IK_DestructorName: {
3051     TypeSourceInfo *TInfo;
3052     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3053     if (Ty.isNull())
3054       return DeclarationNameInfo();
3055     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3056                                               Context.getCanonicalType(Ty)));
3057     NameInfo.setLoc(Name.StartLocation);
3058     NameInfo.setNamedTypeInfo(TInfo);
3059     return NameInfo;
3060   }
3061 
3062   case UnqualifiedId::IK_TemplateId: {
3063     TemplateName TName = Name.TemplateId->Template.get();
3064     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3065     return Context.getNameForTemplate(TName, TNameLoc);
3066   }
3067 
3068   } // switch (Name.getKind())
3069 
3070   llvm_unreachable("Unknown name kind");
3071 }
3072 
3073 static QualType getCoreType(QualType Ty) {
3074   do {
3075     if (Ty->isPointerType() || Ty->isReferenceType())
3076       Ty = Ty->getPointeeType();
3077     else if (Ty->isArrayType())
3078       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3079     else
3080       return Ty.withoutLocalFastQualifiers();
3081   } while (true);
3082 }
3083 
3084 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3085 /// and Definition have "nearly" matching parameters. This heuristic is
3086 /// used to improve diagnostics in the case where an out-of-line function
3087 /// definition doesn't match any declaration within the class or namespace.
3088 /// Also sets Params to the list of indices to the parameters that differ
3089 /// between the declaration and the definition. If hasSimilarParameters
3090 /// returns true and Params is empty, then all of the parameters match.
3091 static bool hasSimilarParameters(ASTContext &Context,
3092                                      FunctionDecl *Declaration,
3093                                      FunctionDecl *Definition,
3094                                      llvm::SmallVectorImpl<unsigned> &Params) {
3095   Params.clear();
3096   if (Declaration->param_size() != Definition->param_size())
3097     return false;
3098   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3099     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3100     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3101 
3102     // The parameter types are identical
3103     if (Context.hasSameType(DefParamTy, DeclParamTy))
3104       continue;
3105 
3106     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3107     QualType DefParamBaseTy = getCoreType(DefParamTy);
3108     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3109     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3110 
3111     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3112         (DeclTyName && DeclTyName == DefTyName))
3113       Params.push_back(Idx);
3114     else  // The two parameters aren't even close
3115       return false;
3116   }
3117 
3118   return true;
3119 }
3120 
3121 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3122 /// declarator needs to be rebuilt in the current instantiation.
3123 /// Any bits of declarator which appear before the name are valid for
3124 /// consideration here.  That's specifically the type in the decl spec
3125 /// and the base type in any member-pointer chunks.
3126 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3127                                                     DeclarationName Name) {
3128   // The types we specifically need to rebuild are:
3129   //   - typenames, typeofs, and decltypes
3130   //   - types which will become injected class names
3131   // Of course, we also need to rebuild any type referencing such a
3132   // type.  It's safest to just say "dependent", but we call out a
3133   // few cases here.
3134 
3135   DeclSpec &DS = D.getMutableDeclSpec();
3136   switch (DS.getTypeSpecType()) {
3137   case DeclSpec::TST_typename:
3138   case DeclSpec::TST_typeofType:
3139   case DeclSpec::TST_decltype:
3140   case DeclSpec::TST_underlyingType:
3141   case DeclSpec::TST_atomic: {
3142     // Grab the type from the parser.
3143     TypeSourceInfo *TSI = 0;
3144     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3145     if (T.isNull() || !T->isDependentType()) break;
3146 
3147     // Make sure there's a type source info.  This isn't really much
3148     // of a waste; most dependent types should have type source info
3149     // attached already.
3150     if (!TSI)
3151       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3152 
3153     // Rebuild the type in the current instantiation.
3154     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3155     if (!TSI) return true;
3156 
3157     // Store the new type back in the decl spec.
3158     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3159     DS.UpdateTypeRep(LocType);
3160     break;
3161   }
3162 
3163   case DeclSpec::TST_typeofExpr: {
3164     Expr *E = DS.getRepAsExpr();
3165     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3166     if (Result.isInvalid()) return true;
3167     DS.UpdateExprRep(Result.get());
3168     break;
3169   }
3170 
3171   default:
3172     // Nothing to do for these decl specs.
3173     break;
3174   }
3175 
3176   // It doesn't matter what order we do this in.
3177   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3178     DeclaratorChunk &Chunk = D.getTypeObject(I);
3179 
3180     // The only type information in the declarator which can come
3181     // before the declaration name is the base type of a member
3182     // pointer.
3183     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3184       continue;
3185 
3186     // Rebuild the scope specifier in-place.
3187     CXXScopeSpec &SS = Chunk.Mem.Scope();
3188     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3189       return true;
3190   }
3191 
3192   return false;
3193 }
3194 
3195 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3196   D.setFunctionDefinitionKind(FDK_Declaration);
3197   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3198 
3199   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3200       Dcl->getDeclContext()->isFileContext())
3201     Dcl->setTopLevelDeclInObjCContainer();
3202 
3203   return Dcl;
3204 }
3205 
3206 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3207 ///   If T is the name of a class, then each of the following shall have a
3208 ///   name different from T:
3209 ///     - every static data member of class T;
3210 ///     - every member function of class T
3211 ///     - every member of class T that is itself a type;
3212 /// \returns true if the declaration name violates these rules.
3213 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3214                                    DeclarationNameInfo NameInfo) {
3215   DeclarationName Name = NameInfo.getName();
3216 
3217   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3218     if (Record->getIdentifier() && Record->getDeclName() == Name) {
3219       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3220       return true;
3221     }
3222 
3223   return false;
3224 }
3225 
3226 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3227                              MultiTemplateParamsArg TemplateParamLists) {
3228   // TODO: consider using NameInfo for diagnostic.
3229   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3230   DeclarationName Name = NameInfo.getName();
3231 
3232   // All of these full declarators require an identifier.  If it doesn't have
3233   // one, the ParsedFreeStandingDeclSpec action should be used.
3234   if (!Name) {
3235     if (!D.isInvalidType())  // Reject this if we think it is valid.
3236       Diag(D.getDeclSpec().getSourceRange().getBegin(),
3237            diag::err_declarator_need_ident)
3238         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3239     return 0;
3240   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3241     return 0;
3242 
3243   // The scope passed in may not be a decl scope.  Zip up the scope tree until
3244   // we find one that is.
3245   while ((S->getFlags() & Scope::DeclScope) == 0 ||
3246          (S->getFlags() & Scope::TemplateParamScope) != 0)
3247     S = S->getParent();
3248 
3249   DeclContext *DC = CurContext;
3250   if (D.getCXXScopeSpec().isInvalid())
3251     D.setInvalidType();
3252   else if (D.getCXXScopeSpec().isSet()) {
3253     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3254                                         UPPC_DeclarationQualifier))
3255       return 0;
3256 
3257     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3258     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3259     if (!DC) {
3260       // If we could not compute the declaration context, it's because the
3261       // declaration context is dependent but does not refer to a class,
3262       // class template, or class template partial specialization. Complain
3263       // and return early, to avoid the coming semantic disaster.
3264       Diag(D.getIdentifierLoc(),
3265            diag::err_template_qualified_declarator_no_match)
3266         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3267         << D.getCXXScopeSpec().getRange();
3268       return 0;
3269     }
3270     bool IsDependentContext = DC->isDependentContext();
3271 
3272     if (!IsDependentContext &&
3273         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3274       return 0;
3275 
3276     if (isa<CXXRecordDecl>(DC)) {
3277       if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3278         Diag(D.getIdentifierLoc(),
3279              diag::err_member_def_undefined_record)
3280           << Name << DC << D.getCXXScopeSpec().getRange();
3281         D.setInvalidType();
3282       } else if (isa<CXXRecordDecl>(CurContext) &&
3283                  !D.getDeclSpec().isFriendSpecified()) {
3284         // The user provided a superfluous scope specifier inside a class
3285         // definition:
3286         //
3287         // class X {
3288         //   void X::f();
3289         // };
3290         if (CurContext->Equals(DC)) {
3291           Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3292             << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3293         } else {
3294           Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3295             << Name << D.getCXXScopeSpec().getRange();
3296 
3297           // C++ constructors and destructors with incorrect scopes can break
3298           // our AST invariants by having the wrong underlying types. If
3299           // that's the case, then drop this declaration entirely.
3300           if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3301                Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3302               !Context.hasSameType(Name.getCXXNameType(),
3303                  Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3304             return 0;
3305         }
3306 
3307         // Pretend that this qualifier was not here.
3308         D.getCXXScopeSpec().clear();
3309       }
3310     }
3311 
3312     // Check whether we need to rebuild the type of the given
3313     // declaration in the current instantiation.
3314     if (EnteringContext && IsDependentContext &&
3315         TemplateParamLists.size() != 0) {
3316       ContextRAII SavedContext(*this, DC);
3317       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3318         D.setInvalidType();
3319     }
3320   }
3321 
3322   if (DiagnoseClassNameShadow(DC, NameInfo))
3323     // If this is a typedef, we'll end up spewing multiple diagnostics.
3324     // Just return early; it's safer.
3325     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3326       return 0;
3327 
3328   NamedDecl *New;
3329 
3330   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3331   QualType R = TInfo->getType();
3332 
3333   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3334                                       UPPC_DeclarationType))
3335     D.setInvalidType();
3336 
3337   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3338                         ForRedeclaration);
3339 
3340   // See if this is a redefinition of a variable in the same scope.
3341   if (!D.getCXXScopeSpec().isSet()) {
3342     bool IsLinkageLookup = false;
3343 
3344     // If the declaration we're planning to build will be a function
3345     // or object with linkage, then look for another declaration with
3346     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3347     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3348       /* Do nothing*/;
3349     else if (R->isFunctionType()) {
3350       if (CurContext->isFunctionOrMethod() ||
3351           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3352         IsLinkageLookup = true;
3353     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3354       IsLinkageLookup = true;
3355     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3356              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3357       IsLinkageLookup = true;
3358 
3359     if (IsLinkageLookup)
3360       Previous.clear(LookupRedeclarationWithLinkage);
3361 
3362     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3363   } else { // Something like "int foo::x;"
3364     LookupQualifiedName(Previous, DC);
3365 
3366     // Don't consider using declarations as previous declarations for
3367     // out-of-line members.
3368     RemoveUsingDecls(Previous);
3369 
3370     // C++ 7.3.1.2p2:
3371     // Members (including explicit specializations of templates) of a named
3372     // namespace can also be defined outside that namespace by explicit
3373     // qualification of the name being defined, provided that the entity being
3374     // defined was already declared in the namespace and the definition appears
3375     // after the point of declaration in a namespace that encloses the
3376     // declarations namespace.
3377     //
3378     // Note that we only check the context at this point. We don't yet
3379     // have enough information to make sure that PrevDecl is actually
3380     // the declaration we want to match. For example, given:
3381     //
3382     //   class X {
3383     //     void f();
3384     //     void f(float);
3385     //   };
3386     //
3387     //   void X::f(int) { } // ill-formed
3388     //
3389     // In this case, PrevDecl will point to the overload set
3390     // containing the two f's declared in X, but neither of them
3391     // matches.
3392 
3393     // First check whether we named the global scope.
3394     if (isa<TranslationUnitDecl>(DC)) {
3395       Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3396         << Name << D.getCXXScopeSpec().getRange();
3397     } else {
3398       DeclContext *Cur = CurContext;
3399       while (isa<LinkageSpecDecl>(Cur))
3400         Cur = Cur->getParent();
3401       if (!Cur->Encloses(DC)) {
3402         // The qualifying scope doesn't enclose the original declaration.
3403         // Emit diagnostic based on current scope.
3404         SourceLocation L = D.getIdentifierLoc();
3405         SourceRange R = D.getCXXScopeSpec().getRange();
3406         if (isa<FunctionDecl>(Cur))
3407           Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3408         else
3409           Diag(L, diag::err_invalid_declarator_scope)
3410             << Name << cast<NamedDecl>(DC) << R;
3411         D.setInvalidType();
3412       }
3413 
3414       // C++11 8.3p1:
3415       // ... "The nested-name-specifier of the qualified declarator-id shall
3416       // not begin with a decltype-specifer"
3417       NestedNameSpecifierLoc SpecLoc =
3418             D.getCXXScopeSpec().getWithLocInContext(Context);
3419       assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3420                         "NestedNameSpecifierLoc");
3421       while (SpecLoc.getPrefix())
3422         SpecLoc = SpecLoc.getPrefix();
3423       if (dyn_cast_or_null<DecltypeType>(
3424             SpecLoc.getNestedNameSpecifier()->getAsType()))
3425         Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3426           << SpecLoc.getTypeLoc().getSourceRange();
3427     }
3428   }
3429 
3430   if (Previous.isSingleResult() &&
3431       Previous.getFoundDecl()->isTemplateParameter()) {
3432     // Maybe we will complain about the shadowed template parameter.
3433     if (!D.isInvalidType())
3434       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3435                                       Previous.getFoundDecl());
3436 
3437     // Just pretend that we didn't see the previous declaration.
3438     Previous.clear();
3439   }
3440 
3441   // In C++, the previous declaration we find might be a tag type
3442   // (class or enum). In this case, the new declaration will hide the
3443   // tag type. Note that this does does not apply if we're declaring a
3444   // typedef (C++ [dcl.typedef]p4).
3445   if (Previous.isSingleTagDecl() &&
3446       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3447     Previous.clear();
3448 
3449   bool AddToScope = true;
3450   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3451     if (TemplateParamLists.size()) {
3452       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3453       return 0;
3454     }
3455 
3456     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3457   } else if (R->isFunctionType()) {
3458     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3459                                   move(TemplateParamLists),
3460                                   AddToScope);
3461   } else {
3462     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3463                                   move(TemplateParamLists));
3464   }
3465 
3466   if (New == 0)
3467     return 0;
3468 
3469   // If this has an identifier and is not an invalid redeclaration or
3470   // function template specialization, add it to the scope stack.
3471   if (New->getDeclName() && AddToScope &&
3472        !(D.isRedeclaration() && New->isInvalidDecl()))
3473     PushOnScopeChains(New, S);
3474 
3475   return New;
3476 }
3477 
3478 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3479 /// types into constant array types in certain situations which would otherwise
3480 /// be errors (for GCC compatibility).
3481 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3482                                                     ASTContext &Context,
3483                                                     bool &SizeIsNegative,
3484                                                     llvm::APSInt &Oversized) {
3485   // This method tries to turn a variable array into a constant
3486   // array even when the size isn't an ICE.  This is necessary
3487   // for compatibility with code that depends on gcc's buggy
3488   // constant expression folding, like struct {char x[(int)(char*)2];}
3489   SizeIsNegative = false;
3490   Oversized = 0;
3491 
3492   if (T->isDependentType())
3493     return QualType();
3494 
3495   QualifierCollector Qs;
3496   const Type *Ty = Qs.strip(T);
3497 
3498   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3499     QualType Pointee = PTy->getPointeeType();
3500     QualType FixedType =
3501         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3502                                             Oversized);
3503     if (FixedType.isNull()) return FixedType;
3504     FixedType = Context.getPointerType(FixedType);
3505     return Qs.apply(Context, FixedType);
3506   }
3507   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3508     QualType Inner = PTy->getInnerType();
3509     QualType FixedType =
3510         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3511                                             Oversized);
3512     if (FixedType.isNull()) return FixedType;
3513     FixedType = Context.getParenType(FixedType);
3514     return Qs.apply(Context, FixedType);
3515   }
3516 
3517   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3518   if (!VLATy)
3519     return QualType();
3520   // FIXME: We should probably handle this case
3521   if (VLATy->getElementType()->isVariablyModifiedType())
3522     return QualType();
3523 
3524   llvm::APSInt Res;
3525   if (!VLATy->getSizeExpr() ||
3526       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3527     return QualType();
3528 
3529   // Check whether the array size is negative.
3530   if (Res.isSigned() && Res.isNegative()) {
3531     SizeIsNegative = true;
3532     return QualType();
3533   }
3534 
3535   // Check whether the array is too large to be addressed.
3536   unsigned ActiveSizeBits
3537     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3538                                               Res);
3539   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3540     Oversized = Res;
3541     return QualType();
3542   }
3543 
3544   return Context.getConstantArrayType(VLATy->getElementType(),
3545                                       Res, ArrayType::Normal, 0);
3546 }
3547 
3548 /// \brief Register the given locally-scoped external C declaration so
3549 /// that it can be found later for redeclarations
3550 void
3551 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3552                                        const LookupResult &Previous,
3553                                        Scope *S) {
3554   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3555          "Decl is not a locally-scoped decl!");
3556   // Note that we have a locally-scoped external with this name.
3557   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3558 
3559   if (!Previous.isSingleResult())
3560     return;
3561 
3562   NamedDecl *PrevDecl = Previous.getFoundDecl();
3563 
3564   // If there was a previous declaration of this variable, it may be
3565   // in our identifier chain. Update the identifier chain with the new
3566   // declaration.
3567   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3568     // The previous declaration was found on the identifer resolver
3569     // chain, so remove it from its scope.
3570 
3571     if (S->isDeclScope(PrevDecl)) {
3572       // Special case for redeclarations in the SAME scope.
3573       // Because this declaration is going to be added to the identifier chain
3574       // later, we should temporarily take it OFF the chain.
3575       IdResolver.RemoveDecl(ND);
3576 
3577     } else {
3578       // Find the scope for the original declaration.
3579       while (S && !S->isDeclScope(PrevDecl))
3580         S = S->getParent();
3581     }
3582 
3583     if (S)
3584       S->RemoveDecl(PrevDecl);
3585   }
3586 }
3587 
3588 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3589 Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3590   if (ExternalSource) {
3591     // Load locally-scoped external decls from the external source.
3592     SmallVector<NamedDecl *, 4> Decls;
3593     ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3594     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3595       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3596         = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3597       if (Pos == LocallyScopedExternalDecls.end())
3598         LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3599     }
3600   }
3601 
3602   return LocallyScopedExternalDecls.find(Name);
3603 }
3604 
3605 /// \brief Diagnose function specifiers on a declaration of an identifier that
3606 /// does not identify a function.
3607 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3608   // FIXME: We should probably indicate the identifier in question to avoid
3609   // confusion for constructs like "inline int a(), b;"
3610   if (D.getDeclSpec().isInlineSpecified())
3611     Diag(D.getDeclSpec().getInlineSpecLoc(),
3612          diag::err_inline_non_function);
3613 
3614   if (D.getDeclSpec().isVirtualSpecified())
3615     Diag(D.getDeclSpec().getVirtualSpecLoc(),
3616          diag::err_virtual_non_function);
3617 
3618   if (D.getDeclSpec().isExplicitSpecified())
3619     Diag(D.getDeclSpec().getExplicitSpecLoc(),
3620          diag::err_explicit_non_function);
3621 }
3622 
3623 NamedDecl*
3624 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3625                              TypeSourceInfo *TInfo, LookupResult &Previous) {
3626   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3627   if (D.getCXXScopeSpec().isSet()) {
3628     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3629       << D.getCXXScopeSpec().getRange();
3630     D.setInvalidType();
3631     // Pretend we didn't see the scope specifier.
3632     DC = CurContext;
3633     Previous.clear();
3634   }
3635 
3636   if (getLangOptions().CPlusPlus) {
3637     // Check that there are no default arguments (C++ only).
3638     CheckExtraCXXDefaultArguments(D);
3639   }
3640 
3641   DiagnoseFunctionSpecifiers(D);
3642 
3643   if (D.getDeclSpec().isThreadSpecified())
3644     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3645   if (D.getDeclSpec().isConstexprSpecified())
3646     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3647       << 1;
3648 
3649   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3650     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3651       << D.getName().getSourceRange();
3652     return 0;
3653   }
3654 
3655   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3656   if (!NewTD) return 0;
3657 
3658   // Handle attributes prior to checking for duplicates in MergeVarDecl
3659   ProcessDeclAttributes(S, NewTD, D);
3660 
3661   CheckTypedefForVariablyModifiedType(S, NewTD);
3662 
3663   bool Redeclaration = D.isRedeclaration();
3664   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3665   D.setRedeclaration(Redeclaration);
3666   return ND;
3667 }
3668 
3669 void
3670 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3671   // C99 6.7.7p2: If a typedef name specifies a variably modified type
3672   // then it shall have block scope.
3673   // Note that variably modified types must be fixed before merging the decl so
3674   // that redeclarations will match.
3675   QualType T = NewTD->getUnderlyingType();
3676   if (T->isVariablyModifiedType()) {
3677     getCurFunction()->setHasBranchProtectedScope();
3678 
3679     if (S->getFnParent() == 0) {
3680       bool SizeIsNegative;
3681       llvm::APSInt Oversized;
3682       QualType FixedTy =
3683           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3684                                               Oversized);
3685       if (!FixedTy.isNull()) {
3686         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3687         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3688       } else {
3689         if (SizeIsNegative)
3690           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3691         else if (T->isVariableArrayType())
3692           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3693         else if (Oversized.getBoolValue())
3694           Diag(NewTD->getLocation(), diag::err_array_too_large)
3695             << Oversized.toString(10);
3696         else
3697           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3698         NewTD->setInvalidDecl();
3699       }
3700     }
3701   }
3702 }
3703 
3704 
3705 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3706 /// declares a typedef-name, either using the 'typedef' type specifier or via
3707 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3708 NamedDecl*
3709 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3710                            LookupResult &Previous, bool &Redeclaration) {
3711   // Merge the decl with the existing one if appropriate. If the decl is
3712   // in an outer scope, it isn't the same thing.
3713   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3714                        /*ExplicitInstantiationOrSpecialization=*/false);
3715   if (!Previous.empty()) {
3716     Redeclaration = true;
3717     MergeTypedefNameDecl(NewTD, Previous);
3718   }
3719 
3720   // If this is the C FILE type, notify the AST context.
3721   if (IdentifierInfo *II = NewTD->getIdentifier())
3722     if (!NewTD->isInvalidDecl() &&
3723         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3724       if (II->isStr("FILE"))
3725         Context.setFILEDecl(NewTD);
3726       else if (II->isStr("jmp_buf"))
3727         Context.setjmp_bufDecl(NewTD);
3728       else if (II->isStr("sigjmp_buf"))
3729         Context.setsigjmp_bufDecl(NewTD);
3730       else if (II->isStr("ucontext_t"))
3731         Context.setucontext_tDecl(NewTD);
3732       else if (II->isStr("__builtin_va_list"))
3733         Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3734     }
3735 
3736   return NewTD;
3737 }
3738 
3739 /// \brief Determines whether the given declaration is an out-of-scope
3740 /// previous declaration.
3741 ///
3742 /// This routine should be invoked when name lookup has found a
3743 /// previous declaration (PrevDecl) that is not in the scope where a
3744 /// new declaration by the same name is being introduced. If the new
3745 /// declaration occurs in a local scope, previous declarations with
3746 /// linkage may still be considered previous declarations (C99
3747 /// 6.2.2p4-5, C++ [basic.link]p6).
3748 ///
3749 /// \param PrevDecl the previous declaration found by name
3750 /// lookup
3751 ///
3752 /// \param DC the context in which the new declaration is being
3753 /// declared.
3754 ///
3755 /// \returns true if PrevDecl is an out-of-scope previous declaration
3756 /// for a new delcaration with the same name.
3757 static bool
3758 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3759                                 ASTContext &Context) {
3760   if (!PrevDecl)
3761     return false;
3762 
3763   if (!PrevDecl->hasLinkage())
3764     return false;
3765 
3766   if (Context.getLangOptions().CPlusPlus) {
3767     // C++ [basic.link]p6:
3768     //   If there is a visible declaration of an entity with linkage
3769     //   having the same name and type, ignoring entities declared
3770     //   outside the innermost enclosing namespace scope, the block
3771     //   scope declaration declares that same entity and receives the
3772     //   linkage of the previous declaration.
3773     DeclContext *OuterContext = DC->getRedeclContext();
3774     if (!OuterContext->isFunctionOrMethod())
3775       // This rule only applies to block-scope declarations.
3776       return false;
3777 
3778     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3779     if (PrevOuterContext->isRecord())
3780       // We found a member function: ignore it.
3781       return false;
3782 
3783     // Find the innermost enclosing namespace for the new and
3784     // previous declarations.
3785     OuterContext = OuterContext->getEnclosingNamespaceContext();
3786     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3787 
3788     // The previous declaration is in a different namespace, so it
3789     // isn't the same function.
3790     if (!OuterContext->Equals(PrevOuterContext))
3791       return false;
3792   }
3793 
3794   return true;
3795 }
3796 
3797 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3798   CXXScopeSpec &SS = D.getCXXScopeSpec();
3799   if (!SS.isSet()) return;
3800   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3801 }
3802 
3803 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3804   QualType type = decl->getType();
3805   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3806   if (lifetime == Qualifiers::OCL_Autoreleasing) {
3807     // Various kinds of declaration aren't allowed to be __autoreleasing.
3808     unsigned kind = -1U;
3809     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3810       if (var->hasAttr<BlocksAttr>())
3811         kind = 0; // __block
3812       else if (!var->hasLocalStorage())
3813         kind = 1; // global
3814     } else if (isa<ObjCIvarDecl>(decl)) {
3815       kind = 3; // ivar
3816     } else if (isa<FieldDecl>(decl)) {
3817       kind = 2; // field
3818     }
3819 
3820     if (kind != -1U) {
3821       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3822         << kind;
3823     }
3824   } else if (lifetime == Qualifiers::OCL_None) {
3825     // Try to infer lifetime.
3826     if (!type->isObjCLifetimeType())
3827       return false;
3828 
3829     lifetime = type->getObjCARCImplicitLifetime();
3830     type = Context.getLifetimeQualifiedType(type, lifetime);
3831     decl->setType(type);
3832   }
3833 
3834   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3835     // Thread-local variables cannot have lifetime.
3836     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3837         var->isThreadSpecified()) {
3838       Diag(var->getLocation(), diag::err_arc_thread_ownership)
3839         << var->getType();
3840       return true;
3841     }
3842   }
3843 
3844   return false;
3845 }
3846 
3847 NamedDecl*
3848 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3849                               TypeSourceInfo *TInfo, LookupResult &Previous,
3850                               MultiTemplateParamsArg TemplateParamLists) {
3851   QualType R = TInfo->getType();
3852   DeclarationName Name = GetNameForDeclarator(D).getName();
3853 
3854   // Check that there are no default arguments (C++ only).
3855   if (getLangOptions().CPlusPlus)
3856     CheckExtraCXXDefaultArguments(D);
3857 
3858   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3859   assert(SCSpec != DeclSpec::SCS_typedef &&
3860          "Parser allowed 'typedef' as storage class VarDecl.");
3861   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3862   if (SCSpec == DeclSpec::SCS_mutable) {
3863     // mutable can only appear on non-static class members, so it's always
3864     // an error here
3865     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3866     D.setInvalidType();
3867     SC = SC_None;
3868   }
3869   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3870   VarDecl::StorageClass SCAsWritten
3871     = StorageClassSpecToVarDeclStorageClass(SCSpec);
3872 
3873   IdentifierInfo *II = Name.getAsIdentifierInfo();
3874   if (!II) {
3875     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3876       << Name;
3877     return 0;
3878   }
3879 
3880   DiagnoseFunctionSpecifiers(D);
3881 
3882   if (!DC->isRecord() && S->getFnParent() == 0) {
3883     // C99 6.9p2: The storage-class specifiers auto and register shall not
3884     // appear in the declaration specifiers in an external declaration.
3885     if (SC == SC_Auto || SC == SC_Register) {
3886 
3887       // If this is a register variable with an asm label specified, then this
3888       // is a GNU extension.
3889       if (SC == SC_Register && D.getAsmLabel())
3890         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3891       else
3892         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3893       D.setInvalidType();
3894     }
3895   }
3896 
3897   if (getLangOptions().OpenCL) {
3898     // Set up the special work-group-local storage class for variables in the
3899     // OpenCL __local address space.
3900     if (R.getAddressSpace() == LangAS::opencl_local)
3901       SC = SC_OpenCLWorkGroupLocal;
3902   }
3903 
3904   bool isExplicitSpecialization = false;
3905   VarDecl *NewVD;
3906   if (!getLangOptions().CPlusPlus) {
3907     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3908                             D.getIdentifierLoc(), II,
3909                             R, TInfo, SC, SCAsWritten);
3910 
3911     if (D.isInvalidType())
3912       NewVD->setInvalidDecl();
3913   } else {
3914     if (DC->isRecord() && !CurContext->isRecord()) {
3915       // This is an out-of-line definition of a static data member.
3916       if (SC == SC_Static) {
3917         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3918              diag::err_static_out_of_line)
3919           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3920       } else if (SC == SC_None)
3921         SC = SC_Static;
3922     }
3923     if (SC == SC_Static && CurContext->isRecord()) {
3924       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3925         if (RD->isLocalClass())
3926           Diag(D.getIdentifierLoc(),
3927                diag::err_static_data_member_not_allowed_in_local_class)
3928             << Name << RD->getDeclName();
3929 
3930         // C++98 [class.union]p1: If a union contains a static data member,
3931         // the program is ill-formed. C++11 drops this restriction.
3932         if (RD->isUnion())
3933           Diag(D.getIdentifierLoc(),
3934                getLangOptions().CPlusPlus0x
3935                  ? diag::warn_cxx98_compat_static_data_member_in_union
3936                  : diag::ext_static_data_member_in_union) << Name;
3937         // We conservatively disallow static data members in anonymous structs.
3938         else if (!RD->getDeclName())
3939           Diag(D.getIdentifierLoc(),
3940                diag::err_static_data_member_not_allowed_in_anon_struct)
3941             << Name << RD->isUnion();
3942       }
3943     }
3944 
3945     // Match up the template parameter lists with the scope specifier, then
3946     // determine whether we have a template or a template specialization.
3947     isExplicitSpecialization = false;
3948     bool Invalid = false;
3949     if (TemplateParameterList *TemplateParams
3950         = MatchTemplateParametersToScopeSpecifier(
3951                                   D.getDeclSpec().getSourceRange().getBegin(),
3952                                                   D.getIdentifierLoc(),
3953                                                   D.getCXXScopeSpec(),
3954                                                   TemplateParamLists.get(),
3955                                                   TemplateParamLists.size(),
3956                                                   /*never a friend*/ false,
3957                                                   isExplicitSpecialization,
3958                                                   Invalid)) {
3959       if (TemplateParams->size() > 0) {
3960         // There is no such thing as a variable template.
3961         Diag(D.getIdentifierLoc(), diag::err_template_variable)
3962           << II
3963           << SourceRange(TemplateParams->getTemplateLoc(),
3964                          TemplateParams->getRAngleLoc());
3965         return 0;
3966       } else {
3967         // There is an extraneous 'template<>' for this variable. Complain
3968         // about it, but allow the declaration of the variable.
3969         Diag(TemplateParams->getTemplateLoc(),
3970              diag::err_template_variable_noparams)
3971           << II
3972           << SourceRange(TemplateParams->getTemplateLoc(),
3973                          TemplateParams->getRAngleLoc());
3974       }
3975     }
3976 
3977     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3978                             D.getIdentifierLoc(), II,
3979                             R, TInfo, SC, SCAsWritten);
3980 
3981     // If this decl has an auto type in need of deduction, make a note of the
3982     // Decl so we can diagnose uses of it in its own initializer.
3983     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3984         R->getContainedAutoType())
3985       ParsingInitForAutoVars.insert(NewVD);
3986 
3987     if (D.isInvalidType() || Invalid)
3988       NewVD->setInvalidDecl();
3989 
3990     SetNestedNameSpecifier(NewVD, D);
3991 
3992     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3993       NewVD->setTemplateParameterListsInfo(Context,
3994                                            TemplateParamLists.size(),
3995                                            TemplateParamLists.release());
3996     }
3997 
3998     if (D.getDeclSpec().isConstexprSpecified())
3999       NewVD->setConstexpr(true);
4000   }
4001 
4002   // Set the lexical context. If the declarator has a C++ scope specifier, the
4003   // lexical context will be different from the semantic context.
4004   NewVD->setLexicalDeclContext(CurContext);
4005 
4006   if (D.getDeclSpec().isThreadSpecified()) {
4007     if (NewVD->hasLocalStorage())
4008       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4009     else if (!Context.getTargetInfo().isTLSSupported())
4010       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4011     else
4012       NewVD->setThreadSpecified(true);
4013   }
4014 
4015   if (D.getDeclSpec().isModulePrivateSpecified()) {
4016     if (isExplicitSpecialization)
4017       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4018         << 2
4019         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4020     else if (NewVD->hasLocalStorage())
4021       Diag(NewVD->getLocation(), diag::err_module_private_local)
4022         << 0 << NewVD->getDeclName()
4023         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4024         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4025     else
4026       NewVD->setModulePrivate();
4027   }
4028 
4029   // Handle attributes prior to checking for duplicates in MergeVarDecl
4030   ProcessDeclAttributes(S, NewVD, D);
4031 
4032   // In auto-retain/release, infer strong retension for variables of
4033   // retainable type.
4034   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4035     NewVD->setInvalidDecl();
4036 
4037   // Handle GNU asm-label extension (encoded as an attribute).
4038   if (Expr *E = (Expr*)D.getAsmLabel()) {
4039     // The parser guarantees this is a string.
4040     StringLiteral *SE = cast<StringLiteral>(E);
4041     StringRef Label = SE->getString();
4042     if (S->getFnParent() != 0) {
4043       switch (SC) {
4044       case SC_None:
4045       case SC_Auto:
4046         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4047         break;
4048       case SC_Register:
4049         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4050           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4051         break;
4052       case SC_Static:
4053       case SC_Extern:
4054       case SC_PrivateExtern:
4055       case SC_OpenCLWorkGroupLocal:
4056         break;
4057       }
4058     }
4059 
4060     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4061                                                 Context, Label));
4062   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4063     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4064       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4065     if (I != ExtnameUndeclaredIdentifiers.end()) {
4066       NewVD->addAttr(I->second);
4067       ExtnameUndeclaredIdentifiers.erase(I);
4068     }
4069   }
4070 
4071   // Diagnose shadowed variables before filtering for scope.
4072   if (!D.getCXXScopeSpec().isSet())
4073     CheckShadow(S, NewVD, Previous);
4074 
4075   // Don't consider existing declarations that are in a different
4076   // scope and are out-of-semantic-context declarations (if the new
4077   // declaration has linkage).
4078   FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4079                        isExplicitSpecialization);
4080 
4081   if (!getLangOptions().CPlusPlus) {
4082     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4083   } else {
4084     // Merge the decl with the existing one if appropriate.
4085     if (!Previous.empty()) {
4086       if (Previous.isSingleResult() &&
4087           isa<FieldDecl>(Previous.getFoundDecl()) &&
4088           D.getCXXScopeSpec().isSet()) {
4089         // The user tried to define a non-static data member
4090         // out-of-line (C++ [dcl.meaning]p1).
4091         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4092           << D.getCXXScopeSpec().getRange();
4093         Previous.clear();
4094         NewVD->setInvalidDecl();
4095       }
4096     } else if (D.getCXXScopeSpec().isSet()) {
4097       // No previous declaration in the qualifying scope.
4098       Diag(D.getIdentifierLoc(), diag::err_no_member)
4099         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4100         << D.getCXXScopeSpec().getRange();
4101       NewVD->setInvalidDecl();
4102     }
4103 
4104     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4105 
4106     // This is an explicit specialization of a static data member. Check it.
4107     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4108         CheckMemberSpecialization(NewVD, Previous))
4109       NewVD->setInvalidDecl();
4110   }
4111 
4112   // attributes declared post-definition are currently ignored
4113   // FIXME: This should be handled in attribute merging, not
4114   // here.
4115   if (Previous.isSingleResult()) {
4116     VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4117     if (Def && (Def = Def->getDefinition()) &&
4118         Def != NewVD && D.hasAttributes()) {
4119       Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4120       Diag(Def->getLocation(), diag::note_previous_definition);
4121     }
4122   }
4123 
4124   // If this is a locally-scoped extern C variable, update the map of
4125   // such variables.
4126   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4127       !NewVD->isInvalidDecl())
4128     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4129 
4130   // If there's a #pragma GCC visibility in scope, and this isn't a class
4131   // member, set the visibility of this variable.
4132   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4133     AddPushedVisibilityAttribute(NewVD);
4134 
4135   MarkUnusedFileScopedDecl(NewVD);
4136 
4137   return NewVD;
4138 }
4139 
4140 /// \brief Diagnose variable or built-in function shadowing.  Implements
4141 /// -Wshadow.
4142 ///
4143 /// This method is called whenever a VarDecl is added to a "useful"
4144 /// scope.
4145 ///
4146 /// \param S the scope in which the shadowing name is being declared
4147 /// \param R the lookup of the name
4148 ///
4149 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4150   // Return if warning is ignored.
4151   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4152         DiagnosticsEngine::Ignored)
4153     return;
4154 
4155   // Don't diagnose declarations at file scope.
4156   if (D->hasGlobalStorage())
4157     return;
4158 
4159   DeclContext *NewDC = D->getDeclContext();
4160 
4161   // Only diagnose if we're shadowing an unambiguous field or variable.
4162   if (R.getResultKind() != LookupResult::Found)
4163     return;
4164 
4165   NamedDecl* ShadowedDecl = R.getFoundDecl();
4166   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4167     return;
4168 
4169   // Fields are not shadowed by variables in C++ static methods.
4170   if (isa<FieldDecl>(ShadowedDecl))
4171     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4172       if (MD->isStatic())
4173         return;
4174 
4175   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4176     if (shadowedVar->isExternC()) {
4177       // For shadowing external vars, make sure that we point to the global
4178       // declaration, not a locally scoped extern declaration.
4179       for (VarDecl::redecl_iterator
4180              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4181            I != E; ++I)
4182         if (I->isFileVarDecl()) {
4183           ShadowedDecl = *I;
4184           break;
4185         }
4186     }
4187 
4188   DeclContext *OldDC = ShadowedDecl->getDeclContext();
4189 
4190   // Only warn about certain kinds of shadowing for class members.
4191   if (NewDC && NewDC->isRecord()) {
4192     // In particular, don't warn about shadowing non-class members.
4193     if (!OldDC->isRecord())
4194       return;
4195 
4196     // TODO: should we warn about static data members shadowing
4197     // static data members from base classes?
4198 
4199     // TODO: don't diagnose for inaccessible shadowed members.
4200     // This is hard to do perfectly because we might friend the
4201     // shadowing context, but that's just a false negative.
4202   }
4203 
4204   // Determine what kind of declaration we're shadowing.
4205   unsigned Kind;
4206   if (isa<RecordDecl>(OldDC)) {
4207     if (isa<FieldDecl>(ShadowedDecl))
4208       Kind = 3; // field
4209     else
4210       Kind = 2; // static data member
4211   } else if (OldDC->isFileContext())
4212     Kind = 1; // global
4213   else
4214     Kind = 0; // local
4215 
4216   DeclarationName Name = R.getLookupName();
4217 
4218   // Emit warning and note.
4219   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4220   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4221 }
4222 
4223 /// \brief Check -Wshadow without the advantage of a previous lookup.
4224 void Sema::CheckShadow(Scope *S, VarDecl *D) {
4225   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4226         DiagnosticsEngine::Ignored)
4227     return;
4228 
4229   LookupResult R(*this, D->getDeclName(), D->getLocation(),
4230                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4231   LookupName(R, S);
4232   CheckShadow(S, D, R);
4233 }
4234 
4235 /// \brief Perform semantic checking on a newly-created variable
4236 /// declaration.
4237 ///
4238 /// This routine performs all of the type-checking required for a
4239 /// variable declaration once it has been built. It is used both to
4240 /// check variables after they have been parsed and their declarators
4241 /// have been translated into a declaration, and to check variables
4242 /// that have been instantiated from a template.
4243 ///
4244 /// Sets NewVD->isInvalidDecl() if an error was encountered.
4245 ///
4246 /// Returns true if the variable declaration is a redeclaration.
4247 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4248                                     LookupResult &Previous) {
4249   // If the decl is already known invalid, don't check it.
4250   if (NewVD->isInvalidDecl())
4251     return false;
4252 
4253   QualType T = NewVD->getType();
4254 
4255   if (T->isObjCObjectType()) {
4256     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4257       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4258     T = Context.getObjCObjectPointerType(T);
4259     NewVD->setType(T);
4260   }
4261 
4262   // Emit an error if an address space was applied to decl with local storage.
4263   // This includes arrays of objects with address space qualifiers, but not
4264   // automatic variables that point to other address spaces.
4265   // ISO/IEC TR 18037 S5.1.2
4266   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4267     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4268     NewVD->setInvalidDecl();
4269     return false;
4270   }
4271 
4272   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4273       && !NewVD->hasAttr<BlocksAttr>()) {
4274     if (getLangOptions().getGC() != LangOptions::NonGC)
4275       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4276     else
4277       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4278   }
4279 
4280   bool isVM = T->isVariablyModifiedType();
4281   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4282       NewVD->hasAttr<BlocksAttr>())
4283     getCurFunction()->setHasBranchProtectedScope();
4284 
4285   if ((isVM && NewVD->hasLinkage()) ||
4286       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4287     bool SizeIsNegative;
4288     llvm::APSInt Oversized;
4289     QualType FixedTy =
4290         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4291                                             Oversized);
4292 
4293     if (FixedTy.isNull() && T->isVariableArrayType()) {
4294       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4295       // FIXME: This won't give the correct result for
4296       // int a[10][n];
4297       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4298 
4299       if (NewVD->isFileVarDecl())
4300         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4301         << SizeRange;
4302       else if (NewVD->getStorageClass() == SC_Static)
4303         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4304         << SizeRange;
4305       else
4306         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4307         << SizeRange;
4308       NewVD->setInvalidDecl();
4309       return false;
4310     }
4311 
4312     if (FixedTy.isNull()) {
4313       if (NewVD->isFileVarDecl())
4314         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4315       else
4316         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4317       NewVD->setInvalidDecl();
4318       return false;
4319     }
4320 
4321     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4322     NewVD->setType(FixedTy);
4323   }
4324 
4325   if (Previous.empty() && NewVD->isExternC()) {
4326     // Since we did not find anything by this name and we're declaring
4327     // an extern "C" variable, look for a non-visible extern "C"
4328     // declaration with the same name.
4329     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4330       = findLocallyScopedExternalDecl(NewVD->getDeclName());
4331     if (Pos != LocallyScopedExternalDecls.end())
4332       Previous.addDecl(Pos->second);
4333   }
4334 
4335   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4336     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4337       << T;
4338     NewVD->setInvalidDecl();
4339     return false;
4340   }
4341 
4342   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4343     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4344     NewVD->setInvalidDecl();
4345     return false;
4346   }
4347 
4348   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4349     Diag(NewVD->getLocation(), diag::err_block_on_vm);
4350     NewVD->setInvalidDecl();
4351     return false;
4352   }
4353 
4354   if (NewVD->isConstexpr() && !T->isDependentType() &&
4355       RequireLiteralType(NewVD->getLocation(), T,
4356                          PDiag(diag::err_constexpr_var_non_literal))) {
4357     NewVD->setInvalidDecl();
4358     return false;
4359   }
4360 
4361   if (!Previous.empty()) {
4362     MergeVarDecl(NewVD, Previous);
4363     return true;
4364   }
4365   return false;
4366 }
4367 
4368 /// \brief Data used with FindOverriddenMethod
4369 struct FindOverriddenMethodData {
4370   Sema *S;
4371   CXXMethodDecl *Method;
4372 };
4373 
4374 /// \brief Member lookup function that determines whether a given C++
4375 /// method overrides a method in a base class, to be used with
4376 /// CXXRecordDecl::lookupInBases().
4377 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4378                                  CXXBasePath &Path,
4379                                  void *UserData) {
4380   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4381 
4382   FindOverriddenMethodData *Data
4383     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4384 
4385   DeclarationName Name = Data->Method->getDeclName();
4386 
4387   // FIXME: Do we care about other names here too?
4388   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4389     // We really want to find the base class destructor here.
4390     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4391     CanQualType CT = Data->S->Context.getCanonicalType(T);
4392 
4393     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4394   }
4395 
4396   for (Path.Decls = BaseRecord->lookup(Name);
4397        Path.Decls.first != Path.Decls.second;
4398        ++Path.Decls.first) {
4399     NamedDecl *D = *Path.Decls.first;
4400     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4401       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4402         return true;
4403     }
4404   }
4405 
4406   return false;
4407 }
4408 
4409 /// AddOverriddenMethods - See if a method overrides any in the base classes,
4410 /// and if so, check that it's a valid override and remember it.
4411 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4412   // Look for virtual methods in base classes that this method might override.
4413   CXXBasePaths Paths;
4414   FindOverriddenMethodData Data;
4415   Data.Method = MD;
4416   Data.S = this;
4417   bool AddedAny = false;
4418   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4419     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4420          E = Paths.found_decls_end(); I != E; ++I) {
4421       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4422         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4423         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4424             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4425             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4426           AddedAny = true;
4427         }
4428       }
4429     }
4430   }
4431 
4432   return AddedAny;
4433 }
4434 
4435 namespace {
4436   // Struct for holding all of the extra arguments needed by
4437   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4438   struct ActOnFDArgs {
4439     Scope *S;
4440     Declarator &D;
4441     MultiTemplateParamsArg TemplateParamLists;
4442     bool AddToScope;
4443   };
4444 }
4445 
4446 namespace {
4447 
4448 // Callback to only accept typo corrections that have a non-zero edit distance.
4449 // Also only accept corrections that have the same parent decl.
4450 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4451  public:
4452   DifferentNameValidatorCCC(CXXRecordDecl *Parent)
4453       : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4454 
4455   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4456     if (candidate.getEditDistance() == 0)
4457       return false;
4458 
4459     if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
4460       CXXRecordDecl *Parent = MD->getParent();
4461       return Parent && Parent->getCanonicalDecl() == ExpectedParent;
4462     }
4463 
4464     return !ExpectedParent;
4465   }
4466 
4467  private:
4468   CXXRecordDecl *ExpectedParent;
4469 };
4470 
4471 }
4472 
4473 /// \brief Generate diagnostics for an invalid function redeclaration.
4474 ///
4475 /// This routine handles generating the diagnostic messages for an invalid
4476 /// function redeclaration, including finding possible similar declarations
4477 /// or performing typo correction if there are no previous declarations with
4478 /// the same name.
4479 ///
4480 /// Returns a NamedDecl iff typo correction was performed and substituting in
4481 /// the new declaration name does not cause new errors.
4482 static NamedDecl* DiagnoseInvalidRedeclaration(
4483     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4484     ActOnFDArgs &ExtraArgs) {
4485   NamedDecl *Result = NULL;
4486   DeclarationName Name = NewFD->getDeclName();
4487   DeclContext *NewDC = NewFD->getDeclContext();
4488   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4489                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4490   llvm::SmallVector<unsigned, 1> MismatchedParams;
4491   llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4492   TypoCorrection Correction;
4493   bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4494                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
4495   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4496                                   : diag::err_member_def_does_not_match;
4497 
4498   NewFD->setInvalidDecl();
4499   SemaRef.LookupQualifiedName(Prev, NewDC);
4500   assert(!Prev.isAmbiguous() &&
4501          "Cannot have an ambiguity in previous-declaration lookup");
4502   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4503   DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
4504   if (!Prev.empty()) {
4505     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4506          Func != FuncEnd; ++Func) {
4507       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4508       if (FD &&
4509           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4510         // Add 1 to the index so that 0 can mean the mismatch didn't
4511         // involve a parameter
4512         unsigned ParamNum =
4513             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4514         NearMatches.push_back(std::make_pair(FD, ParamNum));
4515       }
4516     }
4517   // If the qualified name lookup yielded nothing, try typo correction
4518   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4519                                          Prev.getLookupKind(), 0, 0,
4520                                          Validator, NewDC))) {
4521     // Trap errors.
4522     Sema::SFINAETrap Trap(SemaRef);
4523 
4524     // Set up everything for the call to ActOnFunctionDeclarator
4525     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4526                               ExtraArgs.D.getIdentifierLoc());
4527     Previous.clear();
4528     Previous.setLookupName(Correction.getCorrection());
4529     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4530                                     CDeclEnd = Correction.end();
4531          CDecl != CDeclEnd; ++CDecl) {
4532       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4533       if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4534                                      MismatchedParams)) {
4535         Previous.addDecl(FD);
4536       }
4537     }
4538     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4539     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4540     // pieces need to verify the typo-corrected C++ declaraction and hopefully
4541     // eliminate the need for the parameter pack ExtraArgs.
4542     Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4543                                              NewFD->getDeclContext(),
4544                                              NewFD->getTypeSourceInfo(),
4545                                              Previous,
4546                                              ExtraArgs.TemplateParamLists,
4547                                              ExtraArgs.AddToScope);
4548     if (Trap.hasErrorOccurred()) {
4549       // Pretend the typo correction never occurred
4550       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4551                                 ExtraArgs.D.getIdentifierLoc());
4552       ExtraArgs.D.setRedeclaration(wasRedeclaration);
4553       Previous.clear();
4554       Previous.setLookupName(Name);
4555       Result = NULL;
4556     } else {
4557       for (LookupResult::iterator Func = Previous.begin(),
4558                                FuncEnd = Previous.end();
4559            Func != FuncEnd; ++Func) {
4560         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4561           NearMatches.push_back(std::make_pair(FD, 0));
4562       }
4563     }
4564     if (NearMatches.empty()) {
4565       // Ignore the correction if it didn't yield any close FunctionDecl matches
4566       Correction = TypoCorrection();
4567     } else {
4568       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4569                              : diag::err_member_def_does_not_match_suggest;
4570     }
4571   }
4572 
4573   if (Correction)
4574     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4575         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4576         << FixItHint::CreateReplacement(
4577             NewFD->getLocation(),
4578             Correction.getAsString(SemaRef.getLangOptions()));
4579   else
4580     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4581         << Name << NewDC << NewFD->getLocation();
4582 
4583   bool NewFDisConst = false;
4584   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4585     NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4586 
4587   for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4588        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4589        NearMatch != NearMatchEnd; ++NearMatch) {
4590     FunctionDecl *FD = NearMatch->first;
4591     bool FDisConst = false;
4592     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4593       FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4594 
4595     if (unsigned Idx = NearMatch->second) {
4596       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4597       SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4598              diag::note_member_def_close_param_match)
4599           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4600     } else if (Correction) {
4601       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4602           << Correction.getQuoted(SemaRef.getLangOptions());
4603     } else if (FDisConst != NewFDisConst) {
4604       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4605           << NewFDisConst << FD->getSourceRange().getEnd();
4606     } else
4607       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4608   }
4609   return Result;
4610 }
4611 
4612 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4613                                                           Declarator &D) {
4614   switch (D.getDeclSpec().getStorageClassSpec()) {
4615   default: llvm_unreachable("Unknown storage class!");
4616   case DeclSpec::SCS_auto:
4617   case DeclSpec::SCS_register:
4618   case DeclSpec::SCS_mutable:
4619     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4620                  diag::err_typecheck_sclass_func);
4621     D.setInvalidType();
4622     break;
4623   case DeclSpec::SCS_unspecified: break;
4624   case DeclSpec::SCS_extern: return SC_Extern;
4625   case DeclSpec::SCS_static: {
4626     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4627       // C99 6.7.1p5:
4628       //   The declaration of an identifier for a function that has
4629       //   block scope shall have no explicit storage-class specifier
4630       //   other than extern
4631       // See also (C++ [dcl.stc]p4).
4632       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4633                    diag::err_static_block_func);
4634       break;
4635     } else
4636       return SC_Static;
4637   }
4638   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4639   }
4640 
4641   // No explicit storage class has already been returned
4642   return SC_None;
4643 }
4644 
4645 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4646                                            DeclContext *DC, QualType &R,
4647                                            TypeSourceInfo *TInfo,
4648                                            FunctionDecl::StorageClass SC,
4649                                            bool &IsVirtualOkay) {
4650   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4651   DeclarationName Name = NameInfo.getName();
4652 
4653   FunctionDecl *NewFD = 0;
4654   bool isInline = D.getDeclSpec().isInlineSpecified();
4655   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4656   FunctionDecl::StorageClass SCAsWritten
4657     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4658 
4659   if (!SemaRef.getLangOptions().CPlusPlus) {
4660     // Determine whether the function was written with a
4661     // prototype. This true when:
4662     //   - there is a prototype in the declarator, or
4663     //   - the type R of the function is some kind of typedef or other reference
4664     //     to a type name (which eventually refers to a function type).
4665     bool HasPrototype =
4666       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4667       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4668 
4669     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4670                                  D.getSourceRange().getBegin(), NameInfo, R,
4671                                  TInfo, SC, SCAsWritten, isInline,
4672                                  HasPrototype);
4673     if (D.isInvalidType())
4674       NewFD->setInvalidDecl();
4675 
4676     // Set the lexical context.
4677     NewFD->setLexicalDeclContext(SemaRef.CurContext);
4678 
4679     return NewFD;
4680   }
4681 
4682   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4683   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4684 
4685   // Check that the return type is not an abstract class type.
4686   // For record types, this is done by the AbstractClassUsageDiagnoser once
4687   // the class has been completely parsed.
4688   if (!DC->isRecord() &&
4689       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4690                                      R->getAs<FunctionType>()->getResultType(),
4691                                      diag::err_abstract_type_in_decl,
4692                                      SemaRef.AbstractReturnType))
4693     D.setInvalidType();
4694 
4695   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4696     // This is a C++ constructor declaration.
4697     assert(DC->isRecord() &&
4698            "Constructors can only be declared in a member context");
4699 
4700     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4701     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4702                                       D.getSourceRange().getBegin(), NameInfo,
4703                                       R, TInfo, isExplicit, isInline,
4704                                       /*isImplicitlyDeclared=*/false,
4705                                       isConstexpr);
4706 
4707   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4708     // This is a C++ destructor declaration.
4709     if (DC->isRecord()) {
4710       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4711       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4712       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4713                                         SemaRef.Context, Record,
4714                                         D.getSourceRange().getBegin(),
4715                                         NameInfo, R, TInfo, isInline,
4716                                         /*isImplicitlyDeclared=*/false);
4717 
4718       // If the class is complete, then we now create the implicit exception
4719       // specification. If the class is incomplete or dependent, we can't do
4720       // it yet.
4721       if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4722           Record->getDefinition() && !Record->isBeingDefined() &&
4723           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4724         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4725       }
4726 
4727       IsVirtualOkay = true;
4728       return NewDD;
4729 
4730     } else {
4731       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4732       D.setInvalidType();
4733 
4734       // Create a FunctionDecl to satisfy the function definition parsing
4735       // code path.
4736       return FunctionDecl::Create(SemaRef.Context, DC,
4737                                   D.getSourceRange().getBegin(),
4738                                   D.getIdentifierLoc(), Name, R, TInfo,
4739                                   SC, SCAsWritten, isInline,
4740                                   /*hasPrototype=*/true, isConstexpr);
4741     }
4742 
4743   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4744     if (!DC->isRecord()) {
4745       SemaRef.Diag(D.getIdentifierLoc(),
4746            diag::err_conv_function_not_member);
4747       return 0;
4748     }
4749 
4750     SemaRef.CheckConversionDeclarator(D, R, SC);
4751     IsVirtualOkay = true;
4752     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4753                                      D.getSourceRange().getBegin(), NameInfo,
4754                                      R, TInfo, isInline, isExplicit,
4755                                      isConstexpr, SourceLocation());
4756 
4757   } else if (DC->isRecord()) {
4758     // If the name of the function is the same as the name of the record,
4759     // then this must be an invalid constructor that has a return type.
4760     // (The parser checks for a return type and makes the declarator a
4761     // constructor if it has no return type).
4762     if (Name.getAsIdentifierInfo() &&
4763         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4764       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4765         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4766         << SourceRange(D.getIdentifierLoc());
4767       return 0;
4768     }
4769 
4770     bool isStatic = SC == SC_Static;
4771 
4772     // [class.free]p1:
4773     // Any allocation function for a class T is a static member
4774     // (even if not explicitly declared static).
4775     if (Name.getCXXOverloadedOperator() == OO_New ||
4776         Name.getCXXOverloadedOperator() == OO_Array_New)
4777       isStatic = true;
4778 
4779     // [class.free]p6 Any deallocation function for a class X is a static member
4780     // (even if not explicitly declared static).
4781     if (Name.getCXXOverloadedOperator() == OO_Delete ||
4782         Name.getCXXOverloadedOperator() == OO_Array_Delete)
4783       isStatic = true;
4784 
4785     IsVirtualOkay = !isStatic;
4786 
4787     // This is a C++ method declaration.
4788     return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4789                                  D.getSourceRange().getBegin(), NameInfo, R,
4790                                  TInfo, isStatic, SCAsWritten, isInline,
4791                                  isConstexpr, SourceLocation());
4792 
4793   } else {
4794     // Determine whether the function was written with a
4795     // prototype. This true when:
4796     //   - we're in C++ (where every function has a prototype),
4797     return FunctionDecl::Create(SemaRef.Context, DC,
4798                                 D.getSourceRange().getBegin(),
4799                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4800                                 true/*HasPrototype*/, isConstexpr);
4801   }
4802 }
4803 
4804 NamedDecl*
4805 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4806                               TypeSourceInfo *TInfo, LookupResult &Previous,
4807                               MultiTemplateParamsArg TemplateParamLists,
4808                               bool &AddToScope) {
4809   QualType R = TInfo->getType();
4810 
4811   assert(R.getTypePtr()->isFunctionType());
4812 
4813   // TODO: consider using NameInfo for diagnostic.
4814   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4815   DeclarationName Name = NameInfo.getName();
4816   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4817 
4818   if (D.getDeclSpec().isThreadSpecified())
4819     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4820 
4821   // Do not allow returning a objc interface by-value.
4822   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4823     Diag(D.getIdentifierLoc(),
4824          diag::err_object_cannot_be_passed_returned_by_value) << 0
4825     << R->getAs<FunctionType>()->getResultType()
4826     << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4827 
4828     QualType T = R->getAs<FunctionType>()->getResultType();
4829     T = Context.getObjCObjectPointerType(T);
4830     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4831       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4832       R = Context.getFunctionType(T, FPT->arg_type_begin(),
4833                                   FPT->getNumArgs(), EPI);
4834     }
4835     else if (isa<FunctionNoProtoType>(R))
4836       R = Context.getFunctionNoProtoType(T);
4837   }
4838 
4839   bool isFriend = false;
4840   FunctionTemplateDecl *FunctionTemplate = 0;
4841   bool isExplicitSpecialization = false;
4842   bool isFunctionTemplateSpecialization = false;
4843   bool isDependentClassScopeExplicitSpecialization = false;
4844   bool isVirtualOkay = false;
4845 
4846   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4847                                               isVirtualOkay);
4848   if (!NewFD) return 0;
4849 
4850   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4851     NewFD->setTopLevelDeclInObjCContainer();
4852 
4853   if (getLangOptions().CPlusPlus) {
4854     bool isInline = D.getDeclSpec().isInlineSpecified();
4855     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4856     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4857     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4858     isFriend = D.getDeclSpec().isFriendSpecified();
4859     if (isFriend && !isInline && D.isFunctionDefinition()) {
4860       // C++ [class.friend]p5
4861       //   A function can be defined in a friend declaration of a
4862       //   class . . . . Such a function is implicitly inline.
4863       NewFD->setImplicitlyInline();
4864     }
4865 
4866     SetNestedNameSpecifier(NewFD, D);
4867     isExplicitSpecialization = false;
4868     isFunctionTemplateSpecialization = false;
4869     if (D.isInvalidType())
4870       NewFD->setInvalidDecl();
4871 
4872     // Set the lexical context. If the declarator has a C++
4873     // scope specifier, or is the object of a friend declaration, the
4874     // lexical context will be different from the semantic context.
4875     NewFD->setLexicalDeclContext(CurContext);
4876 
4877     // Match up the template parameter lists with the scope specifier, then
4878     // determine whether we have a template or a template specialization.
4879     bool Invalid = false;
4880     if (TemplateParameterList *TemplateParams
4881           = MatchTemplateParametersToScopeSpecifier(
4882                                   D.getDeclSpec().getSourceRange().getBegin(),
4883                                   D.getIdentifierLoc(),
4884                                   D.getCXXScopeSpec(),
4885                                   TemplateParamLists.get(),
4886                                   TemplateParamLists.size(),
4887                                   isFriend,
4888                                   isExplicitSpecialization,
4889                                   Invalid)) {
4890       if (TemplateParams->size() > 0) {
4891         // This is a function template
4892 
4893         // Check that we can declare a template here.
4894         if (CheckTemplateDeclScope(S, TemplateParams))
4895           return 0;
4896 
4897         // A destructor cannot be a template.
4898         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4899           Diag(NewFD->getLocation(), diag::err_destructor_template);
4900           return 0;
4901         }
4902 
4903         // If we're adding a template to a dependent context, we may need to
4904         // rebuilding some of the types used within the template parameter list,
4905         // now that we know what the current instantiation is.
4906         if (DC->isDependentContext()) {
4907           ContextRAII SavedContext(*this, DC);
4908           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4909             Invalid = true;
4910         }
4911 
4912 
4913         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4914                                                         NewFD->getLocation(),
4915                                                         Name, TemplateParams,
4916                                                         NewFD);
4917         FunctionTemplate->setLexicalDeclContext(CurContext);
4918         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4919 
4920         // For source fidelity, store the other template param lists.
4921         if (TemplateParamLists.size() > 1) {
4922           NewFD->setTemplateParameterListsInfo(Context,
4923                                                TemplateParamLists.size() - 1,
4924                                                TemplateParamLists.release());
4925         }
4926       } else {
4927         // This is a function template specialization.
4928         isFunctionTemplateSpecialization = true;
4929         // For source fidelity, store all the template param lists.
4930         NewFD->setTemplateParameterListsInfo(Context,
4931                                              TemplateParamLists.size(),
4932                                              TemplateParamLists.release());
4933 
4934         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4935         if (isFriend) {
4936           // We want to remove the "template<>", found here.
4937           SourceRange RemoveRange = TemplateParams->getSourceRange();
4938 
4939           // If we remove the template<> and the name is not a
4940           // template-id, we're actually silently creating a problem:
4941           // the friend declaration will refer to an untemplated decl,
4942           // and clearly the user wants a template specialization.  So
4943           // we need to insert '<>' after the name.
4944           SourceLocation InsertLoc;
4945           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4946             InsertLoc = D.getName().getSourceRange().getEnd();
4947             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4948           }
4949 
4950           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4951             << Name << RemoveRange
4952             << FixItHint::CreateRemoval(RemoveRange)
4953             << FixItHint::CreateInsertion(InsertLoc, "<>");
4954         }
4955       }
4956     }
4957     else {
4958       // All template param lists were matched against the scope specifier:
4959       // this is NOT (an explicit specialization of) a template.
4960       if (TemplateParamLists.size() > 0)
4961         // For source fidelity, store all the template param lists.
4962         NewFD->setTemplateParameterListsInfo(Context,
4963                                              TemplateParamLists.size(),
4964                                              TemplateParamLists.release());
4965     }
4966 
4967     if (Invalid) {
4968       NewFD->setInvalidDecl();
4969       if (FunctionTemplate)
4970         FunctionTemplate->setInvalidDecl();
4971     }
4972 
4973     // If we see "T var();" at block scope, where T is a class type, it is
4974     // probably an attempt to initialize a variable, not a function declaration.
4975     // We don't catch this case earlier, since there is no ambiguity here.
4976     if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4977         CurContext->isFunctionOrMethod() &&
4978         D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4979         D.getDeclSpec().getStorageClassSpecAsWritten()
4980           == DeclSpec::SCS_unspecified) {
4981       QualType T = R->getAs<FunctionType>()->getResultType();
4982       DeclaratorChunk &C = D.getTypeObject(0);
4983       if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4984           !C.Fun.TrailingReturnType &&
4985           C.Fun.getExceptionSpecType() == EST_None) {
4986         SourceRange ParenRange(C.Loc, C.EndLoc);
4987         Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4988 
4989         // If the declaration looks like:
4990         //   T var1,
4991         //   f();
4992         // and name lookup finds a function named 'f', then the ',' was
4993         // probably intended to be a ';'.
4994         if (!D.isFirstDeclarator() && D.getIdentifier()) {
4995           FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4996           FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4997           if (Comma.getFileID() != Name.getFileID() ||
4998               Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4999             LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5000                                 LookupOrdinaryName);
5001             if (LookupName(Result, S))
5002               Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5003                 << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5004           }
5005         }
5006         const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5007         // Empty parens mean value-initialization, and no parens mean default
5008         // initialization. These are equivalent if the default constructor is
5009         // user-provided, or if zero-initialization is a no-op.
5010         if (RD && RD->hasDefinition() &&
5011             (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5012           Diag(C.Loc, diag::note_empty_parens_default_ctor)
5013             << FixItHint::CreateRemoval(ParenRange);
5014         else if (const char *Init = getFixItZeroInitializerForType(T))
5015           Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5016             << FixItHint::CreateReplacement(ParenRange, Init);
5017         else if (LangOpts.CPlusPlus0x)
5018           Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5019             << FixItHint::CreateReplacement(ParenRange, "{}");
5020       }
5021     }
5022 
5023     // C++ [dcl.fct.spec]p5:
5024     //   The virtual specifier shall only be used in declarations of
5025     //   nonstatic class member functions that appear within a
5026     //   member-specification of a class declaration; see 10.3.
5027     //
5028     if (isVirtual && !NewFD->isInvalidDecl()) {
5029       if (!isVirtualOkay) {
5030         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5031              diag::err_virtual_non_function);
5032       } else if (!CurContext->isRecord()) {
5033         // 'virtual' was specified outside of the class.
5034         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5035              diag::err_virtual_out_of_class)
5036           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5037       } else if (NewFD->getDescribedFunctionTemplate()) {
5038         // C++ [temp.mem]p3:
5039         //  A member function template shall not be virtual.
5040         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5041              diag::err_virtual_member_function_template)
5042           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5043       } else {
5044         // Okay: Add virtual to the method.
5045         NewFD->setVirtualAsWritten(true);
5046       }
5047     }
5048 
5049     // C++ [dcl.fct.spec]p3:
5050     //  The inline specifier shall not appear on a block scope function
5051     //  declaration.
5052     if (isInline && !NewFD->isInvalidDecl()) {
5053       if (CurContext->isFunctionOrMethod()) {
5054         // 'inline' is not allowed on block scope function declaration.
5055         Diag(D.getDeclSpec().getInlineSpecLoc(),
5056              diag::err_inline_declaration_block_scope) << Name
5057           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5058       }
5059     }
5060 
5061     // C++ [dcl.fct.spec]p6:
5062     //  The explicit specifier shall be used only in the declaration of a
5063     //  constructor or conversion function within its class definition;
5064     //  see 12.3.1 and 12.3.2.
5065     if (isExplicit && !NewFD->isInvalidDecl()) {
5066       if (!CurContext->isRecord()) {
5067         // 'explicit' was specified outside of the class.
5068         Diag(D.getDeclSpec().getExplicitSpecLoc(),
5069              diag::err_explicit_out_of_class)
5070           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5071       } else if (!isa<CXXConstructorDecl>(NewFD) &&
5072                  !isa<CXXConversionDecl>(NewFD)) {
5073         // 'explicit' was specified on a function that wasn't a constructor
5074         // or conversion function.
5075         Diag(D.getDeclSpec().getExplicitSpecLoc(),
5076              diag::err_explicit_non_ctor_or_conv_function)
5077           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5078       }
5079     }
5080 
5081     if (isConstexpr) {
5082       // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5083       // are implicitly inline.
5084       NewFD->setImplicitlyInline();
5085 
5086       // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5087       // be either constructors or to return a literal type. Therefore,
5088       // destructors cannot be declared constexpr.
5089       if (isa<CXXDestructorDecl>(NewFD))
5090         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5091     }
5092 
5093     // If __module_private__ was specified, mark the function accordingly.
5094     if (D.getDeclSpec().isModulePrivateSpecified()) {
5095       if (isFunctionTemplateSpecialization) {
5096         SourceLocation ModulePrivateLoc
5097           = D.getDeclSpec().getModulePrivateSpecLoc();
5098         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5099           << 0
5100           << FixItHint::CreateRemoval(ModulePrivateLoc);
5101       } else {
5102         NewFD->setModulePrivate();
5103         if (FunctionTemplate)
5104           FunctionTemplate->setModulePrivate();
5105       }
5106     }
5107 
5108     if (isFriend) {
5109       // For now, claim that the objects have no previous declaration.
5110       if (FunctionTemplate) {
5111         FunctionTemplate->setObjectOfFriendDecl(false);
5112         FunctionTemplate->setAccess(AS_public);
5113       }
5114       NewFD->setObjectOfFriendDecl(false);
5115       NewFD->setAccess(AS_public);
5116     }
5117 
5118     // If a function is defined as defaulted or deleted, mark it as such now.
5119     switch (D.getFunctionDefinitionKind()) {
5120       case FDK_Declaration:
5121       case FDK_Definition:
5122         break;
5123 
5124       case FDK_Defaulted:
5125         NewFD->setDefaulted();
5126         break;
5127 
5128       case FDK_Deleted:
5129         NewFD->setDeletedAsWritten();
5130         break;
5131     }
5132 
5133     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5134         D.isFunctionDefinition()) {
5135       // C++ [class.mfct]p2:
5136       //   A member function may be defined (8.4) in its class definition, in
5137       //   which case it is an inline member function (7.1.2)
5138       NewFD->setImplicitlyInline();
5139     }
5140 
5141     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5142         !CurContext->isRecord()) {
5143       // C++ [class.static]p1:
5144       //   A data or function member of a class may be declared static
5145       //   in a class definition, in which case it is a static member of
5146       //   the class.
5147 
5148       // Complain about the 'static' specifier if it's on an out-of-line
5149       // member function definition.
5150       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5151            diag::err_static_out_of_line)
5152         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5153     }
5154   }
5155 
5156   // Filter out previous declarations that don't match the scope.
5157   FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5158                        isExplicitSpecialization ||
5159                        isFunctionTemplateSpecialization);
5160 
5161   // Handle GNU asm-label extension (encoded as an attribute).
5162   if (Expr *E = (Expr*) D.getAsmLabel()) {
5163     // The parser guarantees this is a string.
5164     StringLiteral *SE = cast<StringLiteral>(E);
5165     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5166                                                 SE->getString()));
5167   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5168     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5169       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5170     if (I != ExtnameUndeclaredIdentifiers.end()) {
5171       NewFD->addAttr(I->second);
5172       ExtnameUndeclaredIdentifiers.erase(I);
5173     }
5174   }
5175 
5176   // Copy the parameter declarations from the declarator D to the function
5177   // declaration NewFD, if they are available.  First scavenge them into Params.
5178   SmallVector<ParmVarDecl*, 16> Params;
5179   if (D.isFunctionDeclarator()) {
5180     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5181 
5182     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5183     // function that takes no arguments, not a function that takes a
5184     // single void argument.
5185     // We let through "const void" here because Sema::GetTypeForDeclarator
5186     // already checks for that case.
5187     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5188         FTI.ArgInfo[0].Param &&
5189         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5190       // Empty arg list, don't push any params.
5191       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5192 
5193       // In C++, the empty parameter-type-list must be spelled "void"; a
5194       // typedef of void is not permitted.
5195       if (getLangOptions().CPlusPlus &&
5196           Param->getType().getUnqualifiedType() != Context.VoidTy) {
5197         bool IsTypeAlias = false;
5198         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5199           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5200         else if (const TemplateSpecializationType *TST =
5201                    Param->getType()->getAs<TemplateSpecializationType>())
5202           IsTypeAlias = TST->isTypeAlias();
5203         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5204           << IsTypeAlias;
5205       }
5206     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5207       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5208         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5209         assert(Param->getDeclContext() != NewFD && "Was set before ?");
5210         Param->setDeclContext(NewFD);
5211         Params.push_back(Param);
5212 
5213         if (Param->isInvalidDecl())
5214           NewFD->setInvalidDecl();
5215       }
5216     }
5217 
5218   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5219     // When we're declaring a function with a typedef, typeof, etc as in the
5220     // following example, we'll need to synthesize (unnamed)
5221     // parameters for use in the declaration.
5222     //
5223     // @code
5224     // typedef void fn(int);
5225     // fn f;
5226     // @endcode
5227 
5228     // Synthesize a parameter for each argument type.
5229     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5230          AE = FT->arg_type_end(); AI != AE; ++AI) {
5231       ParmVarDecl *Param =
5232         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5233       Param->setScopeInfo(0, Params.size());
5234       Params.push_back(Param);
5235     }
5236   } else {
5237     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5238            "Should not need args for typedef of non-prototype fn");
5239   }
5240 
5241   // Finally, we know we have the right number of parameters, install them.
5242   NewFD->setParams(Params);
5243 
5244   // Process the non-inheritable attributes on this declaration.
5245   ProcessDeclAttributes(S, NewFD, D,
5246                         /*NonInheritable=*/true, /*Inheritable=*/false);
5247 
5248   if (!getLangOptions().CPlusPlus) {
5249     // Perform semantic checking on the function declaration.
5250     bool isExplicitSpecialization=false;
5251     if (!NewFD->isInvalidDecl()) {
5252       if (NewFD->getResultType()->isVariablyModifiedType()) {
5253         // Functions returning a variably modified type violate C99 6.7.5.2p2
5254         // because all functions have linkage.
5255         Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5256         NewFD->setInvalidDecl();
5257       } else {
5258         if (NewFD->isMain())
5259           CheckMain(NewFD, D.getDeclSpec());
5260         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5261                                                     isExplicitSpecialization));
5262       }
5263     }
5264     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5265             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5266            "previous declaration set still overloaded");
5267   } else {
5268     // If the declarator is a template-id, translate the parser's template
5269     // argument list into our AST format.
5270     bool HasExplicitTemplateArgs = false;
5271     TemplateArgumentListInfo TemplateArgs;
5272     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5273       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5274       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5275       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5276       ASTTemplateArgsPtr TemplateArgsPtr(*this,
5277                                          TemplateId->getTemplateArgs(),
5278                                          TemplateId->NumArgs);
5279       translateTemplateArguments(TemplateArgsPtr,
5280                                  TemplateArgs);
5281       TemplateArgsPtr.release();
5282 
5283       HasExplicitTemplateArgs = true;
5284 
5285       if (NewFD->isInvalidDecl()) {
5286         HasExplicitTemplateArgs = false;
5287       } else if (FunctionTemplate) {
5288         // Function template with explicit template arguments.
5289         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5290           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5291 
5292         HasExplicitTemplateArgs = false;
5293       } else if (!isFunctionTemplateSpecialization &&
5294                  !D.getDeclSpec().isFriendSpecified()) {
5295         // We have encountered something that the user meant to be a
5296         // specialization (because it has explicitly-specified template
5297         // arguments) but that was not introduced with a "template<>" (or had
5298         // too few of them).
5299         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5300           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5301           << FixItHint::CreateInsertion(
5302                                     D.getDeclSpec().getSourceRange().getBegin(),
5303                                         "template<> ");
5304         isFunctionTemplateSpecialization = true;
5305       } else {
5306         // "friend void foo<>(int);" is an implicit specialization decl.
5307         isFunctionTemplateSpecialization = true;
5308       }
5309     } else if (isFriend && isFunctionTemplateSpecialization) {
5310       // This combination is only possible in a recovery case;  the user
5311       // wrote something like:
5312       //   template <> friend void foo(int);
5313       // which we're recovering from as if the user had written:
5314       //   friend void foo<>(int);
5315       // Go ahead and fake up a template id.
5316       HasExplicitTemplateArgs = true;
5317         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5318       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5319     }
5320 
5321     // If it's a friend (and only if it's a friend), it's possible
5322     // that either the specialized function type or the specialized
5323     // template is dependent, and therefore matching will fail.  In
5324     // this case, don't check the specialization yet.
5325     bool InstantiationDependent = false;
5326     if (isFunctionTemplateSpecialization && isFriend &&
5327         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5328          TemplateSpecializationType::anyDependentTemplateArguments(
5329             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5330             InstantiationDependent))) {
5331       assert(HasExplicitTemplateArgs &&
5332              "friend function specialization without template args");
5333       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5334                                                        Previous))
5335         NewFD->setInvalidDecl();
5336     } else if (isFunctionTemplateSpecialization) {
5337       if (CurContext->isDependentContext() && CurContext->isRecord()
5338           && !isFriend) {
5339         isDependentClassScopeExplicitSpecialization = true;
5340         Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5341           diag::ext_function_specialization_in_class :
5342           diag::err_function_specialization_in_class)
5343           << NewFD->getDeclName();
5344       } else if (CheckFunctionTemplateSpecialization(NewFD,
5345                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5346                                                      Previous))
5347         NewFD->setInvalidDecl();
5348 
5349       // C++ [dcl.stc]p1:
5350       //   A storage-class-specifier shall not be specified in an explicit
5351       //   specialization (14.7.3)
5352       if (SC != SC_None) {
5353         if (SC != NewFD->getStorageClass())
5354           Diag(NewFD->getLocation(),
5355                diag::err_explicit_specialization_inconsistent_storage_class)
5356             << SC
5357             << FixItHint::CreateRemoval(
5358                                       D.getDeclSpec().getStorageClassSpecLoc());
5359 
5360         else
5361           Diag(NewFD->getLocation(),
5362                diag::ext_explicit_specialization_storage_class)
5363             << FixItHint::CreateRemoval(
5364                                       D.getDeclSpec().getStorageClassSpecLoc());
5365       }
5366 
5367     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5368       if (CheckMemberSpecialization(NewFD, Previous))
5369           NewFD->setInvalidDecl();
5370     }
5371 
5372     // Perform semantic checking on the function declaration.
5373     if (!isDependentClassScopeExplicitSpecialization) {
5374       if (NewFD->isInvalidDecl()) {
5375         // If this is a class member, mark the class invalid immediately.
5376         // This avoids some consistency errors later.
5377         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5378           methodDecl->getParent()->setInvalidDecl();
5379       } else {
5380         if (NewFD->isMain())
5381           CheckMain(NewFD, D.getDeclSpec());
5382         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5383                                                     isExplicitSpecialization));
5384       }
5385     }
5386 
5387     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5388             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5389            "previous declaration set still overloaded");
5390 
5391     NamedDecl *PrincipalDecl = (FunctionTemplate
5392                                 ? cast<NamedDecl>(FunctionTemplate)
5393                                 : NewFD);
5394 
5395     if (isFriend && D.isRedeclaration()) {
5396       AccessSpecifier Access = AS_public;
5397       if (!NewFD->isInvalidDecl())
5398         Access = NewFD->getPreviousDecl()->getAccess();
5399 
5400       NewFD->setAccess(Access);
5401       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5402 
5403       PrincipalDecl->setObjectOfFriendDecl(true);
5404     }
5405 
5406     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5407         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5408       PrincipalDecl->setNonMemberOperator();
5409 
5410     // If we have a function template, check the template parameter
5411     // list. This will check and merge default template arguments.
5412     if (FunctionTemplate) {
5413       FunctionTemplateDecl *PrevTemplate =
5414                                      FunctionTemplate->getPreviousDecl();
5415       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5416                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5417                             D.getDeclSpec().isFriendSpecified()
5418                               ? (D.isFunctionDefinition()
5419                                    ? TPC_FriendFunctionTemplateDefinition
5420                                    : TPC_FriendFunctionTemplate)
5421                               : (D.getCXXScopeSpec().isSet() &&
5422                                  DC && DC->isRecord() &&
5423                                  DC->isDependentContext())
5424                                   ? TPC_ClassTemplateMember
5425                                   : TPC_FunctionTemplate);
5426     }
5427 
5428     if (NewFD->isInvalidDecl()) {
5429       // Ignore all the rest of this.
5430     } else if (!D.isRedeclaration()) {
5431       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5432                                        AddToScope };
5433       // Fake up an access specifier if it's supposed to be a class member.
5434       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5435         NewFD->setAccess(AS_public);
5436 
5437       // Qualified decls generally require a previous declaration.
5438       if (D.getCXXScopeSpec().isSet()) {
5439         // ...with the major exception of templated-scope or
5440         // dependent-scope friend declarations.
5441 
5442         // TODO: we currently also suppress this check in dependent
5443         // contexts because (1) the parameter depth will be off when
5444         // matching friend templates and (2) we might actually be
5445         // selecting a friend based on a dependent factor.  But there
5446         // are situations where these conditions don't apply and we
5447         // can actually do this check immediately.
5448         if (isFriend &&
5449             (TemplateParamLists.size() ||
5450              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5451              CurContext->isDependentContext())) {
5452           // ignore these
5453         } else {
5454           // The user tried to provide an out-of-line definition for a
5455           // function that is a member of a class or namespace, but there
5456           // was no such member function declared (C++ [class.mfct]p2,
5457           // C++ [namespace.memdef]p2). For example:
5458           //
5459           // class X {
5460           //   void f() const;
5461           // };
5462           //
5463           // void X::f() { } // ill-formed
5464           //
5465           // Complain about this problem, and attempt to suggest close
5466           // matches (e.g., those that differ only in cv-qualifiers and
5467           // whether the parameter types are references).
5468 
5469           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5470                                                                NewFD,
5471                                                                ExtraArgs)) {
5472             AddToScope = ExtraArgs.AddToScope;
5473             return Result;
5474           }
5475         }
5476 
5477         // Unqualified local friend declarations are required to resolve
5478         // to something.
5479       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5480         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5481                                                              NewFD,
5482                                                              ExtraArgs)) {
5483           AddToScope = ExtraArgs.AddToScope;
5484           return Result;
5485         }
5486       }
5487 
5488     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5489                !isFriend && !isFunctionTemplateSpecialization &&
5490                !isExplicitSpecialization) {
5491       // An out-of-line member function declaration must also be a
5492       // definition (C++ [dcl.meaning]p1).
5493       // Note that this is not the case for explicit specializations of
5494       // function templates or member functions of class templates, per
5495       // C++ [temp.expl.spec]p2. We also allow these declarations as an
5496       // extension for compatibility with old SWIG code which likes to
5497       // generate them.
5498       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5499         << D.getCXXScopeSpec().getRange();
5500     }
5501   }
5502 
5503 
5504   // Handle attributes. We need to have merged decls when handling attributes
5505   // (for example to check for conflicts, etc).
5506   // FIXME: This needs to happen before we merge declarations. Then,
5507   // let attribute merging cope with attribute conflicts.
5508   ProcessDeclAttributes(S, NewFD, D,
5509                         /*NonInheritable=*/false, /*Inheritable=*/true);
5510 
5511   // attributes declared post-definition are currently ignored
5512   // FIXME: This should happen during attribute merging
5513   if (D.isRedeclaration() && Previous.isSingleResult()) {
5514     const FunctionDecl *Def;
5515     FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5516     if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5517       Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5518       Diag(Def->getLocation(), diag::note_previous_definition);
5519     }
5520   }
5521 
5522   AddKnownFunctionAttributes(NewFD);
5523 
5524   if (NewFD->hasAttr<OverloadableAttr>() &&
5525       !NewFD->getType()->getAs<FunctionProtoType>()) {
5526     Diag(NewFD->getLocation(),
5527          diag::err_attribute_overloadable_no_prototype)
5528       << NewFD;
5529 
5530     // Turn this into a variadic function with no parameters.
5531     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5532     FunctionProtoType::ExtProtoInfo EPI;
5533     EPI.Variadic = true;
5534     EPI.ExtInfo = FT->getExtInfo();
5535 
5536     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5537     NewFD->setType(R);
5538   }
5539 
5540   // If there's a #pragma GCC visibility in scope, and this isn't a class
5541   // member, set the visibility of this function.
5542   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5543     AddPushedVisibilityAttribute(NewFD);
5544 
5545   // If there's a #pragma clang arc_cf_code_audited in scope, consider
5546   // marking the function.
5547   AddCFAuditedAttribute(NewFD);
5548 
5549   // If this is a locally-scoped extern C function, update the
5550   // map of such names.
5551   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5552       && !NewFD->isInvalidDecl())
5553     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5554 
5555   // Set this FunctionDecl's range up to the right paren.
5556   NewFD->setRangeEnd(D.getSourceRange().getEnd());
5557 
5558   if (getLangOptions().CPlusPlus) {
5559     if (FunctionTemplate) {
5560       if (NewFD->isInvalidDecl())
5561         FunctionTemplate->setInvalidDecl();
5562       return FunctionTemplate;
5563     }
5564   }
5565 
5566   MarkUnusedFileScopedDecl(NewFD);
5567 
5568   if (getLangOptions().CUDA)
5569     if (IdentifierInfo *II = NewFD->getIdentifier())
5570       if (!NewFD->isInvalidDecl() &&
5571           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5572         if (II->isStr("cudaConfigureCall")) {
5573           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5574             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5575 
5576           Context.setcudaConfigureCallDecl(NewFD);
5577         }
5578       }
5579 
5580   // Here we have an function template explicit specialization at class scope.
5581   // The actually specialization will be postponed to template instatiation
5582   // time via the ClassScopeFunctionSpecializationDecl node.
5583   if (isDependentClassScopeExplicitSpecialization) {
5584     ClassScopeFunctionSpecializationDecl *NewSpec =
5585                          ClassScopeFunctionSpecializationDecl::Create(
5586                                 Context, CurContext,  SourceLocation(),
5587                                 cast<CXXMethodDecl>(NewFD));
5588     CurContext->addDecl(NewSpec);
5589     AddToScope = false;
5590   }
5591 
5592   return NewFD;
5593 }
5594 
5595 /// \brief Perform semantic checking of a new function declaration.
5596 ///
5597 /// Performs semantic analysis of the new function declaration
5598 /// NewFD. This routine performs all semantic checking that does not
5599 /// require the actual declarator involved in the declaration, and is
5600 /// used both for the declaration of functions as they are parsed
5601 /// (called via ActOnDeclarator) and for the declaration of functions
5602 /// that have been instantiated via C++ template instantiation (called
5603 /// via InstantiateDecl).
5604 ///
5605 /// \param IsExplicitSpecialiation whether this new function declaration is
5606 /// an explicit specialization of the previous declaration.
5607 ///
5608 /// This sets NewFD->isInvalidDecl() to true if there was an error.
5609 ///
5610 /// Returns true if the function declaration is a redeclaration.
5611 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5612                                     LookupResult &Previous,
5613                                     bool IsExplicitSpecialization) {
5614   assert(!NewFD->getResultType()->isVariablyModifiedType()
5615          && "Variably modified return types are not handled here");
5616 
5617   // Check for a previous declaration of this name.
5618   if (Previous.empty() && NewFD->isExternC()) {
5619     // Since we did not find anything by this name and we're declaring
5620     // an extern "C" function, look for a non-visible extern "C"
5621     // declaration with the same name.
5622     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5623       = findLocallyScopedExternalDecl(NewFD->getDeclName());
5624     if (Pos != LocallyScopedExternalDecls.end())
5625       Previous.addDecl(Pos->second);
5626   }
5627 
5628   bool Redeclaration = false;
5629 
5630   // Merge or overload the declaration with an existing declaration of
5631   // the same name, if appropriate.
5632   if (!Previous.empty()) {
5633     // Determine whether NewFD is an overload of PrevDecl or
5634     // a declaration that requires merging. If it's an overload,
5635     // there's no more work to do here; we'll just add the new
5636     // function to the scope.
5637 
5638     NamedDecl *OldDecl = 0;
5639     if (!AllowOverloadingOfFunction(Previous, Context)) {
5640       Redeclaration = true;
5641       OldDecl = Previous.getFoundDecl();
5642     } else {
5643       switch (CheckOverload(S, NewFD, Previous, OldDecl,
5644                             /*NewIsUsingDecl*/ false)) {
5645       case Ovl_Match:
5646         Redeclaration = true;
5647         break;
5648 
5649       case Ovl_NonFunction:
5650         Redeclaration = true;
5651         break;
5652 
5653       case Ovl_Overload:
5654         Redeclaration = false;
5655         break;
5656       }
5657 
5658       if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5659         // If a function name is overloadable in C, then every function
5660         // with that name must be marked "overloadable".
5661         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5662           << Redeclaration << NewFD;
5663         NamedDecl *OverloadedDecl = 0;
5664         if (Redeclaration)
5665           OverloadedDecl = OldDecl;
5666         else if (!Previous.empty())
5667           OverloadedDecl = Previous.getRepresentativeDecl();
5668         if (OverloadedDecl)
5669           Diag(OverloadedDecl->getLocation(),
5670                diag::note_attribute_overloadable_prev_overload);
5671         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5672                                                         Context));
5673       }
5674     }
5675 
5676     if (Redeclaration) {
5677       // NewFD and OldDecl represent declarations that need to be
5678       // merged.
5679       if (MergeFunctionDecl(NewFD, OldDecl)) {
5680         NewFD->setInvalidDecl();
5681         return Redeclaration;
5682       }
5683 
5684       Previous.clear();
5685       Previous.addDecl(OldDecl);
5686 
5687       if (FunctionTemplateDecl *OldTemplateDecl
5688                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5689         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5690         FunctionTemplateDecl *NewTemplateDecl
5691           = NewFD->getDescribedFunctionTemplate();
5692         assert(NewTemplateDecl && "Template/non-template mismatch");
5693         if (CXXMethodDecl *Method
5694               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5695           Method->setAccess(OldTemplateDecl->getAccess());
5696           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5697         }
5698 
5699         // If this is an explicit specialization of a member that is a function
5700         // template, mark it as a member specialization.
5701         if (IsExplicitSpecialization &&
5702             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5703           NewTemplateDecl->setMemberSpecialization();
5704           assert(OldTemplateDecl->isMemberSpecialization());
5705         }
5706 
5707       } else {
5708         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5709           NewFD->setAccess(OldDecl->getAccess());
5710         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5711       }
5712     }
5713   }
5714 
5715   // Semantic checking for this function declaration (in isolation).
5716   if (getLangOptions().CPlusPlus) {
5717     // C++-specific checks.
5718     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5719       CheckConstructor(Constructor);
5720     } else if (CXXDestructorDecl *Destructor =
5721                 dyn_cast<CXXDestructorDecl>(NewFD)) {
5722       CXXRecordDecl *Record = Destructor->getParent();
5723       QualType ClassType = Context.getTypeDeclType(Record);
5724 
5725       // FIXME: Shouldn't we be able to perform this check even when the class
5726       // type is dependent? Both gcc and edg can handle that.
5727       if (!ClassType->isDependentType()) {
5728         DeclarationName Name
5729           = Context.DeclarationNames.getCXXDestructorName(
5730                                         Context.getCanonicalType(ClassType));
5731         if (NewFD->getDeclName() != Name) {
5732           Diag(NewFD->getLocation(), diag::err_destructor_name);
5733           NewFD->setInvalidDecl();
5734           return Redeclaration;
5735         }
5736       }
5737     } else if (CXXConversionDecl *Conversion
5738                = dyn_cast<CXXConversionDecl>(NewFD)) {
5739       ActOnConversionDeclarator(Conversion);
5740     }
5741 
5742     // Find any virtual functions that this function overrides.
5743     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5744       if (!Method->isFunctionTemplateSpecialization() &&
5745           !Method->getDescribedFunctionTemplate()) {
5746         if (AddOverriddenMethods(Method->getParent(), Method)) {
5747           // If the function was marked as "static", we have a problem.
5748           if (NewFD->getStorageClass() == SC_Static) {
5749             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5750               << NewFD->getDeclName();
5751             for (CXXMethodDecl::method_iterator
5752                       Overridden = Method->begin_overridden_methods(),
5753                    OverriddenEnd = Method->end_overridden_methods();
5754                  Overridden != OverriddenEnd;
5755                  ++Overridden) {
5756               Diag((*Overridden)->getLocation(),
5757                    diag::note_overridden_virtual_function);
5758             }
5759           }
5760         }
5761       }
5762     }
5763 
5764     // Extra checking for C++ overloaded operators (C++ [over.oper]).
5765     if (NewFD->isOverloadedOperator() &&
5766         CheckOverloadedOperatorDeclaration(NewFD)) {
5767       NewFD->setInvalidDecl();
5768       return Redeclaration;
5769     }
5770 
5771     // Extra checking for C++0x literal operators (C++0x [over.literal]).
5772     if (NewFD->getLiteralIdentifier() &&
5773         CheckLiteralOperatorDeclaration(NewFD)) {
5774       NewFD->setInvalidDecl();
5775       return Redeclaration;
5776     }
5777 
5778     // In C++, check default arguments now that we have merged decls. Unless
5779     // the lexical context is the class, because in this case this is done
5780     // during delayed parsing anyway.
5781     if (!CurContext->isRecord())
5782       CheckCXXDefaultArguments(NewFD);
5783 
5784     // If this function declares a builtin function, check the type of this
5785     // declaration against the expected type for the builtin.
5786     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5787       ASTContext::GetBuiltinTypeError Error;
5788       QualType T = Context.GetBuiltinType(BuiltinID, Error);
5789       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5790         // The type of this function differs from the type of the builtin,
5791         // so forget about the builtin entirely.
5792         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5793       }
5794     }
5795 
5796     // If this function is declared as being extern "C", then check to see if
5797     // the function returns a UDT (class, struct, or union type) that is not C
5798     // compatible, and if it does, warn the user.
5799     if (NewFD->isExternC()) {
5800       QualType R = NewFD->getResultType();
5801       if (!R.isPODType(Context) &&
5802           !R->isVoidType())
5803         Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5804           << NewFD << R;
5805     }
5806   }
5807   return Redeclaration;
5808 }
5809 
5810 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5811   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5812   //   static or constexpr is ill-formed.
5813   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5814   //   shall not appear in a declaration of main.
5815   // static main is not an error under C99, but we should warn about it.
5816   if (FD->getStorageClass() == SC_Static)
5817     Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5818          ? diag::err_static_main : diag::warn_static_main)
5819       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5820   if (FD->isInlineSpecified())
5821     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5822       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5823   if (FD->isConstexpr()) {
5824     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5825       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5826     FD->setConstexpr(false);
5827   }
5828 
5829   QualType T = FD->getType();
5830   assert(T->isFunctionType() && "function decl is not of function type");
5831   const FunctionType* FT = T->castAs<FunctionType>();
5832 
5833   // All the standards say that main() should should return 'int'.
5834   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5835     // In C and C++, main magically returns 0 if you fall off the end;
5836     // set the flag which tells us that.
5837     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5838     FD->setHasImplicitReturnZero(true);
5839 
5840   // In C with GNU extensions we allow main() to have non-integer return
5841   // type, but we should warn about the extension, and we disable the
5842   // implicit-return-zero rule.
5843   } else if (getLangOptions().GNUMode && !getLangOptions().CPlusPlus) {
5844     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
5845 
5846   // Otherwise, this is just a flat-out error.
5847   } else {
5848     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5849     FD->setInvalidDecl(true);
5850   }
5851 
5852   // Treat protoless main() as nullary.
5853   if (isa<FunctionNoProtoType>(FT)) return;
5854 
5855   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5856   unsigned nparams = FTP->getNumArgs();
5857   assert(FD->getNumParams() == nparams);
5858 
5859   bool HasExtraParameters = (nparams > 3);
5860 
5861   // Darwin passes an undocumented fourth argument of type char**.  If
5862   // other platforms start sprouting these, the logic below will start
5863   // getting shifty.
5864   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5865     HasExtraParameters = false;
5866 
5867   if (HasExtraParameters) {
5868     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5869     FD->setInvalidDecl(true);
5870     nparams = 3;
5871   }
5872 
5873   // FIXME: a lot of the following diagnostics would be improved
5874   // if we had some location information about types.
5875 
5876   QualType CharPP =
5877     Context.getPointerType(Context.getPointerType(Context.CharTy));
5878   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5879 
5880   for (unsigned i = 0; i < nparams; ++i) {
5881     QualType AT = FTP->getArgType(i);
5882 
5883     bool mismatch = true;
5884 
5885     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5886       mismatch = false;
5887     else if (Expected[i] == CharPP) {
5888       // As an extension, the following forms are okay:
5889       //   char const **
5890       //   char const * const *
5891       //   char * const *
5892 
5893       QualifierCollector qs;
5894       const PointerType* PT;
5895       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5896           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5897           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5898         qs.removeConst();
5899         mismatch = !qs.empty();
5900       }
5901     }
5902 
5903     if (mismatch) {
5904       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5905       // TODO: suggest replacing given type with expected type
5906       FD->setInvalidDecl(true);
5907     }
5908   }
5909 
5910   if (nparams == 1 && !FD->isInvalidDecl()) {
5911     Diag(FD->getLocation(), diag::warn_main_one_arg);
5912   }
5913 
5914   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5915     Diag(FD->getLocation(), diag::err_main_template_decl);
5916     FD->setInvalidDecl();
5917   }
5918 }
5919 
5920 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5921   // FIXME: Need strict checking.  In C89, we need to check for
5922   // any assignment, increment, decrement, function-calls, or
5923   // commas outside of a sizeof.  In C99, it's the same list,
5924   // except that the aforementioned are allowed in unevaluated
5925   // expressions.  Everything else falls under the
5926   // "may accept other forms of constant expressions" exception.
5927   // (We never end up here for C++, so the constant expression
5928   // rules there don't matter.)
5929   if (Init->isConstantInitializer(Context, false))
5930     return false;
5931   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5932     << Init->getSourceRange();
5933   return true;
5934 }
5935 
5936 namespace {
5937   // Visits an initialization expression to see if OrigDecl is evaluated in
5938   // its own initialization and throws a warning if it does.
5939   class SelfReferenceChecker
5940       : public EvaluatedExprVisitor<SelfReferenceChecker> {
5941     Sema &S;
5942     Decl *OrigDecl;
5943     bool isRecordType;
5944     bool isPODType;
5945 
5946   public:
5947     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5948 
5949     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5950                                                     S(S), OrigDecl(OrigDecl) {
5951       isPODType = false;
5952       isRecordType = false;
5953       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5954         isPODType = VD->getType().isPODType(S.Context);
5955         isRecordType = VD->getType()->isRecordType();
5956       }
5957     }
5958 
5959     void VisitExpr(Expr *E) {
5960       if (isa<ObjCMessageExpr>(*E)) return;
5961       if (isRecordType) {
5962         Expr *expr = E;
5963         if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5964           ValueDecl *VD = ME->getMemberDecl();
5965           if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5966           expr = ME->getBase();
5967         }
5968         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5969           HandleDeclRefExpr(DRE);
5970           return;
5971         }
5972       }
5973       Inherited::VisitExpr(E);
5974     }
5975 
5976     void VisitMemberExpr(MemberExpr *E) {
5977       if (E->getType()->canDecayToPointerType()) return;
5978       if (isa<FieldDecl>(E->getMemberDecl()))
5979         if (DeclRefExpr *DRE
5980               = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5981           HandleDeclRefExpr(DRE);
5982           return;
5983         }
5984       Inherited::VisitMemberExpr(E);
5985     }
5986 
5987     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5988       if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5989           (isRecordType && E->getCastKind() == CK_NoOp)) {
5990         Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5991         if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5992           SubExpr = ME->getBase()->IgnoreParenImpCasts();
5993         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5994           HandleDeclRefExpr(DRE);
5995           return;
5996         }
5997       }
5998       Inherited::VisitImplicitCastExpr(E);
5999     }
6000 
6001     void VisitUnaryOperator(UnaryOperator *E) {
6002       // For POD record types, addresses of its own members are well-defined.
6003       if (isRecordType && isPODType) return;
6004       Inherited::VisitUnaryOperator(E);
6005     }
6006 
6007     void HandleDeclRefExpr(DeclRefExpr *DRE) {
6008       Decl* ReferenceDecl = DRE->getDecl();
6009       if (OrigDecl != ReferenceDecl) return;
6010       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6011                           Sema::NotForRedeclaration);
6012       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6013                             S.PDiag(diag::warn_uninit_self_reference_in_init)
6014                               << Result.getLookupName()
6015                               << OrigDecl->getLocation()
6016                               << DRE->getSourceRange());
6017     }
6018   };
6019 }
6020 
6021 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6022 void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6023   SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
6024 }
6025 
6026 /// AddInitializerToDecl - Adds the initializer Init to the
6027 /// declaration dcl. If DirectInit is true, this is C++ direct
6028 /// initialization rather than copy initialization.
6029 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6030                                 bool DirectInit, bool TypeMayContainAuto) {
6031   // If there is no declaration, there was an error parsing it.  Just ignore
6032   // the initializer.
6033   if (RealDecl == 0 || RealDecl->isInvalidDecl())
6034     return;
6035 
6036   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6037     // With declarators parsed the way they are, the parser cannot
6038     // distinguish between a normal initializer and a pure-specifier.
6039     // Thus this grotesque test.
6040     IntegerLiteral *IL;
6041     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6042         Context.getCanonicalType(IL->getType()) == Context.IntTy)
6043       CheckPureMethod(Method, Init->getSourceRange());
6044     else {
6045       Diag(Method->getLocation(), diag::err_member_function_initialization)
6046         << Method->getDeclName() << Init->getSourceRange();
6047       Method->setInvalidDecl();
6048     }
6049     return;
6050   }
6051 
6052   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6053   if (!VDecl) {
6054     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6055     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6056     RealDecl->setInvalidDecl();
6057     return;
6058   }
6059 
6060   // Check for self-references within variable initializers.
6061   // Variables declared within a function/method body are handled
6062   // by a dataflow analysis.
6063   if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6064     CheckSelfReference(RealDecl, Init);
6065 
6066   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6067 
6068   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6069   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6070     Expr *DeduceInit = Init;
6071     // Initializer could be a C++ direct-initializer. Deduction only works if it
6072     // contains exactly one expression.
6073     if (CXXDirectInit) {
6074       if (CXXDirectInit->getNumExprs() == 0) {
6075         // It isn't possible to write this directly, but it is possible to
6076         // end up in this situation with "auto x(some_pack...);"
6077         Diag(CXXDirectInit->getSourceRange().getBegin(),
6078              diag::err_auto_var_init_no_expression)
6079           << VDecl->getDeclName() << VDecl->getType()
6080           << VDecl->getSourceRange();
6081         RealDecl->setInvalidDecl();
6082         return;
6083       } else if (CXXDirectInit->getNumExprs() > 1) {
6084         Diag(CXXDirectInit->getExpr(1)->getSourceRange().getBegin(),
6085              diag::err_auto_var_init_multiple_expressions)
6086           << VDecl->getDeclName() << VDecl->getType()
6087           << VDecl->getSourceRange();
6088         RealDecl->setInvalidDecl();
6089         return;
6090       } else {
6091         DeduceInit = CXXDirectInit->getExpr(0);
6092       }
6093     }
6094     TypeSourceInfo *DeducedType = 0;
6095     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6096             DAR_Failed)
6097       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6098     if (!DeducedType) {
6099       RealDecl->setInvalidDecl();
6100       return;
6101     }
6102     VDecl->setTypeSourceInfo(DeducedType);
6103     VDecl->setType(DeducedType->getType());
6104     VDecl->ClearLinkageCache();
6105 
6106     // In ARC, infer lifetime.
6107     if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6108       VDecl->setInvalidDecl();
6109 
6110     // If this is a redeclaration, check that the type we just deduced matches
6111     // the previously declared type.
6112     if (VarDecl *Old = VDecl->getPreviousDecl())
6113       MergeVarDeclTypes(VDecl, Old);
6114   }
6115 
6116   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6117     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6118     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6119     VDecl->setInvalidDecl();
6120     return;
6121   }
6122 
6123   if (!VDecl->getType()->isDependentType()) {
6124     // A definition must end up with a complete type, which means it must be
6125     // complete with the restriction that an array type might be completed by
6126     // the initializer; note that later code assumes this restriction.
6127     QualType BaseDeclType = VDecl->getType();
6128     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6129       BaseDeclType = Array->getElementType();
6130     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6131                             diag::err_typecheck_decl_incomplete_type)) {
6132       RealDecl->setInvalidDecl();
6133       return;
6134     }
6135 
6136     // The variable can not have an abstract class type.
6137     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6138                                diag::err_abstract_type_in_decl,
6139                                AbstractVariableType))
6140       VDecl->setInvalidDecl();
6141   }
6142 
6143   const VarDecl *Def;
6144   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6145     Diag(VDecl->getLocation(), diag::err_redefinition)
6146       << VDecl->getDeclName();
6147     Diag(Def->getLocation(), diag::note_previous_definition);
6148     VDecl->setInvalidDecl();
6149     return;
6150   }
6151 
6152   const VarDecl* PrevInit = 0;
6153   if (getLangOptions().CPlusPlus) {
6154     // C++ [class.static.data]p4
6155     //   If a static data member is of const integral or const
6156     //   enumeration type, its declaration in the class definition can
6157     //   specify a constant-initializer which shall be an integral
6158     //   constant expression (5.19). In that case, the member can appear
6159     //   in integral constant expressions. The member shall still be
6160     //   defined in a namespace scope if it is used in the program and the
6161     //   namespace scope definition shall not contain an initializer.
6162     //
6163     // We already performed a redefinition check above, but for static
6164     // data members we also need to check whether there was an in-class
6165     // declaration with an initializer.
6166     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6167       Diag(VDecl->getLocation(), diag::err_redefinition)
6168         << VDecl->getDeclName();
6169       Diag(PrevInit->getLocation(), diag::note_previous_definition);
6170       return;
6171     }
6172 
6173     if (VDecl->hasLocalStorage())
6174       getCurFunction()->setHasBranchProtectedScope();
6175 
6176     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6177       VDecl->setInvalidDecl();
6178       return;
6179     }
6180   }
6181 
6182   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6183   // a kernel function cannot be initialized."
6184   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6185     Diag(VDecl->getLocation(), diag::err_local_cant_init);
6186     VDecl->setInvalidDecl();
6187     return;
6188   }
6189 
6190   // Get the decls type and save a reference for later, since
6191   // CheckInitializerTypes may change it.
6192   QualType DclT = VDecl->getType(), SavT = DclT;
6193 
6194   // Perform the initialization.
6195   if (!VDecl->isInvalidDecl()) {
6196     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6197     InitializationKind Kind
6198       = DirectInit ?
6199           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6200                                                            Init->getLocStart(),
6201                                                            Init->getLocEnd())
6202                         : InitializationKind::CreateDirectList(
6203                                                           VDecl->getLocation())
6204                    : InitializationKind::CreateCopy(VDecl->getLocation(),
6205                                                     Init->getLocStart());
6206 
6207     Expr **Args = &Init;
6208     unsigned NumArgs = 1;
6209     if (CXXDirectInit) {
6210       Args = CXXDirectInit->getExprs();
6211       NumArgs = CXXDirectInit->getNumExprs();
6212     }
6213     InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6214     ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6215                                               MultiExprArg(*this, Args,NumArgs),
6216                                               &DclT);
6217     if (Result.isInvalid()) {
6218       VDecl->setInvalidDecl();
6219       return;
6220     }
6221 
6222     Init = Result.takeAs<Expr>();
6223   }
6224 
6225   // If the type changed, it means we had an incomplete type that was
6226   // completed by the initializer. For example:
6227   //   int ary[] = { 1, 3, 5 };
6228   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6229   if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6230     VDecl->setType(DclT);
6231     Init->setType(DclT.getNonReferenceType());
6232   }
6233 
6234   // Check any implicit conversions within the expression.
6235   CheckImplicitConversions(Init, VDecl->getLocation());
6236 
6237   if (!VDecl->isInvalidDecl())
6238     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6239 
6240   Init = MaybeCreateExprWithCleanups(Init);
6241   // Attach the initializer to the decl.
6242   VDecl->setInit(Init);
6243 
6244   if (VDecl->isLocalVarDecl()) {
6245     // C99 6.7.8p4: All the expressions in an initializer for an object that has
6246     // static storage duration shall be constant expressions or string literals.
6247     // C++ does not have this restriction.
6248     if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6249         VDecl->getStorageClass() == SC_Static)
6250       CheckForConstantInitializer(Init, DclT);
6251   } else if (VDecl->isStaticDataMember() &&
6252              VDecl->getLexicalDeclContext()->isRecord()) {
6253     // This is an in-class initialization for a static data member, e.g.,
6254     //
6255     // struct S {
6256     //   static const int value = 17;
6257     // };
6258 
6259     // C++ [class.mem]p4:
6260     //   A member-declarator can contain a constant-initializer only
6261     //   if it declares a static member (9.4) of const integral or
6262     //   const enumeration type, see 9.4.2.
6263     //
6264     // C++11 [class.static.data]p3:
6265     //   If a non-volatile const static data member is of integral or
6266     //   enumeration type, its declaration in the class definition can
6267     //   specify a brace-or-equal-initializer in which every initalizer-clause
6268     //   that is an assignment-expression is a constant expression. A static
6269     //   data member of literal type can be declared in the class definition
6270     //   with the constexpr specifier; if so, its declaration shall specify a
6271     //   brace-or-equal-initializer in which every initializer-clause that is
6272     //   an assignment-expression is a constant expression.
6273 
6274     // Do nothing on dependent types.
6275     if (DclT->isDependentType()) {
6276 
6277     // Allow any 'static constexpr' members, whether or not they are of literal
6278     // type. We separately check that every constexpr variable is of literal
6279     // type.
6280     } else if (VDecl->isConstexpr()) {
6281 
6282     // Require constness.
6283     } else if (!DclT.isConstQualified()) {
6284       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6285         << Init->getSourceRange();
6286       VDecl->setInvalidDecl();
6287 
6288     // We allow integer constant expressions in all cases.
6289     } else if (DclT->isIntegralOrEnumerationType()) {
6290       // Check whether the expression is a constant expression.
6291       SourceLocation Loc;
6292       if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6293         // In C++11, a non-constexpr const static data member with an
6294         // in-class initializer cannot be volatile.
6295         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6296       else if (Init->isValueDependent())
6297         ; // Nothing to check.
6298       else if (Init->isIntegerConstantExpr(Context, &Loc))
6299         ; // Ok, it's an ICE!
6300       else if (Init->isEvaluatable(Context)) {
6301         // If we can constant fold the initializer through heroics, accept it,
6302         // but report this as a use of an extension for -pedantic.
6303         Diag(Loc, diag::ext_in_class_initializer_non_constant)
6304           << Init->getSourceRange();
6305       } else {
6306         // Otherwise, this is some crazy unknown case.  Report the issue at the
6307         // location provided by the isIntegerConstantExpr failed check.
6308         Diag(Loc, diag::err_in_class_initializer_non_constant)
6309           << Init->getSourceRange();
6310         VDecl->setInvalidDecl();
6311       }
6312 
6313     // We allow foldable floating-point constants as an extension.
6314     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6315       Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6316         << DclT << Init->getSourceRange();
6317       if (getLangOptions().CPlusPlus0x)
6318         Diag(VDecl->getLocation(),
6319              diag::note_in_class_initializer_float_type_constexpr)
6320           << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6321 
6322       if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6323         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6324           << Init->getSourceRange();
6325         VDecl->setInvalidDecl();
6326       }
6327 
6328     // Suggest adding 'constexpr' in C++11 for literal types.
6329     } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6330       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6331         << DclT << Init->getSourceRange()
6332         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6333       VDecl->setConstexpr(true);
6334 
6335     } else {
6336       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6337         << DclT << Init->getSourceRange();
6338       VDecl->setInvalidDecl();
6339     }
6340   } else if (VDecl->isFileVarDecl()) {
6341     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6342         (!getLangOptions().CPlusPlus ||
6343          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6344       Diag(VDecl->getLocation(), diag::warn_extern_init);
6345 
6346     // C99 6.7.8p4. All file scoped initializers need to be constant.
6347     if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6348       CheckForConstantInitializer(Init, DclT);
6349   }
6350 
6351   // We will represent direct-initialization similarly to copy-initialization:
6352   //    int x(1);  -as-> int x = 1;
6353   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6354   //
6355   // Clients that want to distinguish between the two forms, can check for
6356   // direct initializer using VarDecl::getInitStyle().
6357   // A major benefit is that clients that don't particularly care about which
6358   // exactly form was it (like the CodeGen) can handle both cases without
6359   // special case code.
6360 
6361   // C++ 8.5p11:
6362   // The form of initialization (using parentheses or '=') is generally
6363   // insignificant, but does matter when the entity being initialized has a
6364   // class type.
6365   if (CXXDirectInit) {
6366     assert(DirectInit && "Call-style initializer must be direct init.");
6367     VDecl->setInitStyle(VarDecl::CallInit);
6368   } else if (DirectInit) {
6369     // This must be list-initialization. No other way is direct-initialization.
6370     VDecl->setInitStyle(VarDecl::ListInit);
6371   }
6372 
6373   CheckCompleteVariableDeclaration(VDecl);
6374 }
6375 
6376 /// ActOnInitializerError - Given that there was an error parsing an
6377 /// initializer for the given declaration, try to return to some form
6378 /// of sanity.
6379 void Sema::ActOnInitializerError(Decl *D) {
6380   // Our main concern here is re-establishing invariants like "a
6381   // variable's type is either dependent or complete".
6382   if (!D || D->isInvalidDecl()) return;
6383 
6384   VarDecl *VD = dyn_cast<VarDecl>(D);
6385   if (!VD) return;
6386 
6387   // Auto types are meaningless if we can't make sense of the initializer.
6388   if (ParsingInitForAutoVars.count(D)) {
6389     D->setInvalidDecl();
6390     return;
6391   }
6392 
6393   QualType Ty = VD->getType();
6394   if (Ty->isDependentType()) return;
6395 
6396   // Require a complete type.
6397   if (RequireCompleteType(VD->getLocation(),
6398                           Context.getBaseElementType(Ty),
6399                           diag::err_typecheck_decl_incomplete_type)) {
6400     VD->setInvalidDecl();
6401     return;
6402   }
6403 
6404   // Require an abstract type.
6405   if (RequireNonAbstractType(VD->getLocation(), Ty,
6406                              diag::err_abstract_type_in_decl,
6407                              AbstractVariableType)) {
6408     VD->setInvalidDecl();
6409     return;
6410   }
6411 
6412   // Don't bother complaining about constructors or destructors,
6413   // though.
6414 }
6415 
6416 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6417                                   bool TypeMayContainAuto) {
6418   // If there is no declaration, there was an error parsing it. Just ignore it.
6419   if (RealDecl == 0)
6420     return;
6421 
6422   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6423     QualType Type = Var->getType();
6424 
6425     // C++11 [dcl.spec.auto]p3
6426     if (TypeMayContainAuto && Type->getContainedAutoType()) {
6427       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6428         << Var->getDeclName() << Type;
6429       Var->setInvalidDecl();
6430       return;
6431     }
6432 
6433     // C++11 [class.static.data]p3: A static data member can be declared with
6434     // the constexpr specifier; if so, its declaration shall specify
6435     // a brace-or-equal-initializer.
6436     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6437     // the definition of a variable [...] or the declaration of a static data
6438     // member.
6439     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6440       if (Var->isStaticDataMember())
6441         Diag(Var->getLocation(),
6442              diag::err_constexpr_static_mem_var_requires_init)
6443           << Var->getDeclName();
6444       else
6445         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6446       Var->setInvalidDecl();
6447       return;
6448     }
6449 
6450     switch (Var->isThisDeclarationADefinition()) {
6451     case VarDecl::Definition:
6452       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6453         break;
6454 
6455       // We have an out-of-line definition of a static data member
6456       // that has an in-class initializer, so we type-check this like
6457       // a declaration.
6458       //
6459       // Fall through
6460 
6461     case VarDecl::DeclarationOnly:
6462       // It's only a declaration.
6463 
6464       // Block scope. C99 6.7p7: If an identifier for an object is
6465       // declared with no linkage (C99 6.2.2p6), the type for the
6466       // object shall be complete.
6467       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6468           !Var->getLinkage() && !Var->isInvalidDecl() &&
6469           RequireCompleteType(Var->getLocation(), Type,
6470                               diag::err_typecheck_decl_incomplete_type))
6471         Var->setInvalidDecl();
6472 
6473       // Make sure that the type is not abstract.
6474       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6475           RequireNonAbstractType(Var->getLocation(), Type,
6476                                  diag::err_abstract_type_in_decl,
6477                                  AbstractVariableType))
6478         Var->setInvalidDecl();
6479       return;
6480 
6481     case VarDecl::TentativeDefinition:
6482       // File scope. C99 6.9.2p2: A declaration of an identifier for an
6483       // object that has file scope without an initializer, and without a
6484       // storage-class specifier or with the storage-class specifier "static",
6485       // constitutes a tentative definition. Note: A tentative definition with
6486       // external linkage is valid (C99 6.2.2p5).
6487       if (!Var->isInvalidDecl()) {
6488         if (const IncompleteArrayType *ArrayT
6489                                     = Context.getAsIncompleteArrayType(Type)) {
6490           if (RequireCompleteType(Var->getLocation(),
6491                                   ArrayT->getElementType(),
6492                                   diag::err_illegal_decl_array_incomplete_type))
6493             Var->setInvalidDecl();
6494         } else if (Var->getStorageClass() == SC_Static) {
6495           // C99 6.9.2p3: If the declaration of an identifier for an object is
6496           // a tentative definition and has internal linkage (C99 6.2.2p3), the
6497           // declared type shall not be an incomplete type.
6498           // NOTE: code such as the following
6499           //     static struct s;
6500           //     struct s { int a; };
6501           // is accepted by gcc. Hence here we issue a warning instead of
6502           // an error and we do not invalidate the static declaration.
6503           // NOTE: to avoid multiple warnings, only check the first declaration.
6504           if (Var->getPreviousDecl() == 0)
6505             RequireCompleteType(Var->getLocation(), Type,
6506                                 diag::ext_typecheck_decl_incomplete_type);
6507         }
6508       }
6509 
6510       // Record the tentative definition; we're done.
6511       if (!Var->isInvalidDecl())
6512         TentativeDefinitions.push_back(Var);
6513       return;
6514     }
6515 
6516     // Provide a specific diagnostic for uninitialized variable
6517     // definitions with incomplete array type.
6518     if (Type->isIncompleteArrayType()) {
6519       Diag(Var->getLocation(),
6520            diag::err_typecheck_incomplete_array_needs_initializer);
6521       Var->setInvalidDecl();
6522       return;
6523     }
6524 
6525     // Provide a specific diagnostic for uninitialized variable
6526     // definitions with reference type.
6527     if (Type->isReferenceType()) {
6528       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6529         << Var->getDeclName()
6530         << SourceRange(Var->getLocation(), Var->getLocation());
6531       Var->setInvalidDecl();
6532       return;
6533     }
6534 
6535     // Do not attempt to type-check the default initializer for a
6536     // variable with dependent type.
6537     if (Type->isDependentType())
6538       return;
6539 
6540     if (Var->isInvalidDecl())
6541       return;
6542 
6543     if (RequireCompleteType(Var->getLocation(),
6544                             Context.getBaseElementType(Type),
6545                             diag::err_typecheck_decl_incomplete_type)) {
6546       Var->setInvalidDecl();
6547       return;
6548     }
6549 
6550     // The variable can not have an abstract class type.
6551     if (RequireNonAbstractType(Var->getLocation(), Type,
6552                                diag::err_abstract_type_in_decl,
6553                                AbstractVariableType)) {
6554       Var->setInvalidDecl();
6555       return;
6556     }
6557 
6558     // Check for jumps past the implicit initializer.  C++0x
6559     // clarifies that this applies to a "variable with automatic
6560     // storage duration", not a "local variable".
6561     // C++11 [stmt.dcl]p3
6562     //   A program that jumps from a point where a variable with automatic
6563     //   storage duration is not in scope to a point where it is in scope is
6564     //   ill-formed unless the variable has scalar type, class type with a
6565     //   trivial default constructor and a trivial destructor, a cv-qualified
6566     //   version of one of these types, or an array of one of the preceding
6567     //   types and is declared without an initializer.
6568     if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6569       if (const RecordType *Record
6570             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6571         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6572         // Mark the function for further checking even if the looser rules of
6573         // C++11 do not require such checks, so that we can diagnose
6574         // incompatibilities with C++98.
6575         if (!CXXRecord->isPOD())
6576           getCurFunction()->setHasBranchProtectedScope();
6577       }
6578     }
6579 
6580     // C++03 [dcl.init]p9:
6581     //   If no initializer is specified for an object, and the
6582     //   object is of (possibly cv-qualified) non-POD class type (or
6583     //   array thereof), the object shall be default-initialized; if
6584     //   the object is of const-qualified type, the underlying class
6585     //   type shall have a user-declared default
6586     //   constructor. Otherwise, if no initializer is specified for
6587     //   a non- static object, the object and its subobjects, if
6588     //   any, have an indeterminate initial value); if the object
6589     //   or any of its subobjects are of const-qualified type, the
6590     //   program is ill-formed.
6591     // C++0x [dcl.init]p11:
6592     //   If no initializer is specified for an object, the object is
6593     //   default-initialized; [...].
6594     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6595     InitializationKind Kind
6596       = InitializationKind::CreateDefault(Var->getLocation());
6597 
6598     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6599     ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6600                                       MultiExprArg(*this, 0, 0));
6601     if (Init.isInvalid())
6602       Var->setInvalidDecl();
6603     else if (Init.get()) {
6604       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6605       // This is important for template substitution.
6606       Var->setInitStyle(VarDecl::CallInit);
6607     }
6608 
6609     CheckCompleteVariableDeclaration(Var);
6610   }
6611 }
6612 
6613 void Sema::ActOnCXXForRangeDecl(Decl *D) {
6614   VarDecl *VD = dyn_cast<VarDecl>(D);
6615   if (!VD) {
6616     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6617     D->setInvalidDecl();
6618     return;
6619   }
6620 
6621   VD->setCXXForRangeDecl(true);
6622 
6623   // for-range-declaration cannot be given a storage class specifier.
6624   int Error = -1;
6625   switch (VD->getStorageClassAsWritten()) {
6626   case SC_None:
6627     break;
6628   case SC_Extern:
6629     Error = 0;
6630     break;
6631   case SC_Static:
6632     Error = 1;
6633     break;
6634   case SC_PrivateExtern:
6635     Error = 2;
6636     break;
6637   case SC_Auto:
6638     Error = 3;
6639     break;
6640   case SC_Register:
6641     Error = 4;
6642     break;
6643   case SC_OpenCLWorkGroupLocal:
6644     llvm_unreachable("Unexpected storage class");
6645   }
6646   if (VD->isConstexpr())
6647     Error = 5;
6648   if (Error != -1) {
6649     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6650       << VD->getDeclName() << Error;
6651     D->setInvalidDecl();
6652   }
6653 }
6654 
6655 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6656   if (var->isInvalidDecl()) return;
6657 
6658   // In ARC, don't allow jumps past the implicit initialization of a
6659   // local retaining variable.
6660   if (getLangOptions().ObjCAutoRefCount &&
6661       var->hasLocalStorage()) {
6662     switch (var->getType().getObjCLifetime()) {
6663     case Qualifiers::OCL_None:
6664     case Qualifiers::OCL_ExplicitNone:
6665     case Qualifiers::OCL_Autoreleasing:
6666       break;
6667 
6668     case Qualifiers::OCL_Weak:
6669     case Qualifiers::OCL_Strong:
6670       getCurFunction()->setHasBranchProtectedScope();
6671       break;
6672     }
6673   }
6674 
6675   // All the following checks are C++ only.
6676   if (!getLangOptions().CPlusPlus) return;
6677 
6678   QualType baseType = Context.getBaseElementType(var->getType());
6679   if (baseType->isDependentType()) return;
6680 
6681   // __block variables might require us to capture a copy-initializer.
6682   if (var->hasAttr<BlocksAttr>()) {
6683     // It's currently invalid to ever have a __block variable with an
6684     // array type; should we diagnose that here?
6685 
6686     // Regardless, we don't want to ignore array nesting when
6687     // constructing this copy.
6688     QualType type = var->getType();
6689 
6690     if (type->isStructureOrClassType()) {
6691       SourceLocation poi = var->getLocation();
6692       Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6693       ExprResult result =
6694         PerformCopyInitialization(
6695                         InitializedEntity::InitializeBlock(poi, type, false),
6696                                   poi, Owned(varRef));
6697       if (!result.isInvalid()) {
6698         result = MaybeCreateExprWithCleanups(result);
6699         Expr *init = result.takeAs<Expr>();
6700         Context.setBlockVarCopyInits(var, init);
6701       }
6702     }
6703   }
6704 
6705   Expr *Init = var->getInit();
6706   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6707 
6708   if (!var->getDeclContext()->isDependentContext() && Init) {
6709     if (IsGlobal && !var->isConstexpr() &&
6710         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6711                                             var->getLocation())
6712           != DiagnosticsEngine::Ignored &&
6713         !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6714       Diag(var->getLocation(), diag::warn_global_constructor)
6715         << Init->getSourceRange();
6716 
6717     if (var->isConstexpr()) {
6718       llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6719       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6720         SourceLocation DiagLoc = var->getLocation();
6721         // If the note doesn't add any useful information other than a source
6722         // location, fold it into the primary diagnostic.
6723         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6724               diag::note_invalid_subexpr_in_const_expr) {
6725           DiagLoc = Notes[0].first;
6726           Notes.clear();
6727         }
6728         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6729           << var << Init->getSourceRange();
6730         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6731           Diag(Notes[I].first, Notes[I].second);
6732       }
6733     } else if (var->isUsableInConstantExpressions()) {
6734       // Check whether the initializer of a const variable of integral or
6735       // enumeration type is an ICE now, since we can't tell whether it was
6736       // initialized by a constant expression if we check later.
6737       var->checkInitIsICE();
6738     }
6739   }
6740 
6741   // Require the destructor.
6742   if (const RecordType *recordType = baseType->getAs<RecordType>())
6743     FinalizeVarWithDestructor(var, recordType);
6744 }
6745 
6746 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6747 /// any semantic actions necessary after any initializer has been attached.
6748 void
6749 Sema::FinalizeDeclaration(Decl *ThisDecl) {
6750   // Note that we are no longer parsing the initializer for this declaration.
6751   ParsingInitForAutoVars.erase(ThisDecl);
6752 }
6753 
6754 Sema::DeclGroupPtrTy
6755 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6756                               Decl **Group, unsigned NumDecls) {
6757   SmallVector<Decl*, 8> Decls;
6758 
6759   if (DS.isTypeSpecOwned())
6760     Decls.push_back(DS.getRepAsDecl());
6761 
6762   for (unsigned i = 0; i != NumDecls; ++i)
6763     if (Decl *D = Group[i])
6764       Decls.push_back(D);
6765 
6766   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6767                               DS.getTypeSpecType() == DeclSpec::TST_auto);
6768 }
6769 
6770 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
6771 /// group, performing any necessary semantic checking.
6772 Sema::DeclGroupPtrTy
6773 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6774                            bool TypeMayContainAuto) {
6775   // C++0x [dcl.spec.auto]p7:
6776   //   If the type deduced for the template parameter U is not the same in each
6777   //   deduction, the program is ill-formed.
6778   // FIXME: When initializer-list support is added, a distinction is needed
6779   // between the deduced type U and the deduced type which 'auto' stands for.
6780   //   auto a = 0, b = { 1, 2, 3 };
6781   // is legal because the deduced type U is 'int' in both cases.
6782   if (TypeMayContainAuto && NumDecls > 1) {
6783     QualType Deduced;
6784     CanQualType DeducedCanon;
6785     VarDecl *DeducedDecl = 0;
6786     for (unsigned i = 0; i != NumDecls; ++i) {
6787       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6788         AutoType *AT = D->getType()->getContainedAutoType();
6789         // Don't reissue diagnostics when instantiating a template.
6790         if (AT && D->isInvalidDecl())
6791           break;
6792         if (AT && AT->isDeduced()) {
6793           QualType U = AT->getDeducedType();
6794           CanQualType UCanon = Context.getCanonicalType(U);
6795           if (Deduced.isNull()) {
6796             Deduced = U;
6797             DeducedCanon = UCanon;
6798             DeducedDecl = D;
6799           } else if (DeducedCanon != UCanon) {
6800             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6801                  diag::err_auto_different_deductions)
6802               << Deduced << DeducedDecl->getDeclName()
6803               << U << D->getDeclName()
6804               << DeducedDecl->getInit()->getSourceRange()
6805               << D->getInit()->getSourceRange();
6806             D->setInvalidDecl();
6807             break;
6808           }
6809         }
6810       }
6811     }
6812   }
6813 
6814   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6815 }
6816 
6817 
6818 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6819 /// to introduce parameters into function prototype scope.
6820 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6821   const DeclSpec &DS = D.getDeclSpec();
6822 
6823   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6824   // C++03 [dcl.stc]p2 also permits 'auto'.
6825   VarDecl::StorageClass StorageClass = SC_None;
6826   VarDecl::StorageClass StorageClassAsWritten = SC_None;
6827   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6828     StorageClass = SC_Register;
6829     StorageClassAsWritten = SC_Register;
6830   } else if (getLangOptions().CPlusPlus &&
6831              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6832     StorageClass = SC_Auto;
6833     StorageClassAsWritten = SC_Auto;
6834   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6835     Diag(DS.getStorageClassSpecLoc(),
6836          diag::err_invalid_storage_class_in_func_decl);
6837     D.getMutableDeclSpec().ClearStorageClassSpecs();
6838   }
6839 
6840   if (D.getDeclSpec().isThreadSpecified())
6841     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6842   if (D.getDeclSpec().isConstexprSpecified())
6843     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6844       << 0;
6845 
6846   DiagnoseFunctionSpecifiers(D);
6847 
6848   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6849   QualType parmDeclType = TInfo->getType();
6850 
6851   if (getLangOptions().CPlusPlus) {
6852     // Check that there are no default arguments inside the type of this
6853     // parameter.
6854     CheckExtraCXXDefaultArguments(D);
6855 
6856     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6857     if (D.getCXXScopeSpec().isSet()) {
6858       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6859         << D.getCXXScopeSpec().getRange();
6860       D.getCXXScopeSpec().clear();
6861     }
6862   }
6863 
6864   // Ensure we have a valid name
6865   IdentifierInfo *II = 0;
6866   if (D.hasName()) {
6867     II = D.getIdentifier();
6868     if (!II) {
6869       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6870         << GetNameForDeclarator(D).getName().getAsString();
6871       D.setInvalidType(true);
6872     }
6873   }
6874 
6875   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6876   if (II) {
6877     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6878                    ForRedeclaration);
6879     LookupName(R, S);
6880     if (R.isSingleResult()) {
6881       NamedDecl *PrevDecl = R.getFoundDecl();
6882       if (PrevDecl->isTemplateParameter()) {
6883         // Maybe we will complain about the shadowed template parameter.
6884         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6885         // Just pretend that we didn't see the previous declaration.
6886         PrevDecl = 0;
6887       } else if (S->isDeclScope(PrevDecl)) {
6888         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6889         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6890 
6891         // Recover by removing the name
6892         II = 0;
6893         D.SetIdentifier(0, D.getIdentifierLoc());
6894         D.setInvalidType(true);
6895       }
6896     }
6897   }
6898 
6899   // Temporarily put parameter variables in the translation unit, not
6900   // the enclosing context.  This prevents them from accidentally
6901   // looking like class members in C++.
6902   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6903                                     D.getSourceRange().getBegin(),
6904                                     D.getIdentifierLoc(), II,
6905                                     parmDeclType, TInfo,
6906                                     StorageClass, StorageClassAsWritten);
6907 
6908   if (D.isInvalidType())
6909     New->setInvalidDecl();
6910 
6911   assert(S->isFunctionPrototypeScope());
6912   assert(S->getFunctionPrototypeDepth() >= 1);
6913   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6914                     S->getNextFunctionPrototypeIndex());
6915 
6916   // Add the parameter declaration into this scope.
6917   S->AddDecl(New);
6918   if (II)
6919     IdResolver.AddDecl(New);
6920 
6921   ProcessDeclAttributes(S, New, D);
6922 
6923   if (D.getDeclSpec().isModulePrivateSpecified())
6924     Diag(New->getLocation(), diag::err_module_private_local)
6925       << 1 << New->getDeclName()
6926       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6927       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6928 
6929   if (New->hasAttr<BlocksAttr>()) {
6930     Diag(New->getLocation(), diag::err_block_on_nonlocal);
6931   }
6932   return New;
6933 }
6934 
6935 /// \brief Synthesizes a variable for a parameter arising from a
6936 /// typedef.
6937 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6938                                               SourceLocation Loc,
6939                                               QualType T) {
6940   /* FIXME: setting StartLoc == Loc.
6941      Would it be worth to modify callers so as to provide proper source
6942      location for the unnamed parameters, embedding the parameter's type? */
6943   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6944                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
6945                                            SC_None, SC_None, 0);
6946   Param->setImplicit();
6947   return Param;
6948 }
6949 
6950 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6951                                     ParmVarDecl * const *ParamEnd) {
6952   // Don't diagnose unused-parameter errors in template instantiations; we
6953   // will already have done so in the template itself.
6954   if (!ActiveTemplateInstantiations.empty())
6955     return;
6956 
6957   for (; Param != ParamEnd; ++Param) {
6958     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6959         !(*Param)->hasAttr<UnusedAttr>()) {
6960       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6961         << (*Param)->getDeclName();
6962     }
6963   }
6964 }
6965 
6966 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6967                                                   ParmVarDecl * const *ParamEnd,
6968                                                   QualType ReturnTy,
6969                                                   NamedDecl *D) {
6970   if (LangOpts.NumLargeByValueCopy == 0) // No check.
6971     return;
6972 
6973   // Warn if the return value is pass-by-value and larger than the specified
6974   // threshold.
6975   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6976     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6977     if (Size > LangOpts.NumLargeByValueCopy)
6978       Diag(D->getLocation(), diag::warn_return_value_size)
6979           << D->getDeclName() << Size;
6980   }
6981 
6982   // Warn if any parameter is pass-by-value and larger than the specified
6983   // threshold.
6984   for (; Param != ParamEnd; ++Param) {
6985     QualType T = (*Param)->getType();
6986     if (T->isDependentType() || !T.isPODType(Context))
6987       continue;
6988     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6989     if (Size > LangOpts.NumLargeByValueCopy)
6990       Diag((*Param)->getLocation(), diag::warn_parameter_size)
6991           << (*Param)->getDeclName() << Size;
6992   }
6993 }
6994 
6995 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6996                                   SourceLocation NameLoc, IdentifierInfo *Name,
6997                                   QualType T, TypeSourceInfo *TSInfo,
6998                                   VarDecl::StorageClass StorageClass,
6999                                   VarDecl::StorageClass StorageClassAsWritten) {
7000   // In ARC, infer a lifetime qualifier for appropriate parameter types.
7001   if (getLangOptions().ObjCAutoRefCount &&
7002       T.getObjCLifetime() == Qualifiers::OCL_None &&
7003       T->isObjCLifetimeType()) {
7004 
7005     Qualifiers::ObjCLifetime lifetime;
7006 
7007     // Special cases for arrays:
7008     //   - if it's const, use __unsafe_unretained
7009     //   - otherwise, it's an error
7010     if (T->isArrayType()) {
7011       if (!T.isConstQualified()) {
7012         DelayedDiagnostics.add(
7013             sema::DelayedDiagnostic::makeForbiddenType(
7014             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7015       }
7016       lifetime = Qualifiers::OCL_ExplicitNone;
7017     } else {
7018       lifetime = T->getObjCARCImplicitLifetime();
7019     }
7020     T = Context.getLifetimeQualifiedType(T, lifetime);
7021   }
7022 
7023   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7024                                          Context.getAdjustedParameterType(T),
7025                                          TSInfo,
7026                                          StorageClass, StorageClassAsWritten,
7027                                          0);
7028 
7029   // Parameters can not be abstract class types.
7030   // For record types, this is done by the AbstractClassUsageDiagnoser once
7031   // the class has been completely parsed.
7032   if (!CurContext->isRecord() &&
7033       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7034                              AbstractParamType))
7035     New->setInvalidDecl();
7036 
7037   // Parameter declarators cannot be interface types. All ObjC objects are
7038   // passed by reference.
7039   if (T->isObjCObjectType()) {
7040     Diag(NameLoc,
7041          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7042       << FixItHint::CreateInsertion(NameLoc, "*");
7043     T = Context.getObjCObjectPointerType(T);
7044     New->setType(T);
7045   }
7046 
7047   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7048   // duration shall not be qualified by an address-space qualifier."
7049   // Since all parameters have automatic store duration, they can not have
7050   // an address space.
7051   if (T.getAddressSpace() != 0) {
7052     Diag(NameLoc, diag::err_arg_with_address_space);
7053     New->setInvalidDecl();
7054   }
7055 
7056   return New;
7057 }
7058 
7059 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7060                                            SourceLocation LocAfterDecls) {
7061   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7062 
7063   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7064   // for a K&R function.
7065   if (!FTI.hasPrototype) {
7066     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7067       --i;
7068       if (FTI.ArgInfo[i].Param == 0) {
7069         SmallString<256> Code;
7070         llvm::raw_svector_ostream(Code) << "  int "
7071                                         << FTI.ArgInfo[i].Ident->getName()
7072                                         << ";\n";
7073         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7074           << FTI.ArgInfo[i].Ident
7075           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7076 
7077         // Implicitly declare the argument as type 'int' for lack of a better
7078         // type.
7079         AttributeFactory attrs;
7080         DeclSpec DS(attrs);
7081         const char* PrevSpec; // unused
7082         unsigned DiagID; // unused
7083         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7084                            PrevSpec, DiagID);
7085         Declarator ParamD(DS, Declarator::KNRTypeListContext);
7086         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7087         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7088       }
7089     }
7090   }
7091 }
7092 
7093 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
7094                                          Declarator &D) {
7095   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7096   assert(D.isFunctionDeclarator() && "Not a function declarator!");
7097   Scope *ParentScope = FnBodyScope->getParent();
7098 
7099   D.setFunctionDefinitionKind(FDK_Definition);
7100   Decl *DP = HandleDeclarator(ParentScope, D,
7101                               MultiTemplateParamsArg(*this));
7102   return ActOnStartOfFunctionDef(FnBodyScope, DP);
7103 }
7104 
7105 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7106   // Don't warn about invalid declarations.
7107   if (FD->isInvalidDecl())
7108     return false;
7109 
7110   // Or declarations that aren't global.
7111   if (!FD->isGlobal())
7112     return false;
7113 
7114   // Don't warn about C++ member functions.
7115   if (isa<CXXMethodDecl>(FD))
7116     return false;
7117 
7118   // Don't warn about 'main'.
7119   if (FD->isMain())
7120     return false;
7121 
7122   // Don't warn about inline functions.
7123   if (FD->isInlined())
7124     return false;
7125 
7126   // Don't warn about function templates.
7127   if (FD->getDescribedFunctionTemplate())
7128     return false;
7129 
7130   // Don't warn about function template specializations.
7131   if (FD->isFunctionTemplateSpecialization())
7132     return false;
7133 
7134   bool MissingPrototype = true;
7135   for (const FunctionDecl *Prev = FD->getPreviousDecl();
7136        Prev; Prev = Prev->getPreviousDecl()) {
7137     // Ignore any declarations that occur in function or method
7138     // scope, because they aren't visible from the header.
7139     if (Prev->getDeclContext()->isFunctionOrMethod())
7140       continue;
7141 
7142     MissingPrototype = !Prev->getType()->isFunctionProtoType();
7143     break;
7144   }
7145 
7146   return MissingPrototype;
7147 }
7148 
7149 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7150   // Don't complain if we're in GNU89 mode and the previous definition
7151   // was an extern inline function.
7152   const FunctionDecl *Definition;
7153   if (FD->isDefined(Definition) &&
7154       !canRedefineFunction(Definition, getLangOptions())) {
7155     if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7156         Definition->getStorageClass() == SC_Extern)
7157       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7158         << FD->getDeclName() << getLangOptions().CPlusPlus;
7159     else
7160       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7161     Diag(Definition->getLocation(), diag::note_previous_definition);
7162   }
7163 }
7164 
7165 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7166   // Clear the last template instantiation error context.
7167   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7168 
7169   if (!D)
7170     return D;
7171   FunctionDecl *FD = 0;
7172 
7173   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7174     FD = FunTmpl->getTemplatedDecl();
7175   else
7176     FD = cast<FunctionDecl>(D);
7177 
7178   // Enter a new function scope
7179   PushFunctionScope();
7180 
7181   // See if this is a redefinition.
7182   if (!FD->isLateTemplateParsed())
7183     CheckForFunctionRedefinition(FD);
7184 
7185   // Builtin functions cannot be defined.
7186   if (unsigned BuiltinID = FD->getBuiltinID()) {
7187     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7188       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7189       FD->setInvalidDecl();
7190     }
7191   }
7192 
7193   // The return type of a function definition must be complete
7194   // (C99 6.9.1p3, C++ [dcl.fct]p6).
7195   QualType ResultType = FD->getResultType();
7196   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7197       !FD->isInvalidDecl() &&
7198       RequireCompleteType(FD->getLocation(), ResultType,
7199                           diag::err_func_def_incomplete_result))
7200     FD->setInvalidDecl();
7201 
7202   // GNU warning -Wmissing-prototypes:
7203   //   Warn if a global function is defined without a previous
7204   //   prototype declaration. This warning is issued even if the
7205   //   definition itself provides a prototype. The aim is to detect
7206   //   global functions that fail to be declared in header files.
7207   if (ShouldWarnAboutMissingPrototype(FD))
7208     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7209 
7210   if (FnBodyScope)
7211     PushDeclContext(FnBodyScope, FD);
7212 
7213   // Check the validity of our function parameters
7214   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7215                            /*CheckParameterNames=*/true);
7216 
7217   // Introduce our parameters into the function scope
7218   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7219     ParmVarDecl *Param = FD->getParamDecl(p);
7220     Param->setOwningFunction(FD);
7221 
7222     // If this has an identifier, add it to the scope stack.
7223     if (Param->getIdentifier() && FnBodyScope) {
7224       CheckShadow(FnBodyScope, Param);
7225 
7226       PushOnScopeChains(Param, FnBodyScope);
7227     }
7228   }
7229 
7230   // Checking attributes of current function definition
7231   // dllimport attribute.
7232   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7233   if (DA && (!FD->getAttr<DLLExportAttr>())) {
7234     // dllimport attribute cannot be directly applied to definition.
7235     // Microsoft accepts dllimport for functions defined within class scope.
7236     if (!DA->isInherited() &&
7237         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7238       Diag(FD->getLocation(),
7239            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7240         << "dllimport";
7241       FD->setInvalidDecl();
7242       return FD;
7243     }
7244 
7245     // Visual C++ appears to not think this is an issue, so only issue
7246     // a warning when Microsoft extensions are disabled.
7247     if (!LangOpts.MicrosoftExt) {
7248       // If a symbol previously declared dllimport is later defined, the
7249       // attribute is ignored in subsequent references, and a warning is
7250       // emitted.
7251       Diag(FD->getLocation(),
7252            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7253         << FD->getName() << "dllimport";
7254     }
7255   }
7256   return FD;
7257 }
7258 
7259 /// \brief Given the set of return statements within a function body,
7260 /// compute the variables that are subject to the named return value
7261 /// optimization.
7262 ///
7263 /// Each of the variables that is subject to the named return value
7264 /// optimization will be marked as NRVO variables in the AST, and any
7265 /// return statement that has a marked NRVO variable as its NRVO candidate can
7266 /// use the named return value optimization.
7267 ///
7268 /// This function applies a very simplistic algorithm for NRVO: if every return
7269 /// statement in the function has the same NRVO candidate, that candidate is
7270 /// the NRVO variable.
7271 ///
7272 /// FIXME: Employ a smarter algorithm that accounts for multiple return
7273 /// statements and the lifetimes of the NRVO candidates. We should be able to
7274 /// find a maximal set of NRVO variables.
7275 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7276   ReturnStmt **Returns = Scope->Returns.data();
7277 
7278   const VarDecl *NRVOCandidate = 0;
7279   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7280     if (!Returns[I]->getNRVOCandidate())
7281       return;
7282 
7283     if (!NRVOCandidate)
7284       NRVOCandidate = Returns[I]->getNRVOCandidate();
7285     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7286       return;
7287   }
7288 
7289   if (NRVOCandidate)
7290     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7291 }
7292 
7293 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7294   return ActOnFinishFunctionBody(D, move(BodyArg), false);
7295 }
7296 
7297 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7298                                     bool IsInstantiation) {
7299   FunctionDecl *FD = 0;
7300   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7301   if (FunTmpl)
7302     FD = FunTmpl->getTemplatedDecl();
7303   else
7304     FD = dyn_cast_or_null<FunctionDecl>(dcl);
7305 
7306   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7307   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7308 
7309   if (FD) {
7310     FD->setBody(Body);
7311 
7312     // If the function implicitly returns zero (like 'main') or is naked,
7313     // don't complain about missing return statements.
7314     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7315       WP.disableCheckFallThrough();
7316 
7317     // MSVC permits the use of pure specifier (=0) on function definition,
7318     // defined at class scope, warn about this non standard construct.
7319     if (getLangOptions().MicrosoftExt && FD->isPure())
7320       Diag(FD->getLocation(), diag::warn_pure_function_definition);
7321 
7322     if (!FD->isInvalidDecl()) {
7323       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7324       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7325                                              FD->getResultType(), FD);
7326 
7327       // If this is a constructor, we need a vtable.
7328       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7329         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7330 
7331       computeNRVO(Body, getCurFunction());
7332     }
7333 
7334     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7335            "Function parsing confused");
7336   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7337     assert(MD == getCurMethodDecl() && "Method parsing confused");
7338     MD->setBody(Body);
7339     if (Body)
7340       MD->setEndLoc(Body->getLocEnd());
7341     if (!MD->isInvalidDecl()) {
7342       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7343       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7344                                              MD->getResultType(), MD);
7345 
7346       if (Body)
7347         computeNRVO(Body, getCurFunction());
7348     }
7349     if (ObjCShouldCallSuperDealloc) {
7350       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7351       ObjCShouldCallSuperDealloc = false;
7352     }
7353     if (ObjCShouldCallSuperFinalize) {
7354       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7355       ObjCShouldCallSuperFinalize = false;
7356     }
7357   } else {
7358     return 0;
7359   }
7360 
7361   assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7362          "ObjC methods, which should have been handled in the block above.");
7363   assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7364          "ObjC methods, which should have been handled in the block above.");
7365 
7366   // Verify and clean out per-function state.
7367   if (Body) {
7368     // C++ constructors that have function-try-blocks can't have return
7369     // statements in the handlers of that block. (C++ [except.handle]p14)
7370     // Verify this.
7371     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7372       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7373 
7374     // Verify that gotos and switch cases don't jump into scopes illegally.
7375     if (getCurFunction()->NeedsScopeChecking() &&
7376         !dcl->isInvalidDecl() &&
7377         !hasAnyUnrecoverableErrorsInThisFunction())
7378       DiagnoseInvalidJumps(Body);
7379 
7380     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7381       if (!Destructor->getParent()->isDependentType())
7382         CheckDestructor(Destructor);
7383 
7384       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7385                                              Destructor->getParent());
7386     }
7387 
7388     // If any errors have occurred, clear out any temporaries that may have
7389     // been leftover. This ensures that these temporaries won't be picked up for
7390     // deletion in some later function.
7391     if (PP.getDiagnostics().hasErrorOccurred() ||
7392         PP.getDiagnostics().getSuppressAllDiagnostics()) {
7393       DiscardCleanupsInEvaluationContext();
7394     } else if (!isa<FunctionTemplateDecl>(dcl)) {
7395       // Since the body is valid, issue any analysis-based warnings that are
7396       // enabled.
7397       ActivePolicy = &WP;
7398     }
7399 
7400     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7401         (!CheckConstexprFunctionDecl(FD) ||
7402          !CheckConstexprFunctionBody(FD, Body)))
7403       FD->setInvalidDecl();
7404 
7405     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7406     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7407     assert(MaybeODRUseExprs.empty() &&
7408            "Leftover expressions for odr-use checking");
7409   }
7410 
7411   if (!IsInstantiation)
7412     PopDeclContext();
7413 
7414   PopFunctionScopeInfo(ActivePolicy, dcl);
7415 
7416   // If any errors have occurred, clear out any temporaries that may have
7417   // been leftover. This ensures that these temporaries won't be picked up for
7418   // deletion in some later function.
7419   if (getDiagnostics().hasErrorOccurred()) {
7420     DiscardCleanupsInEvaluationContext();
7421   }
7422 
7423   return dcl;
7424 }
7425 
7426 
7427 /// When we finish delayed parsing of an attribute, we must attach it to the
7428 /// relevant Decl.
7429 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7430                                        ParsedAttributes &Attrs) {
7431   // Always attach attributes to the underlying decl.
7432   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7433     D = TD->getTemplatedDecl();
7434   ProcessDeclAttributeList(S, D, Attrs.getList());
7435 }
7436 
7437 
7438 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7439 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7440 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7441                                           IdentifierInfo &II, Scope *S) {
7442   // Before we produce a declaration for an implicitly defined
7443   // function, see whether there was a locally-scoped declaration of
7444   // this name as a function or variable. If so, use that
7445   // (non-visible) declaration, and complain about it.
7446   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7447     = findLocallyScopedExternalDecl(&II);
7448   if (Pos != LocallyScopedExternalDecls.end()) {
7449     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7450     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7451     return Pos->second;
7452   }
7453 
7454   // Extension in C99.  Legal in C90, but warn about it.
7455   unsigned diag_id;
7456   if (II.getName().startswith("__builtin_"))
7457     diag_id = diag::warn_builtin_unknown;
7458   else if (getLangOptions().C99)
7459     diag_id = diag::ext_implicit_function_decl;
7460   else
7461     diag_id = diag::warn_implicit_function_decl;
7462   Diag(Loc, diag_id) << &II;
7463 
7464   // Because typo correction is expensive, only do it if the implicit
7465   // function declaration is going to be treated as an error.
7466   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7467     TypoCorrection Corrected;
7468     DeclFilterCCC<FunctionDecl> Validator;
7469     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7470                                       LookupOrdinaryName, S, 0, Validator))) {
7471       std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7472       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7473       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7474 
7475       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7476           << FixItHint::CreateReplacement(Loc, CorrectedStr);
7477 
7478       if (Func->getLocation().isValid()
7479           && !II.getName().startswith("__builtin_"))
7480         Diag(Func->getLocation(), diag::note_previous_decl)
7481             << CorrectedQuotedStr;
7482     }
7483   }
7484 
7485   // Set a Declarator for the implicit definition: int foo();
7486   const char *Dummy;
7487   AttributeFactory attrFactory;
7488   DeclSpec DS(attrFactory);
7489   unsigned DiagID;
7490   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7491   (void)Error; // Silence warning.
7492   assert(!Error && "Error setting up implicit decl!");
7493   Declarator D(DS, Declarator::BlockContext);
7494   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7495                                              0, 0, true, SourceLocation(),
7496                                              SourceLocation(), SourceLocation(),
7497                                              SourceLocation(),
7498                                              EST_None, SourceLocation(),
7499                                              0, 0, 0, 0, Loc, Loc, D),
7500                 DS.getAttributes(),
7501                 SourceLocation());
7502   D.SetIdentifier(&II, Loc);
7503 
7504   // Insert this function into translation-unit scope.
7505 
7506   DeclContext *PrevDC = CurContext;
7507   CurContext = Context.getTranslationUnitDecl();
7508 
7509   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7510   FD->setImplicit();
7511 
7512   CurContext = PrevDC;
7513 
7514   AddKnownFunctionAttributes(FD);
7515 
7516   return FD;
7517 }
7518 
7519 /// \brief Adds any function attributes that we know a priori based on
7520 /// the declaration of this function.
7521 ///
7522 /// These attributes can apply both to implicitly-declared builtins
7523 /// (like __builtin___printf_chk) or to library-declared functions
7524 /// like NSLog or printf.
7525 ///
7526 /// We need to check for duplicate attributes both here and where user-written
7527 /// attributes are applied to declarations.
7528 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7529   if (FD->isInvalidDecl())
7530     return;
7531 
7532   // If this is a built-in function, map its builtin attributes to
7533   // actual attributes.
7534   if (unsigned BuiltinID = FD->getBuiltinID()) {
7535     // Handle printf-formatting attributes.
7536     unsigned FormatIdx;
7537     bool HasVAListArg;
7538     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7539       if (!FD->getAttr<FormatAttr>()) {
7540         const char *fmt = "printf";
7541         unsigned int NumParams = FD->getNumParams();
7542         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7543             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7544           fmt = "NSString";
7545         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7546                                                fmt, FormatIdx+1,
7547                                                HasVAListArg ? 0 : FormatIdx+2));
7548       }
7549     }
7550     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7551                                              HasVAListArg)) {
7552      if (!FD->getAttr<FormatAttr>())
7553        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7554                                               "scanf", FormatIdx+1,
7555                                               HasVAListArg ? 0 : FormatIdx+2));
7556     }
7557 
7558     // Mark const if we don't care about errno and that is the only
7559     // thing preventing the function from being const. This allows
7560     // IRgen to use LLVM intrinsics for such functions.
7561     if (!getLangOptions().MathErrno &&
7562         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7563       if (!FD->getAttr<ConstAttr>())
7564         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7565     }
7566 
7567     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7568         !FD->getAttr<ReturnsTwiceAttr>())
7569       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7570     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7571       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7572     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7573       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7574   }
7575 
7576   IdentifierInfo *Name = FD->getIdentifier();
7577   if (!Name)
7578     return;
7579   if ((!getLangOptions().CPlusPlus &&
7580        FD->getDeclContext()->isTranslationUnit()) ||
7581       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7582        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7583        LinkageSpecDecl::lang_c)) {
7584     // Okay: this could be a libc/libm/Objective-C function we know
7585     // about.
7586   } else
7587     return;
7588 
7589   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7590     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7591     // target-specific builtins, perhaps?
7592     if (!FD->getAttr<FormatAttr>())
7593       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7594                                              "printf", 2,
7595                                              Name->isStr("vasprintf") ? 0 : 3));
7596   }
7597 }
7598 
7599 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7600                                     TypeSourceInfo *TInfo) {
7601   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7602   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7603 
7604   if (!TInfo) {
7605     assert(D.isInvalidType() && "no declarator info for valid type");
7606     TInfo = Context.getTrivialTypeSourceInfo(T);
7607   }
7608 
7609   // Scope manipulation handled by caller.
7610   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7611                                            D.getSourceRange().getBegin(),
7612                                            D.getIdentifierLoc(),
7613                                            D.getIdentifier(),
7614                                            TInfo);
7615 
7616   // Bail out immediately if we have an invalid declaration.
7617   if (D.isInvalidType()) {
7618     NewTD->setInvalidDecl();
7619     return NewTD;
7620   }
7621 
7622   if (D.getDeclSpec().isModulePrivateSpecified()) {
7623     if (CurContext->isFunctionOrMethod())
7624       Diag(NewTD->getLocation(), diag::err_module_private_local)
7625         << 2 << NewTD->getDeclName()
7626         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7627         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7628     else
7629       NewTD->setModulePrivate();
7630   }
7631 
7632   // C++ [dcl.typedef]p8:
7633   //   If the typedef declaration defines an unnamed class (or
7634   //   enum), the first typedef-name declared by the declaration
7635   //   to be that class type (or enum type) is used to denote the
7636   //   class type (or enum type) for linkage purposes only.
7637   // We need to check whether the type was declared in the declaration.
7638   switch (D.getDeclSpec().getTypeSpecType()) {
7639   case TST_enum:
7640   case TST_struct:
7641   case TST_union:
7642   case TST_class: {
7643     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7644 
7645     // Do nothing if the tag is not anonymous or already has an
7646     // associated typedef (from an earlier typedef in this decl group).
7647     if (tagFromDeclSpec->getIdentifier()) break;
7648     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7649 
7650     // A well-formed anonymous tag must always be a TUK_Definition.
7651     assert(tagFromDeclSpec->isThisDeclarationADefinition());
7652 
7653     // The type must match the tag exactly;  no qualifiers allowed.
7654     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7655       break;
7656 
7657     // Otherwise, set this is the anon-decl typedef for the tag.
7658     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7659     break;
7660   }
7661 
7662   default:
7663     break;
7664   }
7665 
7666   return NewTD;
7667 }
7668 
7669 
7670 /// \brief Determine whether a tag with a given kind is acceptable
7671 /// as a redeclaration of the given tag declaration.
7672 ///
7673 /// \returns true if the new tag kind is acceptable, false otherwise.
7674 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7675                                         TagTypeKind NewTag, bool isDefinition,
7676                                         SourceLocation NewTagLoc,
7677                                         const IdentifierInfo &Name) {
7678   // C++ [dcl.type.elab]p3:
7679   //   The class-key or enum keyword present in the
7680   //   elaborated-type-specifier shall agree in kind with the
7681   //   declaration to which the name in the elaborated-type-specifier
7682   //   refers. This rule also applies to the form of
7683   //   elaborated-type-specifier that declares a class-name or
7684   //   friend class since it can be construed as referring to the
7685   //   definition of the class. Thus, in any
7686   //   elaborated-type-specifier, the enum keyword shall be used to
7687   //   refer to an enumeration (7.2), the union class-key shall be
7688   //   used to refer to a union (clause 9), and either the class or
7689   //   struct class-key shall be used to refer to a class (clause 9)
7690   //   declared using the class or struct class-key.
7691   TagTypeKind OldTag = Previous->getTagKind();
7692   if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7693     if (OldTag == NewTag)
7694       return true;
7695 
7696   if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7697       (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7698     // Warn about the struct/class tag mismatch.
7699     bool isTemplate = false;
7700     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7701       isTemplate = Record->getDescribedClassTemplate();
7702 
7703     if (!ActiveTemplateInstantiations.empty()) {
7704       // In a template instantiation, do not offer fix-its for tag mismatches
7705       // since they usually mess up the template instead of fixing the problem.
7706       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7707         << (NewTag == TTK_Class) << isTemplate << &Name;
7708       return true;
7709     }
7710 
7711     if (isDefinition) {
7712       // On definitions, check previous tags and issue a fix-it for each
7713       // one that doesn't match the current tag.
7714       if (Previous->getDefinition()) {
7715         // Don't suggest fix-its for redefinitions.
7716         return true;
7717       }
7718 
7719       bool previousMismatch = false;
7720       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7721            E(Previous->redecls_end()); I != E; ++I) {
7722         if (I->getTagKind() != NewTag) {
7723           if (!previousMismatch) {
7724             previousMismatch = true;
7725             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7726               << (NewTag == TTK_Class) << isTemplate << &Name;
7727           }
7728           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7729             << (NewTag == TTK_Class)
7730             << FixItHint::CreateReplacement(I->getInnerLocStart(),
7731                                             NewTag == TTK_Class?
7732                                             "class" : "struct");
7733         }
7734       }
7735       return true;
7736     }
7737 
7738     // Check for a previous definition.  If current tag and definition
7739     // are same type, do nothing.  If no definition, but disagree with
7740     // with previous tag type, give a warning, but no fix-it.
7741     const TagDecl *Redecl = Previous->getDefinition() ?
7742                             Previous->getDefinition() : Previous;
7743     if (Redecl->getTagKind() == NewTag) {
7744       return true;
7745     }
7746 
7747     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7748       << (NewTag == TTK_Class)
7749       << isTemplate << &Name;
7750     Diag(Redecl->getLocation(), diag::note_previous_use);
7751 
7752     // If there is a previous defintion, suggest a fix-it.
7753     if (Previous->getDefinition()) {
7754         Diag(NewTagLoc, diag::note_struct_class_suggestion)
7755           << (Redecl->getTagKind() == TTK_Class)
7756           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7757                         Redecl->getTagKind() == TTK_Class? "class" : "struct");
7758     }
7759 
7760     return true;
7761   }
7762   return false;
7763 }
7764 
7765 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7766 /// former case, Name will be non-null.  In the later case, Name will be null.
7767 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7768 /// reference/declaration/definition of a tag.
7769 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7770                      SourceLocation KWLoc, CXXScopeSpec &SS,
7771                      IdentifierInfo *Name, SourceLocation NameLoc,
7772                      AttributeList *Attr, AccessSpecifier AS,
7773                      SourceLocation ModulePrivateLoc,
7774                      MultiTemplateParamsArg TemplateParameterLists,
7775                      bool &OwnedDecl, bool &IsDependent,
7776                      SourceLocation ScopedEnumKWLoc,
7777                      bool ScopedEnumUsesClassTag,
7778                      TypeResult UnderlyingType) {
7779   // If this is not a definition, it must have a name.
7780   assert((Name != 0 || TUK == TUK_Definition) &&
7781          "Nameless record must be a definition!");
7782   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7783 
7784   OwnedDecl = false;
7785   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7786   bool ScopedEnum = ScopedEnumKWLoc.isValid();
7787 
7788   // FIXME: Check explicit specializations more carefully.
7789   bool isExplicitSpecialization = false;
7790   bool Invalid = false;
7791 
7792   // We only need to do this matching if we have template parameters
7793   // or a scope specifier, which also conveniently avoids this work
7794   // for non-C++ cases.
7795   if (TemplateParameterLists.size() > 0 ||
7796       (SS.isNotEmpty() && TUK != TUK_Reference)) {
7797     if (TemplateParameterList *TemplateParams
7798           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7799                                                 TemplateParameterLists.get(),
7800                                                 TemplateParameterLists.size(),
7801                                                     TUK == TUK_Friend,
7802                                                     isExplicitSpecialization,
7803                                                     Invalid)) {
7804       if (TemplateParams->size() > 0) {
7805         // This is a declaration or definition of a class template (which may
7806         // be a member of another template).
7807 
7808         if (Invalid)
7809           return 0;
7810 
7811         OwnedDecl = false;
7812         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7813                                                SS, Name, NameLoc, Attr,
7814                                                TemplateParams, AS,
7815                                                ModulePrivateLoc,
7816                                            TemplateParameterLists.size() - 1,
7817                  (TemplateParameterList**) TemplateParameterLists.release());
7818         return Result.get();
7819       } else {
7820         // The "template<>" header is extraneous.
7821         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7822           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7823         isExplicitSpecialization = true;
7824       }
7825     }
7826   }
7827 
7828   // Figure out the underlying type if this a enum declaration. We need to do
7829   // this early, because it's needed to detect if this is an incompatible
7830   // redeclaration.
7831   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7832 
7833   if (Kind == TTK_Enum) {
7834     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7835       // No underlying type explicitly specified, or we failed to parse the
7836       // type, default to int.
7837       EnumUnderlying = Context.IntTy.getTypePtr();
7838     else if (UnderlyingType.get()) {
7839       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7840       // integral type; any cv-qualification is ignored.
7841       TypeSourceInfo *TI = 0;
7842       QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7843       EnumUnderlying = TI;
7844 
7845       SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7846 
7847       if (!T->isDependentType() && !T->isIntegralType(Context)) {
7848         Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7849           << T;
7850         // Recover by falling back to int.
7851         EnumUnderlying = Context.IntTy.getTypePtr();
7852       }
7853 
7854       if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7855                                           UPPC_FixedUnderlyingType))
7856         EnumUnderlying = Context.IntTy.getTypePtr();
7857 
7858     } else if (getLangOptions().MicrosoftMode)
7859       // Microsoft enums are always of int type.
7860       EnumUnderlying = Context.IntTy.getTypePtr();
7861   }
7862 
7863   DeclContext *SearchDC = CurContext;
7864   DeclContext *DC = CurContext;
7865   bool isStdBadAlloc = false;
7866 
7867   RedeclarationKind Redecl = ForRedeclaration;
7868   if (TUK == TUK_Friend || TUK == TUK_Reference)
7869     Redecl = NotForRedeclaration;
7870 
7871   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7872 
7873   if (Name && SS.isNotEmpty()) {
7874     // We have a nested-name tag ('struct foo::bar').
7875 
7876     // Check for invalid 'foo::'.
7877     if (SS.isInvalid()) {
7878       Name = 0;
7879       goto CreateNewDecl;
7880     }
7881 
7882     // If this is a friend or a reference to a class in a dependent
7883     // context, don't try to make a decl for it.
7884     if (TUK == TUK_Friend || TUK == TUK_Reference) {
7885       DC = computeDeclContext(SS, false);
7886       if (!DC) {
7887         IsDependent = true;
7888         return 0;
7889       }
7890     } else {
7891       DC = computeDeclContext(SS, true);
7892       if (!DC) {
7893         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7894           << SS.getRange();
7895         return 0;
7896       }
7897     }
7898 
7899     if (RequireCompleteDeclContext(SS, DC))
7900       return 0;
7901 
7902     SearchDC = DC;
7903     // Look-up name inside 'foo::'.
7904     LookupQualifiedName(Previous, DC);
7905 
7906     if (Previous.isAmbiguous())
7907       return 0;
7908 
7909     if (Previous.empty()) {
7910       // Name lookup did not find anything. However, if the
7911       // nested-name-specifier refers to the current instantiation,
7912       // and that current instantiation has any dependent base
7913       // classes, we might find something at instantiation time: treat
7914       // this as a dependent elaborated-type-specifier.
7915       // But this only makes any sense for reference-like lookups.
7916       if (Previous.wasNotFoundInCurrentInstantiation() &&
7917           (TUK == TUK_Reference || TUK == TUK_Friend)) {
7918         IsDependent = true;
7919         return 0;
7920       }
7921 
7922       // A tag 'foo::bar' must already exist.
7923       Diag(NameLoc, diag::err_not_tag_in_scope)
7924         << Kind << Name << DC << SS.getRange();
7925       Name = 0;
7926       Invalid = true;
7927       goto CreateNewDecl;
7928     }
7929   } else if (Name) {
7930     // If this is a named struct, check to see if there was a previous forward
7931     // declaration or definition.
7932     // FIXME: We're looking into outer scopes here, even when we
7933     // shouldn't be. Doing so can result in ambiguities that we
7934     // shouldn't be diagnosing.
7935     LookupName(Previous, S);
7936 
7937     if (Previous.isAmbiguous() &&
7938         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7939       LookupResult::Filter F = Previous.makeFilter();
7940       while (F.hasNext()) {
7941         NamedDecl *ND = F.next();
7942         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7943           F.erase();
7944       }
7945       F.done();
7946     }
7947 
7948     // Note:  there used to be some attempt at recovery here.
7949     if (Previous.isAmbiguous())
7950       return 0;
7951 
7952     if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7953       // FIXME: This makes sure that we ignore the contexts associated
7954       // with C structs, unions, and enums when looking for a matching
7955       // tag declaration or definition. See the similar lookup tweak
7956       // in Sema::LookupName; is there a better way to deal with this?
7957       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7958         SearchDC = SearchDC->getParent();
7959     }
7960   } else if (S->isFunctionPrototypeScope()) {
7961     // If this is an enum declaration in function prototype scope, set its
7962     // initial context to the translation unit.
7963     SearchDC = Context.getTranslationUnitDecl();
7964   }
7965 
7966   if (Previous.isSingleResult() &&
7967       Previous.getFoundDecl()->isTemplateParameter()) {
7968     // Maybe we will complain about the shadowed template parameter.
7969     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7970     // Just pretend that we didn't see the previous declaration.
7971     Previous.clear();
7972   }
7973 
7974   if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7975       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7976     // This is a declaration of or a reference to "std::bad_alloc".
7977     isStdBadAlloc = true;
7978 
7979     if (Previous.empty() && StdBadAlloc) {
7980       // std::bad_alloc has been implicitly declared (but made invisible to
7981       // name lookup). Fill in this implicit declaration as the previous
7982       // declaration, so that the declarations get chained appropriately.
7983       Previous.addDecl(getStdBadAlloc());
7984     }
7985   }
7986 
7987   // If we didn't find a previous declaration, and this is a reference
7988   // (or friend reference), move to the correct scope.  In C++, we
7989   // also need to do a redeclaration lookup there, just in case
7990   // there's a shadow friend decl.
7991   if (Name && Previous.empty() &&
7992       (TUK == TUK_Reference || TUK == TUK_Friend)) {
7993     if (Invalid) goto CreateNewDecl;
7994     assert(SS.isEmpty());
7995 
7996     if (TUK == TUK_Reference) {
7997       // C++ [basic.scope.pdecl]p5:
7998       //   -- for an elaborated-type-specifier of the form
7999       //
8000       //          class-key identifier
8001       //
8002       //      if the elaborated-type-specifier is used in the
8003       //      decl-specifier-seq or parameter-declaration-clause of a
8004       //      function defined in namespace scope, the identifier is
8005       //      declared as a class-name in the namespace that contains
8006       //      the declaration; otherwise, except as a friend
8007       //      declaration, the identifier is declared in the smallest
8008       //      non-class, non-function-prototype scope that contains the
8009       //      declaration.
8010       //
8011       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8012       // C structs and unions.
8013       //
8014       // It is an error in C++ to declare (rather than define) an enum
8015       // type, including via an elaborated type specifier.  We'll
8016       // diagnose that later; for now, declare the enum in the same
8017       // scope as we would have picked for any other tag type.
8018       //
8019       // GNU C also supports this behavior as part of its incomplete
8020       // enum types extension, while GNU C++ does not.
8021       //
8022       // Find the context where we'll be declaring the tag.
8023       // FIXME: We would like to maintain the current DeclContext as the
8024       // lexical context,
8025       while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
8026              SearchDC->isObjCContainer())
8027         SearchDC = SearchDC->getParent();
8028 
8029       // Find the scope where we'll be declaring the tag.
8030       while (S->isClassScope() ||
8031              (getLangOptions().CPlusPlus &&
8032               S->isFunctionPrototypeScope()) ||
8033              ((S->getFlags() & Scope::DeclScope) == 0) ||
8034              (S->getEntity() &&
8035               ((DeclContext *)S->getEntity())->isTransparentContext()))
8036         S = S->getParent();
8037     } else {
8038       assert(TUK == TUK_Friend);
8039       // C++ [namespace.memdef]p3:
8040       //   If a friend declaration in a non-local class first declares a
8041       //   class or function, the friend class or function is a member of
8042       //   the innermost enclosing namespace.
8043       SearchDC = SearchDC->getEnclosingNamespaceContext();
8044     }
8045 
8046     // In C++, we need to do a redeclaration lookup to properly
8047     // diagnose some problems.
8048     if (getLangOptions().CPlusPlus) {
8049       Previous.setRedeclarationKind(ForRedeclaration);
8050       LookupQualifiedName(Previous, SearchDC);
8051     }
8052   }
8053 
8054   if (!Previous.empty()) {
8055     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8056 
8057     // It's okay to have a tag decl in the same scope as a typedef
8058     // which hides a tag decl in the same scope.  Finding this
8059     // insanity with a redeclaration lookup can only actually happen
8060     // in C++.
8061     //
8062     // This is also okay for elaborated-type-specifiers, which is
8063     // technically forbidden by the current standard but which is
8064     // okay according to the likely resolution of an open issue;
8065     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8066     if (getLangOptions().CPlusPlus) {
8067       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8068         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8069           TagDecl *Tag = TT->getDecl();
8070           if (Tag->getDeclName() == Name &&
8071               Tag->getDeclContext()->getRedeclContext()
8072                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
8073             PrevDecl = Tag;
8074             Previous.clear();
8075             Previous.addDecl(Tag);
8076             Previous.resolveKind();
8077           }
8078         }
8079       }
8080     }
8081 
8082     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8083       // If this is a use of a previous tag, or if the tag is already declared
8084       // in the same scope (so that the definition/declaration completes or
8085       // rementions the tag), reuse the decl.
8086       if (TUK == TUK_Reference || TUK == TUK_Friend ||
8087           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8088         // Make sure that this wasn't declared as an enum and now used as a
8089         // struct or something similar.
8090         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8091                                           TUK == TUK_Definition, KWLoc,
8092                                           *Name)) {
8093           bool SafeToContinue
8094             = (PrevTagDecl->getTagKind() != TTK_Enum &&
8095                Kind != TTK_Enum);
8096           if (SafeToContinue)
8097             Diag(KWLoc, diag::err_use_with_wrong_tag)
8098               << Name
8099               << FixItHint::CreateReplacement(SourceRange(KWLoc),
8100                                               PrevTagDecl->getKindName());
8101           else
8102             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8103           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8104 
8105           if (SafeToContinue)
8106             Kind = PrevTagDecl->getTagKind();
8107           else {
8108             // Recover by making this an anonymous redefinition.
8109             Name = 0;
8110             Previous.clear();
8111             Invalid = true;
8112           }
8113         }
8114 
8115         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8116           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8117 
8118           // If this is an elaborated-type-specifier for a scoped enumeration,
8119           // the 'class' keyword is not necessary and not permitted.
8120           if (TUK == TUK_Reference || TUK == TUK_Friend) {
8121             if (ScopedEnum)
8122               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8123                 << PrevEnum->isScoped()
8124                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8125             return PrevTagDecl;
8126           }
8127 
8128           // All conflicts with previous declarations are recovered by
8129           // returning the previous declaration.
8130           if (ScopedEnum != PrevEnum->isScoped()) {
8131             Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8132               << PrevEnum->isScoped();
8133             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8134             return PrevTagDecl;
8135           }
8136           else if (EnumUnderlying && PrevEnum->isFixed()) {
8137             QualType T;
8138             if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8139                 T = TI->getType();
8140             else
8141                 T = QualType(EnumUnderlying.get<const Type*>(), 0);
8142 
8143             if (!Context.hasSameUnqualifiedType(T,
8144                                                 PrevEnum->getIntegerType())) {
8145               Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8146                    diag::err_enum_redeclare_type_mismatch)
8147                 << T
8148                 << PrevEnum->getIntegerType();
8149               Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8150               return PrevTagDecl;
8151             }
8152           }
8153           else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8154             Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8155               << PrevEnum->isFixed();
8156             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8157             return PrevTagDecl;
8158           }
8159         }
8160 
8161         if (!Invalid) {
8162           // If this is a use, just return the declaration we found.
8163 
8164           // FIXME: In the future, return a variant or some other clue
8165           // for the consumer of this Decl to know it doesn't own it.
8166           // For our current ASTs this shouldn't be a problem, but will
8167           // need to be changed with DeclGroups.
8168           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8169                getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8170             return PrevTagDecl;
8171 
8172           // Diagnose attempts to redefine a tag.
8173           if (TUK == TUK_Definition) {
8174             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8175               // If we're defining a specialization and the previous definition
8176               // is from an implicit instantiation, don't emit an error
8177               // here; we'll catch this in the general case below.
8178               if (!isExplicitSpecialization ||
8179                   !isa<CXXRecordDecl>(Def) ||
8180                   cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8181                                                == TSK_ExplicitSpecialization) {
8182                 Diag(NameLoc, diag::err_redefinition) << Name;
8183                 Diag(Def->getLocation(), diag::note_previous_definition);
8184                 // If this is a redefinition, recover by making this
8185                 // struct be anonymous, which will make any later
8186                 // references get the previous definition.
8187                 Name = 0;
8188                 Previous.clear();
8189                 Invalid = true;
8190               }
8191             } else {
8192               // If the type is currently being defined, complain
8193               // about a nested redefinition.
8194               const TagType *Tag
8195                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8196               if (Tag->isBeingDefined()) {
8197                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
8198                 Diag(PrevTagDecl->getLocation(),
8199                      diag::note_previous_definition);
8200                 Name = 0;
8201                 Previous.clear();
8202                 Invalid = true;
8203               }
8204             }
8205 
8206             // Okay, this is definition of a previously declared or referenced
8207             // tag PrevDecl. We're going to create a new Decl for it.
8208           }
8209         }
8210         // If we get here we have (another) forward declaration or we
8211         // have a definition.  Just create a new decl.
8212 
8213       } else {
8214         // If we get here, this is a definition of a new tag type in a nested
8215         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8216         // new decl/type.  We set PrevDecl to NULL so that the entities
8217         // have distinct types.
8218         Previous.clear();
8219       }
8220       // If we get here, we're going to create a new Decl. If PrevDecl
8221       // is non-NULL, it's a definition of the tag declared by
8222       // PrevDecl. If it's NULL, we have a new definition.
8223 
8224 
8225     // Otherwise, PrevDecl is not a tag, but was found with tag
8226     // lookup.  This is only actually possible in C++, where a few
8227     // things like templates still live in the tag namespace.
8228     } else {
8229       // Use a better diagnostic if an elaborated-type-specifier
8230       // found the wrong kind of type on the first
8231       // (non-redeclaration) lookup.
8232       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8233           !Previous.isForRedeclaration()) {
8234         unsigned Kind = 0;
8235         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8236         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8237         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8238         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8239         Diag(PrevDecl->getLocation(), diag::note_declared_at);
8240         Invalid = true;
8241 
8242       // Otherwise, only diagnose if the declaration is in scope.
8243       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8244                                 isExplicitSpecialization)) {
8245         // do nothing
8246 
8247       // Diagnose implicit declarations introduced by elaborated types.
8248       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8249         unsigned Kind = 0;
8250         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8251         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8252         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8253         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8254         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8255         Invalid = true;
8256 
8257       // Otherwise it's a declaration.  Call out a particularly common
8258       // case here.
8259       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8260         unsigned Kind = 0;
8261         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8262         Diag(NameLoc, diag::err_tag_definition_of_typedef)
8263           << Name << Kind << TND->getUnderlyingType();
8264         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8265         Invalid = true;
8266 
8267       // Otherwise, diagnose.
8268       } else {
8269         // The tag name clashes with something else in the target scope,
8270         // issue an error and recover by making this tag be anonymous.
8271         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8272         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8273         Name = 0;
8274         Invalid = true;
8275       }
8276 
8277       // The existing declaration isn't relevant to us; we're in a
8278       // new scope, so clear out the previous declaration.
8279       Previous.clear();
8280     }
8281   }
8282 
8283 CreateNewDecl:
8284 
8285   TagDecl *PrevDecl = 0;
8286   if (Previous.isSingleResult())
8287     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8288 
8289   // If there is an identifier, use the location of the identifier as the
8290   // location of the decl, otherwise use the location of the struct/union
8291   // keyword.
8292   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8293 
8294   // Otherwise, create a new declaration. If there is a previous
8295   // declaration of the same entity, the two will be linked via
8296   // PrevDecl.
8297   TagDecl *New;
8298 
8299   bool IsForwardReference = false;
8300   if (Kind == TTK_Enum) {
8301     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8302     // enum X { A, B, C } D;    D should chain to X.
8303     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8304                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8305                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8306     // If this is an undefined enum, warn.
8307     if (TUK != TUK_Definition && !Invalid) {
8308       TagDecl *Def;
8309       if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8310         // C++0x: 7.2p2: opaque-enum-declaration.
8311         // Conflicts are diagnosed above. Do nothing.
8312       }
8313       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8314         Diag(Loc, diag::ext_forward_ref_enum_def)
8315           << New;
8316         Diag(Def->getLocation(), diag::note_previous_definition);
8317       } else {
8318         unsigned DiagID = diag::ext_forward_ref_enum;
8319         if (getLangOptions().MicrosoftMode)
8320           DiagID = diag::ext_ms_forward_ref_enum;
8321         else if (getLangOptions().CPlusPlus)
8322           DiagID = diag::err_forward_ref_enum;
8323         Diag(Loc, DiagID);
8324 
8325         // If this is a forward-declared reference to an enumeration, make a
8326         // note of it; we won't actually be introducing the declaration into
8327         // the declaration context.
8328         if (TUK == TUK_Reference)
8329           IsForwardReference = true;
8330       }
8331     }
8332 
8333     if (EnumUnderlying) {
8334       EnumDecl *ED = cast<EnumDecl>(New);
8335       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8336         ED->setIntegerTypeSourceInfo(TI);
8337       else
8338         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8339       ED->setPromotionType(ED->getIntegerType());
8340     }
8341 
8342   } else {
8343     // struct/union/class
8344 
8345     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8346     // struct X { int A; } D;    D should chain to X.
8347     if (getLangOptions().CPlusPlus) {
8348       // FIXME: Look for a way to use RecordDecl for simple structs.
8349       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8350                                   cast_or_null<CXXRecordDecl>(PrevDecl));
8351 
8352       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8353         StdBadAlloc = cast<CXXRecordDecl>(New);
8354     } else
8355       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8356                                cast_or_null<RecordDecl>(PrevDecl));
8357   }
8358 
8359   // Maybe add qualifier info.
8360   if (SS.isNotEmpty()) {
8361     if (SS.isSet()) {
8362       New->setQualifierInfo(SS.getWithLocInContext(Context));
8363       if (TemplateParameterLists.size() > 0) {
8364         New->setTemplateParameterListsInfo(Context,
8365                                            TemplateParameterLists.size(),
8366                     (TemplateParameterList**) TemplateParameterLists.release());
8367       }
8368     }
8369     else
8370       Invalid = true;
8371   }
8372 
8373   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8374     // Add alignment attributes if necessary; these attributes are checked when
8375     // the ASTContext lays out the structure.
8376     //
8377     // It is important for implementing the correct semantics that this
8378     // happen here (in act on tag decl). The #pragma pack stack is
8379     // maintained as a result of parser callbacks which can occur at
8380     // many points during the parsing of a struct declaration (because
8381     // the #pragma tokens are effectively skipped over during the
8382     // parsing of the struct).
8383     AddAlignmentAttributesForRecord(RD);
8384 
8385     AddMsStructLayoutForRecord(RD);
8386   }
8387 
8388   if (ModulePrivateLoc.isValid()) {
8389     if (isExplicitSpecialization)
8390       Diag(New->getLocation(), diag::err_module_private_specialization)
8391         << 2
8392         << FixItHint::CreateRemoval(ModulePrivateLoc);
8393     // __module_private__ does not apply to local classes. However, we only
8394     // diagnose this as an error when the declaration specifiers are
8395     // freestanding. Here, we just ignore the __module_private__.
8396     else if (!SearchDC->isFunctionOrMethod())
8397       New->setModulePrivate();
8398   }
8399 
8400   // If this is a specialization of a member class (of a class template),
8401   // check the specialization.
8402   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8403     Invalid = true;
8404 
8405   if (Invalid)
8406     New->setInvalidDecl();
8407 
8408   if (Attr)
8409     ProcessDeclAttributeList(S, New, Attr);
8410 
8411   // If we're declaring or defining a tag in function prototype scope
8412   // in C, note that this type can only be used within the function.
8413   if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8414     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8415 
8416   // Set the lexical context. If the tag has a C++ scope specifier, the
8417   // lexical context will be different from the semantic context.
8418   New->setLexicalDeclContext(CurContext);
8419 
8420   // Mark this as a friend decl if applicable.
8421   // In Microsoft mode, a friend declaration also acts as a forward
8422   // declaration so we always pass true to setObjectOfFriendDecl to make
8423   // the tag name visible.
8424   if (TUK == TUK_Friend)
8425     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8426                                getLangOptions().MicrosoftExt);
8427 
8428   // Set the access specifier.
8429   if (!Invalid && SearchDC->isRecord())
8430     SetMemberAccessSpecifier(New, PrevDecl, AS);
8431 
8432   if (TUK == TUK_Definition)
8433     New->startDefinition();
8434 
8435   // If this has an identifier, add it to the scope stack.
8436   if (TUK == TUK_Friend) {
8437     // We might be replacing an existing declaration in the lookup tables;
8438     // if so, borrow its access specifier.
8439     if (PrevDecl)
8440       New->setAccess(PrevDecl->getAccess());
8441 
8442     DeclContext *DC = New->getDeclContext()->getRedeclContext();
8443     DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8444     if (Name) // can be null along some error paths
8445       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8446         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8447   } else if (Name) {
8448     S = getNonFieldDeclScope(S);
8449     PushOnScopeChains(New, S, !IsForwardReference);
8450     if (IsForwardReference)
8451       SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8452 
8453   } else {
8454     CurContext->addDecl(New);
8455   }
8456 
8457   // If this is the C FILE type, notify the AST context.
8458   if (IdentifierInfo *II = New->getIdentifier())
8459     if (!New->isInvalidDecl() &&
8460         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8461         II->isStr("FILE"))
8462       Context.setFILEDecl(New);
8463 
8464   OwnedDecl = true;
8465   return New;
8466 }
8467 
8468 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8469   AdjustDeclIfTemplate(TagD);
8470   TagDecl *Tag = cast<TagDecl>(TagD);
8471 
8472   // Enter the tag context.
8473   PushDeclContext(S, Tag);
8474 }
8475 
8476 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8477   assert(isa<ObjCContainerDecl>(IDecl) &&
8478          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8479   DeclContext *OCD = cast<DeclContext>(IDecl);
8480   assert(getContainingDC(OCD) == CurContext &&
8481       "The next DeclContext should be lexically contained in the current one.");
8482   CurContext = OCD;
8483   return IDecl;
8484 }
8485 
8486 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8487                                            SourceLocation FinalLoc,
8488                                            SourceLocation LBraceLoc) {
8489   AdjustDeclIfTemplate(TagD);
8490   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8491 
8492   FieldCollector->StartClass();
8493 
8494   if (!Record->getIdentifier())
8495     return;
8496 
8497   if (FinalLoc.isValid())
8498     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8499 
8500   // C++ [class]p2:
8501   //   [...] The class-name is also inserted into the scope of the
8502   //   class itself; this is known as the injected-class-name. For
8503   //   purposes of access checking, the injected-class-name is treated
8504   //   as if it were a public member name.
8505   CXXRecordDecl *InjectedClassName
8506     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8507                             Record->getLocStart(), Record->getLocation(),
8508                             Record->getIdentifier(),
8509                             /*PrevDecl=*/0,
8510                             /*DelayTypeCreation=*/true);
8511   Context.getTypeDeclType(InjectedClassName, Record);
8512   InjectedClassName->setImplicit();
8513   InjectedClassName->setAccess(AS_public);
8514   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8515       InjectedClassName->setDescribedClassTemplate(Template);
8516   PushOnScopeChains(InjectedClassName, S);
8517   assert(InjectedClassName->isInjectedClassName() &&
8518          "Broken injected-class-name");
8519 }
8520 
8521 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8522                                     SourceLocation RBraceLoc) {
8523   AdjustDeclIfTemplate(TagD);
8524   TagDecl *Tag = cast<TagDecl>(TagD);
8525   Tag->setRBraceLoc(RBraceLoc);
8526 
8527   if (isa<CXXRecordDecl>(Tag))
8528     FieldCollector->FinishClass();
8529 
8530   // Exit this scope of this tag's definition.
8531   PopDeclContext();
8532 
8533   // Notify the consumer that we've defined a tag.
8534   Consumer.HandleTagDeclDefinition(Tag);
8535 }
8536 
8537 void Sema::ActOnObjCContainerFinishDefinition() {
8538   // Exit this scope of this interface definition.
8539   PopDeclContext();
8540 }
8541 
8542 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8543   assert(DC == CurContext && "Mismatch of container contexts");
8544   OriginalLexicalContext = DC;
8545   ActOnObjCContainerFinishDefinition();
8546 }
8547 
8548 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8549   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8550   OriginalLexicalContext = 0;
8551 }
8552 
8553 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8554   AdjustDeclIfTemplate(TagD);
8555   TagDecl *Tag = cast<TagDecl>(TagD);
8556   Tag->setInvalidDecl();
8557 
8558   // We're undoing ActOnTagStartDefinition here, not
8559   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8560   // the FieldCollector.
8561 
8562   PopDeclContext();
8563 }
8564 
8565 // Note that FieldName may be null for anonymous bitfields.
8566 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8567                                 IdentifierInfo *FieldName,
8568                                 QualType FieldTy, Expr *BitWidth,
8569                                 bool *ZeroWidth) {
8570   // Default to true; that shouldn't confuse checks for emptiness
8571   if (ZeroWidth)
8572     *ZeroWidth = true;
8573 
8574   // C99 6.7.2.1p4 - verify the field type.
8575   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8576   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8577     // Handle incomplete types with specific error.
8578     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8579       return ExprError();
8580     if (FieldName)
8581       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8582         << FieldName << FieldTy << BitWidth->getSourceRange();
8583     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8584       << FieldTy << BitWidth->getSourceRange();
8585   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8586                                              UPPC_BitFieldWidth))
8587     return ExprError();
8588 
8589   // If the bit-width is type- or value-dependent, don't try to check
8590   // it now.
8591   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8592     return Owned(BitWidth);
8593 
8594   llvm::APSInt Value;
8595   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8596   if (ICE.isInvalid())
8597     return ICE;
8598   BitWidth = ICE.take();
8599 
8600   if (Value != 0 && ZeroWidth)
8601     *ZeroWidth = false;
8602 
8603   // Zero-width bitfield is ok for anonymous field.
8604   if (Value == 0 && FieldName)
8605     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8606 
8607   if (Value.isSigned() && Value.isNegative()) {
8608     if (FieldName)
8609       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8610                << FieldName << Value.toString(10);
8611     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8612       << Value.toString(10);
8613   }
8614 
8615   if (!FieldTy->isDependentType()) {
8616     uint64_t TypeSize = Context.getTypeSize(FieldTy);
8617     if (Value.getZExtValue() > TypeSize) {
8618       if (!getLangOptions().CPlusPlus) {
8619         if (FieldName)
8620           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8621             << FieldName << (unsigned)Value.getZExtValue()
8622             << (unsigned)TypeSize;
8623 
8624         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8625           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8626       }
8627 
8628       if (FieldName)
8629         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8630           << FieldName << (unsigned)Value.getZExtValue()
8631           << (unsigned)TypeSize;
8632       else
8633         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8634           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8635     }
8636   }
8637 
8638   return Owned(BitWidth);
8639 }
8640 
8641 /// ActOnField - Each field of a C struct/union is passed into this in order
8642 /// to create a FieldDecl object for it.
8643 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8644                        Declarator &D, Expr *BitfieldWidth) {
8645   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8646                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8647                                /*HasInit=*/false, AS_public);
8648   return Res;
8649 }
8650 
8651 /// HandleField - Analyze a field of a C struct or a C++ data member.
8652 ///
8653 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8654                              SourceLocation DeclStart,
8655                              Declarator &D, Expr *BitWidth, bool HasInit,
8656                              AccessSpecifier AS) {
8657   IdentifierInfo *II = D.getIdentifier();
8658   SourceLocation Loc = DeclStart;
8659   if (II) Loc = D.getIdentifierLoc();
8660 
8661   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8662   QualType T = TInfo->getType();
8663   if (getLangOptions().CPlusPlus) {
8664     CheckExtraCXXDefaultArguments(D);
8665 
8666     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8667                                         UPPC_DataMemberType)) {
8668       D.setInvalidType();
8669       T = Context.IntTy;
8670       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8671     }
8672   }
8673 
8674   DiagnoseFunctionSpecifiers(D);
8675 
8676   if (D.getDeclSpec().isThreadSpecified())
8677     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8678   if (D.getDeclSpec().isConstexprSpecified())
8679     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8680       << 2;
8681 
8682   // Check to see if this name was declared as a member previously
8683   NamedDecl *PrevDecl = 0;
8684   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8685   LookupName(Previous, S);
8686   switch (Previous.getResultKind()) {
8687     case LookupResult::Found:
8688     case LookupResult::FoundUnresolvedValue:
8689       PrevDecl = Previous.getAsSingle<NamedDecl>();
8690       break;
8691 
8692     case LookupResult::FoundOverloaded:
8693       PrevDecl = Previous.getRepresentativeDecl();
8694       break;
8695 
8696     case LookupResult::NotFound:
8697     case LookupResult::NotFoundInCurrentInstantiation:
8698     case LookupResult::Ambiguous:
8699       break;
8700   }
8701   Previous.suppressDiagnostics();
8702 
8703   if (PrevDecl && PrevDecl->isTemplateParameter()) {
8704     // Maybe we will complain about the shadowed template parameter.
8705     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8706     // Just pretend that we didn't see the previous declaration.
8707     PrevDecl = 0;
8708   }
8709 
8710   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8711     PrevDecl = 0;
8712 
8713   bool Mutable
8714     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8715   SourceLocation TSSL = D.getSourceRange().getBegin();
8716   FieldDecl *NewFD
8717     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8718                      TSSL, AS, PrevDecl, &D);
8719 
8720   if (NewFD->isInvalidDecl())
8721     Record->setInvalidDecl();
8722 
8723   if (D.getDeclSpec().isModulePrivateSpecified())
8724     NewFD->setModulePrivate();
8725 
8726   if (NewFD->isInvalidDecl() && PrevDecl) {
8727     // Don't introduce NewFD into scope; there's already something
8728     // with the same name in the same scope.
8729   } else if (II) {
8730     PushOnScopeChains(NewFD, S);
8731   } else
8732     Record->addDecl(NewFD);
8733 
8734   return NewFD;
8735 }
8736 
8737 /// \brief Build a new FieldDecl and check its well-formedness.
8738 ///
8739 /// This routine builds a new FieldDecl given the fields name, type,
8740 /// record, etc. \p PrevDecl should refer to any previous declaration
8741 /// with the same name and in the same scope as the field to be
8742 /// created.
8743 ///
8744 /// \returns a new FieldDecl.
8745 ///
8746 /// \todo The Declarator argument is a hack. It will be removed once
8747 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8748                                 TypeSourceInfo *TInfo,
8749                                 RecordDecl *Record, SourceLocation Loc,
8750                                 bool Mutable, Expr *BitWidth, bool HasInit,
8751                                 SourceLocation TSSL,
8752                                 AccessSpecifier AS, NamedDecl *PrevDecl,
8753                                 Declarator *D) {
8754   IdentifierInfo *II = Name.getAsIdentifierInfo();
8755   bool InvalidDecl = false;
8756   if (D) InvalidDecl = D->isInvalidType();
8757 
8758   // If we receive a broken type, recover by assuming 'int' and
8759   // marking this declaration as invalid.
8760   if (T.isNull()) {
8761     InvalidDecl = true;
8762     T = Context.IntTy;
8763   }
8764 
8765   QualType EltTy = Context.getBaseElementType(T);
8766   if (!EltTy->isDependentType() &&
8767       RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8768     // Fields of incomplete type force their record to be invalid.
8769     Record->setInvalidDecl();
8770     InvalidDecl = true;
8771   }
8772 
8773   // C99 6.7.2.1p8: A member of a structure or union may have any type other
8774   // than a variably modified type.
8775   if (!InvalidDecl && T->isVariablyModifiedType()) {
8776     bool SizeIsNegative;
8777     llvm::APSInt Oversized;
8778     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8779                                                            SizeIsNegative,
8780                                                            Oversized);
8781     if (!FixedTy.isNull()) {
8782       Diag(Loc, diag::warn_illegal_constant_array_size);
8783       T = FixedTy;
8784     } else {
8785       if (SizeIsNegative)
8786         Diag(Loc, diag::err_typecheck_negative_array_size);
8787       else if (Oversized.getBoolValue())
8788         Diag(Loc, diag::err_array_too_large)
8789           << Oversized.toString(10);
8790       else
8791         Diag(Loc, diag::err_typecheck_field_variable_size);
8792       InvalidDecl = true;
8793     }
8794   }
8795 
8796   // Fields can not have abstract class types
8797   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8798                                              diag::err_abstract_type_in_decl,
8799                                              AbstractFieldType))
8800     InvalidDecl = true;
8801 
8802   bool ZeroWidth = false;
8803   // If this is declared as a bit-field, check the bit-field.
8804   if (!InvalidDecl && BitWidth) {
8805     BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
8806     if (!BitWidth) {
8807       InvalidDecl = true;
8808       BitWidth = 0;
8809       ZeroWidth = false;
8810     }
8811   }
8812 
8813   // Check that 'mutable' is consistent with the type of the declaration.
8814   if (!InvalidDecl && Mutable) {
8815     unsigned DiagID = 0;
8816     if (T->isReferenceType())
8817       DiagID = diag::err_mutable_reference;
8818     else if (T.isConstQualified())
8819       DiagID = diag::err_mutable_const;
8820 
8821     if (DiagID) {
8822       SourceLocation ErrLoc = Loc;
8823       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8824         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8825       Diag(ErrLoc, DiagID);
8826       Mutable = false;
8827       InvalidDecl = true;
8828     }
8829   }
8830 
8831   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8832                                        BitWidth, Mutable, HasInit);
8833   if (InvalidDecl)
8834     NewFD->setInvalidDecl();
8835 
8836   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8837     Diag(Loc, diag::err_duplicate_member) << II;
8838     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8839     NewFD->setInvalidDecl();
8840   }
8841 
8842   if (!InvalidDecl && getLangOptions().CPlusPlus) {
8843     if (Record->isUnion()) {
8844       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8845         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8846         if (RDecl->getDefinition()) {
8847           // C++ [class.union]p1: An object of a class with a non-trivial
8848           // constructor, a non-trivial copy constructor, a non-trivial
8849           // destructor, or a non-trivial copy assignment operator
8850           // cannot be a member of a union, nor can an array of such
8851           // objects.
8852           if (CheckNontrivialField(NewFD))
8853             NewFD->setInvalidDecl();
8854         }
8855       }
8856 
8857       // C++ [class.union]p1: If a union contains a member of reference type,
8858       // the program is ill-formed.
8859       if (EltTy->isReferenceType()) {
8860         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8861           << NewFD->getDeclName() << EltTy;
8862         NewFD->setInvalidDecl();
8863       }
8864     }
8865   }
8866 
8867   // FIXME: We need to pass in the attributes given an AST
8868   // representation, not a parser representation.
8869   if (D)
8870     // FIXME: What to pass instead of TUScope?
8871     ProcessDeclAttributes(TUScope, NewFD, *D);
8872 
8873   // In auto-retain/release, infer strong retension for fields of
8874   // retainable type.
8875   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8876     NewFD->setInvalidDecl();
8877 
8878   if (T.isObjCGCWeak())
8879     Diag(Loc, diag::warn_attribute_weak_on_field);
8880 
8881   NewFD->setAccess(AS);
8882   return NewFD;
8883 }
8884 
8885 bool Sema::CheckNontrivialField(FieldDecl *FD) {
8886   assert(FD);
8887   assert(getLangOptions().CPlusPlus && "valid check only for C++");
8888 
8889   if (FD->isInvalidDecl())
8890     return true;
8891 
8892   QualType EltTy = Context.getBaseElementType(FD->getType());
8893   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8894     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8895     if (RDecl->getDefinition()) {
8896       // We check for copy constructors before constructors
8897       // because otherwise we'll never get complaints about
8898       // copy constructors.
8899 
8900       CXXSpecialMember member = CXXInvalid;
8901       if (!RDecl->hasTrivialCopyConstructor())
8902         member = CXXCopyConstructor;
8903       else if (!RDecl->hasTrivialDefaultConstructor())
8904         member = CXXDefaultConstructor;
8905       else if (!RDecl->hasTrivialCopyAssignment())
8906         member = CXXCopyAssignment;
8907       else if (!RDecl->hasTrivialDestructor())
8908         member = CXXDestructor;
8909 
8910       if (member != CXXInvalid) {
8911         if (!getLangOptions().CPlusPlus0x &&
8912             getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8913           // Objective-C++ ARC: it is an error to have a non-trivial field of
8914           // a union. However, system headers in Objective-C programs
8915           // occasionally have Objective-C lifetime objects within unions,
8916           // and rather than cause the program to fail, we make those
8917           // members unavailable.
8918           SourceLocation Loc = FD->getLocation();
8919           if (getSourceManager().isInSystemHeader(Loc)) {
8920             if (!FD->hasAttr<UnavailableAttr>())
8921               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8922                                   "this system field has retaining ownership"));
8923             return false;
8924           }
8925         }
8926 
8927         Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8928                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8929                diag::err_illegal_union_or_anon_struct_member)
8930           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8931         DiagnoseNontrivial(RT, member);
8932         return !getLangOptions().CPlusPlus0x;
8933       }
8934     }
8935   }
8936 
8937   return false;
8938 }
8939 
8940 /// DiagnoseNontrivial - Given that a class has a non-trivial
8941 /// special member, figure out why.
8942 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8943   QualType QT(T, 0U);
8944   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8945 
8946   // Check whether the member was user-declared.
8947   switch (member) {
8948   case CXXInvalid:
8949     break;
8950 
8951   case CXXDefaultConstructor:
8952     if (RD->hasUserDeclaredConstructor()) {
8953       typedef CXXRecordDecl::ctor_iterator ctor_iter;
8954       for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8955         const FunctionDecl *body = 0;
8956         ci->hasBody(body);
8957         if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8958           SourceLocation CtorLoc = ci->getLocation();
8959           Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8960           return;
8961         }
8962       }
8963 
8964       llvm_unreachable("found no user-declared constructors");
8965     }
8966     break;
8967 
8968   case CXXCopyConstructor:
8969     if (RD->hasUserDeclaredCopyConstructor()) {
8970       SourceLocation CtorLoc =
8971         RD->getCopyConstructor(0)->getLocation();
8972       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8973       return;
8974     }
8975     break;
8976 
8977   case CXXMoveConstructor:
8978     if (RD->hasUserDeclaredMoveConstructor()) {
8979       SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8980       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8981       return;
8982     }
8983     break;
8984 
8985   case CXXCopyAssignment:
8986     if (RD->hasUserDeclaredCopyAssignment()) {
8987       // FIXME: this should use the location of the copy
8988       // assignment, not the type.
8989       SourceLocation TyLoc = RD->getSourceRange().getBegin();
8990       Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8991       return;
8992     }
8993     break;
8994 
8995   case CXXMoveAssignment:
8996     if (RD->hasUserDeclaredMoveAssignment()) {
8997       SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8998       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8999       return;
9000     }
9001     break;
9002 
9003   case CXXDestructor:
9004     if (RD->hasUserDeclaredDestructor()) {
9005       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9006       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9007       return;
9008     }
9009     break;
9010   }
9011 
9012   typedef CXXRecordDecl::base_class_iterator base_iter;
9013 
9014   // Virtual bases and members inhibit trivial copying/construction,
9015   // but not trivial destruction.
9016   if (member != CXXDestructor) {
9017     // Check for virtual bases.  vbases includes indirect virtual bases,
9018     // so we just iterate through the direct bases.
9019     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9020       if (bi->isVirtual()) {
9021         SourceLocation BaseLoc = bi->getSourceRange().getBegin();
9022         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9023         return;
9024       }
9025 
9026     // Check for virtual methods.
9027     typedef CXXRecordDecl::method_iterator meth_iter;
9028     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9029          ++mi) {
9030       if (mi->isVirtual()) {
9031         SourceLocation MLoc = mi->getSourceRange().getBegin();
9032         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9033         return;
9034       }
9035     }
9036   }
9037 
9038   bool (CXXRecordDecl::*hasTrivial)() const;
9039   switch (member) {
9040   case CXXDefaultConstructor:
9041     hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9042   case CXXCopyConstructor:
9043     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9044   case CXXCopyAssignment:
9045     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9046   case CXXDestructor:
9047     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9048   default:
9049     llvm_unreachable("unexpected special member");
9050   }
9051 
9052   // Check for nontrivial bases (and recurse).
9053   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9054     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9055     assert(BaseRT && "Don't know how to handle dependent bases");
9056     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9057     if (!(BaseRecTy->*hasTrivial)()) {
9058       SourceLocation BaseLoc = bi->getSourceRange().getBegin();
9059       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9060       DiagnoseNontrivial(BaseRT, member);
9061       return;
9062     }
9063   }
9064 
9065   // Check for nontrivial members (and recurse).
9066   typedef RecordDecl::field_iterator field_iter;
9067   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9068        ++fi) {
9069     QualType EltTy = Context.getBaseElementType((*fi)->getType());
9070     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9071       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9072 
9073       if (!(EltRD->*hasTrivial)()) {
9074         SourceLocation FLoc = (*fi)->getLocation();
9075         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9076         DiagnoseNontrivial(EltRT, member);
9077         return;
9078       }
9079     }
9080 
9081     if (EltTy->isObjCLifetimeType()) {
9082       switch (EltTy.getObjCLifetime()) {
9083       case Qualifiers::OCL_None:
9084       case Qualifiers::OCL_ExplicitNone:
9085         break;
9086 
9087       case Qualifiers::OCL_Autoreleasing:
9088       case Qualifiers::OCL_Weak:
9089       case Qualifiers::OCL_Strong:
9090         Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
9091           << QT << EltTy.getObjCLifetime();
9092         return;
9093       }
9094     }
9095   }
9096 
9097   llvm_unreachable("found no explanation for non-trivial member");
9098 }
9099 
9100 /// TranslateIvarVisibility - Translate visibility from a token ID to an
9101 ///  AST enum value.
9102 static ObjCIvarDecl::AccessControl
9103 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9104   switch (ivarVisibility) {
9105   default: llvm_unreachable("Unknown visitibility kind");
9106   case tok::objc_private: return ObjCIvarDecl::Private;
9107   case tok::objc_public: return ObjCIvarDecl::Public;
9108   case tok::objc_protected: return ObjCIvarDecl::Protected;
9109   case tok::objc_package: return ObjCIvarDecl::Package;
9110   }
9111 }
9112 
9113 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
9114 /// in order to create an IvarDecl object for it.
9115 Decl *Sema::ActOnIvar(Scope *S,
9116                                 SourceLocation DeclStart,
9117                                 Declarator &D, Expr *BitfieldWidth,
9118                                 tok::ObjCKeywordKind Visibility) {
9119 
9120   IdentifierInfo *II = D.getIdentifier();
9121   Expr *BitWidth = (Expr*)BitfieldWidth;
9122   SourceLocation Loc = DeclStart;
9123   if (II) Loc = D.getIdentifierLoc();
9124 
9125   // FIXME: Unnamed fields can be handled in various different ways, for
9126   // example, unnamed unions inject all members into the struct namespace!
9127 
9128   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9129   QualType T = TInfo->getType();
9130 
9131   if (BitWidth) {
9132     // 6.7.2.1p3, 6.7.2.1p4
9133     BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9134     if (!BitWidth)
9135       D.setInvalidType();
9136   } else {
9137     // Not a bitfield.
9138 
9139     // validate II.
9140 
9141   }
9142   if (T->isReferenceType()) {
9143     Diag(Loc, diag::err_ivar_reference_type);
9144     D.setInvalidType();
9145   }
9146   // C99 6.7.2.1p8: A member of a structure or union may have any type other
9147   // than a variably modified type.
9148   else if (T->isVariablyModifiedType()) {
9149     Diag(Loc, diag::err_typecheck_ivar_variable_size);
9150     D.setInvalidType();
9151   }
9152 
9153   // Get the visibility (access control) for this ivar.
9154   ObjCIvarDecl::AccessControl ac =
9155     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9156                                         : ObjCIvarDecl::None;
9157   // Must set ivar's DeclContext to its enclosing interface.
9158   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9159   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9160     return 0;
9161   ObjCContainerDecl *EnclosingContext;
9162   if (ObjCImplementationDecl *IMPDecl =
9163       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9164     if (!LangOpts.ObjCNonFragileABI2) {
9165     // Case of ivar declared in an implementation. Context is that of its class.
9166       EnclosingContext = IMPDecl->getClassInterface();
9167       assert(EnclosingContext && "Implementation has no class interface!");
9168     }
9169     else
9170       EnclosingContext = EnclosingDecl;
9171   } else {
9172     if (ObjCCategoryDecl *CDecl =
9173         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9174       if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9175         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9176         return 0;
9177       }
9178     }
9179     EnclosingContext = EnclosingDecl;
9180   }
9181 
9182   // Construct the decl.
9183   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9184                                              DeclStart, Loc, II, T,
9185                                              TInfo, ac, (Expr *)BitfieldWidth);
9186 
9187   if (II) {
9188     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9189                                            ForRedeclaration);
9190     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9191         && !isa<TagDecl>(PrevDecl)) {
9192       Diag(Loc, diag::err_duplicate_member) << II;
9193       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9194       NewID->setInvalidDecl();
9195     }
9196   }
9197 
9198   // Process attributes attached to the ivar.
9199   ProcessDeclAttributes(S, NewID, D);
9200 
9201   if (D.isInvalidType())
9202     NewID->setInvalidDecl();
9203 
9204   // In ARC, infer 'retaining' for ivars of retainable type.
9205   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9206     NewID->setInvalidDecl();
9207 
9208   if (D.getDeclSpec().isModulePrivateSpecified())
9209     NewID->setModulePrivate();
9210 
9211   if (II) {
9212     // FIXME: When interfaces are DeclContexts, we'll need to add
9213     // these to the interface.
9214     S->AddDecl(NewID);
9215     IdResolver.AddDecl(NewID);
9216   }
9217 
9218   return NewID;
9219 }
9220 
9221 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9222 /// class and class extensions. For every class @interface and class
9223 /// extension @interface, if the last ivar is a bitfield of any type,
9224 /// then add an implicit `char :0` ivar to the end of that interface.
9225 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9226                              SmallVectorImpl<Decl *> &AllIvarDecls) {
9227   if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9228     return;
9229 
9230   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9231   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9232 
9233   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9234     return;
9235   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9236   if (!ID) {
9237     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9238       if (!CD->IsClassExtension())
9239         return;
9240     }
9241     // No need to add this to end of @implementation.
9242     else
9243       return;
9244   }
9245   // All conditions are met. Add a new bitfield to the tail end of ivars.
9246   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9247   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9248 
9249   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9250                               DeclLoc, DeclLoc, 0,
9251                               Context.CharTy,
9252                               Context.getTrivialTypeSourceInfo(Context.CharTy,
9253                                                                DeclLoc),
9254                               ObjCIvarDecl::Private, BW,
9255                               true);
9256   AllIvarDecls.push_back(Ivar);
9257 }
9258 
9259 void Sema::ActOnFields(Scope* S,
9260                        SourceLocation RecLoc, Decl *EnclosingDecl,
9261                        llvm::ArrayRef<Decl *> Fields,
9262                        SourceLocation LBrac, SourceLocation RBrac,
9263                        AttributeList *Attr) {
9264   assert(EnclosingDecl && "missing record or interface decl");
9265 
9266   // If the decl this is being inserted into is invalid, then it may be a
9267   // redeclaration or some other bogus case.  Don't try to add fields to it.
9268   if (EnclosingDecl->isInvalidDecl())
9269     return;
9270 
9271   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9272 
9273   // Start counting up the number of named members; make sure to include
9274   // members of anonymous structs and unions in the total.
9275   unsigned NumNamedMembers = 0;
9276   if (Record) {
9277     for (RecordDecl::decl_iterator i = Record->decls_begin(),
9278                                    e = Record->decls_end(); i != e; i++) {
9279       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9280         if (IFD->getDeclName())
9281           ++NumNamedMembers;
9282     }
9283   }
9284 
9285   // Verify that all the fields are okay.
9286   SmallVector<FieldDecl*, 32> RecFields;
9287 
9288   bool ARCErrReported = false;
9289   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9290        i != end; ++i) {
9291     FieldDecl *FD = cast<FieldDecl>(*i);
9292 
9293     // Get the type for the field.
9294     const Type *FDTy = FD->getType().getTypePtr();
9295 
9296     if (!FD->isAnonymousStructOrUnion()) {
9297       // Remember all fields written by the user.
9298       RecFields.push_back(FD);
9299     }
9300 
9301     // If the field is already invalid for some reason, don't emit more
9302     // diagnostics about it.
9303     if (FD->isInvalidDecl()) {
9304       EnclosingDecl->setInvalidDecl();
9305       continue;
9306     }
9307 
9308     // C99 6.7.2.1p2:
9309     //   A structure or union shall not contain a member with
9310     //   incomplete or function type (hence, a structure shall not
9311     //   contain an instance of itself, but may contain a pointer to
9312     //   an instance of itself), except that the last member of a
9313     //   structure with more than one named member may have incomplete
9314     //   array type; such a structure (and any union containing,
9315     //   possibly recursively, a member that is such a structure)
9316     //   shall not be a member of a structure or an element of an
9317     //   array.
9318     if (FDTy->isFunctionType()) {
9319       // Field declared as a function.
9320       Diag(FD->getLocation(), diag::err_field_declared_as_function)
9321         << FD->getDeclName();
9322       FD->setInvalidDecl();
9323       EnclosingDecl->setInvalidDecl();
9324       continue;
9325     } else if (FDTy->isIncompleteArrayType() && Record &&
9326                ((i + 1 == Fields.end() && !Record->isUnion()) ||
9327                 ((getLangOptions().MicrosoftExt ||
9328                   getLangOptions().CPlusPlus) &&
9329                  (i + 1 == Fields.end() || Record->isUnion())))) {
9330       // Flexible array member.
9331       // Microsoft and g++ is more permissive regarding flexible array.
9332       // It will accept flexible array in union and also
9333       // as the sole element of a struct/class.
9334       if (getLangOptions().MicrosoftExt) {
9335         if (Record->isUnion())
9336           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9337             << FD->getDeclName();
9338         else if (Fields.size() == 1)
9339           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9340             << FD->getDeclName() << Record->getTagKind();
9341       } else if (getLangOptions().CPlusPlus) {
9342         if (Record->isUnion())
9343           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9344             << FD->getDeclName();
9345         else if (Fields.size() == 1)
9346           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9347             << FD->getDeclName() << Record->getTagKind();
9348       } else if (NumNamedMembers < 1) {
9349         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9350           << FD->getDeclName();
9351         FD->setInvalidDecl();
9352         EnclosingDecl->setInvalidDecl();
9353         continue;
9354       }
9355       if (!FD->getType()->isDependentType() &&
9356           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9357         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9358           << FD->getDeclName() << FD->getType();
9359         FD->setInvalidDecl();
9360         EnclosingDecl->setInvalidDecl();
9361         continue;
9362       }
9363       // Okay, we have a legal flexible array member at the end of the struct.
9364       if (Record)
9365         Record->setHasFlexibleArrayMember(true);
9366     } else if (!FDTy->isDependentType() &&
9367                RequireCompleteType(FD->getLocation(), FD->getType(),
9368                                    diag::err_field_incomplete)) {
9369       // Incomplete type
9370       FD->setInvalidDecl();
9371       EnclosingDecl->setInvalidDecl();
9372       continue;
9373     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9374       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9375         // If this is a member of a union, then entire union becomes "flexible".
9376         if (Record && Record->isUnion()) {
9377           Record->setHasFlexibleArrayMember(true);
9378         } else {
9379           // If this is a struct/class and this is not the last element, reject
9380           // it.  Note that GCC supports variable sized arrays in the middle of
9381           // structures.
9382           if (i + 1 != Fields.end())
9383             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9384               << FD->getDeclName() << FD->getType();
9385           else {
9386             // We support flexible arrays at the end of structs in
9387             // other structs as an extension.
9388             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9389               << FD->getDeclName();
9390             if (Record)
9391               Record->setHasFlexibleArrayMember(true);
9392           }
9393         }
9394       }
9395       if (Record && FDTTy->getDecl()->hasObjectMember())
9396         Record->setHasObjectMember(true);
9397     } else if (FDTy->isObjCObjectType()) {
9398       /// A field cannot be an Objective-c object
9399       Diag(FD->getLocation(), diag::err_statically_allocated_object)
9400         << FixItHint::CreateInsertion(FD->getLocation(), "*");
9401       QualType T = Context.getObjCObjectPointerType(FD->getType());
9402       FD->setType(T);
9403     }
9404     else if (!getLangOptions().CPlusPlus) {
9405       if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9406         // It's an error in ARC if a field has lifetime.
9407         // We don't want to report this in a system header, though,
9408         // so we just make the field unavailable.
9409         // FIXME: that's really not sufficient; we need to make the type
9410         // itself invalid to, say, initialize or copy.
9411         QualType T = FD->getType();
9412         Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9413         if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9414           SourceLocation loc = FD->getLocation();
9415           if (getSourceManager().isInSystemHeader(loc)) {
9416             if (!FD->hasAttr<UnavailableAttr>()) {
9417               FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9418                                 "this system field has retaining ownership"));
9419             }
9420           } else {
9421             Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9422               << T->isBlockPointerType();
9423           }
9424           ARCErrReported = true;
9425         }
9426       }
9427       else if (getLangOptions().ObjC1 &&
9428                getLangOptions().getGC() != LangOptions::NonGC &&
9429                Record && !Record->hasObjectMember()) {
9430         if (FD->getType()->isObjCObjectPointerType() ||
9431             FD->getType().isObjCGCStrong())
9432           Record->setHasObjectMember(true);
9433         else if (Context.getAsArrayType(FD->getType())) {
9434           QualType BaseType = Context.getBaseElementType(FD->getType());
9435           if (BaseType->isRecordType() &&
9436               BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9437             Record->setHasObjectMember(true);
9438           else if (BaseType->isObjCObjectPointerType() ||
9439                    BaseType.isObjCGCStrong())
9440                  Record->setHasObjectMember(true);
9441         }
9442       }
9443     }
9444     // Keep track of the number of named members.
9445     if (FD->getIdentifier())
9446       ++NumNamedMembers;
9447   }
9448 
9449   // Okay, we successfully defined 'Record'.
9450   if (Record) {
9451     bool Completed = false;
9452     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9453       if (!CXXRecord->isInvalidDecl()) {
9454         // Set access bits correctly on the directly-declared conversions.
9455         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9456         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9457              I != E; ++I)
9458           Convs->setAccess(I, (*I)->getAccess());
9459 
9460         if (!CXXRecord->isDependentType()) {
9461           // Objective-C Automatic Reference Counting:
9462           //   If a class has a non-static data member of Objective-C pointer
9463           //   type (or array thereof), it is a non-POD type and its
9464           //   default constructor (if any), copy constructor, copy assignment
9465           //   operator, and destructor are non-trivial.
9466           //
9467           // This rule is also handled by CXXRecordDecl::completeDefinition().
9468           // However, here we check whether this particular class is only
9469           // non-POD because of the presence of an Objective-C pointer member.
9470           // If so, objects of this type cannot be shared between code compiled
9471           // with instant objects and code compiled with manual retain/release.
9472           if (getLangOptions().ObjCAutoRefCount &&
9473               CXXRecord->hasObjectMember() &&
9474               CXXRecord->getLinkage() == ExternalLinkage) {
9475             if (CXXRecord->isPOD()) {
9476               Diag(CXXRecord->getLocation(),
9477                    diag::warn_arc_non_pod_class_with_object_member)
9478                << CXXRecord;
9479             } else {
9480               // FIXME: Fix-Its would be nice here, but finding a good location
9481               // for them is going to be tricky.
9482               if (CXXRecord->hasTrivialCopyConstructor())
9483                 Diag(CXXRecord->getLocation(),
9484                      diag::warn_arc_trivial_member_function_with_object_member)
9485                   << CXXRecord << 0;
9486               if (CXXRecord->hasTrivialCopyAssignment())
9487                 Diag(CXXRecord->getLocation(),
9488                      diag::warn_arc_trivial_member_function_with_object_member)
9489                 << CXXRecord << 1;
9490               if (CXXRecord->hasTrivialDestructor())
9491                 Diag(CXXRecord->getLocation(),
9492                      diag::warn_arc_trivial_member_function_with_object_member)
9493                 << CXXRecord << 2;
9494             }
9495           }
9496 
9497           // Adjust user-defined destructor exception spec.
9498           if (getLangOptions().CPlusPlus0x &&
9499               CXXRecord->hasUserDeclaredDestructor())
9500             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9501 
9502           // Add any implicitly-declared members to this class.
9503           AddImplicitlyDeclaredMembersToClass(CXXRecord);
9504 
9505           // If we have virtual base classes, we may end up finding multiple
9506           // final overriders for a given virtual function. Check for this
9507           // problem now.
9508           if (CXXRecord->getNumVBases()) {
9509             CXXFinalOverriderMap FinalOverriders;
9510             CXXRecord->getFinalOverriders(FinalOverriders);
9511 
9512             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9513                                              MEnd = FinalOverriders.end();
9514                  M != MEnd; ++M) {
9515               for (OverridingMethods::iterator SO = M->second.begin(),
9516                                             SOEnd = M->second.end();
9517                    SO != SOEnd; ++SO) {
9518                 assert(SO->second.size() > 0 &&
9519                        "Virtual function without overridding functions?");
9520                 if (SO->second.size() == 1)
9521                   continue;
9522 
9523                 // C++ [class.virtual]p2:
9524                 //   In a derived class, if a virtual member function of a base
9525                 //   class subobject has more than one final overrider the
9526                 //   program is ill-formed.
9527                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9528                   << (NamedDecl *)M->first << Record;
9529                 Diag(M->first->getLocation(),
9530                      diag::note_overridden_virtual_function);
9531                 for (OverridingMethods::overriding_iterator
9532                           OM = SO->second.begin(),
9533                        OMEnd = SO->second.end();
9534                      OM != OMEnd; ++OM)
9535                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
9536                     << (NamedDecl *)M->first << OM->Method->getParent();
9537 
9538                 Record->setInvalidDecl();
9539               }
9540             }
9541             CXXRecord->completeDefinition(&FinalOverriders);
9542             Completed = true;
9543           }
9544         }
9545       }
9546     }
9547 
9548     if (!Completed)
9549       Record->completeDefinition();
9550 
9551     // Now that the record is complete, do any delayed exception spec checks
9552     // we were missing.
9553     while (!DelayedDestructorExceptionSpecChecks.empty()) {
9554       const CXXDestructorDecl *Dtor =
9555               DelayedDestructorExceptionSpecChecks.back().first;
9556       if (Dtor->getParent() != Record)
9557         break;
9558 
9559       assert(!Dtor->getParent()->isDependentType() &&
9560           "Should not ever add destructors of templates into the list.");
9561       CheckOverridingFunctionExceptionSpec(Dtor,
9562           DelayedDestructorExceptionSpecChecks.back().second);
9563       DelayedDestructorExceptionSpecChecks.pop_back();
9564     }
9565 
9566   } else {
9567     ObjCIvarDecl **ClsFields =
9568       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9569     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9570       ID->setEndOfDefinitionLoc(RBrac);
9571       // Add ivar's to class's DeclContext.
9572       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9573         ClsFields[i]->setLexicalDeclContext(ID);
9574         ID->addDecl(ClsFields[i]);
9575       }
9576       // Must enforce the rule that ivars in the base classes may not be
9577       // duplicates.
9578       if (ID->getSuperClass())
9579         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9580     } else if (ObjCImplementationDecl *IMPDecl =
9581                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9582       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9583       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9584         // Ivar declared in @implementation never belongs to the implementation.
9585         // Only it is in implementation's lexical context.
9586         ClsFields[I]->setLexicalDeclContext(IMPDecl);
9587       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9588       IMPDecl->setIvarLBraceLoc(LBrac);
9589       IMPDecl->setIvarRBraceLoc(RBrac);
9590     } else if (ObjCCategoryDecl *CDecl =
9591                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9592       // case of ivars in class extension; all other cases have been
9593       // reported as errors elsewhere.
9594       // FIXME. Class extension does not have a LocEnd field.
9595       // CDecl->setLocEnd(RBrac);
9596       // Add ivar's to class extension's DeclContext.
9597       // Diagnose redeclaration of private ivars.
9598       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9599       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9600         if (IDecl) {
9601           if (const ObjCIvarDecl *ClsIvar =
9602               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9603             Diag(ClsFields[i]->getLocation(),
9604                  diag::err_duplicate_ivar_declaration);
9605             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9606             continue;
9607           }
9608           for (const ObjCCategoryDecl *ClsExtDecl =
9609                 IDecl->getFirstClassExtension();
9610                ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9611             if (const ObjCIvarDecl *ClsExtIvar =
9612                 ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9613               Diag(ClsFields[i]->getLocation(),
9614                    diag::err_duplicate_ivar_declaration);
9615               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9616               continue;
9617             }
9618           }
9619         }
9620         ClsFields[i]->setLexicalDeclContext(CDecl);
9621         CDecl->addDecl(ClsFields[i]);
9622       }
9623       CDecl->setIvarLBraceLoc(LBrac);
9624       CDecl->setIvarRBraceLoc(RBrac);
9625     }
9626   }
9627 
9628   if (Attr)
9629     ProcessDeclAttributeList(S, Record, Attr);
9630 
9631   // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9632   // set the visibility of this record.
9633   if (Record && !Record->getDeclContext()->isRecord())
9634     AddPushedVisibilityAttribute(Record);
9635 }
9636 
9637 /// \brief Determine whether the given integral value is representable within
9638 /// the given type T.
9639 static bool isRepresentableIntegerValue(ASTContext &Context,
9640                                         llvm::APSInt &Value,
9641                                         QualType T) {
9642   assert(T->isIntegralType(Context) && "Integral type required!");
9643   unsigned BitWidth = Context.getIntWidth(T);
9644 
9645   if (Value.isUnsigned() || Value.isNonNegative()) {
9646     if (T->isSignedIntegerOrEnumerationType())
9647       --BitWidth;
9648     return Value.getActiveBits() <= BitWidth;
9649   }
9650   return Value.getMinSignedBits() <= BitWidth;
9651 }
9652 
9653 // \brief Given an integral type, return the next larger integral type
9654 // (or a NULL type of no such type exists).
9655 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9656   // FIXME: Int128/UInt128 support, which also needs to be introduced into
9657   // enum checking below.
9658   assert(T->isIntegralType(Context) && "Integral type required!");
9659   const unsigned NumTypes = 4;
9660   QualType SignedIntegralTypes[NumTypes] = {
9661     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9662   };
9663   QualType UnsignedIntegralTypes[NumTypes] = {
9664     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9665     Context.UnsignedLongLongTy
9666   };
9667 
9668   unsigned BitWidth = Context.getTypeSize(T);
9669   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9670                                                         : UnsignedIntegralTypes;
9671   for (unsigned I = 0; I != NumTypes; ++I)
9672     if (Context.getTypeSize(Types[I]) > BitWidth)
9673       return Types[I];
9674 
9675   return QualType();
9676 }
9677 
9678 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9679                                           EnumConstantDecl *LastEnumConst,
9680                                           SourceLocation IdLoc,
9681                                           IdentifierInfo *Id,
9682                                           Expr *Val) {
9683   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9684   llvm::APSInt EnumVal(IntWidth);
9685   QualType EltTy;
9686 
9687   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9688     Val = 0;
9689 
9690   if (Val)
9691     Val = DefaultLvalueConversion(Val).take();
9692 
9693   if (Val) {
9694     if (Enum->isDependentType() || Val->isTypeDependent())
9695       EltTy = Context.DependentTy;
9696     else {
9697       SourceLocation ExpLoc;
9698       if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9699           !getLangOptions().MicrosoftMode) {
9700         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9701         // constant-expression in the enumerator-definition shall be a converted
9702         // constant expression of the underlying type.
9703         EltTy = Enum->getIntegerType();
9704         ExprResult Converted =
9705           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9706                                            CCEK_Enumerator);
9707         if (Converted.isInvalid())
9708           Val = 0;
9709         else
9710           Val = Converted.take();
9711       } else if (!Val->isValueDependent() &&
9712                  !(Val = VerifyIntegerConstantExpression(Val,
9713                                                          &EnumVal).take())) {
9714         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9715       } else {
9716         if (Enum->isFixed()) {
9717           EltTy = Enum->getIntegerType();
9718 
9719           // In Obj-C and Microsoft mode, require the enumeration value to be
9720           // representable in the underlying type of the enumeration. In C++11,
9721           // we perform a non-narrowing conversion as part of converted constant
9722           // expression checking.
9723           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9724             if (getLangOptions().MicrosoftMode) {
9725               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9726               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9727             } else
9728               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9729           } else
9730             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9731         } else if (getLangOptions().CPlusPlus) {
9732           // C++11 [dcl.enum]p5:
9733           //   If the underlying type is not fixed, the type of each enumerator
9734           //   is the type of its initializing value:
9735           //     - If an initializer is specified for an enumerator, the
9736           //       initializing value has the same type as the expression.
9737           EltTy = Val->getType();
9738         } else {
9739           // C99 6.7.2.2p2:
9740           //   The expression that defines the value of an enumeration constant
9741           //   shall be an integer constant expression that has a value
9742           //   representable as an int.
9743 
9744           // Complain if the value is not representable in an int.
9745           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9746             Diag(IdLoc, diag::ext_enum_value_not_int)
9747               << EnumVal.toString(10) << Val->getSourceRange()
9748               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9749           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9750             // Force the type of the expression to 'int'.
9751             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9752           }
9753           EltTy = Val->getType();
9754         }
9755       }
9756     }
9757   }
9758 
9759   if (!Val) {
9760     if (Enum->isDependentType())
9761       EltTy = Context.DependentTy;
9762     else if (!LastEnumConst) {
9763       // C++0x [dcl.enum]p5:
9764       //   If the underlying type is not fixed, the type of each enumerator
9765       //   is the type of its initializing value:
9766       //     - If no initializer is specified for the first enumerator, the
9767       //       initializing value has an unspecified integral type.
9768       //
9769       // GCC uses 'int' for its unspecified integral type, as does
9770       // C99 6.7.2.2p3.
9771       if (Enum->isFixed()) {
9772         EltTy = Enum->getIntegerType();
9773       }
9774       else {
9775         EltTy = Context.IntTy;
9776       }
9777     } else {
9778       // Assign the last value + 1.
9779       EnumVal = LastEnumConst->getInitVal();
9780       ++EnumVal;
9781       EltTy = LastEnumConst->getType();
9782 
9783       // Check for overflow on increment.
9784       if (EnumVal < LastEnumConst->getInitVal()) {
9785         // C++0x [dcl.enum]p5:
9786         //   If the underlying type is not fixed, the type of each enumerator
9787         //   is the type of its initializing value:
9788         //
9789         //     - Otherwise the type of the initializing value is the same as
9790         //       the type of the initializing value of the preceding enumerator
9791         //       unless the incremented value is not representable in that type,
9792         //       in which case the type is an unspecified integral type
9793         //       sufficient to contain the incremented value. If no such type
9794         //       exists, the program is ill-formed.
9795         QualType T = getNextLargerIntegralType(Context, EltTy);
9796         if (T.isNull() || Enum->isFixed()) {
9797           // There is no integral type larger enough to represent this
9798           // value. Complain, then allow the value to wrap around.
9799           EnumVal = LastEnumConst->getInitVal();
9800           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9801           ++EnumVal;
9802           if (Enum->isFixed())
9803             // When the underlying type is fixed, this is ill-formed.
9804             Diag(IdLoc, diag::err_enumerator_wrapped)
9805               << EnumVal.toString(10)
9806               << EltTy;
9807           else
9808             Diag(IdLoc, diag::warn_enumerator_too_large)
9809               << EnumVal.toString(10);
9810         } else {
9811           EltTy = T;
9812         }
9813 
9814         // Retrieve the last enumerator's value, extent that type to the
9815         // type that is supposed to be large enough to represent the incremented
9816         // value, then increment.
9817         EnumVal = LastEnumConst->getInitVal();
9818         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9819         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9820         ++EnumVal;
9821 
9822         // If we're not in C++, diagnose the overflow of enumerator values,
9823         // which in C99 means that the enumerator value is not representable in
9824         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9825         // permits enumerator values that are representable in some larger
9826         // integral type.
9827         if (!getLangOptions().CPlusPlus && !T.isNull())
9828           Diag(IdLoc, diag::warn_enum_value_overflow);
9829       } else if (!getLangOptions().CPlusPlus &&
9830                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9831         // Enforce C99 6.7.2.2p2 even when we compute the next value.
9832         Diag(IdLoc, diag::ext_enum_value_not_int)
9833           << EnumVal.toString(10) << 1;
9834       }
9835     }
9836   }
9837 
9838   if (!EltTy->isDependentType()) {
9839     // Make the enumerator value match the signedness and size of the
9840     // enumerator's type.
9841     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
9842     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9843   }
9844 
9845   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9846                                   Val, EnumVal);
9847 }
9848 
9849 
9850 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9851                               SourceLocation IdLoc, IdentifierInfo *Id,
9852                               AttributeList *Attr,
9853                               SourceLocation EqualLoc, Expr *Val) {
9854   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9855   EnumConstantDecl *LastEnumConst =
9856     cast_or_null<EnumConstantDecl>(lastEnumConst);
9857 
9858   // The scope passed in may not be a decl scope.  Zip up the scope tree until
9859   // we find one that is.
9860   S = getNonFieldDeclScope(S);
9861 
9862   // Verify that there isn't already something declared with this name in this
9863   // scope.
9864   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9865                                          ForRedeclaration);
9866   if (PrevDecl && PrevDecl->isTemplateParameter()) {
9867     // Maybe we will complain about the shadowed template parameter.
9868     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9869     // Just pretend that we didn't see the previous declaration.
9870     PrevDecl = 0;
9871   }
9872 
9873   if (PrevDecl) {
9874     // When in C++, we may get a TagDecl with the same name; in this case the
9875     // enum constant will 'hide' the tag.
9876     assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9877            "Received TagDecl when not in C++!");
9878     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9879       if (isa<EnumConstantDecl>(PrevDecl))
9880         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9881       else
9882         Diag(IdLoc, diag::err_redefinition) << Id;
9883       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9884       return 0;
9885     }
9886   }
9887 
9888   // C++ [class.mem]p13:
9889   //   If T is the name of a class, then each of the following shall have a
9890   //   name different from T:
9891   //     - every enumerator of every member of class T that is an enumerated
9892   //       type
9893   if (CXXRecordDecl *Record
9894                       = dyn_cast<CXXRecordDecl>(
9895                              TheEnumDecl->getDeclContext()->getRedeclContext()))
9896     if (Record->getIdentifier() && Record->getIdentifier() == Id)
9897       Diag(IdLoc, diag::err_member_name_of_class) << Id;
9898 
9899   EnumConstantDecl *New =
9900     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9901 
9902   if (New) {
9903     // Process attributes.
9904     if (Attr) ProcessDeclAttributeList(S, New, Attr);
9905 
9906     // Register this decl in the current scope stack.
9907     New->setAccess(TheEnumDecl->getAccess());
9908     PushOnScopeChains(New, S);
9909   }
9910 
9911   return New;
9912 }
9913 
9914 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9915                          SourceLocation RBraceLoc, Decl *EnumDeclX,
9916                          Decl **Elements, unsigned NumElements,
9917                          Scope *S, AttributeList *Attr) {
9918   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9919   QualType EnumType = Context.getTypeDeclType(Enum);
9920 
9921   if (Attr)
9922     ProcessDeclAttributeList(S, Enum, Attr);
9923 
9924   if (Enum->isDependentType()) {
9925     for (unsigned i = 0; i != NumElements; ++i) {
9926       EnumConstantDecl *ECD =
9927         cast_or_null<EnumConstantDecl>(Elements[i]);
9928       if (!ECD) continue;
9929 
9930       ECD->setType(EnumType);
9931     }
9932 
9933     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9934     return;
9935   }
9936 
9937   // TODO: If the result value doesn't fit in an int, it must be a long or long
9938   // long value.  ISO C does not support this, but GCC does as an extension,
9939   // emit a warning.
9940   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9941   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9942   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9943 
9944   // Verify that all the values are okay, compute the size of the values, and
9945   // reverse the list.
9946   unsigned NumNegativeBits = 0;
9947   unsigned NumPositiveBits = 0;
9948 
9949   // Keep track of whether all elements have type int.
9950   bool AllElementsInt = true;
9951 
9952   for (unsigned i = 0; i != NumElements; ++i) {
9953     EnumConstantDecl *ECD =
9954       cast_or_null<EnumConstantDecl>(Elements[i]);
9955     if (!ECD) continue;  // Already issued a diagnostic.
9956 
9957     const llvm::APSInt &InitVal = ECD->getInitVal();
9958 
9959     // Keep track of the size of positive and negative values.
9960     if (InitVal.isUnsigned() || InitVal.isNonNegative())
9961       NumPositiveBits = std::max(NumPositiveBits,
9962                                  (unsigned)InitVal.getActiveBits());
9963     else
9964       NumNegativeBits = std::max(NumNegativeBits,
9965                                  (unsigned)InitVal.getMinSignedBits());
9966 
9967     // Keep track of whether every enum element has type int (very commmon).
9968     if (AllElementsInt)
9969       AllElementsInt = ECD->getType() == Context.IntTy;
9970   }
9971 
9972   // Figure out the type that should be used for this enum.
9973   QualType BestType;
9974   unsigned BestWidth;
9975 
9976   // C++0x N3000 [conv.prom]p3:
9977   //   An rvalue of an unscoped enumeration type whose underlying
9978   //   type is not fixed can be converted to an rvalue of the first
9979   //   of the following types that can represent all the values of
9980   //   the enumeration: int, unsigned int, long int, unsigned long
9981   //   int, long long int, or unsigned long long int.
9982   // C99 6.4.4.3p2:
9983   //   An identifier declared as an enumeration constant has type int.
9984   // The C99 rule is modified by a gcc extension
9985   QualType BestPromotionType;
9986 
9987   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9988   // -fshort-enums is the equivalent to specifying the packed attribute on all
9989   // enum definitions.
9990   if (LangOpts.ShortEnums)
9991     Packed = true;
9992 
9993   if (Enum->isFixed()) {
9994     BestType = Enum->getIntegerType();
9995     if (BestType->isPromotableIntegerType())
9996       BestPromotionType = Context.getPromotedIntegerType(BestType);
9997     else
9998       BestPromotionType = BestType;
9999     // We don't need to set BestWidth, because BestType is going to be the type
10000     // of the enumerators, but we do anyway because otherwise some compilers
10001     // warn that it might be used uninitialized.
10002     BestWidth = CharWidth;
10003   }
10004   else if (NumNegativeBits) {
10005     // If there is a negative value, figure out the smallest integer type (of
10006     // int/long/longlong) that fits.
10007     // If it's packed, check also if it fits a char or a short.
10008     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10009       BestType = Context.SignedCharTy;
10010       BestWidth = CharWidth;
10011     } else if (Packed && NumNegativeBits <= ShortWidth &&
10012                NumPositiveBits < ShortWidth) {
10013       BestType = Context.ShortTy;
10014       BestWidth = ShortWidth;
10015     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10016       BestType = Context.IntTy;
10017       BestWidth = IntWidth;
10018     } else {
10019       BestWidth = Context.getTargetInfo().getLongWidth();
10020 
10021       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10022         BestType = Context.LongTy;
10023       } else {
10024         BestWidth = Context.getTargetInfo().getLongLongWidth();
10025 
10026         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10027           Diag(Enum->getLocation(), diag::warn_enum_too_large);
10028         BestType = Context.LongLongTy;
10029       }
10030     }
10031     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10032   } else {
10033     // If there is no negative value, figure out the smallest type that fits
10034     // all of the enumerator values.
10035     // If it's packed, check also if it fits a char or a short.
10036     if (Packed && NumPositiveBits <= CharWidth) {
10037       BestType = Context.UnsignedCharTy;
10038       BestPromotionType = Context.IntTy;
10039       BestWidth = CharWidth;
10040     } else if (Packed && NumPositiveBits <= ShortWidth) {
10041       BestType = Context.UnsignedShortTy;
10042       BestPromotionType = Context.IntTy;
10043       BestWidth = ShortWidth;
10044     } else if (NumPositiveBits <= IntWidth) {
10045       BestType = Context.UnsignedIntTy;
10046       BestWidth = IntWidth;
10047       BestPromotionType
10048         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10049                            ? Context.UnsignedIntTy : Context.IntTy;
10050     } else if (NumPositiveBits <=
10051                (BestWidth = Context.getTargetInfo().getLongWidth())) {
10052       BestType = Context.UnsignedLongTy;
10053       BestPromotionType
10054         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10055                            ? Context.UnsignedLongTy : Context.LongTy;
10056     } else {
10057       BestWidth = Context.getTargetInfo().getLongLongWidth();
10058       assert(NumPositiveBits <= BestWidth &&
10059              "How could an initializer get larger than ULL?");
10060       BestType = Context.UnsignedLongLongTy;
10061       BestPromotionType
10062         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10063                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
10064     }
10065   }
10066 
10067   // Loop over all of the enumerator constants, changing their types to match
10068   // the type of the enum if needed.
10069   for (unsigned i = 0; i != NumElements; ++i) {
10070     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10071     if (!ECD) continue;  // Already issued a diagnostic.
10072 
10073     // Standard C says the enumerators have int type, but we allow, as an
10074     // extension, the enumerators to be larger than int size.  If each
10075     // enumerator value fits in an int, type it as an int, otherwise type it the
10076     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10077     // that X has type 'int', not 'unsigned'.
10078 
10079     // Determine whether the value fits into an int.
10080     llvm::APSInt InitVal = ECD->getInitVal();
10081 
10082     // If it fits into an integer type, force it.  Otherwise force it to match
10083     // the enum decl type.
10084     QualType NewTy;
10085     unsigned NewWidth;
10086     bool NewSign;
10087     if (!getLangOptions().CPlusPlus &&
10088         !Enum->isFixed() &&
10089         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10090       NewTy = Context.IntTy;
10091       NewWidth = IntWidth;
10092       NewSign = true;
10093     } else if (ECD->getType() == BestType) {
10094       // Already the right type!
10095       if (getLangOptions().CPlusPlus)
10096         // C++ [dcl.enum]p4: Following the closing brace of an
10097         // enum-specifier, each enumerator has the type of its
10098         // enumeration.
10099         ECD->setType(EnumType);
10100       continue;
10101     } else {
10102       NewTy = BestType;
10103       NewWidth = BestWidth;
10104       NewSign = BestType->isSignedIntegerOrEnumerationType();
10105     }
10106 
10107     // Adjust the APSInt value.
10108     InitVal = InitVal.extOrTrunc(NewWidth);
10109     InitVal.setIsSigned(NewSign);
10110     ECD->setInitVal(InitVal);
10111 
10112     // Adjust the Expr initializer and type.
10113     if (ECD->getInitExpr() &&
10114         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10115       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10116                                                 CK_IntegralCast,
10117                                                 ECD->getInitExpr(),
10118                                                 /*base paths*/ 0,
10119                                                 VK_RValue));
10120     if (getLangOptions().CPlusPlus)
10121       // C++ [dcl.enum]p4: Following the closing brace of an
10122       // enum-specifier, each enumerator has the type of its
10123       // enumeration.
10124       ECD->setType(EnumType);
10125     else
10126       ECD->setType(NewTy);
10127   }
10128 
10129   Enum->completeDefinition(BestType, BestPromotionType,
10130                            NumPositiveBits, NumNegativeBits);
10131 }
10132 
10133 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10134                                   SourceLocation StartLoc,
10135                                   SourceLocation EndLoc) {
10136   StringLiteral *AsmString = cast<StringLiteral>(expr);
10137 
10138   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10139                                                    AsmString, StartLoc,
10140                                                    EndLoc);
10141   CurContext->addDecl(New);
10142   return New;
10143 }
10144 
10145 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10146                                    SourceLocation ImportLoc,
10147                                    ModuleIdPath Path) {
10148   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10149                                                 Module::AllVisible,
10150                                                 /*IsIncludeDirective=*/false);
10151   if (!Mod)
10152     return true;
10153 
10154   llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10155   Module *ModCheck = Mod;
10156   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10157     // If we've run out of module parents, just drop the remaining identifiers.
10158     // We need the length to be consistent.
10159     if (!ModCheck)
10160       break;
10161     ModCheck = ModCheck->Parent;
10162 
10163     IdentifierLocs.push_back(Path[I].second);
10164   }
10165 
10166   ImportDecl *Import = ImportDecl::Create(Context,
10167                                           Context.getTranslationUnitDecl(),
10168                                           AtLoc.isValid()? AtLoc : ImportLoc,
10169                                           Mod, IdentifierLocs);
10170   Context.getTranslationUnitDecl()->addDecl(Import);
10171   return Import;
10172 }
10173 
10174 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10175                                       IdentifierInfo* AliasName,
10176                                       SourceLocation PragmaLoc,
10177                                       SourceLocation NameLoc,
10178                                       SourceLocation AliasNameLoc) {
10179   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10180                                     LookupOrdinaryName);
10181   AsmLabelAttr *Attr =
10182      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10183 
10184   if (PrevDecl)
10185     PrevDecl->addAttr(Attr);
10186   else
10187     (void)ExtnameUndeclaredIdentifiers.insert(
10188       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10189 }
10190 
10191 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10192                              SourceLocation PragmaLoc,
10193                              SourceLocation NameLoc) {
10194   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10195 
10196   if (PrevDecl) {
10197     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10198   } else {
10199     (void)WeakUndeclaredIdentifiers.insert(
10200       std::pair<IdentifierInfo*,WeakInfo>
10201         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10202   }
10203 }
10204 
10205 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10206                                 IdentifierInfo* AliasName,
10207                                 SourceLocation PragmaLoc,
10208                                 SourceLocation NameLoc,
10209                                 SourceLocation AliasNameLoc) {
10210   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10211                                     LookupOrdinaryName);
10212   WeakInfo W = WeakInfo(Name, NameLoc);
10213 
10214   if (PrevDecl) {
10215     if (!PrevDecl->hasAttr<AliasAttr>())
10216       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10217         DeclApplyPragmaWeak(TUScope, ND, W);
10218   } else {
10219     (void)WeakUndeclaredIdentifiers.insert(
10220       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10221   }
10222 }
10223 
10224 Decl *Sema::getObjCDeclContext() const {
10225   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10226 }
10227 
10228 AvailabilityResult Sema::getCurContextAvailability() const {
10229   const Decl *D = cast<Decl>(getCurLexicalContext());
10230   // A category implicitly has the availability of the interface.
10231   if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10232     D = CatD->getClassInterface();
10233 
10234   return D->getAvailability();
10235 }
10236